[ARM] MVE integer min and max
[llvm-complete.git] / include / llvm / Support / JSON.h
blob0ca41097dddd92945de77d446c18b58007a3dc24
1 //===--- JSON.h - JSON values, parsing and serialization -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file supports working with JSON data.
11 ///
12 /// It comprises:
13 ///
14 /// - classes which hold dynamically-typed parsed JSON structures
15 /// These are value types that can be composed, inspected, and modified.
16 /// See json::Value, and the related types json::Object and json::Array.
17 ///
18 /// - functions to parse JSON text into Values, and to serialize Values to text.
19 /// See parse(), operator<<, and format_provider.
20 ///
21 /// - a convention and helpers for mapping between json::Value and user-defined
22 /// types. See fromJSON(), ObjectMapper, and the class comment on Value.
23 ///
24 /// - an output API json::OStream which can emit JSON without materializing
25 /// all structures as json::Value.
26 ///
27 /// Typically, JSON data would be read from an external source, parsed into
28 /// a Value, and then converted into some native data structure before doing
29 /// real work on it. (And vice versa when writing).
30 ///
31 /// Other serialization mechanisms you may consider:
32 ///
33 /// - YAML is also text-based, and more human-readable than JSON. It's a more
34 /// complex format and data model, and YAML parsers aren't ubiquitous.
35 /// YAMLParser.h is a streaming parser suitable for parsing large documents
36 /// (including JSON, as YAML is a superset). It can be awkward to use
37 /// directly. YAML I/O (YAMLTraits.h) provides data mapping that is more
38 /// declarative than the toJSON/fromJSON conventions here.
39 ///
40 /// - LLVM bitstream is a space- and CPU- efficient binary format. Typically it
41 /// encodes LLVM IR ("bitcode"), but it can be a container for other data.
42 /// Low-level reader/writer libraries are in Bitstream/Bitstream*.h
43 ///
44 //===---------------------------------------------------------------------===//
46 #ifndef LLVM_SUPPORT_JSON_H
47 #define LLVM_SUPPORT_JSON_H
49 #include "llvm/ADT/DenseMap.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringRef.h"
52 #include "llvm/Support/Error.h"
53 #include "llvm/Support/FormatVariadic.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <map>
57 namespace llvm {
58 namespace json {
60 // === String encodings ===
62 // JSON strings are character sequences (not byte sequences like std::string).
63 // We need to know the encoding, and for simplicity only support UTF-8.
65 // - When parsing, invalid UTF-8 is a syntax error like any other
67 // - When creating Values from strings, callers must ensure they are UTF-8.
68 // with asserts on, invalid UTF-8 will crash the program
69 // with asserts off, we'll substitute the replacement character (U+FFFD)
70 // Callers can use json::isUTF8() and json::fixUTF8() for validation.
72 // - When retrieving strings from Values (e.g. asString()), the result will
73 // always be valid UTF-8.
75 /// Returns true if \p S is valid UTF-8, which is required for use as JSON.
76 /// If it returns false, \p Offset is set to a byte offset near the first error.
77 bool isUTF8(llvm::StringRef S, size_t *ErrOffset = nullptr);
78 /// Replaces invalid UTF-8 sequences in \p S with the replacement character
79 /// (U+FFFD). The returned string is valid UTF-8.
80 /// This is much slower than isUTF8, so test that first.
81 std::string fixUTF8(llvm::StringRef S);
83 class Array;
84 class ObjectKey;
85 class Value;
86 template <typename T> Value toJSON(const llvm::Optional<T> &Opt);
88 /// An Object is a JSON object, which maps strings to heterogenous JSON values.
89 /// It simulates DenseMap<ObjectKey, Value>. ObjectKey is a maybe-owned string.
90 class Object {
91 using Storage = DenseMap<ObjectKey, Value, llvm::DenseMapInfo<StringRef>>;
92 Storage M;
94 public:
95 using key_type = ObjectKey;
96 using mapped_type = Value;
97 using value_type = Storage::value_type;
98 using iterator = Storage::iterator;
99 using const_iterator = Storage::const_iterator;
101 Object() = default;
102 // KV is a trivial key-value struct for list-initialization.
103 // (using std::pair forces extra copies).
104 struct KV;
105 explicit Object(std::initializer_list<KV> Properties);
107 iterator begin() { return M.begin(); }
108 const_iterator begin() const { return M.begin(); }
109 iterator end() { return M.end(); }
110 const_iterator end() const { return M.end(); }
112 bool empty() const { return M.empty(); }
113 size_t size() const { return M.size(); }
115 void clear() { M.clear(); }
116 std::pair<iterator, bool> insert(KV E);
117 template <typename... Ts>
118 std::pair<iterator, bool> try_emplace(const ObjectKey &K, Ts &&... Args) {
119 return M.try_emplace(K, std::forward<Ts>(Args)...);
121 template <typename... Ts>
122 std::pair<iterator, bool> try_emplace(ObjectKey &&K, Ts &&... Args) {
123 return M.try_emplace(std::move(K), std::forward<Ts>(Args)...);
126 iterator find(StringRef K) { return M.find_as(K); }
127 const_iterator find(StringRef K) const { return M.find_as(K); }
128 // operator[] acts as if Value was default-constructible as null.
129 Value &operator[](const ObjectKey &K);
130 Value &operator[](ObjectKey &&K);
131 // Look up a property, returning nullptr if it doesn't exist.
132 Value *get(StringRef K);
133 const Value *get(StringRef K) const;
134 // Typed accessors return None/nullptr if
135 // - the property doesn't exist
136 // - or it has the wrong type
137 llvm::Optional<std::nullptr_t> getNull(StringRef K) const;
138 llvm::Optional<bool> getBoolean(StringRef K) const;
139 llvm::Optional<double> getNumber(StringRef K) const;
140 llvm::Optional<int64_t> getInteger(StringRef K) const;
141 llvm::Optional<llvm::StringRef> getString(StringRef K) const;
142 const json::Object *getObject(StringRef K) const;
143 json::Object *getObject(StringRef K);
144 const json::Array *getArray(StringRef K) const;
145 json::Array *getArray(StringRef K);
147 bool operator==(const Object &LHS, const Object &RHS);
148 inline bool operator!=(const Object &LHS, const Object &RHS) {
149 return !(LHS == RHS);
152 /// An Array is a JSON array, which contains heterogeneous JSON values.
153 /// It simulates std::vector<Value>.
154 class Array {
155 std::vector<Value> V;
157 public:
158 using value_type = Value;
159 using iterator = std::vector<Value>::iterator;
160 using const_iterator = std::vector<Value>::const_iterator;
162 Array() = default;
163 explicit Array(std::initializer_list<Value> Elements);
164 template <typename Collection> explicit Array(const Collection &C) {
165 for (const auto &V : C)
166 emplace_back(V);
169 Value &operator[](size_t I) { return V[I]; }
170 const Value &operator[](size_t I) const { return V[I]; }
171 Value &front() { return V.front(); }
172 const Value &front() const { return V.front(); }
173 Value &back() { return V.back(); }
174 const Value &back() const { return V.back(); }
175 Value *data() { return V.data(); }
176 const Value *data() const { return V.data(); }
178 iterator begin() { return V.begin(); }
179 const_iterator begin() const { return V.begin(); }
180 iterator end() { return V.end(); }
181 const_iterator end() const { return V.end(); }
183 bool empty() const { return V.empty(); }
184 size_t size() const { return V.size(); }
185 void reserve(size_t S) { V.reserve(S); }
187 void clear() { V.clear(); }
188 void push_back(const Value &E) { V.push_back(E); }
189 void push_back(Value &&E) { V.push_back(std::move(E)); }
190 template <typename... Args> void emplace_back(Args &&... A) {
191 V.emplace_back(std::forward<Args>(A)...);
193 void pop_back() { V.pop_back(); }
194 // FIXME: insert() takes const_iterator since C++11, old libstdc++ disagrees.
195 iterator insert(iterator P, const Value &E) { return V.insert(P, E); }
196 iterator insert(iterator P, Value &&E) {
197 return V.insert(P, std::move(E));
199 template <typename It> iterator insert(iterator P, It A, It Z) {
200 return V.insert(P, A, Z);
202 template <typename... Args> iterator emplace(const_iterator P, Args &&... A) {
203 return V.emplace(P, std::forward<Args>(A)...);
206 friend bool operator==(const Array &L, const Array &R) { return L.V == R.V; }
208 inline bool operator!=(const Array &L, const Array &R) { return !(L == R); }
210 /// A Value is an JSON value of unknown type.
211 /// They can be copied, but should generally be moved.
213 /// === Composing values ===
215 /// You can implicitly construct Values from:
216 /// - strings: std::string, SmallString, formatv, StringRef, char*
217 /// (char*, and StringRef are references, not copies!)
218 /// - numbers
219 /// - booleans
220 /// - null: nullptr
221 /// - arrays: {"foo", 42.0, false}
222 /// - serializable things: types with toJSON(const T&)->Value, found by ADL
224 /// They can also be constructed from object/array helpers:
225 /// - json::Object is a type like map<ObjectKey, Value>
226 /// - json::Array is a type like vector<Value>
227 /// These can be list-initialized, or used to build up collections in a loop.
228 /// json::ary(Collection) converts all items in a collection to Values.
230 /// === Inspecting values ===
232 /// Each Value is one of the JSON kinds:
233 /// null (nullptr_t)
234 /// boolean (bool)
235 /// number (double or int64)
236 /// string (StringRef)
237 /// array (json::Array)
238 /// object (json::Object)
240 /// The kind can be queried directly, or implicitly via the typed accessors:
241 /// if (Optional<StringRef> S = E.getAsString()
242 /// assert(E.kind() == Value::String);
244 /// Array and Object also have typed indexing accessors for easy traversal:
245 /// Expected<Value> E = parse(R"( {"options": {"font": "sans-serif"}} )");
246 /// if (Object* O = E->getAsObject())
247 /// if (Object* Opts = O->getObject("options"))
248 /// if (Optional<StringRef> Font = Opts->getString("font"))
249 /// assert(Opts->at("font").kind() == Value::String);
251 /// === Converting JSON values to C++ types ===
253 /// The convention is to have a deserializer function findable via ADL:
254 /// fromJSON(const json::Value&, T&)->bool
255 /// Deserializers are provided for:
256 /// - bool
257 /// - int and int64_t
258 /// - double
259 /// - std::string
260 /// - vector<T>, where T is deserializable
261 /// - map<string, T>, where T is deserializable
262 /// - Optional<T>, where T is deserializable
263 /// ObjectMapper can help writing fromJSON() functions for object types.
265 /// For conversion in the other direction, the serializer function is:
266 /// toJSON(const T&) -> json::Value
267 /// If this exists, then it also allows constructing Value from T, and can
268 /// be used to serialize vector<T>, map<string, T>, and Optional<T>.
270 /// === Serialization ===
272 /// Values can be serialized to JSON:
273 /// 1) raw_ostream << Value // Basic formatting.
274 /// 2) raw_ostream << formatv("{0}", Value) // Basic formatting.
275 /// 3) raw_ostream << formatv("{0:2}", Value) // Pretty-print with indent 2.
277 /// And parsed:
278 /// Expected<Value> E = json::parse("[1, 2, null]");
279 /// assert(E && E->kind() == Value::Array);
280 class Value {
281 public:
282 enum Kind {
283 Null,
284 Boolean,
285 /// Number values can store both int64s and doubles at full precision,
286 /// depending on what they were constructed/parsed from.
287 Number,
288 String,
289 Array,
290 Object,
293 // It would be nice to have Value() be null. But that would make {} null too.
294 Value(const Value &M) { copyFrom(M); }
295 Value(Value &&M) { moveFrom(std::move(M)); }
296 Value(std::initializer_list<Value> Elements);
297 Value(json::Array &&Elements) : Type(T_Array) {
298 create<json::Array>(std::move(Elements));
300 template <typename Elt>
301 Value(const std::vector<Elt> &C) : Value(json::Array(C)) {}
302 Value(json::Object &&Properties) : Type(T_Object) {
303 create<json::Object>(std::move(Properties));
305 template <typename Elt>
306 Value(const std::map<std::string, Elt> &C) : Value(json::Object(C)) {}
307 // Strings: types with value semantics. Must be valid UTF-8.
308 Value(std::string V) : Type(T_String) {
309 if (LLVM_UNLIKELY(!isUTF8(V))) {
310 assert(false && "Invalid UTF-8 in value used as JSON");
311 V = fixUTF8(std::move(V));
313 create<std::string>(std::move(V));
315 Value(const llvm::SmallVectorImpl<char> &V)
316 : Value(std::string(V.begin(), V.end())) {}
317 Value(const llvm::formatv_object_base &V) : Value(V.str()) {}
318 // Strings: types with reference semantics. Must be valid UTF-8.
319 Value(StringRef V) : Type(T_StringRef) {
320 create<llvm::StringRef>(V);
321 if (LLVM_UNLIKELY(!isUTF8(V))) {
322 assert(false && "Invalid UTF-8 in value used as JSON");
323 *this = Value(fixUTF8(V));
326 Value(const char *V) : Value(StringRef(V)) {}
327 Value(std::nullptr_t) : Type(T_Null) {}
328 // Boolean (disallow implicit conversions).
329 // (The last template parameter is a dummy to keep templates distinct.)
330 template <
331 typename T,
332 typename = typename std::enable_if<std::is_same<T, bool>::value>::type,
333 bool = false>
334 Value(T B) : Type(T_Boolean) {
335 create<bool>(B);
337 // Integers (except boolean). Must be non-narrowing convertible to int64_t.
338 template <
339 typename T,
340 typename = typename std::enable_if<std::is_integral<T>::value>::type,
341 typename = typename std::enable_if<!std::is_same<T, bool>::value>::type>
342 Value(T I) : Type(T_Integer) {
343 create<int64_t>(int64_t{I});
345 // Floating point. Must be non-narrowing convertible to double.
346 template <typename T,
347 typename =
348 typename std::enable_if<std::is_floating_point<T>::value>::type,
349 double * = nullptr>
350 Value(T D) : Type(T_Double) {
351 create<double>(double{D});
353 // Serializable types: with a toJSON(const T&)->Value function, found by ADL.
354 template <typename T,
355 typename = typename std::enable_if<std::is_same<
356 Value, decltype(toJSON(*(const T *)nullptr))>::value>,
357 Value * = nullptr>
358 Value(const T &V) : Value(toJSON(V)) {}
360 Value &operator=(const Value &M) {
361 destroy();
362 copyFrom(M);
363 return *this;
365 Value &operator=(Value &&M) {
366 destroy();
367 moveFrom(std::move(M));
368 return *this;
370 ~Value() { destroy(); }
372 Kind kind() const {
373 switch (Type) {
374 case T_Null:
375 return Null;
376 case T_Boolean:
377 return Boolean;
378 case T_Double:
379 case T_Integer:
380 return Number;
381 case T_String:
382 case T_StringRef:
383 return String;
384 case T_Object:
385 return Object;
386 case T_Array:
387 return Array;
389 llvm_unreachable("Unknown kind");
392 // Typed accessors return None/nullptr if the Value is not of this type.
393 llvm::Optional<std::nullptr_t> getAsNull() const {
394 if (LLVM_LIKELY(Type == T_Null))
395 return nullptr;
396 return llvm::None;
398 llvm::Optional<bool> getAsBoolean() const {
399 if (LLVM_LIKELY(Type == T_Boolean))
400 return as<bool>();
401 return llvm::None;
403 llvm::Optional<double> getAsNumber() const {
404 if (LLVM_LIKELY(Type == T_Double))
405 return as<double>();
406 if (LLVM_LIKELY(Type == T_Integer))
407 return as<int64_t>();
408 return llvm::None;
410 // Succeeds if the Value is a Number, and exactly representable as int64_t.
411 llvm::Optional<int64_t> getAsInteger() const {
412 if (LLVM_LIKELY(Type == T_Integer))
413 return as<int64_t>();
414 if (LLVM_LIKELY(Type == T_Double)) {
415 double D = as<double>();
416 if (LLVM_LIKELY(std::modf(D, &D) == 0.0 &&
417 D >= double(std::numeric_limits<int64_t>::min()) &&
418 D <= double(std::numeric_limits<int64_t>::max())))
419 return D;
421 return llvm::None;
423 llvm::Optional<llvm::StringRef> getAsString() const {
424 if (Type == T_String)
425 return llvm::StringRef(as<std::string>());
426 if (LLVM_LIKELY(Type == T_StringRef))
427 return as<llvm::StringRef>();
428 return llvm::None;
430 const json::Object *getAsObject() const {
431 return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
433 json::Object *getAsObject() {
434 return LLVM_LIKELY(Type == T_Object) ? &as<json::Object>() : nullptr;
436 const json::Array *getAsArray() const {
437 return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
439 json::Array *getAsArray() {
440 return LLVM_LIKELY(Type == T_Array) ? &as<json::Array>() : nullptr;
443 private:
444 void destroy();
445 void copyFrom(const Value &M);
446 // We allow moving from *const* Values, by marking all members as mutable!
447 // This hack is needed to support initializer-list syntax efficiently.
448 // (std::initializer_list<T> is a container of const T).
449 void moveFrom(const Value &&M);
450 friend class Array;
451 friend class Object;
453 template <typename T, typename... U> void create(U &&... V) {
454 new (reinterpret_cast<T *>(Union.buffer)) T(std::forward<U>(V)...);
456 template <typename T> T &as() const {
457 // Using this two-step static_cast via void * instead of reinterpret_cast
458 // silences a -Wstrict-aliasing false positive from GCC6 and earlier.
459 void *Storage = static_cast<void *>(Union.buffer);
460 return *static_cast<T *>(Storage);
463 friend class OStream;
465 enum ValueType : char {
466 T_Null,
467 T_Boolean,
468 T_Double,
469 T_Integer,
470 T_StringRef,
471 T_String,
472 T_Object,
473 T_Array,
475 // All members mutable, see moveFrom().
476 mutable ValueType Type;
477 mutable llvm::AlignedCharArrayUnion<bool, double, int64_t, llvm::StringRef,
478 std::string, json::Array, json::Object>
479 Union;
480 friend bool operator==(const Value &, const Value &);
483 bool operator==(const Value &, const Value &);
484 inline bool operator!=(const Value &L, const Value &R) { return !(L == R); }
486 /// ObjectKey is a used to capture keys in Object. Like Value but:
487 /// - only strings are allowed
488 /// - it's optimized for the string literal case (Owned == nullptr)
489 /// Like Value, strings must be UTF-8. See isUTF8 documentation for details.
490 class ObjectKey {
491 public:
492 ObjectKey(const char *S) : ObjectKey(StringRef(S)) {}
493 ObjectKey(std::string S) : Owned(new std::string(std::move(S))) {
494 if (LLVM_UNLIKELY(!isUTF8(*Owned))) {
495 assert(false && "Invalid UTF-8 in value used as JSON");
496 *Owned = fixUTF8(std::move(*Owned));
498 Data = *Owned;
500 ObjectKey(llvm::StringRef S) : Data(S) {
501 if (LLVM_UNLIKELY(!isUTF8(Data))) {
502 assert(false && "Invalid UTF-8 in value used as JSON");
503 *this = ObjectKey(fixUTF8(S));
506 ObjectKey(const llvm::SmallVectorImpl<char> &V)
507 : ObjectKey(std::string(V.begin(), V.end())) {}
508 ObjectKey(const llvm::formatv_object_base &V) : ObjectKey(V.str()) {}
510 ObjectKey(const ObjectKey &C) { *this = C; }
511 ObjectKey(ObjectKey &&C) : ObjectKey(static_cast<const ObjectKey &&>(C)) {}
512 ObjectKey &operator=(const ObjectKey &C) {
513 if (C.Owned) {
514 Owned.reset(new std::string(*C.Owned));
515 Data = *Owned;
516 } else {
517 Data = C.Data;
519 return *this;
521 ObjectKey &operator=(ObjectKey &&) = default;
523 operator llvm::StringRef() const { return Data; }
524 std::string str() const { return Data.str(); }
526 private:
527 // FIXME: this is unneccesarily large (3 pointers). Pointer + length + owned
528 // could be 2 pointers at most.
529 std::unique_ptr<std::string> Owned;
530 llvm::StringRef Data;
533 inline bool operator==(const ObjectKey &L, const ObjectKey &R) {
534 return llvm::StringRef(L) == llvm::StringRef(R);
536 inline bool operator!=(const ObjectKey &L, const ObjectKey &R) {
537 return !(L == R);
539 inline bool operator<(const ObjectKey &L, const ObjectKey &R) {
540 return StringRef(L) < StringRef(R);
543 struct Object::KV {
544 ObjectKey K;
545 Value V;
548 inline Object::Object(std::initializer_list<KV> Properties) {
549 for (const auto &P : Properties) {
550 auto R = try_emplace(P.K, nullptr);
551 if (R.second)
552 R.first->getSecond().moveFrom(std::move(P.V));
555 inline std::pair<Object::iterator, bool> Object::insert(KV E) {
556 return try_emplace(std::move(E.K), std::move(E.V));
559 // Standard deserializers are provided for primitive types.
560 // See comments on Value.
561 inline bool fromJSON(const Value &E, std::string &Out) {
562 if (auto S = E.getAsString()) {
563 Out = *S;
564 return true;
566 return false;
568 inline bool fromJSON(const Value &E, int &Out) {
569 if (auto S = E.getAsInteger()) {
570 Out = *S;
571 return true;
573 return false;
575 inline bool fromJSON(const Value &E, int64_t &Out) {
576 if (auto S = E.getAsInteger()) {
577 Out = *S;
578 return true;
580 return false;
582 inline bool fromJSON(const Value &E, double &Out) {
583 if (auto S = E.getAsNumber()) {
584 Out = *S;
585 return true;
587 return false;
589 inline bool fromJSON(const Value &E, bool &Out) {
590 if (auto S = E.getAsBoolean()) {
591 Out = *S;
592 return true;
594 return false;
596 template <typename T> bool fromJSON(const Value &E, llvm::Optional<T> &Out) {
597 if (E.getAsNull()) {
598 Out = llvm::None;
599 return true;
601 T Result;
602 if (!fromJSON(E, Result))
603 return false;
604 Out = std::move(Result);
605 return true;
607 template <typename T> bool fromJSON(const Value &E, std::vector<T> &Out) {
608 if (auto *A = E.getAsArray()) {
609 Out.clear();
610 Out.resize(A->size());
611 for (size_t I = 0; I < A->size(); ++I)
612 if (!fromJSON((*A)[I], Out[I]))
613 return false;
614 return true;
616 return false;
618 template <typename T>
619 bool fromJSON(const Value &E, std::map<std::string, T> &Out) {
620 if (auto *O = E.getAsObject()) {
621 Out.clear();
622 for (const auto &KV : *O)
623 if (!fromJSON(KV.second, Out[llvm::StringRef(KV.first)]))
624 return false;
625 return true;
627 return false;
630 // Allow serialization of Optional<T> for supported T.
631 template <typename T> Value toJSON(const llvm::Optional<T> &Opt) {
632 return Opt ? Value(*Opt) : Value(nullptr);
635 /// Helper for mapping JSON objects onto protocol structs.
637 /// Example:
638 /// \code
639 /// bool fromJSON(const Value &E, MyStruct &R) {
640 /// ObjectMapper O(E);
641 /// if (!O || !O.map("mandatory_field", R.MandatoryField))
642 /// return false;
643 /// O.map("optional_field", R.OptionalField);
644 /// return true;
645 /// }
646 /// \endcode
647 class ObjectMapper {
648 public:
649 ObjectMapper(const Value &E) : O(E.getAsObject()) {}
651 /// True if the expression is an object.
652 /// Must be checked before calling map().
653 operator bool() { return O; }
655 /// Maps a property to a field, if it exists.
656 template <typename T> bool map(StringRef Prop, T &Out) {
657 assert(*this && "Must check this is an object before calling map()");
658 if (const Value *E = O->get(Prop))
659 return fromJSON(*E, Out);
660 return false;
663 /// Maps a property to a field, if it exists.
664 /// (Optional requires special handling, because missing keys are OK).
665 template <typename T> bool map(StringRef Prop, llvm::Optional<T> &Out) {
666 assert(*this && "Must check this is an object before calling map()");
667 if (const Value *E = O->get(Prop))
668 return fromJSON(*E, Out);
669 Out = llvm::None;
670 return true;
673 private:
674 const Object *O;
677 /// Parses the provided JSON source, or returns a ParseError.
678 /// The returned Value is self-contained and owns its strings (they do not refer
679 /// to the original source).
680 llvm::Expected<Value> parse(llvm::StringRef JSON);
682 class ParseError : public llvm::ErrorInfo<ParseError> {
683 const char *Msg;
684 unsigned Line, Column, Offset;
686 public:
687 static char ID;
688 ParseError(const char *Msg, unsigned Line, unsigned Column, unsigned Offset)
689 : Msg(Msg), Line(Line), Column(Column), Offset(Offset) {}
690 void log(llvm::raw_ostream &OS) const override {
691 OS << llvm::formatv("[{0}:{1}, byte={2}]: {3}", Line, Column, Offset, Msg);
693 std::error_code convertToErrorCode() const override {
694 return llvm::inconvertibleErrorCode();
698 /// json::OStream allows writing well-formed JSON without materializing
699 /// all structures as json::Value ahead of time.
700 /// It's faster, lower-level, and less safe than OS << json::Value.
702 /// Only one "top-level" object can be written to a stream.
703 /// Simplest usage involves passing lambdas (Blocks) to fill in containers:
705 /// json::OStream J(OS);
706 /// J.array([&]{
707 /// for (const Event &E : Events)
708 /// J.object([&] {
709 /// J.attribute("timestamp", int64_t(E.Time));
710 /// J.attributeArray("participants", [&] {
711 /// for (const Participant &P : E.Participants)
712 /// J.string(P.toString());
713 /// });
714 /// });
715 /// });
717 /// This would produce JSON like:
719 /// [
720 /// {
721 /// "timestamp": 19287398741,
722 /// "participants": [
723 /// "King Kong",
724 /// "Miley Cyrus",
725 /// "Cleopatra"
726 /// ]
727 /// },
728 /// ...
729 /// ]
731 /// The lower level begin/end methods (arrayBegin()) are more flexible but
732 /// care must be taken to pair them correctly:
734 /// json::OStream J(OS);
735 // J.arrayBegin();
736 /// for (const Event &E : Events) {
737 /// J.objectBegin();
738 /// J.attribute("timestamp", int64_t(E.Time));
739 /// J.attributeBegin("participants");
740 /// for (const Participant &P : E.Participants)
741 /// J.value(P.toString());
742 /// J.attributeEnd();
743 /// J.objectEnd();
744 /// }
745 /// J.arrayEnd();
747 /// If the call sequence isn't valid JSON, asserts will fire in debug mode.
748 /// This can be mismatched begin()/end() pairs, trying to emit attributes inside
749 /// an array, and so on.
750 /// With asserts disabled, this is undefined behavior.
751 class OStream {
752 public:
753 using Block = llvm::function_ref<void()>;
754 // If IndentSize is nonzero, output is pretty-printed.
755 explicit OStream(llvm::raw_ostream &OS, unsigned IndentSize = 0)
756 : OS(OS), IndentSize(IndentSize) {
757 Stack.emplace_back();
759 ~OStream() {
760 assert(Stack.size() == 1 && "Unmatched begin()/end()");
761 assert(Stack.back().Ctx == Singleton);
762 assert(Stack.back().HasValue && "Did not write top-level value");
765 /// Flushes the underlying ostream. OStream does not buffer internally.
766 void flush() { OS.flush(); }
768 // High level functions to output a value.
769 // Valid at top-level (exactly once), in an attribute value (exactly once),
770 // or in an array (any number of times).
772 /// Emit a self-contained value (number, string, vector<string> etc).
773 void value(const Value &V);
774 /// Emit an array whose elements are emitted in the provided Block.
775 void array(Block Contents) {
776 arrayBegin();
777 Contents();
778 arrayEnd();
780 /// Emit an object whose elements are emitted in the provided Block.
781 void object(Block Contents) {
782 objectBegin();
783 Contents();
784 objectEnd();
787 // High level functions to output object attributes.
788 // Valid only within an object (any number of times).
790 /// Emit an attribute whose value is self-contained (number, vector<int> etc).
791 void attribute(llvm::StringRef Key, const Value& Contents) {
792 attributeImpl(Key, [&] { value(Contents); });
794 /// Emit an attribute whose value is an array with elements from the Block.
795 void attributeArray(llvm::StringRef Key, Block Contents) {
796 attributeImpl(Key, [&] { array(Contents); });
798 /// Emit an attribute whose value is an object with attributes from the Block.
799 void attributeObject(llvm::StringRef Key, Block Contents) {
800 attributeImpl(Key, [&] { object(Contents); });
803 // Low-level begin/end functions to output arrays, objects, and attributes.
804 // Must be correctly paired. Allowed contexts are as above.
806 void arrayBegin();
807 void arrayEnd();
808 void objectBegin();
809 void objectEnd();
810 void attributeBegin(llvm::StringRef Key);
811 void attributeEnd();
813 private:
814 void attributeImpl(llvm::StringRef Key, Block Contents) {
815 attributeBegin(Key);
816 Contents();
817 attributeEnd();
820 void valueBegin();
821 void newline();
823 enum Context {
824 Singleton, // Top level, or object attribute.
825 Array,
826 Object,
828 struct State {
829 Context Ctx = Singleton;
830 bool HasValue = false;
832 llvm::SmallVector<State, 16> Stack; // Never empty.
833 llvm::raw_ostream &OS;
834 unsigned IndentSize;
835 unsigned Indent = 0;
838 /// Serializes this Value to JSON, writing it to the provided stream.
839 /// The formatting is compact (no extra whitespace) and deterministic.
840 /// For pretty-printing, use the formatv() format_provider below.
841 inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const Value &V) {
842 OStream(OS).value(V);
843 return OS;
845 } // namespace json
847 /// Allow printing json::Value with formatv().
848 /// The default style is basic/compact formatting, like operator<<.
849 /// A format string like formatv("{0:2}", Value) pretty-prints with indent 2.
850 template <> struct format_provider<llvm::json::Value> {
851 static void format(const llvm::json::Value &, raw_ostream &, StringRef);
853 } // namespace llvm
855 #endif