[ARM] MVE integer min and max
[llvm-complete.git] / lib / IR / Dominators.cpp
blob910a41050b941c0eb2bf338759dafc6f4f435a19
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators. Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed. Forward dominators are
12 // needed to support the Verifier pass.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/GenericDomTreeConstruction.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29 using namespace llvm;
31 bool llvm::VerifyDomInfo = false;
32 static cl::opt<bool, true>
33 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::Hidden,
34 cl::desc("Verify dominator info (time consuming)"));
36 #ifdef EXPENSIVE_CHECKS
37 static constexpr bool ExpensiveChecksEnabled = true;
38 #else
39 static constexpr bool ExpensiveChecksEnabled = false;
40 #endif
42 bool BasicBlockEdge::isSingleEdge() const {
43 const Instruction *TI = Start->getTerminator();
44 unsigned NumEdgesToEnd = 0;
45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46 if (TI->getSuccessor(i) == End)
47 ++NumEdgesToEnd;
48 if (NumEdgesToEnd >= 2)
49 return false;
51 assert(NumEdgesToEnd == 1);
52 return true;
55 //===----------------------------------------------------------------------===//
56 // DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
59 // Provide public access to DominatorTree information. Implementation details
60 // can be found in Dominators.h, GenericDomTree.h, and
61 // GenericDomTreeConstruction.h.
63 //===----------------------------------------------------------------------===//
65 template class llvm::DomTreeNodeBase<BasicBlock>;
66 template class llvm::DominatorTreeBase<BasicBlock, false>; // DomTreeBase
67 template class llvm::DominatorTreeBase<BasicBlock, true>; // PostDomTreeBase
69 template class llvm::cfg::Update<BasicBlock *>;
71 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBDomTree>(
72 DomTreeBuilder::BBDomTree &DT);
73 template void
74 llvm::DomTreeBuilder::CalculateWithUpdates<DomTreeBuilder::BBDomTree>(
75 DomTreeBuilder::BBDomTree &DT, BBUpdates U);
77 template void llvm::DomTreeBuilder::Calculate<DomTreeBuilder::BBPostDomTree>(
78 DomTreeBuilder::BBPostDomTree &DT);
79 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
81 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBDomTree>(
82 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
83 template void llvm::DomTreeBuilder::InsertEdge<DomTreeBuilder::BBPostDomTree>(
84 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
86 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBDomTree>(
87 DomTreeBuilder::BBDomTree &DT, BasicBlock *From, BasicBlock *To);
88 template void llvm::DomTreeBuilder::DeleteEdge<DomTreeBuilder::BBPostDomTree>(
89 DomTreeBuilder::BBPostDomTree &DT, BasicBlock *From, BasicBlock *To);
91 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBDomTree>(
92 DomTreeBuilder::BBDomTree &DT, DomTreeBuilder::BBUpdates);
93 template void llvm::DomTreeBuilder::ApplyUpdates<DomTreeBuilder::BBPostDomTree>(
94 DomTreeBuilder::BBPostDomTree &DT, DomTreeBuilder::BBUpdates);
96 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBDomTree>(
97 const DomTreeBuilder::BBDomTree &DT,
98 DomTreeBuilder::BBDomTree::VerificationLevel VL);
99 template bool llvm::DomTreeBuilder::Verify<DomTreeBuilder::BBPostDomTree>(
100 const DomTreeBuilder::BBPostDomTree &DT,
101 DomTreeBuilder::BBPostDomTree::VerificationLevel VL);
103 bool DominatorTree::invalidate(Function &F, const PreservedAnalyses &PA,
104 FunctionAnalysisManager::Invalidator &) {
105 // Check whether the analysis, all analyses on functions, or the function's
106 // CFG have been preserved.
107 auto PAC = PA.getChecker<DominatorTreeAnalysis>();
108 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
109 PAC.preservedSet<CFGAnalyses>());
112 // dominates - Return true if Def dominates a use in User. This performs
113 // the special checks necessary if Def and User are in the same basic block.
114 // Note that Def doesn't dominate a use in Def itself!
115 bool DominatorTree::dominates(const Instruction *Def,
116 const Instruction *User) const {
117 const BasicBlock *UseBB = User->getParent();
118 const BasicBlock *DefBB = Def->getParent();
120 // Any unreachable use is dominated, even if Def == User.
121 if (!isReachableFromEntry(UseBB))
122 return true;
124 // Unreachable definitions don't dominate anything.
125 if (!isReachableFromEntry(DefBB))
126 return false;
128 // An instruction doesn't dominate a use in itself.
129 if (Def == User)
130 return false;
132 // The value defined by an invoke dominates an instruction only if it
133 // dominates every instruction in UseBB.
134 // A PHI is dominated only if the instruction dominates every possible use in
135 // the UseBB.
136 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
137 return dominates(Def, UseBB);
139 if (DefBB != UseBB)
140 return dominates(DefBB, UseBB);
142 // Loop through the basic block until we find Def or User.
143 BasicBlock::const_iterator I = DefBB->begin();
144 for (; &*I != Def && &*I != User; ++I)
145 /*empty*/;
147 return &*I == Def;
150 // true if Def would dominate a use in any instruction in UseBB.
151 // note that dominates(Def, Def->getParent()) is false.
152 bool DominatorTree::dominates(const Instruction *Def,
153 const BasicBlock *UseBB) const {
154 const BasicBlock *DefBB = Def->getParent();
156 // Any unreachable use is dominated, even if DefBB == UseBB.
157 if (!isReachableFromEntry(UseBB))
158 return true;
160 // Unreachable definitions don't dominate anything.
161 if (!isReachableFromEntry(DefBB))
162 return false;
164 if (DefBB == UseBB)
165 return false;
167 // Invoke results are only usable in the normal destination, not in the
168 // exceptional destination.
169 if (const auto *II = dyn_cast<InvokeInst>(Def)) {
170 BasicBlock *NormalDest = II->getNormalDest();
171 BasicBlockEdge E(DefBB, NormalDest);
172 return dominates(E, UseBB);
175 return dominates(DefBB, UseBB);
178 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
179 const BasicBlock *UseBB) const {
180 // If the BB the edge ends in doesn't dominate the use BB, then the
181 // edge also doesn't.
182 const BasicBlock *Start = BBE.getStart();
183 const BasicBlock *End = BBE.getEnd();
184 if (!dominates(End, UseBB))
185 return false;
187 // Simple case: if the end BB has a single predecessor, the fact that it
188 // dominates the use block implies that the edge also does.
189 if (End->getSinglePredecessor())
190 return true;
192 // The normal edge from the invoke is critical. Conceptually, what we would
193 // like to do is split it and check if the new block dominates the use.
194 // With X being the new block, the graph would look like:
196 // DefBB
197 // /\ . .
198 // / \ . .
199 // / \ . .
200 // / \ | |
201 // A X B C
202 // | \ | /
203 // . \|/
204 // . NormalDest
205 // .
207 // Given the definition of dominance, NormalDest is dominated by X iff X
208 // dominates all of NormalDest's predecessors (X, B, C in the example). X
209 // trivially dominates itself, so we only have to find if it dominates the
210 // other predecessors. Since the only way out of X is via NormalDest, X can
211 // only properly dominate a node if NormalDest dominates that node too.
212 int IsDuplicateEdge = 0;
213 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
214 PI != E; ++PI) {
215 const BasicBlock *BB = *PI;
216 if (BB == Start) {
217 // If there are multiple edges between Start and End, by definition they
218 // can't dominate anything.
219 if (IsDuplicateEdge++)
220 return false;
221 continue;
224 if (!dominates(End, BB))
225 return false;
227 return true;
230 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
231 Instruction *UserInst = cast<Instruction>(U.getUser());
232 // A PHI in the end of the edge is dominated by it.
233 PHINode *PN = dyn_cast<PHINode>(UserInst);
234 if (PN && PN->getParent() == BBE.getEnd() &&
235 PN->getIncomingBlock(U) == BBE.getStart())
236 return true;
238 // Otherwise use the edge-dominates-block query, which
239 // handles the crazy critical edge cases properly.
240 const BasicBlock *UseBB;
241 if (PN)
242 UseBB = PN->getIncomingBlock(U);
243 else
244 UseBB = UserInst->getParent();
245 return dominates(BBE, UseBB);
248 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
249 Instruction *UserInst = cast<Instruction>(U.getUser());
250 const BasicBlock *DefBB = Def->getParent();
252 // Determine the block in which the use happens. PHI nodes use
253 // their operands on edges; simulate this by thinking of the use
254 // happening at the end of the predecessor block.
255 const BasicBlock *UseBB;
256 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
257 UseBB = PN->getIncomingBlock(U);
258 else
259 UseBB = UserInst->getParent();
261 // Any unreachable use is dominated, even if Def == User.
262 if (!isReachableFromEntry(UseBB))
263 return true;
265 // Unreachable definitions don't dominate anything.
266 if (!isReachableFromEntry(DefBB))
267 return false;
269 // Invoke instructions define their return values on the edges to their normal
270 // successors, so we have to handle them specially.
271 // Among other things, this means they don't dominate anything in
272 // their own block, except possibly a phi, so we don't need to
273 // walk the block in any case.
274 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
275 BasicBlock *NormalDest = II->getNormalDest();
276 BasicBlockEdge E(DefBB, NormalDest);
277 return dominates(E, U);
280 // If the def and use are in different blocks, do a simple CFG dominator
281 // tree query.
282 if (DefBB != UseBB)
283 return dominates(DefBB, UseBB);
285 // Ok, def and use are in the same block. If the def is an invoke, it
286 // doesn't dominate anything in the block. If it's a PHI, it dominates
287 // everything in the block.
288 if (isa<PHINode>(UserInst))
289 return true;
291 // Otherwise, just loop through the basic block until we find Def or User.
292 BasicBlock::const_iterator I = DefBB->begin();
293 for (; &*I != Def && &*I != UserInst; ++I)
294 /*empty*/;
296 return &*I != UserInst;
299 bool DominatorTree::isReachableFromEntry(const Use &U) const {
300 Instruction *I = dyn_cast<Instruction>(U.getUser());
302 // ConstantExprs aren't really reachable from the entry block, but they
303 // don't need to be treated like unreachable code either.
304 if (!I) return true;
306 // PHI nodes use their operands on their incoming edges.
307 if (PHINode *PN = dyn_cast<PHINode>(I))
308 return isReachableFromEntry(PN->getIncomingBlock(U));
310 // Everything else uses their operands in their own block.
311 return isReachableFromEntry(I->getParent());
314 //===----------------------------------------------------------------------===//
315 // DominatorTreeAnalysis and related pass implementations
316 //===----------------------------------------------------------------------===//
318 // This implements the DominatorTreeAnalysis which is used with the new pass
319 // manager. It also implements some methods from utility passes.
321 //===----------------------------------------------------------------------===//
323 DominatorTree DominatorTreeAnalysis::run(Function &F,
324 FunctionAnalysisManager &) {
325 DominatorTree DT;
326 DT.recalculate(F);
327 return DT;
330 AnalysisKey DominatorTreeAnalysis::Key;
332 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
334 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
335 FunctionAnalysisManager &AM) {
336 OS << "DominatorTree for function: " << F.getName() << "\n";
337 AM.getResult<DominatorTreeAnalysis>(F).print(OS);
339 return PreservedAnalyses::all();
342 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
343 FunctionAnalysisManager &AM) {
344 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
345 assert(DT.verify());
346 (void)DT;
347 return PreservedAnalyses::all();
350 //===----------------------------------------------------------------------===//
351 // DominatorTreeWrapperPass Implementation
352 //===----------------------------------------------------------------------===//
354 // The implementation details of the wrapper pass that holds a DominatorTree
355 // suitable for use with the legacy pass manager.
357 //===----------------------------------------------------------------------===//
359 char DominatorTreeWrapperPass::ID = 0;
360 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
361 "Dominator Tree Construction", true, true)
363 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
364 DT.recalculate(F);
365 return false;
368 void DominatorTreeWrapperPass::verifyAnalysis() const {
369 if (VerifyDomInfo)
370 assert(DT.verify(DominatorTree::VerificationLevel::Full));
371 else if (ExpensiveChecksEnabled)
372 assert(DT.verify(DominatorTree::VerificationLevel::Basic));
375 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
376 DT.print(OS);