[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / CodeGen / TargetRegisterInfo.h
blobddbd677b3eaae8e6adc6d8294a95bbeb7919ba59
1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file. This information is used for a variety of
11 // purposed, especially register allocation.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <functional>
34 namespace llvm {
36 class BitVector;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
44 class TargetRegisterClass {
45 public:
46 using iterator = const MCPhysReg *;
47 using const_iterator = const MCPhysReg *;
48 using sc_iterator = const TargetRegisterClass* const *;
50 // Instance variables filled by tablegen, do not use!
51 const MCRegisterClass *MC;
52 const uint32_t *SubClassMask;
53 const uint16_t *SuperRegIndices;
54 const LaneBitmask LaneMask;
55 /// Classes with a higher priority value are assigned first by register
56 /// allocators using a greedy heuristic. The value is in the range [0,63].
57 const uint8_t AllocationPriority;
58 /// Whether the class supports two (or more) disjunct subregister indices.
59 const bool HasDisjunctSubRegs;
60 /// Whether a combination of subregisters can cover every register in the
61 /// class. See also the CoveredBySubRegs description in Target.td.
62 const bool CoveredBySubRegs;
63 const sc_iterator SuperClasses;
64 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
66 /// Return the register class ID number.
67 unsigned getID() const { return MC->getID(); }
69 /// begin/end - Return all of the registers in this class.
70 ///
71 iterator begin() const { return MC->begin(); }
72 iterator end() const { return MC->end(); }
74 /// Return the number of registers in this class.
75 unsigned getNumRegs() const { return MC->getNumRegs(); }
77 iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
78 getRegisters() const {
79 return make_range(MC->begin(), MC->end());
82 /// Return the specified register in the class.
83 unsigned getRegister(unsigned i) const {
84 return MC->getRegister(i);
87 /// Return true if the specified register is included in this register class.
88 /// This does not include virtual registers.
89 bool contains(unsigned Reg) const {
90 return MC->contains(Reg);
93 /// Return true if both registers are in this class.
94 bool contains(unsigned Reg1, unsigned Reg2) const {
95 return MC->contains(Reg1, Reg2);
98 /// Return the cost of copying a value between two registers in this class.
99 /// A negative number means the register class is very expensive
100 /// to copy e.g. status flag register classes.
101 int getCopyCost() const { return MC->getCopyCost(); }
103 /// Return true if this register class may be used to create virtual
104 /// registers.
105 bool isAllocatable() const { return MC->isAllocatable(); }
107 /// Return true if the specified TargetRegisterClass
108 /// is a proper sub-class of this TargetRegisterClass.
109 bool hasSubClass(const TargetRegisterClass *RC) const {
110 return RC != this && hasSubClassEq(RC);
113 /// Returns true if RC is a sub-class of or equal to this class.
114 bool hasSubClassEq(const TargetRegisterClass *RC) const {
115 unsigned ID = RC->getID();
116 return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
119 /// Return true if the specified TargetRegisterClass is a
120 /// proper super-class of this TargetRegisterClass.
121 bool hasSuperClass(const TargetRegisterClass *RC) const {
122 return RC->hasSubClass(this);
125 /// Returns true if RC is a super-class of or equal to this class.
126 bool hasSuperClassEq(const TargetRegisterClass *RC) const {
127 return RC->hasSubClassEq(this);
130 /// Returns a bit vector of subclasses, including this one.
131 /// The vector is indexed by class IDs.
133 /// To use it, consider the returned array as a chunk of memory that
134 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
135 /// contains a bitset of the ID of the subclasses in big-endian style.
137 /// I.e., the representation of the memory from left to right at the
138 /// bit level looks like:
139 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
140 /// [ XXX NumRegClasses NumRegClasses - 1 ... ]
141 /// Where the number represents the class ID and XXX bits that
142 /// should be ignored.
144 /// See the implementation of hasSubClassEq for an example of how it
145 /// can be used.
146 const uint32_t *getSubClassMask() const {
147 return SubClassMask;
150 /// Returns a 0-terminated list of sub-register indices that project some
151 /// super-register class into this register class. The list has an entry for
152 /// each Idx such that:
154 /// There exists SuperRC where:
155 /// For all Reg in SuperRC:
156 /// this->contains(Reg:Idx)
157 const uint16_t *getSuperRegIndices() const {
158 return SuperRegIndices;
161 /// Returns a NULL-terminated list of super-classes. The
162 /// classes are ordered by ID which is also a topological ordering from large
163 /// to small classes. The list does NOT include the current class.
164 sc_iterator getSuperClasses() const {
165 return SuperClasses;
168 /// Return true if this TargetRegisterClass is a subset
169 /// class of at least one other TargetRegisterClass.
170 bool isASubClass() const {
171 return SuperClasses[0] != nullptr;
174 /// Returns the preferred order for allocating registers from this register
175 /// class in MF. The raw order comes directly from the .td file and may
176 /// include reserved registers that are not allocatable.
177 /// Register allocators should also make sure to allocate
178 /// callee-saved registers only after all the volatiles are used. The
179 /// RegisterClassInfo class provides filtered allocation orders with
180 /// callee-saved registers moved to the end.
182 /// The MachineFunction argument can be used to tune the allocatable
183 /// registers based on the characteristics of the function, subtarget, or
184 /// other criteria.
186 /// By default, this method returns all registers in the class.
187 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
188 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
191 /// Returns the combination of all lane masks of register in this class.
192 /// The lane masks of the registers are the combination of all lane masks
193 /// of their subregisters. Returns 1 if there are no subregisters.
194 LaneBitmask getLaneMask() const {
195 return LaneMask;
199 /// Extra information, not in MCRegisterDesc, about registers.
200 /// These are used by codegen, not by MC.
201 struct TargetRegisterInfoDesc {
202 unsigned CostPerUse; // Extra cost of instructions using register.
203 bool inAllocatableClass; // Register belongs to an allocatable regclass.
206 /// Each TargetRegisterClass has a per register weight, and weight
207 /// limit which must be less than the limits of its pressure sets.
208 struct RegClassWeight {
209 unsigned RegWeight;
210 unsigned WeightLimit;
213 /// TargetRegisterInfo base class - We assume that the target defines a static
214 /// array of TargetRegisterDesc objects that represent all of the machine
215 /// registers that the target has. As such, we simply have to track a pointer
216 /// to this array so that we can turn register number into a register
217 /// descriptor.
219 class TargetRegisterInfo : public MCRegisterInfo {
220 public:
221 using regclass_iterator = const TargetRegisterClass * const *;
222 using vt_iterator = const MVT::SimpleValueType *;
223 struct RegClassInfo {
224 unsigned RegSize, SpillSize, SpillAlignment;
225 vt_iterator VTList;
227 private:
228 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
229 const char *const *SubRegIndexNames; // Names of subreg indexes.
230 // Pointer to array of lane masks, one per sub-reg index.
231 const LaneBitmask *SubRegIndexLaneMasks;
233 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
234 LaneBitmask CoveringLanes;
235 const RegClassInfo *const RCInfos;
236 unsigned HwMode;
238 protected:
239 TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
240 regclass_iterator RCB,
241 regclass_iterator RCE,
242 const char *const *SRINames,
243 const LaneBitmask *SRILaneMasks,
244 LaneBitmask CoveringLanes,
245 const RegClassInfo *const RCIs,
246 unsigned Mode = 0);
247 virtual ~TargetRegisterInfo();
249 public:
250 // Register numbers can represent physical registers, virtual registers, and
251 // sometimes stack slots. The unsigned values are divided into these ranges:
253 // 0 Not a register, can be used as a sentinel.
254 // [1;2^30) Physical registers assigned by TableGen.
255 // [2^30;2^31) Stack slots. (Rarely used.)
256 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
258 // Further sentinels can be allocated from the small negative integers.
259 // DenseMapInfo<unsigned> uses -1u and -2u.
261 /// isStackSlot - Sometimes it is useful the be able to store a non-negative
262 /// frame index in a variable that normally holds a register. isStackSlot()
263 /// returns true if Reg is in the range used for stack slots.
265 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
266 /// slots, so if a variable may contains a stack slot, always check
267 /// isStackSlot() first.
269 static bool isStackSlot(unsigned Reg) {
270 return int(Reg) >= (1 << 30);
273 /// Compute the frame index from a register value representing a stack slot.
274 static int stackSlot2Index(unsigned Reg) {
275 assert(isStackSlot(Reg) && "Not a stack slot");
276 return int(Reg - (1u << 30));
279 /// Convert a non-negative frame index to a stack slot register value.
280 static unsigned index2StackSlot(int FI) {
281 assert(FI >= 0 && "Cannot hold a negative frame index.");
282 return FI + (1u << 30);
285 /// Return true if the specified register number is in
286 /// the physical register namespace.
287 static bool isPhysicalRegister(unsigned Reg) {
288 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
289 return int(Reg) > 0;
292 /// Return true if the specified register number is in
293 /// the virtual register namespace.
294 static bool isVirtualRegister(unsigned Reg) {
295 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
296 return int(Reg) < 0;
299 /// Convert a virtual register number to a 0-based index.
300 /// The first virtual register in a function will get the index 0.
301 static unsigned virtReg2Index(unsigned Reg) {
302 assert(isVirtualRegister(Reg) && "Not a virtual register");
303 return Reg & ~(1u << 31);
306 /// Convert a 0-based index to a virtual register number.
307 /// This is the inverse operation of VirtReg2IndexFunctor below.
308 static unsigned index2VirtReg(unsigned Index) {
309 return Index | (1u << 31);
312 /// Return the size in bits of a register from class RC.
313 unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
314 return getRegClassInfo(RC).RegSize;
317 /// Return the size in bytes of the stack slot allocated to hold a spilled
318 /// copy of a register from class RC.
319 unsigned getSpillSize(const TargetRegisterClass &RC) const {
320 return getRegClassInfo(RC).SpillSize / 8;
323 /// Return the minimum required alignment in bytes for a spill slot for
324 /// a register of this class.
325 unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
326 return getRegClassInfo(RC).SpillAlignment / 8;
329 /// Return true if the given TargetRegisterClass has the ValueType T.
330 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
331 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
332 if (MVT(*I) == T)
333 return true;
334 return false;
337 /// Loop over all of the value types that can be represented by values
338 /// in the given register class.
339 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
340 return getRegClassInfo(RC).VTList;
343 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
344 vt_iterator I = legalclasstypes_begin(RC);
345 while (*I != MVT::Other)
346 ++I;
347 return I;
350 /// Returns the Register Class of a physical register of the given type,
351 /// picking the most sub register class of the right type that contains this
352 /// physreg.
353 const TargetRegisterClass *
354 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
356 /// Return the maximal subclass of the given register class that is
357 /// allocatable or NULL.
358 const TargetRegisterClass *
359 getAllocatableClass(const TargetRegisterClass *RC) const;
361 /// Returns a bitset indexed by register number indicating if a register is
362 /// allocatable or not. If a register class is specified, returns the subset
363 /// for the class.
364 BitVector getAllocatableSet(const MachineFunction &MF,
365 const TargetRegisterClass *RC = nullptr) const;
367 /// Return the additional cost of using this register instead
368 /// of other registers in its class.
369 unsigned getCostPerUse(unsigned RegNo) const {
370 return InfoDesc[RegNo].CostPerUse;
373 /// Return true if the register is in the allocation of any register class.
374 bool isInAllocatableClass(unsigned RegNo) const {
375 return InfoDesc[RegNo].inAllocatableClass;
378 /// Return the human-readable symbolic target-specific
379 /// name for the specified SubRegIndex.
380 const char *getSubRegIndexName(unsigned SubIdx) const {
381 assert(SubIdx && SubIdx < getNumSubRegIndices() &&
382 "This is not a subregister index");
383 return SubRegIndexNames[SubIdx-1];
386 /// Return a bitmask representing the parts of a register that are covered by
387 /// SubIdx \see LaneBitmask.
389 /// SubIdx == 0 is allowed, it has the lane mask ~0u.
390 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
391 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
392 return SubRegIndexLaneMasks[SubIdx];
395 /// The lane masks returned by getSubRegIndexLaneMask() above can only be
396 /// used to determine if sub-registers overlap - they can't be used to
397 /// determine if a set of sub-registers completely cover another
398 /// sub-register.
400 /// The X86 general purpose registers have two lanes corresponding to the
401 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
402 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
403 /// sub_32bit sub-register.
405 /// On the other hand, the ARM NEON lanes fully cover their registers: The
406 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
407 /// This is related to the CoveredBySubRegs property on register definitions.
409 /// This function returns a bit mask of lanes that completely cover their
410 /// sub-registers. More precisely, given:
412 /// Covering = getCoveringLanes();
413 /// MaskA = getSubRegIndexLaneMask(SubA);
414 /// MaskB = getSubRegIndexLaneMask(SubB);
416 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
417 /// SubB.
418 LaneBitmask getCoveringLanes() const { return CoveringLanes; }
420 /// Returns true if the two registers are equal or alias each other.
421 /// The registers may be virtual registers.
422 bool regsOverlap(unsigned regA, unsigned regB) const {
423 if (regA == regB) return true;
424 if (isVirtualRegister(regA) || isVirtualRegister(regB))
425 return false;
427 // Regunits are numerically ordered. Find a common unit.
428 MCRegUnitIterator RUA(regA, this);
429 MCRegUnitIterator RUB(regB, this);
430 do {
431 if (*RUA == *RUB) return true;
432 if (*RUA < *RUB) ++RUA;
433 else ++RUB;
434 } while (RUA.isValid() && RUB.isValid());
435 return false;
438 /// Returns true if Reg contains RegUnit.
439 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
440 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
441 if (*Units == RegUnit)
442 return true;
443 return false;
446 /// Returns the original SrcReg unless it is the target of a copy-like
447 /// operation, in which case we chain backwards through all such operations
448 /// to the ultimate source register. If a physical register is encountered,
449 /// we stop the search.
450 virtual unsigned lookThruCopyLike(unsigned SrcReg,
451 const MachineRegisterInfo *MRI) const;
453 /// Return a null-terminated list of all of the callee-saved registers on
454 /// this target. The register should be in the order of desired callee-save
455 /// stack frame offset. The first register is closest to the incoming stack
456 /// pointer if stack grows down, and vice versa.
457 /// Notice: This function does not take into account disabled CSRs.
458 /// In most cases you will want to use instead the function
459 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo.
460 virtual const MCPhysReg*
461 getCalleeSavedRegs(const MachineFunction *MF) const = 0;
463 /// Return a mask of call-preserved registers for the given calling convention
464 /// on the current function. The mask should include all call-preserved
465 /// aliases. This is used by the register allocator to determine which
466 /// registers can be live across a call.
468 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
469 /// A set bit indicates that all bits of the corresponding register are
470 /// preserved across the function call. The bit mask is expected to be
471 /// sub-register complete, i.e. if A is preserved, so are all its
472 /// sub-registers.
474 /// Bits are numbered from the LSB, so the bit for physical register Reg can
475 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
477 /// A NULL pointer means that no register mask will be used, and call
478 /// instructions should use implicit-def operands to indicate call clobbered
479 /// registers.
481 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
482 CallingConv::ID) const {
483 // The default mask clobbers everything. All targets should override.
484 return nullptr;
487 /// Return a register mask that clobbers everything.
488 virtual const uint32_t *getNoPreservedMask() const {
489 llvm_unreachable("target does not provide no preserved mask");
492 /// Return true if all bits that are set in mask \p mask0 are also set in
493 /// \p mask1.
494 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
496 /// Return all the call-preserved register masks defined for this target.
497 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
498 virtual ArrayRef<const char *> getRegMaskNames() const = 0;
500 /// Returns a bitset indexed by physical register number indicating if a
501 /// register is a special register that has particular uses and should be
502 /// considered unavailable at all times, e.g. stack pointer, return address.
503 /// A reserved register:
504 /// - is not allocatable
505 /// - is considered always live
506 /// - is ignored by liveness tracking
507 /// It is often necessary to reserve the super registers of a reserved
508 /// register as well, to avoid them getting allocated indirectly. You may use
509 /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
510 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
512 /// Returns false if we can't guarantee that Physreg, specified as an IR asm
513 /// clobber constraint, will be preserved across the statement.
514 virtual bool isAsmClobberable(const MachineFunction &MF,
515 unsigned PhysReg) const {
516 return true;
519 /// Returns true if PhysReg is unallocatable and constant throughout the
520 /// function. Used by MachineRegisterInfo::isConstantPhysReg().
521 virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
523 /// Returns true if the register class is considered divergent.
524 virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
525 return false;
528 /// Physical registers that may be modified within a function but are
529 /// guaranteed to be restored before any uses. This is useful for targets that
530 /// have call sequences where a GOT register may be updated by the caller
531 /// prior to a call and is guaranteed to be restored (also by the caller)
532 /// after the call.
533 virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
534 const MachineFunction &MF) const {
535 return false;
538 /// Prior to adding the live-out mask to a stackmap or patchpoint
539 /// instruction, provide the target the opportunity to adjust it (mainly to
540 /// remove pseudo-registers that should be ignored).
541 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
543 /// Return a super-register of the specified register
544 /// Reg so its sub-register of index SubIdx is Reg.
545 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
546 const TargetRegisterClass *RC) const {
547 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
550 /// Return a subclass of the specified register
551 /// class A so that each register in it has a sub-register of the
552 /// specified sub-register index which is in the specified register class B.
554 /// TableGen will synthesize missing A sub-classes.
555 virtual const TargetRegisterClass *
556 getMatchingSuperRegClass(const TargetRegisterClass *A,
557 const TargetRegisterClass *B, unsigned Idx) const;
559 // For a copy-like instruction that defines a register of class DefRC with
560 // subreg index DefSubReg, reading from another source with class SrcRC and
561 // subregister SrcSubReg return true if this is a preferable copy
562 // instruction or an earlier use should be used.
563 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
564 unsigned DefSubReg,
565 const TargetRegisterClass *SrcRC,
566 unsigned SrcSubReg) const;
568 /// Returns the largest legal sub-class of RC that
569 /// supports the sub-register index Idx.
570 /// If no such sub-class exists, return NULL.
571 /// If all registers in RC already have an Idx sub-register, return RC.
573 /// TableGen generates a version of this function that is good enough in most
574 /// cases. Targets can override if they have constraints that TableGen
575 /// doesn't understand. For example, the x86 sub_8bit sub-register index is
576 /// supported by the full GR32 register class in 64-bit mode, but only by the
577 /// GR32_ABCD regiister class in 32-bit mode.
579 /// TableGen will synthesize missing RC sub-classes.
580 virtual const TargetRegisterClass *
581 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
582 assert(Idx == 0 && "Target has no sub-registers");
583 return RC;
586 /// Return the subregister index you get from composing
587 /// two subregister indices.
589 /// The special null sub-register index composes as the identity.
591 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
592 /// returns c. Note that composeSubRegIndices does not tell you about illegal
593 /// compositions. If R does not have a subreg a, or R:a does not have a subreg
594 /// b, composeSubRegIndices doesn't tell you.
596 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
597 /// ssub_0:S0 - ssub_3:S3 subregs.
598 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
599 unsigned composeSubRegIndices(unsigned a, unsigned b) const {
600 if (!a) return b;
601 if (!b) return a;
602 return composeSubRegIndicesImpl(a, b);
605 /// Transforms a LaneMask computed for one subregister to the lanemask that
606 /// would have been computed when composing the subsubregisters with IdxA
607 /// first. @sa composeSubRegIndices()
608 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
609 LaneBitmask Mask) const {
610 if (!IdxA)
611 return Mask;
612 return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
615 /// Transform a lanemask given for a virtual register to the corresponding
616 /// lanemask before using subregister with index \p IdxA.
617 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
618 /// valie lane mask (no invalid bits set) the following holds:
619 /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
620 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
621 /// => X1 == Mask
622 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
623 LaneBitmask LaneMask) const {
624 if (!IdxA)
625 return LaneMask;
626 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
629 /// Debugging helper: dump register in human readable form to dbgs() stream.
630 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
631 const TargetRegisterInfo* TRI = nullptr);
633 protected:
634 /// Overridden by TableGen in targets that have sub-registers.
635 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
636 llvm_unreachable("Target has no sub-registers");
639 /// Overridden by TableGen in targets that have sub-registers.
640 virtual LaneBitmask
641 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
642 llvm_unreachable("Target has no sub-registers");
645 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
646 LaneBitmask) const {
647 llvm_unreachable("Target has no sub-registers");
650 public:
651 /// Find a common super-register class if it exists.
653 /// Find a register class, SuperRC and two sub-register indices, PreA and
654 /// PreB, such that:
656 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
658 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
660 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
662 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
663 /// requirements, and there is no register class with a smaller spill size
664 /// that satisfies the requirements.
666 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
668 /// Either of the PreA and PreB sub-register indices may be returned as 0. In
669 /// that case, the returned register class will be a sub-class of the
670 /// corresponding argument register class.
672 /// The function returns NULL if no register class can be found.
673 const TargetRegisterClass*
674 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
675 const TargetRegisterClass *RCB, unsigned SubB,
676 unsigned &PreA, unsigned &PreB) const;
678 //===--------------------------------------------------------------------===//
679 // Register Class Information
681 protected:
682 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
683 return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
686 public:
687 /// Register class iterators
688 regclass_iterator regclass_begin() const { return RegClassBegin; }
689 regclass_iterator regclass_end() const { return RegClassEnd; }
690 iterator_range<regclass_iterator> regclasses() const {
691 return make_range(regclass_begin(), regclass_end());
694 unsigned getNumRegClasses() const {
695 return (unsigned)(regclass_end()-regclass_begin());
698 /// Returns the register class associated with the enumeration value.
699 /// See class MCOperandInfo.
700 const TargetRegisterClass *getRegClass(unsigned i) const {
701 assert(i < getNumRegClasses() && "Register Class ID out of range");
702 return RegClassBegin[i];
705 /// Returns the name of the register class.
706 const char *getRegClassName(const TargetRegisterClass *Class) const {
707 return MCRegisterInfo::getRegClassName(Class->MC);
710 /// Find the largest common subclass of A and B.
711 /// Return NULL if there is no common subclass.
712 /// The common subclass should contain
713 /// simple value type SVT if it is not the Any type.
714 const TargetRegisterClass *
715 getCommonSubClass(const TargetRegisterClass *A,
716 const TargetRegisterClass *B,
717 const MVT::SimpleValueType SVT =
718 MVT::SimpleValueType::Any) const;
720 /// Returns a TargetRegisterClass used for pointer values.
721 /// If a target supports multiple different pointer register classes,
722 /// kind specifies which one is indicated.
723 virtual const TargetRegisterClass *
724 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
725 llvm_unreachable("Target didn't implement getPointerRegClass!");
728 /// Returns a legal register class to copy a register in the specified class
729 /// to or from. If it is possible to copy the register directly without using
730 /// a cross register class copy, return the specified RC. Returns NULL if it
731 /// is not possible to copy between two registers of the specified class.
732 virtual const TargetRegisterClass *
733 getCrossCopyRegClass(const TargetRegisterClass *RC) const {
734 return RC;
737 /// Returns the largest super class of RC that is legal to use in the current
738 /// sub-target and has the same spill size.
739 /// The returned register class can be used to create virtual registers which
740 /// means that all its registers can be copied and spilled.
741 virtual const TargetRegisterClass *
742 getLargestLegalSuperClass(const TargetRegisterClass *RC,
743 const MachineFunction &) const {
744 /// The default implementation is very conservative and doesn't allow the
745 /// register allocator to inflate register classes.
746 return RC;
749 /// Return the register pressure "high water mark" for the specific register
750 /// class. The scheduler is in high register pressure mode (for the specific
751 /// register class) if it goes over the limit.
753 /// Note: this is the old register pressure model that relies on a manually
754 /// specified representative register class per value type.
755 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
756 MachineFunction &MF) const {
757 return 0;
760 /// Return a heuristic for the machine scheduler to compare the profitability
761 /// of increasing one register pressure set versus another. The scheduler
762 /// will prefer increasing the register pressure of the set which returns
763 /// the largest value for this function.
764 virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
765 unsigned PSetID) const {
766 return PSetID;
769 /// Get the weight in units of pressure for this register class.
770 virtual const RegClassWeight &getRegClassWeight(
771 const TargetRegisterClass *RC) const = 0;
773 /// Returns size in bits of a phys/virtual/generic register.
774 unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
776 /// Get the weight in units of pressure for this register unit.
777 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
779 /// Get the number of dimensions of register pressure.
780 virtual unsigned getNumRegPressureSets() const = 0;
782 /// Get the name of this register unit pressure set.
783 virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
785 /// Get the register unit pressure limit for this dimension.
786 /// This limit must be adjusted dynamically for reserved registers.
787 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
788 unsigned Idx) const = 0;
790 /// Get the dimensions of register pressure impacted by this register class.
791 /// Returns a -1 terminated array of pressure set IDs.
792 virtual const int *getRegClassPressureSets(
793 const TargetRegisterClass *RC) const = 0;
795 /// Get the dimensions of register pressure impacted by this register unit.
796 /// Returns a -1 terminated array of pressure set IDs.
797 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
799 /// Get a list of 'hint' registers that the register allocator should try
800 /// first when allocating a physical register for the virtual register
801 /// VirtReg. These registers are effectively moved to the front of the
802 /// allocation order. If true is returned, regalloc will try to only use
803 /// hints to the greatest extent possible even if it means spilling.
805 /// The Order argument is the allocation order for VirtReg's register class
806 /// as returned from RegisterClassInfo::getOrder(). The hint registers must
807 /// come from Order, and they must not be reserved.
809 /// The default implementation of this function will only add target
810 /// independent register allocation hints. Targets that override this
811 /// function should typically call this default implementation as well and
812 /// expect to see generic copy hints added.
813 virtual bool getRegAllocationHints(unsigned VirtReg,
814 ArrayRef<MCPhysReg> Order,
815 SmallVectorImpl<MCPhysReg> &Hints,
816 const MachineFunction &MF,
817 const VirtRegMap *VRM = nullptr,
818 const LiveRegMatrix *Matrix = nullptr)
819 const;
821 /// A callback to allow target a chance to update register allocation hints
822 /// when a register is "changed" (e.g. coalesced) to another register.
823 /// e.g. On ARM, some virtual registers should target register pairs,
824 /// if one of pair is coalesced to another register, the allocation hint of
825 /// the other half of the pair should be changed to point to the new register.
826 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
827 MachineFunction &MF) const {
828 // Do nothing.
831 /// Allow the target to reverse allocation order of local live ranges. This
832 /// will generally allocate shorter local live ranges first. For targets with
833 /// many registers, this could reduce regalloc compile time by a large
834 /// factor. It is disabled by default for three reasons:
835 /// (1) Top-down allocation is simpler and easier to debug for targets that
836 /// don't benefit from reversing the order.
837 /// (2) Bottom-up allocation could result in poor evicition decisions on some
838 /// targets affecting the performance of compiled code.
839 /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
840 virtual bool reverseLocalAssignment() const { return false; }
842 /// Allow the target to override the cost of using a callee-saved register for
843 /// the first time. Default value of 0 means we will use a callee-saved
844 /// register if it is available.
845 virtual unsigned getCSRFirstUseCost() const { return 0; }
847 /// Returns true if the target requires (and can make use of) the register
848 /// scavenger.
849 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
850 return false;
853 /// Returns true if the target wants to use frame pointer based accesses to
854 /// spill to the scavenger emergency spill slot.
855 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
856 return true;
859 /// Returns true if the target requires post PEI scavenging of registers for
860 /// materializing frame index constants.
861 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
862 return false;
865 /// Returns true if the target requires using the RegScavenger directly for
866 /// frame elimination despite using requiresFrameIndexScavenging.
867 virtual bool requiresFrameIndexReplacementScavenging(
868 const MachineFunction &MF) const {
869 return false;
872 /// Returns true if the target wants the LocalStackAllocation pass to be run
873 /// and virtual base registers used for more efficient stack access.
874 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
875 return false;
878 /// Return true if target has reserved a spill slot in the stack frame of
879 /// the given function for the specified register. e.g. On x86, if the frame
880 /// register is required, the first fixed stack object is reserved as its
881 /// spill slot. This tells PEI not to create a new stack frame
882 /// object for the given register. It should be called only after
883 /// determineCalleeSaves().
884 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
885 int &FrameIdx) const {
886 return false;
889 /// Returns true if the live-ins should be tracked after register allocation.
890 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
891 return false;
894 /// True if the stack can be realigned for the target.
895 virtual bool canRealignStack(const MachineFunction &MF) const;
897 /// True if storage within the function requires the stack pointer to be
898 /// aligned more than the normal calling convention calls for.
899 /// This cannot be overriden by the target, but canRealignStack can be
900 /// overridden.
901 bool needsStackRealignment(const MachineFunction &MF) const;
903 /// Get the offset from the referenced frame index in the instruction,
904 /// if there is one.
905 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
906 int Idx) const {
907 return 0;
910 /// Returns true if the instruction's frame index reference would be better
911 /// served by a base register other than FP or SP.
912 /// Used by LocalStackFrameAllocation to determine which frame index
913 /// references it should create new base registers for.
914 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
915 return false;
918 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
919 /// before insertion point I.
920 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
921 unsigned BaseReg, int FrameIdx,
922 int64_t Offset) const {
923 llvm_unreachable("materializeFrameBaseRegister does not exist on this "
924 "target");
927 /// Resolve a frame index operand of an instruction
928 /// to reference the indicated base register plus offset instead.
929 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
930 int64_t Offset) const {
931 llvm_unreachable("resolveFrameIndex does not exist on this target");
934 /// Determine whether a given base register plus offset immediate is
935 /// encodable to resolve a frame index.
936 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
937 int64_t Offset) const {
938 llvm_unreachable("isFrameOffsetLegal does not exist on this target");
941 /// Spill the register so it can be used by the register scavenger.
942 /// Return true if the register was spilled, false otherwise.
943 /// If this function does not spill the register, the scavenger
944 /// will instead spill it to the emergency spill slot.
945 virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
946 MachineBasicBlock::iterator I,
947 MachineBasicBlock::iterator &UseMI,
948 const TargetRegisterClass *RC,
949 unsigned Reg) const {
950 return false;
953 /// This method must be overriden to eliminate abstract frame indices from
954 /// instructions which may use them. The instruction referenced by the
955 /// iterator contains an MO_FrameIndex operand which must be eliminated by
956 /// this method. This method may modify or replace the specified instruction,
957 /// as long as it keeps the iterator pointing at the finished product.
958 /// SPAdj is the SP adjustment due to call frame setup instruction.
959 /// FIOperandNum is the FI operand number.
960 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
961 int SPAdj, unsigned FIOperandNum,
962 RegScavenger *RS = nullptr) const = 0;
964 /// Return the assembly name for \p Reg.
965 virtual StringRef getRegAsmName(unsigned Reg) const {
966 // FIXME: We are assuming that the assembly name is equal to the TableGen
967 // name converted to lower case
969 // The TableGen name is the name of the definition for this register in the
970 // target's tablegen files. For example, the TableGen name of
971 // def EAX : Register <...>; is "EAX"
972 return StringRef(getName(Reg));
975 //===--------------------------------------------------------------------===//
976 /// Subtarget Hooks
978 /// SrcRC and DstRC will be morphed into NewRC if this returns true.
979 virtual bool shouldCoalesce(MachineInstr *MI,
980 const TargetRegisterClass *SrcRC,
981 unsigned SubReg,
982 const TargetRegisterClass *DstRC,
983 unsigned DstSubReg,
984 const TargetRegisterClass *NewRC,
985 LiveIntervals &LIS) const
986 { return true; }
988 //===--------------------------------------------------------------------===//
989 /// Debug information queries.
991 /// getFrameRegister - This method should return the register used as a base
992 /// for values allocated in the current stack frame.
993 virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
995 /// Mark a register and all its aliases as reserved in the given set.
996 void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
998 /// Returns true if for every register in the set all super registers are part
999 /// of the set as well.
1000 bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1001 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1003 virtual const TargetRegisterClass *
1004 getConstrainedRegClassForOperand(const MachineOperand &MO,
1005 const MachineRegisterInfo &MRI) const {
1006 return nullptr;
1010 //===----------------------------------------------------------------------===//
1011 // SuperRegClassIterator
1012 //===----------------------------------------------------------------------===//
1014 // Iterate over the possible super-registers for a given register class. The
1015 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1016 // possible classes of super-registers.
1018 // Each bit mask will have at least one set bit, and each set bit in Mask
1019 // corresponds to a SuperRC such that:
1021 // For all Reg in SuperRC: Reg:Idx is in RC.
1023 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1024 // also satisfies the above requirement, assuming Reg:0 == Reg.
1026 class SuperRegClassIterator {
1027 const unsigned RCMaskWords;
1028 unsigned SubReg = 0;
1029 const uint16_t *Idx;
1030 const uint32_t *Mask;
1032 public:
1033 /// Create a SuperRegClassIterator that visits all the super-register classes
1034 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1035 SuperRegClassIterator(const TargetRegisterClass *RC,
1036 const TargetRegisterInfo *TRI,
1037 bool IncludeSelf = false)
1038 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1039 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1040 if (!IncludeSelf)
1041 ++*this;
1044 /// Returns true if this iterator is still pointing at a valid entry.
1045 bool isValid() const { return Idx; }
1047 /// Returns the current sub-register index.
1048 unsigned getSubReg() const { return SubReg; }
1050 /// Returns the bit mask of register classes that getSubReg() projects into
1051 /// RC.
1052 /// See TargetRegisterClass::getSubClassMask() for how to use it.
1053 const uint32_t *getMask() const { return Mask; }
1055 /// Advance iterator to the next entry.
1056 void operator++() {
1057 assert(isValid() && "Cannot move iterator past end.");
1058 Mask += RCMaskWords;
1059 SubReg = *Idx++;
1060 if (!SubReg)
1061 Idx = nullptr;
1065 //===----------------------------------------------------------------------===//
1066 // BitMaskClassIterator
1067 //===----------------------------------------------------------------------===//
1068 /// This class encapuslates the logic to iterate over bitmask returned by
1069 /// the various RegClass related APIs.
1070 /// E.g., this class can be used to iterate over the subclasses provided by
1071 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1072 class BitMaskClassIterator {
1073 /// Total number of register classes.
1074 const unsigned NumRegClasses;
1075 /// Base index of CurrentChunk.
1076 /// In other words, the number of bit we read to get at the
1077 /// beginning of that chunck.
1078 unsigned Base = 0;
1079 /// Adjust base index of CurrentChunk.
1080 /// Base index + how many bit we read within CurrentChunk.
1081 unsigned Idx = 0;
1082 /// Current register class ID.
1083 unsigned ID = 0;
1084 /// Mask we are iterating over.
1085 const uint32_t *Mask;
1086 /// Current chunk of the Mask we are traversing.
1087 uint32_t CurrentChunk;
1089 /// Move ID to the next set bit.
1090 void moveToNextID() {
1091 // If the current chunk of memory is empty, move to the next one,
1092 // while making sure we do not go pass the number of register
1093 // classes.
1094 while (!CurrentChunk) {
1095 // Move to the next chunk.
1096 Base += 32;
1097 if (Base >= NumRegClasses) {
1098 ID = NumRegClasses;
1099 return;
1101 CurrentChunk = *++Mask;
1102 Idx = Base;
1104 // Otherwise look for the first bit set from the right
1105 // (representation of the class ID is big endian).
1106 // See getSubClassMask for more details on the representation.
1107 unsigned Offset = countTrailingZeros(CurrentChunk);
1108 // Add the Offset to the adjusted base number of this chunk: Idx.
1109 // This is the ID of the register class.
1110 ID = Idx + Offset;
1112 // Consume the zeros, if any, and the bit we just read
1113 // so that we are at the right spot for the next call.
1114 // Do not do Offset + 1 because Offset may be 31 and 32
1115 // will be UB for the shift, though in that case we could
1116 // have make the chunk being equal to 0, but that would
1117 // have introduced a if statement.
1118 moveNBits(Offset);
1119 moveNBits(1);
1122 /// Move \p NumBits Bits forward in CurrentChunk.
1123 void moveNBits(unsigned NumBits) {
1124 assert(NumBits < 32 && "Undefined behavior spotted!");
1125 // Consume the bit we read for the next call.
1126 CurrentChunk >>= NumBits;
1127 // Adjust the base for the chunk.
1128 Idx += NumBits;
1131 public:
1132 /// Create a BitMaskClassIterator that visits all the register classes
1133 /// represented by \p Mask.
1135 /// \pre \p Mask != nullptr
1136 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1137 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1138 // Move to the first ID.
1139 moveToNextID();
1142 /// Returns true if this iterator is still pointing at a valid entry.
1143 bool isValid() const { return getID() != NumRegClasses; }
1145 /// Returns the current register class ID.
1146 unsigned getID() const { return ID; }
1148 /// Advance iterator to the next entry.
1149 void operator++() {
1150 assert(isValid() && "Cannot move iterator past end.");
1151 moveToNextID();
1155 // This is useful when building IndexedMaps keyed on virtual registers
1156 struct VirtReg2IndexFunctor {
1157 using argument_type = unsigned;
1158 unsigned operator()(unsigned Reg) const {
1159 return TargetRegisterInfo::virtReg2Index(Reg);
1163 /// Prints virtual and physical registers with or without a TRI instance.
1165 /// The format is:
1166 /// %noreg - NoRegister
1167 /// %5 - a virtual register.
1168 /// %5:sub_8bit - a virtual register with sub-register index (with TRI).
1169 /// %eax - a physical register
1170 /// %physreg17 - a physical register when no TRI instance given.
1172 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1173 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
1174 unsigned SubIdx = 0,
1175 const MachineRegisterInfo *MRI = nullptr);
1177 /// Create Printable object to print register units on a \ref raw_ostream.
1179 /// Register units are named after their root registers:
1181 /// al - Single root.
1182 /// fp0~st7 - Dual roots.
1184 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1185 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1187 /// Create Printable object to print virtual registers and physical
1188 /// registers on a \ref raw_ostream.
1189 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1191 /// Create Printable object to print register classes or register banks
1192 /// on a \ref raw_ostream.
1193 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
1194 const TargetRegisterInfo *TRI);
1196 } // end namespace llvm
1198 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H