1 //===- DataLayout.cpp - Data size & alignment routines ---------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines layout properties related to datatype size/offset/alignment
12 // This structure should be created once, filled in if the defaults are not
13 // correct and then passed around by const&. None of the members functions
14 // require modification to the object.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
41 //===----------------------------------------------------------------------===//
42 // Support for StructLayout
43 //===----------------------------------------------------------------------===//
45 StructLayout::StructLayout(StructType
*ST
, const DataLayout
&DL
) {
46 assert(!ST
->isOpaque() && "Cannot get layout of opaque structs");
50 NumElements
= ST
->getNumElements();
52 // Loop over each of the elements, placing them in memory.
53 for (unsigned i
= 0, e
= NumElements
; i
!= e
; ++i
) {
54 Type
*Ty
= ST
->getElementType(i
);
55 unsigned TyAlign
= ST
->isPacked() ? 1 : DL
.getABITypeAlignment(Ty
);
57 // Add padding if necessary to align the data element properly.
58 if ((StructSize
& (TyAlign
-1)) != 0) {
60 StructSize
= alignTo(StructSize
, TyAlign
);
63 // Keep track of maximum alignment constraint.
64 StructAlignment
= std::max(TyAlign
, StructAlignment
);
66 MemberOffsets
[i
] = StructSize
;
67 StructSize
+= DL
.getTypeAllocSize(Ty
); // Consume space for this data item
70 // Empty structures have alignment of 1 byte.
71 if (StructAlignment
== 0) StructAlignment
= 1;
73 // Add padding to the end of the struct so that it could be put in an array
74 // and all array elements would be aligned correctly.
75 if ((StructSize
& (StructAlignment
-1)) != 0) {
77 StructSize
= alignTo(StructSize
, StructAlignment
);
81 /// getElementContainingOffset - Given a valid offset into the structure,
82 /// return the structure index that contains it.
83 unsigned StructLayout::getElementContainingOffset(uint64_t Offset
) const {
85 std::upper_bound(&MemberOffsets
[0], &MemberOffsets
[NumElements
], Offset
);
86 assert(SI
!= &MemberOffsets
[0] && "Offset not in structure type!");
88 assert(*SI
<= Offset
&& "upper_bound didn't work");
89 assert((SI
== &MemberOffsets
[0] || *(SI
-1) <= Offset
) &&
90 (SI
+1 == &MemberOffsets
[NumElements
] || *(SI
+1) > Offset
) &&
91 "Upper bound didn't work!");
93 // Multiple fields can have the same offset if any of them are zero sized.
94 // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
95 // at the i32 element, because it is the last element at that offset. This is
96 // the right one to return, because anything after it will have a higher
97 // offset, implying that this element is non-empty.
98 return SI
-&MemberOffsets
[0];
101 //===----------------------------------------------------------------------===//
102 // LayoutAlignElem, LayoutAlign support
103 //===----------------------------------------------------------------------===//
106 LayoutAlignElem::get(AlignTypeEnum align_type
, unsigned abi_align
,
107 unsigned pref_align
, uint32_t bit_width
) {
108 assert(abi_align
<= pref_align
&& "Preferred alignment worse than ABI!");
109 LayoutAlignElem retval
;
110 retval
.AlignType
= align_type
;
111 retval
.ABIAlign
= abi_align
;
112 retval
.PrefAlign
= pref_align
;
113 retval
.TypeBitWidth
= bit_width
;
118 LayoutAlignElem::operator==(const LayoutAlignElem
&rhs
) const {
119 return (AlignType
== rhs
.AlignType
120 && ABIAlign
== rhs
.ABIAlign
121 && PrefAlign
== rhs
.PrefAlign
122 && TypeBitWidth
== rhs
.TypeBitWidth
);
125 //===----------------------------------------------------------------------===//
126 // PointerAlignElem, PointerAlign support
127 //===----------------------------------------------------------------------===//
130 PointerAlignElem::get(uint32_t AddressSpace
, unsigned ABIAlign
,
131 unsigned PrefAlign
, uint32_t TypeByteWidth
,
132 uint32_t IndexWidth
) {
133 assert(ABIAlign
<= PrefAlign
&& "Preferred alignment worse than ABI!");
134 PointerAlignElem retval
;
135 retval
.AddressSpace
= AddressSpace
;
136 retval
.ABIAlign
= ABIAlign
;
137 retval
.PrefAlign
= PrefAlign
;
138 retval
.TypeByteWidth
= TypeByteWidth
;
139 retval
.IndexWidth
= IndexWidth
;
144 PointerAlignElem::operator==(const PointerAlignElem
&rhs
) const {
145 return (ABIAlign
== rhs
.ABIAlign
146 && AddressSpace
== rhs
.AddressSpace
147 && PrefAlign
== rhs
.PrefAlign
148 && TypeByteWidth
== rhs
.TypeByteWidth
149 && IndexWidth
== rhs
.IndexWidth
);
152 //===----------------------------------------------------------------------===//
153 // DataLayout Class Implementation
154 //===----------------------------------------------------------------------===//
156 const char *DataLayout::getManglingComponent(const Triple
&T
) {
157 if (T
.isOSBinFormatMachO())
159 if (T
.isOSWindows() && T
.isOSBinFormatCOFF())
160 return T
.getArch() == Triple::x86
? "-m:x" : "-m:w";
164 static const LayoutAlignElem DefaultAlignments
[] = {
165 { INTEGER_ALIGN
, 1, 1, 1 }, // i1
166 { INTEGER_ALIGN
, 8, 1, 1 }, // i8
167 { INTEGER_ALIGN
, 16, 2, 2 }, // i16
168 { INTEGER_ALIGN
, 32, 4, 4 }, // i32
169 { INTEGER_ALIGN
, 64, 4, 8 }, // i64
170 { FLOAT_ALIGN
, 16, 2, 2 }, // half
171 { FLOAT_ALIGN
, 32, 4, 4 }, // float
172 { FLOAT_ALIGN
, 64, 8, 8 }, // double
173 { FLOAT_ALIGN
, 128, 16, 16 }, // ppcf128, quad, ...
174 { VECTOR_ALIGN
, 64, 8, 8 }, // v2i32, v1i64, ...
175 { VECTOR_ALIGN
, 128, 16, 16 }, // v16i8, v8i16, v4i32, ...
176 { AGGREGATE_ALIGN
, 0, 0, 8 } // struct
179 void DataLayout::reset(StringRef Desc
) {
185 StackNaturalAlign
= 0;
186 ProgramAddrSpace
= 0;
187 FunctionPtrAlign
= 0;
188 TheFunctionPtrAlignType
= FunctionPtrAlignType::Independent
;
189 ManglingMode
= MM_None
;
190 NonIntegralAddressSpaces
.clear();
192 // Default alignments
193 for (const LayoutAlignElem
&E
: DefaultAlignments
) {
194 setAlignment((AlignTypeEnum
)E
.AlignType
, E
.ABIAlign
, E
.PrefAlign
,
197 setPointerAlignment(0, 8, 8, 8, 8);
199 parseSpecifier(Desc
);
202 /// Checked version of split, to ensure mandatory subparts.
203 static std::pair
<StringRef
, StringRef
> split(StringRef Str
, char Separator
) {
204 assert(!Str
.empty() && "parse error, string can't be empty here");
205 std::pair
<StringRef
, StringRef
> Split
= Str
.split(Separator
);
206 if (Split
.second
.empty() && Split
.first
!= Str
)
207 report_fatal_error("Trailing separator in datalayout string");
208 if (!Split
.second
.empty() && Split
.first
.empty())
209 report_fatal_error("Expected token before separator in datalayout string");
213 /// Get an unsigned integer, including error checks.
214 static unsigned getInt(StringRef R
) {
216 bool error
= R
.getAsInteger(10, Result
); (void)error
;
218 report_fatal_error("not a number, or does not fit in an unsigned int");
222 /// Convert bits into bytes. Assert if not a byte width multiple.
223 static unsigned inBytes(unsigned Bits
) {
225 report_fatal_error("number of bits must be a byte width multiple");
229 static unsigned getAddrSpace(StringRef R
) {
230 unsigned AddrSpace
= getInt(R
);
231 if (!isUInt
<24>(AddrSpace
))
232 report_fatal_error("Invalid address space, must be a 24-bit integer");
236 void DataLayout::parseSpecifier(StringRef Desc
) {
237 StringRepresentation
= Desc
;
238 while (!Desc
.empty()) {
240 std::pair
<StringRef
, StringRef
> Split
= split(Desc
, '-');
244 Split
= split(Split
.first
, ':');
246 // Aliases used below.
247 StringRef
&Tok
= Split
.first
; // Current token.
248 StringRef
&Rest
= Split
.second
; // The rest of the string.
252 Split
= split(Rest
, ':');
254 unsigned AS
= getInt(Split
.first
);
256 report_fatal_error("Address space 0 can never be non-integral");
257 NonIntegralAddressSpaces
.push_back(AS
);
258 } while (!Rest
.empty());
263 char Specifier
= Tok
.front();
268 // Ignored for backward compatibility.
269 // FIXME: remove this on LLVM 4.0.
279 unsigned AddrSpace
= Tok
.empty() ? 0 : getInt(Tok
);
280 if (!isUInt
<24>(AddrSpace
))
281 report_fatal_error("Invalid address space, must be a 24bit integer");
286 "Missing size specification for pointer in datalayout string");
287 Split
= split(Rest
, ':');
288 unsigned PointerMemSize
= inBytes(getInt(Tok
));
290 report_fatal_error("Invalid pointer size of 0 bytes");
295 "Missing alignment specification for pointer in datalayout string");
296 Split
= split(Rest
, ':');
297 unsigned PointerABIAlign
= inBytes(getInt(Tok
));
298 if (!isPowerOf2_64(PointerABIAlign
))
300 "Pointer ABI alignment must be a power of 2");
302 // Size of index used in GEP for address calculation.
303 // The parameter is optional. By default it is equal to size of pointer.
304 unsigned IndexSize
= PointerMemSize
;
306 // Preferred alignment.
307 unsigned PointerPrefAlign
= PointerABIAlign
;
309 Split
= split(Rest
, ':');
310 PointerPrefAlign
= inBytes(getInt(Tok
));
311 if (!isPowerOf2_64(PointerPrefAlign
))
313 "Pointer preferred alignment must be a power of 2");
315 // Now read the index. It is the second optional parameter here.
317 Split
= split(Rest
, ':');
318 IndexSize
= inBytes(getInt(Tok
));
320 report_fatal_error("Invalid index size of 0 bytes");
323 setPointerAlignment(AddrSpace
, PointerABIAlign
, PointerPrefAlign
,
324 PointerMemSize
, IndexSize
);
331 AlignTypeEnum AlignType
;
333 default: llvm_unreachable("Unexpected specifier!");
334 case 'i': AlignType
= INTEGER_ALIGN
; break;
335 case 'v': AlignType
= VECTOR_ALIGN
; break;
336 case 'f': AlignType
= FLOAT_ALIGN
; break;
337 case 'a': AlignType
= AGGREGATE_ALIGN
; break;
341 unsigned Size
= Tok
.empty() ? 0 : getInt(Tok
);
343 if (AlignType
== AGGREGATE_ALIGN
&& Size
!= 0)
345 "Sized aggregate specification in datalayout string");
350 "Missing alignment specification in datalayout string");
351 Split
= split(Rest
, ':');
352 unsigned ABIAlign
= inBytes(getInt(Tok
));
353 if (AlignType
!= AGGREGATE_ALIGN
&& !ABIAlign
)
355 "ABI alignment specification must be >0 for non-aggregate types");
357 // Preferred alignment.
358 unsigned PrefAlign
= ABIAlign
;
360 Split
= split(Rest
, ':');
361 PrefAlign
= inBytes(getInt(Tok
));
364 setAlignment(AlignType
, ABIAlign
, PrefAlign
, Size
);
368 case 'n': // Native integer types.
370 unsigned Width
= getInt(Tok
);
373 "Zero width native integer type in datalayout string");
374 LegalIntWidths
.push_back(Width
);
377 Split
= split(Rest
, ':');
380 case 'S': { // Stack natural alignment.
381 StackNaturalAlign
= inBytes(getInt(Tok
));
385 switch (Tok
.front()) {
387 TheFunctionPtrAlignType
= FunctionPtrAlignType::Independent
;
390 TheFunctionPtrAlignType
= FunctionPtrAlignType::MultipleOfFunctionAlign
;
393 report_fatal_error("Unknown function pointer alignment type in "
394 "datalayout string");
397 FunctionPtrAlign
= inBytes(getInt(Tok
));
400 case 'P': { // Function address space.
401 ProgramAddrSpace
= getAddrSpace(Tok
);
404 case 'A': { // Default stack/alloca address space.
405 AllocaAddrSpace
= getAddrSpace(Tok
);
410 report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
412 report_fatal_error("Expected mangling specifier in datalayout string");
414 report_fatal_error("Unknown mangling specifier in datalayout string");
417 report_fatal_error("Unknown mangling in datalayout string");
419 ManglingMode
= MM_ELF
;
422 ManglingMode
= MM_MachO
;
425 ManglingMode
= MM_Mips
;
428 ManglingMode
= MM_WinCOFF
;
431 ManglingMode
= MM_WinCOFFX86
;
436 report_fatal_error("Unknown specifier in datalayout string");
442 DataLayout::DataLayout(const Module
*M
) {
446 void DataLayout::init(const Module
*M
) { *this = M
->getDataLayout(); }
448 bool DataLayout::operator==(const DataLayout
&Other
) const {
449 bool Ret
= BigEndian
== Other
.BigEndian
&&
450 AllocaAddrSpace
== Other
.AllocaAddrSpace
&&
451 StackNaturalAlign
== Other
.StackNaturalAlign
&&
452 ProgramAddrSpace
== Other
.ProgramAddrSpace
&&
453 FunctionPtrAlign
== Other
.FunctionPtrAlign
&&
454 TheFunctionPtrAlignType
== Other
.TheFunctionPtrAlignType
&&
455 ManglingMode
== Other
.ManglingMode
&&
456 LegalIntWidths
== Other
.LegalIntWidths
&&
457 Alignments
== Other
.Alignments
&& Pointers
== Other
.Pointers
;
458 // Note: getStringRepresentation() might differs, it is not canonicalized
462 DataLayout::AlignmentsTy::iterator
463 DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType
,
465 auto Pair
= std::make_pair((unsigned)AlignType
, BitWidth
);
466 return partition_point(Alignments
, [=](const LayoutAlignElem
&E
) {
467 return std::make_pair(E
.AlignType
, E
.TypeBitWidth
) < Pair
;
472 DataLayout::setAlignment(AlignTypeEnum align_type
, unsigned abi_align
,
473 unsigned pref_align
, uint32_t bit_width
) {
474 if (!isUInt
<24>(bit_width
))
475 report_fatal_error("Invalid bit width, must be a 24bit integer");
476 if (!isUInt
<16>(abi_align
))
477 report_fatal_error("Invalid ABI alignment, must be a 16bit integer");
478 if (!isUInt
<16>(pref_align
))
479 report_fatal_error("Invalid preferred alignment, must be a 16bit integer");
480 if (abi_align
!= 0 && !isPowerOf2_64(abi_align
))
481 report_fatal_error("Invalid ABI alignment, must be a power of 2");
482 if (pref_align
!= 0 && !isPowerOf2_64(pref_align
))
483 report_fatal_error("Invalid preferred alignment, must be a power of 2");
485 if (pref_align
< abi_align
)
487 "Preferred alignment cannot be less than the ABI alignment");
489 AlignmentsTy::iterator I
= findAlignmentLowerBound(align_type
, bit_width
);
490 if (I
!= Alignments
.end() &&
491 I
->AlignType
== (unsigned)align_type
&& I
->TypeBitWidth
== bit_width
) {
492 // Update the abi, preferred alignments.
493 I
->ABIAlign
= abi_align
;
494 I
->PrefAlign
= pref_align
;
496 // Insert before I to keep the vector sorted.
497 Alignments
.insert(I
, LayoutAlignElem::get(align_type
, abi_align
,
498 pref_align
, bit_width
));
502 DataLayout::PointersTy::iterator
503 DataLayout::findPointerLowerBound(uint32_t AddressSpace
) {
504 return std::lower_bound(Pointers
.begin(), Pointers
.end(), AddressSpace
,
505 [](const PointerAlignElem
&A
, uint32_t AddressSpace
) {
506 return A
.AddressSpace
< AddressSpace
;
510 void DataLayout::setPointerAlignment(uint32_t AddrSpace
, unsigned ABIAlign
,
511 unsigned PrefAlign
, uint32_t TypeByteWidth
,
512 uint32_t IndexWidth
) {
513 if (PrefAlign
< ABIAlign
)
515 "Preferred alignment cannot be less than the ABI alignment");
517 PointersTy::iterator I
= findPointerLowerBound(AddrSpace
);
518 if (I
== Pointers
.end() || I
->AddressSpace
!= AddrSpace
) {
519 Pointers
.insert(I
, PointerAlignElem::get(AddrSpace
, ABIAlign
, PrefAlign
,
520 TypeByteWidth
, IndexWidth
));
522 I
->ABIAlign
= ABIAlign
;
523 I
->PrefAlign
= PrefAlign
;
524 I
->TypeByteWidth
= TypeByteWidth
;
525 I
->IndexWidth
= IndexWidth
;
529 /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
530 /// preferred if ABIInfo = false) the layout wants for the specified datatype.
531 unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType
,
532 uint32_t BitWidth
, bool ABIInfo
,
534 AlignmentsTy::const_iterator I
= findAlignmentLowerBound(AlignType
, BitWidth
);
535 // See if we found an exact match. Of if we are looking for an integer type,
536 // but don't have an exact match take the next largest integer. This is where
537 // the lower_bound will point to when it fails an exact match.
538 if (I
!= Alignments
.end() && I
->AlignType
== (unsigned)AlignType
&&
539 (I
->TypeBitWidth
== BitWidth
|| AlignType
== INTEGER_ALIGN
))
540 return ABIInfo
? I
->ABIAlign
: I
->PrefAlign
;
542 if (AlignType
== INTEGER_ALIGN
) {
543 // If we didn't have a larger value try the largest value we have.
544 if (I
!= Alignments
.begin()) {
545 --I
; // Go to the previous entry and see if its an integer.
546 if (I
->AlignType
== INTEGER_ALIGN
)
547 return ABIInfo
? I
->ABIAlign
: I
->PrefAlign
;
549 } else if (AlignType
== VECTOR_ALIGN
) {
550 // By default, use natural alignment for vector types. This is consistent
551 // with what clang and llvm-gcc do.
552 unsigned Align
= getTypeAllocSize(cast
<VectorType
>(Ty
)->getElementType());
553 Align
*= cast
<VectorType
>(Ty
)->getNumElements();
554 Align
= PowerOf2Ceil(Align
);
558 // If we still couldn't find a reasonable default alignment, fall back
559 // to a simple heuristic that the alignment is the first power of two
560 // greater-or-equal to the store size of the type. This is a reasonable
561 // approximation of reality, and if the user wanted something less
562 // less conservative, they should have specified it explicitly in the data
564 unsigned Align
= getTypeStoreSize(Ty
);
565 Align
= PowerOf2Ceil(Align
);
571 class StructLayoutMap
{
572 using LayoutInfoTy
= DenseMap
<StructType
*, StructLayout
*>;
573 LayoutInfoTy LayoutInfo
;
577 // Remove any layouts.
578 for (const auto &I
: LayoutInfo
) {
579 StructLayout
*Value
= I
.second
;
580 Value
->~StructLayout();
585 StructLayout
*&operator[](StructType
*STy
) {
586 return LayoutInfo
[STy
];
590 } // end anonymous namespace
592 void DataLayout::clear() {
593 LegalIntWidths
.clear();
596 delete static_cast<StructLayoutMap
*>(LayoutMap
);
600 DataLayout::~DataLayout() {
604 const StructLayout
*DataLayout::getStructLayout(StructType
*Ty
) const {
606 LayoutMap
= new StructLayoutMap();
608 StructLayoutMap
*STM
= static_cast<StructLayoutMap
*>(LayoutMap
);
609 StructLayout
*&SL
= (*STM
)[Ty
];
612 // Otherwise, create the struct layout. Because it is variable length, we
613 // malloc it, then use placement new.
614 int NumElts
= Ty
->getNumElements();
615 StructLayout
*L
= (StructLayout
*)
616 safe_malloc(sizeof(StructLayout
)+(NumElts
-1) * sizeof(uint64_t));
618 // Set SL before calling StructLayout's ctor. The ctor could cause other
619 // entries to be added to TheMap, invalidating our reference.
622 new (L
) StructLayout(Ty
, *this);
627 unsigned DataLayout::getPointerABIAlignment(unsigned AS
) const {
628 PointersTy::const_iterator I
= findPointerLowerBound(AS
);
629 if (I
== Pointers
.end() || I
->AddressSpace
!= AS
) {
630 I
= findPointerLowerBound(0);
631 assert(I
->AddressSpace
== 0);
636 unsigned DataLayout::getPointerPrefAlignment(unsigned AS
) const {
637 PointersTy::const_iterator I
= findPointerLowerBound(AS
);
638 if (I
== Pointers
.end() || I
->AddressSpace
!= AS
) {
639 I
= findPointerLowerBound(0);
640 assert(I
->AddressSpace
== 0);
645 unsigned DataLayout::getPointerSize(unsigned AS
) const {
646 PointersTy::const_iterator I
= findPointerLowerBound(AS
);
647 if (I
== Pointers
.end() || I
->AddressSpace
!= AS
) {
648 I
= findPointerLowerBound(0);
649 assert(I
->AddressSpace
== 0);
651 return I
->TypeByteWidth
;
654 unsigned DataLayout::getMaxPointerSize() const {
655 unsigned MaxPointerSize
= 0;
656 for (auto &P
: Pointers
)
657 MaxPointerSize
= std::max(MaxPointerSize
, P
.TypeByteWidth
);
659 return MaxPointerSize
;
662 unsigned DataLayout::getPointerTypeSizeInBits(Type
*Ty
) const {
663 assert(Ty
->isPtrOrPtrVectorTy() &&
664 "This should only be called with a pointer or pointer vector type");
665 Ty
= Ty
->getScalarType();
666 return getPointerSizeInBits(cast
<PointerType
>(Ty
)->getAddressSpace());
669 unsigned DataLayout::getIndexSize(unsigned AS
) const {
670 PointersTy::const_iterator I
= findPointerLowerBound(AS
);
671 if (I
== Pointers
.end() || I
->AddressSpace
!= AS
) {
672 I
= findPointerLowerBound(0);
673 assert(I
->AddressSpace
== 0);
675 return I
->IndexWidth
;
678 unsigned DataLayout::getIndexTypeSizeInBits(Type
*Ty
) const {
679 assert(Ty
->isPtrOrPtrVectorTy() &&
680 "This should only be called with a pointer or pointer vector type");
681 Ty
= Ty
->getScalarType();
682 return getIndexSizeInBits(cast
<PointerType
>(Ty
)->getAddressSpace());
686 \param abi_or_pref Flag that determines which alignment is returned. true
687 returns the ABI alignment, false returns the preferred alignment.
688 \param Ty The underlying type for which alignment is determined.
690 Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
691 == false) for the requested type \a Ty.
693 unsigned DataLayout::getAlignment(Type
*Ty
, bool abi_or_pref
) const {
694 AlignTypeEnum AlignType
;
696 assert(Ty
->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
697 switch (Ty
->getTypeID()) {
698 // Early escape for the non-numeric types.
699 case Type::LabelTyID
:
701 ? getPointerABIAlignment(0)
702 : getPointerPrefAlignment(0));
703 case Type::PointerTyID
: {
704 unsigned AS
= cast
<PointerType
>(Ty
)->getAddressSpace();
706 ? getPointerABIAlignment(AS
)
707 : getPointerPrefAlignment(AS
));
709 case Type::ArrayTyID
:
710 return getAlignment(cast
<ArrayType
>(Ty
)->getElementType(), abi_or_pref
);
712 case Type::StructTyID
: {
713 // Packed structure types always have an ABI alignment of one.
714 if (cast
<StructType
>(Ty
)->isPacked() && abi_or_pref
)
717 // Get the layout annotation... which is lazily created on demand.
718 const StructLayout
*Layout
= getStructLayout(cast
<StructType
>(Ty
));
719 unsigned Align
= getAlignmentInfo(AGGREGATE_ALIGN
, 0, abi_or_pref
, Ty
);
720 return std::max(Align
, Layout
->getAlignment());
722 case Type::IntegerTyID
:
723 AlignType
= INTEGER_ALIGN
;
726 case Type::FloatTyID
:
727 case Type::DoubleTyID
:
728 // PPC_FP128TyID and FP128TyID have different data contents, but the
729 // same size and alignment, so they look the same here.
730 case Type::PPC_FP128TyID
:
731 case Type::FP128TyID
:
732 case Type::X86_FP80TyID
:
733 AlignType
= FLOAT_ALIGN
;
735 case Type::X86_MMXTyID
:
736 case Type::VectorTyID
:
737 AlignType
= VECTOR_ALIGN
;
740 llvm_unreachable("Bad type for getAlignment!!!");
743 return getAlignmentInfo(AlignType
, getTypeSizeInBits(Ty
), abi_or_pref
, Ty
);
746 unsigned DataLayout::getABITypeAlignment(Type
*Ty
) const {
747 return getAlignment(Ty
, true);
750 /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
751 /// an integer type of the specified bitwidth.
752 unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth
) const {
753 return getAlignmentInfo(INTEGER_ALIGN
, BitWidth
, true, nullptr);
756 unsigned DataLayout::getPrefTypeAlignment(Type
*Ty
) const {
757 return getAlignment(Ty
, false);
760 unsigned DataLayout::getPreferredTypeAlignmentShift(Type
*Ty
) const {
761 unsigned Align
= getPrefTypeAlignment(Ty
);
762 assert(!(Align
& (Align
-1)) && "Alignment is not a power of two!");
763 return Log2_32(Align
);
766 IntegerType
*DataLayout::getIntPtrType(LLVMContext
&C
,
767 unsigned AddressSpace
) const {
768 return IntegerType::get(C
, getIndexSizeInBits(AddressSpace
));
771 Type
*DataLayout::getIntPtrType(Type
*Ty
) const {
772 assert(Ty
->isPtrOrPtrVectorTy() &&
773 "Expected a pointer or pointer vector type.");
774 unsigned NumBits
= getIndexTypeSizeInBits(Ty
);
775 IntegerType
*IntTy
= IntegerType::get(Ty
->getContext(), NumBits
);
776 if (VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
))
777 return VectorType::get(IntTy
, VecTy
->getNumElements());
781 Type
*DataLayout::getSmallestLegalIntType(LLVMContext
&C
, unsigned Width
) const {
782 for (unsigned LegalIntWidth
: LegalIntWidths
)
783 if (Width
<= LegalIntWidth
)
784 return Type::getIntNTy(C
, LegalIntWidth
);
788 unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
789 auto Max
= std::max_element(LegalIntWidths
.begin(), LegalIntWidths
.end());
790 return Max
!= LegalIntWidths
.end() ? *Max
: 0;
793 Type
*DataLayout::getIndexType(Type
*Ty
) const {
794 assert(Ty
->isPtrOrPtrVectorTy() &&
795 "Expected a pointer or pointer vector type.");
796 unsigned NumBits
= getIndexTypeSizeInBits(Ty
);
797 IntegerType
*IntTy
= IntegerType::get(Ty
->getContext(), NumBits
);
798 if (VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
))
799 return VectorType::get(IntTy
, VecTy
->getNumElements());
803 int64_t DataLayout::getIndexedOffsetInType(Type
*ElemTy
,
804 ArrayRef
<Value
*> Indices
) const {
807 generic_gep_type_iterator
<Value
* const*>
808 GTI
= gep_type_begin(ElemTy
, Indices
),
809 GTE
= gep_type_end(ElemTy
, Indices
);
810 for (; GTI
!= GTE
; ++GTI
) {
811 Value
*Idx
= GTI
.getOperand();
812 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
813 assert(Idx
->getType()->isIntegerTy(32) && "Illegal struct idx");
814 unsigned FieldNo
= cast
<ConstantInt
>(Idx
)->getZExtValue();
816 // Get structure layout information...
817 const StructLayout
*Layout
= getStructLayout(STy
);
819 // Add in the offset, as calculated by the structure layout info...
820 Result
+= Layout
->getElementOffset(FieldNo
);
822 // Get the array index and the size of each array element.
823 if (int64_t arrayIdx
= cast
<ConstantInt
>(Idx
)->getSExtValue())
824 Result
+= arrayIdx
* getTypeAllocSize(GTI
.getIndexedType());
831 /// getPreferredAlignment - Return the preferred alignment of the specified
832 /// global. This includes an explicitly requested alignment (if the global
834 unsigned DataLayout::getPreferredAlignment(const GlobalVariable
*GV
) const {
835 unsigned GVAlignment
= GV
->getAlignment();
836 // If a section is specified, always precisely honor explicit alignment,
837 // so we don't insert padding into a section we don't control.
838 if (GVAlignment
&& GV
->hasSection())
841 // If no explicit alignment is specified, compute the alignment based on
842 // the IR type. If an alignment is specified, increase it to match the ABI
843 // alignment of the IR type.
845 // FIXME: Not sure it makes sense to use the alignment of the type if
846 // there's already an explicit alignment specification.
847 Type
*ElemType
= GV
->getValueType();
848 unsigned Alignment
= getPrefTypeAlignment(ElemType
);
849 if (GVAlignment
>= Alignment
) {
850 Alignment
= GVAlignment
;
851 } else if (GVAlignment
!= 0) {
852 Alignment
= std::max(GVAlignment
, getABITypeAlignment(ElemType
));
855 // If no explicit alignment is specified, and the global is large, increase
856 // the alignment to 16.
857 // FIXME: Why 16, specifically?
858 if (GV
->hasInitializer() && GVAlignment
== 0) {
859 if (Alignment
< 16) {
860 // If the global is not external, see if it is large. If so, give it a
862 if (getTypeSizeInBits(ElemType
) > 128)
863 Alignment
= 16; // 16-byte alignment.
869 /// getPreferredAlignmentLog - Return the preferred alignment of the
870 /// specified global, returned in log form. This includes an explicitly
871 /// requested alignment (if the global has one).
872 unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable
*GV
) const {
873 return Log2_32(getPreferredAlignment(GV
));