1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Constant* classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/ManagedStatic.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/raw_ostream.h"
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 bool Constant::isNegativeZeroValue() const {
39 // Floating point values have an explicit -0.0 value.
40 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
41 return CFP
->isZero() && CFP
->isNegative();
43 // Equivalent for a vector of -0.0's.
44 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
45 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
46 if (CV
->getElementAsAPFloat(0).isNegZero())
49 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
50 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
51 if (SplatCFP
&& SplatCFP
->isZero() && SplatCFP
->isNegative())
54 // We've already handled true FP case; any other FP vectors can't represent -0.0.
55 if (getType()->isFPOrFPVectorTy())
58 // Otherwise, just use +0.0.
62 // Return true iff this constant is positive zero (floating point), negative
63 // zero (floating point), or a null value.
64 bool Constant::isZeroValue() const {
65 // Floating point values have an explicit -0.0 value.
66 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
69 // Equivalent for a vector of -0.0's.
70 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
71 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
72 if (CV
->getElementAsAPFloat(0).isZero())
75 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
76 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
77 if (SplatCFP
&& SplatCFP
->isZero())
80 // Otherwise, just use +0.0.
84 bool Constant::isNullValue() const {
86 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
90 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
91 return CFP
->isZero() && !CFP
->isNegative();
93 // constant zero is zero for aggregates, cpnull is null for pointers, none for
95 return isa
<ConstantAggregateZero
>(this) || isa
<ConstantPointerNull
>(this) ||
96 isa
<ConstantTokenNone
>(this);
99 bool Constant::isAllOnesValue() const {
100 // Check for -1 integers
101 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
102 return CI
->isMinusOne();
104 // Check for FP which are bitcasted from -1 integers
105 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
106 return CFP
->getValueAPF().bitcastToAPInt().isAllOnesValue();
108 // Check for constant vectors which are splats of -1 values.
109 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
110 if (Constant
*Splat
= CV
->getSplatValue())
111 return Splat
->isAllOnesValue();
113 // Check for constant vectors which are splats of -1 values.
114 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
116 if (CV
->getElementType()->isFloatingPointTy())
117 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
118 return CV
->getElementAsAPInt(0).isAllOnesValue();
125 bool Constant::isOneValue() const {
126 // Check for 1 integers
127 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
130 // Check for FP which are bitcasted from 1 integers
131 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
132 return CFP
->getValueAPF().bitcastToAPInt().isOneValue();
134 // Check for constant vectors which are splats of 1 values.
135 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
136 if (Constant
*Splat
= CV
->getSplatValue())
137 return Splat
->isOneValue();
139 // Check for constant vectors which are splats of 1 values.
140 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
142 if (CV
->getElementType()->isFloatingPointTy())
143 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
144 return CV
->getElementAsAPInt(0).isOneValue();
151 bool Constant::isMinSignedValue() const {
152 // Check for INT_MIN integers
153 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
154 return CI
->isMinValue(/*isSigned=*/true);
156 // Check for FP which are bitcasted from INT_MIN integers
157 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
158 return CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
160 // Check for constant vectors which are splats of INT_MIN values.
161 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
162 if (Constant
*Splat
= CV
->getSplatValue())
163 return Splat
->isMinSignedValue();
165 // Check for constant vectors which are splats of INT_MIN values.
166 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
168 if (CV
->getElementType()->isFloatingPointTy())
169 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
170 return CV
->getElementAsAPInt(0).isMinSignedValue();
177 bool Constant::isNotMinSignedValue() const {
178 // Check for INT_MIN integers
179 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
180 return !CI
->isMinValue(/*isSigned=*/true);
182 // Check for FP which are bitcasted from INT_MIN integers
183 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
184 return !CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
186 // Check that vectors don't contain INT_MIN
187 if (this->getType()->isVectorTy()) {
188 unsigned NumElts
= this->getType()->getVectorNumElements();
189 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
190 Constant
*Elt
= this->getAggregateElement(i
);
191 if (!Elt
|| !Elt
->isNotMinSignedValue())
197 // It *may* contain INT_MIN, we can't tell.
201 bool Constant::isFiniteNonZeroFP() const {
202 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
203 return CFP
->getValueAPF().isFiniteNonZero();
204 if (!getType()->isVectorTy())
206 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
207 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
208 if (!CFP
|| !CFP
->getValueAPF().isFiniteNonZero())
214 bool Constant::isNormalFP() const {
215 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
216 return CFP
->getValueAPF().isNormal();
217 if (!getType()->isVectorTy())
219 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
220 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
221 if (!CFP
|| !CFP
->getValueAPF().isNormal())
227 bool Constant::hasExactInverseFP() const {
228 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
229 return CFP
->getValueAPF().getExactInverse(nullptr);
230 if (!getType()->isVectorTy())
232 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
233 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
234 if (!CFP
|| !CFP
->getValueAPF().getExactInverse(nullptr))
240 bool Constant::isNaN() const {
241 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
243 if (!getType()->isVectorTy())
245 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
246 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
247 if (!CFP
|| !CFP
->isNaN())
253 bool Constant::containsUndefElement() const {
254 if (!getType()->isVectorTy())
256 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
)
257 if (isa
<UndefValue
>(getAggregateElement(i
)))
263 bool Constant::containsConstantExpression() const {
264 if (!getType()->isVectorTy())
266 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
)
267 if (isa
<ConstantExpr
>(getAggregateElement(i
)))
273 /// Constructor to create a '0' constant of arbitrary type.
274 Constant
*Constant::getNullValue(Type
*Ty
) {
275 switch (Ty
->getTypeID()) {
276 case Type::IntegerTyID
:
277 return ConstantInt::get(Ty
, 0);
279 return ConstantFP::get(Ty
->getContext(),
280 APFloat::getZero(APFloat::IEEEhalf()));
281 case Type::FloatTyID
:
282 return ConstantFP::get(Ty
->getContext(),
283 APFloat::getZero(APFloat::IEEEsingle()));
284 case Type::DoubleTyID
:
285 return ConstantFP::get(Ty
->getContext(),
286 APFloat::getZero(APFloat::IEEEdouble()));
287 case Type::X86_FP80TyID
:
288 return ConstantFP::get(Ty
->getContext(),
289 APFloat::getZero(APFloat::x87DoubleExtended()));
290 case Type::FP128TyID
:
291 return ConstantFP::get(Ty
->getContext(),
292 APFloat::getZero(APFloat::IEEEquad()));
293 case Type::PPC_FP128TyID
:
294 return ConstantFP::get(Ty
->getContext(),
295 APFloat(APFloat::PPCDoubleDouble(),
296 APInt::getNullValue(128)));
297 case Type::PointerTyID
:
298 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
299 case Type::StructTyID
:
300 case Type::ArrayTyID
:
301 case Type::VectorTyID
:
302 return ConstantAggregateZero::get(Ty
);
303 case Type::TokenTyID
:
304 return ConstantTokenNone::get(Ty
->getContext());
306 // Function, Label, or Opaque type?
307 llvm_unreachable("Cannot create a null constant of that type!");
311 Constant
*Constant::getIntegerValue(Type
*Ty
, const APInt
&V
) {
312 Type
*ScalarTy
= Ty
->getScalarType();
314 // Create the base integer constant.
315 Constant
*C
= ConstantInt::get(Ty
->getContext(), V
);
317 // Convert an integer to a pointer, if necessary.
318 if (PointerType
*PTy
= dyn_cast
<PointerType
>(ScalarTy
))
319 C
= ConstantExpr::getIntToPtr(C
, PTy
);
321 // Broadcast a scalar to a vector, if necessary.
322 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
323 C
= ConstantVector::getSplat(VTy
->getNumElements(), C
);
328 Constant
*Constant::getAllOnesValue(Type
*Ty
) {
329 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(Ty
))
330 return ConstantInt::get(Ty
->getContext(),
331 APInt::getAllOnesValue(ITy
->getBitWidth()));
333 if (Ty
->isFloatingPointTy()) {
334 APFloat FL
= APFloat::getAllOnesValue(Ty
->getPrimitiveSizeInBits(),
335 !Ty
->isPPC_FP128Ty());
336 return ConstantFP::get(Ty
->getContext(), FL
);
339 VectorType
*VTy
= cast
<VectorType
>(Ty
);
340 return ConstantVector::getSplat(VTy
->getNumElements(),
341 getAllOnesValue(VTy
->getElementType()));
344 Constant
*Constant::getAggregateElement(unsigned Elt
) const {
345 if (const ConstantAggregate
*CC
= dyn_cast
<ConstantAggregate
>(this))
346 return Elt
< CC
->getNumOperands() ? CC
->getOperand(Elt
) : nullptr;
348 if (const ConstantAggregateZero
*CAZ
= dyn_cast
<ConstantAggregateZero
>(this))
349 return Elt
< CAZ
->getNumElements() ? CAZ
->getElementValue(Elt
) : nullptr;
351 if (const UndefValue
*UV
= dyn_cast
<UndefValue
>(this))
352 return Elt
< UV
->getNumElements() ? UV
->getElementValue(Elt
) : nullptr;
354 if (const ConstantDataSequential
*CDS
=dyn_cast
<ConstantDataSequential
>(this))
355 return Elt
< CDS
->getNumElements() ? CDS
->getElementAsConstant(Elt
)
360 Constant
*Constant::getAggregateElement(Constant
*Elt
) const {
361 assert(isa
<IntegerType
>(Elt
->getType()) && "Index must be an integer");
362 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
)) {
363 // Check if the constant fits into an uint64_t.
364 if (CI
->getValue().getActiveBits() > 64)
366 return getAggregateElement(CI
->getZExtValue());
371 void Constant::destroyConstant() {
372 /// First call destroyConstantImpl on the subclass. This gives the subclass
373 /// a chance to remove the constant from any maps/pools it's contained in.
374 switch (getValueID()) {
376 llvm_unreachable("Not a constant!");
377 #define HANDLE_CONSTANT(Name) \
378 case Value::Name##Val: \
379 cast<Name>(this)->destroyConstantImpl(); \
381 #include "llvm/IR/Value.def"
384 // When a Constant is destroyed, there may be lingering
385 // references to the constant by other constants in the constant pool. These
386 // constants are implicitly dependent on the module that is being deleted,
387 // but they don't know that. Because we only find out when the CPV is
388 // deleted, we must now notify all of our users (that should only be
389 // Constants) that they are, in fact, invalid now and should be deleted.
391 while (!use_empty()) {
392 Value
*V
= user_back();
393 #ifndef NDEBUG // Only in -g mode...
394 if (!isa
<Constant
>(V
)) {
395 dbgs() << "While deleting: " << *this
396 << "\n\nUse still stuck around after Def is destroyed: " << *V
400 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
401 cast
<Constant
>(V
)->destroyConstant();
403 // The constant should remove itself from our use list...
404 assert((use_empty() || user_back() != V
) && "Constant not removed!");
407 // Value has no outstanding references it is safe to delete it now...
411 static bool canTrapImpl(const Constant
*C
,
412 SmallPtrSetImpl
<const ConstantExpr
*> &NonTrappingOps
) {
413 assert(C
->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
414 // The only thing that could possibly trap are constant exprs.
415 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
419 // ConstantExpr traps if any operands can trap.
420 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
) {
421 if (ConstantExpr
*Op
= dyn_cast
<ConstantExpr
>(CE
->getOperand(i
))) {
422 if (NonTrappingOps
.insert(Op
).second
&& canTrapImpl(Op
, NonTrappingOps
))
427 // Otherwise, only specific operations can trap.
428 switch (CE
->getOpcode()) {
431 case Instruction::UDiv
:
432 case Instruction::SDiv
:
433 case Instruction::URem
:
434 case Instruction::SRem
:
435 // Div and rem can trap if the RHS is not known to be non-zero.
436 if (!isa
<ConstantInt
>(CE
->getOperand(1)) ||CE
->getOperand(1)->isNullValue())
442 bool Constant::canTrap() const {
443 SmallPtrSet
<const ConstantExpr
*, 4> NonTrappingOps
;
444 return canTrapImpl(this, NonTrappingOps
);
447 /// Check if C contains a GlobalValue for which Predicate is true.
449 ConstHasGlobalValuePredicate(const Constant
*C
,
450 bool (*Predicate
)(const GlobalValue
*)) {
451 SmallPtrSet
<const Constant
*, 8> Visited
;
452 SmallVector
<const Constant
*, 8> WorkList
;
453 WorkList
.push_back(C
);
456 while (!WorkList
.empty()) {
457 const Constant
*WorkItem
= WorkList
.pop_back_val();
458 if (const auto *GV
= dyn_cast
<GlobalValue
>(WorkItem
))
461 for (const Value
*Op
: WorkItem
->operands()) {
462 const Constant
*ConstOp
= dyn_cast
<Constant
>(Op
);
465 if (Visited
.insert(ConstOp
).second
)
466 WorkList
.push_back(ConstOp
);
472 bool Constant::isThreadDependent() const {
473 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
474 return GV
->isThreadLocal();
476 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
479 bool Constant::isDLLImportDependent() const {
480 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
481 return GV
->hasDLLImportStorageClass();
483 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
486 bool Constant::isConstantUsed() const {
487 for (const User
*U
: users()) {
488 const Constant
*UC
= dyn_cast
<Constant
>(U
);
489 if (!UC
|| isa
<GlobalValue
>(UC
))
492 if (UC
->isConstantUsed())
498 bool Constant::needsRelocation() const {
499 if (isa
<GlobalValue
>(this))
500 return true; // Global reference.
502 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(this))
503 return BA
->getFunction()->needsRelocation();
505 // While raw uses of blockaddress need to be relocated, differences between
506 // two of them don't when they are for labels in the same function. This is a
507 // common idiom when creating a table for the indirect goto extension, so we
508 // handle it efficiently here.
509 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this))
510 if (CE
->getOpcode() == Instruction::Sub
) {
511 ConstantExpr
*LHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(0));
512 ConstantExpr
*RHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(1));
513 if (LHS
&& RHS
&& LHS
->getOpcode() == Instruction::PtrToInt
&&
514 RHS
->getOpcode() == Instruction::PtrToInt
&&
515 isa
<BlockAddress
>(LHS
->getOperand(0)) &&
516 isa
<BlockAddress
>(RHS
->getOperand(0)) &&
517 cast
<BlockAddress
>(LHS
->getOperand(0))->getFunction() ==
518 cast
<BlockAddress
>(RHS
->getOperand(0))->getFunction())
523 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
524 Result
|= cast
<Constant
>(getOperand(i
))->needsRelocation();
529 /// If the specified constantexpr is dead, remove it. This involves recursively
530 /// eliminating any dead users of the constantexpr.
531 static bool removeDeadUsersOfConstant(const Constant
*C
) {
532 if (isa
<GlobalValue
>(C
)) return false; // Cannot remove this
534 while (!C
->use_empty()) {
535 const Constant
*User
= dyn_cast
<Constant
>(C
->user_back());
536 if (!User
) return false; // Non-constant usage;
537 if (!removeDeadUsersOfConstant(User
))
538 return false; // Constant wasn't dead
541 const_cast<Constant
*>(C
)->destroyConstant();
546 void Constant::removeDeadConstantUsers() const {
547 Value::const_user_iterator I
= user_begin(), E
= user_end();
548 Value::const_user_iterator LastNonDeadUser
= E
;
550 const Constant
*User
= dyn_cast
<Constant
>(*I
);
557 if (!removeDeadUsersOfConstant(User
)) {
558 // If the constant wasn't dead, remember that this was the last live use
559 // and move on to the next constant.
565 // If the constant was dead, then the iterator is invalidated.
566 if (LastNonDeadUser
== E
) {
578 //===----------------------------------------------------------------------===//
580 //===----------------------------------------------------------------------===//
582 ConstantInt::ConstantInt(IntegerType
*Ty
, const APInt
&V
)
583 : ConstantData(Ty
, ConstantIntVal
), Val(V
) {
584 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
587 ConstantInt
*ConstantInt::getTrue(LLVMContext
&Context
) {
588 LLVMContextImpl
*pImpl
= Context
.pImpl
;
589 if (!pImpl
->TheTrueVal
)
590 pImpl
->TheTrueVal
= ConstantInt::get(Type::getInt1Ty(Context
), 1);
591 return pImpl
->TheTrueVal
;
594 ConstantInt
*ConstantInt::getFalse(LLVMContext
&Context
) {
595 LLVMContextImpl
*pImpl
= Context
.pImpl
;
596 if (!pImpl
->TheFalseVal
)
597 pImpl
->TheFalseVal
= ConstantInt::get(Type::getInt1Ty(Context
), 0);
598 return pImpl
->TheFalseVal
;
601 Constant
*ConstantInt::getTrue(Type
*Ty
) {
602 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
603 ConstantInt
*TrueC
= ConstantInt::getTrue(Ty
->getContext());
604 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
605 return ConstantVector::getSplat(VTy
->getNumElements(), TrueC
);
609 Constant
*ConstantInt::getFalse(Type
*Ty
) {
610 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
611 ConstantInt
*FalseC
= ConstantInt::getFalse(Ty
->getContext());
612 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
613 return ConstantVector::getSplat(VTy
->getNumElements(), FalseC
);
617 // Get a ConstantInt from an APInt.
618 ConstantInt
*ConstantInt::get(LLVMContext
&Context
, const APInt
&V
) {
619 // get an existing value or the insertion position
620 LLVMContextImpl
*pImpl
= Context
.pImpl
;
621 std::unique_ptr
<ConstantInt
> &Slot
= pImpl
->IntConstants
[V
];
623 // Get the corresponding integer type for the bit width of the value.
624 IntegerType
*ITy
= IntegerType::get(Context
, V
.getBitWidth());
625 Slot
.reset(new ConstantInt(ITy
, V
));
627 assert(Slot
->getType() == IntegerType::get(Context
, V
.getBitWidth()));
631 Constant
*ConstantInt::get(Type
*Ty
, uint64_t V
, bool isSigned
) {
632 Constant
*C
= get(cast
<IntegerType
>(Ty
->getScalarType()), V
, isSigned
);
634 // For vectors, broadcast the value.
635 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
636 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
641 ConstantInt
*ConstantInt::get(IntegerType
*Ty
, uint64_t V
, bool isSigned
) {
642 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), V
, isSigned
));
645 ConstantInt
*ConstantInt::getSigned(IntegerType
*Ty
, int64_t V
) {
646 return get(Ty
, V
, true);
649 Constant
*ConstantInt::getSigned(Type
*Ty
, int64_t V
) {
650 return get(Ty
, V
, true);
653 Constant
*ConstantInt::get(Type
*Ty
, const APInt
& V
) {
654 ConstantInt
*C
= get(Ty
->getContext(), V
);
655 assert(C
->getType() == Ty
->getScalarType() &&
656 "ConstantInt type doesn't match the type implied by its value!");
658 // For vectors, broadcast the value.
659 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
660 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
665 ConstantInt
*ConstantInt::get(IntegerType
* Ty
, StringRef Str
, uint8_t radix
) {
666 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), Str
, radix
));
669 /// Remove the constant from the constant table.
670 void ConstantInt::destroyConstantImpl() {
671 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
674 //===----------------------------------------------------------------------===//
676 //===----------------------------------------------------------------------===//
678 static const fltSemantics
*TypeToFloatSemantics(Type
*Ty
) {
680 return &APFloat::IEEEhalf();
682 return &APFloat::IEEEsingle();
683 if (Ty
->isDoubleTy())
684 return &APFloat::IEEEdouble();
685 if (Ty
->isX86_FP80Ty())
686 return &APFloat::x87DoubleExtended();
687 else if (Ty
->isFP128Ty())
688 return &APFloat::IEEEquad();
690 assert(Ty
->isPPC_FP128Ty() && "Unknown FP format");
691 return &APFloat::PPCDoubleDouble();
694 Constant
*ConstantFP::get(Type
*Ty
, double V
) {
695 LLVMContext
&Context
= Ty
->getContext();
699 FV
.convert(*TypeToFloatSemantics(Ty
->getScalarType()),
700 APFloat::rmNearestTiesToEven
, &ignored
);
701 Constant
*C
= get(Context
, FV
);
703 // For vectors, broadcast the value.
704 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
705 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
710 Constant
*ConstantFP::get(Type
*Ty
, const APFloat
&V
) {
711 ConstantFP
*C
= get(Ty
->getContext(), V
);
712 assert(C
->getType() == Ty
->getScalarType() &&
713 "ConstantFP type doesn't match the type implied by its value!");
715 // For vectors, broadcast the value.
716 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
717 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
722 Constant
*ConstantFP::get(Type
*Ty
, StringRef Str
) {
723 LLVMContext
&Context
= Ty
->getContext();
725 APFloat
FV(*TypeToFloatSemantics(Ty
->getScalarType()), Str
);
726 Constant
*C
= get(Context
, FV
);
728 // For vectors, broadcast the value.
729 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
730 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
735 Constant
*ConstantFP::getNaN(Type
*Ty
, bool Negative
, uint64_t Payload
) {
736 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
737 APFloat NaN
= APFloat::getNaN(Semantics
, Negative
, Payload
);
738 Constant
*C
= get(Ty
->getContext(), NaN
);
740 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
741 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
746 Constant
*ConstantFP::getQNaN(Type
*Ty
, bool Negative
, APInt
*Payload
) {
747 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
748 APFloat NaN
= APFloat::getQNaN(Semantics
, Negative
, Payload
);
749 Constant
*C
= get(Ty
->getContext(), NaN
);
751 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
752 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
757 Constant
*ConstantFP::getSNaN(Type
*Ty
, bool Negative
, APInt
*Payload
) {
758 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
759 APFloat NaN
= APFloat::getSNaN(Semantics
, Negative
, Payload
);
760 Constant
*C
= get(Ty
->getContext(), NaN
);
762 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
763 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
768 Constant
*ConstantFP::getNegativeZero(Type
*Ty
) {
769 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
770 APFloat NegZero
= APFloat::getZero(Semantics
, /*Negative=*/true);
771 Constant
*C
= get(Ty
->getContext(), NegZero
);
773 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
774 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
780 Constant
*ConstantFP::getZeroValueForNegation(Type
*Ty
) {
781 if (Ty
->isFPOrFPVectorTy())
782 return getNegativeZero(Ty
);
784 return Constant::getNullValue(Ty
);
788 // ConstantFP accessors.
789 ConstantFP
* ConstantFP::get(LLVMContext
&Context
, const APFloat
& V
) {
790 LLVMContextImpl
* pImpl
= Context
.pImpl
;
792 std::unique_ptr
<ConstantFP
> &Slot
= pImpl
->FPConstants
[V
];
796 if (&V
.getSemantics() == &APFloat::IEEEhalf())
797 Ty
= Type::getHalfTy(Context
);
798 else if (&V
.getSemantics() == &APFloat::IEEEsingle())
799 Ty
= Type::getFloatTy(Context
);
800 else if (&V
.getSemantics() == &APFloat::IEEEdouble())
801 Ty
= Type::getDoubleTy(Context
);
802 else if (&V
.getSemantics() == &APFloat::x87DoubleExtended())
803 Ty
= Type::getX86_FP80Ty(Context
);
804 else if (&V
.getSemantics() == &APFloat::IEEEquad())
805 Ty
= Type::getFP128Ty(Context
);
807 assert(&V
.getSemantics() == &APFloat::PPCDoubleDouble() &&
808 "Unknown FP format");
809 Ty
= Type::getPPC_FP128Ty(Context
);
811 Slot
.reset(new ConstantFP(Ty
, V
));
817 Constant
*ConstantFP::getInfinity(Type
*Ty
, bool Negative
) {
818 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
819 Constant
*C
= get(Ty
->getContext(), APFloat::getInf(Semantics
, Negative
));
821 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
822 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
827 ConstantFP::ConstantFP(Type
*Ty
, const APFloat
&V
)
828 : ConstantData(Ty
, ConstantFPVal
), Val(V
) {
829 assert(&V
.getSemantics() == TypeToFloatSemantics(Ty
) &&
833 bool ConstantFP::isExactlyValue(const APFloat
&V
) const {
834 return Val
.bitwiseIsEqual(V
);
837 /// Remove the constant from the constant table.
838 void ConstantFP::destroyConstantImpl() {
839 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
842 //===----------------------------------------------------------------------===//
843 // ConstantAggregateZero Implementation
844 //===----------------------------------------------------------------------===//
846 Constant
*ConstantAggregateZero::getSequentialElement() const {
847 return Constant::getNullValue(getType()->getSequentialElementType());
850 Constant
*ConstantAggregateZero::getStructElement(unsigned Elt
) const {
851 return Constant::getNullValue(getType()->getStructElementType(Elt
));
854 Constant
*ConstantAggregateZero::getElementValue(Constant
*C
) const {
855 if (isa
<SequentialType
>(getType()))
856 return getSequentialElement();
857 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
860 Constant
*ConstantAggregateZero::getElementValue(unsigned Idx
) const {
861 if (isa
<SequentialType
>(getType()))
862 return getSequentialElement();
863 return getStructElement(Idx
);
866 unsigned ConstantAggregateZero::getNumElements() const {
867 Type
*Ty
= getType();
868 if (auto *AT
= dyn_cast
<ArrayType
>(Ty
))
869 return AT
->getNumElements();
870 if (auto *VT
= dyn_cast
<VectorType
>(Ty
))
871 return VT
->getNumElements();
872 return Ty
->getStructNumElements();
875 //===----------------------------------------------------------------------===//
876 // UndefValue Implementation
877 //===----------------------------------------------------------------------===//
879 UndefValue
*UndefValue::getSequentialElement() const {
880 return UndefValue::get(getType()->getSequentialElementType());
883 UndefValue
*UndefValue::getStructElement(unsigned Elt
) const {
884 return UndefValue::get(getType()->getStructElementType(Elt
));
887 UndefValue
*UndefValue::getElementValue(Constant
*C
) const {
888 if (isa
<SequentialType
>(getType()))
889 return getSequentialElement();
890 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
893 UndefValue
*UndefValue::getElementValue(unsigned Idx
) const {
894 if (isa
<SequentialType
>(getType()))
895 return getSequentialElement();
896 return getStructElement(Idx
);
899 unsigned UndefValue::getNumElements() const {
900 Type
*Ty
= getType();
901 if (auto *ST
= dyn_cast
<SequentialType
>(Ty
))
902 return ST
->getNumElements();
903 return Ty
->getStructNumElements();
906 //===----------------------------------------------------------------------===//
907 // ConstantXXX Classes
908 //===----------------------------------------------------------------------===//
910 template <typename ItTy
, typename EltTy
>
911 static bool rangeOnlyContains(ItTy Start
, ItTy End
, EltTy Elt
) {
912 for (; Start
!= End
; ++Start
)
918 template <typename SequentialTy
, typename ElementTy
>
919 static Constant
*getIntSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
920 assert(!V
.empty() && "Cannot get empty int sequence.");
922 SmallVector
<ElementTy
, 16> Elts
;
923 for (Constant
*C
: V
)
924 if (auto *CI
= dyn_cast
<ConstantInt
>(C
))
925 Elts
.push_back(CI
->getZExtValue());
928 return SequentialTy::get(V
[0]->getContext(), Elts
);
931 template <typename SequentialTy
, typename ElementTy
>
932 static Constant
*getFPSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
933 assert(!V
.empty() && "Cannot get empty FP sequence.");
935 SmallVector
<ElementTy
, 16> Elts
;
936 for (Constant
*C
: V
)
937 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
))
938 Elts
.push_back(CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
941 return SequentialTy::getFP(V
[0]->getContext(), Elts
);
944 template <typename SequenceTy
>
945 static Constant
*getSequenceIfElementsMatch(Constant
*C
,
946 ArrayRef
<Constant
*> V
) {
947 // We speculatively build the elements here even if it turns out that there is
948 // a constantexpr or something else weird, since it is so uncommon for that to
950 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
951 if (CI
->getType()->isIntegerTy(8))
952 return getIntSequenceIfElementsMatch
<SequenceTy
, uint8_t>(V
);
953 else if (CI
->getType()->isIntegerTy(16))
954 return getIntSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
955 else if (CI
->getType()->isIntegerTy(32))
956 return getIntSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
957 else if (CI
->getType()->isIntegerTy(64))
958 return getIntSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
959 } else if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
960 if (CFP
->getType()->isHalfTy())
961 return getFPSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
962 else if (CFP
->getType()->isFloatTy())
963 return getFPSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
964 else if (CFP
->getType()->isDoubleTy())
965 return getFPSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
971 ConstantAggregate::ConstantAggregate(CompositeType
*T
, ValueTy VT
,
972 ArrayRef
<Constant
*> V
)
973 : Constant(T
, VT
, OperandTraits
<ConstantAggregate
>::op_end(this) - V
.size(),
975 llvm::copy(V
, op_begin());
977 // Check that types match, unless this is an opaque struct.
978 if (auto *ST
= dyn_cast
<StructType
>(T
))
981 for (unsigned I
= 0, E
= V
.size(); I
!= E
; ++I
)
982 assert(V
[I
]->getType() == T
->getTypeAtIndex(I
) &&
983 "Initializer for composite element doesn't match!");
986 ConstantArray::ConstantArray(ArrayType
*T
, ArrayRef
<Constant
*> V
)
987 : ConstantAggregate(T
, ConstantArrayVal
, V
) {
988 assert(V
.size() == T
->getNumElements() &&
989 "Invalid initializer for constant array");
992 Constant
*ConstantArray::get(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
993 if (Constant
*C
= getImpl(Ty
, V
))
995 return Ty
->getContext().pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
998 Constant
*ConstantArray::getImpl(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
999 // Empty arrays are canonicalized to ConstantAggregateZero.
1001 return ConstantAggregateZero::get(Ty
);
1003 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
1004 assert(V
[i
]->getType() == Ty
->getElementType() &&
1005 "Wrong type in array element initializer");
1008 // If this is an all-zero array, return a ConstantAggregateZero object. If
1009 // all undef, return an UndefValue, if "all simple", then return a
1010 // ConstantDataArray.
1012 if (isa
<UndefValue
>(C
) && rangeOnlyContains(V
.begin(), V
.end(), C
))
1013 return UndefValue::get(Ty
);
1015 if (C
->isNullValue() && rangeOnlyContains(V
.begin(), V
.end(), C
))
1016 return ConstantAggregateZero::get(Ty
);
1018 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1019 // the element type is compatible with ConstantDataVector. If so, use it.
1020 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
1021 return getSequenceIfElementsMatch
<ConstantDataArray
>(C
, V
);
1023 // Otherwise, we really do want to create a ConstantArray.
1027 StructType
*ConstantStruct::getTypeForElements(LLVMContext
&Context
,
1028 ArrayRef
<Constant
*> V
,
1030 unsigned VecSize
= V
.size();
1031 SmallVector
<Type
*, 16> EltTypes(VecSize
);
1032 for (unsigned i
= 0; i
!= VecSize
; ++i
)
1033 EltTypes
[i
] = V
[i
]->getType();
1035 return StructType::get(Context
, EltTypes
, Packed
);
1039 StructType
*ConstantStruct::getTypeForElements(ArrayRef
<Constant
*> V
,
1041 assert(!V
.empty() &&
1042 "ConstantStruct::getTypeForElements cannot be called on empty list");
1043 return getTypeForElements(V
[0]->getContext(), V
, Packed
);
1046 ConstantStruct::ConstantStruct(StructType
*T
, ArrayRef
<Constant
*> V
)
1047 : ConstantAggregate(T
, ConstantStructVal
, V
) {
1048 assert((T
->isOpaque() || V
.size() == T
->getNumElements()) &&
1049 "Invalid initializer for constant struct");
1052 // ConstantStruct accessors.
1053 Constant
*ConstantStruct::get(StructType
*ST
, ArrayRef
<Constant
*> V
) {
1054 assert((ST
->isOpaque() || ST
->getNumElements() == V
.size()) &&
1055 "Incorrect # elements specified to ConstantStruct::get");
1057 // Create a ConstantAggregateZero value if all elements are zeros.
1059 bool isUndef
= false;
1062 isUndef
= isa
<UndefValue
>(V
[0]);
1063 isZero
= V
[0]->isNullValue();
1064 if (isUndef
|| isZero
) {
1065 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
1066 if (!V
[i
]->isNullValue())
1068 if (!isa
<UndefValue
>(V
[i
]))
1074 return ConstantAggregateZero::get(ST
);
1076 return UndefValue::get(ST
);
1078 return ST
->getContext().pImpl
->StructConstants
.getOrCreate(ST
, V
);
1081 ConstantVector::ConstantVector(VectorType
*T
, ArrayRef
<Constant
*> V
)
1082 : ConstantAggregate(T
, ConstantVectorVal
, V
) {
1083 assert(V
.size() == T
->getNumElements() &&
1084 "Invalid initializer for constant vector");
1087 // ConstantVector accessors.
1088 Constant
*ConstantVector::get(ArrayRef
<Constant
*> V
) {
1089 if (Constant
*C
= getImpl(V
))
1091 VectorType
*Ty
= VectorType::get(V
.front()->getType(), V
.size());
1092 return Ty
->getContext().pImpl
->VectorConstants
.getOrCreate(Ty
, V
);
1095 Constant
*ConstantVector::getImpl(ArrayRef
<Constant
*> V
) {
1096 assert(!V
.empty() && "Vectors can't be empty");
1097 VectorType
*T
= VectorType::get(V
.front()->getType(), V
.size());
1099 // If this is an all-undef or all-zero vector, return a
1100 // ConstantAggregateZero or UndefValue.
1102 bool isZero
= C
->isNullValue();
1103 bool isUndef
= isa
<UndefValue
>(C
);
1105 if (isZero
|| isUndef
) {
1106 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
1108 isZero
= isUndef
= false;
1114 return ConstantAggregateZero::get(T
);
1116 return UndefValue::get(T
);
1118 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1119 // the element type is compatible with ConstantDataVector. If so, use it.
1120 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
1121 return getSequenceIfElementsMatch
<ConstantDataVector
>(C
, V
);
1123 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1124 // the operand list contains a ConstantExpr or something else strange.
1128 Constant
*ConstantVector::getSplat(unsigned NumElts
, Constant
*V
) {
1129 // If this splat is compatible with ConstantDataVector, use it instead of
1131 if ((isa
<ConstantFP
>(V
) || isa
<ConstantInt
>(V
)) &&
1132 ConstantDataSequential::isElementTypeCompatible(V
->getType()))
1133 return ConstantDataVector::getSplat(NumElts
, V
);
1135 SmallVector
<Constant
*, 32> Elts(NumElts
, V
);
1139 ConstantTokenNone
*ConstantTokenNone::get(LLVMContext
&Context
) {
1140 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1141 if (!pImpl
->TheNoneToken
)
1142 pImpl
->TheNoneToken
.reset(new ConstantTokenNone(Context
));
1143 return pImpl
->TheNoneToken
.get();
1146 /// Remove the constant from the constant table.
1147 void ConstantTokenNone::destroyConstantImpl() {
1148 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1151 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1152 // can't be inline because we don't want to #include Instruction.h into
1154 bool ConstantExpr::isCast() const {
1155 return Instruction::isCast(getOpcode());
1158 bool ConstantExpr::isCompare() const {
1159 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
1162 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1163 if (getOpcode() != Instruction::GetElementPtr
) return false;
1165 gep_type_iterator GEPI
= gep_type_begin(this), E
= gep_type_end(this);
1166 User::const_op_iterator OI
= std::next(this->op_begin());
1168 // The remaining indices may be compile-time known integers within the bounds
1169 // of the corresponding notional static array types.
1170 for (; GEPI
!= E
; ++GEPI
, ++OI
) {
1171 if (isa
<UndefValue
>(*OI
))
1173 auto *CI
= dyn_cast
<ConstantInt
>(*OI
);
1174 if (!CI
|| (GEPI
.isBoundedSequential() &&
1175 (CI
->getValue().getActiveBits() > 64 ||
1176 CI
->getZExtValue() >= GEPI
.getSequentialNumElements())))
1180 // All the indices checked out.
1184 bool ConstantExpr::hasIndices() const {
1185 return getOpcode() == Instruction::ExtractValue
||
1186 getOpcode() == Instruction::InsertValue
;
1189 ArrayRef
<unsigned> ConstantExpr::getIndices() const {
1190 if (const ExtractValueConstantExpr
*EVCE
=
1191 dyn_cast
<ExtractValueConstantExpr
>(this))
1192 return EVCE
->Indices
;
1194 return cast
<InsertValueConstantExpr
>(this)->Indices
;
1197 unsigned ConstantExpr::getPredicate() const {
1198 return cast
<CompareConstantExpr
>(this)->predicate
;
1202 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
1203 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
1204 "Replacing operand with value of different type!");
1205 if (getOperand(OpNo
) == Op
)
1206 return const_cast<ConstantExpr
*>(this);
1208 SmallVector
<Constant
*, 8> NewOps
;
1209 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1210 NewOps
.push_back(i
== OpNo
? Op
: getOperand(i
));
1212 return getWithOperands(NewOps
);
1215 Constant
*ConstantExpr::getWithOperands(ArrayRef
<Constant
*> Ops
, Type
*Ty
,
1216 bool OnlyIfReduced
, Type
*SrcTy
) const {
1217 assert(Ops
.size() == getNumOperands() && "Operand count mismatch!");
1219 // If no operands changed return self.
1220 if (Ty
== getType() && std::equal(Ops
.begin(), Ops
.end(), op_begin()))
1221 return const_cast<ConstantExpr
*>(this);
1223 Type
*OnlyIfReducedTy
= OnlyIfReduced
? Ty
: nullptr;
1224 switch (getOpcode()) {
1225 case Instruction::Trunc
:
1226 case Instruction::ZExt
:
1227 case Instruction::SExt
:
1228 case Instruction::FPTrunc
:
1229 case Instruction::FPExt
:
1230 case Instruction::UIToFP
:
1231 case Instruction::SIToFP
:
1232 case Instruction::FPToUI
:
1233 case Instruction::FPToSI
:
1234 case Instruction::PtrToInt
:
1235 case Instruction::IntToPtr
:
1236 case Instruction::BitCast
:
1237 case Instruction::AddrSpaceCast
:
1238 return ConstantExpr::getCast(getOpcode(), Ops
[0], Ty
, OnlyIfReduced
);
1239 case Instruction::Select
:
1240 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2], OnlyIfReducedTy
);
1241 case Instruction::InsertElement
:
1242 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2],
1244 case Instruction::ExtractElement
:
1245 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1], OnlyIfReducedTy
);
1246 case Instruction::InsertValue
:
1247 return ConstantExpr::getInsertValue(Ops
[0], Ops
[1], getIndices(),
1249 case Instruction::ExtractValue
:
1250 return ConstantExpr::getExtractValue(Ops
[0], getIndices(), OnlyIfReducedTy
);
1251 case Instruction::ShuffleVector
:
1252 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2],
1254 case Instruction::GetElementPtr
: {
1255 auto *GEPO
= cast
<GEPOperator
>(this);
1256 assert(SrcTy
|| (Ops
[0]->getType() == getOperand(0)->getType()));
1257 return ConstantExpr::getGetElementPtr(
1258 SrcTy
? SrcTy
: GEPO
->getSourceElementType(), Ops
[0], Ops
.slice(1),
1259 GEPO
->isInBounds(), GEPO
->getInRangeIndex(), OnlyIfReducedTy
);
1261 case Instruction::ICmp
:
1262 case Instruction::FCmp
:
1263 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1],
1266 assert(getNumOperands() == 2 && "Must be binary operator?");
1267 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1], SubclassOptionalData
,
1273 //===----------------------------------------------------------------------===//
1274 // isValueValidForType implementations
1276 bool ConstantInt::isValueValidForType(Type
*Ty
, uint64_t Val
) {
1277 unsigned NumBits
= Ty
->getIntegerBitWidth(); // assert okay
1278 if (Ty
->isIntegerTy(1))
1279 return Val
== 0 || Val
== 1;
1280 return isUIntN(NumBits
, Val
);
1283 bool ConstantInt::isValueValidForType(Type
*Ty
, int64_t Val
) {
1284 unsigned NumBits
= Ty
->getIntegerBitWidth();
1285 if (Ty
->isIntegerTy(1))
1286 return Val
== 0 || Val
== 1 || Val
== -1;
1287 return isIntN(NumBits
, Val
);
1290 bool ConstantFP::isValueValidForType(Type
*Ty
, const APFloat
& Val
) {
1291 // convert modifies in place, so make a copy.
1292 APFloat Val2
= APFloat(Val
);
1294 switch (Ty
->getTypeID()) {
1296 return false; // These can't be represented as floating point!
1298 // FIXME rounding mode needs to be more flexible
1299 case Type::HalfTyID
: {
1300 if (&Val2
.getSemantics() == &APFloat::IEEEhalf())
1302 Val2
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1305 case Type::FloatTyID
: {
1306 if (&Val2
.getSemantics() == &APFloat::IEEEsingle())
1308 Val2
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1311 case Type::DoubleTyID
: {
1312 if (&Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1313 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1314 &Val2
.getSemantics() == &APFloat::IEEEdouble())
1316 Val2
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1319 case Type::X86_FP80TyID
:
1320 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1321 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1322 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1323 &Val2
.getSemantics() == &APFloat::x87DoubleExtended();
1324 case Type::FP128TyID
:
1325 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1326 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1327 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1328 &Val2
.getSemantics() == &APFloat::IEEEquad();
1329 case Type::PPC_FP128TyID
:
1330 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1331 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1332 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1333 &Val2
.getSemantics() == &APFloat::PPCDoubleDouble();
1338 //===----------------------------------------------------------------------===//
1339 // Factory Function Implementation
1341 ConstantAggregateZero
*ConstantAggregateZero::get(Type
*Ty
) {
1342 assert((Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy()) &&
1343 "Cannot create an aggregate zero of non-aggregate type!");
1345 std::unique_ptr
<ConstantAggregateZero
> &Entry
=
1346 Ty
->getContext().pImpl
->CAZConstants
[Ty
];
1348 Entry
.reset(new ConstantAggregateZero(Ty
));
1353 /// Remove the constant from the constant table.
1354 void ConstantAggregateZero::destroyConstantImpl() {
1355 getContext().pImpl
->CAZConstants
.erase(getType());
1358 /// Remove the constant from the constant table.
1359 void ConstantArray::destroyConstantImpl() {
1360 getType()->getContext().pImpl
->ArrayConstants
.remove(this);
1364 //---- ConstantStruct::get() implementation...
1367 /// Remove the constant from the constant table.
1368 void ConstantStruct::destroyConstantImpl() {
1369 getType()->getContext().pImpl
->StructConstants
.remove(this);
1372 /// Remove the constant from the constant table.
1373 void ConstantVector::destroyConstantImpl() {
1374 getType()->getContext().pImpl
->VectorConstants
.remove(this);
1377 Constant
*Constant::getSplatValue() const {
1378 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1379 if (isa
<ConstantAggregateZero
>(this))
1380 return getNullValue(this->getType()->getVectorElementType());
1381 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
1382 return CV
->getSplatValue();
1383 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
1384 return CV
->getSplatValue();
1388 Constant
*ConstantVector::getSplatValue() const {
1389 // Check out first element.
1390 Constant
*Elt
= getOperand(0);
1391 // Then make sure all remaining elements point to the same value.
1392 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
)
1393 if (getOperand(I
) != Elt
)
1398 const APInt
&Constant::getUniqueInteger() const {
1399 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
1400 return CI
->getValue();
1401 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1402 const Constant
*C
= this->getAggregateElement(0U);
1403 assert(C
&& isa
<ConstantInt
>(C
) && "Not a vector of numbers!");
1404 return cast
<ConstantInt
>(C
)->getValue();
1407 //---- ConstantPointerNull::get() implementation.
1410 ConstantPointerNull
*ConstantPointerNull::get(PointerType
*Ty
) {
1411 std::unique_ptr
<ConstantPointerNull
> &Entry
=
1412 Ty
->getContext().pImpl
->CPNConstants
[Ty
];
1414 Entry
.reset(new ConstantPointerNull(Ty
));
1419 /// Remove the constant from the constant table.
1420 void ConstantPointerNull::destroyConstantImpl() {
1421 getContext().pImpl
->CPNConstants
.erase(getType());
1424 UndefValue
*UndefValue::get(Type
*Ty
) {
1425 std::unique_ptr
<UndefValue
> &Entry
= Ty
->getContext().pImpl
->UVConstants
[Ty
];
1427 Entry
.reset(new UndefValue(Ty
));
1432 /// Remove the constant from the constant table.
1433 void UndefValue::destroyConstantImpl() {
1434 // Free the constant and any dangling references to it.
1435 getContext().pImpl
->UVConstants
.erase(getType());
1438 BlockAddress
*BlockAddress::get(BasicBlock
*BB
) {
1439 assert(BB
->getParent() && "Block must have a parent");
1440 return get(BB
->getParent(), BB
);
1443 BlockAddress
*BlockAddress::get(Function
*F
, BasicBlock
*BB
) {
1445 F
->getContext().pImpl
->BlockAddresses
[std::make_pair(F
, BB
)];
1447 BA
= new BlockAddress(F
, BB
);
1449 assert(BA
->getFunction() == F
&& "Basic block moved between functions");
1453 BlockAddress::BlockAddress(Function
*F
, BasicBlock
*BB
)
1454 : Constant(Type::getInt8PtrTy(F
->getContext()), Value::BlockAddressVal
,
1458 BB
->AdjustBlockAddressRefCount(1);
1461 BlockAddress
*BlockAddress::lookup(const BasicBlock
*BB
) {
1462 if (!BB
->hasAddressTaken())
1465 const Function
*F
= BB
->getParent();
1466 assert(F
&& "Block must have a parent");
1468 F
->getContext().pImpl
->BlockAddresses
.lookup(std::make_pair(F
, BB
));
1469 assert(BA
&& "Refcount and block address map disagree!");
1473 /// Remove the constant from the constant table.
1474 void BlockAddress::destroyConstantImpl() {
1475 getFunction()->getType()->getContext().pImpl
1476 ->BlockAddresses
.erase(std::make_pair(getFunction(), getBasicBlock()));
1477 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1480 Value
*BlockAddress::handleOperandChangeImpl(Value
*From
, Value
*To
) {
1481 // This could be replacing either the Basic Block or the Function. In either
1482 // case, we have to remove the map entry.
1483 Function
*NewF
= getFunction();
1484 BasicBlock
*NewBB
= getBasicBlock();
1487 NewF
= cast
<Function
>(To
->stripPointerCasts());
1489 assert(From
== NewBB
&& "From does not match any operand");
1490 NewBB
= cast
<BasicBlock
>(To
);
1493 // See if the 'new' entry already exists, if not, just update this in place
1494 // and return early.
1495 BlockAddress
*&NewBA
=
1496 getContext().pImpl
->BlockAddresses
[std::make_pair(NewF
, NewBB
)];
1500 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1502 // Remove the old entry, this can't cause the map to rehash (just a
1503 // tombstone will get added).
1504 getContext().pImpl
->BlockAddresses
.erase(std::make_pair(getFunction(),
1507 setOperand(0, NewF
);
1508 setOperand(1, NewBB
);
1509 getBasicBlock()->AdjustBlockAddressRefCount(1);
1511 // If we just want to keep the existing value, then return null.
1512 // Callers know that this means we shouldn't delete this value.
1516 //---- ConstantExpr::get() implementations.
1519 /// This is a utility function to handle folding of casts and lookup of the
1520 /// cast in the ExprConstants map. It is used by the various get* methods below.
1521 static Constant
*getFoldedCast(Instruction::CastOps opc
, Constant
*C
, Type
*Ty
,
1522 bool OnlyIfReduced
= false) {
1523 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1524 // Fold a few common cases
1525 if (Constant
*FC
= ConstantFoldCastInstruction(opc
, C
, Ty
))
1531 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
1533 // Look up the constant in the table first to ensure uniqueness.
1534 ConstantExprKeyType
Key(opc
, C
);
1536 return pImpl
->ExprConstants
.getOrCreate(Ty
, Key
);
1539 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, Type
*Ty
,
1540 bool OnlyIfReduced
) {
1541 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1542 assert(Instruction::isCast(opc
) && "opcode out of range");
1543 assert(C
&& Ty
&& "Null arguments to getCast");
1544 assert(CastInst::castIsValid(opc
, C
, Ty
) && "Invalid constantexpr cast!");
1548 llvm_unreachable("Invalid cast opcode");
1549 case Instruction::Trunc
:
1550 return getTrunc(C
, Ty
, OnlyIfReduced
);
1551 case Instruction::ZExt
:
1552 return getZExt(C
, Ty
, OnlyIfReduced
);
1553 case Instruction::SExt
:
1554 return getSExt(C
, Ty
, OnlyIfReduced
);
1555 case Instruction::FPTrunc
:
1556 return getFPTrunc(C
, Ty
, OnlyIfReduced
);
1557 case Instruction::FPExt
:
1558 return getFPExtend(C
, Ty
, OnlyIfReduced
);
1559 case Instruction::UIToFP
:
1560 return getUIToFP(C
, Ty
, OnlyIfReduced
);
1561 case Instruction::SIToFP
:
1562 return getSIToFP(C
, Ty
, OnlyIfReduced
);
1563 case Instruction::FPToUI
:
1564 return getFPToUI(C
, Ty
, OnlyIfReduced
);
1565 case Instruction::FPToSI
:
1566 return getFPToSI(C
, Ty
, OnlyIfReduced
);
1567 case Instruction::PtrToInt
:
1568 return getPtrToInt(C
, Ty
, OnlyIfReduced
);
1569 case Instruction::IntToPtr
:
1570 return getIntToPtr(C
, Ty
, OnlyIfReduced
);
1571 case Instruction::BitCast
:
1572 return getBitCast(C
, Ty
, OnlyIfReduced
);
1573 case Instruction::AddrSpaceCast
:
1574 return getAddrSpaceCast(C
, Ty
, OnlyIfReduced
);
1578 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, Type
*Ty
) {
1579 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1580 return getBitCast(C
, Ty
);
1581 return getZExt(C
, Ty
);
1584 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, Type
*Ty
) {
1585 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1586 return getBitCast(C
, Ty
);
1587 return getSExt(C
, Ty
);
1590 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, Type
*Ty
) {
1591 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1592 return getBitCast(C
, Ty
);
1593 return getTrunc(C
, Ty
);
1596 Constant
*ConstantExpr::getPointerCast(Constant
*S
, Type
*Ty
) {
1597 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1598 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
1601 if (Ty
->isIntOrIntVectorTy())
1602 return getPtrToInt(S
, Ty
);
1604 unsigned SrcAS
= S
->getType()->getPointerAddressSpace();
1605 if (Ty
->isPtrOrPtrVectorTy() && SrcAS
!= Ty
->getPointerAddressSpace())
1606 return getAddrSpaceCast(S
, Ty
);
1608 return getBitCast(S
, Ty
);
1611 Constant
*ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant
*S
,
1613 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1614 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
1616 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
1617 return getAddrSpaceCast(S
, Ty
);
1619 return getBitCast(S
, Ty
);
1622 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, Type
*Ty
, bool isSigned
) {
1623 assert(C
->getType()->isIntOrIntVectorTy() &&
1624 Ty
->isIntOrIntVectorTy() && "Invalid cast");
1625 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1626 unsigned DstBits
= Ty
->getScalarSizeInBits();
1627 Instruction::CastOps opcode
=
1628 (SrcBits
== DstBits
? Instruction::BitCast
:
1629 (SrcBits
> DstBits
? Instruction::Trunc
:
1630 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1631 return getCast(opcode
, C
, Ty
);
1634 Constant
*ConstantExpr::getFPCast(Constant
*C
, Type
*Ty
) {
1635 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1637 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1638 unsigned DstBits
= Ty
->getScalarSizeInBits();
1639 if (SrcBits
== DstBits
)
1640 return C
; // Avoid a useless cast
1641 Instruction::CastOps opcode
=
1642 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1643 return getCast(opcode
, C
, Ty
);
1646 Constant
*ConstantExpr::getTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1648 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1649 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1651 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1652 assert(C
->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1653 assert(Ty
->isIntOrIntVectorTy() && "Trunc produces only integral");
1654 assert(C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1655 "SrcTy must be larger than DestTy for Trunc!");
1657 return getFoldedCast(Instruction::Trunc
, C
, Ty
, OnlyIfReduced
);
1660 Constant
*ConstantExpr::getSExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1662 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1663 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1665 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1666 assert(C
->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1667 assert(Ty
->isIntOrIntVectorTy() && "SExt produces only integer");
1668 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1669 "SrcTy must be smaller than DestTy for SExt!");
1671 return getFoldedCast(Instruction::SExt
, C
, Ty
, OnlyIfReduced
);
1674 Constant
*ConstantExpr::getZExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1676 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1677 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1679 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1680 assert(C
->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1681 assert(Ty
->isIntOrIntVectorTy() && "ZExt produces only integer");
1682 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1683 "SrcTy must be smaller than DestTy for ZExt!");
1685 return getFoldedCast(Instruction::ZExt
, C
, Ty
, OnlyIfReduced
);
1688 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1690 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1691 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1693 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1694 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1695 C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1696 "This is an illegal floating point truncation!");
1697 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
, OnlyIfReduced
);
1700 Constant
*ConstantExpr::getFPExtend(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1702 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1703 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1705 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1706 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1707 C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1708 "This is an illegal floating point extension!");
1709 return getFoldedCast(Instruction::FPExt
, C
, Ty
, OnlyIfReduced
);
1712 Constant
*ConstantExpr::getUIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1714 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1715 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1717 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1718 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1719 "This is an illegal uint to floating point cast!");
1720 return getFoldedCast(Instruction::UIToFP
, C
, Ty
, OnlyIfReduced
);
1723 Constant
*ConstantExpr::getSIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1725 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1726 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1728 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1729 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1730 "This is an illegal sint to floating point cast!");
1731 return getFoldedCast(Instruction::SIToFP
, C
, Ty
, OnlyIfReduced
);
1734 Constant
*ConstantExpr::getFPToUI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1736 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1737 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1739 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1740 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1741 "This is an illegal floating point to uint cast!");
1742 return getFoldedCast(Instruction::FPToUI
, C
, Ty
, OnlyIfReduced
);
1745 Constant
*ConstantExpr::getFPToSI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1747 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1748 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1750 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1751 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1752 "This is an illegal floating point to sint cast!");
1753 return getFoldedCast(Instruction::FPToSI
, C
, Ty
, OnlyIfReduced
);
1756 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, Type
*DstTy
,
1757 bool OnlyIfReduced
) {
1758 assert(C
->getType()->isPtrOrPtrVectorTy() &&
1759 "PtrToInt source must be pointer or pointer vector");
1760 assert(DstTy
->isIntOrIntVectorTy() &&
1761 "PtrToInt destination must be integer or integer vector");
1762 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1763 if (isa
<VectorType
>(C
->getType()))
1764 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1765 "Invalid cast between a different number of vector elements");
1766 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
, OnlyIfReduced
);
1769 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, Type
*DstTy
,
1770 bool OnlyIfReduced
) {
1771 assert(C
->getType()->isIntOrIntVectorTy() &&
1772 "IntToPtr source must be integer or integer vector");
1773 assert(DstTy
->isPtrOrPtrVectorTy() &&
1774 "IntToPtr destination must be a pointer or pointer vector");
1775 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1776 if (isa
<VectorType
>(C
->getType()))
1777 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1778 "Invalid cast between a different number of vector elements");
1779 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
, OnlyIfReduced
);
1782 Constant
*ConstantExpr::getBitCast(Constant
*C
, Type
*DstTy
,
1783 bool OnlyIfReduced
) {
1784 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DstTy
) &&
1785 "Invalid constantexpr bitcast!");
1787 // It is common to ask for a bitcast of a value to its own type, handle this
1789 if (C
->getType() == DstTy
) return C
;
1791 return getFoldedCast(Instruction::BitCast
, C
, DstTy
, OnlyIfReduced
);
1794 Constant
*ConstantExpr::getAddrSpaceCast(Constant
*C
, Type
*DstTy
,
1795 bool OnlyIfReduced
) {
1796 assert(CastInst::castIsValid(Instruction::AddrSpaceCast
, C
, DstTy
) &&
1797 "Invalid constantexpr addrspacecast!");
1799 // Canonicalize addrspacecasts between different pointer types by first
1800 // bitcasting the pointer type and then converting the address space.
1801 PointerType
*SrcScalarTy
= cast
<PointerType
>(C
->getType()->getScalarType());
1802 PointerType
*DstScalarTy
= cast
<PointerType
>(DstTy
->getScalarType());
1803 Type
*DstElemTy
= DstScalarTy
->getElementType();
1804 if (SrcScalarTy
->getElementType() != DstElemTy
) {
1805 Type
*MidTy
= PointerType::get(DstElemTy
, SrcScalarTy
->getAddressSpace());
1806 if (VectorType
*VT
= dyn_cast
<VectorType
>(DstTy
)) {
1807 // Handle vectors of pointers.
1808 MidTy
= VectorType::get(MidTy
, VT
->getNumElements());
1810 C
= getBitCast(C
, MidTy
);
1812 return getFoldedCast(Instruction::AddrSpaceCast
, C
, DstTy
, OnlyIfReduced
);
1815 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C
, unsigned Flags
,
1816 Type
*OnlyIfReducedTy
) {
1817 // Check the operands for consistency first.
1818 assert(Instruction::isUnaryOp(Opcode
) &&
1819 "Invalid opcode in unary constant expression");
1823 case Instruction::FNeg
:
1824 assert(C
->getType()->isFPOrFPVectorTy() &&
1825 "Tried to create a floating-point operation on a "
1826 "non-floating-point type!");
1833 if (Constant
*FC
= ConstantFoldUnaryInstruction(Opcode
, C
))
1836 if (OnlyIfReducedTy
== C
->getType())
1839 Constant
*ArgVec
[] = { C
};
1840 ConstantExprKeyType
Key(Opcode
, ArgVec
, 0, Flags
);
1842 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
1843 return pImpl
->ExprConstants
.getOrCreate(C
->getType(), Key
);
1846 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
,
1847 unsigned Flags
, Type
*OnlyIfReducedTy
) {
1848 // Check the operands for consistency first.
1849 assert(Instruction::isBinaryOp(Opcode
) &&
1850 "Invalid opcode in binary constant expression");
1851 assert(C1
->getType() == C2
->getType() &&
1852 "Operand types in binary constant expression should match");
1856 case Instruction::Add
:
1857 case Instruction::Sub
:
1858 case Instruction::Mul
:
1859 case Instruction::UDiv
:
1860 case Instruction::SDiv
:
1861 case Instruction::URem
:
1862 case Instruction::SRem
:
1863 assert(C1
->getType()->isIntOrIntVectorTy() &&
1864 "Tried to create an integer operation on a non-integer type!");
1866 case Instruction::FAdd
:
1867 case Instruction::FSub
:
1868 case Instruction::FMul
:
1869 case Instruction::FDiv
:
1870 case Instruction::FRem
:
1871 assert(C1
->getType()->isFPOrFPVectorTy() &&
1872 "Tried to create a floating-point operation on a "
1873 "non-floating-point type!");
1875 case Instruction::And
:
1876 case Instruction::Or
:
1877 case Instruction::Xor
:
1878 assert(C1
->getType()->isIntOrIntVectorTy() &&
1879 "Tried to create a logical operation on a non-integral type!");
1881 case Instruction::Shl
:
1882 case Instruction::LShr
:
1883 case Instruction::AShr
:
1884 assert(C1
->getType()->isIntOrIntVectorTy() &&
1885 "Tried to create a shift operation on a non-integer type!");
1892 if (Constant
*FC
= ConstantFoldBinaryInstruction(Opcode
, C1
, C2
))
1895 if (OnlyIfReducedTy
== C1
->getType())
1898 Constant
*ArgVec
[] = { C1
, C2
};
1899 ConstantExprKeyType
Key(Opcode
, ArgVec
, 0, Flags
);
1901 LLVMContextImpl
*pImpl
= C1
->getContext().pImpl
;
1902 return pImpl
->ExprConstants
.getOrCreate(C1
->getType(), Key
);
1905 Constant
*ConstantExpr::getSizeOf(Type
* Ty
) {
1906 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1907 // Note that a non-inbounds gep is used, as null isn't within any object.
1908 Constant
*GEPIdx
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1909 Constant
*GEP
= getGetElementPtr(
1910 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1911 return getPtrToInt(GEP
,
1912 Type::getInt64Ty(Ty
->getContext()));
1915 Constant
*ConstantExpr::getAlignOf(Type
* Ty
) {
1916 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1917 // Note that a non-inbounds gep is used, as null isn't within any object.
1918 Type
*AligningTy
= StructType::get(Type::getInt1Ty(Ty
->getContext()), Ty
);
1919 Constant
*NullPtr
= Constant::getNullValue(AligningTy
->getPointerTo(0));
1920 Constant
*Zero
= ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0);
1921 Constant
*One
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1922 Constant
*Indices
[2] = { Zero
, One
};
1923 Constant
*GEP
= getGetElementPtr(AligningTy
, NullPtr
, Indices
);
1924 return getPtrToInt(GEP
,
1925 Type::getInt64Ty(Ty
->getContext()));
1928 Constant
*ConstantExpr::getOffsetOf(StructType
* STy
, unsigned FieldNo
) {
1929 return getOffsetOf(STy
, ConstantInt::get(Type::getInt32Ty(STy
->getContext()),
1933 Constant
*ConstantExpr::getOffsetOf(Type
* Ty
, Constant
*FieldNo
) {
1934 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1935 // Note that a non-inbounds gep is used, as null isn't within any object.
1936 Constant
*GEPIdx
[] = {
1937 ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0),
1940 Constant
*GEP
= getGetElementPtr(
1941 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1942 return getPtrToInt(GEP
,
1943 Type::getInt64Ty(Ty
->getContext()));
1946 Constant
*ConstantExpr::getCompare(unsigned short Predicate
, Constant
*C1
,
1947 Constant
*C2
, bool OnlyIfReduced
) {
1948 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1950 switch (Predicate
) {
1951 default: llvm_unreachable("Invalid CmpInst predicate");
1952 case CmpInst::FCMP_FALSE
: case CmpInst::FCMP_OEQ
: case CmpInst::FCMP_OGT
:
1953 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLT
: case CmpInst::FCMP_OLE
:
1954 case CmpInst::FCMP_ONE
: case CmpInst::FCMP_ORD
: case CmpInst::FCMP_UNO
:
1955 case CmpInst::FCMP_UEQ
: case CmpInst::FCMP_UGT
: case CmpInst::FCMP_UGE
:
1956 case CmpInst::FCMP_ULT
: case CmpInst::FCMP_ULE
: case CmpInst::FCMP_UNE
:
1957 case CmpInst::FCMP_TRUE
:
1958 return getFCmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1960 case CmpInst::ICMP_EQ
: case CmpInst::ICMP_NE
: case CmpInst::ICMP_UGT
:
1961 case CmpInst::ICMP_UGE
: case CmpInst::ICMP_ULT
: case CmpInst::ICMP_ULE
:
1962 case CmpInst::ICMP_SGT
: case CmpInst::ICMP_SGE
: case CmpInst::ICMP_SLT
:
1963 case CmpInst::ICMP_SLE
:
1964 return getICmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1968 Constant
*ConstantExpr::getSelect(Constant
*C
, Constant
*V1
, Constant
*V2
,
1969 Type
*OnlyIfReducedTy
) {
1970 assert(!SelectInst::areInvalidOperands(C
, V1
, V2
)&&"Invalid select operands");
1972 if (Constant
*SC
= ConstantFoldSelectInstruction(C
, V1
, V2
))
1973 return SC
; // Fold common cases
1975 if (OnlyIfReducedTy
== V1
->getType())
1978 Constant
*ArgVec
[] = { C
, V1
, V2
};
1979 ConstantExprKeyType
Key(Instruction::Select
, ArgVec
);
1981 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
1982 return pImpl
->ExprConstants
.getOrCreate(V1
->getType(), Key
);
1985 Constant
*ConstantExpr::getGetElementPtr(Type
*Ty
, Constant
*C
,
1986 ArrayRef
<Value
*> Idxs
, bool InBounds
,
1987 Optional
<unsigned> InRangeIndex
,
1988 Type
*OnlyIfReducedTy
) {
1990 Ty
= cast
<PointerType
>(C
->getType()->getScalarType())->getElementType();
1993 cast
<PointerType
>(C
->getType()->getScalarType())->getElementType());
1996 ConstantFoldGetElementPtr(Ty
, C
, InBounds
, InRangeIndex
, Idxs
))
1997 return FC
; // Fold a few common cases.
1999 // Get the result type of the getelementptr!
2000 Type
*DestTy
= GetElementPtrInst::getIndexedType(Ty
, Idxs
);
2001 assert(DestTy
&& "GEP indices invalid!");
2002 unsigned AS
= C
->getType()->getPointerAddressSpace();
2003 Type
*ReqTy
= DestTy
->getPointerTo(AS
);
2005 unsigned NumVecElts
= 0;
2006 if (C
->getType()->isVectorTy())
2007 NumVecElts
= C
->getType()->getVectorNumElements();
2008 else for (auto Idx
: Idxs
)
2009 if (Idx
->getType()->isVectorTy())
2010 NumVecElts
= Idx
->getType()->getVectorNumElements();
2013 ReqTy
= VectorType::get(ReqTy
, NumVecElts
);
2015 if (OnlyIfReducedTy
== ReqTy
)
2018 // Look up the constant in the table first to ensure uniqueness
2019 std::vector
<Constant
*> ArgVec
;
2020 ArgVec
.reserve(1 + Idxs
.size());
2021 ArgVec
.push_back(C
);
2022 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2023 assert((!Idxs
[i
]->getType()->isVectorTy() ||
2024 Idxs
[i
]->getType()->getVectorNumElements() == NumVecElts
) &&
2025 "getelementptr index type missmatch");
2027 Constant
*Idx
= cast
<Constant
>(Idxs
[i
]);
2028 if (NumVecElts
&& !Idxs
[i
]->getType()->isVectorTy())
2029 Idx
= ConstantVector::getSplat(NumVecElts
, Idx
);
2030 ArgVec
.push_back(Idx
);
2033 unsigned SubClassOptionalData
= InBounds
? GEPOperator::IsInBounds
: 0;
2034 if (InRangeIndex
&& *InRangeIndex
< 63)
2035 SubClassOptionalData
|= (*InRangeIndex
+ 1) << 1;
2036 const ConstantExprKeyType
Key(Instruction::GetElementPtr
, ArgVec
, 0,
2037 SubClassOptionalData
, None
, Ty
);
2039 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
2040 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2043 Constant
*ConstantExpr::getICmp(unsigned short pred
, Constant
*LHS
,
2044 Constant
*RHS
, bool OnlyIfReduced
) {
2045 assert(LHS
->getType() == RHS
->getType());
2046 assert(CmpInst::isIntPredicate((CmpInst::Predicate
)pred
) &&
2047 "Invalid ICmp Predicate");
2049 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2050 return FC
; // Fold a few common cases...
2055 // Look up the constant in the table first to ensure uniqueness
2056 Constant
*ArgVec
[] = { LHS
, RHS
};
2057 // Get the key type with both the opcode and predicate
2058 const ConstantExprKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
2060 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2061 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2062 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2064 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2065 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2068 Constant
*ConstantExpr::getFCmp(unsigned short pred
, Constant
*LHS
,
2069 Constant
*RHS
, bool OnlyIfReduced
) {
2070 assert(LHS
->getType() == RHS
->getType());
2071 assert(CmpInst::isFPPredicate((CmpInst::Predicate
)pred
) &&
2072 "Invalid FCmp Predicate");
2074 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2075 return FC
; // Fold a few common cases...
2080 // Look up the constant in the table first to ensure uniqueness
2081 Constant
*ArgVec
[] = { LHS
, RHS
};
2082 // Get the key type with both the opcode and predicate
2083 const ConstantExprKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
2085 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2086 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2087 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2089 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2090 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2093 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
,
2094 Type
*OnlyIfReducedTy
) {
2095 assert(Val
->getType()->isVectorTy() &&
2096 "Tried to create extractelement operation on non-vector type!");
2097 assert(Idx
->getType()->isIntegerTy() &&
2098 "Extractelement index must be an integer type!");
2100 if (Constant
*FC
= ConstantFoldExtractElementInstruction(Val
, Idx
))
2101 return FC
; // Fold a few common cases.
2103 Type
*ReqTy
= Val
->getType()->getVectorElementType();
2104 if (OnlyIfReducedTy
== ReqTy
)
2107 // Look up the constant in the table first to ensure uniqueness
2108 Constant
*ArgVec
[] = { Val
, Idx
};
2109 const ConstantExprKeyType
Key(Instruction::ExtractElement
, ArgVec
);
2111 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2112 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2115 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
2116 Constant
*Idx
, Type
*OnlyIfReducedTy
) {
2117 assert(Val
->getType()->isVectorTy() &&
2118 "Tried to create insertelement operation on non-vector type!");
2119 assert(Elt
->getType() == Val
->getType()->getVectorElementType() &&
2120 "Insertelement types must match!");
2121 assert(Idx
->getType()->isIntegerTy() &&
2122 "Insertelement index must be i32 type!");
2124 if (Constant
*FC
= ConstantFoldInsertElementInstruction(Val
, Elt
, Idx
))
2125 return FC
; // Fold a few common cases.
2127 if (OnlyIfReducedTy
== Val
->getType())
2130 // Look up the constant in the table first to ensure uniqueness
2131 Constant
*ArgVec
[] = { Val
, Elt
, Idx
};
2132 const ConstantExprKeyType
Key(Instruction::InsertElement
, ArgVec
);
2134 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2135 return pImpl
->ExprConstants
.getOrCreate(Val
->getType(), Key
);
2138 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
2139 Constant
*Mask
, Type
*OnlyIfReducedTy
) {
2140 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
2141 "Invalid shuffle vector constant expr operands!");
2143 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(V1
, V2
, Mask
))
2144 return FC
; // Fold a few common cases.
2146 unsigned NElts
= Mask
->getType()->getVectorNumElements();
2147 Type
*EltTy
= V1
->getType()->getVectorElementType();
2148 Type
*ShufTy
= VectorType::get(EltTy
, NElts
);
2150 if (OnlyIfReducedTy
== ShufTy
)
2153 // Look up the constant in the table first to ensure uniqueness
2154 Constant
*ArgVec
[] = { V1
, V2
, Mask
};
2155 const ConstantExprKeyType
Key(Instruction::ShuffleVector
, ArgVec
);
2157 LLVMContextImpl
*pImpl
= ShufTy
->getContext().pImpl
;
2158 return pImpl
->ExprConstants
.getOrCreate(ShufTy
, Key
);
2161 Constant
*ConstantExpr::getInsertValue(Constant
*Agg
, Constant
*Val
,
2162 ArrayRef
<unsigned> Idxs
,
2163 Type
*OnlyIfReducedTy
) {
2164 assert(Agg
->getType()->isFirstClassType() &&
2165 "Non-first-class type for constant insertvalue expression");
2167 assert(ExtractValueInst::getIndexedType(Agg
->getType(),
2168 Idxs
) == Val
->getType() &&
2169 "insertvalue indices invalid!");
2170 Type
*ReqTy
= Val
->getType();
2172 if (Constant
*FC
= ConstantFoldInsertValueInstruction(Agg
, Val
, Idxs
))
2175 if (OnlyIfReducedTy
== ReqTy
)
2178 Constant
*ArgVec
[] = { Agg
, Val
};
2179 const ConstantExprKeyType
Key(Instruction::InsertValue
, ArgVec
, 0, 0, Idxs
);
2181 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2182 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2185 Constant
*ConstantExpr::getExtractValue(Constant
*Agg
, ArrayRef
<unsigned> Idxs
,
2186 Type
*OnlyIfReducedTy
) {
2187 assert(Agg
->getType()->isFirstClassType() &&
2188 "Tried to create extractelement operation on non-first-class type!");
2190 Type
*ReqTy
= ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
);
2192 assert(ReqTy
&& "extractvalue indices invalid!");
2194 assert(Agg
->getType()->isFirstClassType() &&
2195 "Non-first-class type for constant extractvalue expression");
2196 if (Constant
*FC
= ConstantFoldExtractValueInstruction(Agg
, Idxs
))
2199 if (OnlyIfReducedTy
== ReqTy
)
2202 Constant
*ArgVec
[] = { Agg
};
2203 const ConstantExprKeyType
Key(Instruction::ExtractValue
, ArgVec
, 0, 0, Idxs
);
2205 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2206 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2209 Constant
*ConstantExpr::getNeg(Constant
*C
, bool HasNUW
, bool HasNSW
) {
2210 assert(C
->getType()->isIntOrIntVectorTy() &&
2211 "Cannot NEG a nonintegral value!");
2212 return getSub(ConstantFP::getZeroValueForNegation(C
->getType()),
2216 Constant
*ConstantExpr::getFNeg(Constant
*C
) {
2217 assert(C
->getType()->isFPOrFPVectorTy() &&
2218 "Cannot FNEG a non-floating-point value!");
2219 return get(Instruction::FNeg
, C
);
2222 Constant
*ConstantExpr::getNot(Constant
*C
) {
2223 assert(C
->getType()->isIntOrIntVectorTy() &&
2224 "Cannot NOT a nonintegral value!");
2225 return get(Instruction::Xor
, C
, Constant::getAllOnesValue(C
->getType()));
2228 Constant
*ConstantExpr::getAdd(Constant
*C1
, Constant
*C2
,
2229 bool HasNUW
, bool HasNSW
) {
2230 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2231 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2232 return get(Instruction::Add
, C1
, C2
, Flags
);
2235 Constant
*ConstantExpr::getFAdd(Constant
*C1
, Constant
*C2
) {
2236 return get(Instruction::FAdd
, C1
, C2
);
2239 Constant
*ConstantExpr::getSub(Constant
*C1
, Constant
*C2
,
2240 bool HasNUW
, bool HasNSW
) {
2241 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2242 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2243 return get(Instruction::Sub
, C1
, C2
, Flags
);
2246 Constant
*ConstantExpr::getFSub(Constant
*C1
, Constant
*C2
) {
2247 return get(Instruction::FSub
, C1
, C2
);
2250 Constant
*ConstantExpr::getMul(Constant
*C1
, Constant
*C2
,
2251 bool HasNUW
, bool HasNSW
) {
2252 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2253 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2254 return get(Instruction::Mul
, C1
, C2
, Flags
);
2257 Constant
*ConstantExpr::getFMul(Constant
*C1
, Constant
*C2
) {
2258 return get(Instruction::FMul
, C1
, C2
);
2261 Constant
*ConstantExpr::getUDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2262 return get(Instruction::UDiv
, C1
, C2
,
2263 isExact
? PossiblyExactOperator::IsExact
: 0);
2266 Constant
*ConstantExpr::getSDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2267 return get(Instruction::SDiv
, C1
, C2
,
2268 isExact
? PossiblyExactOperator::IsExact
: 0);
2271 Constant
*ConstantExpr::getFDiv(Constant
*C1
, Constant
*C2
) {
2272 return get(Instruction::FDiv
, C1
, C2
);
2275 Constant
*ConstantExpr::getURem(Constant
*C1
, Constant
*C2
) {
2276 return get(Instruction::URem
, C1
, C2
);
2279 Constant
*ConstantExpr::getSRem(Constant
*C1
, Constant
*C2
) {
2280 return get(Instruction::SRem
, C1
, C2
);
2283 Constant
*ConstantExpr::getFRem(Constant
*C1
, Constant
*C2
) {
2284 return get(Instruction::FRem
, C1
, C2
);
2287 Constant
*ConstantExpr::getAnd(Constant
*C1
, Constant
*C2
) {
2288 return get(Instruction::And
, C1
, C2
);
2291 Constant
*ConstantExpr::getOr(Constant
*C1
, Constant
*C2
) {
2292 return get(Instruction::Or
, C1
, C2
);
2295 Constant
*ConstantExpr::getXor(Constant
*C1
, Constant
*C2
) {
2296 return get(Instruction::Xor
, C1
, C2
);
2299 Constant
*ConstantExpr::getShl(Constant
*C1
, Constant
*C2
,
2300 bool HasNUW
, bool HasNSW
) {
2301 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2302 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2303 return get(Instruction::Shl
, C1
, C2
, Flags
);
2306 Constant
*ConstantExpr::getLShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2307 return get(Instruction::LShr
, C1
, C2
,
2308 isExact
? PossiblyExactOperator::IsExact
: 0);
2311 Constant
*ConstantExpr::getAShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2312 return get(Instruction::AShr
, C1
, C2
,
2313 isExact
? PossiblyExactOperator::IsExact
: 0);
2316 Constant
*ConstantExpr::getBinOpIdentity(unsigned Opcode
, Type
*Ty
,
2317 bool AllowRHSConstant
) {
2318 assert(Instruction::isBinaryOp(Opcode
) && "Only binops allowed");
2320 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2321 if (Instruction::isCommutative(Opcode
)) {
2323 case Instruction::Add
: // X + 0 = X
2324 case Instruction::Or
: // X | 0 = X
2325 case Instruction::Xor
: // X ^ 0 = X
2326 return Constant::getNullValue(Ty
);
2327 case Instruction::Mul
: // X * 1 = X
2328 return ConstantInt::get(Ty
, 1);
2329 case Instruction::And
: // X & -1 = X
2330 return Constant::getAllOnesValue(Ty
);
2331 case Instruction::FAdd
: // X + -0.0 = X
2332 // TODO: If the fadd has 'nsz', should we return +0.0?
2333 return ConstantFP::getNegativeZero(Ty
);
2334 case Instruction::FMul
: // X * 1.0 = X
2335 return ConstantFP::get(Ty
, 1.0);
2337 llvm_unreachable("Every commutative binop has an identity constant");
2341 // Non-commutative opcodes: AllowRHSConstant must be set.
2342 if (!AllowRHSConstant
)
2346 case Instruction::Sub
: // X - 0 = X
2347 case Instruction::Shl
: // X << 0 = X
2348 case Instruction::LShr
: // X >>u 0 = X
2349 case Instruction::AShr
: // X >> 0 = X
2350 case Instruction::FSub
: // X - 0.0 = X
2351 return Constant::getNullValue(Ty
);
2352 case Instruction::SDiv
: // X / 1 = X
2353 case Instruction::UDiv
: // X /u 1 = X
2354 return ConstantInt::get(Ty
, 1);
2355 case Instruction::FDiv
: // X / 1.0 = X
2356 return ConstantFP::get(Ty
, 1.0);
2362 Constant
*ConstantExpr::getBinOpAbsorber(unsigned Opcode
, Type
*Ty
) {
2365 // Doesn't have an absorber.
2368 case Instruction::Or
:
2369 return Constant::getAllOnesValue(Ty
);
2371 case Instruction::And
:
2372 case Instruction::Mul
:
2373 return Constant::getNullValue(Ty
);
2377 /// Remove the constant from the constant table.
2378 void ConstantExpr::destroyConstantImpl() {
2379 getType()->getContext().pImpl
->ExprConstants
.remove(this);
2382 const char *ConstantExpr::getOpcodeName() const {
2383 return Instruction::getOpcodeName(getOpcode());
2386 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2387 Type
*SrcElementTy
, Constant
*C
, ArrayRef
<Constant
*> IdxList
, Type
*DestTy
)
2388 : ConstantExpr(DestTy
, Instruction::GetElementPtr
,
2389 OperandTraits
<GetElementPtrConstantExpr
>::op_end(this) -
2390 (IdxList
.size() + 1),
2391 IdxList
.size() + 1),
2392 SrcElementTy(SrcElementTy
),
2393 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy
, IdxList
)) {
2395 Use
*OperandList
= getOperandList();
2396 for (unsigned i
= 0, E
= IdxList
.size(); i
!= E
; ++i
)
2397 OperandList
[i
+1] = IdxList
[i
];
2400 Type
*GetElementPtrConstantExpr::getSourceElementType() const {
2401 return SrcElementTy
;
2404 Type
*GetElementPtrConstantExpr::getResultElementType() const {
2405 return ResElementTy
;
2408 //===----------------------------------------------------------------------===//
2409 // ConstantData* implementations
2411 Type
*ConstantDataSequential::getElementType() const {
2412 return getType()->getElementType();
2415 StringRef
ConstantDataSequential::getRawDataValues() const {
2416 return StringRef(DataElements
, getNumElements()*getElementByteSize());
2419 bool ConstantDataSequential::isElementTypeCompatible(Type
*Ty
) {
2420 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) return true;
2421 if (auto *IT
= dyn_cast
<IntegerType
>(Ty
)) {
2422 switch (IT
->getBitWidth()) {
2434 unsigned ConstantDataSequential::getNumElements() const {
2435 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(getType()))
2436 return AT
->getNumElements();
2437 return getType()->getVectorNumElements();
2441 uint64_t ConstantDataSequential::getElementByteSize() const {
2442 return getElementType()->getPrimitiveSizeInBits()/8;
2445 /// Return the start of the specified element.
2446 const char *ConstantDataSequential::getElementPointer(unsigned Elt
) const {
2447 assert(Elt
< getNumElements() && "Invalid Elt");
2448 return DataElements
+Elt
*getElementByteSize();
2452 /// Return true if the array is empty or all zeros.
2453 static bool isAllZeros(StringRef Arr
) {
2460 /// This is the underlying implementation of all of the
2461 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2462 /// the correct element type. We take the bytes in as a StringRef because
2463 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2464 Constant
*ConstantDataSequential::getImpl(StringRef Elements
, Type
*Ty
) {
2465 assert(isElementTypeCompatible(Ty
->getSequentialElementType()));
2466 // If the elements are all zero or there are no elements, return a CAZ, which
2467 // is more dense and canonical.
2468 if (isAllZeros(Elements
))
2469 return ConstantAggregateZero::get(Ty
);
2471 // Do a lookup to see if we have already formed one of these.
2474 .pImpl
->CDSConstants
.insert(std::make_pair(Elements
, nullptr))
2477 // The bucket can point to a linked list of different CDS's that have the same
2478 // body but different types. For example, 0,0,0,1 could be a 4 element array
2479 // of i8, or a 1-element array of i32. They'll both end up in the same
2480 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2481 ConstantDataSequential
**Entry
= &Slot
.second
;
2482 for (ConstantDataSequential
*Node
= *Entry
; Node
;
2483 Entry
= &Node
->Next
, Node
= *Entry
)
2484 if (Node
->getType() == Ty
)
2487 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2489 if (isa
<ArrayType
>(Ty
))
2490 return *Entry
= new ConstantDataArray(Ty
, Slot
.first().data());
2492 assert(isa
<VectorType
>(Ty
));
2493 return *Entry
= new ConstantDataVector(Ty
, Slot
.first().data());
2496 void ConstantDataSequential::destroyConstantImpl() {
2497 // Remove the constant from the StringMap.
2498 StringMap
<ConstantDataSequential
*> &CDSConstants
=
2499 getType()->getContext().pImpl
->CDSConstants
;
2501 StringMap
<ConstantDataSequential
*>::iterator Slot
=
2502 CDSConstants
.find(getRawDataValues());
2504 assert(Slot
!= CDSConstants
.end() && "CDS not found in uniquing table");
2506 ConstantDataSequential
**Entry
= &Slot
->getValue();
2508 // Remove the entry from the hash table.
2509 if (!(*Entry
)->Next
) {
2510 // If there is only one value in the bucket (common case) it must be this
2511 // entry, and removing the entry should remove the bucket completely.
2512 assert((*Entry
) == this && "Hash mismatch in ConstantDataSequential");
2513 getContext().pImpl
->CDSConstants
.erase(Slot
);
2515 // Otherwise, there are multiple entries linked off the bucket, unlink the
2516 // node we care about but keep the bucket around.
2517 for (ConstantDataSequential
*Node
= *Entry
; ;
2518 Entry
= &Node
->Next
, Node
= *Entry
) {
2519 assert(Node
&& "Didn't find entry in its uniquing hash table!");
2520 // If we found our entry, unlink it from the list and we're done.
2522 *Entry
= Node
->Next
;
2528 // If we were part of a list, make sure that we don't delete the list that is
2529 // still owned by the uniquing map.
2533 /// getFP() constructors - Return a constant with array type with an element
2534 /// count and element type of float with precision matching the number of
2535 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2536 /// double for 64bits) Note that this can return a ConstantAggregateZero
2538 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2539 ArrayRef
<uint16_t> Elts
) {
2540 Type
*Ty
= ArrayType::get(Type::getHalfTy(Context
), Elts
.size());
2541 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2542 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2544 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2545 ArrayRef
<uint32_t> Elts
) {
2546 Type
*Ty
= ArrayType::get(Type::getFloatTy(Context
), Elts
.size());
2547 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2548 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2550 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2551 ArrayRef
<uint64_t> Elts
) {
2552 Type
*Ty
= ArrayType::get(Type::getDoubleTy(Context
), Elts
.size());
2553 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2554 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2557 Constant
*ConstantDataArray::getString(LLVMContext
&Context
,
2558 StringRef Str
, bool AddNull
) {
2560 const uint8_t *Data
= Str
.bytes_begin();
2561 return get(Context
, makeArrayRef(Data
, Str
.size()));
2564 SmallVector
<uint8_t, 64> ElementVals
;
2565 ElementVals
.append(Str
.begin(), Str
.end());
2566 ElementVals
.push_back(0);
2567 return get(Context
, ElementVals
);
2570 /// get() constructors - Return a constant with vector type with an element
2571 /// count and element type matching the ArrayRef passed in. Note that this
2572 /// can return a ConstantAggregateZero object.
2573 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint8_t> Elts
){
2574 Type
*Ty
= VectorType::get(Type::getInt8Ty(Context
), Elts
.size());
2575 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2576 return getImpl(StringRef(Data
, Elts
.size() * 1), Ty
);
2578 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint16_t> Elts
){
2579 Type
*Ty
= VectorType::get(Type::getInt16Ty(Context
), Elts
.size());
2580 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2581 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2583 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint32_t> Elts
){
2584 Type
*Ty
= VectorType::get(Type::getInt32Ty(Context
), Elts
.size());
2585 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2586 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2588 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint64_t> Elts
){
2589 Type
*Ty
= VectorType::get(Type::getInt64Ty(Context
), Elts
.size());
2590 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2591 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2593 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<float> Elts
) {
2594 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2595 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2596 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2598 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<double> Elts
) {
2599 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2600 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2601 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2604 /// getFP() constructors - Return a constant with vector type with an element
2605 /// count and element type of float with the precision matching the number of
2606 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2607 /// double for 64bits) Note that this can return a ConstantAggregateZero
2609 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2610 ArrayRef
<uint16_t> Elts
) {
2611 Type
*Ty
= VectorType::get(Type::getHalfTy(Context
), Elts
.size());
2612 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2613 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2615 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2616 ArrayRef
<uint32_t> Elts
) {
2617 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2618 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2619 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2621 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2622 ArrayRef
<uint64_t> Elts
) {
2623 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2624 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2625 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2628 Constant
*ConstantDataVector::getSplat(unsigned NumElts
, Constant
*V
) {
2629 assert(isElementTypeCompatible(V
->getType()) &&
2630 "Element type not compatible with ConstantData");
2631 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2632 if (CI
->getType()->isIntegerTy(8)) {
2633 SmallVector
<uint8_t, 16> Elts(NumElts
, CI
->getZExtValue());
2634 return get(V
->getContext(), Elts
);
2636 if (CI
->getType()->isIntegerTy(16)) {
2637 SmallVector
<uint16_t, 16> Elts(NumElts
, CI
->getZExtValue());
2638 return get(V
->getContext(), Elts
);
2640 if (CI
->getType()->isIntegerTy(32)) {
2641 SmallVector
<uint32_t, 16> Elts(NumElts
, CI
->getZExtValue());
2642 return get(V
->getContext(), Elts
);
2644 assert(CI
->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2645 SmallVector
<uint64_t, 16> Elts(NumElts
, CI
->getZExtValue());
2646 return get(V
->getContext(), Elts
);
2649 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
2650 if (CFP
->getType()->isHalfTy()) {
2651 SmallVector
<uint16_t, 16> Elts(
2652 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2653 return getFP(V
->getContext(), Elts
);
2655 if (CFP
->getType()->isFloatTy()) {
2656 SmallVector
<uint32_t, 16> Elts(
2657 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2658 return getFP(V
->getContext(), Elts
);
2660 if (CFP
->getType()->isDoubleTy()) {
2661 SmallVector
<uint64_t, 16> Elts(
2662 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2663 return getFP(V
->getContext(), Elts
);
2666 return ConstantVector::getSplat(NumElts
, V
);
2670 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt
) const {
2671 assert(isa
<IntegerType
>(getElementType()) &&
2672 "Accessor can only be used when element is an integer");
2673 const char *EltPtr
= getElementPointer(Elt
);
2675 // The data is stored in host byte order, make sure to cast back to the right
2676 // type to load with the right endianness.
2677 switch (getElementType()->getIntegerBitWidth()) {
2678 default: llvm_unreachable("Invalid bitwidth for CDS");
2680 return *reinterpret_cast<const uint8_t *>(EltPtr
);
2682 return *reinterpret_cast<const uint16_t *>(EltPtr
);
2684 return *reinterpret_cast<const uint32_t *>(EltPtr
);
2686 return *reinterpret_cast<const uint64_t *>(EltPtr
);
2690 APInt
ConstantDataSequential::getElementAsAPInt(unsigned Elt
) const {
2691 assert(isa
<IntegerType
>(getElementType()) &&
2692 "Accessor can only be used when element is an integer");
2693 const char *EltPtr
= getElementPointer(Elt
);
2695 // The data is stored in host byte order, make sure to cast back to the right
2696 // type to load with the right endianness.
2697 switch (getElementType()->getIntegerBitWidth()) {
2698 default: llvm_unreachable("Invalid bitwidth for CDS");
2700 auto EltVal
= *reinterpret_cast<const uint8_t *>(EltPtr
);
2701 return APInt(8, EltVal
);
2704 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2705 return APInt(16, EltVal
);
2708 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2709 return APInt(32, EltVal
);
2712 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2713 return APInt(64, EltVal
);
2718 APFloat
ConstantDataSequential::getElementAsAPFloat(unsigned Elt
) const {
2719 const char *EltPtr
= getElementPointer(Elt
);
2721 switch (getElementType()->getTypeID()) {
2723 llvm_unreachable("Accessor can only be used when element is float/double!");
2724 case Type::HalfTyID
: {
2725 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2726 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal
));
2728 case Type::FloatTyID
: {
2729 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2730 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal
));
2732 case Type::DoubleTyID
: {
2733 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2734 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal
));
2739 float ConstantDataSequential::getElementAsFloat(unsigned Elt
) const {
2740 assert(getElementType()->isFloatTy() &&
2741 "Accessor can only be used when element is a 'float'");
2742 return *reinterpret_cast<const float *>(getElementPointer(Elt
));
2745 double ConstantDataSequential::getElementAsDouble(unsigned Elt
) const {
2746 assert(getElementType()->isDoubleTy() &&
2747 "Accessor can only be used when element is a 'float'");
2748 return *reinterpret_cast<const double *>(getElementPointer(Elt
));
2751 Constant
*ConstantDataSequential::getElementAsConstant(unsigned Elt
) const {
2752 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2753 getElementType()->isDoubleTy())
2754 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt
));
2756 return ConstantInt::get(getElementType(), getElementAsInteger(Elt
));
2759 bool ConstantDataSequential::isString(unsigned CharSize
) const {
2760 return isa
<ArrayType
>(getType()) && getElementType()->isIntegerTy(CharSize
);
2763 bool ConstantDataSequential::isCString() const {
2767 StringRef Str
= getAsString();
2769 // The last value must be nul.
2770 if (Str
.back() != 0) return false;
2772 // Other elements must be non-nul.
2773 return Str
.drop_back().find(0) == StringRef::npos
;
2776 bool ConstantDataVector::isSplat() const {
2777 const char *Base
= getRawDataValues().data();
2779 // Compare elements 1+ to the 0'th element.
2780 unsigned EltSize
= getElementByteSize();
2781 for (unsigned i
= 1, e
= getNumElements(); i
!= e
; ++i
)
2782 if (memcmp(Base
, Base
+i
*EltSize
, EltSize
))
2788 Constant
*ConstantDataVector::getSplatValue() const {
2789 // If they're all the same, return the 0th one as a representative.
2790 return isSplat() ? getElementAsConstant(0) : nullptr;
2793 //===----------------------------------------------------------------------===//
2794 // handleOperandChange implementations
2796 /// Update this constant array to change uses of
2797 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2800 /// Note that we intentionally replace all uses of From with To here. Consider
2801 /// a large array that uses 'From' 1000 times. By handling this case all here,
2802 /// ConstantArray::handleOperandChange is only invoked once, and that
2803 /// single invocation handles all 1000 uses. Handling them one at a time would
2804 /// work, but would be really slow because it would have to unique each updated
2807 void Constant::handleOperandChange(Value
*From
, Value
*To
) {
2808 Value
*Replacement
= nullptr;
2809 switch (getValueID()) {
2811 llvm_unreachable("Not a constant!");
2812 #define HANDLE_CONSTANT(Name) \
2813 case Value::Name##Val: \
2814 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2816 #include "llvm/IR/Value.def"
2819 // If handleOperandChangeImpl returned nullptr, then it handled
2820 // replacing itself and we don't want to delete or replace anything else here.
2824 // I do need to replace this with an existing value.
2825 assert(Replacement
!= this && "I didn't contain From!");
2827 // Everyone using this now uses the replacement.
2828 replaceAllUsesWith(Replacement
);
2830 // Delete the old constant!
2834 Value
*ConstantArray::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2835 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2836 Constant
*ToC
= cast
<Constant
>(To
);
2838 SmallVector
<Constant
*, 8> Values
;
2839 Values
.reserve(getNumOperands()); // Build replacement array.
2841 // Fill values with the modified operands of the constant array. Also,
2842 // compute whether this turns into an all-zeros array.
2843 unsigned NumUpdated
= 0;
2845 // Keep track of whether all the values in the array are "ToC".
2846 bool AllSame
= true;
2847 Use
*OperandList
= getOperandList();
2848 unsigned OperandNo
= 0;
2849 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
2850 Constant
*Val
= cast
<Constant
>(O
->get());
2852 OperandNo
= (O
- OperandList
);
2856 Values
.push_back(Val
);
2857 AllSame
&= Val
== ToC
;
2860 if (AllSame
&& ToC
->isNullValue())
2861 return ConstantAggregateZero::get(getType());
2863 if (AllSame
&& isa
<UndefValue
>(ToC
))
2864 return UndefValue::get(getType());
2866 // Check for any other type of constant-folding.
2867 if (Constant
*C
= getImpl(getType(), Values
))
2870 // Update to the new value.
2871 return getContext().pImpl
->ArrayConstants
.replaceOperandsInPlace(
2872 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2875 Value
*ConstantStruct::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2876 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2877 Constant
*ToC
= cast
<Constant
>(To
);
2879 Use
*OperandList
= getOperandList();
2881 SmallVector
<Constant
*, 8> Values
;
2882 Values
.reserve(getNumOperands()); // Build replacement struct.
2884 // Fill values with the modified operands of the constant struct. Also,
2885 // compute whether this turns into an all-zeros struct.
2886 unsigned NumUpdated
= 0;
2887 bool AllSame
= true;
2888 unsigned OperandNo
= 0;
2889 for (Use
*O
= OperandList
, *E
= OperandList
+ getNumOperands(); O
!= E
; ++O
) {
2890 Constant
*Val
= cast
<Constant
>(O
->get());
2892 OperandNo
= (O
- OperandList
);
2896 Values
.push_back(Val
);
2897 AllSame
&= Val
== ToC
;
2900 if (AllSame
&& ToC
->isNullValue())
2901 return ConstantAggregateZero::get(getType());
2903 if (AllSame
&& isa
<UndefValue
>(ToC
))
2904 return UndefValue::get(getType());
2906 // Update to the new value.
2907 return getContext().pImpl
->StructConstants
.replaceOperandsInPlace(
2908 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2911 Value
*ConstantVector::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2912 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2913 Constant
*ToC
= cast
<Constant
>(To
);
2915 SmallVector
<Constant
*, 8> Values
;
2916 Values
.reserve(getNumOperands()); // Build replacement array...
2917 unsigned NumUpdated
= 0;
2918 unsigned OperandNo
= 0;
2919 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2920 Constant
*Val
= getOperand(i
);
2926 Values
.push_back(Val
);
2929 if (Constant
*C
= getImpl(Values
))
2932 // Update to the new value.
2933 return getContext().pImpl
->VectorConstants
.replaceOperandsInPlace(
2934 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2937 Value
*ConstantExpr::handleOperandChangeImpl(Value
*From
, Value
*ToV
) {
2938 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
2939 Constant
*To
= cast
<Constant
>(ToV
);
2941 SmallVector
<Constant
*, 8> NewOps
;
2942 unsigned NumUpdated
= 0;
2943 unsigned OperandNo
= 0;
2944 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2945 Constant
*Op
= getOperand(i
);
2951 NewOps
.push_back(Op
);
2953 assert(NumUpdated
&& "I didn't contain From!");
2955 if (Constant
*C
= getWithOperands(NewOps
, getType(), true))
2958 // Update to the new value.
2959 return getContext().pImpl
->ExprConstants
.replaceOperandsInPlace(
2960 NewOps
, this, From
, To
, NumUpdated
, OperandNo
);
2963 Instruction
*ConstantExpr::getAsInstruction() {
2964 SmallVector
<Value
*, 4> ValueOperands(op_begin(), op_end());
2965 ArrayRef
<Value
*> Ops(ValueOperands
);
2967 switch (getOpcode()) {
2968 case Instruction::Trunc
:
2969 case Instruction::ZExt
:
2970 case Instruction::SExt
:
2971 case Instruction::FPTrunc
:
2972 case Instruction::FPExt
:
2973 case Instruction::UIToFP
:
2974 case Instruction::SIToFP
:
2975 case Instruction::FPToUI
:
2976 case Instruction::FPToSI
:
2977 case Instruction::PtrToInt
:
2978 case Instruction::IntToPtr
:
2979 case Instruction::BitCast
:
2980 case Instruction::AddrSpaceCast
:
2981 return CastInst::Create((Instruction::CastOps
)getOpcode(),
2983 case Instruction::Select
:
2984 return SelectInst::Create(Ops
[0], Ops
[1], Ops
[2]);
2985 case Instruction::InsertElement
:
2986 return InsertElementInst::Create(Ops
[0], Ops
[1], Ops
[2]);
2987 case Instruction::ExtractElement
:
2988 return ExtractElementInst::Create(Ops
[0], Ops
[1]);
2989 case Instruction::InsertValue
:
2990 return InsertValueInst::Create(Ops
[0], Ops
[1], getIndices());
2991 case Instruction::ExtractValue
:
2992 return ExtractValueInst::Create(Ops
[0], getIndices());
2993 case Instruction::ShuffleVector
:
2994 return new ShuffleVectorInst(Ops
[0], Ops
[1], Ops
[2]);
2996 case Instruction::GetElementPtr
: {
2997 const auto *GO
= cast
<GEPOperator
>(this);
2998 if (GO
->isInBounds())
2999 return GetElementPtrInst::CreateInBounds(GO
->getSourceElementType(),
3000 Ops
[0], Ops
.slice(1));
3001 return GetElementPtrInst::Create(GO
->getSourceElementType(), Ops
[0],
3004 case Instruction::ICmp
:
3005 case Instruction::FCmp
:
3006 return CmpInst::Create((Instruction::OtherOps
)getOpcode(),
3007 (CmpInst::Predicate
)getPredicate(), Ops
[0], Ops
[1]);
3008 case Instruction::FNeg
:
3009 return UnaryOperator::Create((Instruction::UnaryOps
)getOpcode(), Ops
[0]);
3011 assert(getNumOperands() == 2 && "Must be binary operator?");
3012 BinaryOperator
*BO
=
3013 BinaryOperator::Create((Instruction::BinaryOps
)getOpcode(),
3015 if (isa
<OverflowingBinaryOperator
>(BO
)) {
3016 BO
->setHasNoUnsignedWrap(SubclassOptionalData
&
3017 OverflowingBinaryOperator::NoUnsignedWrap
);
3018 BO
->setHasNoSignedWrap(SubclassOptionalData
&
3019 OverflowingBinaryOperator::NoSignedWrap
);
3021 if (isa
<PossiblyExactOperator
>(BO
))
3022 BO
->setIsExact(SubclassOptionalData
& PossiblyExactOperator::IsExact
);