[ARM] MVE integer min and max
[llvm-complete.git] / lib / Bitcode / Writer / BitcodeWriter.cpp
bloba23b44f4751613bb29a8084908ae057fd328378c
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitstream/BitCodes.h"
28 #include "llvm/Bitstream/BitstreamWriter.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Config/llvm-config.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSummaryIndex.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/UseListOrder.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/StringTableBuilder.h"
60 #include "llvm/Object/IRSymtab.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Endian.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/SHA1.h"
69 #include "llvm/Support/TargetRegistry.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 static cl::opt<unsigned>
85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
86 cl::desc("Number of metadatas above which we emit an index "
87 "to enable lazy-loading"));
89 cl::opt<bool> WriteRelBFToSummary(
90 "write-relbf-to-summary", cl::Hidden, cl::init(false),
91 cl::desc("Write relative block frequency to function summary "));
93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
95 namespace {
97 /// These are manifest constants used by the bitcode writer. They do not need to
98 /// be kept in sync with the reader, but need to be consistent within this file.
99 enum {
100 // VALUE_SYMTAB_BLOCK abbrev id's.
101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
102 VST_ENTRY_7_ABBREV,
103 VST_ENTRY_6_ABBREV,
104 VST_BBENTRY_6_ABBREV,
106 // CONSTANTS_BLOCK abbrev id's.
107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
108 CONSTANTS_INTEGER_ABBREV,
109 CONSTANTS_CE_CAST_Abbrev,
110 CONSTANTS_NULL_Abbrev,
112 // FUNCTION_BLOCK abbrev id's.
113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
114 FUNCTION_INST_UNOP_ABBREV,
115 FUNCTION_INST_UNOP_FLAGS_ABBREV,
116 FUNCTION_INST_BINOP_ABBREV,
117 FUNCTION_INST_BINOP_FLAGS_ABBREV,
118 FUNCTION_INST_CAST_ABBREV,
119 FUNCTION_INST_RET_VOID_ABBREV,
120 FUNCTION_INST_RET_VAL_ABBREV,
121 FUNCTION_INST_UNREACHABLE_ABBREV,
122 FUNCTION_INST_GEP_ABBREV,
125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
126 /// file type.
127 class BitcodeWriterBase {
128 protected:
129 /// The stream created and owned by the client.
130 BitstreamWriter &Stream;
132 StringTableBuilder &StrtabBuilder;
134 public:
135 /// Constructs a BitcodeWriterBase object that writes to the provided
136 /// \p Stream.
137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
140 protected:
141 void writeBitcodeHeader();
142 void writeModuleVersion();
145 void BitcodeWriterBase::writeModuleVersion() {
146 // VERSION: [version#]
147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
150 /// Base class to manage the module bitcode writing, currently subclassed for
151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
152 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
153 protected:
154 /// The Module to write to bitcode.
155 const Module &M;
157 /// Enumerates ids for all values in the module.
158 ValueEnumerator VE;
160 /// Optional per-module index to write for ThinLTO.
161 const ModuleSummaryIndex *Index;
163 /// Map that holds the correspondence between GUIDs in the summary index,
164 /// that came from indirect call profiles, and a value id generated by this
165 /// class to use in the VST and summary block records.
166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
168 /// Tracks the last value id recorded in the GUIDToValueMap.
169 unsigned GlobalValueId;
171 /// Saves the offset of the VSTOffset record that must eventually be
172 /// backpatched with the offset of the actual VST.
173 uint64_t VSTOffsetPlaceholder = 0;
175 public:
176 /// Constructs a ModuleBitcodeWriterBase object for the given Module,
177 /// writing to the provided \p Buffer.
178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
179 BitstreamWriter &Stream,
180 bool ShouldPreserveUseListOrder,
181 const ModuleSummaryIndex *Index)
182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
183 VE(M, ShouldPreserveUseListOrder), Index(Index) {
184 // Assign ValueIds to any callee values in the index that came from
185 // indirect call profiles and were recorded as a GUID not a Value*
186 // (which would have been assigned an ID by the ValueEnumerator).
187 // The starting ValueId is just after the number of values in the
188 // ValueEnumerator, so that they can be emitted in the VST.
189 GlobalValueId = VE.getValues().size();
190 if (!Index)
191 return;
192 for (const auto &GUIDSummaryLists : *Index)
193 // Examine all summaries for this GUID.
194 for (auto &Summary : GUIDSummaryLists.second.SummaryList)
195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
196 // For each call in the function summary, see if the call
197 // is to a GUID (which means it is for an indirect call,
198 // otherwise we would have a Value for it). If so, synthesize
199 // a value id.
200 for (auto &CallEdge : FS->calls())
201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
202 assignValueId(CallEdge.first.getGUID());
205 protected:
206 void writePerModuleGlobalValueSummary();
208 private:
209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
210 GlobalValueSummary *Summary,
211 unsigned ValueID,
212 unsigned FSCallsAbbrev,
213 unsigned FSCallsProfileAbbrev,
214 const Function &F);
215 void writeModuleLevelReferences(const GlobalVariable &V,
216 SmallVector<uint64_t, 64> &NameVals,
217 unsigned FSModRefsAbbrev,
218 unsigned FSModVTableRefsAbbrev);
220 void assignValueId(GlobalValue::GUID ValGUID) {
221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
224 unsigned getValueId(GlobalValue::GUID ValGUID) {
225 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
226 // Expect that any GUID value had a value Id assigned by an
227 // earlier call to assignValueId.
228 assert(VMI != GUIDToValueIdMap.end() &&
229 "GUID does not have assigned value Id");
230 return VMI->second;
233 // Helper to get the valueId for the type of value recorded in VI.
234 unsigned getValueId(ValueInfo VI) {
235 if (!VI.haveGVs() || !VI.getValue())
236 return getValueId(VI.getGUID());
237 return VE.getValueID(VI.getValue());
240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
243 /// Class to manage the bitcode writing for a module.
244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
245 /// Pointer to the buffer allocated by caller for bitcode writing.
246 const SmallVectorImpl<char> &Buffer;
248 /// True if a module hash record should be written.
249 bool GenerateHash;
251 /// If non-null, when GenerateHash is true, the resulting hash is written
252 /// into ModHash.
253 ModuleHash *ModHash;
255 SHA1 Hasher;
257 /// The start bit of the identification block.
258 uint64_t BitcodeStartBit;
260 public:
261 /// Constructs a ModuleBitcodeWriter object for the given Module,
262 /// writing to the provided \p Buffer.
263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
264 StringTableBuilder &StrtabBuilder,
265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
266 const ModuleSummaryIndex *Index, bool GenerateHash,
267 ModuleHash *ModHash = nullptr)
268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
269 ShouldPreserveUseListOrder, Index),
270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
271 BitcodeStartBit(Stream.GetCurrentBitNo()) {}
273 /// Emit the current module to the bitstream.
274 void write();
276 private:
277 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
279 size_t addToStrtab(StringRef Str);
281 void writeAttributeGroupTable();
282 void writeAttributeTable();
283 void writeTypeTable();
284 void writeComdats();
285 void writeValueSymbolTableForwardDecl();
286 void writeModuleInfo();
287 void writeValueAsMetadata(const ValueAsMetadata *MD,
288 SmallVectorImpl<uint64_t> &Record);
289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
290 unsigned Abbrev);
291 unsigned createDILocationAbbrev();
292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
293 unsigned &Abbrev);
294 unsigned createGenericDINodeAbbrev();
295 void writeGenericDINode(const GenericDINode *N,
296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
298 unsigned Abbrev);
299 void writeDIEnumerator(const DIEnumerator *N,
300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
302 unsigned Abbrev);
303 void writeDIDerivedType(const DIDerivedType *N,
304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
305 void writeDICompositeType(const DICompositeType *N,
306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307 void writeDISubroutineType(const DISubroutineType *N,
308 SmallVectorImpl<uint64_t> &Record,
309 unsigned Abbrev);
310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
311 unsigned Abbrev);
312 void writeDICompileUnit(const DICompileUnit *N,
313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314 void writeDISubprogram(const DISubprogram *N,
315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316 void writeDILexicalBlock(const DILexicalBlock *N,
317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
318 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
319 SmallVectorImpl<uint64_t> &Record,
320 unsigned Abbrev);
321 void writeDICommonBlock(const DICommonBlock *N,
322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
324 unsigned Abbrev);
325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
326 unsigned Abbrev);
327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
328 unsigned Abbrev);
329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
330 unsigned Abbrev);
331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
332 SmallVectorImpl<uint64_t> &Record,
333 unsigned Abbrev);
334 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
335 SmallVectorImpl<uint64_t> &Record,
336 unsigned Abbrev);
337 void writeDIGlobalVariable(const DIGlobalVariable *N,
338 SmallVectorImpl<uint64_t> &Record,
339 unsigned Abbrev);
340 void writeDILocalVariable(const DILocalVariable *N,
341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
342 void writeDILabel(const DILabel *N,
343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
344 void writeDIExpression(const DIExpression *N,
345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
347 SmallVectorImpl<uint64_t> &Record,
348 unsigned Abbrev);
349 void writeDIObjCProperty(const DIObjCProperty *N,
350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
351 void writeDIImportedEntity(const DIImportedEntity *N,
352 SmallVectorImpl<uint64_t> &Record,
353 unsigned Abbrev);
354 unsigned createNamedMetadataAbbrev();
355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
356 unsigned createMetadataStringsAbbrev();
357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
358 SmallVectorImpl<uint64_t> &Record);
359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
360 SmallVectorImpl<uint64_t> &Record,
361 std::vector<unsigned> *MDAbbrevs = nullptr,
362 std::vector<uint64_t> *IndexPos = nullptr);
363 void writeModuleMetadata();
364 void writeFunctionMetadata(const Function &F);
365 void writeFunctionMetadataAttachment(const Function &F);
366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
368 const GlobalObject &GO);
369 void writeModuleMetadataKinds();
370 void writeOperandBundleTags();
371 void writeSyncScopeNames();
372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
373 void writeModuleConstants();
374 bool pushValueAndType(const Value *V, unsigned InstID,
375 SmallVectorImpl<unsigned> &Vals);
376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
377 void pushValue(const Value *V, unsigned InstID,
378 SmallVectorImpl<unsigned> &Vals);
379 void pushValueSigned(const Value *V, unsigned InstID,
380 SmallVectorImpl<uint64_t> &Vals);
381 void writeInstruction(const Instruction &I, unsigned InstID,
382 SmallVectorImpl<unsigned> &Vals);
383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
384 void writeGlobalValueSymbolTable(
385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
386 void writeUseList(UseListOrder &&Order);
387 void writeUseListBlock(const Function *F);
388 void
389 writeFunction(const Function &F,
390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
391 void writeBlockInfo();
392 void writeModuleHash(size_t BlockStartPos);
394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
395 return unsigned(SSID);
399 /// Class to manage the bitcode writing for a combined index.
400 class IndexBitcodeWriter : public BitcodeWriterBase {
401 /// The combined index to write to bitcode.
402 const ModuleSummaryIndex &Index;
404 /// When writing a subset of the index for distributed backends, client
405 /// provides a map of modules to the corresponding GUIDs/summaries to write.
406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
408 /// Map that holds the correspondence between the GUID used in the combined
409 /// index and a value id generated by this class to use in references.
410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
412 /// Tracks the last value id recorded in the GUIDToValueMap.
413 unsigned GlobalValueId = 0;
415 public:
416 /// Constructs a IndexBitcodeWriter object for the given combined index,
417 /// writing to the provided \p Buffer. When writing a subset of the index
418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
420 const ModuleSummaryIndex &Index,
421 const std::map<std::string, GVSummaryMapTy>
422 *ModuleToSummariesForIndex = nullptr)
423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
425 // Assign unique value ids to all summaries to be written, for use
426 // in writing out the call graph edges. Save the mapping from GUID
427 // to the new global value id to use when writing those edges, which
428 // are currently saved in the index in terms of GUID.
429 forEachSummary([&](GVInfo I, bool) {
430 GUIDToValueIdMap[I.first] = ++GlobalValueId;
434 /// The below iterator returns the GUID and associated summary.
435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
437 /// Calls the callback for each value GUID and summary to be written to
438 /// bitcode. This hides the details of whether they are being pulled from the
439 /// entire index or just those in a provided ModuleToSummariesForIndex map.
440 template<typename Functor>
441 void forEachSummary(Functor Callback) {
442 if (ModuleToSummariesForIndex) {
443 for (auto &M : *ModuleToSummariesForIndex)
444 for (auto &Summary : M.second) {
445 Callback(Summary, false);
446 // Ensure aliasee is handled, e.g. for assigning a valueId,
447 // even if we are not importing the aliasee directly (the
448 // imported alias will contain a copy of aliasee).
449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
452 } else {
453 for (auto &Summaries : Index)
454 for (auto &Summary : Summaries.second.SummaryList)
455 Callback({Summaries.first, Summary.get()}, false);
459 /// Calls the callback for each entry in the modulePaths StringMap that
460 /// should be written to the module path string table. This hides the details
461 /// of whether they are being pulled from the entire index or just those in a
462 /// provided ModuleToSummariesForIndex map.
463 template <typename Functor> void forEachModule(Functor Callback) {
464 if (ModuleToSummariesForIndex) {
465 for (const auto &M : *ModuleToSummariesForIndex) {
466 const auto &MPI = Index.modulePaths().find(M.first);
467 if (MPI == Index.modulePaths().end()) {
468 // This should only happen if the bitcode file was empty, in which
469 // case we shouldn't be importing (the ModuleToSummariesForIndex
470 // would only include the module we are writing and index for).
471 assert(ModuleToSummariesForIndex->size() == 1);
472 continue;
474 Callback(*MPI);
476 } else {
477 for (const auto &MPSE : Index.modulePaths())
478 Callback(MPSE);
482 /// Main entry point for writing a combined index to bitcode.
483 void write();
485 private:
486 void writeModStrings();
487 void writeCombinedGlobalValueSummary();
489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
490 auto VMI = GUIDToValueIdMap.find(ValGUID);
491 if (VMI == GUIDToValueIdMap.end())
492 return None;
493 return VMI->second;
496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
499 } // end anonymous namespace
501 static unsigned getEncodedCastOpcode(unsigned Opcode) {
502 switch (Opcode) {
503 default: llvm_unreachable("Unknown cast instruction!");
504 case Instruction::Trunc : return bitc::CAST_TRUNC;
505 case Instruction::ZExt : return bitc::CAST_ZEXT;
506 case Instruction::SExt : return bitc::CAST_SEXT;
507 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
508 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
509 case Instruction::UIToFP : return bitc::CAST_UITOFP;
510 case Instruction::SIToFP : return bitc::CAST_SITOFP;
511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
512 case Instruction::FPExt : return bitc::CAST_FPEXT;
513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
515 case Instruction::BitCast : return bitc::CAST_BITCAST;
516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
521 switch (Opcode) {
522 default: llvm_unreachable("Unknown binary instruction!");
523 case Instruction::FNeg: return bitc::UNOP_NEG;
527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
528 switch (Opcode) {
529 default: llvm_unreachable("Unknown binary instruction!");
530 case Instruction::Add:
531 case Instruction::FAdd: return bitc::BINOP_ADD;
532 case Instruction::Sub:
533 case Instruction::FSub: return bitc::BINOP_SUB;
534 case Instruction::Mul:
535 case Instruction::FMul: return bitc::BINOP_MUL;
536 case Instruction::UDiv: return bitc::BINOP_UDIV;
537 case Instruction::FDiv:
538 case Instruction::SDiv: return bitc::BINOP_SDIV;
539 case Instruction::URem: return bitc::BINOP_UREM;
540 case Instruction::FRem:
541 case Instruction::SRem: return bitc::BINOP_SREM;
542 case Instruction::Shl: return bitc::BINOP_SHL;
543 case Instruction::LShr: return bitc::BINOP_LSHR;
544 case Instruction::AShr: return bitc::BINOP_ASHR;
545 case Instruction::And: return bitc::BINOP_AND;
546 case Instruction::Or: return bitc::BINOP_OR;
547 case Instruction::Xor: return bitc::BINOP_XOR;
551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
552 switch (Op) {
553 default: llvm_unreachable("Unknown RMW operation!");
554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
555 case AtomicRMWInst::Add: return bitc::RMW_ADD;
556 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
557 case AtomicRMWInst::And: return bitc::RMW_AND;
558 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
559 case AtomicRMWInst::Or: return bitc::RMW_OR;
560 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
561 case AtomicRMWInst::Max: return bitc::RMW_MAX;
562 case AtomicRMWInst::Min: return bitc::RMW_MIN;
563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
571 switch (Ordering) {
572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
580 llvm_unreachable("Invalid ordering");
583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
584 StringRef Str, unsigned AbbrevToUse) {
585 SmallVector<unsigned, 64> Vals;
587 // Code: [strchar x N]
588 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
590 AbbrevToUse = 0;
591 Vals.push_back(Str[i]);
594 // Emit the finished record.
595 Stream.EmitRecord(Code, Vals, AbbrevToUse);
598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
599 switch (Kind) {
600 case Attribute::Alignment:
601 return bitc::ATTR_KIND_ALIGNMENT;
602 case Attribute::AllocSize:
603 return bitc::ATTR_KIND_ALLOC_SIZE;
604 case Attribute::AlwaysInline:
605 return bitc::ATTR_KIND_ALWAYS_INLINE;
606 case Attribute::ArgMemOnly:
607 return bitc::ATTR_KIND_ARGMEMONLY;
608 case Attribute::Builtin:
609 return bitc::ATTR_KIND_BUILTIN;
610 case Attribute::ByVal:
611 return bitc::ATTR_KIND_BY_VAL;
612 case Attribute::Convergent:
613 return bitc::ATTR_KIND_CONVERGENT;
614 case Attribute::InAlloca:
615 return bitc::ATTR_KIND_IN_ALLOCA;
616 case Attribute::Cold:
617 return bitc::ATTR_KIND_COLD;
618 case Attribute::InaccessibleMemOnly:
619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
620 case Attribute::InaccessibleMemOrArgMemOnly:
621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
622 case Attribute::InlineHint:
623 return bitc::ATTR_KIND_INLINE_HINT;
624 case Attribute::InReg:
625 return bitc::ATTR_KIND_IN_REG;
626 case Attribute::JumpTable:
627 return bitc::ATTR_KIND_JUMP_TABLE;
628 case Attribute::MinSize:
629 return bitc::ATTR_KIND_MIN_SIZE;
630 case Attribute::Naked:
631 return bitc::ATTR_KIND_NAKED;
632 case Attribute::Nest:
633 return bitc::ATTR_KIND_NEST;
634 case Attribute::NoAlias:
635 return bitc::ATTR_KIND_NO_ALIAS;
636 case Attribute::NoBuiltin:
637 return bitc::ATTR_KIND_NO_BUILTIN;
638 case Attribute::NoCapture:
639 return bitc::ATTR_KIND_NO_CAPTURE;
640 case Attribute::NoDuplicate:
641 return bitc::ATTR_KIND_NO_DUPLICATE;
642 case Attribute::NoFree:
643 return bitc::ATTR_KIND_NOFREE;
644 case Attribute::NoImplicitFloat:
645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
646 case Attribute::NoInline:
647 return bitc::ATTR_KIND_NO_INLINE;
648 case Attribute::NoRecurse:
649 return bitc::ATTR_KIND_NO_RECURSE;
650 case Attribute::NonLazyBind:
651 return bitc::ATTR_KIND_NON_LAZY_BIND;
652 case Attribute::NonNull:
653 return bitc::ATTR_KIND_NON_NULL;
654 case Attribute::Dereferenceable:
655 return bitc::ATTR_KIND_DEREFERENCEABLE;
656 case Attribute::DereferenceableOrNull:
657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
658 case Attribute::NoRedZone:
659 return bitc::ATTR_KIND_NO_RED_ZONE;
660 case Attribute::NoReturn:
661 return bitc::ATTR_KIND_NO_RETURN;
662 case Attribute::NoSync:
663 return bitc::ATTR_KIND_NOSYNC;
664 case Attribute::NoCfCheck:
665 return bitc::ATTR_KIND_NOCF_CHECK;
666 case Attribute::NoUnwind:
667 return bitc::ATTR_KIND_NO_UNWIND;
668 case Attribute::OptForFuzzing:
669 return bitc::ATTR_KIND_OPT_FOR_FUZZING;
670 case Attribute::OptimizeForSize:
671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
672 case Attribute::OptimizeNone:
673 return bitc::ATTR_KIND_OPTIMIZE_NONE;
674 case Attribute::ReadNone:
675 return bitc::ATTR_KIND_READ_NONE;
676 case Attribute::ReadOnly:
677 return bitc::ATTR_KIND_READ_ONLY;
678 case Attribute::Returned:
679 return bitc::ATTR_KIND_RETURNED;
680 case Attribute::ReturnsTwice:
681 return bitc::ATTR_KIND_RETURNS_TWICE;
682 case Attribute::SExt:
683 return bitc::ATTR_KIND_S_EXT;
684 case Attribute::Speculatable:
685 return bitc::ATTR_KIND_SPECULATABLE;
686 case Attribute::StackAlignment:
687 return bitc::ATTR_KIND_STACK_ALIGNMENT;
688 case Attribute::StackProtect:
689 return bitc::ATTR_KIND_STACK_PROTECT;
690 case Attribute::StackProtectReq:
691 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
692 case Attribute::StackProtectStrong:
693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
694 case Attribute::SafeStack:
695 return bitc::ATTR_KIND_SAFESTACK;
696 case Attribute::ShadowCallStack:
697 return bitc::ATTR_KIND_SHADOWCALLSTACK;
698 case Attribute::StrictFP:
699 return bitc::ATTR_KIND_STRICT_FP;
700 case Attribute::StructRet:
701 return bitc::ATTR_KIND_STRUCT_RET;
702 case Attribute::SanitizeAddress:
703 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
704 case Attribute::SanitizeHWAddress:
705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
706 case Attribute::SanitizeThread:
707 return bitc::ATTR_KIND_SANITIZE_THREAD;
708 case Attribute::SanitizeMemory:
709 return bitc::ATTR_KIND_SANITIZE_MEMORY;
710 case Attribute::SpeculativeLoadHardening:
711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
712 case Attribute::SwiftError:
713 return bitc::ATTR_KIND_SWIFT_ERROR;
714 case Attribute::SwiftSelf:
715 return bitc::ATTR_KIND_SWIFT_SELF;
716 case Attribute::UWTable:
717 return bitc::ATTR_KIND_UW_TABLE;
718 case Attribute::WillReturn:
719 return bitc::ATTR_KIND_WILLRETURN;
720 case Attribute::WriteOnly:
721 return bitc::ATTR_KIND_WRITEONLY;
722 case Attribute::ZExt:
723 return bitc::ATTR_KIND_Z_EXT;
724 case Attribute::ImmArg:
725 return bitc::ATTR_KIND_IMMARG;
726 case Attribute::EndAttrKinds:
727 llvm_unreachable("Can not encode end-attribute kinds marker.");
728 case Attribute::None:
729 llvm_unreachable("Can not encode none-attribute.");
732 llvm_unreachable("Trying to encode unknown attribute");
735 void ModuleBitcodeWriter::writeAttributeGroupTable() {
736 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
737 VE.getAttributeGroups();
738 if (AttrGrps.empty()) return;
740 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
742 SmallVector<uint64_t, 64> Record;
743 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
744 unsigned AttrListIndex = Pair.first;
745 AttributeSet AS = Pair.second;
746 Record.push_back(VE.getAttributeGroupID(Pair));
747 Record.push_back(AttrListIndex);
749 for (Attribute Attr : AS) {
750 if (Attr.isEnumAttribute()) {
751 Record.push_back(0);
752 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
753 } else if (Attr.isIntAttribute()) {
754 Record.push_back(1);
755 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
756 Record.push_back(Attr.getValueAsInt());
757 } else if (Attr.isStringAttribute()) {
758 StringRef Kind = Attr.getKindAsString();
759 StringRef Val = Attr.getValueAsString();
761 Record.push_back(Val.empty() ? 3 : 4);
762 Record.append(Kind.begin(), Kind.end());
763 Record.push_back(0);
764 if (!Val.empty()) {
765 Record.append(Val.begin(), Val.end());
766 Record.push_back(0);
768 } else {
769 assert(Attr.isTypeAttribute());
770 Type *Ty = Attr.getValueAsType();
771 Record.push_back(Ty ? 6 : 5);
772 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
773 if (Ty)
774 Record.push_back(VE.getTypeID(Attr.getValueAsType()));
778 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
779 Record.clear();
782 Stream.ExitBlock();
785 void ModuleBitcodeWriter::writeAttributeTable() {
786 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
787 if (Attrs.empty()) return;
789 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
791 SmallVector<uint64_t, 64> Record;
792 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
793 AttributeList AL = Attrs[i];
794 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
795 AttributeSet AS = AL.getAttributes(i);
796 if (AS.hasAttributes())
797 Record.push_back(VE.getAttributeGroupID({i, AS}));
800 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
801 Record.clear();
804 Stream.ExitBlock();
807 /// WriteTypeTable - Write out the type table for a module.
808 void ModuleBitcodeWriter::writeTypeTable() {
809 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
811 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
812 SmallVector<uint64_t, 64> TypeVals;
814 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
816 // Abbrev for TYPE_CODE_POINTER.
817 auto Abbv = std::make_shared<BitCodeAbbrev>();
818 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
820 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
821 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
823 // Abbrev for TYPE_CODE_FUNCTION.
824 Abbv = std::make_shared<BitCodeAbbrev>();
825 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
829 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
831 // Abbrev for TYPE_CODE_STRUCT_ANON.
832 Abbv = std::make_shared<BitCodeAbbrev>();
833 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
837 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
839 // Abbrev for TYPE_CODE_STRUCT_NAME.
840 Abbv = std::make_shared<BitCodeAbbrev>();
841 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
844 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
846 // Abbrev for TYPE_CODE_STRUCT_NAMED.
847 Abbv = std::make_shared<BitCodeAbbrev>();
848 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
852 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
854 // Abbrev for TYPE_CODE_ARRAY.
855 Abbv = std::make_shared<BitCodeAbbrev>();
856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
859 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
861 // Emit an entry count so the reader can reserve space.
862 TypeVals.push_back(TypeList.size());
863 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
864 TypeVals.clear();
866 // Loop over all of the types, emitting each in turn.
867 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
868 Type *T = TypeList[i];
869 int AbbrevToUse = 0;
870 unsigned Code = 0;
872 switch (T->getTypeID()) {
873 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
874 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
875 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
876 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
877 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
878 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
879 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
880 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
881 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
882 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
883 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
884 case Type::IntegerTyID:
885 // INTEGER: [width]
886 Code = bitc::TYPE_CODE_INTEGER;
887 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
888 break;
889 case Type::PointerTyID: {
890 PointerType *PTy = cast<PointerType>(T);
891 // POINTER: [pointee type, address space]
892 Code = bitc::TYPE_CODE_POINTER;
893 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
894 unsigned AddressSpace = PTy->getAddressSpace();
895 TypeVals.push_back(AddressSpace);
896 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
897 break;
899 case Type::FunctionTyID: {
900 FunctionType *FT = cast<FunctionType>(T);
901 // FUNCTION: [isvararg, retty, paramty x N]
902 Code = bitc::TYPE_CODE_FUNCTION;
903 TypeVals.push_back(FT->isVarArg());
904 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
905 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
906 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
907 AbbrevToUse = FunctionAbbrev;
908 break;
910 case Type::StructTyID: {
911 StructType *ST = cast<StructType>(T);
912 // STRUCT: [ispacked, eltty x N]
913 TypeVals.push_back(ST->isPacked());
914 // Output all of the element types.
915 for (StructType::element_iterator I = ST->element_begin(),
916 E = ST->element_end(); I != E; ++I)
917 TypeVals.push_back(VE.getTypeID(*I));
919 if (ST->isLiteral()) {
920 Code = bitc::TYPE_CODE_STRUCT_ANON;
921 AbbrevToUse = StructAnonAbbrev;
922 } else {
923 if (ST->isOpaque()) {
924 Code = bitc::TYPE_CODE_OPAQUE;
925 } else {
926 Code = bitc::TYPE_CODE_STRUCT_NAMED;
927 AbbrevToUse = StructNamedAbbrev;
930 // Emit the name if it is present.
931 if (!ST->getName().empty())
932 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
933 StructNameAbbrev);
935 break;
937 case Type::ArrayTyID: {
938 ArrayType *AT = cast<ArrayType>(T);
939 // ARRAY: [numelts, eltty]
940 Code = bitc::TYPE_CODE_ARRAY;
941 TypeVals.push_back(AT->getNumElements());
942 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
943 AbbrevToUse = ArrayAbbrev;
944 break;
946 case Type::VectorTyID: {
947 VectorType *VT = cast<VectorType>(T);
948 // VECTOR [numelts, eltty] or
949 // [numelts, eltty, scalable]
950 Code = bitc::TYPE_CODE_VECTOR;
951 TypeVals.push_back(VT->getNumElements());
952 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
953 if (VT->isScalable())
954 TypeVals.push_back(VT->isScalable());
955 break;
959 // Emit the finished record.
960 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
961 TypeVals.clear();
964 Stream.ExitBlock();
967 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
968 switch (Linkage) {
969 case GlobalValue::ExternalLinkage:
970 return 0;
971 case GlobalValue::WeakAnyLinkage:
972 return 16;
973 case GlobalValue::AppendingLinkage:
974 return 2;
975 case GlobalValue::InternalLinkage:
976 return 3;
977 case GlobalValue::LinkOnceAnyLinkage:
978 return 18;
979 case GlobalValue::ExternalWeakLinkage:
980 return 7;
981 case GlobalValue::CommonLinkage:
982 return 8;
983 case GlobalValue::PrivateLinkage:
984 return 9;
985 case GlobalValue::WeakODRLinkage:
986 return 17;
987 case GlobalValue::LinkOnceODRLinkage:
988 return 19;
989 case GlobalValue::AvailableExternallyLinkage:
990 return 12;
992 llvm_unreachable("Invalid linkage");
995 static unsigned getEncodedLinkage(const GlobalValue &GV) {
996 return getEncodedLinkage(GV.getLinkage());
999 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1000 uint64_t RawFlags = 0;
1001 RawFlags |= Flags.ReadNone;
1002 RawFlags |= (Flags.ReadOnly << 1);
1003 RawFlags |= (Flags.NoRecurse << 2);
1004 RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1005 RawFlags |= (Flags.NoInline << 4);
1006 return RawFlags;
1009 // Decode the flags for GlobalValue in the summary
1010 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1011 uint64_t RawFlags = 0;
1013 RawFlags |= Flags.NotEligibleToImport; // bool
1014 RawFlags |= (Flags.Live << 1);
1015 RawFlags |= (Flags.DSOLocal << 2);
1016 RawFlags |= (Flags.CanAutoHide << 3);
1018 // Linkage don't need to be remapped at that time for the summary. Any future
1019 // change to the getEncodedLinkage() function will need to be taken into
1020 // account here as well.
1021 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1023 return RawFlags;
1026 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1027 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1);
1028 return RawFlags;
1031 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1032 switch (GV.getVisibility()) {
1033 case GlobalValue::DefaultVisibility: return 0;
1034 case GlobalValue::HiddenVisibility: return 1;
1035 case GlobalValue::ProtectedVisibility: return 2;
1037 llvm_unreachable("Invalid visibility");
1040 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1041 switch (GV.getDLLStorageClass()) {
1042 case GlobalValue::DefaultStorageClass: return 0;
1043 case GlobalValue::DLLImportStorageClass: return 1;
1044 case GlobalValue::DLLExportStorageClass: return 2;
1046 llvm_unreachable("Invalid DLL storage class");
1049 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1050 switch (GV.getThreadLocalMode()) {
1051 case GlobalVariable::NotThreadLocal: return 0;
1052 case GlobalVariable::GeneralDynamicTLSModel: return 1;
1053 case GlobalVariable::LocalDynamicTLSModel: return 2;
1054 case GlobalVariable::InitialExecTLSModel: return 3;
1055 case GlobalVariable::LocalExecTLSModel: return 4;
1057 llvm_unreachable("Invalid TLS model");
1060 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1061 switch (C.getSelectionKind()) {
1062 case Comdat::Any:
1063 return bitc::COMDAT_SELECTION_KIND_ANY;
1064 case Comdat::ExactMatch:
1065 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1066 case Comdat::Largest:
1067 return bitc::COMDAT_SELECTION_KIND_LARGEST;
1068 case Comdat::NoDuplicates:
1069 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1070 case Comdat::SameSize:
1071 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1073 llvm_unreachable("Invalid selection kind");
1076 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1077 switch (GV.getUnnamedAddr()) {
1078 case GlobalValue::UnnamedAddr::None: return 0;
1079 case GlobalValue::UnnamedAddr::Local: return 2;
1080 case GlobalValue::UnnamedAddr::Global: return 1;
1082 llvm_unreachable("Invalid unnamed_addr");
1085 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1086 if (GenerateHash)
1087 Hasher.update(Str);
1088 return StrtabBuilder.add(Str);
1091 void ModuleBitcodeWriter::writeComdats() {
1092 SmallVector<unsigned, 64> Vals;
1093 for (const Comdat *C : VE.getComdats()) {
1094 // COMDAT: [strtab offset, strtab size, selection_kind]
1095 Vals.push_back(addToStrtab(C->getName()));
1096 Vals.push_back(C->getName().size());
1097 Vals.push_back(getEncodedComdatSelectionKind(*C));
1098 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1099 Vals.clear();
1103 /// Write a record that will eventually hold the word offset of the
1104 /// module-level VST. For now the offset is 0, which will be backpatched
1105 /// after the real VST is written. Saves the bit offset to backpatch.
1106 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1107 // Write a placeholder value in for the offset of the real VST,
1108 // which is written after the function blocks so that it can include
1109 // the offset of each function. The placeholder offset will be
1110 // updated when the real VST is written.
1111 auto Abbv = std::make_shared<BitCodeAbbrev>();
1112 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1113 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1114 // hold the real VST offset. Must use fixed instead of VBR as we don't
1115 // know how many VBR chunks to reserve ahead of time.
1116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1117 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1119 // Emit the placeholder
1120 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1121 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1123 // Compute and save the bit offset to the placeholder, which will be
1124 // patched when the real VST is written. We can simply subtract the 32-bit
1125 // fixed size from the current bit number to get the location to backpatch.
1126 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1129 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1131 /// Determine the encoding to use for the given string name and length.
1132 static StringEncoding getStringEncoding(StringRef Str) {
1133 bool isChar6 = true;
1134 for (char C : Str) {
1135 if (isChar6)
1136 isChar6 = BitCodeAbbrevOp::isChar6(C);
1137 if ((unsigned char)C & 128)
1138 // don't bother scanning the rest.
1139 return SE_Fixed8;
1141 if (isChar6)
1142 return SE_Char6;
1143 return SE_Fixed7;
1146 /// Emit top-level description of module, including target triple, inline asm,
1147 /// descriptors for global variables, and function prototype info.
1148 /// Returns the bit offset to backpatch with the location of the real VST.
1149 void ModuleBitcodeWriter::writeModuleInfo() {
1150 // Emit various pieces of data attached to a module.
1151 if (!M.getTargetTriple().empty())
1152 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1153 0 /*TODO*/);
1154 const std::string &DL = M.getDataLayoutStr();
1155 if (!DL.empty())
1156 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1157 if (!M.getModuleInlineAsm().empty())
1158 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1159 0 /*TODO*/);
1161 // Emit information about sections and GC, computing how many there are. Also
1162 // compute the maximum alignment value.
1163 std::map<std::string, unsigned> SectionMap;
1164 std::map<std::string, unsigned> GCMap;
1165 unsigned MaxAlignment = 0;
1166 unsigned MaxGlobalType = 0;
1167 for (const GlobalValue &GV : M.globals()) {
1168 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1169 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1170 if (GV.hasSection()) {
1171 // Give section names unique ID's.
1172 unsigned &Entry = SectionMap[GV.getSection()];
1173 if (!Entry) {
1174 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1175 0 /*TODO*/);
1176 Entry = SectionMap.size();
1180 for (const Function &F : M) {
1181 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1182 if (F.hasSection()) {
1183 // Give section names unique ID's.
1184 unsigned &Entry = SectionMap[F.getSection()];
1185 if (!Entry) {
1186 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1187 0 /*TODO*/);
1188 Entry = SectionMap.size();
1191 if (F.hasGC()) {
1192 // Same for GC names.
1193 unsigned &Entry = GCMap[F.getGC()];
1194 if (!Entry) {
1195 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1196 0 /*TODO*/);
1197 Entry = GCMap.size();
1202 // Emit abbrev for globals, now that we know # sections and max alignment.
1203 unsigned SimpleGVarAbbrev = 0;
1204 if (!M.global_empty()) {
1205 // Add an abbrev for common globals with no visibility or thread localness.
1206 auto Abbv = std::make_shared<BitCodeAbbrev>();
1207 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1211 Log2_32_Ceil(MaxGlobalType+1)));
1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1213 //| explicitType << 1
1214 //| constant
1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1217 if (MaxAlignment == 0) // Alignment.
1218 Abbv->Add(BitCodeAbbrevOp(0));
1219 else {
1220 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1222 Log2_32_Ceil(MaxEncAlignment+1)));
1224 if (SectionMap.empty()) // Section.
1225 Abbv->Add(BitCodeAbbrevOp(0));
1226 else
1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1228 Log2_32_Ceil(SectionMap.size()+1)));
1229 // Don't bother emitting vis + thread local.
1230 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1233 SmallVector<unsigned, 64> Vals;
1234 // Emit the module's source file name.
1236 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1237 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1238 if (Bits == SE_Char6)
1239 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1240 else if (Bits == SE_Fixed7)
1241 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1243 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1244 auto Abbv = std::make_shared<BitCodeAbbrev>();
1245 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1247 Abbv->Add(AbbrevOpToUse);
1248 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1250 for (const auto P : M.getSourceFileName())
1251 Vals.push_back((unsigned char)P);
1253 // Emit the finished record.
1254 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1255 Vals.clear();
1258 // Emit the global variable information.
1259 for (const GlobalVariable &GV : M.globals()) {
1260 unsigned AbbrevToUse = 0;
1262 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1263 // linkage, alignment, section, visibility, threadlocal,
1264 // unnamed_addr, externally_initialized, dllstorageclass,
1265 // comdat, attributes, DSO_Local]
1266 Vals.push_back(addToStrtab(GV.getName()));
1267 Vals.push_back(GV.getName().size());
1268 Vals.push_back(VE.getTypeID(GV.getValueType()));
1269 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1270 Vals.push_back(GV.isDeclaration() ? 0 :
1271 (VE.getValueID(GV.getInitializer()) + 1));
1272 Vals.push_back(getEncodedLinkage(GV));
1273 Vals.push_back(Log2_32(GV.getAlignment())+1);
1274 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1275 if (GV.isThreadLocal() ||
1276 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1277 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1278 GV.isExternallyInitialized() ||
1279 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1280 GV.hasComdat() ||
1281 GV.hasAttributes() ||
1282 GV.isDSOLocal() ||
1283 GV.hasPartition()) {
1284 Vals.push_back(getEncodedVisibility(GV));
1285 Vals.push_back(getEncodedThreadLocalMode(GV));
1286 Vals.push_back(getEncodedUnnamedAddr(GV));
1287 Vals.push_back(GV.isExternallyInitialized());
1288 Vals.push_back(getEncodedDLLStorageClass(GV));
1289 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1291 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1292 Vals.push_back(VE.getAttributeListID(AL));
1294 Vals.push_back(GV.isDSOLocal());
1295 Vals.push_back(addToStrtab(GV.getPartition()));
1296 Vals.push_back(GV.getPartition().size());
1297 } else {
1298 AbbrevToUse = SimpleGVarAbbrev;
1301 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1302 Vals.clear();
1305 // Emit the function proto information.
1306 for (const Function &F : M) {
1307 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1308 // linkage, paramattrs, alignment, section, visibility, gc,
1309 // unnamed_addr, prologuedata, dllstorageclass, comdat,
1310 // prefixdata, personalityfn, DSO_Local, addrspace]
1311 Vals.push_back(addToStrtab(F.getName()));
1312 Vals.push_back(F.getName().size());
1313 Vals.push_back(VE.getTypeID(F.getFunctionType()));
1314 Vals.push_back(F.getCallingConv());
1315 Vals.push_back(F.isDeclaration());
1316 Vals.push_back(getEncodedLinkage(F));
1317 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1318 Vals.push_back(Log2_32(F.getAlignment())+1);
1319 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1320 Vals.push_back(getEncodedVisibility(F));
1321 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1322 Vals.push_back(getEncodedUnnamedAddr(F));
1323 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1324 : 0);
1325 Vals.push_back(getEncodedDLLStorageClass(F));
1326 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1327 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1328 : 0);
1329 Vals.push_back(
1330 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1332 Vals.push_back(F.isDSOLocal());
1333 Vals.push_back(F.getAddressSpace());
1334 Vals.push_back(addToStrtab(F.getPartition()));
1335 Vals.push_back(F.getPartition().size());
1337 unsigned AbbrevToUse = 0;
1338 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1339 Vals.clear();
1342 // Emit the alias information.
1343 for (const GlobalAlias &A : M.aliases()) {
1344 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1345 // visibility, dllstorageclass, threadlocal, unnamed_addr,
1346 // DSO_Local]
1347 Vals.push_back(addToStrtab(A.getName()));
1348 Vals.push_back(A.getName().size());
1349 Vals.push_back(VE.getTypeID(A.getValueType()));
1350 Vals.push_back(A.getType()->getAddressSpace());
1351 Vals.push_back(VE.getValueID(A.getAliasee()));
1352 Vals.push_back(getEncodedLinkage(A));
1353 Vals.push_back(getEncodedVisibility(A));
1354 Vals.push_back(getEncodedDLLStorageClass(A));
1355 Vals.push_back(getEncodedThreadLocalMode(A));
1356 Vals.push_back(getEncodedUnnamedAddr(A));
1357 Vals.push_back(A.isDSOLocal());
1358 Vals.push_back(addToStrtab(A.getPartition()));
1359 Vals.push_back(A.getPartition().size());
1361 unsigned AbbrevToUse = 0;
1362 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1363 Vals.clear();
1366 // Emit the ifunc information.
1367 for (const GlobalIFunc &I : M.ifuncs()) {
1368 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1369 // val#, linkage, visibility, DSO_Local]
1370 Vals.push_back(addToStrtab(I.getName()));
1371 Vals.push_back(I.getName().size());
1372 Vals.push_back(VE.getTypeID(I.getValueType()));
1373 Vals.push_back(I.getType()->getAddressSpace());
1374 Vals.push_back(VE.getValueID(I.getResolver()));
1375 Vals.push_back(getEncodedLinkage(I));
1376 Vals.push_back(getEncodedVisibility(I));
1377 Vals.push_back(I.isDSOLocal());
1378 Vals.push_back(addToStrtab(I.getPartition()));
1379 Vals.push_back(I.getPartition().size());
1380 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1381 Vals.clear();
1384 writeValueSymbolTableForwardDecl();
1387 static uint64_t getOptimizationFlags(const Value *V) {
1388 uint64_t Flags = 0;
1390 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1391 if (OBO->hasNoSignedWrap())
1392 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1393 if (OBO->hasNoUnsignedWrap())
1394 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1395 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1396 if (PEO->isExact())
1397 Flags |= 1 << bitc::PEO_EXACT;
1398 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1399 if (FPMO->hasAllowReassoc())
1400 Flags |= bitc::AllowReassoc;
1401 if (FPMO->hasNoNaNs())
1402 Flags |= bitc::NoNaNs;
1403 if (FPMO->hasNoInfs())
1404 Flags |= bitc::NoInfs;
1405 if (FPMO->hasNoSignedZeros())
1406 Flags |= bitc::NoSignedZeros;
1407 if (FPMO->hasAllowReciprocal())
1408 Flags |= bitc::AllowReciprocal;
1409 if (FPMO->hasAllowContract())
1410 Flags |= bitc::AllowContract;
1411 if (FPMO->hasApproxFunc())
1412 Flags |= bitc::ApproxFunc;
1415 return Flags;
1418 void ModuleBitcodeWriter::writeValueAsMetadata(
1419 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1420 // Mimic an MDNode with a value as one operand.
1421 Value *V = MD->getValue();
1422 Record.push_back(VE.getTypeID(V->getType()));
1423 Record.push_back(VE.getValueID(V));
1424 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1425 Record.clear();
1428 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1429 SmallVectorImpl<uint64_t> &Record,
1430 unsigned Abbrev) {
1431 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1432 Metadata *MD = N->getOperand(i);
1433 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1434 "Unexpected function-local metadata");
1435 Record.push_back(VE.getMetadataOrNullID(MD));
1437 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1438 : bitc::METADATA_NODE,
1439 Record, Abbrev);
1440 Record.clear();
1443 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1444 // Assume the column is usually under 128, and always output the inlined-at
1445 // location (it's never more expensive than building an array size 1).
1446 auto Abbv = std::make_shared<BitCodeAbbrev>();
1447 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1454 return Stream.EmitAbbrev(std::move(Abbv));
1457 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1458 SmallVectorImpl<uint64_t> &Record,
1459 unsigned &Abbrev) {
1460 if (!Abbrev)
1461 Abbrev = createDILocationAbbrev();
1463 Record.push_back(N->isDistinct());
1464 Record.push_back(N->getLine());
1465 Record.push_back(N->getColumn());
1466 Record.push_back(VE.getMetadataID(N->getScope()));
1467 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1468 Record.push_back(N->isImplicitCode());
1470 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1471 Record.clear();
1474 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1475 // Assume the column is usually under 128, and always output the inlined-at
1476 // location (it's never more expensive than building an array size 1).
1477 auto Abbv = std::make_shared<BitCodeAbbrev>();
1478 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1485 return Stream.EmitAbbrev(std::move(Abbv));
1488 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1489 SmallVectorImpl<uint64_t> &Record,
1490 unsigned &Abbrev) {
1491 if (!Abbrev)
1492 Abbrev = createGenericDINodeAbbrev();
1494 Record.push_back(N->isDistinct());
1495 Record.push_back(N->getTag());
1496 Record.push_back(0); // Per-tag version field; unused for now.
1498 for (auto &I : N->operands())
1499 Record.push_back(VE.getMetadataOrNullID(I));
1501 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1502 Record.clear();
1505 static uint64_t rotateSign(int64_t I) {
1506 uint64_t U = I;
1507 return I < 0 ? ~(U << 1) : U << 1;
1510 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1511 SmallVectorImpl<uint64_t> &Record,
1512 unsigned Abbrev) {
1513 const uint64_t Version = 1 << 1;
1514 Record.push_back((uint64_t)N->isDistinct() | Version);
1515 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1516 Record.push_back(rotateSign(N->getLowerBound()));
1518 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1519 Record.clear();
1522 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1523 SmallVectorImpl<uint64_t> &Record,
1524 unsigned Abbrev) {
1525 Record.push_back((N->isUnsigned() << 1) | N->isDistinct());
1526 Record.push_back(rotateSign(N->getValue()));
1527 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1529 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1530 Record.clear();
1533 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1534 SmallVectorImpl<uint64_t> &Record,
1535 unsigned Abbrev) {
1536 Record.push_back(N->isDistinct());
1537 Record.push_back(N->getTag());
1538 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1539 Record.push_back(N->getSizeInBits());
1540 Record.push_back(N->getAlignInBits());
1541 Record.push_back(N->getEncoding());
1542 Record.push_back(N->getFlags());
1544 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1545 Record.clear();
1548 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1549 SmallVectorImpl<uint64_t> &Record,
1550 unsigned Abbrev) {
1551 Record.push_back(N->isDistinct());
1552 Record.push_back(N->getTag());
1553 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1554 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1555 Record.push_back(N->getLine());
1556 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1557 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1558 Record.push_back(N->getSizeInBits());
1559 Record.push_back(N->getAlignInBits());
1560 Record.push_back(N->getOffsetInBits());
1561 Record.push_back(N->getFlags());
1562 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1564 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1565 // that there is no DWARF address space associated with DIDerivedType.
1566 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1567 Record.push_back(*DWARFAddressSpace + 1);
1568 else
1569 Record.push_back(0);
1571 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1572 Record.clear();
1575 void ModuleBitcodeWriter::writeDICompositeType(
1576 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1577 unsigned Abbrev) {
1578 const unsigned IsNotUsedInOldTypeRef = 0x2;
1579 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1580 Record.push_back(N->getTag());
1581 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1582 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1583 Record.push_back(N->getLine());
1584 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1585 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1586 Record.push_back(N->getSizeInBits());
1587 Record.push_back(N->getAlignInBits());
1588 Record.push_back(N->getOffsetInBits());
1589 Record.push_back(N->getFlags());
1590 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1591 Record.push_back(N->getRuntimeLang());
1592 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1593 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1594 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1595 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1597 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1598 Record.clear();
1601 void ModuleBitcodeWriter::writeDISubroutineType(
1602 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1603 unsigned Abbrev) {
1604 const unsigned HasNoOldTypeRefs = 0x2;
1605 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1606 Record.push_back(N->getFlags());
1607 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1608 Record.push_back(N->getCC());
1610 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1611 Record.clear();
1614 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1615 SmallVectorImpl<uint64_t> &Record,
1616 unsigned Abbrev) {
1617 Record.push_back(N->isDistinct());
1618 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1619 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1620 if (N->getRawChecksum()) {
1621 Record.push_back(N->getRawChecksum()->Kind);
1622 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1623 } else {
1624 // Maintain backwards compatibility with the old internal representation of
1625 // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1626 Record.push_back(0);
1627 Record.push_back(VE.getMetadataOrNullID(nullptr));
1629 auto Source = N->getRawSource();
1630 if (Source)
1631 Record.push_back(VE.getMetadataOrNullID(*Source));
1633 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1634 Record.clear();
1637 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1638 SmallVectorImpl<uint64_t> &Record,
1639 unsigned Abbrev) {
1640 assert(N->isDistinct() && "Expected distinct compile units");
1641 Record.push_back(/* IsDistinct */ true);
1642 Record.push_back(N->getSourceLanguage());
1643 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1644 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1645 Record.push_back(N->isOptimized());
1646 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1647 Record.push_back(N->getRuntimeVersion());
1648 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1649 Record.push_back(N->getEmissionKind());
1650 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1651 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1652 Record.push_back(/* subprograms */ 0);
1653 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1654 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1655 Record.push_back(N->getDWOId());
1656 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1657 Record.push_back(N->getSplitDebugInlining());
1658 Record.push_back(N->getDebugInfoForProfiling());
1659 Record.push_back((unsigned)N->getNameTableKind());
1661 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1662 Record.clear();
1665 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1666 SmallVectorImpl<uint64_t> &Record,
1667 unsigned Abbrev) {
1668 const uint64_t HasUnitFlag = 1 << 1;
1669 const uint64_t HasSPFlagsFlag = 1 << 2;
1670 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1671 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1672 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1673 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1674 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1675 Record.push_back(N->getLine());
1676 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1677 Record.push_back(N->getScopeLine());
1678 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1679 Record.push_back(N->getSPFlags());
1680 Record.push_back(N->getVirtualIndex());
1681 Record.push_back(N->getFlags());
1682 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1683 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1684 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1685 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1686 Record.push_back(N->getThisAdjustment());
1687 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1689 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1690 Record.clear();
1693 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1694 SmallVectorImpl<uint64_t> &Record,
1695 unsigned Abbrev) {
1696 Record.push_back(N->isDistinct());
1697 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1698 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1699 Record.push_back(N->getLine());
1700 Record.push_back(N->getColumn());
1702 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1703 Record.clear();
1706 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1707 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1708 unsigned Abbrev) {
1709 Record.push_back(N->isDistinct());
1710 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1711 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1712 Record.push_back(N->getDiscriminator());
1714 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1715 Record.clear();
1718 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1719 SmallVectorImpl<uint64_t> &Record,
1720 unsigned Abbrev) {
1721 Record.push_back(N->isDistinct());
1722 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1723 Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1724 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1725 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1726 Record.push_back(N->getLineNo());
1728 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1729 Record.clear();
1732 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1733 SmallVectorImpl<uint64_t> &Record,
1734 unsigned Abbrev) {
1735 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1736 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1739 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1740 Record.clear();
1743 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1744 SmallVectorImpl<uint64_t> &Record,
1745 unsigned Abbrev) {
1746 Record.push_back(N->isDistinct());
1747 Record.push_back(N->getMacinfoType());
1748 Record.push_back(N->getLine());
1749 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1750 Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1752 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1753 Record.clear();
1756 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1757 SmallVectorImpl<uint64_t> &Record,
1758 unsigned Abbrev) {
1759 Record.push_back(N->isDistinct());
1760 Record.push_back(N->getMacinfoType());
1761 Record.push_back(N->getLine());
1762 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1763 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1765 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1766 Record.clear();
1769 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1770 SmallVectorImpl<uint64_t> &Record,
1771 unsigned Abbrev) {
1772 Record.push_back(N->isDistinct());
1773 for (auto &I : N->operands())
1774 Record.push_back(VE.getMetadataOrNullID(I));
1776 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1777 Record.clear();
1780 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1781 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1782 unsigned Abbrev) {
1783 Record.push_back(N->isDistinct());
1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1785 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1787 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1788 Record.clear();
1791 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1792 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1793 unsigned Abbrev) {
1794 Record.push_back(N->isDistinct());
1795 Record.push_back(N->getTag());
1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1797 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1798 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1800 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1801 Record.clear();
1804 void ModuleBitcodeWriter::writeDIGlobalVariable(
1805 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1806 unsigned Abbrev) {
1807 const uint64_t Version = 2 << 1;
1808 Record.push_back((uint64_t)N->isDistinct() | Version);
1809 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1810 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1811 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1812 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1813 Record.push_back(N->getLine());
1814 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1815 Record.push_back(N->isLocalToUnit());
1816 Record.push_back(N->isDefinition());
1817 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1818 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1819 Record.push_back(N->getAlignInBits());
1821 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1822 Record.clear();
1825 void ModuleBitcodeWriter::writeDILocalVariable(
1826 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1827 unsigned Abbrev) {
1828 // In order to support all possible bitcode formats in BitcodeReader we need
1829 // to distinguish the following cases:
1830 // 1) Record has no artificial tag (Record[1]),
1831 // has no obsolete inlinedAt field (Record[9]).
1832 // In this case Record size will be 8, HasAlignment flag is false.
1833 // 2) Record has artificial tag (Record[1]),
1834 // has no obsolete inlignedAt field (Record[9]).
1835 // In this case Record size will be 9, HasAlignment flag is false.
1836 // 3) Record has both artificial tag (Record[1]) and
1837 // obsolete inlignedAt field (Record[9]).
1838 // In this case Record size will be 10, HasAlignment flag is false.
1839 // 4) Record has neither artificial tag, nor inlignedAt field, but
1840 // HasAlignment flag is true and Record[8] contains alignment value.
1841 const uint64_t HasAlignmentFlag = 1 << 1;
1842 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1843 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1844 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1845 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1846 Record.push_back(N->getLine());
1847 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1848 Record.push_back(N->getArg());
1849 Record.push_back(N->getFlags());
1850 Record.push_back(N->getAlignInBits());
1852 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1853 Record.clear();
1856 void ModuleBitcodeWriter::writeDILabel(
1857 const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1858 unsigned Abbrev) {
1859 Record.push_back((uint64_t)N->isDistinct());
1860 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1861 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1862 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1863 Record.push_back(N->getLine());
1865 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1866 Record.clear();
1869 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1870 SmallVectorImpl<uint64_t> &Record,
1871 unsigned Abbrev) {
1872 Record.reserve(N->getElements().size() + 1);
1873 const uint64_t Version = 3 << 1;
1874 Record.push_back((uint64_t)N->isDistinct() | Version);
1875 Record.append(N->elements_begin(), N->elements_end());
1877 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1878 Record.clear();
1881 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1882 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1883 unsigned Abbrev) {
1884 Record.push_back(N->isDistinct());
1885 Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1886 Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1888 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1889 Record.clear();
1892 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1893 SmallVectorImpl<uint64_t> &Record,
1894 unsigned Abbrev) {
1895 Record.push_back(N->isDistinct());
1896 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1897 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1898 Record.push_back(N->getLine());
1899 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1900 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1901 Record.push_back(N->getAttributes());
1902 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1904 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1905 Record.clear();
1908 void ModuleBitcodeWriter::writeDIImportedEntity(
1909 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1910 unsigned Abbrev) {
1911 Record.push_back(N->isDistinct());
1912 Record.push_back(N->getTag());
1913 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1914 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1915 Record.push_back(N->getLine());
1916 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1917 Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
1919 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1920 Record.clear();
1923 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1924 auto Abbv = std::make_shared<BitCodeAbbrev>();
1925 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1928 return Stream.EmitAbbrev(std::move(Abbv));
1931 void ModuleBitcodeWriter::writeNamedMetadata(
1932 SmallVectorImpl<uint64_t> &Record) {
1933 if (M.named_metadata_empty())
1934 return;
1936 unsigned Abbrev = createNamedMetadataAbbrev();
1937 for (const NamedMDNode &NMD : M.named_metadata()) {
1938 // Write name.
1939 StringRef Str = NMD.getName();
1940 Record.append(Str.bytes_begin(), Str.bytes_end());
1941 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1942 Record.clear();
1944 // Write named metadata operands.
1945 for (const MDNode *N : NMD.operands())
1946 Record.push_back(VE.getMetadataID(N));
1947 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1948 Record.clear();
1952 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1953 auto Abbv = std::make_shared<BitCodeAbbrev>();
1954 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1958 return Stream.EmitAbbrev(std::move(Abbv));
1961 /// Write out a record for MDString.
1963 /// All the metadata strings in a metadata block are emitted in a single
1964 /// record. The sizes and strings themselves are shoved into a blob.
1965 void ModuleBitcodeWriter::writeMetadataStrings(
1966 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1967 if (Strings.empty())
1968 return;
1970 // Start the record with the number of strings.
1971 Record.push_back(bitc::METADATA_STRINGS);
1972 Record.push_back(Strings.size());
1974 // Emit the sizes of the strings in the blob.
1975 SmallString<256> Blob;
1977 BitstreamWriter W(Blob);
1978 for (const Metadata *MD : Strings)
1979 W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1980 W.FlushToWord();
1983 // Add the offset to the strings to the record.
1984 Record.push_back(Blob.size());
1986 // Add the strings to the blob.
1987 for (const Metadata *MD : Strings)
1988 Blob.append(cast<MDString>(MD)->getString());
1990 // Emit the final record.
1991 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1992 Record.clear();
1995 // Generates an enum to use as an index in the Abbrev array of Metadata record.
1996 enum MetadataAbbrev : unsigned {
1997 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
1998 #include "llvm/IR/Metadata.def"
1999 LastPlusOne
2002 void ModuleBitcodeWriter::writeMetadataRecords(
2003 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2004 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2005 if (MDs.empty())
2006 return;
2008 // Initialize MDNode abbreviations.
2009 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2010 #include "llvm/IR/Metadata.def"
2012 for (const Metadata *MD : MDs) {
2013 if (IndexPos)
2014 IndexPos->push_back(Stream.GetCurrentBitNo());
2015 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2016 assert(N->isResolved() && "Expected forward references to be resolved");
2018 switch (N->getMetadataID()) {
2019 default:
2020 llvm_unreachable("Invalid MDNode subclass");
2021 #define HANDLE_MDNODE_LEAF(CLASS) \
2022 case Metadata::CLASS##Kind: \
2023 if (MDAbbrevs) \
2024 write##CLASS(cast<CLASS>(N), Record, \
2025 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2026 else \
2027 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2028 continue;
2029 #include "llvm/IR/Metadata.def"
2032 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2036 void ModuleBitcodeWriter::writeModuleMetadata() {
2037 if (!VE.hasMDs() && M.named_metadata_empty())
2038 return;
2040 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2041 SmallVector<uint64_t, 64> Record;
2043 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2044 // block and load any metadata.
2045 std::vector<unsigned> MDAbbrevs;
2047 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2048 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2049 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2050 createGenericDINodeAbbrev();
2052 auto Abbv = std::make_shared<BitCodeAbbrev>();
2053 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2056 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2058 Abbv = std::make_shared<BitCodeAbbrev>();
2059 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2062 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2064 // Emit MDStrings together upfront.
2065 writeMetadataStrings(VE.getMDStrings(), Record);
2067 // We only emit an index for the metadata record if we have more than a given
2068 // (naive) threshold of metadatas, otherwise it is not worth it.
2069 if (VE.getNonMDStrings().size() > IndexThreshold) {
2070 // Write a placeholder value in for the offset of the metadata index,
2071 // which is written after the records, so that it can include
2072 // the offset of each entry. The placeholder offset will be
2073 // updated after all records are emitted.
2074 uint64_t Vals[] = {0, 0};
2075 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2078 // Compute and save the bit offset to the current position, which will be
2079 // patched when we emit the index later. We can simply subtract the 64-bit
2080 // fixed size from the current bit number to get the location to backpatch.
2081 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2083 // This index will contain the bitpos for each individual record.
2084 std::vector<uint64_t> IndexPos;
2085 IndexPos.reserve(VE.getNonMDStrings().size());
2087 // Write all the records
2088 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2090 if (VE.getNonMDStrings().size() > IndexThreshold) {
2091 // Now that we have emitted all the records we will emit the index. But
2092 // first
2093 // backpatch the forward reference so that the reader can skip the records
2094 // efficiently.
2095 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2096 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2098 // Delta encode the index.
2099 uint64_t PreviousValue = IndexOffsetRecordBitPos;
2100 for (auto &Elt : IndexPos) {
2101 auto EltDelta = Elt - PreviousValue;
2102 PreviousValue = Elt;
2103 Elt = EltDelta;
2105 // Emit the index record.
2106 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2107 IndexPos.clear();
2110 // Write the named metadata now.
2111 writeNamedMetadata(Record);
2113 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2114 SmallVector<uint64_t, 4> Record;
2115 Record.push_back(VE.getValueID(&GO));
2116 pushGlobalMetadataAttachment(Record, GO);
2117 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2119 for (const Function &F : M)
2120 if (F.isDeclaration() && F.hasMetadata())
2121 AddDeclAttachedMetadata(F);
2122 // FIXME: Only store metadata for declarations here, and move data for global
2123 // variable definitions to a separate block (PR28134).
2124 for (const GlobalVariable &GV : M.globals())
2125 if (GV.hasMetadata())
2126 AddDeclAttachedMetadata(GV);
2128 Stream.ExitBlock();
2131 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2132 if (!VE.hasMDs())
2133 return;
2135 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2136 SmallVector<uint64_t, 64> Record;
2137 writeMetadataStrings(VE.getMDStrings(), Record);
2138 writeMetadataRecords(VE.getNonMDStrings(), Record);
2139 Stream.ExitBlock();
2142 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2143 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2144 // [n x [id, mdnode]]
2145 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2146 GO.getAllMetadata(MDs);
2147 for (const auto &I : MDs) {
2148 Record.push_back(I.first);
2149 Record.push_back(VE.getMetadataID(I.second));
2153 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2154 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2156 SmallVector<uint64_t, 64> Record;
2158 if (F.hasMetadata()) {
2159 pushGlobalMetadataAttachment(Record, F);
2160 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2161 Record.clear();
2164 // Write metadata attachments
2165 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2166 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2167 for (const BasicBlock &BB : F)
2168 for (const Instruction &I : BB) {
2169 MDs.clear();
2170 I.getAllMetadataOtherThanDebugLoc(MDs);
2172 // If no metadata, ignore instruction.
2173 if (MDs.empty()) continue;
2175 Record.push_back(VE.getInstructionID(&I));
2177 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2178 Record.push_back(MDs[i].first);
2179 Record.push_back(VE.getMetadataID(MDs[i].second));
2181 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2182 Record.clear();
2185 Stream.ExitBlock();
2188 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2189 SmallVector<uint64_t, 64> Record;
2191 // Write metadata kinds
2192 // METADATA_KIND - [n x [id, name]]
2193 SmallVector<StringRef, 8> Names;
2194 M.getMDKindNames(Names);
2196 if (Names.empty()) return;
2198 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2200 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2201 Record.push_back(MDKindID);
2202 StringRef KName = Names[MDKindID];
2203 Record.append(KName.begin(), KName.end());
2205 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2206 Record.clear();
2209 Stream.ExitBlock();
2212 void ModuleBitcodeWriter::writeOperandBundleTags() {
2213 // Write metadata kinds
2215 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2217 // OPERAND_BUNDLE_TAG - [strchr x N]
2219 SmallVector<StringRef, 8> Tags;
2220 M.getOperandBundleTags(Tags);
2222 if (Tags.empty())
2223 return;
2225 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2227 SmallVector<uint64_t, 64> Record;
2229 for (auto Tag : Tags) {
2230 Record.append(Tag.begin(), Tag.end());
2232 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2233 Record.clear();
2236 Stream.ExitBlock();
2239 void ModuleBitcodeWriter::writeSyncScopeNames() {
2240 SmallVector<StringRef, 8> SSNs;
2241 M.getContext().getSyncScopeNames(SSNs);
2242 if (SSNs.empty())
2243 return;
2245 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2247 SmallVector<uint64_t, 64> Record;
2248 for (auto SSN : SSNs) {
2249 Record.append(SSN.begin(), SSN.end());
2250 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2251 Record.clear();
2254 Stream.ExitBlock();
2257 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
2258 if ((int64_t)V >= 0)
2259 Vals.push_back(V << 1);
2260 else
2261 Vals.push_back((-V << 1) | 1);
2264 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2265 bool isGlobal) {
2266 if (FirstVal == LastVal) return;
2268 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2270 unsigned AggregateAbbrev = 0;
2271 unsigned String8Abbrev = 0;
2272 unsigned CString7Abbrev = 0;
2273 unsigned CString6Abbrev = 0;
2274 // If this is a constant pool for the module, emit module-specific abbrevs.
2275 if (isGlobal) {
2276 // Abbrev for CST_CODE_AGGREGATE.
2277 auto Abbv = std::make_shared<BitCodeAbbrev>();
2278 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2281 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2283 // Abbrev for CST_CODE_STRING.
2284 Abbv = std::make_shared<BitCodeAbbrev>();
2285 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2288 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2289 // Abbrev for CST_CODE_CSTRING.
2290 Abbv = std::make_shared<BitCodeAbbrev>();
2291 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2294 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2295 // Abbrev for CST_CODE_CSTRING.
2296 Abbv = std::make_shared<BitCodeAbbrev>();
2297 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2300 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2303 SmallVector<uint64_t, 64> Record;
2305 const ValueEnumerator::ValueList &Vals = VE.getValues();
2306 Type *LastTy = nullptr;
2307 for (unsigned i = FirstVal; i != LastVal; ++i) {
2308 const Value *V = Vals[i].first;
2309 // If we need to switch types, do so now.
2310 if (V->getType() != LastTy) {
2311 LastTy = V->getType();
2312 Record.push_back(VE.getTypeID(LastTy));
2313 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2314 CONSTANTS_SETTYPE_ABBREV);
2315 Record.clear();
2318 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2319 Record.push_back(unsigned(IA->hasSideEffects()) |
2320 unsigned(IA->isAlignStack()) << 1 |
2321 unsigned(IA->getDialect()&1) << 2);
2323 // Add the asm string.
2324 const std::string &AsmStr = IA->getAsmString();
2325 Record.push_back(AsmStr.size());
2326 Record.append(AsmStr.begin(), AsmStr.end());
2328 // Add the constraint string.
2329 const std::string &ConstraintStr = IA->getConstraintString();
2330 Record.push_back(ConstraintStr.size());
2331 Record.append(ConstraintStr.begin(), ConstraintStr.end());
2332 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2333 Record.clear();
2334 continue;
2336 const Constant *C = cast<Constant>(V);
2337 unsigned Code = -1U;
2338 unsigned AbbrevToUse = 0;
2339 if (C->isNullValue()) {
2340 Code = bitc::CST_CODE_NULL;
2341 } else if (isa<UndefValue>(C)) {
2342 Code = bitc::CST_CODE_UNDEF;
2343 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2344 if (IV->getBitWidth() <= 64) {
2345 uint64_t V = IV->getSExtValue();
2346 emitSignedInt64(Record, V);
2347 Code = bitc::CST_CODE_INTEGER;
2348 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2349 } else { // Wide integers, > 64 bits in size.
2350 // We have an arbitrary precision integer value to write whose
2351 // bit width is > 64. However, in canonical unsigned integer
2352 // format it is likely that the high bits are going to be zero.
2353 // So, we only write the number of active words.
2354 unsigned NWords = IV->getValue().getActiveWords();
2355 const uint64_t *RawWords = IV->getValue().getRawData();
2356 for (unsigned i = 0; i != NWords; ++i) {
2357 emitSignedInt64(Record, RawWords[i]);
2359 Code = bitc::CST_CODE_WIDE_INTEGER;
2361 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2362 Code = bitc::CST_CODE_FLOAT;
2363 Type *Ty = CFP->getType();
2364 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2365 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2366 } else if (Ty->isX86_FP80Ty()) {
2367 // api needed to prevent premature destruction
2368 // bits are not in the same order as a normal i80 APInt, compensate.
2369 APInt api = CFP->getValueAPF().bitcastToAPInt();
2370 const uint64_t *p = api.getRawData();
2371 Record.push_back((p[1] << 48) | (p[0] >> 16));
2372 Record.push_back(p[0] & 0xffffLL);
2373 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2374 APInt api = CFP->getValueAPF().bitcastToAPInt();
2375 const uint64_t *p = api.getRawData();
2376 Record.push_back(p[0]);
2377 Record.push_back(p[1]);
2378 } else {
2379 assert(0 && "Unknown FP type!");
2381 } else if (isa<ConstantDataSequential>(C) &&
2382 cast<ConstantDataSequential>(C)->isString()) {
2383 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2384 // Emit constant strings specially.
2385 unsigned NumElts = Str->getNumElements();
2386 // If this is a null-terminated string, use the denser CSTRING encoding.
2387 if (Str->isCString()) {
2388 Code = bitc::CST_CODE_CSTRING;
2389 --NumElts; // Don't encode the null, which isn't allowed by char6.
2390 } else {
2391 Code = bitc::CST_CODE_STRING;
2392 AbbrevToUse = String8Abbrev;
2394 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2395 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2396 for (unsigned i = 0; i != NumElts; ++i) {
2397 unsigned char V = Str->getElementAsInteger(i);
2398 Record.push_back(V);
2399 isCStr7 &= (V & 128) == 0;
2400 if (isCStrChar6)
2401 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2404 if (isCStrChar6)
2405 AbbrevToUse = CString6Abbrev;
2406 else if (isCStr7)
2407 AbbrevToUse = CString7Abbrev;
2408 } else if (const ConstantDataSequential *CDS =
2409 dyn_cast<ConstantDataSequential>(C)) {
2410 Code = bitc::CST_CODE_DATA;
2411 Type *EltTy = CDS->getType()->getElementType();
2412 if (isa<IntegerType>(EltTy)) {
2413 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2414 Record.push_back(CDS->getElementAsInteger(i));
2415 } else {
2416 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2417 Record.push_back(
2418 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2420 } else if (isa<ConstantAggregate>(C)) {
2421 Code = bitc::CST_CODE_AGGREGATE;
2422 for (const Value *Op : C->operands())
2423 Record.push_back(VE.getValueID(Op));
2424 AbbrevToUse = AggregateAbbrev;
2425 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2426 switch (CE->getOpcode()) {
2427 default:
2428 if (Instruction::isCast(CE->getOpcode())) {
2429 Code = bitc::CST_CODE_CE_CAST;
2430 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2431 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2432 Record.push_back(VE.getValueID(C->getOperand(0)));
2433 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2434 } else {
2435 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2436 Code = bitc::CST_CODE_CE_BINOP;
2437 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2438 Record.push_back(VE.getValueID(C->getOperand(0)));
2439 Record.push_back(VE.getValueID(C->getOperand(1)));
2440 uint64_t Flags = getOptimizationFlags(CE);
2441 if (Flags != 0)
2442 Record.push_back(Flags);
2444 break;
2445 case Instruction::FNeg: {
2446 assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2447 Code = bitc::CST_CODE_CE_UNOP;
2448 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2449 Record.push_back(VE.getValueID(C->getOperand(0)));
2450 uint64_t Flags = getOptimizationFlags(CE);
2451 if (Flags != 0)
2452 Record.push_back(Flags);
2453 break;
2455 case Instruction::GetElementPtr: {
2456 Code = bitc::CST_CODE_CE_GEP;
2457 const auto *GO = cast<GEPOperator>(C);
2458 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2459 if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2460 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2461 Record.push_back((*Idx << 1) | GO->isInBounds());
2462 } else if (GO->isInBounds())
2463 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2464 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2465 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2466 Record.push_back(VE.getValueID(C->getOperand(i)));
2468 break;
2470 case Instruction::Select:
2471 Code = bitc::CST_CODE_CE_SELECT;
2472 Record.push_back(VE.getValueID(C->getOperand(0)));
2473 Record.push_back(VE.getValueID(C->getOperand(1)));
2474 Record.push_back(VE.getValueID(C->getOperand(2)));
2475 break;
2476 case Instruction::ExtractElement:
2477 Code = bitc::CST_CODE_CE_EXTRACTELT;
2478 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2479 Record.push_back(VE.getValueID(C->getOperand(0)));
2480 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2481 Record.push_back(VE.getValueID(C->getOperand(1)));
2482 break;
2483 case Instruction::InsertElement:
2484 Code = bitc::CST_CODE_CE_INSERTELT;
2485 Record.push_back(VE.getValueID(C->getOperand(0)));
2486 Record.push_back(VE.getValueID(C->getOperand(1)));
2487 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2488 Record.push_back(VE.getValueID(C->getOperand(2)));
2489 break;
2490 case Instruction::ShuffleVector:
2491 // If the return type and argument types are the same, this is a
2492 // standard shufflevector instruction. If the types are different,
2493 // then the shuffle is widening or truncating the input vectors, and
2494 // the argument type must also be encoded.
2495 if (C->getType() == C->getOperand(0)->getType()) {
2496 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2497 } else {
2498 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2499 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2501 Record.push_back(VE.getValueID(C->getOperand(0)));
2502 Record.push_back(VE.getValueID(C->getOperand(1)));
2503 Record.push_back(VE.getValueID(C->getOperand(2)));
2504 break;
2505 case Instruction::ICmp:
2506 case Instruction::FCmp:
2507 Code = bitc::CST_CODE_CE_CMP;
2508 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2509 Record.push_back(VE.getValueID(C->getOperand(0)));
2510 Record.push_back(VE.getValueID(C->getOperand(1)));
2511 Record.push_back(CE->getPredicate());
2512 break;
2514 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2515 Code = bitc::CST_CODE_BLOCKADDRESS;
2516 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2517 Record.push_back(VE.getValueID(BA->getFunction()));
2518 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2519 } else {
2520 #ifndef NDEBUG
2521 C->dump();
2522 #endif
2523 llvm_unreachable("Unknown constant!");
2525 Stream.EmitRecord(Code, Record, AbbrevToUse);
2526 Record.clear();
2529 Stream.ExitBlock();
2532 void ModuleBitcodeWriter::writeModuleConstants() {
2533 const ValueEnumerator::ValueList &Vals = VE.getValues();
2535 // Find the first constant to emit, which is the first non-globalvalue value.
2536 // We know globalvalues have been emitted by WriteModuleInfo.
2537 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2538 if (!isa<GlobalValue>(Vals[i].first)) {
2539 writeConstants(i, Vals.size(), true);
2540 return;
2545 /// pushValueAndType - The file has to encode both the value and type id for
2546 /// many values, because we need to know what type to create for forward
2547 /// references. However, most operands are not forward references, so this type
2548 /// field is not needed.
2550 /// This function adds V's value ID to Vals. If the value ID is higher than the
2551 /// instruction ID, then it is a forward reference, and it also includes the
2552 /// type ID. The value ID that is written is encoded relative to the InstID.
2553 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2554 SmallVectorImpl<unsigned> &Vals) {
2555 unsigned ValID = VE.getValueID(V);
2556 // Make encoding relative to the InstID.
2557 Vals.push_back(InstID - ValID);
2558 if (ValID >= InstID) {
2559 Vals.push_back(VE.getTypeID(V->getType()));
2560 return true;
2562 return false;
2565 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2566 unsigned InstID) {
2567 SmallVector<unsigned, 64> Record;
2568 LLVMContext &C = CS.getInstruction()->getContext();
2570 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2571 const auto &Bundle = CS.getOperandBundleAt(i);
2572 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2574 for (auto &Input : Bundle.Inputs)
2575 pushValueAndType(Input, InstID, Record);
2577 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2578 Record.clear();
2582 /// pushValue - Like pushValueAndType, but where the type of the value is
2583 /// omitted (perhaps it was already encoded in an earlier operand).
2584 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2585 SmallVectorImpl<unsigned> &Vals) {
2586 unsigned ValID = VE.getValueID(V);
2587 Vals.push_back(InstID - ValID);
2590 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2591 SmallVectorImpl<uint64_t> &Vals) {
2592 unsigned ValID = VE.getValueID(V);
2593 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2594 emitSignedInt64(Vals, diff);
2597 /// WriteInstruction - Emit an instruction to the specified stream.
2598 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2599 unsigned InstID,
2600 SmallVectorImpl<unsigned> &Vals) {
2601 unsigned Code = 0;
2602 unsigned AbbrevToUse = 0;
2603 VE.setInstructionID(&I);
2604 switch (I.getOpcode()) {
2605 default:
2606 if (Instruction::isCast(I.getOpcode())) {
2607 Code = bitc::FUNC_CODE_INST_CAST;
2608 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2609 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2610 Vals.push_back(VE.getTypeID(I.getType()));
2611 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2612 } else {
2613 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2614 Code = bitc::FUNC_CODE_INST_BINOP;
2615 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2616 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2617 pushValue(I.getOperand(1), InstID, Vals);
2618 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2619 uint64_t Flags = getOptimizationFlags(&I);
2620 if (Flags != 0) {
2621 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2622 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2623 Vals.push_back(Flags);
2626 break;
2627 case Instruction::FNeg: {
2628 Code = bitc::FUNC_CODE_INST_UNOP;
2629 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2630 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2631 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2632 uint64_t Flags = getOptimizationFlags(&I);
2633 if (Flags != 0) {
2634 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2635 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2636 Vals.push_back(Flags);
2638 break;
2640 case Instruction::GetElementPtr: {
2641 Code = bitc::FUNC_CODE_INST_GEP;
2642 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2643 auto &GEPInst = cast<GetElementPtrInst>(I);
2644 Vals.push_back(GEPInst.isInBounds());
2645 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2646 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2647 pushValueAndType(I.getOperand(i), InstID, Vals);
2648 break;
2650 case Instruction::ExtractValue: {
2651 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2652 pushValueAndType(I.getOperand(0), InstID, Vals);
2653 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2654 Vals.append(EVI->idx_begin(), EVI->idx_end());
2655 break;
2657 case Instruction::InsertValue: {
2658 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2659 pushValueAndType(I.getOperand(0), InstID, Vals);
2660 pushValueAndType(I.getOperand(1), InstID, Vals);
2661 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2662 Vals.append(IVI->idx_begin(), IVI->idx_end());
2663 break;
2665 case Instruction::Select: {
2666 Code = bitc::FUNC_CODE_INST_VSELECT;
2667 pushValueAndType(I.getOperand(1), InstID, Vals);
2668 pushValue(I.getOperand(2), InstID, Vals);
2669 pushValueAndType(I.getOperand(0), InstID, Vals);
2670 uint64_t Flags = getOptimizationFlags(&I);
2671 if (Flags != 0)
2672 Vals.push_back(Flags);
2673 break;
2675 case Instruction::ExtractElement:
2676 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2677 pushValueAndType(I.getOperand(0), InstID, Vals);
2678 pushValueAndType(I.getOperand(1), InstID, Vals);
2679 break;
2680 case Instruction::InsertElement:
2681 Code = bitc::FUNC_CODE_INST_INSERTELT;
2682 pushValueAndType(I.getOperand(0), InstID, Vals);
2683 pushValue(I.getOperand(1), InstID, Vals);
2684 pushValueAndType(I.getOperand(2), InstID, Vals);
2685 break;
2686 case Instruction::ShuffleVector:
2687 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2688 pushValueAndType(I.getOperand(0), InstID, Vals);
2689 pushValue(I.getOperand(1), InstID, Vals);
2690 pushValue(I.getOperand(2), InstID, Vals);
2691 break;
2692 case Instruction::ICmp:
2693 case Instruction::FCmp: {
2694 // compare returning Int1Ty or vector of Int1Ty
2695 Code = bitc::FUNC_CODE_INST_CMP2;
2696 pushValueAndType(I.getOperand(0), InstID, Vals);
2697 pushValue(I.getOperand(1), InstID, Vals);
2698 Vals.push_back(cast<CmpInst>(I).getPredicate());
2699 uint64_t Flags = getOptimizationFlags(&I);
2700 if (Flags != 0)
2701 Vals.push_back(Flags);
2702 break;
2705 case Instruction::Ret:
2707 Code = bitc::FUNC_CODE_INST_RET;
2708 unsigned NumOperands = I.getNumOperands();
2709 if (NumOperands == 0)
2710 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2711 else if (NumOperands == 1) {
2712 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2713 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2714 } else {
2715 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2716 pushValueAndType(I.getOperand(i), InstID, Vals);
2719 break;
2720 case Instruction::Br:
2722 Code = bitc::FUNC_CODE_INST_BR;
2723 const BranchInst &II = cast<BranchInst>(I);
2724 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2725 if (II.isConditional()) {
2726 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2727 pushValue(II.getCondition(), InstID, Vals);
2730 break;
2731 case Instruction::Switch:
2733 Code = bitc::FUNC_CODE_INST_SWITCH;
2734 const SwitchInst &SI = cast<SwitchInst>(I);
2735 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2736 pushValue(SI.getCondition(), InstID, Vals);
2737 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2738 for (auto Case : SI.cases()) {
2739 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2740 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2743 break;
2744 case Instruction::IndirectBr:
2745 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2746 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2747 // Encode the address operand as relative, but not the basic blocks.
2748 pushValue(I.getOperand(0), InstID, Vals);
2749 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2750 Vals.push_back(VE.getValueID(I.getOperand(i)));
2751 break;
2753 case Instruction::Invoke: {
2754 const InvokeInst *II = cast<InvokeInst>(&I);
2755 const Value *Callee = II->getCalledValue();
2756 FunctionType *FTy = II->getFunctionType();
2758 if (II->hasOperandBundles())
2759 writeOperandBundles(II, InstID);
2761 Code = bitc::FUNC_CODE_INST_INVOKE;
2763 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2764 Vals.push_back(II->getCallingConv() | 1 << 13);
2765 Vals.push_back(VE.getValueID(II->getNormalDest()));
2766 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2767 Vals.push_back(VE.getTypeID(FTy));
2768 pushValueAndType(Callee, InstID, Vals);
2770 // Emit value #'s for the fixed parameters.
2771 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2772 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2774 // Emit type/value pairs for varargs params.
2775 if (FTy->isVarArg()) {
2776 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2777 i != e; ++i)
2778 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2780 break;
2782 case Instruction::Resume:
2783 Code = bitc::FUNC_CODE_INST_RESUME;
2784 pushValueAndType(I.getOperand(0), InstID, Vals);
2785 break;
2786 case Instruction::CleanupRet: {
2787 Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2788 const auto &CRI = cast<CleanupReturnInst>(I);
2789 pushValue(CRI.getCleanupPad(), InstID, Vals);
2790 if (CRI.hasUnwindDest())
2791 Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2792 break;
2794 case Instruction::CatchRet: {
2795 Code = bitc::FUNC_CODE_INST_CATCHRET;
2796 const auto &CRI = cast<CatchReturnInst>(I);
2797 pushValue(CRI.getCatchPad(), InstID, Vals);
2798 Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2799 break;
2801 case Instruction::CleanupPad:
2802 case Instruction::CatchPad: {
2803 const auto &FuncletPad = cast<FuncletPadInst>(I);
2804 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2805 : bitc::FUNC_CODE_INST_CLEANUPPAD;
2806 pushValue(FuncletPad.getParentPad(), InstID, Vals);
2808 unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2809 Vals.push_back(NumArgOperands);
2810 for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2811 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2812 break;
2814 case Instruction::CatchSwitch: {
2815 Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2816 const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2818 pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2820 unsigned NumHandlers = CatchSwitch.getNumHandlers();
2821 Vals.push_back(NumHandlers);
2822 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2823 Vals.push_back(VE.getValueID(CatchPadBB));
2825 if (CatchSwitch.hasUnwindDest())
2826 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2827 break;
2829 case Instruction::CallBr: {
2830 const CallBrInst *CBI = cast<CallBrInst>(&I);
2831 const Value *Callee = CBI->getCalledValue();
2832 FunctionType *FTy = CBI->getFunctionType();
2834 if (CBI->hasOperandBundles())
2835 writeOperandBundles(CBI, InstID);
2837 Code = bitc::FUNC_CODE_INST_CALLBR;
2839 Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2841 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2842 1 << bitc::CALL_EXPLICIT_TYPE);
2844 Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2845 Vals.push_back(CBI->getNumIndirectDests());
2846 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2847 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2849 Vals.push_back(VE.getTypeID(FTy));
2850 pushValueAndType(Callee, InstID, Vals);
2852 // Emit value #'s for the fixed parameters.
2853 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2854 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2856 // Emit type/value pairs for varargs params.
2857 if (FTy->isVarArg()) {
2858 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2859 i != e; ++i)
2860 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2862 break;
2864 case Instruction::Unreachable:
2865 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2866 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2867 break;
2869 case Instruction::PHI: {
2870 const PHINode &PN = cast<PHINode>(I);
2871 Code = bitc::FUNC_CODE_INST_PHI;
2872 // With the newer instruction encoding, forward references could give
2873 // negative valued IDs. This is most common for PHIs, so we use
2874 // signed VBRs.
2875 SmallVector<uint64_t, 128> Vals64;
2876 Vals64.push_back(VE.getTypeID(PN.getType()));
2877 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2878 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2879 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2881 // Emit a Vals64 vector and exit.
2882 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2883 Vals64.clear();
2884 return;
2887 case Instruction::LandingPad: {
2888 const LandingPadInst &LP = cast<LandingPadInst>(I);
2889 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2890 Vals.push_back(VE.getTypeID(LP.getType()));
2891 Vals.push_back(LP.isCleanup());
2892 Vals.push_back(LP.getNumClauses());
2893 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2894 if (LP.isCatch(I))
2895 Vals.push_back(LandingPadInst::Catch);
2896 else
2897 Vals.push_back(LandingPadInst::Filter);
2898 pushValueAndType(LP.getClause(I), InstID, Vals);
2900 break;
2903 case Instruction::Alloca: {
2904 Code = bitc::FUNC_CODE_INST_ALLOCA;
2905 const AllocaInst &AI = cast<AllocaInst>(I);
2906 Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2907 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2908 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2909 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2910 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2911 "not enough bits for maximum alignment");
2912 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2913 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2914 AlignRecord |= 1 << 6;
2915 AlignRecord |= AI.isSwiftError() << 7;
2916 Vals.push_back(AlignRecord);
2917 break;
2920 case Instruction::Load:
2921 if (cast<LoadInst>(I).isAtomic()) {
2922 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2923 pushValueAndType(I.getOperand(0), InstID, Vals);
2924 } else {
2925 Code = bitc::FUNC_CODE_INST_LOAD;
2926 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2927 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2929 Vals.push_back(VE.getTypeID(I.getType()));
2930 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2931 Vals.push_back(cast<LoadInst>(I).isVolatile());
2932 if (cast<LoadInst>(I).isAtomic()) {
2933 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2934 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2936 break;
2937 case Instruction::Store:
2938 if (cast<StoreInst>(I).isAtomic())
2939 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2940 else
2941 Code = bitc::FUNC_CODE_INST_STORE;
2942 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2943 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2944 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2945 Vals.push_back(cast<StoreInst>(I).isVolatile());
2946 if (cast<StoreInst>(I).isAtomic()) {
2947 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2948 Vals.push_back(
2949 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2951 break;
2952 case Instruction::AtomicCmpXchg:
2953 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2954 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2955 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2956 pushValue(I.getOperand(2), InstID, Vals); // newval.
2957 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2958 Vals.push_back(
2959 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2960 Vals.push_back(
2961 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2962 Vals.push_back(
2963 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2964 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2965 break;
2966 case Instruction::AtomicRMW:
2967 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2968 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2969 pushValue(I.getOperand(1), InstID, Vals); // val.
2970 Vals.push_back(
2971 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2972 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2973 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2974 Vals.push_back(
2975 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2976 break;
2977 case Instruction::Fence:
2978 Code = bitc::FUNC_CODE_INST_FENCE;
2979 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2980 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2981 break;
2982 case Instruction::Call: {
2983 const CallInst &CI = cast<CallInst>(I);
2984 FunctionType *FTy = CI.getFunctionType();
2986 if (CI.hasOperandBundles())
2987 writeOperandBundles(&CI, InstID);
2989 Code = bitc::FUNC_CODE_INST_CALL;
2991 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2993 unsigned Flags = getOptimizationFlags(&I);
2994 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2995 unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2996 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2997 1 << bitc::CALL_EXPLICIT_TYPE |
2998 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2999 unsigned(Flags != 0) << bitc::CALL_FMF);
3000 if (Flags != 0)
3001 Vals.push_back(Flags);
3003 Vals.push_back(VE.getTypeID(FTy));
3004 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
3006 // Emit value #'s for the fixed parameters.
3007 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3008 // Check for labels (can happen with asm labels).
3009 if (FTy->getParamType(i)->isLabelTy())
3010 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3011 else
3012 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3015 // Emit type/value pairs for varargs params.
3016 if (FTy->isVarArg()) {
3017 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3018 i != e; ++i)
3019 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3021 break;
3023 case Instruction::VAArg:
3024 Code = bitc::FUNC_CODE_INST_VAARG;
3025 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3026 pushValue(I.getOperand(0), InstID, Vals); // valist.
3027 Vals.push_back(VE.getTypeID(I.getType())); // restype.
3028 break;
3031 Stream.EmitRecord(Code, Vals, AbbrevToUse);
3032 Vals.clear();
3035 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3036 /// to allow clients to efficiently find the function body.
3037 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3038 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3039 // Get the offset of the VST we are writing, and backpatch it into
3040 // the VST forward declaration record.
3041 uint64_t VSTOffset = Stream.GetCurrentBitNo();
3042 // The BitcodeStartBit was the stream offset of the identification block.
3043 VSTOffset -= bitcodeStartBit();
3044 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3045 // Note that we add 1 here because the offset is relative to one word
3046 // before the start of the identification block, which was historically
3047 // always the start of the regular bitcode header.
3048 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3050 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3052 auto Abbv = std::make_shared<BitCodeAbbrev>();
3053 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3056 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3058 for (const Function &F : M) {
3059 uint64_t Record[2];
3061 if (F.isDeclaration())
3062 continue;
3064 Record[0] = VE.getValueID(&F);
3066 // Save the word offset of the function (from the start of the
3067 // actual bitcode written to the stream).
3068 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3069 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3070 // Note that we add 1 here because the offset is relative to one word
3071 // before the start of the identification block, which was historically
3072 // always the start of the regular bitcode header.
3073 Record[1] = BitcodeIndex / 32 + 1;
3075 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3078 Stream.ExitBlock();
3081 /// Emit names for arguments, instructions and basic blocks in a function.
3082 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3083 const ValueSymbolTable &VST) {
3084 if (VST.empty())
3085 return;
3087 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3089 // FIXME: Set up the abbrev, we know how many values there are!
3090 // FIXME: We know if the type names can use 7-bit ascii.
3091 SmallVector<uint64_t, 64> NameVals;
3093 for (const ValueName &Name : VST) {
3094 // Figure out the encoding to use for the name.
3095 StringEncoding Bits = getStringEncoding(Name.getKey());
3097 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3098 NameVals.push_back(VE.getValueID(Name.getValue()));
3100 // VST_CODE_ENTRY: [valueid, namechar x N]
3101 // VST_CODE_BBENTRY: [bbid, namechar x N]
3102 unsigned Code;
3103 if (isa<BasicBlock>(Name.getValue())) {
3104 Code = bitc::VST_CODE_BBENTRY;
3105 if (Bits == SE_Char6)
3106 AbbrevToUse = VST_BBENTRY_6_ABBREV;
3107 } else {
3108 Code = bitc::VST_CODE_ENTRY;
3109 if (Bits == SE_Char6)
3110 AbbrevToUse = VST_ENTRY_6_ABBREV;
3111 else if (Bits == SE_Fixed7)
3112 AbbrevToUse = VST_ENTRY_7_ABBREV;
3115 for (const auto P : Name.getKey())
3116 NameVals.push_back((unsigned char)P);
3118 // Emit the finished record.
3119 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3120 NameVals.clear();
3123 Stream.ExitBlock();
3126 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3127 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3128 unsigned Code;
3129 if (isa<BasicBlock>(Order.V))
3130 Code = bitc::USELIST_CODE_BB;
3131 else
3132 Code = bitc::USELIST_CODE_DEFAULT;
3134 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3135 Record.push_back(VE.getValueID(Order.V));
3136 Stream.EmitRecord(Code, Record);
3139 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3140 assert(VE.shouldPreserveUseListOrder() &&
3141 "Expected to be preserving use-list order");
3143 auto hasMore = [&]() {
3144 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3146 if (!hasMore())
3147 // Nothing to do.
3148 return;
3150 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3151 while (hasMore()) {
3152 writeUseList(std::move(VE.UseListOrders.back()));
3153 VE.UseListOrders.pop_back();
3155 Stream.ExitBlock();
3158 /// Emit a function body to the module stream.
3159 void ModuleBitcodeWriter::writeFunction(
3160 const Function &F,
3161 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3162 // Save the bitcode index of the start of this function block for recording
3163 // in the VST.
3164 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3166 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3167 VE.incorporateFunction(F);
3169 SmallVector<unsigned, 64> Vals;
3171 // Emit the number of basic blocks, so the reader can create them ahead of
3172 // time.
3173 Vals.push_back(VE.getBasicBlocks().size());
3174 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3175 Vals.clear();
3177 // If there are function-local constants, emit them now.
3178 unsigned CstStart, CstEnd;
3179 VE.getFunctionConstantRange(CstStart, CstEnd);
3180 writeConstants(CstStart, CstEnd, false);
3182 // If there is function-local metadata, emit it now.
3183 writeFunctionMetadata(F);
3185 // Keep a running idea of what the instruction ID is.
3186 unsigned InstID = CstEnd;
3188 bool NeedsMetadataAttachment = F.hasMetadata();
3190 DILocation *LastDL = nullptr;
3191 // Finally, emit all the instructions, in order.
3192 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3193 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3194 I != E; ++I) {
3195 writeInstruction(*I, InstID, Vals);
3197 if (!I->getType()->isVoidTy())
3198 ++InstID;
3200 // If the instruction has metadata, write a metadata attachment later.
3201 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3203 // If the instruction has a debug location, emit it.
3204 DILocation *DL = I->getDebugLoc();
3205 if (!DL)
3206 continue;
3208 if (DL == LastDL) {
3209 // Just repeat the same debug loc as last time.
3210 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3211 continue;
3214 Vals.push_back(DL->getLine());
3215 Vals.push_back(DL->getColumn());
3216 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3217 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3218 Vals.push_back(DL->isImplicitCode());
3219 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3220 Vals.clear();
3222 LastDL = DL;
3225 // Emit names for all the instructions etc.
3226 if (auto *Symtab = F.getValueSymbolTable())
3227 writeFunctionLevelValueSymbolTable(*Symtab);
3229 if (NeedsMetadataAttachment)
3230 writeFunctionMetadataAttachment(F);
3231 if (VE.shouldPreserveUseListOrder())
3232 writeUseListBlock(&F);
3233 VE.purgeFunction();
3234 Stream.ExitBlock();
3237 // Emit blockinfo, which defines the standard abbreviations etc.
3238 void ModuleBitcodeWriter::writeBlockInfo() {
3239 // We only want to emit block info records for blocks that have multiple
3240 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3241 // Other blocks can define their abbrevs inline.
3242 Stream.EnterBlockInfoBlock();
3244 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3245 auto Abbv = std::make_shared<BitCodeAbbrev>();
3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3250 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3251 VST_ENTRY_8_ABBREV)
3252 llvm_unreachable("Unexpected abbrev ordering!");
3255 { // 7-bit fixed width VST_CODE_ENTRY strings.
3256 auto Abbv = std::make_shared<BitCodeAbbrev>();
3257 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3261 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3262 VST_ENTRY_7_ABBREV)
3263 llvm_unreachable("Unexpected abbrev ordering!");
3265 { // 6-bit char6 VST_CODE_ENTRY strings.
3266 auto Abbv = std::make_shared<BitCodeAbbrev>();
3267 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3271 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3272 VST_ENTRY_6_ABBREV)
3273 llvm_unreachable("Unexpected abbrev ordering!");
3275 { // 6-bit char6 VST_CODE_BBENTRY strings.
3276 auto Abbv = std::make_shared<BitCodeAbbrev>();
3277 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3281 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3282 VST_BBENTRY_6_ABBREV)
3283 llvm_unreachable("Unexpected abbrev ordering!");
3286 { // SETTYPE abbrev for CONSTANTS_BLOCK.
3287 auto Abbv = std::make_shared<BitCodeAbbrev>();
3288 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3290 VE.computeBitsRequiredForTypeIndicies()));
3291 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3292 CONSTANTS_SETTYPE_ABBREV)
3293 llvm_unreachable("Unexpected abbrev ordering!");
3296 { // INTEGER abbrev for CONSTANTS_BLOCK.
3297 auto Abbv = std::make_shared<BitCodeAbbrev>();
3298 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3300 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3301 CONSTANTS_INTEGER_ABBREV)
3302 llvm_unreachable("Unexpected abbrev ordering!");
3305 { // CE_CAST abbrev for CONSTANTS_BLOCK.
3306 auto Abbv = std::make_shared<BitCodeAbbrev>();
3307 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3310 VE.computeBitsRequiredForTypeIndicies()));
3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3313 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3314 CONSTANTS_CE_CAST_Abbrev)
3315 llvm_unreachable("Unexpected abbrev ordering!");
3317 { // NULL abbrev for CONSTANTS_BLOCK.
3318 auto Abbv = std::make_shared<BitCodeAbbrev>();
3319 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3320 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3321 CONSTANTS_NULL_Abbrev)
3322 llvm_unreachable("Unexpected abbrev ordering!");
3325 // FIXME: This should only use space for first class types!
3327 { // INST_LOAD abbrev for FUNCTION_BLOCK.
3328 auto Abbv = std::make_shared<BitCodeAbbrev>();
3329 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3332 VE.computeBitsRequiredForTypeIndicies()));
3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3335 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3336 FUNCTION_INST_LOAD_ABBREV)
3337 llvm_unreachable("Unexpected abbrev ordering!");
3339 { // INST_UNOP abbrev for FUNCTION_BLOCK.
3340 auto Abbv = std::make_shared<BitCodeAbbrev>();
3341 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3344 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3345 FUNCTION_INST_UNOP_ABBREV)
3346 llvm_unreachable("Unexpected abbrev ordering!");
3348 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3349 auto Abbv = std::make_shared<BitCodeAbbrev>();
3350 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3354 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3355 FUNCTION_INST_UNOP_FLAGS_ABBREV)
3356 llvm_unreachable("Unexpected abbrev ordering!");
3358 { // INST_BINOP abbrev for FUNCTION_BLOCK.
3359 auto Abbv = std::make_shared<BitCodeAbbrev>();
3360 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3364 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3365 FUNCTION_INST_BINOP_ABBREV)
3366 llvm_unreachable("Unexpected abbrev ordering!");
3368 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3369 auto Abbv = std::make_shared<BitCodeAbbrev>();
3370 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3375 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3376 FUNCTION_INST_BINOP_FLAGS_ABBREV)
3377 llvm_unreachable("Unexpected abbrev ordering!");
3379 { // INST_CAST abbrev for FUNCTION_BLOCK.
3380 auto Abbv = std::make_shared<BitCodeAbbrev>();
3381 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3384 VE.computeBitsRequiredForTypeIndicies()));
3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3386 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3387 FUNCTION_INST_CAST_ABBREV)
3388 llvm_unreachable("Unexpected abbrev ordering!");
3391 { // INST_RET abbrev for FUNCTION_BLOCK.
3392 auto Abbv = std::make_shared<BitCodeAbbrev>();
3393 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3394 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3395 FUNCTION_INST_RET_VOID_ABBREV)
3396 llvm_unreachable("Unexpected abbrev ordering!");
3398 { // INST_RET abbrev for FUNCTION_BLOCK.
3399 auto Abbv = std::make_shared<BitCodeAbbrev>();
3400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3403 FUNCTION_INST_RET_VAL_ABBREV)
3404 llvm_unreachable("Unexpected abbrev ordering!");
3406 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3407 auto Abbv = std::make_shared<BitCodeAbbrev>();
3408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3410 FUNCTION_INST_UNREACHABLE_ABBREV)
3411 llvm_unreachable("Unexpected abbrev ordering!");
3414 auto Abbv = std::make_shared<BitCodeAbbrev>();
3415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3418 Log2_32_Ceil(VE.getTypes().size() + 1)));
3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3421 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3422 FUNCTION_INST_GEP_ABBREV)
3423 llvm_unreachable("Unexpected abbrev ordering!");
3426 Stream.ExitBlock();
3429 /// Write the module path strings, currently only used when generating
3430 /// a combined index file.
3431 void IndexBitcodeWriter::writeModStrings() {
3432 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3434 // TODO: See which abbrev sizes we actually need to emit
3436 // 8-bit fixed-width MST_ENTRY strings.
3437 auto Abbv = std::make_shared<BitCodeAbbrev>();
3438 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3442 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3444 // 7-bit fixed width MST_ENTRY strings.
3445 Abbv = std::make_shared<BitCodeAbbrev>();
3446 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3450 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3452 // 6-bit char6 MST_ENTRY strings.
3453 Abbv = std::make_shared<BitCodeAbbrev>();
3454 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3458 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3460 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3461 Abbv = std::make_shared<BitCodeAbbrev>();
3462 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3468 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3470 SmallVector<unsigned, 64> Vals;
3471 forEachModule(
3472 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3473 StringRef Key = MPSE.getKey();
3474 const auto &Value = MPSE.getValue();
3475 StringEncoding Bits = getStringEncoding(Key);
3476 unsigned AbbrevToUse = Abbrev8Bit;
3477 if (Bits == SE_Char6)
3478 AbbrevToUse = Abbrev6Bit;
3479 else if (Bits == SE_Fixed7)
3480 AbbrevToUse = Abbrev7Bit;
3482 Vals.push_back(Value.first);
3483 Vals.append(Key.begin(), Key.end());
3485 // Emit the finished record.
3486 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3488 // Emit an optional hash for the module now
3489 const auto &Hash = Value.second;
3490 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3491 Vals.assign(Hash.begin(), Hash.end());
3492 // Emit the hash record.
3493 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3496 Vals.clear();
3498 Stream.ExitBlock();
3501 /// Write the function type metadata related records that need to appear before
3502 /// a function summary entry (whether per-module or combined).
3503 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3504 FunctionSummary *FS) {
3505 if (!FS->type_tests().empty())
3506 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3508 SmallVector<uint64_t, 64> Record;
3510 auto WriteVFuncIdVec = [&](uint64_t Ty,
3511 ArrayRef<FunctionSummary::VFuncId> VFs) {
3512 if (VFs.empty())
3513 return;
3514 Record.clear();
3515 for (auto &VF : VFs) {
3516 Record.push_back(VF.GUID);
3517 Record.push_back(VF.Offset);
3519 Stream.EmitRecord(Ty, Record);
3522 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3523 FS->type_test_assume_vcalls());
3524 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3525 FS->type_checked_load_vcalls());
3527 auto WriteConstVCallVec = [&](uint64_t Ty,
3528 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3529 for (auto &VC : VCs) {
3530 Record.clear();
3531 Record.push_back(VC.VFunc.GUID);
3532 Record.push_back(VC.VFunc.Offset);
3533 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3534 Stream.EmitRecord(Ty, Record);
3538 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3539 FS->type_test_assume_const_vcalls());
3540 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3541 FS->type_checked_load_const_vcalls());
3544 /// Collect type IDs from type tests used by function.
3545 static void
3546 getReferencedTypeIds(FunctionSummary *FS,
3547 std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3548 if (!FS->type_tests().empty())
3549 for (auto &TT : FS->type_tests())
3550 ReferencedTypeIds.insert(TT);
3552 auto GetReferencedTypesFromVFuncIdVec =
3553 [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3554 for (auto &VF : VFs)
3555 ReferencedTypeIds.insert(VF.GUID);
3558 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3559 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3561 auto GetReferencedTypesFromConstVCallVec =
3562 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3563 for (auto &VC : VCs)
3564 ReferencedTypeIds.insert(VC.VFunc.GUID);
3567 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3568 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3571 static void writeWholeProgramDevirtResolutionByArg(
3572 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3573 const WholeProgramDevirtResolution::ByArg &ByArg) {
3574 NameVals.push_back(args.size());
3575 NameVals.insert(NameVals.end(), args.begin(), args.end());
3577 NameVals.push_back(ByArg.TheKind);
3578 NameVals.push_back(ByArg.Info);
3579 NameVals.push_back(ByArg.Byte);
3580 NameVals.push_back(ByArg.Bit);
3583 static void writeWholeProgramDevirtResolution(
3584 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3585 uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3586 NameVals.push_back(Id);
3588 NameVals.push_back(Wpd.TheKind);
3589 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3590 NameVals.push_back(Wpd.SingleImplName.size());
3592 NameVals.push_back(Wpd.ResByArg.size());
3593 for (auto &A : Wpd.ResByArg)
3594 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3597 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3598 StringTableBuilder &StrtabBuilder,
3599 const std::string &Id,
3600 const TypeIdSummary &Summary) {
3601 NameVals.push_back(StrtabBuilder.add(Id));
3602 NameVals.push_back(Id.size());
3604 NameVals.push_back(Summary.TTRes.TheKind);
3605 NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3606 NameVals.push_back(Summary.TTRes.AlignLog2);
3607 NameVals.push_back(Summary.TTRes.SizeM1);
3608 NameVals.push_back(Summary.TTRes.BitMask);
3609 NameVals.push_back(Summary.TTRes.InlineBits);
3611 for (auto &W : Summary.WPDRes)
3612 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3613 W.second);
3616 static void writeTypeIdCompatibleVtableSummaryRecord(
3617 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3618 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3619 ValueEnumerator &VE) {
3620 NameVals.push_back(StrtabBuilder.add(Id));
3621 NameVals.push_back(Id.size());
3623 for (auto &P : Summary) {
3624 NameVals.push_back(P.AddressPointOffset);
3625 NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3629 // Helper to emit a single function summary record.
3630 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3631 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3632 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3633 const Function &F) {
3634 NameVals.push_back(ValueID);
3636 FunctionSummary *FS = cast<FunctionSummary>(Summary);
3637 writeFunctionTypeMetadataRecords(Stream, FS);
3639 auto SpecialRefCnts = FS->specialRefCounts();
3640 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3641 NameVals.push_back(FS->instCount());
3642 NameVals.push_back(getEncodedFFlags(FS->fflags()));
3643 NameVals.push_back(FS->refs().size());
3644 NameVals.push_back(SpecialRefCnts.first); // rorefcnt
3645 NameVals.push_back(SpecialRefCnts.second); // worefcnt
3647 for (auto &RI : FS->refs())
3648 NameVals.push_back(VE.getValueID(RI.getValue()));
3650 bool HasProfileData =
3651 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3652 for (auto &ECI : FS->calls()) {
3653 NameVals.push_back(getValueId(ECI.first));
3654 if (HasProfileData)
3655 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3656 else if (WriteRelBFToSummary)
3657 NameVals.push_back(ECI.second.RelBlockFreq);
3660 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3661 unsigned Code =
3662 (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3663 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3664 : bitc::FS_PERMODULE));
3666 // Emit the finished record.
3667 Stream.EmitRecord(Code, NameVals, FSAbbrev);
3668 NameVals.clear();
3671 // Collect the global value references in the given variable's initializer,
3672 // and emit them in a summary record.
3673 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3674 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3675 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3676 auto VI = Index->getValueInfo(V.getGUID());
3677 if (!VI || VI.getSummaryList().empty()) {
3678 // Only declarations should not have a summary (a declaration might however
3679 // have a summary if the def was in module level asm).
3680 assert(V.isDeclaration());
3681 return;
3683 auto *Summary = VI.getSummaryList()[0].get();
3684 NameVals.push_back(VE.getValueID(&V));
3685 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3686 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3687 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3689 auto VTableFuncs = VS->vTableFuncs();
3690 if (!VTableFuncs.empty())
3691 NameVals.push_back(VS->refs().size());
3693 unsigned SizeBeforeRefs = NameVals.size();
3694 for (auto &RI : VS->refs())
3695 NameVals.push_back(VE.getValueID(RI.getValue()));
3696 // Sort the refs for determinism output, the vector returned by FS->refs() has
3697 // been initialized from a DenseSet.
3698 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3700 if (VTableFuncs.empty())
3701 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3702 FSModRefsAbbrev);
3703 else {
3704 // VTableFuncs pairs should already be sorted by offset.
3705 for (auto &P : VTableFuncs) {
3706 NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3707 NameVals.push_back(P.VTableOffset);
3710 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3711 FSModVTableRefsAbbrev);
3713 NameVals.clear();
3716 // Current version for the summary.
3717 // This is bumped whenever we introduce changes in the way some record are
3718 // interpreted, like flags for instance.
3719 static const uint64_t INDEX_VERSION = 7;
3721 /// Emit the per-module summary section alongside the rest of
3722 /// the module's bitcode.
3723 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3724 // By default we compile with ThinLTO if the module has a summary, but the
3725 // client can request full LTO with a module flag.
3726 bool IsThinLTO = true;
3727 if (auto *MD =
3728 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3729 IsThinLTO = MD->getZExtValue();
3730 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3731 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3734 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3736 // Write the index flags.
3737 uint64_t Flags = 0;
3738 // Bits 1-3 are set only in the combined index, skip them.
3739 if (Index->enableSplitLTOUnit())
3740 Flags |= 0x8;
3741 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3743 if (Index->begin() == Index->end()) {
3744 Stream.ExitBlock();
3745 return;
3748 for (const auto &GVI : valueIds()) {
3749 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3750 ArrayRef<uint64_t>{GVI.second, GVI.first});
3753 // Abbrev for FS_PERMODULE_PROFILE.
3754 auto Abbv = std::make_shared<BitCodeAbbrev>();
3755 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3763 // numrefs x valueid, n x (valueid, hotness)
3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3766 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3768 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3769 Abbv = std::make_shared<BitCodeAbbrev>();
3770 if (WriteRelBFToSummary)
3771 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3772 else
3773 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3781 // numrefs x valueid, n x (valueid [, rel_block_freq])
3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3784 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3786 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3787 Abbv = std::make_shared<BitCodeAbbrev>();
3788 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3793 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3795 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3796 Abbv = std::make_shared<BitCodeAbbrev>();
3797 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3801 // numrefs x valueid, n x (valueid , offset)
3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3804 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3806 // Abbrev for FS_ALIAS.
3807 Abbv = std::make_shared<BitCodeAbbrev>();
3808 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3812 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3814 // Abbrev for FS_TYPE_ID_METADATA
3815 Abbv = std::make_shared<BitCodeAbbrev>();
3816 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3819 // n x (valueid , offset)
3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3822 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3824 SmallVector<uint64_t, 64> NameVals;
3825 // Iterate over the list of functions instead of the Index to
3826 // ensure the ordering is stable.
3827 for (const Function &F : M) {
3828 // Summary emission does not support anonymous functions, they have to
3829 // renamed using the anonymous function renaming pass.
3830 if (!F.hasName())
3831 report_fatal_error("Unexpected anonymous function when writing summary");
3833 ValueInfo VI = Index->getValueInfo(F.getGUID());
3834 if (!VI || VI.getSummaryList().empty()) {
3835 // Only declarations should not have a summary (a declaration might
3836 // however have a summary if the def was in module level asm).
3837 assert(F.isDeclaration());
3838 continue;
3840 auto *Summary = VI.getSummaryList()[0].get();
3841 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3842 FSCallsAbbrev, FSCallsProfileAbbrev, F);
3845 // Capture references from GlobalVariable initializers, which are outside
3846 // of a function scope.
3847 for (const GlobalVariable &G : M.globals())
3848 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3849 FSModVTableRefsAbbrev);
3851 for (const GlobalAlias &A : M.aliases()) {
3852 auto *Aliasee = A.getBaseObject();
3853 if (!Aliasee->hasName())
3854 // Nameless function don't have an entry in the summary, skip it.
3855 continue;
3856 auto AliasId = VE.getValueID(&A);
3857 auto AliaseeId = VE.getValueID(Aliasee);
3858 NameVals.push_back(AliasId);
3859 auto *Summary = Index->getGlobalValueSummary(A);
3860 AliasSummary *AS = cast<AliasSummary>(Summary);
3861 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3862 NameVals.push_back(AliaseeId);
3863 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3864 NameVals.clear();
3867 for (auto &S : Index->typeIdCompatibleVtableMap()) {
3868 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3869 S.second, VE);
3870 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3871 TypeIdCompatibleVtableAbbrev);
3872 NameVals.clear();
3875 Stream.ExitBlock();
3878 /// Emit the combined summary section into the combined index file.
3879 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3880 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3881 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3883 // Write the index flags.
3884 uint64_t Flags = 0;
3885 if (Index.withGlobalValueDeadStripping())
3886 Flags |= 0x1;
3887 if (Index.skipModuleByDistributedBackend())
3888 Flags |= 0x2;
3889 if (Index.hasSyntheticEntryCounts())
3890 Flags |= 0x4;
3891 if (Index.enableSplitLTOUnit())
3892 Flags |= 0x8;
3893 if (Index.partiallySplitLTOUnits())
3894 Flags |= 0x10;
3895 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3897 for (const auto &GVI : valueIds()) {
3898 Stream.EmitRecord(bitc::FS_VALUE_GUID,
3899 ArrayRef<uint64_t>{GVI.second, GVI.first});
3902 // Abbrev for FS_COMBINED.
3903 auto Abbv = std::make_shared<BitCodeAbbrev>();
3904 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3914 // numrefs x valueid, n x (valueid)
3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3917 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3919 // Abbrev for FS_COMBINED_PROFILE.
3920 Abbv = std::make_shared<BitCodeAbbrev>();
3921 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
3931 // numrefs x valueid, n x (valueid, hotness)
3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3934 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3936 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3937 Abbv = std::make_shared<BitCodeAbbrev>();
3938 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3944 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3946 // Abbrev for FS_COMBINED_ALIAS.
3947 Abbv = std::make_shared<BitCodeAbbrev>();
3948 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3953 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3955 // The aliases are emitted as a post-pass, and will point to the value
3956 // id of the aliasee. Save them in a vector for post-processing.
3957 SmallVector<AliasSummary *, 64> Aliases;
3959 // Save the value id for each summary for alias emission.
3960 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3962 SmallVector<uint64_t, 64> NameVals;
3964 // Set that will be populated during call to writeFunctionTypeMetadataRecords
3965 // with the type ids referenced by this index file.
3966 std::set<GlobalValue::GUID> ReferencedTypeIds;
3968 // For local linkage, we also emit the original name separately
3969 // immediately after the record.
3970 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3971 if (!GlobalValue::isLocalLinkage(S.linkage()))
3972 return;
3973 NameVals.push_back(S.getOriginalName());
3974 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3975 NameVals.clear();
3978 std::set<GlobalValue::GUID> DefOrUseGUIDs;
3979 forEachSummary([&](GVInfo I, bool IsAliasee) {
3980 GlobalValueSummary *S = I.second;
3981 assert(S);
3982 DefOrUseGUIDs.insert(I.first);
3983 for (const ValueInfo &VI : S->refs())
3984 DefOrUseGUIDs.insert(VI.getGUID());
3986 auto ValueId = getValueId(I.first);
3987 assert(ValueId);
3988 SummaryToValueIdMap[S] = *ValueId;
3990 // If this is invoked for an aliasee, we want to record the above
3991 // mapping, but then not emit a summary entry (if the aliasee is
3992 // to be imported, we will invoke this separately with IsAliasee=false).
3993 if (IsAliasee)
3994 return;
3996 if (auto *AS = dyn_cast<AliasSummary>(S)) {
3997 // Will process aliases as a post-pass because the reader wants all
3998 // global to be loaded first.
3999 Aliases.push_back(AS);
4000 return;
4003 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4004 NameVals.push_back(*ValueId);
4005 NameVals.push_back(Index.getModuleId(VS->modulePath()));
4006 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4007 NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4008 for (auto &RI : VS->refs()) {
4009 auto RefValueId = getValueId(RI.getGUID());
4010 if (!RefValueId)
4011 continue;
4012 NameVals.push_back(*RefValueId);
4015 // Emit the finished record.
4016 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4017 FSModRefsAbbrev);
4018 NameVals.clear();
4019 MaybeEmitOriginalName(*S);
4020 return;
4023 auto *FS = cast<FunctionSummary>(S);
4024 writeFunctionTypeMetadataRecords(Stream, FS);
4025 getReferencedTypeIds(FS, ReferencedTypeIds);
4027 NameVals.push_back(*ValueId);
4028 NameVals.push_back(Index.getModuleId(FS->modulePath()));
4029 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4030 NameVals.push_back(FS->instCount());
4031 NameVals.push_back(getEncodedFFlags(FS->fflags()));
4032 NameVals.push_back(FS->entryCount());
4034 // Fill in below
4035 NameVals.push_back(0); // numrefs
4036 NameVals.push_back(0); // rorefcnt
4037 NameVals.push_back(0); // worefcnt
4039 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4040 for (auto &RI : FS->refs()) {
4041 auto RefValueId = getValueId(RI.getGUID());
4042 if (!RefValueId)
4043 continue;
4044 NameVals.push_back(*RefValueId);
4045 if (RI.isReadOnly())
4046 RORefCnt++;
4047 else if (RI.isWriteOnly())
4048 WORefCnt++;
4049 Count++;
4051 NameVals[6] = Count;
4052 NameVals[7] = RORefCnt;
4053 NameVals[8] = WORefCnt;
4055 bool HasProfileData = false;
4056 for (auto &EI : FS->calls()) {
4057 HasProfileData |=
4058 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4059 if (HasProfileData)
4060 break;
4063 for (auto &EI : FS->calls()) {
4064 // If this GUID doesn't have a value id, it doesn't have a function
4065 // summary and we don't need to record any calls to it.
4066 GlobalValue::GUID GUID = EI.first.getGUID();
4067 auto CallValueId = getValueId(GUID);
4068 if (!CallValueId) {
4069 // For SamplePGO, the indirect call targets for local functions will
4070 // have its original name annotated in profile. We try to find the
4071 // corresponding PGOFuncName as the GUID.
4072 GUID = Index.getGUIDFromOriginalID(GUID);
4073 if (GUID == 0)
4074 continue;
4075 CallValueId = getValueId(GUID);
4076 if (!CallValueId)
4077 continue;
4078 // The mapping from OriginalId to GUID may return a GUID
4079 // that corresponds to a static variable. Filter it out here.
4080 // This can happen when
4081 // 1) There is a call to a library function which does not have
4082 // a CallValidId;
4083 // 2) There is a static variable with the OriginalGUID identical
4084 // to the GUID of the library function in 1);
4085 // When this happens, the logic for SamplePGO kicks in and
4086 // the static variable in 2) will be found, which needs to be
4087 // filtered out.
4088 auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4089 if (GVSum &&
4090 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4091 continue;
4093 NameVals.push_back(*CallValueId);
4094 if (HasProfileData)
4095 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4098 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4099 unsigned Code =
4100 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4102 // Emit the finished record.
4103 Stream.EmitRecord(Code, NameVals, FSAbbrev);
4104 NameVals.clear();
4105 MaybeEmitOriginalName(*S);
4108 for (auto *AS : Aliases) {
4109 auto AliasValueId = SummaryToValueIdMap[AS];
4110 assert(AliasValueId);
4111 NameVals.push_back(AliasValueId);
4112 NameVals.push_back(Index.getModuleId(AS->modulePath()));
4113 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4114 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4115 assert(AliaseeValueId);
4116 NameVals.push_back(AliaseeValueId);
4118 // Emit the finished record.
4119 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4120 NameVals.clear();
4121 MaybeEmitOriginalName(*AS);
4123 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4124 getReferencedTypeIds(FS, ReferencedTypeIds);
4127 if (!Index.cfiFunctionDefs().empty()) {
4128 for (auto &S : Index.cfiFunctionDefs()) {
4129 if (DefOrUseGUIDs.count(
4130 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4131 NameVals.push_back(StrtabBuilder.add(S));
4132 NameVals.push_back(S.size());
4135 if (!NameVals.empty()) {
4136 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4137 NameVals.clear();
4141 if (!Index.cfiFunctionDecls().empty()) {
4142 for (auto &S : Index.cfiFunctionDecls()) {
4143 if (DefOrUseGUIDs.count(
4144 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4145 NameVals.push_back(StrtabBuilder.add(S));
4146 NameVals.push_back(S.size());
4149 if (!NameVals.empty()) {
4150 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4151 NameVals.clear();
4155 // Walk the GUIDs that were referenced, and write the
4156 // corresponding type id records.
4157 for (auto &T : ReferencedTypeIds) {
4158 auto TidIter = Index.typeIds().equal_range(T);
4159 for (auto It = TidIter.first; It != TidIter.second; ++It) {
4160 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4161 It->second.second);
4162 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4163 NameVals.clear();
4167 Stream.ExitBlock();
4170 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4171 /// current llvm version, and a record for the epoch number.
4172 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4173 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4175 // Write the "user readable" string identifying the bitcode producer
4176 auto Abbv = std::make_shared<BitCodeAbbrev>();
4177 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4180 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4181 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4182 "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4184 // Write the epoch version
4185 Abbv = std::make_shared<BitCodeAbbrev>();
4186 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4188 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4189 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
4190 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4191 Stream.ExitBlock();
4194 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4195 // Emit the module's hash.
4196 // MODULE_CODE_HASH: [5*i32]
4197 if (GenerateHash) {
4198 uint32_t Vals[5];
4199 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4200 Buffer.size() - BlockStartPos));
4201 StringRef Hash = Hasher.result();
4202 for (int Pos = 0; Pos < 20; Pos += 4) {
4203 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4206 // Emit the finished record.
4207 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4209 if (ModHash)
4210 // Save the written hash value.
4211 llvm::copy(Vals, std::begin(*ModHash));
4215 void ModuleBitcodeWriter::write() {
4216 writeIdentificationBlock(Stream);
4218 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4219 size_t BlockStartPos = Buffer.size();
4221 writeModuleVersion();
4223 // Emit blockinfo, which defines the standard abbreviations etc.
4224 writeBlockInfo();
4226 // Emit information describing all of the types in the module.
4227 writeTypeTable();
4229 // Emit information about attribute groups.
4230 writeAttributeGroupTable();
4232 // Emit information about parameter attributes.
4233 writeAttributeTable();
4235 writeComdats();
4237 // Emit top-level description of module, including target triple, inline asm,
4238 // descriptors for global variables, and function prototype info.
4239 writeModuleInfo();
4241 // Emit constants.
4242 writeModuleConstants();
4244 // Emit metadata kind names.
4245 writeModuleMetadataKinds();
4247 // Emit metadata.
4248 writeModuleMetadata();
4250 // Emit module-level use-lists.
4251 if (VE.shouldPreserveUseListOrder())
4252 writeUseListBlock(nullptr);
4254 writeOperandBundleTags();
4255 writeSyncScopeNames();
4257 // Emit function bodies.
4258 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4259 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4260 if (!F->isDeclaration())
4261 writeFunction(*F, FunctionToBitcodeIndex);
4263 // Need to write after the above call to WriteFunction which populates
4264 // the summary information in the index.
4265 if (Index)
4266 writePerModuleGlobalValueSummary();
4268 writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4270 writeModuleHash(BlockStartPos);
4272 Stream.ExitBlock();
4275 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4276 uint32_t &Position) {
4277 support::endian::write32le(&Buffer[Position], Value);
4278 Position += 4;
4281 /// If generating a bc file on darwin, we have to emit a
4282 /// header and trailer to make it compatible with the system archiver. To do
4283 /// this we emit the following header, and then emit a trailer that pads the
4284 /// file out to be a multiple of 16 bytes.
4286 /// struct bc_header {
4287 /// uint32_t Magic; // 0x0B17C0DE
4288 /// uint32_t Version; // Version, currently always 0.
4289 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4290 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
4291 /// uint32_t CPUType; // CPU specifier.
4292 /// ... potentially more later ...
4293 /// };
4294 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4295 const Triple &TT) {
4296 unsigned CPUType = ~0U;
4298 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4299 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4300 // number from /usr/include/mach/machine.h. It is ok to reproduce the
4301 // specific constants here because they are implicitly part of the Darwin ABI.
4302 enum {
4303 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4304 DARWIN_CPU_TYPE_X86 = 7,
4305 DARWIN_CPU_TYPE_ARM = 12,
4306 DARWIN_CPU_TYPE_POWERPC = 18
4309 Triple::ArchType Arch = TT.getArch();
4310 if (Arch == Triple::x86_64)
4311 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4312 else if (Arch == Triple::x86)
4313 CPUType = DARWIN_CPU_TYPE_X86;
4314 else if (Arch == Triple::ppc)
4315 CPUType = DARWIN_CPU_TYPE_POWERPC;
4316 else if (Arch == Triple::ppc64)
4317 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4318 else if (Arch == Triple::arm || Arch == Triple::thumb)
4319 CPUType = DARWIN_CPU_TYPE_ARM;
4321 // Traditional Bitcode starts after header.
4322 assert(Buffer.size() >= BWH_HeaderSize &&
4323 "Expected header size to be reserved");
4324 unsigned BCOffset = BWH_HeaderSize;
4325 unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4327 // Write the magic and version.
4328 unsigned Position = 0;
4329 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4330 writeInt32ToBuffer(0, Buffer, Position); // Version.
4331 writeInt32ToBuffer(BCOffset, Buffer, Position);
4332 writeInt32ToBuffer(BCSize, Buffer, Position);
4333 writeInt32ToBuffer(CPUType, Buffer, Position);
4335 // If the file is not a multiple of 16 bytes, insert dummy padding.
4336 while (Buffer.size() & 15)
4337 Buffer.push_back(0);
4340 /// Helper to write the header common to all bitcode files.
4341 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4342 // Emit the file header.
4343 Stream.Emit((unsigned)'B', 8);
4344 Stream.Emit((unsigned)'C', 8);
4345 Stream.Emit(0x0, 4);
4346 Stream.Emit(0xC, 4);
4347 Stream.Emit(0xE, 4);
4348 Stream.Emit(0xD, 4);
4351 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
4352 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
4353 writeBitcodeHeader(*Stream);
4356 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4358 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4359 Stream->EnterSubblock(Block, 3);
4361 auto Abbv = std::make_shared<BitCodeAbbrev>();
4362 Abbv->Add(BitCodeAbbrevOp(Record));
4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4364 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4366 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4368 Stream->ExitBlock();
4371 void BitcodeWriter::writeSymtab() {
4372 assert(!WroteStrtab && !WroteSymtab);
4374 // If any module has module-level inline asm, we will require a registered asm
4375 // parser for the target so that we can create an accurate symbol table for
4376 // the module.
4377 for (Module *M : Mods) {
4378 if (M->getModuleInlineAsm().empty())
4379 continue;
4381 std::string Err;
4382 const Triple TT(M->getTargetTriple());
4383 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4384 if (!T || !T->hasMCAsmParser())
4385 return;
4388 WroteSymtab = true;
4389 SmallVector<char, 0> Symtab;
4390 // The irsymtab::build function may be unable to create a symbol table if the
4391 // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4392 // table is not required for correctness, but we still want to be able to
4393 // write malformed modules to bitcode files, so swallow the error.
4394 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4395 consumeError(std::move(E));
4396 return;
4399 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4400 {Symtab.data(), Symtab.size()});
4403 void BitcodeWriter::writeStrtab() {
4404 assert(!WroteStrtab);
4406 std::vector<char> Strtab;
4407 StrtabBuilder.finalizeInOrder();
4408 Strtab.resize(StrtabBuilder.getSize());
4409 StrtabBuilder.write((uint8_t *)Strtab.data());
4411 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4412 {Strtab.data(), Strtab.size()});
4414 WroteStrtab = true;
4417 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4418 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4419 WroteStrtab = true;
4422 void BitcodeWriter::writeModule(const Module &M,
4423 bool ShouldPreserveUseListOrder,
4424 const ModuleSummaryIndex *Index,
4425 bool GenerateHash, ModuleHash *ModHash) {
4426 assert(!WroteStrtab);
4428 // The Mods vector is used by irsymtab::build, which requires non-const
4429 // Modules in case it needs to materialize metadata. But the bitcode writer
4430 // requires that the module is materialized, so we can cast to non-const here,
4431 // after checking that it is in fact materialized.
4432 assert(M.isMaterialized());
4433 Mods.push_back(const_cast<Module *>(&M));
4435 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4436 ShouldPreserveUseListOrder, Index,
4437 GenerateHash, ModHash);
4438 ModuleWriter.write();
4441 void BitcodeWriter::writeIndex(
4442 const ModuleSummaryIndex *Index,
4443 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4444 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4445 ModuleToSummariesForIndex);
4446 IndexWriter.write();
4449 /// Write the specified module to the specified output stream.
4450 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4451 bool ShouldPreserveUseListOrder,
4452 const ModuleSummaryIndex *Index,
4453 bool GenerateHash, ModuleHash *ModHash) {
4454 SmallVector<char, 0> Buffer;
4455 Buffer.reserve(256*1024);
4457 // If this is darwin or another generic macho target, reserve space for the
4458 // header.
4459 Triple TT(M.getTargetTriple());
4460 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4461 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4463 BitcodeWriter Writer(Buffer);
4464 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4465 ModHash);
4466 Writer.writeSymtab();
4467 Writer.writeStrtab();
4469 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4470 emitDarwinBCHeaderAndTrailer(Buffer, TT);
4472 // Write the generated bitstream to "Out".
4473 Out.write((char*)&Buffer.front(), Buffer.size());
4476 void IndexBitcodeWriter::write() {
4477 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4479 writeModuleVersion();
4481 // Write the module paths in the combined index.
4482 writeModStrings();
4484 // Write the summary combined index records.
4485 writeCombinedGlobalValueSummary();
4487 Stream.ExitBlock();
4490 // Write the specified module summary index to the given raw output stream,
4491 // where it will be written in a new bitcode block. This is used when
4492 // writing the combined index file for ThinLTO. When writing a subset of the
4493 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4494 void llvm::WriteIndexToFile(
4495 const ModuleSummaryIndex &Index, raw_ostream &Out,
4496 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4497 SmallVector<char, 0> Buffer;
4498 Buffer.reserve(256 * 1024);
4500 BitcodeWriter Writer(Buffer);
4501 Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4502 Writer.writeStrtab();
4504 Out.write((char *)&Buffer.front(), Buffer.size());
4507 namespace {
4509 /// Class to manage the bitcode writing for a thin link bitcode file.
4510 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4511 /// ModHash is for use in ThinLTO incremental build, generated while writing
4512 /// the module bitcode file.
4513 const ModuleHash *ModHash;
4515 public:
4516 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4517 BitstreamWriter &Stream,
4518 const ModuleSummaryIndex &Index,
4519 const ModuleHash &ModHash)
4520 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4521 /*ShouldPreserveUseListOrder=*/false, &Index),
4522 ModHash(&ModHash) {}
4524 void write();
4526 private:
4527 void writeSimplifiedModuleInfo();
4530 } // end anonymous namespace
4532 // This function writes a simpilified module info for thin link bitcode file.
4533 // It only contains the source file name along with the name(the offset and
4534 // size in strtab) and linkage for global values. For the global value info
4535 // entry, in order to keep linkage at offset 5, there are three zeros used
4536 // as padding.
4537 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4538 SmallVector<unsigned, 64> Vals;
4539 // Emit the module's source file name.
4541 StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4542 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4543 if (Bits == SE_Char6)
4544 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4545 else if (Bits == SE_Fixed7)
4546 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4548 // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4549 auto Abbv = std::make_shared<BitCodeAbbrev>();
4550 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4552 Abbv->Add(AbbrevOpToUse);
4553 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4555 for (const auto P : M.getSourceFileName())
4556 Vals.push_back((unsigned char)P);
4558 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4559 Vals.clear();
4562 // Emit the global variable information.
4563 for (const GlobalVariable &GV : M.globals()) {
4564 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4565 Vals.push_back(StrtabBuilder.add(GV.getName()));
4566 Vals.push_back(GV.getName().size());
4567 Vals.push_back(0);
4568 Vals.push_back(0);
4569 Vals.push_back(0);
4570 Vals.push_back(getEncodedLinkage(GV));
4572 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4573 Vals.clear();
4576 // Emit the function proto information.
4577 for (const Function &F : M) {
4578 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
4579 Vals.push_back(StrtabBuilder.add(F.getName()));
4580 Vals.push_back(F.getName().size());
4581 Vals.push_back(0);
4582 Vals.push_back(0);
4583 Vals.push_back(0);
4584 Vals.push_back(getEncodedLinkage(F));
4586 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4587 Vals.clear();
4590 // Emit the alias information.
4591 for (const GlobalAlias &A : M.aliases()) {
4592 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4593 Vals.push_back(StrtabBuilder.add(A.getName()));
4594 Vals.push_back(A.getName().size());
4595 Vals.push_back(0);
4596 Vals.push_back(0);
4597 Vals.push_back(0);
4598 Vals.push_back(getEncodedLinkage(A));
4600 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4601 Vals.clear();
4604 // Emit the ifunc information.
4605 for (const GlobalIFunc &I : M.ifuncs()) {
4606 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4607 Vals.push_back(StrtabBuilder.add(I.getName()));
4608 Vals.push_back(I.getName().size());
4609 Vals.push_back(0);
4610 Vals.push_back(0);
4611 Vals.push_back(0);
4612 Vals.push_back(getEncodedLinkage(I));
4614 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4615 Vals.clear();
4619 void ThinLinkBitcodeWriter::write() {
4620 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4622 writeModuleVersion();
4624 writeSimplifiedModuleInfo();
4626 writePerModuleGlobalValueSummary();
4628 // Write module hash.
4629 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4631 Stream.ExitBlock();
4634 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4635 const ModuleSummaryIndex &Index,
4636 const ModuleHash &ModHash) {
4637 assert(!WroteStrtab);
4639 // The Mods vector is used by irsymtab::build, which requires non-const
4640 // Modules in case it needs to materialize metadata. But the bitcode writer
4641 // requires that the module is materialized, so we can cast to non-const here,
4642 // after checking that it is in fact materialized.
4643 assert(M.isMaterialized());
4644 Mods.push_back(const_cast<Module *>(&M));
4646 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4647 ModHash);
4648 ThinLinkWriter.write();
4651 // Write the specified thin link bitcode file to the given raw output stream,
4652 // where it will be written in a new bitcode block. This is used when
4653 // writing the per-module index file for ThinLTO.
4654 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4655 const ModuleSummaryIndex &Index,
4656 const ModuleHash &ModHash) {
4657 SmallVector<char, 0> Buffer;
4658 Buffer.reserve(256 * 1024);
4660 BitcodeWriter Writer(Buffer);
4661 Writer.writeThinLinkBitcode(M, Index, ModHash);
4662 Writer.writeSymtab();
4663 Writer.writeStrtab();
4665 Out.write((char *)&Buffer.front(), Buffer.size());