[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / CodeGen / MachineInstr.h
blobc82c5b137507bb6c2a515c80e311cace40bc3767
1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/ArrayRecycler.h"
33 #include "llvm/Support/TrailingObjects.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <utility>
39 namespace llvm {
41 template <typename T> class ArrayRef;
42 class DIExpression;
43 class DILocalVariable;
44 class MachineBasicBlock;
45 class MachineFunction;
46 class MachineMemOperand;
47 class MachineRegisterInfo;
48 class ModuleSlotTracker;
49 class raw_ostream;
50 template <typename T> class SmallVectorImpl;
51 class SmallBitVector;
52 class StringRef;
53 class TargetInstrInfo;
54 class TargetRegisterClass;
55 class TargetRegisterInfo;
57 //===----------------------------------------------------------------------===//
58 /// Representation of each machine instruction.
59 ///
60 /// This class isn't a POD type, but it must have a trivial destructor. When a
61 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62 /// without having their destructor called.
63 ///
64 class MachineInstr
65 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66 ilist_sentinel_tracking<true>> {
67 public:
68 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
70 /// Flags to specify different kinds of comments to output in
71 /// assembly code. These flags carry semantic information not
72 /// otherwise easily derivable from the IR text.
73 ///
74 enum CommentFlag {
75 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
76 NoSchedComment = 0x2,
77 TAsmComments = 0x4 // Target Asm comments should start from this value.
80 enum MIFlag {
81 NoFlags = 0,
82 FrameSetup = 1 << 0, // Instruction is used as a part of
83 // function frame setup code.
84 FrameDestroy = 1 << 1, // Instruction is used as a part of
85 // function frame destruction code.
86 BundledPred = 1 << 2, // Instruction has bundled predecessors.
87 BundledSucc = 1 << 3, // Instruction has bundled successors.
88 FmNoNans = 1 << 4, // Instruction does not support Fast
89 // math nan values.
90 FmNoInfs = 1 << 5, // Instruction does not support Fast
91 // math infinity values.
92 FmNsz = 1 << 6, // Instruction is not required to retain
93 // signed zero values.
94 FmArcp = 1 << 7, // Instruction supports Fast math
95 // reciprocal approximations.
96 FmContract = 1 << 8, // Instruction supports Fast math
97 // contraction operations like fma.
98 FmAfn = 1 << 9, // Instruction may map to Fast math
99 // instrinsic approximation.
100 FmReassoc = 1 << 10, // Instruction supports Fast math
101 // reassociation of operand order.
102 NoUWrap = 1 << 11, // Instruction supports binary operator
103 // no unsigned wrap.
104 NoSWrap = 1 << 12, // Instruction supports binary operator
105 // no signed wrap.
106 IsExact = 1 << 13, // Instruction supports division is
107 // known to be exact.
108 FPExcept = 1 << 14, // Instruction may raise floating-point
109 // exceptions.
112 private:
113 const MCInstrDesc *MCID; // Instruction descriptor.
114 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
116 // Operands are allocated by an ArrayRecycler.
117 MachineOperand *Operands = nullptr; // Pointer to the first operand.
118 unsigned NumOperands = 0; // Number of operands on instruction.
119 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
120 OperandCapacity CapOperands; // Capacity of the Operands array.
122 uint16_t Flags = 0; // Various bits of additional
123 // information about machine
124 // instruction.
126 uint8_t AsmPrinterFlags = 0; // Various bits of information used by
127 // the AsmPrinter to emit helpful
128 // comments. This is *not* semantic
129 // information. Do not use this for
130 // anything other than to convey comment
131 // information to AsmPrinter.
133 /// Internal implementation detail class that provides out-of-line storage for
134 /// extra info used by the machine instruction when this info cannot be stored
135 /// in-line within the instruction itself.
137 /// This has to be defined eagerly due to the implementation constraints of
138 /// `PointerSumType` where it is used.
139 class ExtraInfo final
140 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
141 public:
142 static ExtraInfo *create(BumpPtrAllocator &Allocator,
143 ArrayRef<MachineMemOperand *> MMOs,
144 MCSymbol *PreInstrSymbol = nullptr,
145 MCSymbol *PostInstrSymbol = nullptr) {
146 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
147 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
148 auto *Result = new (Allocator.Allocate(
149 totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
150 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
151 alignof(ExtraInfo)))
152 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
154 // Copy the actual data into the trailing objects.
155 std::copy(MMOs.begin(), MMOs.end(),
156 Result->getTrailingObjects<MachineMemOperand *>());
158 if (HasPreInstrSymbol)
159 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
160 if (HasPostInstrSymbol)
161 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
162 PostInstrSymbol;
164 return Result;
167 ArrayRef<MachineMemOperand *> getMMOs() const {
168 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
171 MCSymbol *getPreInstrSymbol() const {
172 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
175 MCSymbol *getPostInstrSymbol() const {
176 return HasPostInstrSymbol
177 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
178 : nullptr;
181 private:
182 friend TrailingObjects;
184 // Description of the extra info, used to interpret the actual optional
185 // data appended.
187 // Note that this is not terribly space optimized. This leaves a great deal
188 // of flexibility to fit more in here later.
189 const int NumMMOs;
190 const bool HasPreInstrSymbol;
191 const bool HasPostInstrSymbol;
193 // Implement the `TrailingObjects` internal API.
194 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
195 return NumMMOs;
197 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
198 return HasPreInstrSymbol + HasPostInstrSymbol;
201 // Just a boring constructor to allow us to initialize the sizes. Always use
202 // the `create` routine above.
203 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
204 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
205 HasPostInstrSymbol(HasPostInstrSymbol) {}
208 /// Enumeration of the kinds of inline extra info available. It is important
209 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
210 /// it accessible as an `ArrayRef`.
211 enum ExtraInfoInlineKinds {
212 EIIK_MMO = 0,
213 EIIK_PreInstrSymbol,
214 EIIK_PostInstrSymbol,
215 EIIK_OutOfLine
218 // We store extra information about the instruction here. The common case is
219 // expected to be nothing or a single pointer (typically a MMO or a symbol).
220 // We work to optimize this common case by storing it inline here rather than
221 // requiring a separate allocation, but we fall back to an allocation when
222 // multiple pointers are needed.
223 PointerSumType<ExtraInfoInlineKinds,
224 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
225 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
226 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
227 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
228 Info;
230 DebugLoc debugLoc; // Source line information.
232 // Intrusive list support
233 friend struct ilist_traits<MachineInstr>;
234 friend struct ilist_callback_traits<MachineBasicBlock>;
235 void setParent(MachineBasicBlock *P) { Parent = P; }
237 /// This constructor creates a copy of the given
238 /// MachineInstr in the given MachineFunction.
239 MachineInstr(MachineFunction &, const MachineInstr &);
241 /// This constructor create a MachineInstr and add the implicit operands.
242 /// It reserves space for number of operands specified by
243 /// MCInstrDesc. An explicit DebugLoc is supplied.
244 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
245 bool NoImp = false);
247 // MachineInstrs are pool-allocated and owned by MachineFunction.
248 friend class MachineFunction;
250 public:
251 MachineInstr(const MachineInstr &) = delete;
252 MachineInstr &operator=(const MachineInstr &) = delete;
253 // Use MachineFunction::DeleteMachineInstr() instead.
254 ~MachineInstr() = delete;
256 const MachineBasicBlock* getParent() const { return Parent; }
257 MachineBasicBlock* getParent() { return Parent; }
259 /// Return the function that contains the basic block that this instruction
260 /// belongs to.
262 /// Note: this is undefined behaviour if the instruction does not have a
263 /// parent.
264 const MachineFunction *getMF() const;
265 MachineFunction *getMF() {
266 return const_cast<MachineFunction *>(
267 static_cast<const MachineInstr *>(this)->getMF());
270 /// Return the asm printer flags bitvector.
271 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
273 /// Clear the AsmPrinter bitvector.
274 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
276 /// Return whether an AsmPrinter flag is set.
277 bool getAsmPrinterFlag(CommentFlag Flag) const {
278 return AsmPrinterFlags & Flag;
281 /// Set a flag for the AsmPrinter.
282 void setAsmPrinterFlag(uint8_t Flag) {
283 AsmPrinterFlags |= Flag;
286 /// Clear specific AsmPrinter flags.
287 void clearAsmPrinterFlag(CommentFlag Flag) {
288 AsmPrinterFlags &= ~Flag;
291 /// Return the MI flags bitvector.
292 uint16_t getFlags() const {
293 return Flags;
296 /// Return whether an MI flag is set.
297 bool getFlag(MIFlag Flag) const {
298 return Flags & Flag;
301 /// Set a MI flag.
302 void setFlag(MIFlag Flag) {
303 Flags |= (uint16_t)Flag;
306 void setFlags(unsigned flags) {
307 // Filter out the automatically maintained flags.
308 unsigned Mask = BundledPred | BundledSucc;
309 Flags = (Flags & Mask) | (flags & ~Mask);
312 /// clearFlag - Clear a MI flag.
313 void clearFlag(MIFlag Flag) {
314 Flags &= ~((uint16_t)Flag);
317 /// Return true if MI is in a bundle (but not the first MI in a bundle).
319 /// A bundle looks like this before it's finalized:
320 /// ----------------
321 /// | MI |
322 /// ----------------
323 /// |
324 /// ----------------
325 /// | MI * |
326 /// ----------------
327 /// |
328 /// ----------------
329 /// | MI * |
330 /// ----------------
331 /// In this case, the first MI starts a bundle but is not inside a bundle, the
332 /// next 2 MIs are considered "inside" the bundle.
334 /// After a bundle is finalized, it looks like this:
335 /// ----------------
336 /// | Bundle |
337 /// ----------------
338 /// |
339 /// ----------------
340 /// | MI * |
341 /// ----------------
342 /// |
343 /// ----------------
344 /// | MI * |
345 /// ----------------
346 /// |
347 /// ----------------
348 /// | MI * |
349 /// ----------------
350 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
351 /// a bundle, but the next three MIs are.
352 bool isInsideBundle() const {
353 return getFlag(BundledPred);
356 /// Return true if this instruction part of a bundle. This is true
357 /// if either itself or its following instruction is marked "InsideBundle".
358 bool isBundled() const {
359 return isBundledWithPred() || isBundledWithSucc();
362 /// Return true if this instruction is part of a bundle, and it is not the
363 /// first instruction in the bundle.
364 bool isBundledWithPred() const { return getFlag(BundledPred); }
366 /// Return true if this instruction is part of a bundle, and it is not the
367 /// last instruction in the bundle.
368 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
370 /// Bundle this instruction with its predecessor. This can be an unbundled
371 /// instruction, or it can be the first instruction in a bundle.
372 void bundleWithPred();
374 /// Bundle this instruction with its successor. This can be an unbundled
375 /// instruction, or it can be the last instruction in a bundle.
376 void bundleWithSucc();
378 /// Break bundle above this instruction.
379 void unbundleFromPred();
381 /// Break bundle below this instruction.
382 void unbundleFromSucc();
384 /// Returns the debug location id of this MachineInstr.
385 const DebugLoc &getDebugLoc() const { return debugLoc; }
387 /// Return the debug variable referenced by
388 /// this DBG_VALUE instruction.
389 const DILocalVariable *getDebugVariable() const;
391 /// Return the complex address expression referenced by
392 /// this DBG_VALUE instruction.
393 const DIExpression *getDebugExpression() const;
395 /// Return the debug label referenced by
396 /// this DBG_LABEL instruction.
397 const DILabel *getDebugLabel() const;
399 /// Emit an error referring to the source location of this instruction.
400 /// This should only be used for inline assembly that is somehow
401 /// impossible to compile. Other errors should have been handled much
402 /// earlier.
404 /// If this method returns, the caller should try to recover from the error.
405 void emitError(StringRef Msg) const;
407 /// Returns the target instruction descriptor of this MachineInstr.
408 const MCInstrDesc &getDesc() const { return *MCID; }
410 /// Returns the opcode of this MachineInstr.
411 unsigned getOpcode() const { return MCID->Opcode; }
413 /// Retuns the total number of operands.
414 unsigned getNumOperands() const { return NumOperands; }
416 const MachineOperand& getOperand(unsigned i) const {
417 assert(i < getNumOperands() && "getOperand() out of range!");
418 return Operands[i];
420 MachineOperand& getOperand(unsigned i) {
421 assert(i < getNumOperands() && "getOperand() out of range!");
422 return Operands[i];
425 /// Returns the total number of definitions.
426 unsigned getNumDefs() const {
427 return getNumExplicitDefs() + MCID->getNumImplicitDefs();
430 /// Return true if operand \p OpIdx is a subregister index.
431 bool isOperandSubregIdx(unsigned OpIdx) const {
432 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
433 "Expected MO_Immediate operand type.");
434 if (isExtractSubreg() && OpIdx == 2)
435 return true;
436 if (isInsertSubreg() && OpIdx == 3)
437 return true;
438 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
439 return true;
440 if (isSubregToReg() && OpIdx == 3)
441 return true;
442 return false;
445 /// Returns the number of non-implicit operands.
446 unsigned getNumExplicitOperands() const;
448 /// Returns the number of non-implicit definitions.
449 unsigned getNumExplicitDefs() const;
451 /// iterator/begin/end - Iterate over all operands of a machine instruction.
452 using mop_iterator = MachineOperand *;
453 using const_mop_iterator = const MachineOperand *;
455 mop_iterator operands_begin() { return Operands; }
456 mop_iterator operands_end() { return Operands + NumOperands; }
458 const_mop_iterator operands_begin() const { return Operands; }
459 const_mop_iterator operands_end() const { return Operands + NumOperands; }
461 iterator_range<mop_iterator> operands() {
462 return make_range(operands_begin(), operands_end());
464 iterator_range<const_mop_iterator> operands() const {
465 return make_range(operands_begin(), operands_end());
467 iterator_range<mop_iterator> explicit_operands() {
468 return make_range(operands_begin(),
469 operands_begin() + getNumExplicitOperands());
471 iterator_range<const_mop_iterator> explicit_operands() const {
472 return make_range(operands_begin(),
473 operands_begin() + getNumExplicitOperands());
475 iterator_range<mop_iterator> implicit_operands() {
476 return make_range(explicit_operands().end(), operands_end());
478 iterator_range<const_mop_iterator> implicit_operands() const {
479 return make_range(explicit_operands().end(), operands_end());
481 /// Returns a range over all explicit operands that are register definitions.
482 /// Implicit definition are not included!
483 iterator_range<mop_iterator> defs() {
484 return make_range(operands_begin(),
485 operands_begin() + getNumExplicitDefs());
487 /// \copydoc defs()
488 iterator_range<const_mop_iterator> defs() const {
489 return make_range(operands_begin(),
490 operands_begin() + getNumExplicitDefs());
492 /// Returns a range that includes all operands that are register uses.
493 /// This may include unrelated operands which are not register uses.
494 iterator_range<mop_iterator> uses() {
495 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
497 /// \copydoc uses()
498 iterator_range<const_mop_iterator> uses() const {
499 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
501 iterator_range<mop_iterator> explicit_uses() {
502 return make_range(operands_begin() + getNumExplicitDefs(),
503 operands_begin() + getNumExplicitOperands());
505 iterator_range<const_mop_iterator> explicit_uses() const {
506 return make_range(operands_begin() + getNumExplicitDefs(),
507 operands_begin() + getNumExplicitOperands());
510 /// Returns the number of the operand iterator \p I points to.
511 unsigned getOperandNo(const_mop_iterator I) const {
512 return I - operands_begin();
515 /// Access to memory operands of the instruction. If there are none, that does
516 /// not imply anything about whether the function accesses memory. Instead,
517 /// the caller must behave conservatively.
518 ArrayRef<MachineMemOperand *> memoperands() const {
519 if (!Info)
520 return {};
522 if (Info.is<EIIK_MMO>())
523 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
525 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
526 return EI->getMMOs();
528 return {};
531 /// Access to memory operands of the instruction.
533 /// If `memoperands_begin() == memoperands_end()`, that does not imply
534 /// anything about whether the function accesses memory. Instead, the caller
535 /// must behave conservatively.
536 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
538 /// Access to memory operands of the instruction.
540 /// If `memoperands_begin() == memoperands_end()`, that does not imply
541 /// anything about whether the function accesses memory. Instead, the caller
542 /// must behave conservatively.
543 mmo_iterator memoperands_end() const { return memoperands().end(); }
545 /// Return true if we don't have any memory operands which described the
546 /// memory access done by this instruction. If this is true, calling code
547 /// must be conservative.
548 bool memoperands_empty() const { return memoperands().empty(); }
550 /// Return true if this instruction has exactly one MachineMemOperand.
551 bool hasOneMemOperand() const { return memoperands().size() == 1; }
553 /// Return the number of memory operands.
554 unsigned getNumMemOperands() const { return memoperands().size(); }
556 /// Helper to extract a pre-instruction symbol if one has been added.
557 MCSymbol *getPreInstrSymbol() const {
558 if (!Info)
559 return nullptr;
560 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
561 return S;
562 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
563 return EI->getPreInstrSymbol();
565 return nullptr;
568 /// Helper to extract a post-instruction symbol if one has been added.
569 MCSymbol *getPostInstrSymbol() const {
570 if (!Info)
571 return nullptr;
572 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
573 return S;
574 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
575 return EI->getPostInstrSymbol();
577 return nullptr;
580 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
581 /// queries but they are bundle aware.
583 enum QueryType {
584 IgnoreBundle, // Ignore bundles
585 AnyInBundle, // Return true if any instruction in bundle has property
586 AllInBundle // Return true if all instructions in bundle have property
589 /// Return true if the instruction (or in the case of a bundle,
590 /// the instructions inside the bundle) has the specified property.
591 /// The first argument is the property being queried.
592 /// The second argument indicates whether the query should look inside
593 /// instruction bundles.
594 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
595 assert(MCFlag < 64 &&
596 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
597 // Inline the fast path for unbundled or bundle-internal instructions.
598 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
599 return getDesc().getFlags() & (1ULL << MCFlag);
601 // If this is the first instruction in a bundle, take the slow path.
602 return hasPropertyInBundle(1ULL << MCFlag, Type);
605 /// Return true if this instruction can have a variable number of operands.
606 /// In this case, the variable operands will be after the normal
607 /// operands but before the implicit definitions and uses (if any are
608 /// present).
609 bool isVariadic(QueryType Type = IgnoreBundle) const {
610 return hasProperty(MCID::Variadic, Type);
613 /// Set if this instruction has an optional definition, e.g.
614 /// ARM instructions which can set condition code if 's' bit is set.
615 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
616 return hasProperty(MCID::HasOptionalDef, Type);
619 /// Return true if this is a pseudo instruction that doesn't
620 /// correspond to a real machine instruction.
621 bool isPseudo(QueryType Type = IgnoreBundle) const {
622 return hasProperty(MCID::Pseudo, Type);
625 bool isReturn(QueryType Type = AnyInBundle) const {
626 return hasProperty(MCID::Return, Type);
629 /// Return true if this is an instruction that marks the end of an EH scope,
630 /// i.e., a catchpad or a cleanuppad instruction.
631 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
632 return hasProperty(MCID::EHScopeReturn, Type);
635 bool isCall(QueryType Type = AnyInBundle) const {
636 return hasProperty(MCID::Call, Type);
639 /// Returns true if the specified instruction stops control flow
640 /// from executing the instruction immediately following it. Examples include
641 /// unconditional branches and return instructions.
642 bool isBarrier(QueryType Type = AnyInBundle) const {
643 return hasProperty(MCID::Barrier, Type);
646 /// Returns true if this instruction part of the terminator for a basic block.
647 /// Typically this is things like return and branch instructions.
649 /// Various passes use this to insert code into the bottom of a basic block,
650 /// but before control flow occurs.
651 bool isTerminator(QueryType Type = AnyInBundle) const {
652 return hasProperty(MCID::Terminator, Type);
655 /// Returns true if this is a conditional, unconditional, or indirect branch.
656 /// Predicates below can be used to discriminate between
657 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
658 /// get more information.
659 bool isBranch(QueryType Type = AnyInBundle) const {
660 return hasProperty(MCID::Branch, Type);
663 /// Return true if this is an indirect branch, such as a
664 /// branch through a register.
665 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
666 return hasProperty(MCID::IndirectBranch, Type);
669 /// Return true if this is a branch which may fall
670 /// through to the next instruction or may transfer control flow to some other
671 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
672 /// information about this branch.
673 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
674 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
677 /// Return true if this is a branch which always
678 /// transfers control flow to some other block. The
679 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
680 /// about this branch.
681 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
682 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
685 /// Return true if this instruction has a predicate operand that
686 /// controls execution. It may be set to 'always', or may be set to other
687 /// values. There are various methods in TargetInstrInfo that can be used to
688 /// control and modify the predicate in this instruction.
689 bool isPredicable(QueryType Type = AllInBundle) const {
690 // If it's a bundle than all bundled instructions must be predicable for this
691 // to return true.
692 return hasProperty(MCID::Predicable, Type);
695 /// Return true if this instruction is a comparison.
696 bool isCompare(QueryType Type = IgnoreBundle) const {
697 return hasProperty(MCID::Compare, Type);
700 /// Return true if this instruction is a move immediate
701 /// (including conditional moves) instruction.
702 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
703 return hasProperty(MCID::MoveImm, Type);
706 /// Return true if this instruction is a register move.
707 /// (including moving values from subreg to reg)
708 bool isMoveReg(QueryType Type = IgnoreBundle) const {
709 return hasProperty(MCID::MoveReg, Type);
712 /// Return true if this instruction is a bitcast instruction.
713 bool isBitcast(QueryType Type = IgnoreBundle) const {
714 return hasProperty(MCID::Bitcast, Type);
717 /// Return true if this instruction is a select instruction.
718 bool isSelect(QueryType Type = IgnoreBundle) const {
719 return hasProperty(MCID::Select, Type);
722 /// Return true if this instruction cannot be safely duplicated.
723 /// For example, if the instruction has a unique labels attached
724 /// to it, duplicating it would cause multiple definition errors.
725 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
726 return hasProperty(MCID::NotDuplicable, Type);
729 /// Return true if this instruction is convergent.
730 /// Convergent instructions can not be made control-dependent on any
731 /// additional values.
732 bool isConvergent(QueryType Type = AnyInBundle) const {
733 if (isInlineAsm()) {
734 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
735 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
736 return true;
738 return hasProperty(MCID::Convergent, Type);
741 /// Returns true if the specified instruction has a delay slot
742 /// which must be filled by the code generator.
743 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
744 return hasProperty(MCID::DelaySlot, Type);
747 /// Return true for instructions that can be folded as
748 /// memory operands in other instructions. The most common use for this
749 /// is instructions that are simple loads from memory that don't modify
750 /// the loaded value in any way, but it can also be used for instructions
751 /// that can be expressed as constant-pool loads, such as V_SETALLONES
752 /// on x86, to allow them to be folded when it is beneficial.
753 /// This should only be set on instructions that return a value in their
754 /// only virtual register definition.
755 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
756 return hasProperty(MCID::FoldableAsLoad, Type);
759 /// Return true if this instruction behaves
760 /// the same way as the generic REG_SEQUENCE instructions.
761 /// E.g., on ARM,
762 /// dX VMOVDRR rY, rZ
763 /// is equivalent to
764 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
766 /// Note that for the optimizers to be able to take advantage of
767 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
768 /// override accordingly.
769 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
770 return hasProperty(MCID::RegSequence, Type);
773 /// Return true if this instruction behaves
774 /// the same way as the generic EXTRACT_SUBREG instructions.
775 /// E.g., on ARM,
776 /// rX, rY VMOVRRD dZ
777 /// is equivalent to two EXTRACT_SUBREG:
778 /// rX = EXTRACT_SUBREG dZ, ssub_0
779 /// rY = EXTRACT_SUBREG dZ, ssub_1
781 /// Note that for the optimizers to be able to take advantage of
782 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
783 /// override accordingly.
784 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
785 return hasProperty(MCID::ExtractSubreg, Type);
788 /// Return true if this instruction behaves
789 /// the same way as the generic INSERT_SUBREG instructions.
790 /// E.g., on ARM,
791 /// dX = VSETLNi32 dY, rZ, Imm
792 /// is equivalent to a INSERT_SUBREG:
793 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
795 /// Note that for the optimizers to be able to take advantage of
796 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
797 /// override accordingly.
798 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
799 return hasProperty(MCID::InsertSubreg, Type);
802 //===--------------------------------------------------------------------===//
803 // Side Effect Analysis
804 //===--------------------------------------------------------------------===//
806 /// Return true if this instruction could possibly read memory.
807 /// Instructions with this flag set are not necessarily simple load
808 /// instructions, they may load a value and modify it, for example.
809 bool mayLoad(QueryType Type = AnyInBundle) const {
810 if (isInlineAsm()) {
811 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
812 if (ExtraInfo & InlineAsm::Extra_MayLoad)
813 return true;
815 return hasProperty(MCID::MayLoad, Type);
818 /// Return true if this instruction could possibly modify memory.
819 /// Instructions with this flag set are not necessarily simple store
820 /// instructions, they may store a modified value based on their operands, or
821 /// may not actually modify anything, for example.
822 bool mayStore(QueryType Type = AnyInBundle) const {
823 if (isInlineAsm()) {
824 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
825 if (ExtraInfo & InlineAsm::Extra_MayStore)
826 return true;
828 return hasProperty(MCID::MayStore, Type);
831 /// Return true if this instruction could possibly read or modify memory.
832 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
833 return mayLoad(Type) || mayStore(Type);
836 /// Return true if this instruction could possibly raise a floating-point
837 /// exception. This is the case if the instruction is a floating-point
838 /// instruction that can in principle raise an exception, as indicated
839 /// by the MCID::MayRaiseFPException property, *and* at the same time,
840 /// the instruction is used in a context where we expect floating-point
841 /// exceptions might be enabled, as indicated by the FPExcept MI flag.
842 bool mayRaiseFPException() const {
843 return hasProperty(MCID::MayRaiseFPException) &&
844 getFlag(MachineInstr::MIFlag::FPExcept);
847 //===--------------------------------------------------------------------===//
848 // Flags that indicate whether an instruction can be modified by a method.
849 //===--------------------------------------------------------------------===//
851 /// Return true if this may be a 2- or 3-address
852 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
853 /// result if Y and Z are exchanged. If this flag is set, then the
854 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
855 /// instruction.
857 /// Note that this flag may be set on instructions that are only commutable
858 /// sometimes. In these cases, the call to commuteInstruction will fail.
859 /// Also note that some instructions require non-trivial modification to
860 /// commute them.
861 bool isCommutable(QueryType Type = IgnoreBundle) const {
862 return hasProperty(MCID::Commutable, Type);
865 /// Return true if this is a 2-address instruction
866 /// which can be changed into a 3-address instruction if needed. Doing this
867 /// transformation can be profitable in the register allocator, because it
868 /// means that the instruction can use a 2-address form if possible, but
869 /// degrade into a less efficient form if the source and dest register cannot
870 /// be assigned to the same register. For example, this allows the x86
871 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
872 /// is the same speed as the shift but has bigger code size.
874 /// If this returns true, then the target must implement the
875 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
876 /// is allowed to fail if the transformation isn't valid for this specific
877 /// instruction (e.g. shl reg, 4 on x86).
879 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
880 return hasProperty(MCID::ConvertibleTo3Addr, Type);
883 /// Return true if this instruction requires
884 /// custom insertion support when the DAG scheduler is inserting it into a
885 /// machine basic block. If this is true for the instruction, it basically
886 /// means that it is a pseudo instruction used at SelectionDAG time that is
887 /// expanded out into magic code by the target when MachineInstrs are formed.
889 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
890 /// is used to insert this into the MachineBasicBlock.
891 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
892 return hasProperty(MCID::UsesCustomInserter, Type);
895 /// Return true if this instruction requires *adjustment*
896 /// after instruction selection by calling a target hook. For example, this
897 /// can be used to fill in ARM 's' optional operand depending on whether
898 /// the conditional flag register is used.
899 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
900 return hasProperty(MCID::HasPostISelHook, Type);
903 /// Returns true if this instruction is a candidate for remat.
904 /// This flag is deprecated, please don't use it anymore. If this
905 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
906 /// verify the instruction is really rematable.
907 bool isRematerializable(QueryType Type = AllInBundle) const {
908 // It's only possible to re-mat a bundle if all bundled instructions are
909 // re-materializable.
910 return hasProperty(MCID::Rematerializable, Type);
913 /// Returns true if this instruction has the same cost (or less) than a move
914 /// instruction. This is useful during certain types of optimizations
915 /// (e.g., remat during two-address conversion or machine licm)
916 /// where we would like to remat or hoist the instruction, but not if it costs
917 /// more than moving the instruction into the appropriate register. Note, we
918 /// are not marking copies from and to the same register class with this flag.
919 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
920 // Only returns true for a bundle if all bundled instructions are cheap.
921 return hasProperty(MCID::CheapAsAMove, Type);
924 /// Returns true if this instruction source operands
925 /// have special register allocation requirements that are not captured by the
926 /// operand register classes. e.g. ARM::STRD's two source registers must be an
927 /// even / odd pair, ARM::STM registers have to be in ascending order.
928 /// Post-register allocation passes should not attempt to change allocations
929 /// for sources of instructions with this flag.
930 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
931 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
934 /// Returns true if this instruction def operands
935 /// have special register allocation requirements that are not captured by the
936 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
937 /// even / odd pair, ARM::LDM registers have to be in ascending order.
938 /// Post-register allocation passes should not attempt to change allocations
939 /// for definitions of instructions with this flag.
940 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
941 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
944 enum MICheckType {
945 CheckDefs, // Check all operands for equality
946 CheckKillDead, // Check all operands including kill / dead markers
947 IgnoreDefs, // Ignore all definitions
948 IgnoreVRegDefs // Ignore virtual register definitions
951 /// Return true if this instruction is identical to \p Other.
952 /// Two instructions are identical if they have the same opcode and all their
953 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
954 /// Note that this means liveness related flags (dead, undef, kill) do not
955 /// affect the notion of identical.
956 bool isIdenticalTo(const MachineInstr &Other,
957 MICheckType Check = CheckDefs) const;
959 /// Unlink 'this' from the containing basic block, and return it without
960 /// deleting it.
962 /// This function can not be used on bundled instructions, use
963 /// removeFromBundle() to remove individual instructions from a bundle.
964 MachineInstr *removeFromParent();
966 /// Unlink this instruction from its basic block and return it without
967 /// deleting it.
969 /// If the instruction is part of a bundle, the other instructions in the
970 /// bundle remain bundled.
971 MachineInstr *removeFromBundle();
973 /// Unlink 'this' from the containing basic block and delete it.
975 /// If this instruction is the header of a bundle, the whole bundle is erased.
976 /// This function can not be used for instructions inside a bundle, use
977 /// eraseFromBundle() to erase individual bundled instructions.
978 void eraseFromParent();
980 /// Unlink 'this' from the containing basic block and delete it.
982 /// For all definitions mark their uses in DBG_VALUE nodes
983 /// as undefined. Otherwise like eraseFromParent().
984 void eraseFromParentAndMarkDBGValuesForRemoval();
986 /// Unlink 'this' form its basic block and delete it.
988 /// If the instruction is part of a bundle, the other instructions in the
989 /// bundle remain bundled.
990 void eraseFromBundle();
992 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
993 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
994 bool isAnnotationLabel() const {
995 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
998 /// Returns true if the MachineInstr represents a label.
999 bool isLabel() const {
1000 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1003 bool isCFIInstruction() const {
1004 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1007 // True if the instruction represents a position in the function.
1008 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1010 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
1011 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1012 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
1014 /// A DBG_VALUE is indirect iff the first operand is a register and
1015 /// the second operand is an immediate.
1016 bool isIndirectDebugValue() const {
1017 return isDebugValue()
1018 && getOperand(0).isReg()
1019 && getOperand(1).isImm();
1022 /// A DBG_VALUE is an entry value iff its debug expression contains the
1023 /// DW_OP_entry_value DWARF operation.
1024 bool isDebugEntryValue() const {
1025 return isDebugValue() && getDebugExpression()->isEntryValue();
1028 /// Return true if the instruction is a debug value which describes a part of
1029 /// a variable as unavailable.
1030 bool isUndefDebugValue() const {
1031 return isDebugValue() && getOperand(0).isReg() && !getOperand(0).getReg();
1034 bool isPHI() const {
1035 return getOpcode() == TargetOpcode::PHI ||
1036 getOpcode() == TargetOpcode::G_PHI;
1038 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1039 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1040 bool isInlineAsm() const {
1041 return getOpcode() == TargetOpcode::INLINEASM ||
1042 getOpcode() == TargetOpcode::INLINEASM_BR;
1045 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1046 /// specific, be attached to a generic MachineInstr.
1047 bool isMSInlineAsm() const {
1048 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1051 bool isStackAligningInlineAsm() const;
1052 InlineAsm::AsmDialect getInlineAsmDialect() const;
1054 bool isInsertSubreg() const {
1055 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1058 bool isSubregToReg() const {
1059 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1062 bool isRegSequence() const {
1063 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1066 bool isBundle() const {
1067 return getOpcode() == TargetOpcode::BUNDLE;
1070 bool isCopy() const {
1071 return getOpcode() == TargetOpcode::COPY;
1074 bool isFullCopy() const {
1075 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1078 bool isExtractSubreg() const {
1079 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1082 /// Return true if the instruction behaves like a copy.
1083 /// This does not include native copy instructions.
1084 bool isCopyLike() const {
1085 return isCopy() || isSubregToReg();
1088 /// Return true is the instruction is an identity copy.
1089 bool isIdentityCopy() const {
1090 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1091 getOperand(0).getSubReg() == getOperand(1).getSubReg();
1094 /// Return true if this instruction doesn't produce any output in the form of
1095 /// executable instructions.
1096 bool isMetaInstruction() const {
1097 switch (getOpcode()) {
1098 default:
1099 return false;
1100 case TargetOpcode::IMPLICIT_DEF:
1101 case TargetOpcode::KILL:
1102 case TargetOpcode::CFI_INSTRUCTION:
1103 case TargetOpcode::EH_LABEL:
1104 case TargetOpcode::GC_LABEL:
1105 case TargetOpcode::DBG_VALUE:
1106 case TargetOpcode::DBG_LABEL:
1107 case TargetOpcode::LIFETIME_START:
1108 case TargetOpcode::LIFETIME_END:
1109 return true;
1113 /// Return true if this is a transient instruction that is either very likely
1114 /// to be eliminated during register allocation (such as copy-like
1115 /// instructions), or if this instruction doesn't have an execution-time cost.
1116 bool isTransient() const {
1117 switch (getOpcode()) {
1118 default:
1119 return isMetaInstruction();
1120 // Copy-like instructions are usually eliminated during register allocation.
1121 case TargetOpcode::PHI:
1122 case TargetOpcode::G_PHI:
1123 case TargetOpcode::COPY:
1124 case TargetOpcode::INSERT_SUBREG:
1125 case TargetOpcode::SUBREG_TO_REG:
1126 case TargetOpcode::REG_SEQUENCE:
1127 return true;
1131 /// Return the number of instructions inside the MI bundle, excluding the
1132 /// bundle header.
1134 /// This is the number of instructions that MachineBasicBlock::iterator
1135 /// skips, 0 for unbundled instructions.
1136 unsigned getBundleSize() const;
1138 /// Return true if the MachineInstr reads the specified register.
1139 /// If TargetRegisterInfo is passed, then it also checks if there
1140 /// is a read of a super-register.
1141 /// This does not count partial redefines of virtual registers as reads:
1142 /// %reg1024:6 = OP.
1143 bool readsRegister(unsigned Reg,
1144 const TargetRegisterInfo *TRI = nullptr) const {
1145 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1148 /// Return true if the MachineInstr reads the specified virtual register.
1149 /// Take into account that a partial define is a
1150 /// read-modify-write operation.
1151 bool readsVirtualRegister(unsigned Reg) const {
1152 return readsWritesVirtualRegister(Reg).first;
1155 /// Return a pair of bools (reads, writes) indicating if this instruction
1156 /// reads or writes Reg. This also considers partial defines.
1157 /// If Ops is not null, all operand indices for Reg are added.
1158 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
1159 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1161 /// Return true if the MachineInstr kills the specified register.
1162 /// If TargetRegisterInfo is passed, then it also checks if there is
1163 /// a kill of a super-register.
1164 bool killsRegister(unsigned Reg,
1165 const TargetRegisterInfo *TRI = nullptr) const {
1166 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1169 /// Return true if the MachineInstr fully defines the specified register.
1170 /// If TargetRegisterInfo is passed, then it also checks
1171 /// if there is a def of a super-register.
1172 /// NOTE: It's ignoring subreg indices on virtual registers.
1173 bool definesRegister(unsigned Reg,
1174 const TargetRegisterInfo *TRI = nullptr) const {
1175 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1178 /// Return true if the MachineInstr modifies (fully define or partially
1179 /// define) the specified register.
1180 /// NOTE: It's ignoring subreg indices on virtual registers.
1181 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
1182 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1185 /// Returns true if the register is dead in this machine instruction.
1186 /// If TargetRegisterInfo is passed, then it also checks
1187 /// if there is a dead def of a super-register.
1188 bool registerDefIsDead(unsigned Reg,
1189 const TargetRegisterInfo *TRI = nullptr) const {
1190 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1193 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1194 /// the given register (not considering sub/super-registers).
1195 bool hasRegisterImplicitUseOperand(unsigned Reg) const;
1197 /// Returns the operand index that is a use of the specific register or -1
1198 /// if it is not found. It further tightens the search criteria to a use
1199 /// that kills the register if isKill is true.
1200 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
1201 const TargetRegisterInfo *TRI = nullptr) const;
1203 /// Wrapper for findRegisterUseOperandIdx, it returns
1204 /// a pointer to the MachineOperand rather than an index.
1205 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
1206 const TargetRegisterInfo *TRI = nullptr) {
1207 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1208 return (Idx == -1) ? nullptr : &getOperand(Idx);
1211 const MachineOperand *findRegisterUseOperand(
1212 unsigned Reg, bool isKill = false,
1213 const TargetRegisterInfo *TRI = nullptr) const {
1214 return const_cast<MachineInstr *>(this)->
1215 findRegisterUseOperand(Reg, isKill, TRI);
1218 /// Returns the operand index that is a def of the specified register or
1219 /// -1 if it is not found. If isDead is true, defs that are not dead are
1220 /// skipped. If Overlap is true, then it also looks for defs that merely
1221 /// overlap the specified register. If TargetRegisterInfo is non-null,
1222 /// then it also checks if there is a def of a super-register.
1223 /// This may also return a register mask operand when Overlap is true.
1224 int findRegisterDefOperandIdx(unsigned Reg,
1225 bool isDead = false, bool Overlap = false,
1226 const TargetRegisterInfo *TRI = nullptr) const;
1228 /// Wrapper for findRegisterDefOperandIdx, it returns
1229 /// a pointer to the MachineOperand rather than an index.
1230 MachineOperand *
1231 findRegisterDefOperand(unsigned Reg, bool isDead = false,
1232 bool Overlap = false,
1233 const TargetRegisterInfo *TRI = nullptr) {
1234 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1235 return (Idx == -1) ? nullptr : &getOperand(Idx);
1238 const MachineOperand *
1239 findRegisterDefOperand(unsigned Reg, bool isDead = false,
1240 bool Overlap = false,
1241 const TargetRegisterInfo *TRI = nullptr) const {
1242 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1243 Reg, isDead, Overlap, TRI);
1246 /// Find the index of the first operand in the
1247 /// operand list that is used to represent the predicate. It returns -1 if
1248 /// none is found.
1249 int findFirstPredOperandIdx() const;
1251 /// Find the index of the flag word operand that
1252 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1253 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1255 /// If GroupNo is not NULL, it will receive the number of the operand group
1256 /// containing OpIdx.
1258 /// The flag operand is an immediate that can be decoded with methods like
1259 /// InlineAsm::hasRegClassConstraint().
1260 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1262 /// Compute the static register class constraint for operand OpIdx.
1263 /// For normal instructions, this is derived from the MCInstrDesc.
1264 /// For inline assembly it is derived from the flag words.
1266 /// Returns NULL if the static register class constraint cannot be
1267 /// determined.
1268 const TargetRegisterClass*
1269 getRegClassConstraint(unsigned OpIdx,
1270 const TargetInstrInfo *TII,
1271 const TargetRegisterInfo *TRI) const;
1273 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1274 /// the given \p CurRC.
1275 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1276 /// instructions inside the bundle will be taken into account. In other words,
1277 /// this method accumulates all the constraints of the operand of this MI and
1278 /// the related bundle if MI is a bundle or inside a bundle.
1280 /// Returns the register class that satisfies both \p CurRC and the
1281 /// constraints set by MI. Returns NULL if such a register class does not
1282 /// exist.
1284 /// \pre CurRC must not be NULL.
1285 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1286 unsigned Reg, const TargetRegisterClass *CurRC,
1287 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1288 bool ExploreBundle = false) const;
1290 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1291 /// to the given \p CurRC.
1293 /// Returns the register class that satisfies both \p CurRC and the
1294 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1295 /// does not exist.
1297 /// \pre CurRC must not be NULL.
1298 /// \pre The operand at \p OpIdx must be a register.
1299 const TargetRegisterClass *
1300 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1301 const TargetInstrInfo *TII,
1302 const TargetRegisterInfo *TRI) const;
1304 /// Add a tie between the register operands at DefIdx and UseIdx.
1305 /// The tie will cause the register allocator to ensure that the two
1306 /// operands are assigned the same physical register.
1308 /// Tied operands are managed automatically for explicit operands in the
1309 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1310 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1312 /// Given the index of a tied register operand, find the
1313 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1314 /// index of the tied operand which must exist.
1315 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1317 /// Given the index of a register def operand,
1318 /// check if the register def is tied to a source operand, due to either
1319 /// two-address elimination or inline assembly constraints. Returns the
1320 /// first tied use operand index by reference if UseOpIdx is not null.
1321 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1322 unsigned *UseOpIdx = nullptr) const {
1323 const MachineOperand &MO = getOperand(DefOpIdx);
1324 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1325 return false;
1326 if (UseOpIdx)
1327 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1328 return true;
1331 /// Return true if the use operand of the specified index is tied to a def
1332 /// operand. It also returns the def operand index by reference if DefOpIdx
1333 /// is not null.
1334 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1335 unsigned *DefOpIdx = nullptr) const {
1336 const MachineOperand &MO = getOperand(UseOpIdx);
1337 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1338 return false;
1339 if (DefOpIdx)
1340 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1341 return true;
1344 /// Clears kill flags on all operands.
1345 void clearKillInfo();
1347 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1348 /// properly composing subreg indices where necessary.
1349 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1350 const TargetRegisterInfo &RegInfo);
1352 /// We have determined MI kills a register. Look for the
1353 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1354 /// add a implicit operand if it's not found. Returns true if the operand
1355 /// exists / is added.
1356 bool addRegisterKilled(unsigned IncomingReg,
1357 const TargetRegisterInfo *RegInfo,
1358 bool AddIfNotFound = false);
1360 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1361 /// all aliasing registers.
1362 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1364 /// We have determined MI defined a register without a use.
1365 /// Look for the operand that defines it and mark it as IsDead. If
1366 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1367 /// true if the operand exists / is added.
1368 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1369 bool AddIfNotFound = false);
1371 /// Clear all dead flags on operands defining register @p Reg.
1372 void clearRegisterDeads(unsigned Reg);
1374 /// Mark all subregister defs of register @p Reg with the undef flag.
1375 /// This function is used when we determined to have a subregister def in an
1376 /// otherwise undefined super register.
1377 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1379 /// We have determined MI defines a register. Make sure there is an operand
1380 /// defining Reg.
1381 void addRegisterDefined(unsigned Reg,
1382 const TargetRegisterInfo *RegInfo = nullptr);
1384 /// Mark every physreg used by this instruction as
1385 /// dead except those in the UsedRegs list.
1387 /// On instructions with register mask operands, also add implicit-def
1388 /// operands for all registers in UsedRegs.
1389 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1390 const TargetRegisterInfo &TRI);
1392 /// Return true if it is safe to move this instruction. If
1393 /// SawStore is set to true, it means that there is a store (or call) between
1394 /// the instruction's location and its intended destination.
1395 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1397 /// Returns true if this instruction's memory access aliases the memory
1398 /// access of Other.
1400 /// Assumes any physical registers used to compute addresses
1401 /// have the same value for both instructions. Returns false if neither
1402 /// instruction writes to memory.
1404 /// @param AA Optional alias analysis, used to compare memory operands.
1405 /// @param Other MachineInstr to check aliasing against.
1406 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1407 bool mayAlias(AliasAnalysis *AA, const MachineInstr &Other, bool UseTBAA) const;
1409 /// Return true if this instruction may have an ordered
1410 /// or volatile memory reference, or if the information describing the memory
1411 /// reference is not available. Return false if it is known to have no
1412 /// ordered or volatile memory references.
1413 bool hasOrderedMemoryRef() const;
1415 /// Return true if this load instruction never traps and points to a memory
1416 /// location whose value doesn't change during the execution of this function.
1418 /// Examples include loading a value from the constant pool or from the
1419 /// argument area of a function (if it does not change). If the instruction
1420 /// does multiple loads, this returns true only if all of the loads are
1421 /// dereferenceable and invariant.
1422 bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1424 /// If the specified instruction is a PHI that always merges together the
1425 /// same virtual register, return the register, otherwise return 0.
1426 unsigned isConstantValuePHI() const;
1428 /// Return true if this instruction has side effects that are not modeled
1429 /// by mayLoad / mayStore, etc.
1430 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1431 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1432 /// INLINEASM instruction, in which case the side effect property is encoded
1433 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1435 bool hasUnmodeledSideEffects() const;
1437 /// Returns true if it is illegal to fold a load across this instruction.
1438 bool isLoadFoldBarrier() const;
1440 /// Return true if all the defs of this instruction are dead.
1441 bool allDefsAreDead() const;
1443 /// Return a valid size if the instruction is a spill instruction.
1444 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1446 /// Return a valid size if the instruction is a folded spill instruction.
1447 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1449 /// Return a valid size if the instruction is a restore instruction.
1450 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1452 /// Return a valid size if the instruction is a folded restore instruction.
1453 Optional<unsigned>
1454 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1456 /// Copy implicit register operands from specified
1457 /// instruction to this instruction.
1458 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1460 /// Debugging support
1461 /// @{
1462 /// Determine the generic type to be printed (if needed) on uses and defs.
1463 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1464 const MachineRegisterInfo &MRI) const;
1466 /// Return true when an instruction has tied register that can't be determined
1467 /// by the instruction's descriptor. This is useful for MIR printing, to
1468 /// determine whether we need to print the ties or not.
1469 bool hasComplexRegisterTies() const;
1471 /// Print this MI to \p OS.
1472 /// Don't print information that can be inferred from other instructions if
1473 /// \p IsStandalone is false. It is usually true when only a fragment of the
1474 /// function is printed.
1475 /// Only print the defs and the opcode if \p SkipOpers is true.
1476 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1477 /// Otherwise, also print the debug loc, with a terminating newline.
1478 /// \p TII is used to print the opcode name. If it's not present, but the
1479 /// MI is in a function, the opcode will be printed using the function's TII.
1480 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1481 bool SkipDebugLoc = false, bool AddNewLine = true,
1482 const TargetInstrInfo *TII = nullptr) const;
1483 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1484 bool SkipOpers = false, bool SkipDebugLoc = false,
1485 bool AddNewLine = true,
1486 const TargetInstrInfo *TII = nullptr) const;
1487 void dump() const;
1488 /// @}
1490 //===--------------------------------------------------------------------===//
1491 // Accessors used to build up machine instructions.
1493 /// Add the specified operand to the instruction. If it is an implicit
1494 /// operand, it is added to the end of the operand list. If it is an
1495 /// explicit operand it is added at the end of the explicit operand list
1496 /// (before the first implicit operand).
1498 /// MF must be the machine function that was used to allocate this
1499 /// instruction.
1501 /// MachineInstrBuilder provides a more convenient interface for creating
1502 /// instructions and adding operands.
1503 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1505 /// Add an operand without providing an MF reference. This only works for
1506 /// instructions that are inserted in a basic block.
1508 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1509 /// preferred.
1510 void addOperand(const MachineOperand &Op);
1512 /// Replace the instruction descriptor (thus opcode) of
1513 /// the current instruction with a new one.
1514 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1516 /// Replace current source information with new such.
1517 /// Avoid using this, the constructor argument is preferable.
1518 void setDebugLoc(DebugLoc dl) {
1519 debugLoc = std::move(dl);
1520 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1523 /// Erase an operand from an instruction, leaving it with one
1524 /// fewer operand than it started with.
1525 void RemoveOperand(unsigned OpNo);
1527 /// Clear this MachineInstr's memory reference descriptor list. This resets
1528 /// the memrefs to their most conservative state. This should be used only
1529 /// as a last resort since it greatly pessimizes our knowledge of the memory
1530 /// access performed by the instruction.
1531 void dropMemRefs(MachineFunction &MF);
1533 /// Assign this MachineInstr's memory reference descriptor list.
1535 /// Unlike other methods, this *will* allocate them into a new array
1536 /// associated with the provided `MachineFunction`.
1537 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1539 /// Add a MachineMemOperand to the machine instruction.
1540 /// This function should be used only occasionally. The setMemRefs function
1541 /// is the primary method for setting up a MachineInstr's MemRefs list.
1542 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1544 /// Clone another MachineInstr's memory reference descriptor list and replace
1545 /// ours with it.
1547 /// Note that `*this` may be the incoming MI!
1549 /// Prefer this API whenever possible as it can avoid allocations in common
1550 /// cases.
1551 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1553 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1554 /// list and replace ours with it.
1556 /// Note that `*this` may be one of the incoming MIs!
1558 /// Prefer this API whenever possible as it can avoid allocations in common
1559 /// cases.
1560 void cloneMergedMemRefs(MachineFunction &MF,
1561 ArrayRef<const MachineInstr *> MIs);
1563 /// Set a symbol that will be emitted just prior to the instruction itself.
1565 /// Setting this to a null pointer will remove any such symbol.
1567 /// FIXME: This is not fully implemented yet.
1568 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1570 /// Set a symbol that will be emitted just after the instruction itself.
1572 /// Setting this to a null pointer will remove any such symbol.
1574 /// FIXME: This is not fully implemented yet.
1575 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1577 /// Clone another MachineInstr's pre- and post- instruction symbols and
1578 /// replace ours with it.
1579 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1581 /// Return the MIFlags which represent both MachineInstrs. This
1582 /// should be used when merging two MachineInstrs into one. This routine does
1583 /// not modify the MIFlags of this MachineInstr.
1584 uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1586 static uint16_t copyFlagsFromInstruction(const Instruction &I);
1588 /// Copy all flags to MachineInst MIFlags
1589 void copyIRFlags(const Instruction &I);
1591 /// Break any tie involving OpIdx.
1592 void untieRegOperand(unsigned OpIdx) {
1593 MachineOperand &MO = getOperand(OpIdx);
1594 if (MO.isReg() && MO.isTied()) {
1595 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1596 MO.TiedTo = 0;
1600 /// Add all implicit def and use operands to this instruction.
1601 void addImplicitDefUseOperands(MachineFunction &MF);
1603 /// Scan instructions following MI and collect any matching DBG_VALUEs.
1604 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1606 /// Find all DBG_VALUEs immediately following this instruction that point
1607 /// to a register def in this instruction and point them to \p Reg instead.
1608 void changeDebugValuesDefReg(unsigned Reg);
1610 private:
1611 /// If this instruction is embedded into a MachineFunction, return the
1612 /// MachineRegisterInfo object for the current function, otherwise
1613 /// return null.
1614 MachineRegisterInfo *getRegInfo();
1616 /// Unlink all of the register operands in this instruction from their
1617 /// respective use lists. This requires that the operands already be on their
1618 /// use lists.
1619 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1621 /// Add all of the register operands in this instruction from their
1622 /// respective use lists. This requires that the operands not be on their
1623 /// use lists yet.
1624 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1626 /// Slow path for hasProperty when we're dealing with a bundle.
1627 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1629 /// Implements the logic of getRegClassConstraintEffectForVReg for the
1630 /// this MI and the given operand index \p OpIdx.
1631 /// If the related operand does not constrained Reg, this returns CurRC.
1632 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1633 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1634 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1637 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1638 /// instruction rather than by pointer value.
1639 /// The hashing and equality testing functions ignore definitions so this is
1640 /// useful for CSE, etc.
1641 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1642 static inline MachineInstr *getEmptyKey() {
1643 return nullptr;
1646 static inline MachineInstr *getTombstoneKey() {
1647 return reinterpret_cast<MachineInstr*>(-1);
1650 static unsigned getHashValue(const MachineInstr* const &MI);
1652 static bool isEqual(const MachineInstr* const &LHS,
1653 const MachineInstr* const &RHS) {
1654 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1655 LHS == getEmptyKey() || LHS == getTombstoneKey())
1656 return LHS == RHS;
1657 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1661 //===----------------------------------------------------------------------===//
1662 // Debugging Support
1664 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1665 MI.print(OS);
1666 return OS;
1669 } // end namespace llvm
1671 #endif // LLVM_CODEGEN_MACHINEINSTR_H