[ARM] MVE integer min and max
[llvm-complete.git] / lib / IR / Verifier.cpp
blobcee5bf7dc8dd4144fcb25b4dca6175724f7120bb
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
40 // block.
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <memory>
111 #include <string>
112 #include <utility>
114 using namespace llvm;
116 namespace llvm {
118 struct VerifierSupport {
119 raw_ostream *OS;
120 const Module &M;
121 ModuleSlotTracker MST;
122 const DataLayout &DL;
123 LLVMContext &Context;
125 /// Track the brokenness of the module while recursively visiting.
126 bool Broken = false;
127 /// Broken debug info can be "recovered" from by stripping the debug info.
128 bool BrokenDebugInfo = false;
129 /// Whether to treat broken debug info as an error.
130 bool TreatBrokenDebugInfoAsError = true;
132 explicit VerifierSupport(raw_ostream *OS, const Module &M)
133 : OS(OS), M(M), MST(&M), DL(M.getDataLayout()), Context(M.getContext()) {}
135 private:
136 void Write(const Module *M) {
137 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
140 void Write(const Value *V) {
141 if (V)
142 Write(*V);
145 void Write(const Value &V) {
146 if (isa<Instruction>(V)) {
147 V.print(*OS, MST);
148 *OS << '\n';
149 } else {
150 V.printAsOperand(*OS, true, MST);
151 *OS << '\n';
155 void Write(const Metadata *MD) {
156 if (!MD)
157 return;
158 MD->print(*OS, MST, &M);
159 *OS << '\n';
162 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
163 Write(MD.get());
166 void Write(const NamedMDNode *NMD) {
167 if (!NMD)
168 return;
169 NMD->print(*OS, MST);
170 *OS << '\n';
173 void Write(Type *T) {
174 if (!T)
175 return;
176 *OS << ' ' << *T;
179 void Write(const Comdat *C) {
180 if (!C)
181 return;
182 *OS << *C;
185 void Write(const APInt *AI) {
186 if (!AI)
187 return;
188 *OS << *AI << '\n';
191 void Write(const unsigned i) { *OS << i << '\n'; }
193 template <typename T> void Write(ArrayRef<T> Vs) {
194 for (const T &V : Vs)
195 Write(V);
198 template <typename T1, typename... Ts>
199 void WriteTs(const T1 &V1, const Ts &... Vs) {
200 Write(V1);
201 WriteTs(Vs...);
204 template <typename... Ts> void WriteTs() {}
206 public:
207 /// A check failed, so printout out the condition and the message.
209 /// This provides a nice place to put a breakpoint if you want to see why
210 /// something is not correct.
211 void CheckFailed(const Twine &Message) {
212 if (OS)
213 *OS << Message << '\n';
214 Broken = true;
217 /// A check failed (with values to print).
219 /// This calls the Message-only version so that the above is easier to set a
220 /// breakpoint on.
221 template <typename T1, typename... Ts>
222 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
223 CheckFailed(Message);
224 if (OS)
225 WriteTs(V1, Vs...);
228 /// A debug info check failed.
229 void DebugInfoCheckFailed(const Twine &Message) {
230 if (OS)
231 *OS << Message << '\n';
232 Broken |= TreatBrokenDebugInfoAsError;
233 BrokenDebugInfo = true;
236 /// A debug info check failed (with values to print).
237 template <typename T1, typename... Ts>
238 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
239 const Ts &... Vs) {
240 DebugInfoCheckFailed(Message);
241 if (OS)
242 WriteTs(V1, Vs...);
246 } // namespace llvm
248 namespace {
250 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
251 friend class InstVisitor<Verifier>;
253 DominatorTree DT;
255 /// When verifying a basic block, keep track of all of the
256 /// instructions we have seen so far.
258 /// This allows us to do efficient dominance checks for the case when an
259 /// instruction has an operand that is an instruction in the same block.
260 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
262 /// Keep track of the metadata nodes that have been checked already.
263 SmallPtrSet<const Metadata *, 32> MDNodes;
265 /// Keep track which DISubprogram is attached to which function.
266 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
268 /// Track all DICompileUnits visited.
269 SmallPtrSet<const Metadata *, 2> CUVisited;
271 /// The result type for a landingpad.
272 Type *LandingPadResultTy;
274 /// Whether we've seen a call to @llvm.localescape in this function
275 /// already.
276 bool SawFrameEscape;
278 /// Whether the current function has a DISubprogram attached to it.
279 bool HasDebugInfo = false;
281 /// Whether source was present on the first DIFile encountered in each CU.
282 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
284 /// Stores the count of how many objects were passed to llvm.localescape for a
285 /// given function and the largest index passed to llvm.localrecover.
286 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
288 // Maps catchswitches and cleanuppads that unwind to siblings to the
289 // terminators that indicate the unwind, used to detect cycles therein.
290 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
292 /// Cache of constants visited in search of ConstantExprs.
293 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
295 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
296 SmallVector<const Function *, 4> DeoptimizeDeclarations;
298 // Verify that this GlobalValue is only used in this module.
299 // This map is used to avoid visiting uses twice. We can arrive at a user
300 // twice, if they have multiple operands. In particular for very large
301 // constant expressions, we can arrive at a particular user many times.
302 SmallPtrSet<const Value *, 32> GlobalValueVisited;
304 // Keeps track of duplicate function argument debug info.
305 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
307 TBAAVerifier TBAAVerifyHelper;
309 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
311 public:
312 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
313 const Module &M)
314 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
315 SawFrameEscape(false), TBAAVerifyHelper(this) {
316 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
319 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
321 bool verify(const Function &F) {
322 assert(F.getParent() == &M &&
323 "An instance of this class only works with a specific module!");
325 // First ensure the function is well-enough formed to compute dominance
326 // information, and directly compute a dominance tree. We don't rely on the
327 // pass manager to provide this as it isolates us from a potentially
328 // out-of-date dominator tree and makes it significantly more complex to run
329 // this code outside of a pass manager.
330 // FIXME: It's really gross that we have to cast away constness here.
331 if (!F.empty())
332 DT.recalculate(const_cast<Function &>(F));
334 for (const BasicBlock &BB : F) {
335 if (!BB.empty() && BB.back().isTerminator())
336 continue;
338 if (OS) {
339 *OS << "Basic Block in function '" << F.getName()
340 << "' does not have terminator!\n";
341 BB.printAsOperand(*OS, true, MST);
342 *OS << "\n";
344 return false;
347 Broken = false;
348 // FIXME: We strip const here because the inst visitor strips const.
349 visit(const_cast<Function &>(F));
350 verifySiblingFuncletUnwinds();
351 InstsInThisBlock.clear();
352 DebugFnArgs.clear();
353 LandingPadResultTy = nullptr;
354 SawFrameEscape = false;
355 SiblingFuncletInfo.clear();
357 return !Broken;
360 /// Verify the module that this instance of \c Verifier was initialized with.
361 bool verify() {
362 Broken = false;
364 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
365 for (const Function &F : M)
366 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
367 DeoptimizeDeclarations.push_back(&F);
369 // Now that we've visited every function, verify that we never asked to
370 // recover a frame index that wasn't escaped.
371 verifyFrameRecoverIndices();
372 for (const GlobalVariable &GV : M.globals())
373 visitGlobalVariable(GV);
375 for (const GlobalAlias &GA : M.aliases())
376 visitGlobalAlias(GA);
378 for (const NamedMDNode &NMD : M.named_metadata())
379 visitNamedMDNode(NMD);
381 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
382 visitComdat(SMEC.getValue());
384 visitModuleFlags(M);
385 visitModuleIdents(M);
386 visitModuleCommandLines(M);
388 verifyCompileUnits();
390 verifyDeoptimizeCallingConvs();
391 DISubprogramAttachments.clear();
392 return !Broken;
395 private:
396 // Verification methods...
397 void visitGlobalValue(const GlobalValue &GV);
398 void visitGlobalVariable(const GlobalVariable &GV);
399 void visitGlobalAlias(const GlobalAlias &GA);
400 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
401 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
402 const GlobalAlias &A, const Constant &C);
403 void visitNamedMDNode(const NamedMDNode &NMD);
404 void visitMDNode(const MDNode &MD);
405 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
406 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
407 void visitComdat(const Comdat &C);
408 void visitModuleIdents(const Module &M);
409 void visitModuleCommandLines(const Module &M);
410 void visitModuleFlags(const Module &M);
411 void visitModuleFlag(const MDNode *Op,
412 DenseMap<const MDString *, const MDNode *> &SeenIDs,
413 SmallVectorImpl<const MDNode *> &Requirements);
414 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
415 void visitFunction(const Function &F);
416 void visitBasicBlock(BasicBlock &BB);
417 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
418 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
420 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
421 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
422 #include "llvm/IR/Metadata.def"
423 void visitDIScope(const DIScope &N);
424 void visitDIVariable(const DIVariable &N);
425 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
426 void visitDITemplateParameter(const DITemplateParameter &N);
428 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
430 // InstVisitor overrides...
431 using InstVisitor<Verifier>::visit;
432 void visit(Instruction &I);
434 void visitTruncInst(TruncInst &I);
435 void visitZExtInst(ZExtInst &I);
436 void visitSExtInst(SExtInst &I);
437 void visitFPTruncInst(FPTruncInst &I);
438 void visitFPExtInst(FPExtInst &I);
439 void visitFPToUIInst(FPToUIInst &I);
440 void visitFPToSIInst(FPToSIInst &I);
441 void visitUIToFPInst(UIToFPInst &I);
442 void visitSIToFPInst(SIToFPInst &I);
443 void visitIntToPtrInst(IntToPtrInst &I);
444 void visitPtrToIntInst(PtrToIntInst &I);
445 void visitBitCastInst(BitCastInst &I);
446 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
447 void visitPHINode(PHINode &PN);
448 void visitCallBase(CallBase &Call);
449 void visitUnaryOperator(UnaryOperator &U);
450 void visitBinaryOperator(BinaryOperator &B);
451 void visitICmpInst(ICmpInst &IC);
452 void visitFCmpInst(FCmpInst &FC);
453 void visitExtractElementInst(ExtractElementInst &EI);
454 void visitInsertElementInst(InsertElementInst &EI);
455 void visitShuffleVectorInst(ShuffleVectorInst &EI);
456 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
457 void visitCallInst(CallInst &CI);
458 void visitInvokeInst(InvokeInst &II);
459 void visitGetElementPtrInst(GetElementPtrInst &GEP);
460 void visitLoadInst(LoadInst &LI);
461 void visitStoreInst(StoreInst &SI);
462 void verifyDominatesUse(Instruction &I, unsigned i);
463 void visitInstruction(Instruction &I);
464 void visitTerminator(Instruction &I);
465 void visitBranchInst(BranchInst &BI);
466 void visitReturnInst(ReturnInst &RI);
467 void visitSwitchInst(SwitchInst &SI);
468 void visitIndirectBrInst(IndirectBrInst &BI);
469 void visitCallBrInst(CallBrInst &CBI);
470 void visitSelectInst(SelectInst &SI);
471 void visitUserOp1(Instruction &I);
472 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
473 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
474 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
475 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
476 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
477 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
478 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
479 void visitFenceInst(FenceInst &FI);
480 void visitAllocaInst(AllocaInst &AI);
481 void visitExtractValueInst(ExtractValueInst &EVI);
482 void visitInsertValueInst(InsertValueInst &IVI);
483 void visitEHPadPredecessors(Instruction &I);
484 void visitLandingPadInst(LandingPadInst &LPI);
485 void visitResumeInst(ResumeInst &RI);
486 void visitCatchPadInst(CatchPadInst &CPI);
487 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
488 void visitCleanupPadInst(CleanupPadInst &CPI);
489 void visitFuncletPadInst(FuncletPadInst &FPI);
490 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
491 void visitCleanupReturnInst(CleanupReturnInst &CRI);
493 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
494 void verifySwiftErrorValue(const Value *SwiftErrorVal);
495 void verifyMustTailCall(CallInst &CI);
496 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
497 unsigned ArgNo, std::string &Suffix);
498 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
499 void verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
500 const Value *V);
501 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
502 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
503 const Value *V, bool IsIntrinsic);
504 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
506 void visitConstantExprsRecursively(const Constant *EntryC);
507 void visitConstantExpr(const ConstantExpr *CE);
508 void verifyStatepoint(const CallBase &Call);
509 void verifyFrameRecoverIndices();
510 void verifySiblingFuncletUnwinds();
512 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
513 template <typename ValueOrMetadata>
514 void verifyFragmentExpression(const DIVariable &V,
515 DIExpression::FragmentInfo Fragment,
516 ValueOrMetadata *Desc);
517 void verifyFnArgs(const DbgVariableIntrinsic &I);
519 /// Module-level debug info verification...
520 void verifyCompileUnits();
522 /// Module-level verification that all @llvm.experimental.deoptimize
523 /// declarations share the same calling convention.
524 void verifyDeoptimizeCallingConvs();
526 /// Verify all-or-nothing property of DIFile source attribute within a CU.
527 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
530 } // end anonymous namespace
532 /// We know that cond should be true, if not print an error message.
533 #define Assert(C, ...) \
534 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
536 /// We know that a debug info condition should be true, if not print
537 /// an error message.
538 #define AssertDI(C, ...) \
539 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
541 void Verifier::visit(Instruction &I) {
542 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
543 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
544 InstVisitor<Verifier>::visit(I);
547 // Helper to recursively iterate over indirect users. By
548 // returning false, the callback can ask to stop recursing
549 // further.
550 static void forEachUser(const Value *User,
551 SmallPtrSet<const Value *, 32> &Visited,
552 llvm::function_ref<bool(const Value *)> Callback) {
553 if (!Visited.insert(User).second)
554 return;
555 for (const Value *TheNextUser : User->materialized_users())
556 if (Callback(TheNextUser))
557 forEachUser(TheNextUser, Visited, Callback);
560 void Verifier::visitGlobalValue(const GlobalValue &GV) {
561 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
562 "Global is external, but doesn't have external or weak linkage!", &GV);
564 Assert(GV.getAlignment() <= Value::MaximumAlignment,
565 "huge alignment values are unsupported", &GV);
566 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
567 "Only global variables can have appending linkage!", &GV);
569 if (GV.hasAppendingLinkage()) {
570 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
571 Assert(GVar && GVar->getValueType()->isArrayTy(),
572 "Only global arrays can have appending linkage!", GVar);
575 if (GV.isDeclarationForLinker())
576 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
578 if (GV.hasDLLImportStorageClass()) {
579 Assert(!GV.isDSOLocal(),
580 "GlobalValue with DLLImport Storage is dso_local!", &GV);
582 Assert((GV.isDeclaration() && GV.hasExternalLinkage()) ||
583 GV.hasAvailableExternallyLinkage(),
584 "Global is marked as dllimport, but not external", &GV);
587 if (GV.hasLocalLinkage())
588 Assert(GV.isDSOLocal(),
589 "GlobalValue with private or internal linkage must be dso_local!",
590 &GV);
592 if (!GV.hasDefaultVisibility() && !GV.hasExternalWeakLinkage())
593 Assert(GV.isDSOLocal(),
594 "GlobalValue with non default visibility must be dso_local!", &GV);
596 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
597 if (const Instruction *I = dyn_cast<Instruction>(V)) {
598 if (!I->getParent() || !I->getParent()->getParent())
599 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
601 else if (I->getParent()->getParent()->getParent() != &M)
602 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
603 I->getParent()->getParent(),
604 I->getParent()->getParent()->getParent());
605 return false;
606 } else if (const Function *F = dyn_cast<Function>(V)) {
607 if (F->getParent() != &M)
608 CheckFailed("Global is used by function in a different module", &GV, &M,
609 F, F->getParent());
610 return false;
612 return true;
616 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
617 if (GV.hasInitializer()) {
618 Assert(GV.getInitializer()->getType() == GV.getValueType(),
619 "Global variable initializer type does not match global "
620 "variable type!",
621 &GV);
622 // If the global has common linkage, it must have a zero initializer and
623 // cannot be constant.
624 if (GV.hasCommonLinkage()) {
625 Assert(GV.getInitializer()->isNullValue(),
626 "'common' global must have a zero initializer!", &GV);
627 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
628 &GV);
629 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
633 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
634 GV.getName() == "llvm.global_dtors")) {
635 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
636 "invalid linkage for intrinsic global variable", &GV);
637 // Don't worry about emitting an error for it not being an array,
638 // visitGlobalValue will complain on appending non-array.
639 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
640 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
641 PointerType *FuncPtrTy =
642 FunctionType::get(Type::getVoidTy(Context), false)->
643 getPointerTo(DL.getProgramAddressSpace());
644 Assert(STy &&
645 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
646 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
647 STy->getTypeAtIndex(1) == FuncPtrTy,
648 "wrong type for intrinsic global variable", &GV);
649 Assert(STy->getNumElements() == 3,
650 "the third field of the element type is mandatory, "
651 "specify i8* null to migrate from the obsoleted 2-field form");
652 Type *ETy = STy->getTypeAtIndex(2);
653 Assert(ETy->isPointerTy() &&
654 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
655 "wrong type for intrinsic global variable", &GV);
659 if (GV.hasName() && (GV.getName() == "llvm.used" ||
660 GV.getName() == "llvm.compiler.used")) {
661 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
662 "invalid linkage for intrinsic global variable", &GV);
663 Type *GVType = GV.getValueType();
664 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
665 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
666 Assert(PTy, "wrong type for intrinsic global variable", &GV);
667 if (GV.hasInitializer()) {
668 const Constant *Init = GV.getInitializer();
669 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
670 Assert(InitArray, "wrong initalizer for intrinsic global variable",
671 Init);
672 for (Value *Op : InitArray->operands()) {
673 Value *V = Op->stripPointerCastsNoFollowAliases();
674 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
675 isa<GlobalAlias>(V),
676 "invalid llvm.used member", V);
677 Assert(V->hasName(), "members of llvm.used must be named", V);
683 // Visit any debug info attachments.
684 SmallVector<MDNode *, 1> MDs;
685 GV.getMetadata(LLVMContext::MD_dbg, MDs);
686 for (auto *MD : MDs) {
687 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
688 visitDIGlobalVariableExpression(*GVE);
689 else
690 AssertDI(false, "!dbg attachment of global variable must be a "
691 "DIGlobalVariableExpression");
694 // Scalable vectors cannot be global variables, since we don't know
695 // the runtime size. If the global is a struct or an array containing
696 // scalable vectors, that will be caught by the isValidElementType methods
697 // in StructType or ArrayType instead.
698 if (auto *VTy = dyn_cast<VectorType>(GV.getValueType()))
699 Assert(!VTy->isScalable(), "Globals cannot contain scalable vectors", &GV);
701 if (!GV.hasInitializer()) {
702 visitGlobalValue(GV);
703 return;
706 // Walk any aggregate initializers looking for bitcasts between address spaces
707 visitConstantExprsRecursively(GV.getInitializer());
709 visitGlobalValue(GV);
712 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
713 SmallPtrSet<const GlobalAlias*, 4> Visited;
714 Visited.insert(&GA);
715 visitAliaseeSubExpr(Visited, GA, C);
718 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
719 const GlobalAlias &GA, const Constant &C) {
720 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
721 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
722 &GA);
724 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
725 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
727 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
728 &GA);
729 } else {
730 // Only continue verifying subexpressions of GlobalAliases.
731 // Do not recurse into global initializers.
732 return;
736 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
737 visitConstantExprsRecursively(CE);
739 for (const Use &U : C.operands()) {
740 Value *V = &*U;
741 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
742 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
743 else if (const auto *C2 = dyn_cast<Constant>(V))
744 visitAliaseeSubExpr(Visited, GA, *C2);
748 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
749 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
750 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
751 "weak_odr, or external linkage!",
752 &GA);
753 const Constant *Aliasee = GA.getAliasee();
754 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
755 Assert(GA.getType() == Aliasee->getType(),
756 "Alias and aliasee types should match!", &GA);
758 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
759 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
761 visitAliaseeSubExpr(GA, *Aliasee);
763 visitGlobalValue(GA);
766 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
767 // There used to be various other llvm.dbg.* nodes, but we don't support
768 // upgrading them and we want to reserve the namespace for future uses.
769 if (NMD.getName().startswith("llvm.dbg."))
770 AssertDI(NMD.getName() == "llvm.dbg.cu",
771 "unrecognized named metadata node in the llvm.dbg namespace",
772 &NMD);
773 for (const MDNode *MD : NMD.operands()) {
774 if (NMD.getName() == "llvm.dbg.cu")
775 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
777 if (!MD)
778 continue;
780 visitMDNode(*MD);
784 void Verifier::visitMDNode(const MDNode &MD) {
785 // Only visit each node once. Metadata can be mutually recursive, so this
786 // avoids infinite recursion here, as well as being an optimization.
787 if (!MDNodes.insert(&MD).second)
788 return;
790 switch (MD.getMetadataID()) {
791 default:
792 llvm_unreachable("Invalid MDNode subclass");
793 case Metadata::MDTupleKind:
794 break;
795 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
796 case Metadata::CLASS##Kind: \
797 visit##CLASS(cast<CLASS>(MD)); \
798 break;
799 #include "llvm/IR/Metadata.def"
802 for (const Metadata *Op : MD.operands()) {
803 if (!Op)
804 continue;
805 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
806 &MD, Op);
807 if (auto *N = dyn_cast<MDNode>(Op)) {
808 visitMDNode(*N);
809 continue;
811 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
812 visitValueAsMetadata(*V, nullptr);
813 continue;
817 // Check these last, so we diagnose problems in operands first.
818 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
819 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
822 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
823 Assert(MD.getValue(), "Expected valid value", &MD);
824 Assert(!MD.getValue()->getType()->isMetadataTy(),
825 "Unexpected metadata round-trip through values", &MD, MD.getValue());
827 auto *L = dyn_cast<LocalAsMetadata>(&MD);
828 if (!L)
829 return;
831 Assert(F, "function-local metadata used outside a function", L);
833 // If this was an instruction, bb, or argument, verify that it is in the
834 // function that we expect.
835 Function *ActualF = nullptr;
836 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
837 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
838 ActualF = I->getParent()->getParent();
839 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
840 ActualF = BB->getParent();
841 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
842 ActualF = A->getParent();
843 assert(ActualF && "Unimplemented function local metadata case!");
845 Assert(ActualF == F, "function-local metadata used in wrong function", L);
848 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
849 Metadata *MD = MDV.getMetadata();
850 if (auto *N = dyn_cast<MDNode>(MD)) {
851 visitMDNode(*N);
852 return;
855 // Only visit each node once. Metadata can be mutually recursive, so this
856 // avoids infinite recursion here, as well as being an optimization.
857 if (!MDNodes.insert(MD).second)
858 return;
860 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
861 visitValueAsMetadata(*V, F);
864 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
865 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
866 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
868 void Verifier::visitDILocation(const DILocation &N) {
869 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
870 "location requires a valid scope", &N, N.getRawScope());
871 if (auto *IA = N.getRawInlinedAt())
872 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
873 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
874 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
877 void Verifier::visitGenericDINode(const GenericDINode &N) {
878 AssertDI(N.getTag(), "invalid tag", &N);
881 void Verifier::visitDIScope(const DIScope &N) {
882 if (auto *F = N.getRawFile())
883 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
886 void Verifier::visitDISubrange(const DISubrange &N) {
887 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
888 auto Count = N.getCount();
889 AssertDI(Count, "Count must either be a signed constant or a DIVariable",
890 &N);
891 AssertDI(!Count.is<ConstantInt*>() ||
892 Count.get<ConstantInt*>()->getSExtValue() >= -1,
893 "invalid subrange count", &N);
896 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
897 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
900 void Verifier::visitDIBasicType(const DIBasicType &N) {
901 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
902 N.getTag() == dwarf::DW_TAG_unspecified_type,
903 "invalid tag", &N);
904 AssertDI(!(N.isBigEndian() && N.isLittleEndian()) ,
905 "has conflicting flags", &N);
908 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
909 // Common scope checks.
910 visitDIScope(N);
912 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
913 N.getTag() == dwarf::DW_TAG_pointer_type ||
914 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
915 N.getTag() == dwarf::DW_TAG_reference_type ||
916 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
917 N.getTag() == dwarf::DW_TAG_const_type ||
918 N.getTag() == dwarf::DW_TAG_volatile_type ||
919 N.getTag() == dwarf::DW_TAG_restrict_type ||
920 N.getTag() == dwarf::DW_TAG_atomic_type ||
921 N.getTag() == dwarf::DW_TAG_member ||
922 N.getTag() == dwarf::DW_TAG_inheritance ||
923 N.getTag() == dwarf::DW_TAG_friend,
924 "invalid tag", &N);
925 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
926 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
927 N.getRawExtraData());
930 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
931 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
932 N.getRawBaseType());
934 if (N.getDWARFAddressSpace()) {
935 AssertDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
936 N.getTag() == dwarf::DW_TAG_reference_type ||
937 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
938 "DWARF address space only applies to pointer or reference types",
939 &N);
943 /// Detect mutually exclusive flags.
944 static bool hasConflictingReferenceFlags(unsigned Flags) {
945 return ((Flags & DINode::FlagLValueReference) &&
946 (Flags & DINode::FlagRValueReference)) ||
947 ((Flags & DINode::FlagTypePassByValue) &&
948 (Flags & DINode::FlagTypePassByReference));
951 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
952 auto *Params = dyn_cast<MDTuple>(&RawParams);
953 AssertDI(Params, "invalid template params", &N, &RawParams);
954 for (Metadata *Op : Params->operands()) {
955 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
956 &N, Params, Op);
960 void Verifier::visitDICompositeType(const DICompositeType &N) {
961 // Common scope checks.
962 visitDIScope(N);
964 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
965 N.getTag() == dwarf::DW_TAG_structure_type ||
966 N.getTag() == dwarf::DW_TAG_union_type ||
967 N.getTag() == dwarf::DW_TAG_enumeration_type ||
968 N.getTag() == dwarf::DW_TAG_class_type ||
969 N.getTag() == dwarf::DW_TAG_variant_part,
970 "invalid tag", &N);
972 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
973 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
974 N.getRawBaseType());
976 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
977 "invalid composite elements", &N, N.getRawElements());
978 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
979 N.getRawVTableHolder());
980 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
981 "invalid reference flags", &N);
983 if (N.isVector()) {
984 const DINodeArray Elements = N.getElements();
985 AssertDI(Elements.size() == 1 &&
986 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
987 "invalid vector, expected one element of type subrange", &N);
990 if (auto *Params = N.getRawTemplateParams())
991 visitTemplateParams(N, *Params);
993 if (N.getTag() == dwarf::DW_TAG_class_type ||
994 N.getTag() == dwarf::DW_TAG_union_type) {
995 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
996 "class/union requires a filename", &N, N.getFile());
999 if (auto *D = N.getRawDiscriminator()) {
1000 AssertDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1001 "discriminator can only appear on variant part");
1005 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1006 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1007 if (auto *Types = N.getRawTypeArray()) {
1008 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1009 for (Metadata *Ty : N.getTypeArray()->operands()) {
1010 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1013 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1014 "invalid reference flags", &N);
1017 void Verifier::visitDIFile(const DIFile &N) {
1018 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1019 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1020 if (Checksum) {
1021 AssertDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1022 "invalid checksum kind", &N);
1023 size_t Size;
1024 switch (Checksum->Kind) {
1025 case DIFile::CSK_MD5:
1026 Size = 32;
1027 break;
1028 case DIFile::CSK_SHA1:
1029 Size = 40;
1030 break;
1032 AssertDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1033 AssertDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1034 "invalid checksum", &N);
1038 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1039 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
1040 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1042 // Don't bother verifying the compilation directory or producer string
1043 // as those could be empty.
1044 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1045 N.getRawFile());
1046 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1047 N.getFile());
1049 verifySourceDebugInfo(N, *N.getFile());
1051 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1052 "invalid emission kind", &N);
1054 if (auto *Array = N.getRawEnumTypes()) {
1055 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1056 for (Metadata *Op : N.getEnumTypes()->operands()) {
1057 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1058 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1059 "invalid enum type", &N, N.getEnumTypes(), Op);
1062 if (auto *Array = N.getRawRetainedTypes()) {
1063 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1064 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1065 AssertDI(Op && (isa<DIType>(Op) ||
1066 (isa<DISubprogram>(Op) &&
1067 !cast<DISubprogram>(Op)->isDefinition())),
1068 "invalid retained type", &N, Op);
1071 if (auto *Array = N.getRawGlobalVariables()) {
1072 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1073 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1074 AssertDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1075 "invalid global variable ref", &N, Op);
1078 if (auto *Array = N.getRawImportedEntities()) {
1079 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1080 for (Metadata *Op : N.getImportedEntities()->operands()) {
1081 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1082 &N, Op);
1085 if (auto *Array = N.getRawMacros()) {
1086 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1087 for (Metadata *Op : N.getMacros()->operands()) {
1088 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1091 CUVisited.insert(&N);
1094 void Verifier::visitDISubprogram(const DISubprogram &N) {
1095 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1096 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1097 if (auto *F = N.getRawFile())
1098 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1099 else
1100 AssertDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1101 if (auto *T = N.getRawType())
1102 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1103 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1104 N.getRawContainingType());
1105 if (auto *Params = N.getRawTemplateParams())
1106 visitTemplateParams(N, *Params);
1107 if (auto *S = N.getRawDeclaration())
1108 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1109 "invalid subprogram declaration", &N, S);
1110 if (auto *RawNode = N.getRawRetainedNodes()) {
1111 auto *Node = dyn_cast<MDTuple>(RawNode);
1112 AssertDI(Node, "invalid retained nodes list", &N, RawNode);
1113 for (Metadata *Op : Node->operands()) {
1114 AssertDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)),
1115 "invalid retained nodes, expected DILocalVariable or DILabel",
1116 &N, Node, Op);
1119 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
1120 "invalid reference flags", &N);
1122 auto *Unit = N.getRawUnit();
1123 if (N.isDefinition()) {
1124 // Subprogram definitions (not part of the type hierarchy).
1125 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1126 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
1127 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1128 if (N.getFile())
1129 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1130 } else {
1131 // Subprogram declarations (part of the type hierarchy).
1132 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1135 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1136 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1137 AssertDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1138 for (Metadata *Op : ThrownTypes->operands())
1139 AssertDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1140 Op);
1143 if (N.areAllCallsDescribed())
1144 AssertDI(N.isDefinition(),
1145 "DIFlagAllCallsDescribed must be attached to a definition");
1148 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1149 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1150 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1151 "invalid local scope", &N, N.getRawScope());
1152 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1153 AssertDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1156 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1157 visitDILexicalBlockBase(N);
1159 AssertDI(N.getLine() || !N.getColumn(),
1160 "cannot have column info without line info", &N);
1163 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1164 visitDILexicalBlockBase(N);
1167 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1168 AssertDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1169 if (auto *S = N.getRawScope())
1170 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1171 if (auto *S = N.getRawDecl())
1172 AssertDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1175 void Verifier::visitDINamespace(const DINamespace &N) {
1176 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1177 if (auto *S = N.getRawScope())
1178 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1181 void Verifier::visitDIMacro(const DIMacro &N) {
1182 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1183 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1184 "invalid macinfo type", &N);
1185 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1186 if (!N.getValue().empty()) {
1187 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1191 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1192 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1193 "invalid macinfo type", &N);
1194 if (auto *F = N.getRawFile())
1195 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1197 if (auto *Array = N.getRawElements()) {
1198 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1199 for (Metadata *Op : N.getElements()->operands()) {
1200 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1205 void Verifier::visitDIModule(const DIModule &N) {
1206 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1207 AssertDI(!N.getName().empty(), "anonymous module", &N);
1210 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1211 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1214 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1215 visitDITemplateParameter(N);
1217 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1218 &N);
1221 void Verifier::visitDITemplateValueParameter(
1222 const DITemplateValueParameter &N) {
1223 visitDITemplateParameter(N);
1225 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1226 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1227 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1228 "invalid tag", &N);
1231 void Verifier::visitDIVariable(const DIVariable &N) {
1232 if (auto *S = N.getRawScope())
1233 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1234 if (auto *F = N.getRawFile())
1235 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1238 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1239 // Checks common to all variables.
1240 visitDIVariable(N);
1242 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1243 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1244 AssertDI(N.getType(), "missing global variable type", &N);
1245 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1246 AssertDI(isa<DIDerivedType>(Member),
1247 "invalid static data member declaration", &N, Member);
1251 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1252 // Checks common to all variables.
1253 visitDIVariable(N);
1255 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1256 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1257 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1258 "local variable requires a valid scope", &N, N.getRawScope());
1259 if (auto Ty = N.getType())
1260 AssertDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1263 void Verifier::visitDILabel(const DILabel &N) {
1264 if (auto *S = N.getRawScope())
1265 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1266 if (auto *F = N.getRawFile())
1267 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1269 AssertDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1270 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1271 "label requires a valid scope", &N, N.getRawScope());
1274 void Verifier::visitDIExpression(const DIExpression &N) {
1275 AssertDI(N.isValid(), "invalid expression", &N);
1278 void Verifier::visitDIGlobalVariableExpression(
1279 const DIGlobalVariableExpression &GVE) {
1280 AssertDI(GVE.getVariable(), "missing variable");
1281 if (auto *Var = GVE.getVariable())
1282 visitDIGlobalVariable(*Var);
1283 if (auto *Expr = GVE.getExpression()) {
1284 visitDIExpression(*Expr);
1285 if (auto Fragment = Expr->getFragmentInfo())
1286 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1290 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1291 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1292 if (auto *T = N.getRawType())
1293 AssertDI(isType(T), "invalid type ref", &N, T);
1294 if (auto *F = N.getRawFile())
1295 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1298 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1299 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1300 N.getTag() == dwarf::DW_TAG_imported_declaration,
1301 "invalid tag", &N);
1302 if (auto *S = N.getRawScope())
1303 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1304 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1305 N.getRawEntity());
1308 void Verifier::visitComdat(const Comdat &C) {
1309 // The Module is invalid if the GlobalValue has private linkage. Entities
1310 // with private linkage don't have entries in the symbol table.
1311 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1312 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1313 GV);
1316 void Verifier::visitModuleIdents(const Module &M) {
1317 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1318 if (!Idents)
1319 return;
1321 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1322 // Scan each llvm.ident entry and make sure that this requirement is met.
1323 for (const MDNode *N : Idents->operands()) {
1324 Assert(N->getNumOperands() == 1,
1325 "incorrect number of operands in llvm.ident metadata", N);
1326 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1327 ("invalid value for llvm.ident metadata entry operand"
1328 "(the operand should be a string)"),
1329 N->getOperand(0));
1333 void Verifier::visitModuleCommandLines(const Module &M) {
1334 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1335 if (!CommandLines)
1336 return;
1338 // llvm.commandline takes a list of metadata entry. Each entry has only one
1339 // string. Scan each llvm.commandline entry and make sure that this
1340 // requirement is met.
1341 for (const MDNode *N : CommandLines->operands()) {
1342 Assert(N->getNumOperands() == 1,
1343 "incorrect number of operands in llvm.commandline metadata", N);
1344 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1345 ("invalid value for llvm.commandline metadata entry operand"
1346 "(the operand should be a string)"),
1347 N->getOperand(0));
1351 void Verifier::visitModuleFlags(const Module &M) {
1352 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1353 if (!Flags) return;
1355 // Scan each flag, and track the flags and requirements.
1356 DenseMap<const MDString*, const MDNode*> SeenIDs;
1357 SmallVector<const MDNode*, 16> Requirements;
1358 for (const MDNode *MDN : Flags->operands())
1359 visitModuleFlag(MDN, SeenIDs, Requirements);
1361 // Validate that the requirements in the module are valid.
1362 for (const MDNode *Requirement : Requirements) {
1363 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1364 const Metadata *ReqValue = Requirement->getOperand(1);
1366 const MDNode *Op = SeenIDs.lookup(Flag);
1367 if (!Op) {
1368 CheckFailed("invalid requirement on flag, flag is not present in module",
1369 Flag);
1370 continue;
1373 if (Op->getOperand(2) != ReqValue) {
1374 CheckFailed(("invalid requirement on flag, "
1375 "flag does not have the required value"),
1376 Flag);
1377 continue;
1382 void
1383 Verifier::visitModuleFlag(const MDNode *Op,
1384 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1385 SmallVectorImpl<const MDNode *> &Requirements) {
1386 // Each module flag should have three arguments, the merge behavior (a
1387 // constant int), the flag ID (an MDString), and the value.
1388 Assert(Op->getNumOperands() == 3,
1389 "incorrect number of operands in module flag", Op);
1390 Module::ModFlagBehavior MFB;
1391 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1392 Assert(
1393 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1394 "invalid behavior operand in module flag (expected constant integer)",
1395 Op->getOperand(0));
1396 Assert(false,
1397 "invalid behavior operand in module flag (unexpected constant)",
1398 Op->getOperand(0));
1400 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1401 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1402 Op->getOperand(1));
1404 // Sanity check the values for behaviors with additional requirements.
1405 switch (MFB) {
1406 case Module::Error:
1407 case Module::Warning:
1408 case Module::Override:
1409 // These behavior types accept any value.
1410 break;
1412 case Module::Max: {
1413 Assert(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1414 "invalid value for 'max' module flag (expected constant integer)",
1415 Op->getOperand(2));
1416 break;
1419 case Module::Require: {
1420 // The value should itself be an MDNode with two operands, a flag ID (an
1421 // MDString), and a value.
1422 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1423 Assert(Value && Value->getNumOperands() == 2,
1424 "invalid value for 'require' module flag (expected metadata pair)",
1425 Op->getOperand(2));
1426 Assert(isa<MDString>(Value->getOperand(0)),
1427 ("invalid value for 'require' module flag "
1428 "(first value operand should be a string)"),
1429 Value->getOperand(0));
1431 // Append it to the list of requirements, to check once all module flags are
1432 // scanned.
1433 Requirements.push_back(Value);
1434 break;
1437 case Module::Append:
1438 case Module::AppendUnique: {
1439 // These behavior types require the operand be an MDNode.
1440 Assert(isa<MDNode>(Op->getOperand(2)),
1441 "invalid value for 'append'-type module flag "
1442 "(expected a metadata node)",
1443 Op->getOperand(2));
1444 break;
1448 // Unless this is a "requires" flag, check the ID is unique.
1449 if (MFB != Module::Require) {
1450 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1451 Assert(Inserted,
1452 "module flag identifiers must be unique (or of 'require' type)", ID);
1455 if (ID->getString() == "wchar_size") {
1456 ConstantInt *Value
1457 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1458 Assert(Value, "wchar_size metadata requires constant integer argument");
1461 if (ID->getString() == "Linker Options") {
1462 // If the llvm.linker.options named metadata exists, we assume that the
1463 // bitcode reader has upgraded the module flag. Otherwise the flag might
1464 // have been created by a client directly.
1465 Assert(M.getNamedMetadata("llvm.linker.options"),
1466 "'Linker Options' named metadata no longer supported");
1469 if (ID->getString() == "CG Profile") {
1470 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1471 visitModuleFlagCGProfileEntry(MDO);
1475 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1476 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1477 if (!FuncMDO)
1478 return;
1479 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1480 Assert(F && isa<Function>(F->getValue()), "expected a Function or null",
1481 FuncMDO);
1483 auto Node = dyn_cast_or_null<MDNode>(MDO);
1484 Assert(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1485 CheckFunction(Node->getOperand(0));
1486 CheckFunction(Node->getOperand(1));
1487 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1488 Assert(Count && Count->getType()->isIntegerTy(),
1489 "expected an integer constant", Node->getOperand(2));
1492 /// Return true if this attribute kind only applies to functions.
1493 static bool isFuncOnlyAttr(Attribute::AttrKind Kind) {
1494 switch (Kind) {
1495 case Attribute::NoReturn:
1496 case Attribute::NoSync:
1497 case Attribute::WillReturn:
1498 case Attribute::NoCfCheck:
1499 case Attribute::NoUnwind:
1500 case Attribute::NoInline:
1501 case Attribute::NoFree:
1502 case Attribute::AlwaysInline:
1503 case Attribute::OptimizeForSize:
1504 case Attribute::StackProtect:
1505 case Attribute::StackProtectReq:
1506 case Attribute::StackProtectStrong:
1507 case Attribute::SafeStack:
1508 case Attribute::ShadowCallStack:
1509 case Attribute::NoRedZone:
1510 case Attribute::NoImplicitFloat:
1511 case Attribute::Naked:
1512 case Attribute::InlineHint:
1513 case Attribute::StackAlignment:
1514 case Attribute::UWTable:
1515 case Attribute::NonLazyBind:
1516 case Attribute::ReturnsTwice:
1517 case Attribute::SanitizeAddress:
1518 case Attribute::SanitizeHWAddress:
1519 case Attribute::SanitizeThread:
1520 case Attribute::SanitizeMemory:
1521 case Attribute::MinSize:
1522 case Attribute::NoDuplicate:
1523 case Attribute::Builtin:
1524 case Attribute::NoBuiltin:
1525 case Attribute::Cold:
1526 case Attribute::OptForFuzzing:
1527 case Attribute::OptimizeNone:
1528 case Attribute::JumpTable:
1529 case Attribute::Convergent:
1530 case Attribute::ArgMemOnly:
1531 case Attribute::NoRecurse:
1532 case Attribute::InaccessibleMemOnly:
1533 case Attribute::InaccessibleMemOrArgMemOnly:
1534 case Attribute::AllocSize:
1535 case Attribute::SpeculativeLoadHardening:
1536 case Attribute::Speculatable:
1537 case Attribute::StrictFP:
1538 return true;
1539 default:
1540 break;
1542 return false;
1545 /// Return true if this is a function attribute that can also appear on
1546 /// arguments.
1547 static bool isFuncOrArgAttr(Attribute::AttrKind Kind) {
1548 return Kind == Attribute::ReadOnly || Kind == Attribute::WriteOnly ||
1549 Kind == Attribute::ReadNone;
1552 void Verifier::verifyAttributeTypes(AttributeSet Attrs, bool IsFunction,
1553 const Value *V) {
1554 for (Attribute A : Attrs) {
1555 if (A.isStringAttribute())
1556 continue;
1558 if (isFuncOnlyAttr(A.getKindAsEnum())) {
1559 if (!IsFunction) {
1560 CheckFailed("Attribute '" + A.getAsString() +
1561 "' only applies to functions!",
1563 return;
1565 } else if (IsFunction && !isFuncOrArgAttr(A.getKindAsEnum())) {
1566 CheckFailed("Attribute '" + A.getAsString() +
1567 "' does not apply to functions!",
1569 return;
1574 // VerifyParameterAttrs - Check the given attributes for an argument or return
1575 // value of the specified type. The value V is printed in error messages.
1576 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1577 const Value *V) {
1578 if (!Attrs.hasAttributes())
1579 return;
1581 verifyAttributeTypes(Attrs, /*IsFunction=*/false, V);
1583 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1584 Assert(Attrs.getNumAttributes() == 1,
1585 "Attribute 'immarg' is incompatible with other attributes", V);
1588 // Check for mutually incompatible attributes. Only inreg is compatible with
1589 // sret.
1590 unsigned AttrCount = 0;
1591 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1592 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1593 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1594 Attrs.hasAttribute(Attribute::InReg);
1595 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1596 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1597 "and 'sret' are incompatible!",
1600 Assert(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1601 Attrs.hasAttribute(Attribute::ReadOnly)),
1602 "Attributes "
1603 "'inalloca and readonly' are incompatible!",
1606 Assert(!(Attrs.hasAttribute(Attribute::StructRet) &&
1607 Attrs.hasAttribute(Attribute::Returned)),
1608 "Attributes "
1609 "'sret and returned' are incompatible!",
1612 Assert(!(Attrs.hasAttribute(Attribute::ZExt) &&
1613 Attrs.hasAttribute(Attribute::SExt)),
1614 "Attributes "
1615 "'zeroext and signext' are incompatible!",
1618 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1619 Attrs.hasAttribute(Attribute::ReadOnly)),
1620 "Attributes "
1621 "'readnone and readonly' are incompatible!",
1624 Assert(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1625 Attrs.hasAttribute(Attribute::WriteOnly)),
1626 "Attributes "
1627 "'readnone and writeonly' are incompatible!",
1630 Assert(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1631 Attrs.hasAttribute(Attribute::WriteOnly)),
1632 "Attributes "
1633 "'readonly and writeonly' are incompatible!",
1636 Assert(!(Attrs.hasAttribute(Attribute::NoInline) &&
1637 Attrs.hasAttribute(Attribute::AlwaysInline)),
1638 "Attributes "
1639 "'noinline and alwaysinline' are incompatible!",
1642 if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) {
1643 Assert(Attrs.getByValType() == cast<PointerType>(Ty)->getElementType(),
1644 "Attribute 'byval' type does not match parameter!", V);
1647 AttrBuilder IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1648 Assert(!AttrBuilder(Attrs).overlaps(IncompatibleAttrs),
1649 "Wrong types for attribute: " +
1650 AttributeSet::get(Context, IncompatibleAttrs).getAsString(),
1653 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1654 SmallPtrSet<Type*, 4> Visited;
1655 if (!PTy->getElementType()->isSized(&Visited)) {
1656 Assert(!Attrs.hasAttribute(Attribute::ByVal) &&
1657 !Attrs.hasAttribute(Attribute::InAlloca),
1658 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1661 if (!isa<PointerType>(PTy->getElementType()))
1662 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1663 "Attribute 'swifterror' only applies to parameters "
1664 "with pointer to pointer type!",
1666 } else {
1667 Assert(!Attrs.hasAttribute(Attribute::ByVal),
1668 "Attribute 'byval' only applies to parameters with pointer type!",
1670 Assert(!Attrs.hasAttribute(Attribute::SwiftError),
1671 "Attribute 'swifterror' only applies to parameters "
1672 "with pointer type!",
1677 // Check parameter attributes against a function type.
1678 // The value V is printed in error messages.
1679 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1680 const Value *V, bool IsIntrinsic) {
1681 if (Attrs.isEmpty())
1682 return;
1684 bool SawNest = false;
1685 bool SawReturned = false;
1686 bool SawSRet = false;
1687 bool SawSwiftSelf = false;
1688 bool SawSwiftError = false;
1690 // Verify return value attributes.
1691 AttributeSet RetAttrs = Attrs.getRetAttributes();
1692 Assert((!RetAttrs.hasAttribute(Attribute::ByVal) &&
1693 !RetAttrs.hasAttribute(Attribute::Nest) &&
1694 !RetAttrs.hasAttribute(Attribute::StructRet) &&
1695 !RetAttrs.hasAttribute(Attribute::NoCapture) &&
1696 !RetAttrs.hasAttribute(Attribute::Returned) &&
1697 !RetAttrs.hasAttribute(Attribute::InAlloca) &&
1698 !RetAttrs.hasAttribute(Attribute::SwiftSelf) &&
1699 !RetAttrs.hasAttribute(Attribute::SwiftError)),
1700 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1701 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1702 "values!",
1704 Assert((!RetAttrs.hasAttribute(Attribute::ReadOnly) &&
1705 !RetAttrs.hasAttribute(Attribute::WriteOnly) &&
1706 !RetAttrs.hasAttribute(Attribute::ReadNone)),
1707 "Attribute '" + RetAttrs.getAsString() +
1708 "' does not apply to function returns",
1710 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
1712 // Verify parameter attributes.
1713 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1714 Type *Ty = FT->getParamType(i);
1715 AttributeSet ArgAttrs = Attrs.getParamAttributes(i);
1717 if (!IsIntrinsic) {
1718 Assert(!ArgAttrs.hasAttribute(Attribute::ImmArg),
1719 "immarg attribute only applies to intrinsics",V);
1722 verifyParameterAttrs(ArgAttrs, Ty, V);
1724 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
1725 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1726 SawNest = true;
1729 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
1730 Assert(!SawReturned, "More than one parameter has attribute returned!",
1732 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1733 "Incompatible argument and return types for 'returned' attribute",
1735 SawReturned = true;
1738 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
1739 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1740 Assert(i == 0 || i == 1,
1741 "Attribute 'sret' is not on first or second parameter!", V);
1742 SawSRet = true;
1745 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
1746 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1747 SawSwiftSelf = true;
1750 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
1751 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1753 SawSwiftError = true;
1756 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
1757 Assert(i == FT->getNumParams() - 1,
1758 "inalloca isn't on the last parameter!", V);
1762 if (!Attrs.hasAttributes(AttributeList::FunctionIndex))
1763 return;
1765 verifyAttributeTypes(Attrs.getFnAttributes(), /*IsFunction=*/true, V);
1767 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1768 Attrs.hasFnAttribute(Attribute::ReadOnly)),
1769 "Attributes 'readnone and readonly' are incompatible!", V);
1771 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1772 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1773 "Attributes 'readnone and writeonly' are incompatible!", V);
1775 Assert(!(Attrs.hasFnAttribute(Attribute::ReadOnly) &&
1776 Attrs.hasFnAttribute(Attribute::WriteOnly)),
1777 "Attributes 'readonly and writeonly' are incompatible!", V);
1779 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1780 Attrs.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly)),
1781 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1782 "incompatible!",
1785 Assert(!(Attrs.hasFnAttribute(Attribute::ReadNone) &&
1786 Attrs.hasFnAttribute(Attribute::InaccessibleMemOnly)),
1787 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1789 Assert(!(Attrs.hasFnAttribute(Attribute::NoInline) &&
1790 Attrs.hasFnAttribute(Attribute::AlwaysInline)),
1791 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1793 if (Attrs.hasFnAttribute(Attribute::OptimizeNone)) {
1794 Assert(Attrs.hasFnAttribute(Attribute::NoInline),
1795 "Attribute 'optnone' requires 'noinline'!", V);
1797 Assert(!Attrs.hasFnAttribute(Attribute::OptimizeForSize),
1798 "Attributes 'optsize and optnone' are incompatible!", V);
1800 Assert(!Attrs.hasFnAttribute(Attribute::MinSize),
1801 "Attributes 'minsize and optnone' are incompatible!", V);
1804 if (Attrs.hasFnAttribute(Attribute::JumpTable)) {
1805 const GlobalValue *GV = cast<GlobalValue>(V);
1806 Assert(GV->hasGlobalUnnamedAddr(),
1807 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1810 if (Attrs.hasFnAttribute(Attribute::AllocSize)) {
1811 std::pair<unsigned, Optional<unsigned>> Args =
1812 Attrs.getAllocSizeArgs(AttributeList::FunctionIndex);
1814 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1815 if (ParamNo >= FT->getNumParams()) {
1816 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1817 return false;
1820 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1821 CheckFailed("'allocsize' " + Name +
1822 " argument must refer to an integer parameter",
1824 return false;
1827 return true;
1830 if (!CheckParam("element size", Args.first))
1831 return;
1833 if (Args.second && !CheckParam("number of elements", *Args.second))
1834 return;
1838 void Verifier::verifyFunctionMetadata(
1839 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1840 for (const auto &Pair : MDs) {
1841 if (Pair.first == LLVMContext::MD_prof) {
1842 MDNode *MD = Pair.second;
1843 Assert(MD->getNumOperands() >= 2,
1844 "!prof annotations should have no less than 2 operands", MD);
1846 // Check first operand.
1847 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1848 MD);
1849 Assert(isa<MDString>(MD->getOperand(0)),
1850 "expected string with name of the !prof annotation", MD);
1851 MDString *MDS = cast<MDString>(MD->getOperand(0));
1852 StringRef ProfName = MDS->getString();
1853 Assert(ProfName.equals("function_entry_count") ||
1854 ProfName.equals("synthetic_function_entry_count"),
1855 "first operand should be 'function_entry_count'"
1856 " or 'synthetic_function_entry_count'",
1857 MD);
1859 // Check second operand.
1860 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1861 MD);
1862 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1863 "expected integer argument to function_entry_count", MD);
1868 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1869 if (!ConstantExprVisited.insert(EntryC).second)
1870 return;
1872 SmallVector<const Constant *, 16> Stack;
1873 Stack.push_back(EntryC);
1875 while (!Stack.empty()) {
1876 const Constant *C = Stack.pop_back_val();
1878 // Check this constant expression.
1879 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1880 visitConstantExpr(CE);
1882 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1883 // Global Values get visited separately, but we do need to make sure
1884 // that the global value is in the correct module
1885 Assert(GV->getParent() == &M, "Referencing global in another module!",
1886 EntryC, &M, GV, GV->getParent());
1887 continue;
1890 // Visit all sub-expressions.
1891 for (const Use &U : C->operands()) {
1892 const auto *OpC = dyn_cast<Constant>(U);
1893 if (!OpC)
1894 continue;
1895 if (!ConstantExprVisited.insert(OpC).second)
1896 continue;
1897 Stack.push_back(OpC);
1902 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1903 if (CE->getOpcode() == Instruction::BitCast)
1904 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1905 CE->getType()),
1906 "Invalid bitcast", CE);
1908 if (CE->getOpcode() == Instruction::IntToPtr ||
1909 CE->getOpcode() == Instruction::PtrToInt) {
1910 auto *PtrTy = CE->getOpcode() == Instruction::IntToPtr
1911 ? CE->getType()
1912 : CE->getOperand(0)->getType();
1913 StringRef Msg = CE->getOpcode() == Instruction::IntToPtr
1914 ? "inttoptr not supported for non-integral pointers"
1915 : "ptrtoint not supported for non-integral pointers";
1916 Assert(
1917 !DL.isNonIntegralPointerType(cast<PointerType>(PtrTy->getScalarType())),
1918 Msg);
1922 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
1923 // There shouldn't be more attribute sets than there are parameters plus the
1924 // function and return value.
1925 return Attrs.getNumAttrSets() <= Params + 2;
1928 /// Verify that statepoint intrinsic is well formed.
1929 void Verifier::verifyStatepoint(const CallBase &Call) {
1930 assert(Call.getCalledFunction() &&
1931 Call.getCalledFunction()->getIntrinsicID() ==
1932 Intrinsic::experimental_gc_statepoint);
1934 Assert(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
1935 !Call.onlyAccessesArgMemory(),
1936 "gc.statepoint must read and write all memory to preserve "
1937 "reordering restrictions required by safepoint semantics",
1938 Call);
1940 const int64_t NumPatchBytes =
1941 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
1942 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1943 Assert(NumPatchBytes >= 0,
1944 "gc.statepoint number of patchable bytes must be "
1945 "positive",
1946 Call);
1948 const Value *Target = Call.getArgOperand(2);
1949 auto *PT = dyn_cast<PointerType>(Target->getType());
1950 Assert(PT && PT->getElementType()->isFunctionTy(),
1951 "gc.statepoint callee must be of function pointer type", Call, Target);
1952 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1954 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
1955 Assert(NumCallArgs >= 0,
1956 "gc.statepoint number of arguments to underlying call "
1957 "must be positive",
1958 Call);
1959 const int NumParams = (int)TargetFuncType->getNumParams();
1960 if (TargetFuncType->isVarArg()) {
1961 Assert(NumCallArgs >= NumParams,
1962 "gc.statepoint mismatch in number of vararg call args", Call);
1964 // TODO: Remove this limitation
1965 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1966 "gc.statepoint doesn't support wrapping non-void "
1967 "vararg functions yet",
1968 Call);
1969 } else
1970 Assert(NumCallArgs == NumParams,
1971 "gc.statepoint mismatch in number of call args", Call);
1973 const uint64_t Flags
1974 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
1975 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1976 "unknown flag used in gc.statepoint flags argument", Call);
1978 // Verify that the types of the call parameter arguments match
1979 // the type of the wrapped callee.
1980 AttributeList Attrs = Call.getAttributes();
1981 for (int i = 0; i < NumParams; i++) {
1982 Type *ParamType = TargetFuncType->getParamType(i);
1983 Type *ArgType = Call.getArgOperand(5 + i)->getType();
1984 Assert(ArgType == ParamType,
1985 "gc.statepoint call argument does not match wrapped "
1986 "function type",
1987 Call);
1989 if (TargetFuncType->isVarArg()) {
1990 AttributeSet ArgAttrs = Attrs.getParamAttributes(5 + i);
1991 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
1992 "Attribute 'sret' cannot be used for vararg call arguments!",
1993 Call);
1997 const int EndCallArgsInx = 4 + NumCallArgs;
1999 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2000 Assert(isa<ConstantInt>(NumTransitionArgsV),
2001 "gc.statepoint number of transition arguments "
2002 "must be constant integer",
2003 Call);
2004 const int NumTransitionArgs =
2005 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2006 Assert(NumTransitionArgs >= 0,
2007 "gc.statepoint number of transition arguments must be positive", Call);
2008 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2010 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2011 Assert(isa<ConstantInt>(NumDeoptArgsV),
2012 "gc.statepoint number of deoptimization arguments "
2013 "must be constant integer",
2014 Call);
2015 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2016 Assert(NumDeoptArgs >= 0,
2017 "gc.statepoint number of deoptimization arguments "
2018 "must be positive",
2019 Call);
2021 const int ExpectedNumArgs =
2022 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
2023 Assert(ExpectedNumArgs <= (int)Call.arg_size(),
2024 "gc.statepoint too few arguments according to length fields", Call);
2026 // Check that the only uses of this gc.statepoint are gc.result or
2027 // gc.relocate calls which are tied to this statepoint and thus part
2028 // of the same statepoint sequence
2029 for (const User *U : Call.users()) {
2030 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2031 Assert(UserCall, "illegal use of statepoint token", Call, U);
2032 if (!UserCall)
2033 continue;
2034 Assert(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2035 "gc.result or gc.relocate are the only value uses "
2036 "of a gc.statepoint",
2037 Call, U);
2038 if (isa<GCResultInst>(UserCall)) {
2039 Assert(UserCall->getArgOperand(0) == &Call,
2040 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2041 } else if (isa<GCRelocateInst>(Call)) {
2042 Assert(UserCall->getArgOperand(0) == &Call,
2043 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2047 // Note: It is legal for a single derived pointer to be listed multiple
2048 // times. It's non-optimal, but it is legal. It can also happen after
2049 // insertion if we strip a bitcast away.
2050 // Note: It is really tempting to check that each base is relocated and
2051 // that a derived pointer is never reused as a base pointer. This turns
2052 // out to be problematic since optimizations run after safepoint insertion
2053 // can recognize equality properties that the insertion logic doesn't know
2054 // about. See example statepoint.ll in the verifier subdirectory
2057 void Verifier::verifyFrameRecoverIndices() {
2058 for (auto &Counts : FrameEscapeInfo) {
2059 Function *F = Counts.first;
2060 unsigned EscapedObjectCount = Counts.second.first;
2061 unsigned MaxRecoveredIndex = Counts.second.second;
2062 Assert(MaxRecoveredIndex <= EscapedObjectCount,
2063 "all indices passed to llvm.localrecover must be less than the "
2064 "number of arguments passed to llvm.localescape in the parent "
2065 "function",
2070 static Instruction *getSuccPad(Instruction *Terminator) {
2071 BasicBlock *UnwindDest;
2072 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2073 UnwindDest = II->getUnwindDest();
2074 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2075 UnwindDest = CSI->getUnwindDest();
2076 else
2077 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2078 return UnwindDest->getFirstNonPHI();
2081 void Verifier::verifySiblingFuncletUnwinds() {
2082 SmallPtrSet<Instruction *, 8> Visited;
2083 SmallPtrSet<Instruction *, 8> Active;
2084 for (const auto &Pair : SiblingFuncletInfo) {
2085 Instruction *PredPad = Pair.first;
2086 if (Visited.count(PredPad))
2087 continue;
2088 Active.insert(PredPad);
2089 Instruction *Terminator = Pair.second;
2090 do {
2091 Instruction *SuccPad = getSuccPad(Terminator);
2092 if (Active.count(SuccPad)) {
2093 // Found a cycle; report error
2094 Instruction *CyclePad = SuccPad;
2095 SmallVector<Instruction *, 8> CycleNodes;
2096 do {
2097 CycleNodes.push_back(CyclePad);
2098 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2099 if (CycleTerminator != CyclePad)
2100 CycleNodes.push_back(CycleTerminator);
2101 CyclePad = getSuccPad(CycleTerminator);
2102 } while (CyclePad != SuccPad);
2103 Assert(false, "EH pads can't handle each other's exceptions",
2104 ArrayRef<Instruction *>(CycleNodes));
2106 // Don't re-walk a node we've already checked
2107 if (!Visited.insert(SuccPad).second)
2108 break;
2109 // Walk to this successor if it has a map entry.
2110 PredPad = SuccPad;
2111 auto TermI = SiblingFuncletInfo.find(PredPad);
2112 if (TermI == SiblingFuncletInfo.end())
2113 break;
2114 Terminator = TermI->second;
2115 Active.insert(PredPad);
2116 } while (true);
2117 // Each node only has one successor, so we've walked all the active
2118 // nodes' successors.
2119 Active.clear();
2123 // visitFunction - Verify that a function is ok.
2125 void Verifier::visitFunction(const Function &F) {
2126 visitGlobalValue(F);
2128 // Check function arguments.
2129 FunctionType *FT = F.getFunctionType();
2130 unsigned NumArgs = F.arg_size();
2132 Assert(&Context == &F.getContext(),
2133 "Function context does not match Module context!", &F);
2135 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2136 Assert(FT->getNumParams() == NumArgs,
2137 "# formal arguments must match # of arguments for function type!", &F,
2138 FT);
2139 Assert(F.getReturnType()->isFirstClassType() ||
2140 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2141 "Functions cannot return aggregate values!", &F);
2143 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2144 "Invalid struct return type!", &F);
2146 AttributeList Attrs = F.getAttributes();
2148 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
2149 "Attribute after last parameter!", &F);
2151 bool isLLVMdotName = F.getName().size() >= 5 &&
2152 F.getName().substr(0, 5) == "llvm.";
2154 // Check function attributes.
2155 verifyFunctionAttrs(FT, Attrs, &F, isLLVMdotName);
2157 // On function declarations/definitions, we do not support the builtin
2158 // attribute. We do not check this in VerifyFunctionAttrs since that is
2159 // checking for Attributes that can/can not ever be on functions.
2160 Assert(!Attrs.hasFnAttribute(Attribute::Builtin),
2161 "Attribute 'builtin' can only be applied to a callsite.", &F);
2163 // Check that this function meets the restrictions on this calling convention.
2164 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2165 // restrictions can be lifted.
2166 switch (F.getCallingConv()) {
2167 default:
2168 case CallingConv::C:
2169 break;
2170 case CallingConv::AMDGPU_KERNEL:
2171 case CallingConv::SPIR_KERNEL:
2172 Assert(F.getReturnType()->isVoidTy(),
2173 "Calling convention requires void return type", &F);
2174 LLVM_FALLTHROUGH;
2175 case CallingConv::AMDGPU_VS:
2176 case CallingConv::AMDGPU_HS:
2177 case CallingConv::AMDGPU_GS:
2178 case CallingConv::AMDGPU_PS:
2179 case CallingConv::AMDGPU_CS:
2180 Assert(!F.hasStructRetAttr(),
2181 "Calling convention does not allow sret", &F);
2182 LLVM_FALLTHROUGH;
2183 case CallingConv::Fast:
2184 case CallingConv::Cold:
2185 case CallingConv::Intel_OCL_BI:
2186 case CallingConv::PTX_Kernel:
2187 case CallingConv::PTX_Device:
2188 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
2189 "perfect forwarding!",
2190 &F);
2191 break;
2194 // Check that the argument values match the function type for this function...
2195 unsigned i = 0;
2196 for (const Argument &Arg : F.args()) {
2197 Assert(Arg.getType() == FT->getParamType(i),
2198 "Argument value does not match function argument type!", &Arg,
2199 FT->getParamType(i));
2200 Assert(Arg.getType()->isFirstClassType(),
2201 "Function arguments must have first-class types!", &Arg);
2202 if (!isLLVMdotName) {
2203 Assert(!Arg.getType()->isMetadataTy(),
2204 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2205 Assert(!Arg.getType()->isTokenTy(),
2206 "Function takes token but isn't an intrinsic", &Arg, &F);
2209 // Check that swifterror argument is only used by loads and stores.
2210 if (Attrs.hasParamAttribute(i, Attribute::SwiftError)) {
2211 verifySwiftErrorValue(&Arg);
2213 ++i;
2216 if (!isLLVMdotName)
2217 Assert(!F.getReturnType()->isTokenTy(),
2218 "Functions returns a token but isn't an intrinsic", &F);
2220 // Get the function metadata attachments.
2221 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2222 F.getAllMetadata(MDs);
2223 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2224 verifyFunctionMetadata(MDs);
2226 // Check validity of the personality function
2227 if (F.hasPersonalityFn()) {
2228 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2229 if (Per)
2230 Assert(Per->getParent() == F.getParent(),
2231 "Referencing personality function in another module!",
2232 &F, F.getParent(), Per, Per->getParent());
2235 if (F.isMaterializable()) {
2236 // Function has a body somewhere we can't see.
2237 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2238 MDs.empty() ? nullptr : MDs.front().second);
2239 } else if (F.isDeclaration()) {
2240 for (const auto &I : MDs) {
2241 // This is used for call site debug information.
2242 AssertDI(I.first != LLVMContext::MD_dbg ||
2243 !cast<DISubprogram>(I.second)->isDistinct(),
2244 "function declaration may only have a unique !dbg attachment",
2245 &F);
2246 Assert(I.first != LLVMContext::MD_prof,
2247 "function declaration may not have a !prof attachment", &F);
2249 // Verify the metadata itself.
2250 visitMDNode(*I.second);
2252 Assert(!F.hasPersonalityFn(),
2253 "Function declaration shouldn't have a personality routine", &F);
2254 } else {
2255 // Verify that this function (which has a body) is not named "llvm.*". It
2256 // is not legal to define intrinsics.
2257 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
2259 // Check the entry node
2260 const BasicBlock *Entry = &F.getEntryBlock();
2261 Assert(pred_empty(Entry),
2262 "Entry block to function must not have predecessors!", Entry);
2264 // The address of the entry block cannot be taken, unless it is dead.
2265 if (Entry->hasAddressTaken()) {
2266 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2267 "blockaddress may not be used with the entry block!", Entry);
2270 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2271 // Visit metadata attachments.
2272 for (const auto &I : MDs) {
2273 // Verify that the attachment is legal.
2274 switch (I.first) {
2275 default:
2276 break;
2277 case LLVMContext::MD_dbg: {
2278 ++NumDebugAttachments;
2279 AssertDI(NumDebugAttachments == 1,
2280 "function must have a single !dbg attachment", &F, I.second);
2281 AssertDI(isa<DISubprogram>(I.second),
2282 "function !dbg attachment must be a subprogram", &F, I.second);
2283 auto *SP = cast<DISubprogram>(I.second);
2284 const Function *&AttachedTo = DISubprogramAttachments[SP];
2285 AssertDI(!AttachedTo || AttachedTo == &F,
2286 "DISubprogram attached to more than one function", SP, &F);
2287 AttachedTo = &F;
2288 break;
2290 case LLVMContext::MD_prof:
2291 ++NumProfAttachments;
2292 Assert(NumProfAttachments == 1,
2293 "function must have a single !prof attachment", &F, I.second);
2294 break;
2297 // Verify the metadata itself.
2298 visitMDNode(*I.second);
2302 // If this function is actually an intrinsic, verify that it is only used in
2303 // direct call/invokes, never having its "address taken".
2304 // Only do this if the module is materialized, otherwise we don't have all the
2305 // uses.
2306 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2307 const User *U;
2308 if (F.hasAddressTaken(&U))
2309 Assert(false, "Invalid user of intrinsic instruction!", U);
2312 auto *N = F.getSubprogram();
2313 HasDebugInfo = (N != nullptr);
2314 if (!HasDebugInfo)
2315 return;
2317 // Check that all !dbg attachments lead to back to N (or, at least, another
2318 // subprogram that describes the same function).
2320 // FIXME: Check this incrementally while visiting !dbg attachments.
2321 // FIXME: Only check when N is the canonical subprogram for F.
2322 SmallPtrSet<const MDNode *, 32> Seen;
2323 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2324 // Be careful about using DILocation here since we might be dealing with
2325 // broken code (this is the Verifier after all).
2326 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2327 if (!DL)
2328 return;
2329 if (!Seen.insert(DL).second)
2330 return;
2332 Metadata *Parent = DL->getRawScope();
2333 AssertDI(Parent && isa<DILocalScope>(Parent),
2334 "DILocation's scope must be a DILocalScope", N, &F, &I, DL,
2335 Parent);
2336 DILocalScope *Scope = DL->getInlinedAtScope();
2337 if (Scope && !Seen.insert(Scope).second)
2338 return;
2340 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2342 // Scope and SP could be the same MDNode and we don't want to skip
2343 // validation in that case
2344 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2345 return;
2347 // FIXME: Once N is canonical, check "SP == &N".
2348 AssertDI(SP->describes(&F),
2349 "!dbg attachment points at wrong subprogram for function", N, &F,
2350 &I, DL, Scope, SP);
2352 for (auto &BB : F)
2353 for (auto &I : BB) {
2354 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2355 // The llvm.loop annotations also contain two DILocations.
2356 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2357 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2358 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2359 if (BrokenDebugInfo)
2360 return;
2364 // verifyBasicBlock - Verify that a basic block is well formed...
2366 void Verifier::visitBasicBlock(BasicBlock &BB) {
2367 InstsInThisBlock.clear();
2369 // Ensure that basic blocks have terminators!
2370 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2372 // Check constraints that this basic block imposes on all of the PHI nodes in
2373 // it.
2374 if (isa<PHINode>(BB.front())) {
2375 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2376 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2377 llvm::sort(Preds);
2378 for (const PHINode &PN : BB.phis()) {
2379 // Ensure that PHI nodes have at least one entry!
2380 Assert(PN.getNumIncomingValues() != 0,
2381 "PHI nodes must have at least one entry. If the block is dead, "
2382 "the PHI should be removed!",
2383 &PN);
2384 Assert(PN.getNumIncomingValues() == Preds.size(),
2385 "PHINode should have one entry for each predecessor of its "
2386 "parent basic block!",
2387 &PN);
2389 // Get and sort all incoming values in the PHI node...
2390 Values.clear();
2391 Values.reserve(PN.getNumIncomingValues());
2392 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2393 Values.push_back(
2394 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2395 llvm::sort(Values);
2397 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2398 // Check to make sure that if there is more than one entry for a
2399 // particular basic block in this PHI node, that the incoming values are
2400 // all identical.
2402 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2403 Values[i].second == Values[i - 1].second,
2404 "PHI node has multiple entries for the same basic block with "
2405 "different incoming values!",
2406 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2408 // Check to make sure that the predecessors and PHI node entries are
2409 // matched up.
2410 Assert(Values[i].first == Preds[i],
2411 "PHI node entries do not match predecessors!", &PN,
2412 Values[i].first, Preds[i]);
2417 // Check that all instructions have their parent pointers set up correctly.
2418 for (auto &I : BB)
2420 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2424 void Verifier::visitTerminator(Instruction &I) {
2425 // Ensure that terminators only exist at the end of the basic block.
2426 Assert(&I == I.getParent()->getTerminator(),
2427 "Terminator found in the middle of a basic block!", I.getParent());
2428 visitInstruction(I);
2431 void Verifier::visitBranchInst(BranchInst &BI) {
2432 if (BI.isConditional()) {
2433 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2434 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2436 visitTerminator(BI);
2439 void Verifier::visitReturnInst(ReturnInst &RI) {
2440 Function *F = RI.getParent()->getParent();
2441 unsigned N = RI.getNumOperands();
2442 if (F->getReturnType()->isVoidTy())
2443 Assert(N == 0,
2444 "Found return instr that returns non-void in Function of void "
2445 "return type!",
2446 &RI, F->getReturnType());
2447 else
2448 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2449 "Function return type does not match operand "
2450 "type of return inst!",
2451 &RI, F->getReturnType());
2453 // Check to make sure that the return value has necessary properties for
2454 // terminators...
2455 visitTerminator(RI);
2458 void Verifier::visitSwitchInst(SwitchInst &SI) {
2459 // Check to make sure that all of the constants in the switch instruction
2460 // have the same type as the switched-on value.
2461 Type *SwitchTy = SI.getCondition()->getType();
2462 SmallPtrSet<ConstantInt*, 32> Constants;
2463 for (auto &Case : SI.cases()) {
2464 Assert(Case.getCaseValue()->getType() == SwitchTy,
2465 "Switch constants must all be same type as switch value!", &SI);
2466 Assert(Constants.insert(Case.getCaseValue()).second,
2467 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2470 visitTerminator(SI);
2473 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2474 Assert(BI.getAddress()->getType()->isPointerTy(),
2475 "Indirectbr operand must have pointer type!", &BI);
2476 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2477 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2478 "Indirectbr destinations must all have pointer type!", &BI);
2480 visitTerminator(BI);
2483 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2484 Assert(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2485 &CBI);
2486 Assert(CBI.getType()->isVoidTy(), "Callbr return value is not supported!",
2487 &CBI);
2488 for (unsigned i = 0, e = CBI.getNumSuccessors(); i != e; ++i)
2489 Assert(CBI.getSuccessor(i)->getType()->isLabelTy(),
2490 "Callbr successors must all have pointer type!", &CBI);
2491 for (unsigned i = 0, e = CBI.getNumOperands(); i != e; ++i) {
2492 Assert(i >= CBI.getNumArgOperands() || !isa<BasicBlock>(CBI.getOperand(i)),
2493 "Using an unescaped label as a callbr argument!", &CBI);
2494 if (isa<BasicBlock>(CBI.getOperand(i)))
2495 for (unsigned j = i + 1; j != e; ++j)
2496 Assert(CBI.getOperand(i) != CBI.getOperand(j),
2497 "Duplicate callbr destination!", &CBI);
2500 visitTerminator(CBI);
2503 void Verifier::visitSelectInst(SelectInst &SI) {
2504 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2505 SI.getOperand(2)),
2506 "Invalid operands for select instruction!", &SI);
2508 Assert(SI.getTrueValue()->getType() == SI.getType(),
2509 "Select values must have same type as select instruction!", &SI);
2510 visitInstruction(SI);
2513 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2514 /// a pass, if any exist, it's an error.
2516 void Verifier::visitUserOp1(Instruction &I) {
2517 Assert(false, "User-defined operators should not live outside of a pass!", &I);
2520 void Verifier::visitTruncInst(TruncInst &I) {
2521 // Get the source and destination types
2522 Type *SrcTy = I.getOperand(0)->getType();
2523 Type *DestTy = I.getType();
2525 // Get the size of the types in bits, we'll need this later
2526 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2527 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2529 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2530 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2531 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2532 "trunc source and destination must both be a vector or neither", &I);
2533 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2535 visitInstruction(I);
2538 void Verifier::visitZExtInst(ZExtInst &I) {
2539 // Get the source and destination types
2540 Type *SrcTy = I.getOperand(0)->getType();
2541 Type *DestTy = I.getType();
2543 // Get the size of the types in bits, we'll need this later
2544 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2545 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2546 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2547 "zext source and destination must both be a vector or neither", &I);
2548 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2549 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2551 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2553 visitInstruction(I);
2556 void Verifier::visitSExtInst(SExtInst &I) {
2557 // Get the source and destination types
2558 Type *SrcTy = I.getOperand(0)->getType();
2559 Type *DestTy = I.getType();
2561 // Get the size of the types in bits, we'll need this later
2562 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2563 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2565 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2566 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2567 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2568 "sext source and destination must both be a vector or neither", &I);
2569 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2571 visitInstruction(I);
2574 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2575 // Get the source and destination types
2576 Type *SrcTy = I.getOperand(0)->getType();
2577 Type *DestTy = I.getType();
2578 // Get the size of the types in bits, we'll need this later
2579 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2580 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2582 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2583 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2584 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2585 "fptrunc source and destination must both be a vector or neither", &I);
2586 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2588 visitInstruction(I);
2591 void Verifier::visitFPExtInst(FPExtInst &I) {
2592 // Get the source and destination types
2593 Type *SrcTy = I.getOperand(0)->getType();
2594 Type *DestTy = I.getType();
2596 // Get the size of the types in bits, we'll need this later
2597 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2598 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2600 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2601 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2602 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2603 "fpext source and destination must both be a vector or neither", &I);
2604 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2606 visitInstruction(I);
2609 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2610 // Get the source and destination types
2611 Type *SrcTy = I.getOperand(0)->getType();
2612 Type *DestTy = I.getType();
2614 bool SrcVec = SrcTy->isVectorTy();
2615 bool DstVec = DestTy->isVectorTy();
2617 Assert(SrcVec == DstVec,
2618 "UIToFP source and dest must both be vector or scalar", &I);
2619 Assert(SrcTy->isIntOrIntVectorTy(),
2620 "UIToFP source must be integer or integer vector", &I);
2621 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2622 &I);
2624 if (SrcVec && DstVec)
2625 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2626 cast<VectorType>(DestTy)->getNumElements(),
2627 "UIToFP source and dest vector length mismatch", &I);
2629 visitInstruction(I);
2632 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2633 // Get the source and destination types
2634 Type *SrcTy = I.getOperand(0)->getType();
2635 Type *DestTy = I.getType();
2637 bool SrcVec = SrcTy->isVectorTy();
2638 bool DstVec = DestTy->isVectorTy();
2640 Assert(SrcVec == DstVec,
2641 "SIToFP source and dest must both be vector or scalar", &I);
2642 Assert(SrcTy->isIntOrIntVectorTy(),
2643 "SIToFP source must be integer or integer vector", &I);
2644 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2645 &I);
2647 if (SrcVec && DstVec)
2648 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2649 cast<VectorType>(DestTy)->getNumElements(),
2650 "SIToFP source and dest vector length mismatch", &I);
2652 visitInstruction(I);
2655 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2656 // Get the source and destination types
2657 Type *SrcTy = I.getOperand(0)->getType();
2658 Type *DestTy = I.getType();
2660 bool SrcVec = SrcTy->isVectorTy();
2661 bool DstVec = DestTy->isVectorTy();
2663 Assert(SrcVec == DstVec,
2664 "FPToUI source and dest must both be vector or scalar", &I);
2665 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2666 &I);
2667 Assert(DestTy->isIntOrIntVectorTy(),
2668 "FPToUI result must be integer or integer vector", &I);
2670 if (SrcVec && DstVec)
2671 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2672 cast<VectorType>(DestTy)->getNumElements(),
2673 "FPToUI source and dest vector length mismatch", &I);
2675 visitInstruction(I);
2678 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2679 // Get the source and destination types
2680 Type *SrcTy = I.getOperand(0)->getType();
2681 Type *DestTy = I.getType();
2683 bool SrcVec = SrcTy->isVectorTy();
2684 bool DstVec = DestTy->isVectorTy();
2686 Assert(SrcVec == DstVec,
2687 "FPToSI source and dest must both be vector or scalar", &I);
2688 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2689 &I);
2690 Assert(DestTy->isIntOrIntVectorTy(),
2691 "FPToSI result must be integer or integer vector", &I);
2693 if (SrcVec && DstVec)
2694 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2695 cast<VectorType>(DestTy)->getNumElements(),
2696 "FPToSI source and dest vector length mismatch", &I);
2698 visitInstruction(I);
2701 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2702 // Get the source and destination types
2703 Type *SrcTy = I.getOperand(0)->getType();
2704 Type *DestTy = I.getType();
2706 Assert(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
2708 if (auto *PTy = dyn_cast<PointerType>(SrcTy->getScalarType()))
2709 Assert(!DL.isNonIntegralPointerType(PTy),
2710 "ptrtoint not supported for non-integral pointers");
2712 Assert(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
2713 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2714 &I);
2716 if (SrcTy->isVectorTy()) {
2717 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2718 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2719 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2720 "PtrToInt Vector width mismatch", &I);
2723 visitInstruction(I);
2726 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2727 // Get the source and destination types
2728 Type *SrcTy = I.getOperand(0)->getType();
2729 Type *DestTy = I.getType();
2731 Assert(SrcTy->isIntOrIntVectorTy(),
2732 "IntToPtr source must be an integral", &I);
2733 Assert(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
2735 if (auto *PTy = dyn_cast<PointerType>(DestTy->getScalarType()))
2736 Assert(!DL.isNonIntegralPointerType(PTy),
2737 "inttoptr not supported for non-integral pointers");
2739 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2740 &I);
2741 if (SrcTy->isVectorTy()) {
2742 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2743 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2744 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2745 "IntToPtr Vector width mismatch", &I);
2747 visitInstruction(I);
2750 void Verifier::visitBitCastInst(BitCastInst &I) {
2751 Assert(
2752 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2753 "Invalid bitcast", &I);
2754 visitInstruction(I);
2757 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2758 Type *SrcTy = I.getOperand(0)->getType();
2759 Type *DestTy = I.getType();
2761 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2762 &I);
2763 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2764 &I);
2765 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2766 "AddrSpaceCast must be between different address spaces", &I);
2767 if (SrcTy->isVectorTy())
2768 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2769 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2770 visitInstruction(I);
2773 /// visitPHINode - Ensure that a PHI node is well formed.
2775 void Verifier::visitPHINode(PHINode &PN) {
2776 // Ensure that the PHI nodes are all grouped together at the top of the block.
2777 // This can be tested by checking whether the instruction before this is
2778 // either nonexistent (because this is begin()) or is a PHI node. If not,
2779 // then there is some other instruction before a PHI.
2780 Assert(&PN == &PN.getParent()->front() ||
2781 isa<PHINode>(--BasicBlock::iterator(&PN)),
2782 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2784 // Check that a PHI doesn't yield a Token.
2785 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2787 // Check that all of the values of the PHI node have the same type as the
2788 // result, and that the incoming blocks are really basic blocks.
2789 for (Value *IncValue : PN.incoming_values()) {
2790 Assert(PN.getType() == IncValue->getType(),
2791 "PHI node operands are not the same type as the result!", &PN);
2794 // All other PHI node constraints are checked in the visitBasicBlock method.
2796 visitInstruction(PN);
2799 void Verifier::visitCallBase(CallBase &Call) {
2800 Assert(Call.getCalledValue()->getType()->isPointerTy(),
2801 "Called function must be a pointer!", Call);
2802 PointerType *FPTy = cast<PointerType>(Call.getCalledValue()->getType());
2804 Assert(FPTy->getElementType()->isFunctionTy(),
2805 "Called function is not pointer to function type!", Call);
2807 Assert(FPTy->getElementType() == Call.getFunctionType(),
2808 "Called function is not the same type as the call!", Call);
2810 FunctionType *FTy = Call.getFunctionType();
2812 // Verify that the correct number of arguments are being passed
2813 if (FTy->isVarArg())
2814 Assert(Call.arg_size() >= FTy->getNumParams(),
2815 "Called function requires more parameters than were provided!",
2816 Call);
2817 else
2818 Assert(Call.arg_size() == FTy->getNumParams(),
2819 "Incorrect number of arguments passed to called function!", Call);
2821 // Verify that all arguments to the call match the function type.
2822 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2823 Assert(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
2824 "Call parameter type does not match function signature!",
2825 Call.getArgOperand(i), FTy->getParamType(i), Call);
2827 AttributeList Attrs = Call.getAttributes();
2829 Assert(verifyAttributeCount(Attrs, Call.arg_size()),
2830 "Attribute after last parameter!", Call);
2832 bool IsIntrinsic = Call.getCalledFunction() &&
2833 Call.getCalledFunction()->getName().startswith("llvm.");
2835 Function *Callee
2836 = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
2838 if (Attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::Speculatable)) {
2839 // Don't allow speculatable on call sites, unless the underlying function
2840 // declaration is also speculatable.
2841 Assert(Callee && Callee->isSpeculatable(),
2842 "speculatable attribute may not apply to call sites", Call);
2845 // Verify call attributes.
2846 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic);
2848 // Conservatively check the inalloca argument.
2849 // We have a bug if we can find that there is an underlying alloca without
2850 // inalloca.
2851 if (Call.hasInAllocaArgument()) {
2852 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
2853 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2854 Assert(AI->isUsedWithInAlloca(),
2855 "inalloca argument for call has mismatched alloca", AI, Call);
2858 // For each argument of the callsite, if it has the swifterror argument,
2859 // make sure the underlying alloca/parameter it comes from has a swifterror as
2860 // well.
2861 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2862 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
2863 Value *SwiftErrorArg = Call.getArgOperand(i);
2864 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
2865 Assert(AI->isSwiftError(),
2866 "swifterror argument for call has mismatched alloca", AI, Call);
2867 continue;
2869 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
2870 Assert(ArgI,
2871 "swifterror argument should come from an alloca or parameter",
2872 SwiftErrorArg, Call);
2873 Assert(ArgI->hasSwiftErrorAttr(),
2874 "swifterror argument for call has mismatched parameter", ArgI,
2875 Call);
2878 if (Attrs.hasParamAttribute(i, Attribute::ImmArg)) {
2879 // Don't allow immarg on call sites, unless the underlying declaration
2880 // also has the matching immarg.
2881 Assert(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
2882 "immarg may not apply only to call sites",
2883 Call.getArgOperand(i), Call);
2886 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
2887 Value *ArgVal = Call.getArgOperand(i);
2888 Assert(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
2889 "immarg operand has non-immediate parameter", ArgVal, Call);
2893 if (FTy->isVarArg()) {
2894 // FIXME? is 'nest' even legal here?
2895 bool SawNest = false;
2896 bool SawReturned = false;
2898 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
2899 if (Attrs.hasParamAttribute(Idx, Attribute::Nest))
2900 SawNest = true;
2901 if (Attrs.hasParamAttribute(Idx, Attribute::Returned))
2902 SawReturned = true;
2905 // Check attributes on the varargs part.
2906 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
2907 Type *Ty = Call.getArgOperand(Idx)->getType();
2908 AttributeSet ArgAttrs = Attrs.getParamAttributes(Idx);
2909 verifyParameterAttrs(ArgAttrs, Ty, &Call);
2911 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2912 Assert(!SawNest, "More than one parameter has attribute nest!", Call);
2913 SawNest = true;
2916 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2917 Assert(!SawReturned, "More than one parameter has attribute returned!",
2918 Call);
2919 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2920 "Incompatible argument and return types for 'returned' "
2921 "attribute",
2922 Call);
2923 SawReturned = true;
2926 // Statepoint intrinsic is vararg but the wrapped function may be not.
2927 // Allow sret here and check the wrapped function in verifyStatepoint.
2928 if (!Call.getCalledFunction() ||
2929 Call.getCalledFunction()->getIntrinsicID() !=
2930 Intrinsic::experimental_gc_statepoint)
2931 Assert(!ArgAttrs.hasAttribute(Attribute::StructRet),
2932 "Attribute 'sret' cannot be used for vararg call arguments!",
2933 Call);
2935 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
2936 Assert(Idx == Call.arg_size() - 1,
2937 "inalloca isn't on the last argument!", Call);
2941 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2942 if (!IsIntrinsic) {
2943 for (Type *ParamTy : FTy->params()) {
2944 Assert(!ParamTy->isMetadataTy(),
2945 "Function has metadata parameter but isn't an intrinsic", Call);
2946 Assert(!ParamTy->isTokenTy(),
2947 "Function has token parameter but isn't an intrinsic", Call);
2951 // Verify that indirect calls don't return tokens.
2952 if (!Call.getCalledFunction())
2953 Assert(!FTy->getReturnType()->isTokenTy(),
2954 "Return type cannot be token for indirect call!");
2956 if (Function *F = Call.getCalledFunction())
2957 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2958 visitIntrinsicCall(ID, Call);
2960 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2961 // at most one "gc-transition" operand bundle.
2962 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2963 FoundGCTransitionBundle = false;
2964 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
2965 OperandBundleUse BU = Call.getOperandBundleAt(i);
2966 uint32_t Tag = BU.getTagID();
2967 if (Tag == LLVMContext::OB_deopt) {
2968 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
2969 FoundDeoptBundle = true;
2970 } else if (Tag == LLVMContext::OB_gc_transition) {
2971 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2972 Call);
2973 FoundGCTransitionBundle = true;
2974 } else if (Tag == LLVMContext::OB_funclet) {
2975 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
2976 FoundFuncletBundle = true;
2977 Assert(BU.Inputs.size() == 1,
2978 "Expected exactly one funclet bundle operand", Call);
2979 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2980 "Funclet bundle operands should correspond to a FuncletPadInst",
2981 Call);
2985 // Verify that each inlinable callsite of a debug-info-bearing function in a
2986 // debug-info-bearing function has a debug location attached to it. Failure to
2987 // do so causes assertion failures when the inliner sets up inline scope info.
2988 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
2989 Call.getCalledFunction()->getSubprogram())
2990 AssertDI(Call.getDebugLoc(),
2991 "inlinable function call in a function with "
2992 "debug info must have a !dbg location",
2993 Call);
2995 visitInstruction(Call);
2998 /// Two types are "congruent" if they are identical, or if they are both pointer
2999 /// types with different pointee types and the same address space.
3000 static bool isTypeCongruent(Type *L, Type *R) {
3001 if (L == R)
3002 return true;
3003 PointerType *PL = dyn_cast<PointerType>(L);
3004 PointerType *PR = dyn_cast<PointerType>(R);
3005 if (!PL || !PR)
3006 return false;
3007 return PL->getAddressSpace() == PR->getAddressSpace();
3010 static AttrBuilder getParameterABIAttributes(int I, AttributeList Attrs) {
3011 static const Attribute::AttrKind ABIAttrs[] = {
3012 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3013 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
3014 Attribute::SwiftError};
3015 AttrBuilder Copy;
3016 for (auto AK : ABIAttrs) {
3017 if (Attrs.hasParamAttribute(I, AK))
3018 Copy.addAttribute(AK);
3020 if (Attrs.hasParamAttribute(I, Attribute::Alignment))
3021 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3022 return Copy;
3025 void Verifier::verifyMustTailCall(CallInst &CI) {
3026 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3028 // - The caller and callee prototypes must match. Pointer types of
3029 // parameters or return types may differ in pointee type, but not
3030 // address space.
3031 Function *F = CI.getParent()->getParent();
3032 FunctionType *CallerTy = F->getFunctionType();
3033 FunctionType *CalleeTy = CI.getFunctionType();
3034 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3035 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3036 "cannot guarantee tail call due to mismatched parameter counts",
3037 &CI);
3038 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3039 Assert(
3040 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3041 "cannot guarantee tail call due to mismatched parameter types", &CI);
3044 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3045 "cannot guarantee tail call due to mismatched varargs", &CI);
3046 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3047 "cannot guarantee tail call due to mismatched return types", &CI);
3049 // - The calling conventions of the caller and callee must match.
3050 Assert(F->getCallingConv() == CI.getCallingConv(),
3051 "cannot guarantee tail call due to mismatched calling conv", &CI);
3053 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3054 // returned, and inalloca, must match.
3055 AttributeList CallerAttrs = F->getAttributes();
3056 AttributeList CalleeAttrs = CI.getAttributes();
3057 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3058 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
3059 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
3060 Assert(CallerABIAttrs == CalleeABIAttrs,
3061 "cannot guarantee tail call due to mismatched ABI impacting "
3062 "function attributes",
3063 &CI, CI.getOperand(I));
3066 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3067 // or a pointer bitcast followed by a ret instruction.
3068 // - The ret instruction must return the (possibly bitcasted) value
3069 // produced by the call or void.
3070 Value *RetVal = &CI;
3071 Instruction *Next = CI.getNextNode();
3073 // Handle the optional bitcast.
3074 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3075 Assert(BI->getOperand(0) == RetVal,
3076 "bitcast following musttail call must use the call", BI);
3077 RetVal = BI;
3078 Next = BI->getNextNode();
3081 // Check the return.
3082 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3083 Assert(Ret, "musttail call must precede a ret with an optional bitcast",
3084 &CI);
3085 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
3086 "musttail call result must be returned", Ret);
3089 void Verifier::visitCallInst(CallInst &CI) {
3090 visitCallBase(CI);
3092 if (CI.isMustTailCall())
3093 verifyMustTailCall(CI);
3096 void Verifier::visitInvokeInst(InvokeInst &II) {
3097 visitCallBase(II);
3099 // Verify that the first non-PHI instruction of the unwind destination is an
3100 // exception handling instruction.
3101 Assert(
3102 II.getUnwindDest()->isEHPad(),
3103 "The unwind destination does not have an exception handling instruction!",
3104 &II);
3106 visitTerminator(II);
3109 /// visitUnaryOperator - Check the argument to the unary operator.
3111 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3112 Assert(U.getType() == U.getOperand(0)->getType(),
3113 "Unary operators must have same type for"
3114 "operands and result!",
3115 &U);
3117 switch (U.getOpcode()) {
3118 // Check that floating-point arithmetic operators are only used with
3119 // floating-point operands.
3120 case Instruction::FNeg:
3121 Assert(U.getType()->isFPOrFPVectorTy(),
3122 "FNeg operator only works with float types!", &U);
3123 break;
3124 default:
3125 llvm_unreachable("Unknown UnaryOperator opcode!");
3128 visitInstruction(U);
3131 /// visitBinaryOperator - Check that both arguments to the binary operator are
3132 /// of the same type!
3134 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3135 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3136 "Both operands to a binary operator are not of the same type!", &B);
3138 switch (B.getOpcode()) {
3139 // Check that integer arithmetic operators are only used with
3140 // integral operands.
3141 case Instruction::Add:
3142 case Instruction::Sub:
3143 case Instruction::Mul:
3144 case Instruction::SDiv:
3145 case Instruction::UDiv:
3146 case Instruction::SRem:
3147 case Instruction::URem:
3148 Assert(B.getType()->isIntOrIntVectorTy(),
3149 "Integer arithmetic operators only work with integral types!", &B);
3150 Assert(B.getType() == B.getOperand(0)->getType(),
3151 "Integer arithmetic operators must have same type "
3152 "for operands and result!",
3153 &B);
3154 break;
3155 // Check that floating-point arithmetic operators are only used with
3156 // floating-point operands.
3157 case Instruction::FAdd:
3158 case Instruction::FSub:
3159 case Instruction::FMul:
3160 case Instruction::FDiv:
3161 case Instruction::FRem:
3162 Assert(B.getType()->isFPOrFPVectorTy(),
3163 "Floating-point arithmetic operators only work with "
3164 "floating-point types!",
3165 &B);
3166 Assert(B.getType() == B.getOperand(0)->getType(),
3167 "Floating-point arithmetic operators must have same type "
3168 "for operands and result!",
3169 &B);
3170 break;
3171 // Check that logical operators are only used with integral operands.
3172 case Instruction::And:
3173 case Instruction::Or:
3174 case Instruction::Xor:
3175 Assert(B.getType()->isIntOrIntVectorTy(),
3176 "Logical operators only work with integral types!", &B);
3177 Assert(B.getType() == B.getOperand(0)->getType(),
3178 "Logical operators must have same type for operands and result!",
3179 &B);
3180 break;
3181 case Instruction::Shl:
3182 case Instruction::LShr:
3183 case Instruction::AShr:
3184 Assert(B.getType()->isIntOrIntVectorTy(),
3185 "Shifts only work with integral types!", &B);
3186 Assert(B.getType() == B.getOperand(0)->getType(),
3187 "Shift return type must be same as operands!", &B);
3188 break;
3189 default:
3190 llvm_unreachable("Unknown BinaryOperator opcode!");
3193 visitInstruction(B);
3196 void Verifier::visitICmpInst(ICmpInst &IC) {
3197 // Check that the operands are the same type
3198 Type *Op0Ty = IC.getOperand(0)->getType();
3199 Type *Op1Ty = IC.getOperand(1)->getType();
3200 Assert(Op0Ty == Op1Ty,
3201 "Both operands to ICmp instruction are not of the same type!", &IC);
3202 // Check that the operands are the right type
3203 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3204 "Invalid operand types for ICmp instruction", &IC);
3205 // Check that the predicate is valid.
3206 Assert(IC.isIntPredicate(),
3207 "Invalid predicate in ICmp instruction!", &IC);
3209 visitInstruction(IC);
3212 void Verifier::visitFCmpInst(FCmpInst &FC) {
3213 // Check that the operands are the same type
3214 Type *Op0Ty = FC.getOperand(0)->getType();
3215 Type *Op1Ty = FC.getOperand(1)->getType();
3216 Assert(Op0Ty == Op1Ty,
3217 "Both operands to FCmp instruction are not of the same type!", &FC);
3218 // Check that the operands are the right type
3219 Assert(Op0Ty->isFPOrFPVectorTy(),
3220 "Invalid operand types for FCmp instruction", &FC);
3221 // Check that the predicate is valid.
3222 Assert(FC.isFPPredicate(),
3223 "Invalid predicate in FCmp instruction!", &FC);
3225 visitInstruction(FC);
3228 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3229 Assert(
3230 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3231 "Invalid extractelement operands!", &EI);
3232 visitInstruction(EI);
3235 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3236 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3237 IE.getOperand(2)),
3238 "Invalid insertelement operands!", &IE);
3239 visitInstruction(IE);
3242 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3243 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3244 SV.getOperand(2)),
3245 "Invalid shufflevector operands!", &SV);
3246 visitInstruction(SV);
3249 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3250 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3252 Assert(isa<PointerType>(TargetTy),
3253 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3254 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3256 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
3257 Assert(all_of(
3258 Idxs, [](Value* V) { return V->getType()->isIntOrIntVectorTy(); }),
3259 "GEP indexes must be integers", &GEP);
3260 Type *ElTy =
3261 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3262 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3264 Assert(GEP.getType()->isPtrOrPtrVectorTy() &&
3265 GEP.getResultElementType() == ElTy,
3266 "GEP is not of right type for indices!", &GEP, ElTy);
3268 if (GEP.getType()->isVectorTy()) {
3269 // Additional checks for vector GEPs.
3270 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
3271 if (GEP.getPointerOperandType()->isVectorTy())
3272 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
3273 "Vector GEP result width doesn't match operand's", &GEP);
3274 for (Value *Idx : Idxs) {
3275 Type *IndexTy = Idx->getType();
3276 if (IndexTy->isVectorTy()) {
3277 unsigned IndexWidth = IndexTy->getVectorNumElements();
3278 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3280 Assert(IndexTy->isIntOrIntVectorTy(),
3281 "All GEP indices should be of integer type");
3285 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3286 Assert(GEP.getAddressSpace() == PTy->getAddressSpace(),
3287 "GEP address space doesn't match type", &GEP);
3290 visitInstruction(GEP);
3293 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3294 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3297 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3298 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3299 "precondition violation");
3301 unsigned NumOperands = Range->getNumOperands();
3302 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
3303 unsigned NumRanges = NumOperands / 2;
3304 Assert(NumRanges >= 1, "It should have at least one range!", Range);
3306 ConstantRange LastRange(1, true); // Dummy initial value
3307 for (unsigned i = 0; i < NumRanges; ++i) {
3308 ConstantInt *Low =
3309 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3310 Assert(Low, "The lower limit must be an integer!", Low);
3311 ConstantInt *High =
3312 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3313 Assert(High, "The upper limit must be an integer!", High);
3314 Assert(High->getType() == Low->getType() && High->getType() == Ty,
3315 "Range types must match instruction type!", &I);
3317 APInt HighV = High->getValue();
3318 APInt LowV = Low->getValue();
3319 ConstantRange CurRange(LowV, HighV);
3320 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
3321 "Range must not be empty!", Range);
3322 if (i != 0) {
3323 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
3324 "Intervals are overlapping", Range);
3325 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3326 Range);
3327 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3328 Range);
3330 LastRange = ConstantRange(LowV, HighV);
3332 if (NumRanges > 2) {
3333 APInt FirstLow =
3334 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3335 APInt FirstHigh =
3336 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3337 ConstantRange FirstRange(FirstLow, FirstHigh);
3338 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
3339 "Intervals are overlapping", Range);
3340 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3341 Range);
3345 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3346 unsigned Size = DL.getTypeSizeInBits(Ty);
3347 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3348 Assert(!(Size & (Size - 1)),
3349 "atomic memory access' operand must have a power-of-two size", Ty, I);
3352 void Verifier::visitLoadInst(LoadInst &LI) {
3353 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3354 Assert(PTy, "Load operand must be a pointer.", &LI);
3355 Type *ElTy = LI.getType();
3356 Assert(LI.getAlignment() <= Value::MaximumAlignment,
3357 "huge alignment values are unsupported", &LI);
3358 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
3359 if (LI.isAtomic()) {
3360 Assert(LI.getOrdering() != AtomicOrdering::Release &&
3361 LI.getOrdering() != AtomicOrdering::AcquireRelease,
3362 "Load cannot have Release ordering", &LI);
3363 Assert(LI.getAlignment() != 0,
3364 "Atomic load must specify explicit alignment", &LI);
3365 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3366 "atomic load operand must have integer, pointer, or floating point "
3367 "type!",
3368 ElTy, &LI);
3369 checkAtomicMemAccessSize(ElTy, &LI);
3370 } else {
3371 Assert(LI.getSyncScopeID() == SyncScope::System,
3372 "Non-atomic load cannot have SynchronizationScope specified", &LI);
3375 visitInstruction(LI);
3378 void Verifier::visitStoreInst(StoreInst &SI) {
3379 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3380 Assert(PTy, "Store operand must be a pointer.", &SI);
3381 Type *ElTy = PTy->getElementType();
3382 Assert(ElTy == SI.getOperand(0)->getType(),
3383 "Stored value type does not match pointer operand type!", &SI, ElTy);
3384 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3385 "huge alignment values are unsupported", &SI);
3386 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3387 if (SI.isAtomic()) {
3388 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3389 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3390 "Store cannot have Acquire ordering", &SI);
3391 Assert(SI.getAlignment() != 0,
3392 "Atomic store must specify explicit alignment", &SI);
3393 Assert(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
3394 "atomic store operand must have integer, pointer, or floating point "
3395 "type!",
3396 ElTy, &SI);
3397 checkAtomicMemAccessSize(ElTy, &SI);
3398 } else {
3399 Assert(SI.getSyncScopeID() == SyncScope::System,
3400 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3402 visitInstruction(SI);
3405 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3406 void Verifier::verifySwiftErrorCall(CallBase &Call,
3407 const Value *SwiftErrorVal) {
3408 unsigned Idx = 0;
3409 for (auto I = Call.arg_begin(), E = Call.arg_end(); I != E; ++I, ++Idx) {
3410 if (*I == SwiftErrorVal) {
3411 Assert(Call.paramHasAttr(Idx, Attribute::SwiftError),
3412 "swifterror value when used in a callsite should be marked "
3413 "with swifterror attribute",
3414 SwiftErrorVal, Call);
3419 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3420 // Check that swifterror value is only used by loads, stores, or as
3421 // a swifterror argument.
3422 for (const User *U : SwiftErrorVal->users()) {
3423 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3424 isa<InvokeInst>(U),
3425 "swifterror value can only be loaded and stored from, or "
3426 "as a swifterror argument!",
3427 SwiftErrorVal, U);
3428 // If it is used by a store, check it is the second operand.
3429 if (auto StoreI = dyn_cast<StoreInst>(U))
3430 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3431 "swifterror value should be the second operand when used "
3432 "by stores", SwiftErrorVal, U);
3433 if (auto *Call = dyn_cast<CallBase>(U))
3434 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
3438 void Verifier::visitAllocaInst(AllocaInst &AI) {
3439 SmallPtrSet<Type*, 4> Visited;
3440 PointerType *PTy = AI.getType();
3441 // TODO: Relax this restriction?
3442 Assert(PTy->getAddressSpace() == DL.getAllocaAddrSpace(),
3443 "Allocation instruction pointer not in the stack address space!",
3444 &AI);
3445 Assert(AI.getAllocatedType()->isSized(&Visited),
3446 "Cannot allocate unsized type", &AI);
3447 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3448 "Alloca array size must have integer type", &AI);
3449 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3450 "huge alignment values are unsupported", &AI);
3452 if (AI.isSwiftError()) {
3453 verifySwiftErrorValue(&AI);
3456 visitInstruction(AI);
3459 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3461 // FIXME: more conditions???
3462 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3463 "cmpxchg instructions must be atomic.", &CXI);
3464 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3465 "cmpxchg instructions must be atomic.", &CXI);
3466 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3467 "cmpxchg instructions cannot be unordered.", &CXI);
3468 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3469 "cmpxchg instructions cannot be unordered.", &CXI);
3470 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3471 "cmpxchg instructions failure argument shall be no stronger than the "
3472 "success argument",
3473 &CXI);
3474 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3475 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3476 "cmpxchg failure ordering cannot include release semantics", &CXI);
3478 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3479 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3480 Type *ElTy = PTy->getElementType();
3481 Assert(ElTy->isIntOrPtrTy(),
3482 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
3483 checkAtomicMemAccessSize(ElTy, &CXI);
3484 Assert(ElTy == CXI.getOperand(1)->getType(),
3485 "Expected value type does not match pointer operand type!", &CXI,
3486 ElTy);
3487 Assert(ElTy == CXI.getOperand(2)->getType(),
3488 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3489 visitInstruction(CXI);
3492 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3493 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3494 "atomicrmw instructions must be atomic.", &RMWI);
3495 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3496 "atomicrmw instructions cannot be unordered.", &RMWI);
3497 auto Op = RMWI.getOperation();
3498 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3499 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3500 Type *ElTy = PTy->getElementType();
3501 if (Op == AtomicRMWInst::Xchg) {
3502 Assert(ElTy->isIntegerTy() || ElTy->isFloatingPointTy(), "atomicrmw " +
3503 AtomicRMWInst::getOperationName(Op) +
3504 " operand must have integer or floating point type!",
3505 &RMWI, ElTy);
3506 } else if (AtomicRMWInst::isFPOperation(Op)) {
3507 Assert(ElTy->isFloatingPointTy(), "atomicrmw " +
3508 AtomicRMWInst::getOperationName(Op) +
3509 " operand must have floating point type!",
3510 &RMWI, ElTy);
3511 } else {
3512 Assert(ElTy->isIntegerTy(), "atomicrmw " +
3513 AtomicRMWInst::getOperationName(Op) +
3514 " operand must have integer type!",
3515 &RMWI, ElTy);
3517 checkAtomicMemAccessSize(ElTy, &RMWI);
3518 Assert(ElTy == RMWI.getOperand(1)->getType(),
3519 "Argument value type does not match pointer operand type!", &RMWI,
3520 ElTy);
3521 Assert(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
3522 "Invalid binary operation!", &RMWI);
3523 visitInstruction(RMWI);
3526 void Verifier::visitFenceInst(FenceInst &FI) {
3527 const AtomicOrdering Ordering = FI.getOrdering();
3528 Assert(Ordering == AtomicOrdering::Acquire ||
3529 Ordering == AtomicOrdering::Release ||
3530 Ordering == AtomicOrdering::AcquireRelease ||
3531 Ordering == AtomicOrdering::SequentiallyConsistent,
3532 "fence instructions may only have acquire, release, acq_rel, or "
3533 "seq_cst ordering.",
3534 &FI);
3535 visitInstruction(FI);
3538 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3539 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3540 EVI.getIndices()) == EVI.getType(),
3541 "Invalid ExtractValueInst operands!", &EVI);
3543 visitInstruction(EVI);
3546 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3547 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3548 IVI.getIndices()) ==
3549 IVI.getOperand(1)->getType(),
3550 "Invalid InsertValueInst operands!", &IVI);
3552 visitInstruction(IVI);
3555 static Value *getParentPad(Value *EHPad) {
3556 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3557 return FPI->getParentPad();
3559 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3562 void Verifier::visitEHPadPredecessors(Instruction &I) {
3563 assert(I.isEHPad());
3565 BasicBlock *BB = I.getParent();
3566 Function *F = BB->getParent();
3568 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3570 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3571 // The landingpad instruction defines its parent as a landing pad block. The
3572 // landing pad block may be branched to only by the unwind edge of an
3573 // invoke.
3574 for (BasicBlock *PredBB : predecessors(BB)) {
3575 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3576 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3577 "Block containing LandingPadInst must be jumped to "
3578 "only by the unwind edge of an invoke.",
3579 LPI);
3581 return;
3583 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3584 if (!pred_empty(BB))
3585 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3586 "Block containg CatchPadInst must be jumped to "
3587 "only by its catchswitch.",
3588 CPI);
3589 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3590 "Catchswitch cannot unwind to one of its catchpads",
3591 CPI->getCatchSwitch(), CPI);
3592 return;
3595 // Verify that each pred has a legal terminator with a legal to/from EH
3596 // pad relationship.
3597 Instruction *ToPad = &I;
3598 Value *ToPadParent = getParentPad(ToPad);
3599 for (BasicBlock *PredBB : predecessors(BB)) {
3600 Instruction *TI = PredBB->getTerminator();
3601 Value *FromPad;
3602 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3603 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3604 "EH pad must be jumped to via an unwind edge", ToPad, II);
3605 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3606 FromPad = Bundle->Inputs[0];
3607 else
3608 FromPad = ConstantTokenNone::get(II->getContext());
3609 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3610 FromPad = CRI->getOperand(0);
3611 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3612 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3613 FromPad = CSI;
3614 } else {
3615 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3618 // The edge may exit from zero or more nested pads.
3619 SmallSet<Value *, 8> Seen;
3620 for (;; FromPad = getParentPad(FromPad)) {
3621 Assert(FromPad != ToPad,
3622 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3623 if (FromPad == ToPadParent) {
3624 // This is a legal unwind edge.
3625 break;
3627 Assert(!isa<ConstantTokenNone>(FromPad),
3628 "A single unwind edge may only enter one EH pad", TI);
3629 Assert(Seen.insert(FromPad).second,
3630 "EH pad jumps through a cycle of pads", FromPad);
3635 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3636 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3637 // isn't a cleanup.
3638 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3639 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3641 visitEHPadPredecessors(LPI);
3643 if (!LandingPadResultTy)
3644 LandingPadResultTy = LPI.getType();
3645 else
3646 Assert(LandingPadResultTy == LPI.getType(),
3647 "The landingpad instruction should have a consistent result type "
3648 "inside a function.",
3649 &LPI);
3651 Function *F = LPI.getParent()->getParent();
3652 Assert(F->hasPersonalityFn(),
3653 "LandingPadInst needs to be in a function with a personality.", &LPI);
3655 // The landingpad instruction must be the first non-PHI instruction in the
3656 // block.
3657 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3658 "LandingPadInst not the first non-PHI instruction in the block.",
3659 &LPI);
3661 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3662 Constant *Clause = LPI.getClause(i);
3663 if (LPI.isCatch(i)) {
3664 Assert(isa<PointerType>(Clause->getType()),
3665 "Catch operand does not have pointer type!", &LPI);
3666 } else {
3667 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3668 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3669 "Filter operand is not an array of constants!", &LPI);
3673 visitInstruction(LPI);
3676 void Verifier::visitResumeInst(ResumeInst &RI) {
3677 Assert(RI.getFunction()->hasPersonalityFn(),
3678 "ResumeInst needs to be in a function with a personality.", &RI);
3680 if (!LandingPadResultTy)
3681 LandingPadResultTy = RI.getValue()->getType();
3682 else
3683 Assert(LandingPadResultTy == RI.getValue()->getType(),
3684 "The resume instruction should have a consistent result type "
3685 "inside a function.",
3686 &RI);
3688 visitTerminator(RI);
3691 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3692 BasicBlock *BB = CPI.getParent();
3694 Function *F = BB->getParent();
3695 Assert(F->hasPersonalityFn(),
3696 "CatchPadInst needs to be in a function with a personality.", &CPI);
3698 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3699 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3700 CPI.getParentPad());
3702 // The catchpad instruction must be the first non-PHI instruction in the
3703 // block.
3704 Assert(BB->getFirstNonPHI() == &CPI,
3705 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3707 visitEHPadPredecessors(CPI);
3708 visitFuncletPadInst(CPI);
3711 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3712 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3713 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3714 CatchReturn.getOperand(0));
3716 visitTerminator(CatchReturn);
3719 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3720 BasicBlock *BB = CPI.getParent();
3722 Function *F = BB->getParent();
3723 Assert(F->hasPersonalityFn(),
3724 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3726 // The cleanuppad instruction must be the first non-PHI instruction in the
3727 // block.
3728 Assert(BB->getFirstNonPHI() == &CPI,
3729 "CleanupPadInst not the first non-PHI instruction in the block.",
3730 &CPI);
3732 auto *ParentPad = CPI.getParentPad();
3733 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3734 "CleanupPadInst has an invalid parent.", &CPI);
3736 visitEHPadPredecessors(CPI);
3737 visitFuncletPadInst(CPI);
3740 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3741 User *FirstUser = nullptr;
3742 Value *FirstUnwindPad = nullptr;
3743 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3744 SmallSet<FuncletPadInst *, 8> Seen;
3746 while (!Worklist.empty()) {
3747 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3748 Assert(Seen.insert(CurrentPad).second,
3749 "FuncletPadInst must not be nested within itself", CurrentPad);
3750 Value *UnresolvedAncestorPad = nullptr;
3751 for (User *U : CurrentPad->users()) {
3752 BasicBlock *UnwindDest;
3753 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3754 UnwindDest = CRI->getUnwindDest();
3755 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3756 // We allow catchswitch unwind to caller to nest
3757 // within an outer pad that unwinds somewhere else,
3758 // because catchswitch doesn't have a nounwind variant.
3759 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3760 if (CSI->unwindsToCaller())
3761 continue;
3762 UnwindDest = CSI->getUnwindDest();
3763 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3764 UnwindDest = II->getUnwindDest();
3765 } else if (isa<CallInst>(U)) {
3766 // Calls which don't unwind may be found inside funclet
3767 // pads that unwind somewhere else. We don't *require*
3768 // such calls to be annotated nounwind.
3769 continue;
3770 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3771 // The unwind dest for a cleanup can only be found by
3772 // recursive search. Add it to the worklist, and we'll
3773 // search for its first use that determines where it unwinds.
3774 Worklist.push_back(CPI);
3775 continue;
3776 } else {
3777 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3778 continue;
3781 Value *UnwindPad;
3782 bool ExitsFPI;
3783 if (UnwindDest) {
3784 UnwindPad = UnwindDest->getFirstNonPHI();
3785 if (!cast<Instruction>(UnwindPad)->isEHPad())
3786 continue;
3787 Value *UnwindParent = getParentPad(UnwindPad);
3788 // Ignore unwind edges that don't exit CurrentPad.
3789 if (UnwindParent == CurrentPad)
3790 continue;
3791 // Determine whether the original funclet pad is exited,
3792 // and if we are scanning nested pads determine how many
3793 // of them are exited so we can stop searching their
3794 // children.
3795 Value *ExitedPad = CurrentPad;
3796 ExitsFPI = false;
3797 do {
3798 if (ExitedPad == &FPI) {
3799 ExitsFPI = true;
3800 // Now we can resolve any ancestors of CurrentPad up to
3801 // FPI, but not including FPI since we need to make sure
3802 // to check all direct users of FPI for consistency.
3803 UnresolvedAncestorPad = &FPI;
3804 break;
3806 Value *ExitedParent = getParentPad(ExitedPad);
3807 if (ExitedParent == UnwindParent) {
3808 // ExitedPad is the ancestor-most pad which this unwind
3809 // edge exits, so we can resolve up to it, meaning that
3810 // ExitedParent is the first ancestor still unresolved.
3811 UnresolvedAncestorPad = ExitedParent;
3812 break;
3814 ExitedPad = ExitedParent;
3815 } while (!isa<ConstantTokenNone>(ExitedPad));
3816 } else {
3817 // Unwinding to caller exits all pads.
3818 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3819 ExitsFPI = true;
3820 UnresolvedAncestorPad = &FPI;
3823 if (ExitsFPI) {
3824 // This unwind edge exits FPI. Make sure it agrees with other
3825 // such edges.
3826 if (FirstUser) {
3827 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3828 "pad must have the same unwind "
3829 "dest",
3830 &FPI, U, FirstUser);
3831 } else {
3832 FirstUser = U;
3833 FirstUnwindPad = UnwindPad;
3834 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3835 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3836 getParentPad(UnwindPad) == getParentPad(&FPI))
3837 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
3840 // Make sure we visit all uses of FPI, but for nested pads stop as
3841 // soon as we know where they unwind to.
3842 if (CurrentPad != &FPI)
3843 break;
3845 if (UnresolvedAncestorPad) {
3846 if (CurrentPad == UnresolvedAncestorPad) {
3847 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3848 // we've found an unwind edge that exits it, because we need to verify
3849 // all direct uses of FPI.
3850 assert(CurrentPad == &FPI);
3851 continue;
3853 // Pop off the worklist any nested pads that we've found an unwind
3854 // destination for. The pads on the worklist are the uncles,
3855 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3856 // for all ancestors of CurrentPad up to but not including
3857 // UnresolvedAncestorPad.
3858 Value *ResolvedPad = CurrentPad;
3859 while (!Worklist.empty()) {
3860 Value *UnclePad = Worklist.back();
3861 Value *AncestorPad = getParentPad(UnclePad);
3862 // Walk ResolvedPad up the ancestor list until we either find the
3863 // uncle's parent or the last resolved ancestor.
3864 while (ResolvedPad != AncestorPad) {
3865 Value *ResolvedParent = getParentPad(ResolvedPad);
3866 if (ResolvedParent == UnresolvedAncestorPad) {
3867 break;
3869 ResolvedPad = ResolvedParent;
3871 // If the resolved ancestor search didn't find the uncle's parent,
3872 // then the uncle is not yet resolved.
3873 if (ResolvedPad != AncestorPad)
3874 break;
3875 // This uncle is resolved, so pop it from the worklist.
3876 Worklist.pop_back();
3881 if (FirstUnwindPad) {
3882 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3883 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3884 Value *SwitchUnwindPad;
3885 if (SwitchUnwindDest)
3886 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3887 else
3888 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3889 Assert(SwitchUnwindPad == FirstUnwindPad,
3890 "Unwind edges out of a catch must have the same unwind dest as "
3891 "the parent catchswitch",
3892 &FPI, FirstUser, CatchSwitch);
3896 visitInstruction(FPI);
3899 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3900 BasicBlock *BB = CatchSwitch.getParent();
3902 Function *F = BB->getParent();
3903 Assert(F->hasPersonalityFn(),
3904 "CatchSwitchInst needs to be in a function with a personality.",
3905 &CatchSwitch);
3907 // The catchswitch instruction must be the first non-PHI instruction in the
3908 // block.
3909 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3910 "CatchSwitchInst not the first non-PHI instruction in the block.",
3911 &CatchSwitch);
3913 auto *ParentPad = CatchSwitch.getParentPad();
3914 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3915 "CatchSwitchInst has an invalid parent.", ParentPad);
3917 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3918 Instruction *I = UnwindDest->getFirstNonPHI();
3919 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3920 "CatchSwitchInst must unwind to an EH block which is not a "
3921 "landingpad.",
3922 &CatchSwitch);
3924 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3925 if (getParentPad(I) == ParentPad)
3926 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3929 Assert(CatchSwitch.getNumHandlers() != 0,
3930 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3932 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3933 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3934 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3937 visitEHPadPredecessors(CatchSwitch);
3938 visitTerminator(CatchSwitch);
3941 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3942 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3943 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3944 CRI.getOperand(0));
3946 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3947 Instruction *I = UnwindDest->getFirstNonPHI();
3948 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3949 "CleanupReturnInst must unwind to an EH block which is not a "
3950 "landingpad.",
3951 &CRI);
3954 visitTerminator(CRI);
3957 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3958 Instruction *Op = cast<Instruction>(I.getOperand(i));
3959 // If the we have an invalid invoke, don't try to compute the dominance.
3960 // We already reject it in the invoke specific checks and the dominance
3961 // computation doesn't handle multiple edges.
3962 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3963 if (II->getNormalDest() == II->getUnwindDest())
3964 return;
3967 // Quick check whether the def has already been encountered in the same block.
3968 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3969 // uses are defined to happen on the incoming edge, not at the instruction.
3971 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3972 // wrapping an SSA value, assert that we've already encountered it. See
3973 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3974 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3975 return;
3977 const Use &U = I.getOperandUse(i);
3978 Assert(DT.dominates(Op, U),
3979 "Instruction does not dominate all uses!", Op, &I);
3982 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3983 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3984 "apply only to pointer types", &I);
3985 Assert(isa<LoadInst>(I),
3986 "dereferenceable, dereferenceable_or_null apply only to load"
3987 " instructions, use attributes for calls or invokes", &I);
3988 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3989 "take one operand!", &I);
3990 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3991 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3992 "dereferenceable_or_null metadata value must be an i64!", &I);
3995 /// verifyInstruction - Verify that an instruction is well formed.
3997 void Verifier::visitInstruction(Instruction &I) {
3998 BasicBlock *BB = I.getParent();
3999 Assert(BB, "Instruction not embedded in basic block!", &I);
4001 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4002 for (User *U : I.users()) {
4003 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
4004 "Only PHI nodes may reference their own value!", &I);
4008 // Check that void typed values don't have names
4009 Assert(!I.getType()->isVoidTy() || !I.hasName(),
4010 "Instruction has a name, but provides a void value!", &I);
4012 // Check that the return value of the instruction is either void or a legal
4013 // value type.
4014 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4015 "Instruction returns a non-scalar type!", &I);
4017 // Check that the instruction doesn't produce metadata. Calls are already
4018 // checked against the callee type.
4019 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4020 "Invalid use of metadata!", &I);
4022 // Check that all uses of the instruction, if they are instructions
4023 // themselves, actually have parent basic blocks. If the use is not an
4024 // instruction, it is an error!
4025 for (Use &U : I.uses()) {
4026 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4027 Assert(Used->getParent() != nullptr,
4028 "Instruction referencing"
4029 " instruction not embedded in a basic block!",
4030 &I, Used);
4031 else {
4032 CheckFailed("Use of instruction is not an instruction!", U);
4033 return;
4037 // Get a pointer to the call base of the instruction if it is some form of
4038 // call.
4039 const CallBase *CBI = dyn_cast<CallBase>(&I);
4041 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4042 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4044 // Check to make sure that only first-class-values are operands to
4045 // instructions.
4046 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4047 Assert(false, "Instruction operands must be first-class values!", &I);
4050 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4051 // Check to make sure that the "address of" an intrinsic function is never
4052 // taken.
4053 Assert(!F->isIntrinsic() ||
4054 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)),
4055 "Cannot take the address of an intrinsic!", &I);
4056 Assert(
4057 !F->isIntrinsic() || isa<CallInst>(I) ||
4058 F->getIntrinsicID() == Intrinsic::donothing ||
4059 F->getIntrinsicID() == Intrinsic::coro_resume ||
4060 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4061 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
4062 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4063 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4064 F->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch,
4065 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4066 "statepoint, coro_resume or coro_destroy",
4067 &I);
4068 Assert(F->getParent() == &M, "Referencing function in another module!",
4069 &I, &M, F, F->getParent());
4070 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4071 Assert(OpBB->getParent() == BB->getParent(),
4072 "Referring to a basic block in another function!", &I);
4073 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4074 Assert(OpArg->getParent() == BB->getParent(),
4075 "Referring to an argument in another function!", &I);
4076 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4077 Assert(GV->getParent() == &M, "Referencing global in another module!", &I,
4078 &M, GV, GV->getParent());
4079 } else if (isa<Instruction>(I.getOperand(i))) {
4080 verifyDominatesUse(I, i);
4081 } else if (isa<InlineAsm>(I.getOperand(i))) {
4082 Assert(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4083 "Cannot take the address of an inline asm!", &I);
4084 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4085 if (CE->getType()->isPtrOrPtrVectorTy() ||
4086 !DL.getNonIntegralAddressSpaces().empty()) {
4087 // If we have a ConstantExpr pointer, we need to see if it came from an
4088 // illegal bitcast. If the datalayout string specifies non-integral
4089 // address spaces then we also need to check for illegal ptrtoint and
4090 // inttoptr expressions.
4091 visitConstantExprsRecursively(CE);
4096 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4097 Assert(I.getType()->isFPOrFPVectorTy(),
4098 "fpmath requires a floating point result!", &I);
4099 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4100 if (ConstantFP *CFP0 =
4101 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4102 const APFloat &Accuracy = CFP0->getValueAPF();
4103 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4104 "fpmath accuracy must have float type", &I);
4105 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4106 "fpmath accuracy not a positive number!", &I);
4107 } else {
4108 Assert(false, "invalid fpmath accuracy!", &I);
4112 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4113 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4114 "Ranges are only for loads, calls and invokes!", &I);
4115 visitRangeMetadata(I, Range, I.getType());
4118 if (I.getMetadata(LLVMContext::MD_nonnull)) {
4119 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4120 &I);
4121 Assert(isa<LoadInst>(I),
4122 "nonnull applies only to load instructions, use attributes"
4123 " for calls or invokes",
4124 &I);
4127 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4128 visitDereferenceableMetadata(I, MD);
4130 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4131 visitDereferenceableMetadata(I, MD);
4133 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4134 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4136 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4137 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
4138 &I);
4139 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
4140 "use attributes for calls or invokes", &I);
4141 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4142 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4143 Assert(CI && CI->getType()->isIntegerTy(64),
4144 "align metadata value must be an i64!", &I);
4145 uint64_t Align = CI->getZExtValue();
4146 Assert(isPowerOf2_64(Align),
4147 "align metadata value must be a power of 2!", &I);
4148 Assert(Align <= Value::MaximumAlignment,
4149 "alignment is larger that implementation defined limit", &I);
4152 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4153 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4154 visitMDNode(*N);
4157 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I))
4158 verifyFragmentExpression(*DII);
4160 InstsInThisBlock.insert(&I);
4163 /// Allow intrinsics to be verified in different ways.
4164 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
4165 Function *IF = Call.getCalledFunction();
4166 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
4167 IF);
4169 // Verify that the intrinsic prototype lines up with what the .td files
4170 // describe.
4171 FunctionType *IFTy = IF->getFunctionType();
4172 bool IsVarArg = IFTy->isVarArg();
4174 SmallVector<Intrinsic::IITDescriptor, 8> Table;
4175 getIntrinsicInfoTableEntries(ID, Table);
4176 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
4178 // Walk the descriptors to extract overloaded types.
4179 SmallVector<Type *, 4> ArgTys;
4180 Intrinsic::MatchIntrinsicTypesResult Res =
4181 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
4182 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
4183 "Intrinsic has incorrect return type!", IF);
4184 Assert(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
4185 "Intrinsic has incorrect argument type!", IF);
4187 // Verify if the intrinsic call matches the vararg property.
4188 if (IsVarArg)
4189 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4190 "Intrinsic was not defined with variable arguments!", IF);
4191 else
4192 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
4193 "Callsite was not defined with variable arguments!", IF);
4195 // All descriptors should be absorbed by now.
4196 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
4198 // Now that we have the intrinsic ID and the actual argument types (and we
4199 // know they are legal for the intrinsic!) get the intrinsic name through the
4200 // usual means. This allows us to verify the mangling of argument types into
4201 // the name.
4202 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
4203 Assert(ExpectedName == IF->getName(),
4204 "Intrinsic name not mangled correctly for type arguments! "
4205 "Should be: " +
4206 ExpectedName,
4207 IF);
4209 // If the intrinsic takes MDNode arguments, verify that they are either global
4210 // or are local to *this* function.
4211 for (Value *V : Call.args())
4212 if (auto *MD = dyn_cast<MetadataAsValue>(V))
4213 visitMetadataAsValue(*MD, Call.getCaller());
4215 switch (ID) {
4216 default:
4217 break;
4218 case Intrinsic::coro_id: {
4219 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
4220 if (isa<ConstantPointerNull>(InfoArg))
4221 break;
4222 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
4223 Assert(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
4224 "info argument of llvm.coro.begin must refer to an initialized "
4225 "constant");
4226 Constant *Init = GV->getInitializer();
4227 Assert(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
4228 "info argument of llvm.coro.begin must refer to either a struct or "
4229 "an array");
4230 break;
4232 case Intrinsic::experimental_constrained_fadd:
4233 case Intrinsic::experimental_constrained_fsub:
4234 case Intrinsic::experimental_constrained_fmul:
4235 case Intrinsic::experimental_constrained_fdiv:
4236 case Intrinsic::experimental_constrained_frem:
4237 case Intrinsic::experimental_constrained_fma:
4238 case Intrinsic::experimental_constrained_fptrunc:
4239 case Intrinsic::experimental_constrained_fpext:
4240 case Intrinsic::experimental_constrained_sqrt:
4241 case Intrinsic::experimental_constrained_pow:
4242 case Intrinsic::experimental_constrained_powi:
4243 case Intrinsic::experimental_constrained_sin:
4244 case Intrinsic::experimental_constrained_cos:
4245 case Intrinsic::experimental_constrained_exp:
4246 case Intrinsic::experimental_constrained_exp2:
4247 case Intrinsic::experimental_constrained_log:
4248 case Intrinsic::experimental_constrained_log10:
4249 case Intrinsic::experimental_constrained_log2:
4250 case Intrinsic::experimental_constrained_rint:
4251 case Intrinsic::experimental_constrained_nearbyint:
4252 case Intrinsic::experimental_constrained_maxnum:
4253 case Intrinsic::experimental_constrained_minnum:
4254 case Intrinsic::experimental_constrained_ceil:
4255 case Intrinsic::experimental_constrained_floor:
4256 case Intrinsic::experimental_constrained_round:
4257 case Intrinsic::experimental_constrained_trunc:
4258 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
4259 break;
4260 case Intrinsic::dbg_declare: // llvm.dbg.declare
4261 Assert(isa<MetadataAsValue>(Call.getArgOperand(0)),
4262 "invalid llvm.dbg.declare intrinsic call 1", Call);
4263 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
4264 break;
4265 case Intrinsic::dbg_addr: // llvm.dbg.addr
4266 visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call));
4267 break;
4268 case Intrinsic::dbg_value: // llvm.dbg.value
4269 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
4270 break;
4271 case Intrinsic::dbg_label: // llvm.dbg.label
4272 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
4273 break;
4274 case Intrinsic::memcpy:
4275 case Intrinsic::memmove:
4276 case Intrinsic::memset: {
4277 const auto *MI = cast<MemIntrinsic>(&Call);
4278 auto IsValidAlignment = [&](unsigned Alignment) -> bool {
4279 return Alignment == 0 || isPowerOf2_32(Alignment);
4281 Assert(IsValidAlignment(MI->getDestAlignment()),
4282 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4283 Call);
4284 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
4285 Assert(IsValidAlignment(MTI->getSourceAlignment()),
4286 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4287 Call);
4290 break;
4292 case Intrinsic::memcpy_element_unordered_atomic:
4293 case Intrinsic::memmove_element_unordered_atomic:
4294 case Intrinsic::memset_element_unordered_atomic: {
4295 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
4297 ConstantInt *ElementSizeCI =
4298 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
4299 const APInt &ElementSizeVal = ElementSizeCI->getValue();
4300 Assert(ElementSizeVal.isPowerOf2(),
4301 "element size of the element-wise atomic memory intrinsic "
4302 "must be a power of 2",
4303 Call);
4305 if (auto *LengthCI = dyn_cast<ConstantInt>(AMI->getLength())) {
4306 uint64_t Length = LengthCI->getZExtValue();
4307 uint64_t ElementSize = AMI->getElementSizeInBytes();
4308 Assert((Length % ElementSize) == 0,
4309 "constant length must be a multiple of the element size in the "
4310 "element-wise atomic memory intrinsic",
4311 Call);
4314 auto IsValidAlignment = [&](uint64_t Alignment) {
4315 return isPowerOf2_64(Alignment) && ElementSizeVal.ule(Alignment);
4317 uint64_t DstAlignment = AMI->getDestAlignment();
4318 Assert(IsValidAlignment(DstAlignment),
4319 "incorrect alignment of the destination argument", Call);
4320 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
4321 uint64_t SrcAlignment = AMT->getSourceAlignment();
4322 Assert(IsValidAlignment(SrcAlignment),
4323 "incorrect alignment of the source argument", Call);
4325 break;
4327 case Intrinsic::gcroot:
4328 case Intrinsic::gcwrite:
4329 case Intrinsic::gcread:
4330 if (ID == Intrinsic::gcroot) {
4331 AllocaInst *AI =
4332 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
4333 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
4334 Assert(isa<Constant>(Call.getArgOperand(1)),
4335 "llvm.gcroot parameter #2 must be a constant.", Call);
4336 if (!AI->getAllocatedType()->isPointerTy()) {
4337 Assert(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
4338 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4339 "or argument #2 must be a non-null constant.",
4340 Call);
4344 Assert(Call.getParent()->getParent()->hasGC(),
4345 "Enclosing function does not use GC.", Call);
4346 break;
4347 case Intrinsic::init_trampoline:
4348 Assert(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
4349 "llvm.init_trampoline parameter #2 must resolve to a function.",
4350 Call);
4351 break;
4352 case Intrinsic::prefetch:
4353 Assert(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2 &&
4354 cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
4355 "invalid arguments to llvm.prefetch", Call);
4356 break;
4357 case Intrinsic::stackprotector:
4358 Assert(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
4359 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
4360 break;
4361 case Intrinsic::localescape: {
4362 BasicBlock *BB = Call.getParent();
4363 Assert(BB == &BB->getParent()->front(),
4364 "llvm.localescape used outside of entry block", Call);
4365 Assert(!SawFrameEscape,
4366 "multiple calls to llvm.localescape in one function", Call);
4367 for (Value *Arg : Call.args()) {
4368 if (isa<ConstantPointerNull>(Arg))
4369 continue; // Null values are allowed as placeholders.
4370 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
4371 Assert(AI && AI->isStaticAlloca(),
4372 "llvm.localescape only accepts static allocas", Call);
4374 FrameEscapeInfo[BB->getParent()].first = Call.getNumArgOperands();
4375 SawFrameEscape = true;
4376 break;
4378 case Intrinsic::localrecover: {
4379 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
4380 Function *Fn = dyn_cast<Function>(FnArg);
4381 Assert(Fn && !Fn->isDeclaration(),
4382 "llvm.localrecover first "
4383 "argument must be function defined in this module",
4384 Call);
4385 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
4386 auto &Entry = FrameEscapeInfo[Fn];
4387 Entry.second = unsigned(
4388 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
4389 break;
4392 case Intrinsic::experimental_gc_statepoint:
4393 if (auto *CI = dyn_cast<CallInst>(&Call))
4394 Assert(!CI->isInlineAsm(),
4395 "gc.statepoint support for inline assembly unimplemented", CI);
4396 Assert(Call.getParent()->getParent()->hasGC(),
4397 "Enclosing function does not use GC.", Call);
4399 verifyStatepoint(Call);
4400 break;
4401 case Intrinsic::experimental_gc_result: {
4402 Assert(Call.getParent()->getParent()->hasGC(),
4403 "Enclosing function does not use GC.", Call);
4404 // Are we tied to a statepoint properly?
4405 const auto *StatepointCall = dyn_cast<CallBase>(Call.getArgOperand(0));
4406 const Function *StatepointFn =
4407 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
4408 Assert(StatepointFn && StatepointFn->isDeclaration() &&
4409 StatepointFn->getIntrinsicID() ==
4410 Intrinsic::experimental_gc_statepoint,
4411 "gc.result operand #1 must be from a statepoint", Call,
4412 Call.getArgOperand(0));
4414 // Assert that result type matches wrapped callee.
4415 const Value *Target = StatepointCall->getArgOperand(2);
4416 auto *PT = cast<PointerType>(Target->getType());
4417 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
4418 Assert(Call.getType() == TargetFuncType->getReturnType(),
4419 "gc.result result type does not match wrapped callee", Call);
4420 break;
4422 case Intrinsic::experimental_gc_relocate: {
4423 Assert(Call.getNumArgOperands() == 3, "wrong number of arguments", Call);
4425 Assert(isa<PointerType>(Call.getType()->getScalarType()),
4426 "gc.relocate must return a pointer or a vector of pointers", Call);
4428 // Check that this relocate is correctly tied to the statepoint
4430 // This is case for relocate on the unwinding path of an invoke statepoint
4431 if (LandingPadInst *LandingPad =
4432 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
4434 const BasicBlock *InvokeBB =
4435 LandingPad->getParent()->getUniquePredecessor();
4437 // Landingpad relocates should have only one predecessor with invoke
4438 // statepoint terminator
4439 Assert(InvokeBB, "safepoints should have unique landingpads",
4440 LandingPad->getParent());
4441 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
4442 InvokeBB);
4443 Assert(isStatepoint(InvokeBB->getTerminator()),
4444 "gc relocate should be linked to a statepoint", InvokeBB);
4445 } else {
4446 // In all other cases relocate should be tied to the statepoint directly.
4447 // This covers relocates on a normal return path of invoke statepoint and
4448 // relocates of a call statepoint.
4449 auto Token = Call.getArgOperand(0);
4450 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
4451 "gc relocate is incorrectly tied to the statepoint", Call, Token);
4454 // Verify rest of the relocate arguments.
4455 const CallBase &StatepointCall =
4456 *cast<CallBase>(cast<GCRelocateInst>(Call).getStatepoint());
4458 // Both the base and derived must be piped through the safepoint.
4459 Value *Base = Call.getArgOperand(1);
4460 Assert(isa<ConstantInt>(Base),
4461 "gc.relocate operand #2 must be integer offset", Call);
4463 Value *Derived = Call.getArgOperand(2);
4464 Assert(isa<ConstantInt>(Derived),
4465 "gc.relocate operand #3 must be integer offset", Call);
4467 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
4468 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
4469 // Check the bounds
4470 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCall.arg_size(),
4471 "gc.relocate: statepoint base index out of bounds", Call);
4472 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCall.arg_size(),
4473 "gc.relocate: statepoint derived index out of bounds", Call);
4475 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4476 // section of the statepoint's argument.
4477 Assert(StatepointCall.arg_size() > 0,
4478 "gc.statepoint: insufficient arguments");
4479 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(3)),
4480 "gc.statement: number of call arguments must be constant integer");
4481 const unsigned NumCallArgs =
4482 cast<ConstantInt>(StatepointCall.getArgOperand(3))->getZExtValue();
4483 Assert(StatepointCall.arg_size() > NumCallArgs + 5,
4484 "gc.statepoint: mismatch in number of call arguments");
4485 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5)),
4486 "gc.statepoint: number of transition arguments must be "
4487 "a constant integer");
4488 const int NumTransitionArgs =
4489 cast<ConstantInt>(StatepointCall.getArgOperand(NumCallArgs + 5))
4490 ->getZExtValue();
4491 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4492 Assert(isa<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart)),
4493 "gc.statepoint: number of deoptimization arguments must be "
4494 "a constant integer");
4495 const int NumDeoptArgs =
4496 cast<ConstantInt>(StatepointCall.getArgOperand(DeoptArgsStart))
4497 ->getZExtValue();
4498 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4499 const int GCParamArgsEnd = StatepointCall.arg_size();
4500 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4501 "gc.relocate: statepoint base index doesn't fall within the "
4502 "'gc parameters' section of the statepoint call",
4503 Call);
4504 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4505 "gc.relocate: statepoint derived index doesn't fall within the "
4506 "'gc parameters' section of the statepoint call",
4507 Call);
4509 // Relocated value must be either a pointer type or vector-of-pointer type,
4510 // but gc_relocate does not need to return the same pointer type as the
4511 // relocated pointer. It can be casted to the correct type later if it's
4512 // desired. However, they must have the same address space and 'vectorness'
4513 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
4514 Assert(Relocate.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4515 "gc.relocate: relocated value must be a gc pointer", Call);
4517 auto ResultType = Call.getType();
4518 auto DerivedType = Relocate.getDerivedPtr()->getType();
4519 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4520 "gc.relocate: vector relocates to vector and pointer to pointer",
4521 Call);
4522 Assert(
4523 ResultType->getPointerAddressSpace() ==
4524 DerivedType->getPointerAddressSpace(),
4525 "gc.relocate: relocating a pointer shouldn't change its address space",
4526 Call);
4527 break;
4529 case Intrinsic::eh_exceptioncode:
4530 case Intrinsic::eh_exceptionpointer: {
4531 Assert(isa<CatchPadInst>(Call.getArgOperand(0)),
4532 "eh.exceptionpointer argument must be a catchpad", Call);
4533 break;
4535 case Intrinsic::masked_load: {
4536 Assert(Call.getType()->isVectorTy(), "masked_load: must return a vector",
4537 Call);
4539 Value *Ptr = Call.getArgOperand(0);
4540 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
4541 Value *Mask = Call.getArgOperand(2);
4542 Value *PassThru = Call.getArgOperand(3);
4543 Assert(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
4544 Call);
4545 Assert(Alignment->getValue().isPowerOf2(),
4546 "masked_load: alignment must be a power of 2", Call);
4548 // DataTy is the overloaded type
4549 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4550 Assert(DataTy == Call.getType(),
4551 "masked_load: return must match pointer type", Call);
4552 Assert(PassThru->getType() == DataTy,
4553 "masked_load: pass through and data type must match", Call);
4554 Assert(Mask->getType()->getVectorNumElements() ==
4555 DataTy->getVectorNumElements(),
4556 "masked_load: vector mask must be same length as data", Call);
4557 break;
4559 case Intrinsic::masked_store: {
4560 Value *Val = Call.getArgOperand(0);
4561 Value *Ptr = Call.getArgOperand(1);
4562 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
4563 Value *Mask = Call.getArgOperand(3);
4564 Assert(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
4565 Call);
4566 Assert(Alignment->getValue().isPowerOf2(),
4567 "masked_store: alignment must be a power of 2", Call);
4569 // DataTy is the overloaded type
4570 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4571 Assert(DataTy == Val->getType(),
4572 "masked_store: storee must match pointer type", Call);
4573 Assert(Mask->getType()->getVectorNumElements() ==
4574 DataTy->getVectorNumElements(),
4575 "masked_store: vector mask must be same length as data", Call);
4576 break;
4579 case Intrinsic::experimental_guard: {
4580 Assert(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
4581 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4582 "experimental_guard must have exactly one "
4583 "\"deopt\" operand bundle");
4584 break;
4587 case Intrinsic::experimental_deoptimize: {
4588 Assert(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
4589 Call);
4590 Assert(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4591 "experimental_deoptimize must have exactly one "
4592 "\"deopt\" operand bundle");
4593 Assert(Call.getType() == Call.getFunction()->getReturnType(),
4594 "experimental_deoptimize return type must match caller return type");
4596 if (isa<CallInst>(Call)) {
4597 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
4598 Assert(RI,
4599 "calls to experimental_deoptimize must be followed by a return");
4601 if (!Call.getType()->isVoidTy() && RI)
4602 Assert(RI->getReturnValue() == &Call,
4603 "calls to experimental_deoptimize must be followed by a return "
4604 "of the value computed by experimental_deoptimize");
4607 break;
4609 case Intrinsic::sadd_sat:
4610 case Intrinsic::uadd_sat:
4611 case Intrinsic::ssub_sat:
4612 case Intrinsic::usub_sat: {
4613 Value *Op1 = Call.getArgOperand(0);
4614 Value *Op2 = Call.getArgOperand(1);
4615 Assert(Op1->getType()->isIntOrIntVectorTy(),
4616 "first operand of [us][add|sub]_sat must be an int type or vector "
4617 "of ints");
4618 Assert(Op2->getType()->isIntOrIntVectorTy(),
4619 "second operand of [us][add|sub]_sat must be an int type or vector "
4620 "of ints");
4621 break;
4623 case Intrinsic::smul_fix:
4624 case Intrinsic::smul_fix_sat:
4625 case Intrinsic::umul_fix: {
4626 Value *Op1 = Call.getArgOperand(0);
4627 Value *Op2 = Call.getArgOperand(1);
4628 Assert(Op1->getType()->isIntOrIntVectorTy(),
4629 "first operand of [us]mul_fix[_sat] must be an int type or vector "
4630 "of ints");
4631 Assert(Op2->getType()->isIntOrIntVectorTy(),
4632 "second operand of [us]mul_fix_[sat] must be an int type or vector "
4633 "of ints");
4635 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
4636 Assert(Op3->getType()->getBitWidth() <= 32,
4637 "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4639 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat) {
4640 Assert(
4641 Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
4642 "the scale of smul_fix[_sat] must be less than the width of the operands");
4643 } else {
4644 Assert(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
4645 "the scale of umul_fix[_sat] must be less than or equal to the width of "
4646 "the operands");
4648 break;
4650 case Intrinsic::lround:
4651 case Intrinsic::llround:
4652 case Intrinsic::lrint:
4653 case Intrinsic::llrint: {
4654 Type *ValTy = Call.getArgOperand(0)->getType();
4655 Type *ResultTy = Call.getType();
4656 Assert(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
4657 "Intrinsic does not support vectors", &Call);
4658 break;
4663 /// Carefully grab the subprogram from a local scope.
4665 /// This carefully grabs the subprogram from a local scope, avoiding the
4666 /// built-in assertions that would typically fire.
4667 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4668 if (!LocalScope)
4669 return nullptr;
4671 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4672 return SP;
4674 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4675 return getSubprogram(LB->getRawScope());
4677 // Just return null; broken scope chains are checked elsewhere.
4678 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4679 return nullptr;
4682 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
4683 unsigned NumOperands = FPI.getNumArgOperands();
4684 bool HasExceptionMD = false;
4685 bool HasRoundingMD = false;
4686 switch (FPI.getIntrinsicID()) {
4687 case Intrinsic::experimental_constrained_sqrt:
4688 case Intrinsic::experimental_constrained_sin:
4689 case Intrinsic::experimental_constrained_cos:
4690 case Intrinsic::experimental_constrained_exp:
4691 case Intrinsic::experimental_constrained_exp2:
4692 case Intrinsic::experimental_constrained_log:
4693 case Intrinsic::experimental_constrained_log10:
4694 case Intrinsic::experimental_constrained_log2:
4695 case Intrinsic::experimental_constrained_rint:
4696 case Intrinsic::experimental_constrained_nearbyint:
4697 case Intrinsic::experimental_constrained_ceil:
4698 case Intrinsic::experimental_constrained_floor:
4699 case Intrinsic::experimental_constrained_round:
4700 case Intrinsic::experimental_constrained_trunc:
4701 Assert((NumOperands == 3), "invalid arguments for constrained FP intrinsic",
4702 &FPI);
4703 HasExceptionMD = true;
4704 HasRoundingMD = true;
4705 break;
4707 case Intrinsic::experimental_constrained_fma:
4708 Assert((NumOperands == 5), "invalid arguments for constrained FP intrinsic",
4709 &FPI);
4710 HasExceptionMD = true;
4711 HasRoundingMD = true;
4712 break;
4714 case Intrinsic::experimental_constrained_fadd:
4715 case Intrinsic::experimental_constrained_fsub:
4716 case Intrinsic::experimental_constrained_fmul:
4717 case Intrinsic::experimental_constrained_fdiv:
4718 case Intrinsic::experimental_constrained_frem:
4719 case Intrinsic::experimental_constrained_pow:
4720 case Intrinsic::experimental_constrained_powi:
4721 case Intrinsic::experimental_constrained_maxnum:
4722 case Intrinsic::experimental_constrained_minnum:
4723 Assert((NumOperands == 4), "invalid arguments for constrained FP intrinsic",
4724 &FPI);
4725 HasExceptionMD = true;
4726 HasRoundingMD = true;
4727 break;
4729 case Intrinsic::experimental_constrained_fptrunc:
4730 case Intrinsic::experimental_constrained_fpext: {
4731 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4732 Assert((NumOperands == 3),
4733 "invalid arguments for constrained FP intrinsic", &FPI);
4734 HasRoundingMD = true;
4735 } else {
4736 Assert((NumOperands == 2),
4737 "invalid arguments for constrained FP intrinsic", &FPI);
4739 HasExceptionMD = true;
4741 Value *Operand = FPI.getArgOperand(0);
4742 Type *OperandTy = Operand->getType();
4743 Value *Result = &FPI;
4744 Type *ResultTy = Result->getType();
4745 Assert(OperandTy->isFPOrFPVectorTy(),
4746 "Intrinsic first argument must be FP or FP vector", &FPI);
4747 Assert(ResultTy->isFPOrFPVectorTy(),
4748 "Intrinsic result must be FP or FP vector", &FPI);
4749 Assert(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
4750 "Intrinsic first argument and result disagree on vector use", &FPI);
4751 if (OperandTy->isVectorTy()) {
4752 auto *OperandVecTy = cast<VectorType>(OperandTy);
4753 auto *ResultVecTy = cast<VectorType>(ResultTy);
4754 Assert(OperandVecTy->getNumElements() == ResultVecTy->getNumElements(),
4755 "Intrinsic first argument and result vector lengths must be equal",
4756 &FPI);
4758 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
4759 Assert(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
4760 "Intrinsic first argument's type must be larger than result type",
4761 &FPI);
4762 } else {
4763 Assert(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
4764 "Intrinsic first argument's type must be smaller than result type",
4765 &FPI);
4768 break;
4770 default:
4771 llvm_unreachable("Invalid constrained FP intrinsic!");
4774 // If a non-metadata argument is passed in a metadata slot then the
4775 // error will be caught earlier when the incorrect argument doesn't
4776 // match the specification in the intrinsic call table. Thus, no
4777 // argument type check is needed here.
4779 if (HasExceptionMD) {
4780 Assert(FPI.getExceptionBehavior().hasValue(),
4781 "invalid exception behavior argument", &FPI);
4783 if (HasRoundingMD) {
4784 Assert(FPI.getRoundingMode().hasValue(),
4785 "invalid rounding mode argument", &FPI);
4789 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
4790 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4791 AssertDI(isa<ValueAsMetadata>(MD) ||
4792 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4793 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4794 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4795 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4796 DII.getRawVariable());
4797 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4798 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4799 DII.getRawExpression());
4801 // Ignore broken !dbg attachments; they're checked elsewhere.
4802 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4803 if (!isa<DILocation>(N))
4804 return;
4806 BasicBlock *BB = DII.getParent();
4807 Function *F = BB ? BB->getParent() : nullptr;
4809 // The scopes for variables and !dbg attachments must agree.
4810 DILocalVariable *Var = DII.getVariable();
4811 DILocation *Loc = DII.getDebugLoc();
4812 AssertDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4813 &DII, BB, F);
4815 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4816 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4817 if (!VarSP || !LocSP)
4818 return; // Broken scope chains are checked elsewhere.
4820 AssertDI(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4821 " variable and !dbg attachment",
4822 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4823 Loc->getScope()->getSubprogram());
4825 // This check is redundant with one in visitLocalVariable().
4826 AssertDI(isType(Var->getRawType()), "invalid type ref", Var,
4827 Var->getRawType());
4828 if (auto *Type = dyn_cast_or_null<DIType>(Var->getRawType()))
4829 if (Type->isBlockByrefStruct())
4830 AssertDI(DII.getExpression() && DII.getExpression()->getNumElements(),
4831 "BlockByRef variable without complex expression", Var, &DII);
4833 verifyFnArgs(DII);
4836 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
4837 AssertDI(isa<DILabel>(DLI.getRawLabel()),
4838 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
4839 DLI.getRawLabel());
4841 // Ignore broken !dbg attachments; they're checked elsewhere.
4842 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
4843 if (!isa<DILocation>(N))
4844 return;
4846 BasicBlock *BB = DLI.getParent();
4847 Function *F = BB ? BB->getParent() : nullptr;
4849 // The scopes for variables and !dbg attachments must agree.
4850 DILabel *Label = DLI.getLabel();
4851 DILocation *Loc = DLI.getDebugLoc();
4852 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4853 &DLI, BB, F);
4855 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
4856 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4857 if (!LabelSP || !LocSP)
4858 return;
4860 AssertDI(LabelSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4861 " label and !dbg attachment",
4862 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
4863 Loc->getScope()->getSubprogram());
4866 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
4867 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
4868 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
4870 // We don't know whether this intrinsic verified correctly.
4871 if (!V || !E || !E->isValid())
4872 return;
4874 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4875 auto Fragment = E->getFragmentInfo();
4876 if (!Fragment)
4877 return;
4879 // The frontend helps out GDB by emitting the members of local anonymous
4880 // unions as artificial local variables with shared storage. When SROA splits
4881 // the storage for artificial local variables that are smaller than the entire
4882 // union, the overhang piece will be outside of the allotted space for the
4883 // variable and this check fails.
4884 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4885 if (V->isArtificial())
4886 return;
4888 verifyFragmentExpression(*V, *Fragment, &I);
4891 template <typename ValueOrMetadata>
4892 void Verifier::verifyFragmentExpression(const DIVariable &V,
4893 DIExpression::FragmentInfo Fragment,
4894 ValueOrMetadata *Desc) {
4895 // If there's no size, the type is broken, but that should be checked
4896 // elsewhere.
4897 auto VarSize = V.getSizeInBits();
4898 if (!VarSize)
4899 return;
4901 unsigned FragSize = Fragment.SizeInBits;
4902 unsigned FragOffset = Fragment.OffsetInBits;
4903 AssertDI(FragSize + FragOffset <= *VarSize,
4904 "fragment is larger than or outside of variable", Desc, &V);
4905 AssertDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
4908 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
4909 // This function does not take the scope of noninlined function arguments into
4910 // account. Don't run it if current function is nodebug, because it may
4911 // contain inlined debug intrinsics.
4912 if (!HasDebugInfo)
4913 return;
4915 // For performance reasons only check non-inlined ones.
4916 if (I.getDebugLoc()->getInlinedAt())
4917 return;
4919 DILocalVariable *Var = I.getVariable();
4920 AssertDI(Var, "dbg intrinsic without variable");
4922 unsigned ArgNo = Var->getArg();
4923 if (!ArgNo)
4924 return;
4926 // Verify there are no duplicate function argument debug info entries.
4927 // These will cause hard-to-debug assertions in the DWARF backend.
4928 if (DebugFnArgs.size() < ArgNo)
4929 DebugFnArgs.resize(ArgNo, nullptr);
4931 auto *Prev = DebugFnArgs[ArgNo - 1];
4932 DebugFnArgs[ArgNo - 1] = Var;
4933 AssertDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
4934 Prev, Var);
4937 void Verifier::verifyCompileUnits() {
4938 // When more than one Module is imported into the same context, such as during
4939 // an LTO build before linking the modules, ODR type uniquing may cause types
4940 // to point to a different CU. This check does not make sense in this case.
4941 if (M.getContext().isODRUniquingDebugTypes())
4942 return;
4943 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
4944 SmallPtrSet<const Metadata *, 2> Listed;
4945 if (CUs)
4946 Listed.insert(CUs->op_begin(), CUs->op_end());
4947 for (auto *CU : CUVisited)
4948 AssertDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
4949 CUVisited.clear();
4952 void Verifier::verifyDeoptimizeCallingConvs() {
4953 if (DeoptimizeDeclarations.empty())
4954 return;
4956 const Function *First = DeoptimizeDeclarations[0];
4957 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4958 Assert(First->getCallingConv() == F->getCallingConv(),
4959 "All llvm.experimental.deoptimize declarations must have the same "
4960 "calling convention",
4961 First, F);
4965 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
4966 bool HasSource = F.getSource().hasValue();
4967 if (!HasSourceDebugInfo.count(&U))
4968 HasSourceDebugInfo[&U] = HasSource;
4969 AssertDI(HasSource == HasSourceDebugInfo[&U],
4970 "inconsistent use of embedded source");
4973 //===----------------------------------------------------------------------===//
4974 // Implement the public interfaces to this file...
4975 //===----------------------------------------------------------------------===//
4977 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4978 Function &F = const_cast<Function &>(f);
4980 // Don't use a raw_null_ostream. Printing IR is expensive.
4981 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
4983 // Note that this function's return value is inverted from what you would
4984 // expect of a function called "verify".
4985 return !V.verify(F);
4988 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4989 bool *BrokenDebugInfo) {
4990 // Don't use a raw_null_ostream. Printing IR is expensive.
4991 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
4993 bool Broken = false;
4994 for (const Function &F : M)
4995 Broken |= !V.verify(F);
4997 Broken |= !V.verify();
4998 if (BrokenDebugInfo)
4999 *BrokenDebugInfo = V.hasBrokenDebugInfo();
5000 // Note that this function's return value is inverted from what you would
5001 // expect of a function called "verify".
5002 return Broken;
5005 namespace {
5007 struct VerifierLegacyPass : public FunctionPass {
5008 static char ID;
5010 std::unique_ptr<Verifier> V;
5011 bool FatalErrors = true;
5013 VerifierLegacyPass() : FunctionPass(ID) {
5014 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5016 explicit VerifierLegacyPass(bool FatalErrors)
5017 : FunctionPass(ID),
5018 FatalErrors(FatalErrors) {
5019 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5022 bool doInitialization(Module &M) override {
5023 V = llvm::make_unique<Verifier>(
5024 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
5025 return false;
5028 bool runOnFunction(Function &F) override {
5029 if (!V->verify(F) && FatalErrors) {
5030 errs() << "in function " << F.getName() << '\n';
5031 report_fatal_error("Broken function found, compilation aborted!");
5033 return false;
5036 bool doFinalization(Module &M) override {
5037 bool HasErrors = false;
5038 for (Function &F : M)
5039 if (F.isDeclaration())
5040 HasErrors |= !V->verify(F);
5042 HasErrors |= !V->verify();
5043 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
5044 report_fatal_error("Broken module found, compilation aborted!");
5045 return false;
5048 void getAnalysisUsage(AnalysisUsage &AU) const override {
5049 AU.setPreservesAll();
5053 } // end anonymous namespace
5055 /// Helper to issue failure from the TBAA verification
5056 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
5057 if (Diagnostic)
5058 return Diagnostic->CheckFailed(Args...);
5061 #define AssertTBAA(C, ...) \
5062 do { \
5063 if (!(C)) { \
5064 CheckFailed(__VA_ARGS__); \
5065 return false; \
5067 } while (false)
5069 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5070 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5071 /// struct-type node describing an aggregate data structure (like a struct).
5072 TBAAVerifier::TBAABaseNodeSummary
5073 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
5074 bool IsNewFormat) {
5075 if (BaseNode->getNumOperands() < 2) {
5076 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
5077 return {true, ~0u};
5080 auto Itr = TBAABaseNodes.find(BaseNode);
5081 if (Itr != TBAABaseNodes.end())
5082 return Itr->second;
5084 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
5085 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
5086 (void)InsertResult;
5087 assert(InsertResult.second && "We just checked!");
5088 return Result;
5091 TBAAVerifier::TBAABaseNodeSummary
5092 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
5093 bool IsNewFormat) {
5094 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
5096 if (BaseNode->getNumOperands() == 2) {
5097 // Scalar nodes can only be accessed at offset 0.
5098 return isValidScalarTBAANode(BaseNode)
5099 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5100 : InvalidNode;
5103 if (IsNewFormat) {
5104 if (BaseNode->getNumOperands() % 3 != 0) {
5105 CheckFailed("Access tag nodes must have the number of operands that is a "
5106 "multiple of 3!", BaseNode);
5107 return InvalidNode;
5109 } else {
5110 if (BaseNode->getNumOperands() % 2 != 1) {
5111 CheckFailed("Struct tag nodes must have an odd number of operands!",
5112 BaseNode);
5113 return InvalidNode;
5117 // Check the type size field.
5118 if (IsNewFormat) {
5119 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5120 BaseNode->getOperand(1));
5121 if (!TypeSizeNode) {
5122 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
5123 return InvalidNode;
5127 // Check the type name field. In the new format it can be anything.
5128 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
5129 CheckFailed("Struct tag nodes have a string as their first operand",
5130 BaseNode);
5131 return InvalidNode;
5134 bool Failed = false;
5136 Optional<APInt> PrevOffset;
5137 unsigned BitWidth = ~0u;
5139 // We've already checked that BaseNode is not a degenerate root node with one
5140 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5141 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5142 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5143 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5144 Idx += NumOpsPerField) {
5145 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
5146 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
5147 if (!isa<MDNode>(FieldTy)) {
5148 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
5149 Failed = true;
5150 continue;
5153 auto *OffsetEntryCI =
5154 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
5155 if (!OffsetEntryCI) {
5156 CheckFailed("Offset entries must be constants!", &I, BaseNode);
5157 Failed = true;
5158 continue;
5161 if (BitWidth == ~0u)
5162 BitWidth = OffsetEntryCI->getBitWidth();
5164 if (OffsetEntryCI->getBitWidth() != BitWidth) {
5165 CheckFailed(
5166 "Bitwidth between the offsets and struct type entries must match", &I,
5167 BaseNode);
5168 Failed = true;
5169 continue;
5172 // NB! As far as I can tell, we generate a non-strictly increasing offset
5173 // sequence only from structs that have zero size bit fields. When
5174 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5175 // pick the field lexically the latest in struct type metadata node. This
5176 // mirrors the actual behavior of the alias analysis implementation.
5177 bool IsAscending =
5178 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
5180 if (!IsAscending) {
5181 CheckFailed("Offsets must be increasing!", &I, BaseNode);
5182 Failed = true;
5185 PrevOffset = OffsetEntryCI->getValue();
5187 if (IsNewFormat) {
5188 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5189 BaseNode->getOperand(Idx + 2));
5190 if (!MemberSizeNode) {
5191 CheckFailed("Member size entries must be constants!", &I, BaseNode);
5192 Failed = true;
5193 continue;
5198 return Failed ? InvalidNode
5199 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
5202 static bool IsRootTBAANode(const MDNode *MD) {
5203 return MD->getNumOperands() < 2;
5206 static bool IsScalarTBAANodeImpl(const MDNode *MD,
5207 SmallPtrSetImpl<const MDNode *> &Visited) {
5208 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
5209 return false;
5211 if (!isa<MDString>(MD->getOperand(0)))
5212 return false;
5214 if (MD->getNumOperands() == 3) {
5215 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
5216 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
5217 return false;
5220 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5221 return Parent && Visited.insert(Parent).second &&
5222 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
5225 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
5226 auto ResultIt = TBAAScalarNodes.find(MD);
5227 if (ResultIt != TBAAScalarNodes.end())
5228 return ResultIt->second;
5230 SmallPtrSet<const MDNode *, 4> Visited;
5231 bool Result = IsScalarTBAANodeImpl(MD, Visited);
5232 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
5233 (void)InsertResult;
5234 assert(InsertResult.second && "Just checked!");
5236 return Result;
5239 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5240 /// Offset in place to be the offset within the field node returned.
5242 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5243 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
5244 const MDNode *BaseNode,
5245 APInt &Offset,
5246 bool IsNewFormat) {
5247 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
5249 // Scalar nodes have only one possible "field" -- their parent in the access
5250 // hierarchy. Offset must be zero at this point, but our caller is supposed
5251 // to Assert that.
5252 if (BaseNode->getNumOperands() == 2)
5253 return cast<MDNode>(BaseNode->getOperand(1));
5255 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
5256 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
5257 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
5258 Idx += NumOpsPerField) {
5259 auto *OffsetEntryCI =
5260 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
5261 if (OffsetEntryCI->getValue().ugt(Offset)) {
5262 if (Idx == FirstFieldOpNo) {
5263 CheckFailed("Could not find TBAA parent in struct type node", &I,
5264 BaseNode, &Offset);
5265 return nullptr;
5268 unsigned PrevIdx = Idx - NumOpsPerField;
5269 auto *PrevOffsetEntryCI =
5270 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
5271 Offset -= PrevOffsetEntryCI->getValue();
5272 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
5276 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
5277 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
5278 BaseNode->getOperand(LastIdx + 1));
5279 Offset -= LastOffsetEntryCI->getValue();
5280 return cast<MDNode>(BaseNode->getOperand(LastIdx));
5283 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
5284 if (!Type || Type->getNumOperands() < 3)
5285 return false;
5287 // In the new format type nodes shall have a reference to the parent type as
5288 // its first operand.
5289 MDNode *Parent = dyn_cast_or_null<MDNode>(Type->getOperand(0));
5290 if (!Parent)
5291 return false;
5293 return true;
5296 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
5297 AssertTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5298 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
5299 isa<AtomicCmpXchgInst>(I),
5300 "This instruction shall not have a TBAA access tag!", &I);
5302 bool IsStructPathTBAA =
5303 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
5305 AssertTBAA(
5306 IsStructPathTBAA,
5307 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I);
5309 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
5310 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
5312 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
5314 if (IsNewFormat) {
5315 AssertTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
5316 "Access tag metadata must have either 4 or 5 operands", &I, MD);
5317 } else {
5318 AssertTBAA(MD->getNumOperands() < 5,
5319 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
5322 // Check the access size field.
5323 if (IsNewFormat) {
5324 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
5325 MD->getOperand(3));
5326 AssertTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
5329 // Check the immutability flag.
5330 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
5331 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
5332 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
5333 MD->getOperand(ImmutabilityFlagOpNo));
5334 AssertTBAA(IsImmutableCI,
5335 "Immutability tag on struct tag metadata must be a constant",
5336 &I, MD);
5337 AssertTBAA(
5338 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
5339 "Immutability part of the struct tag metadata must be either 0 or 1",
5340 &I, MD);
5343 AssertTBAA(BaseNode && AccessType,
5344 "Malformed struct tag metadata: base and access-type "
5345 "should be non-null and point to Metadata nodes",
5346 &I, MD, BaseNode, AccessType);
5348 if (!IsNewFormat) {
5349 AssertTBAA(isValidScalarTBAANode(AccessType),
5350 "Access type node must be a valid scalar type", &I, MD,
5351 AccessType);
5354 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
5355 AssertTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
5357 APInt Offset = OffsetCI->getValue();
5358 bool SeenAccessTypeInPath = false;
5360 SmallPtrSet<MDNode *, 4> StructPath;
5362 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
5363 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
5364 IsNewFormat)) {
5365 if (!StructPath.insert(BaseNode).second) {
5366 CheckFailed("Cycle detected in struct path", &I, MD);
5367 return false;
5370 bool Invalid;
5371 unsigned BaseNodeBitWidth;
5372 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
5373 IsNewFormat);
5375 // If the base node is invalid in itself, then we've already printed all the
5376 // errors we wanted to print.
5377 if (Invalid)
5378 return false;
5380 SeenAccessTypeInPath |= BaseNode == AccessType;
5382 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
5383 AssertTBAA(Offset == 0, "Offset not zero at the point of scalar access",
5384 &I, MD, &Offset);
5386 AssertTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
5387 (BaseNodeBitWidth == 0 && Offset == 0) ||
5388 (IsNewFormat && BaseNodeBitWidth == ~0u),
5389 "Access bit-width not the same as description bit-width", &I, MD,
5390 BaseNodeBitWidth, Offset.getBitWidth());
5392 if (IsNewFormat && SeenAccessTypeInPath)
5393 break;
5396 AssertTBAA(SeenAccessTypeInPath, "Did not see access type in access path!",
5397 &I, MD);
5398 return true;
5401 char VerifierLegacyPass::ID = 0;
5402 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
5404 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
5405 return new VerifierLegacyPass(FatalErrors);
5408 AnalysisKey VerifierAnalysis::Key;
5409 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
5410 ModuleAnalysisManager &) {
5411 Result Res;
5412 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
5413 return Res;
5416 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
5417 FunctionAnalysisManager &) {
5418 return { llvm::verifyFunction(F, &dbgs()), false };
5421 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
5422 auto Res = AM.getResult<VerifierAnalysis>(M);
5423 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
5424 report_fatal_error("Broken module found, compilation aborted!");
5426 return PreservedAnalyses::all();
5429 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
5430 auto res = AM.getResult<VerifierAnalysis>(F);
5431 if (res.IRBroken && FatalErrors)
5432 report_fatal_error("Broken function found, compilation aborted!");
5434 return PreservedAnalyses::all();