[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / BPF / BTFDebug.cpp
blobfa35c6619e213af73ecb0fad018944f8717c9fe5
1 //===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing BTF debug info.
11 //===----------------------------------------------------------------------===//
13 #include "BTFDebug.h"
14 #include "BPF.h"
15 #include "BPFCORE.h"
16 #include "MCTargetDesc/BPFMCTargetDesc.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/MachineModuleInfo.h"
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCObjectFileInfo.h"
22 #include "llvm/MC/MCSectionELF.h"
23 #include "llvm/MC/MCStreamer.h"
24 #include "llvm/Support/LineIterator.h"
26 using namespace llvm;
28 static const char *BTFKindStr[] = {
29 #define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
30 #include "BTF.def"
33 /// Emit a BTF common type.
34 void BTFTypeBase::emitType(MCStreamer &OS) {
35 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
36 ")");
37 OS.EmitIntValue(BTFType.NameOff, 4);
38 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
39 OS.EmitIntValue(BTFType.Info, 4);
40 OS.EmitIntValue(BTFType.Size, 4);
43 BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
44 bool NeedsFixup)
45 : DTy(DTy), NeedsFixup(NeedsFixup) {
46 switch (Tag) {
47 case dwarf::DW_TAG_pointer_type:
48 Kind = BTF::BTF_KIND_PTR;
49 break;
50 case dwarf::DW_TAG_const_type:
51 Kind = BTF::BTF_KIND_CONST;
52 break;
53 case dwarf::DW_TAG_volatile_type:
54 Kind = BTF::BTF_KIND_VOLATILE;
55 break;
56 case dwarf::DW_TAG_typedef:
57 Kind = BTF::BTF_KIND_TYPEDEF;
58 break;
59 case dwarf::DW_TAG_restrict_type:
60 Kind = BTF::BTF_KIND_RESTRICT;
61 break;
62 default:
63 llvm_unreachable("Unknown DIDerivedType Tag");
65 BTFType.Info = Kind << 24;
68 void BTFTypeDerived::completeType(BTFDebug &BDebug) {
69 if (IsCompleted)
70 return;
71 IsCompleted = true;
73 BTFType.NameOff = BDebug.addString(DTy->getName());
75 if (NeedsFixup)
76 return;
78 // The base type for PTR/CONST/VOLATILE could be void.
79 const DIType *ResolvedType = DTy->getBaseType();
80 if (!ResolvedType) {
81 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
82 Kind == BTF::BTF_KIND_VOLATILE) &&
83 "Invalid null basetype");
84 BTFType.Type = 0;
85 } else {
86 BTFType.Type = BDebug.getTypeId(ResolvedType);
90 void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
92 void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
93 BTFType.Type = PointeeType;
96 /// Represent a struct/union forward declaration.
97 BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
98 Kind = BTF::BTF_KIND_FWD;
99 BTFType.Info = IsUnion << 31 | Kind << 24;
100 BTFType.Type = 0;
103 void BTFTypeFwd::completeType(BTFDebug &BDebug) {
104 if (IsCompleted)
105 return;
106 IsCompleted = true;
108 BTFType.NameOff = BDebug.addString(Name);
111 void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
113 BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
114 uint32_t OffsetInBits, StringRef TypeName)
115 : Name(TypeName) {
116 // Translate IR int encoding to BTF int encoding.
117 uint8_t BTFEncoding;
118 switch (Encoding) {
119 case dwarf::DW_ATE_boolean:
120 BTFEncoding = BTF::INT_BOOL;
121 break;
122 case dwarf::DW_ATE_signed:
123 case dwarf::DW_ATE_signed_char:
124 BTFEncoding = BTF::INT_SIGNED;
125 break;
126 case dwarf::DW_ATE_unsigned:
127 case dwarf::DW_ATE_unsigned_char:
128 BTFEncoding = 0;
129 break;
130 default:
131 llvm_unreachable("Unknown BTFTypeInt Encoding");
134 Kind = BTF::BTF_KIND_INT;
135 BTFType.Info = Kind << 24;
136 BTFType.Size = roundupToBytes(SizeInBits);
137 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
140 void BTFTypeInt::completeType(BTFDebug &BDebug) {
141 if (IsCompleted)
142 return;
143 IsCompleted = true;
145 BTFType.NameOff = BDebug.addString(Name);
148 void BTFTypeInt::emitType(MCStreamer &OS) {
149 BTFTypeBase::emitType(OS);
150 OS.AddComment("0x" + Twine::utohexstr(IntVal));
151 OS.EmitIntValue(IntVal, 4);
154 BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
155 Kind = BTF::BTF_KIND_ENUM;
156 BTFType.Info = Kind << 24 | VLen;
157 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
160 void BTFTypeEnum::completeType(BTFDebug &BDebug) {
161 if (IsCompleted)
162 return;
163 IsCompleted = true;
165 BTFType.NameOff = BDebug.addString(ETy->getName());
167 DINodeArray Elements = ETy->getElements();
168 for (const auto Element : Elements) {
169 const auto *Enum = cast<DIEnumerator>(Element);
171 struct BTF::BTFEnum BTFEnum;
172 BTFEnum.NameOff = BDebug.addString(Enum->getName());
173 // BTF enum value is 32bit, enforce it.
174 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
175 EnumValues.push_back(BTFEnum);
179 void BTFTypeEnum::emitType(MCStreamer &OS) {
180 BTFTypeBase::emitType(OS);
181 for (const auto &Enum : EnumValues) {
182 OS.EmitIntValue(Enum.NameOff, 4);
183 OS.EmitIntValue(Enum.Val, 4);
187 BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t ElemSize,
188 uint32_t NumElems)
189 : ElemSize(ElemSize) {
190 Kind = BTF::BTF_KIND_ARRAY;
191 BTFType.NameOff = 0;
192 BTFType.Info = Kind << 24;
193 BTFType.Size = 0;
195 ArrayInfo.ElemType = ElemTypeId;
196 ArrayInfo.Nelems = NumElems;
199 /// Represent a BTF array.
200 void BTFTypeArray::completeType(BTFDebug &BDebug) {
201 if (IsCompleted)
202 return;
203 IsCompleted = true;
205 // The IR does not really have a type for the index.
206 // A special type for array index should have been
207 // created during initial type traversal. Just
208 // retrieve that type id.
209 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
212 void BTFTypeArray::emitType(MCStreamer &OS) {
213 BTFTypeBase::emitType(OS);
214 OS.EmitIntValue(ArrayInfo.ElemType, 4);
215 OS.EmitIntValue(ArrayInfo.IndexType, 4);
216 OS.EmitIntValue(ArrayInfo.Nelems, 4);
219 void BTFTypeArray::getLocInfo(uint32_t Loc, uint32_t &LocOffset,
220 uint32_t &ElementTypeId) {
221 ElementTypeId = ArrayInfo.ElemType;
222 LocOffset = Loc * ElemSize;
225 /// Represent either a struct or a union.
226 BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
227 bool HasBitField, uint32_t Vlen)
228 : STy(STy), HasBitField(HasBitField) {
229 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
230 BTFType.Size = roundupToBytes(STy->getSizeInBits());
231 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
234 void BTFTypeStruct::completeType(BTFDebug &BDebug) {
235 if (IsCompleted)
236 return;
237 IsCompleted = true;
239 BTFType.NameOff = BDebug.addString(STy->getName());
241 // Add struct/union members.
242 const DINodeArray Elements = STy->getElements();
243 for (const auto *Element : Elements) {
244 struct BTF::BTFMember BTFMember;
245 const auto *DDTy = cast<DIDerivedType>(Element);
247 BTFMember.NameOff = BDebug.addString(DDTy->getName());
248 if (HasBitField) {
249 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
250 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
251 } else {
252 BTFMember.Offset = DDTy->getOffsetInBits();
254 BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType());
255 Members.push_back(BTFMember);
259 void BTFTypeStruct::emitType(MCStreamer &OS) {
260 BTFTypeBase::emitType(OS);
261 for (const auto &Member : Members) {
262 OS.EmitIntValue(Member.NameOff, 4);
263 OS.EmitIntValue(Member.Type, 4);
264 OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
265 OS.EmitIntValue(Member.Offset, 4);
269 std::string BTFTypeStruct::getName() { return STy->getName(); }
271 void BTFTypeStruct::getMemberInfo(uint32_t Loc, uint32_t &MemberOffset,
272 uint32_t &MemberType) {
273 MemberType = Members[Loc].Type;
274 MemberOffset =
275 HasBitField ? Members[Loc].Offset & 0xffffff : Members[Loc].Offset;
278 uint32_t BTFTypeStruct::getStructSize() { return STy->getSizeInBits() >> 3; }
280 /// The Func kind represents both subprogram and pointee of function
281 /// pointers. If the FuncName is empty, it represents a pointee of function
282 /// pointer. Otherwise, it represents a subprogram. The func arg names
283 /// are empty for pointee of function pointer case, and are valid names
284 /// for subprogram.
285 BTFTypeFuncProto::BTFTypeFuncProto(
286 const DISubroutineType *STy, uint32_t VLen,
287 const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
288 : STy(STy), FuncArgNames(FuncArgNames) {
289 Kind = BTF::BTF_KIND_FUNC_PROTO;
290 BTFType.Info = (Kind << 24) | VLen;
293 void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
294 if (IsCompleted)
295 return;
296 IsCompleted = true;
298 DITypeRefArray Elements = STy->getTypeArray();
299 auto RetType = Elements[0];
300 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
301 BTFType.NameOff = 0;
303 // For null parameter which is typically the last one
304 // to represent the vararg, encode the NameOff/Type to be 0.
305 for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
306 struct BTF::BTFParam Param;
307 auto Element = Elements[I];
308 if (Element) {
309 Param.NameOff = BDebug.addString(FuncArgNames[I]);
310 Param.Type = BDebug.getTypeId(Element);
311 } else {
312 Param.NameOff = 0;
313 Param.Type = 0;
315 Parameters.push_back(Param);
319 void BTFTypeFuncProto::emitType(MCStreamer &OS) {
320 BTFTypeBase::emitType(OS);
321 for (const auto &Param : Parameters) {
322 OS.EmitIntValue(Param.NameOff, 4);
323 OS.EmitIntValue(Param.Type, 4);
327 BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
328 : Name(FuncName) {
329 Kind = BTF::BTF_KIND_FUNC;
330 BTFType.Info = Kind << 24;
331 BTFType.Type = ProtoTypeId;
334 void BTFTypeFunc::completeType(BTFDebug &BDebug) {
335 if (IsCompleted)
336 return;
337 IsCompleted = true;
339 BTFType.NameOff = BDebug.addString(Name);
342 void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
344 BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
345 : Name(VarName) {
346 Kind = BTF::BTF_KIND_VAR;
347 BTFType.Info = Kind << 24;
348 BTFType.Type = TypeId;
349 Info = VarInfo;
352 void BTFKindVar::completeType(BTFDebug &BDebug) {
353 BTFType.NameOff = BDebug.addString(Name);
356 void BTFKindVar::emitType(MCStreamer &OS) {
357 BTFTypeBase::emitType(OS);
358 OS.EmitIntValue(Info, 4);
361 BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
362 : Asm(AsmPrt), Name(SecName) {
363 Kind = BTF::BTF_KIND_DATASEC;
364 BTFType.Info = Kind << 24;
365 BTFType.Size = 0;
368 void BTFKindDataSec::completeType(BTFDebug &BDebug) {
369 BTFType.NameOff = BDebug.addString(Name);
370 BTFType.Info |= Vars.size();
373 void BTFKindDataSec::emitType(MCStreamer &OS) {
374 BTFTypeBase::emitType(OS);
376 for (const auto &V : Vars) {
377 OS.EmitIntValue(std::get<0>(V), 4);
378 Asm->EmitLabelReference(std::get<1>(V), 4);
379 OS.EmitIntValue(std::get<2>(V), 4);
383 uint32_t BTFStringTable::addString(StringRef S) {
384 // Check whether the string already exists.
385 for (auto &OffsetM : OffsetToIdMap) {
386 if (Table[OffsetM.second] == S)
387 return OffsetM.first;
389 // Not find, add to the string table.
390 uint32_t Offset = Size;
391 OffsetToIdMap[Offset] = Table.size();
392 Table.push_back(S);
393 Size += S.size() + 1;
394 return Offset;
397 BTFDebug::BTFDebug(AsmPrinter *AP)
398 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
399 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
400 MapDefNotCollected(true) {
401 addString("\0");
404 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
405 const DIType *Ty) {
406 TypeEntry->setId(TypeEntries.size() + 1);
407 uint32_t Id = TypeEntry->getId();
408 DIToIdMap[Ty] = Id;
409 TypeEntries.push_back(std::move(TypeEntry));
410 return Id;
413 uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
414 TypeEntry->setId(TypeEntries.size() + 1);
415 uint32_t Id = TypeEntry->getId();
416 TypeEntries.push_back(std::move(TypeEntry));
417 return Id;
420 void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
421 // Only int types are supported in BTF.
422 uint32_t Encoding = BTy->getEncoding();
423 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
424 Encoding != dwarf::DW_ATE_signed_char &&
425 Encoding != dwarf::DW_ATE_unsigned &&
426 Encoding != dwarf::DW_ATE_unsigned_char)
427 return;
429 // Create a BTF type instance for this DIBasicType and put it into
430 // DIToIdMap for cross-type reference check.
431 auto TypeEntry = llvm::make_unique<BTFTypeInt>(
432 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
433 TypeId = addType(std::move(TypeEntry), BTy);
436 /// Handle subprogram or subroutine types.
437 void BTFDebug::visitSubroutineType(
438 const DISubroutineType *STy, bool ForSubprog,
439 const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
440 uint32_t &TypeId) {
441 DITypeRefArray Elements = STy->getTypeArray();
442 uint32_t VLen = Elements.size() - 1;
443 if (VLen > BTF::MAX_VLEN)
444 return;
446 // Subprogram has a valid non-zero-length name, and the pointee of
447 // a function pointer has an empty name. The subprogram type will
448 // not be added to DIToIdMap as it should not be referenced by
449 // any other types.
450 auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
451 if (ForSubprog)
452 TypeId = addType(std::move(TypeEntry)); // For subprogram
453 else
454 TypeId = addType(std::move(TypeEntry), STy); // For func ptr
456 // Visit return type and func arg types.
457 for (const auto Element : Elements) {
458 visitTypeEntry(Element);
462 /// Handle structure/union types.
463 void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
464 uint32_t &TypeId) {
465 const DINodeArray Elements = CTy->getElements();
466 uint32_t VLen = Elements.size();
467 if (VLen > BTF::MAX_VLEN)
468 return;
470 // Check whether we have any bitfield members or not
471 bool HasBitField = false;
472 for (const auto *Element : Elements) {
473 auto E = cast<DIDerivedType>(Element);
474 if (E->isBitField()) {
475 HasBitField = true;
476 break;
480 auto TypeEntry =
481 llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
482 StructTypes.push_back(TypeEntry.get());
483 TypeId = addType(std::move(TypeEntry), CTy);
485 // Visit all struct members.
486 for (const auto *Element : Elements)
487 visitTypeEntry(cast<DIDerivedType>(Element));
490 void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
491 // Visit array element type.
492 uint32_t ElemTypeId, ElemSize;
493 const DIType *ElemType = CTy->getBaseType();
494 visitTypeEntry(ElemType, ElemTypeId, false, false);
495 ElemSize = ElemType->getSizeInBits() >> 3;
497 if (!CTy->getSizeInBits()) {
498 auto TypeEntry = llvm::make_unique<BTFTypeArray>(ElemTypeId, 0, 0);
499 ArrayTypes.push_back(TypeEntry.get());
500 ElemTypeId = addType(std::move(TypeEntry), CTy);
501 } else {
502 // Visit array dimensions.
503 DINodeArray Elements = CTy->getElements();
504 for (int I = Elements.size() - 1; I >= 0; --I) {
505 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
506 if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
507 const DISubrange *SR = cast<DISubrange>(Element);
508 auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
509 int64_t Count = CI->getSExtValue();
511 auto TypeEntry =
512 llvm::make_unique<BTFTypeArray>(ElemTypeId, ElemSize, Count);
513 ArrayTypes.push_back(TypeEntry.get());
514 if (I == 0)
515 ElemTypeId = addType(std::move(TypeEntry), CTy);
516 else
517 ElemTypeId = addType(std::move(TypeEntry));
518 ElemSize = ElemSize * Count;
523 // The array TypeId is the type id of the outermost dimension.
524 TypeId = ElemTypeId;
526 // The IR does not have a type for array index while BTF wants one.
527 // So create an array index type if there is none.
528 if (!ArrayIndexTypeId) {
529 auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
530 0, "__ARRAY_SIZE_TYPE__");
531 ArrayIndexTypeId = addType(std::move(TypeEntry));
535 void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
536 DINodeArray Elements = CTy->getElements();
537 uint32_t VLen = Elements.size();
538 if (VLen > BTF::MAX_VLEN)
539 return;
541 auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
542 TypeId = addType(std::move(TypeEntry), CTy);
543 // No need to visit base type as BTF does not encode it.
546 /// Handle structure/union forward declarations.
547 void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
548 uint32_t &TypeId) {
549 auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
550 TypeId = addType(std::move(TypeEntry), CTy);
553 /// Handle structure, union, array and enumeration types.
554 void BTFDebug::visitCompositeType(const DICompositeType *CTy,
555 uint32_t &TypeId) {
556 auto Tag = CTy->getTag();
557 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
558 // Handle forward declaration differently as it does not have members.
559 if (CTy->isForwardDecl())
560 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
561 else
562 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
563 } else if (Tag == dwarf::DW_TAG_array_type)
564 visitArrayType(CTy, TypeId);
565 else if (Tag == dwarf::DW_TAG_enumeration_type)
566 visitEnumType(CTy, TypeId);
569 /// Handle pointer, typedef, const, volatile, restrict and member types.
570 void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
571 bool CheckPointer, bool SeenPointer) {
572 unsigned Tag = DTy->getTag();
574 /// Try to avoid chasing pointees, esp. structure pointees which may
575 /// unnecessary bring in a lot of types.
576 if (CheckPointer && !SeenPointer) {
577 SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
580 if (CheckPointer && SeenPointer) {
581 const DIType *Base = DTy->getBaseType();
582 if (Base) {
583 if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
584 auto CTag = CTy->getTag();
585 if ((CTag == dwarf::DW_TAG_structure_type ||
586 CTag == dwarf::DW_TAG_union_type) &&
587 !CTy->isForwardDecl()) {
588 /// Find a candidate, generate a fixup. Later on the struct/union
589 /// pointee type will be replaced with either a real type or
590 /// a forward declaration.
591 auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, true);
592 auto &Fixup = FixupDerivedTypes[CTy->getName()];
593 Fixup.first = CTag == dwarf::DW_TAG_union_type;
594 Fixup.second.push_back(TypeEntry.get());
595 TypeId = addType(std::move(TypeEntry), DTy);
596 return;
602 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
603 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
604 Tag == dwarf::DW_TAG_restrict_type) {
605 auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, false);
606 TypeId = addType(std::move(TypeEntry), DTy);
607 } else if (Tag != dwarf::DW_TAG_member) {
608 return;
611 // Visit base type of pointer, typedef, const, volatile, restrict or
612 // struct/union member.
613 uint32_t TempTypeId = 0;
614 if (Tag == dwarf::DW_TAG_member)
615 visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
616 else
617 visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
620 void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
621 bool CheckPointer, bool SeenPointer) {
622 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
623 TypeId = DIToIdMap[Ty];
624 return;
627 if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
628 visitBasicType(BTy, TypeId);
629 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
630 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
631 TypeId);
632 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
633 visitCompositeType(CTy, TypeId);
634 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
635 visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
636 else
637 llvm_unreachable("Unknown DIType");
640 void BTFDebug::visitTypeEntry(const DIType *Ty) {
641 uint32_t TypeId;
642 visitTypeEntry(Ty, TypeId, false, false);
645 void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
646 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
647 TypeId = DIToIdMap[Ty];
648 return;
651 // MapDef type is a struct type
652 const auto *CTy = dyn_cast<DICompositeType>(Ty);
653 if (!CTy)
654 return;
656 auto Tag = CTy->getTag();
657 if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
658 return;
660 // Record this type
661 const DINodeArray Elements = CTy->getElements();
662 bool HasBitField = false;
663 for (const auto *Element : Elements) {
664 auto E = cast<DIDerivedType>(Element);
665 if (E->isBitField()) {
666 HasBitField = true;
667 break;
671 auto TypeEntry =
672 llvm::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size());
673 StructTypes.push_back(TypeEntry.get());
674 TypeId = addType(std::move(TypeEntry), CTy);
676 // Visit all struct members
677 for (const auto *Element : Elements) {
678 const auto *MemberType = cast<DIDerivedType>(Element);
679 visitTypeEntry(MemberType->getBaseType());
683 /// Read file contents from the actual file or from the source
684 std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
685 auto File = SP->getFile();
686 std::string FileName;
688 if (!File->getFilename().startswith("/") && File->getDirectory().size())
689 FileName = File->getDirectory().str() + "/" + File->getFilename().str();
690 else
691 FileName = File->getFilename();
693 // No need to populate the contends if it has been populated!
694 if (FileContent.find(FileName) != FileContent.end())
695 return FileName;
697 std::vector<std::string> Content;
698 std::string Line;
699 Content.push_back(Line); // Line 0 for empty string
701 std::unique_ptr<MemoryBuffer> Buf;
702 auto Source = File->getSource();
703 if (Source)
704 Buf = MemoryBuffer::getMemBufferCopy(*Source);
705 else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
706 MemoryBuffer::getFile(FileName))
707 Buf = std::move(*BufOrErr);
708 if (Buf)
709 for (line_iterator I(*Buf, false), E; I != E; ++I)
710 Content.push_back(*I);
712 FileContent[FileName] = Content;
713 return FileName;
716 void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
717 uint32_t Line, uint32_t Column) {
718 std::string FileName = populateFileContent(SP);
719 BTFLineInfo LineInfo;
721 LineInfo.Label = Label;
722 LineInfo.FileNameOff = addString(FileName);
723 // If file content is not available, let LineOff = 0.
724 if (Line < FileContent[FileName].size())
725 LineInfo.LineOff = addString(FileContent[FileName][Line]);
726 else
727 LineInfo.LineOff = 0;
728 LineInfo.LineNum = Line;
729 LineInfo.ColumnNum = Column;
730 LineInfoTable[SecNameOff].push_back(LineInfo);
733 void BTFDebug::emitCommonHeader() {
734 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
735 OS.EmitIntValue(BTF::MAGIC, 2);
736 OS.EmitIntValue(BTF::VERSION, 1);
737 OS.EmitIntValue(0, 1);
740 void BTFDebug::emitBTFSection() {
741 // Do not emit section if no types and only "" string.
742 if (!TypeEntries.size() && StringTable.getSize() == 1)
743 return;
745 MCContext &Ctx = OS.getContext();
746 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
748 // Emit header.
749 emitCommonHeader();
750 OS.EmitIntValue(BTF::HeaderSize, 4);
752 uint32_t TypeLen = 0, StrLen;
753 for (const auto &TypeEntry : TypeEntries)
754 TypeLen += TypeEntry->getSize();
755 StrLen = StringTable.getSize();
757 OS.EmitIntValue(0, 4);
758 OS.EmitIntValue(TypeLen, 4);
759 OS.EmitIntValue(TypeLen, 4);
760 OS.EmitIntValue(StrLen, 4);
762 // Emit type table.
763 for (const auto &TypeEntry : TypeEntries)
764 TypeEntry->emitType(OS);
766 // Emit string table.
767 uint32_t StringOffset = 0;
768 for (const auto &S : StringTable.getTable()) {
769 OS.AddComment("string offset=" + std::to_string(StringOffset));
770 OS.EmitBytes(S);
771 OS.EmitBytes(StringRef("\0", 1));
772 StringOffset += S.size() + 1;
776 void BTFDebug::emitBTFExtSection() {
777 // Do not emit section if empty FuncInfoTable and LineInfoTable.
778 if (!FuncInfoTable.size() && !LineInfoTable.size() &&
779 !OffsetRelocTable.size() && !ExternRelocTable.size())
780 return;
782 MCContext &Ctx = OS.getContext();
783 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
785 // Emit header.
786 emitCommonHeader();
787 OS.EmitIntValue(BTF::ExtHeaderSize, 4);
789 // Account for FuncInfo/LineInfo record size as well.
790 uint32_t FuncLen = 4, LineLen = 4;
791 // Do not account for optional OffsetReloc/ExternReloc.
792 uint32_t OffsetRelocLen = 0, ExternRelocLen = 0;
793 for (const auto &FuncSec : FuncInfoTable) {
794 FuncLen += BTF::SecFuncInfoSize;
795 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
797 for (const auto &LineSec : LineInfoTable) {
798 LineLen += BTF::SecLineInfoSize;
799 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
801 for (const auto &OffsetRelocSec : OffsetRelocTable) {
802 OffsetRelocLen += BTF::SecOffsetRelocSize;
803 OffsetRelocLen += OffsetRelocSec.second.size() * BTF::BPFOffsetRelocSize;
805 for (const auto &ExternRelocSec : ExternRelocTable) {
806 ExternRelocLen += BTF::SecExternRelocSize;
807 ExternRelocLen += ExternRelocSec.second.size() * BTF::BPFExternRelocSize;
810 if (OffsetRelocLen)
811 OffsetRelocLen += 4;
812 if (ExternRelocLen)
813 ExternRelocLen += 4;
815 OS.EmitIntValue(0, 4);
816 OS.EmitIntValue(FuncLen, 4);
817 OS.EmitIntValue(FuncLen, 4);
818 OS.EmitIntValue(LineLen, 4);
819 OS.EmitIntValue(FuncLen + LineLen, 4);
820 OS.EmitIntValue(OffsetRelocLen, 4);
821 OS.EmitIntValue(FuncLen + LineLen + OffsetRelocLen, 4);
822 OS.EmitIntValue(ExternRelocLen, 4);
824 // Emit func_info table.
825 OS.AddComment("FuncInfo");
826 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
827 for (const auto &FuncSec : FuncInfoTable) {
828 OS.AddComment("FuncInfo section string offset=" +
829 std::to_string(FuncSec.first));
830 OS.EmitIntValue(FuncSec.first, 4);
831 OS.EmitIntValue(FuncSec.second.size(), 4);
832 for (const auto &FuncInfo : FuncSec.second) {
833 Asm->EmitLabelReference(FuncInfo.Label, 4);
834 OS.EmitIntValue(FuncInfo.TypeId, 4);
838 // Emit line_info table.
839 OS.AddComment("LineInfo");
840 OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
841 for (const auto &LineSec : LineInfoTable) {
842 OS.AddComment("LineInfo section string offset=" +
843 std::to_string(LineSec.first));
844 OS.EmitIntValue(LineSec.first, 4);
845 OS.EmitIntValue(LineSec.second.size(), 4);
846 for (const auto &LineInfo : LineSec.second) {
847 Asm->EmitLabelReference(LineInfo.Label, 4);
848 OS.EmitIntValue(LineInfo.FileNameOff, 4);
849 OS.EmitIntValue(LineInfo.LineOff, 4);
850 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
851 std::to_string(LineInfo.ColumnNum));
852 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
856 // Emit offset reloc table.
857 if (OffsetRelocLen) {
858 OS.AddComment("OffsetReloc");
859 OS.EmitIntValue(BTF::BPFOffsetRelocSize, 4);
860 for (const auto &OffsetRelocSec : OffsetRelocTable) {
861 OS.AddComment("Offset reloc section string offset=" +
862 std::to_string(OffsetRelocSec.first));
863 OS.EmitIntValue(OffsetRelocSec.first, 4);
864 OS.EmitIntValue(OffsetRelocSec.second.size(), 4);
865 for (const auto &OffsetRelocInfo : OffsetRelocSec.second) {
866 Asm->EmitLabelReference(OffsetRelocInfo.Label, 4);
867 OS.EmitIntValue(OffsetRelocInfo.TypeID, 4);
868 OS.EmitIntValue(OffsetRelocInfo.OffsetNameOff, 4);
873 // Emit extern reloc table.
874 if (ExternRelocLen) {
875 OS.AddComment("ExternReloc");
876 OS.EmitIntValue(BTF::BPFExternRelocSize, 4);
877 for (const auto &ExternRelocSec : ExternRelocTable) {
878 OS.AddComment("Extern reloc section string offset=" +
879 std::to_string(ExternRelocSec.first));
880 OS.EmitIntValue(ExternRelocSec.first, 4);
881 OS.EmitIntValue(ExternRelocSec.second.size(), 4);
882 for (const auto &ExternRelocInfo : ExternRelocSec.second) {
883 Asm->EmitLabelReference(ExternRelocInfo.Label, 4);
884 OS.EmitIntValue(ExternRelocInfo.ExternNameOff, 4);
890 void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
891 auto *SP = MF->getFunction().getSubprogram();
892 auto *Unit = SP->getUnit();
894 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
895 SkipInstruction = true;
896 return;
898 SkipInstruction = false;
900 // Collect MapDef types. Map definition needs to collect
901 // pointee types. Do it first. Otherwise, for the following
902 // case:
903 // struct m { ...};
904 // struct t {
905 // struct m *key;
906 // };
907 // foo(struct t *arg);
909 // struct mapdef {
910 // ...
911 // struct m *key;
912 // ...
913 // } __attribute__((section(".maps"))) hash_map;
915 // If subroutine foo is traversed first, a type chain
916 // "ptr->struct m(fwd)" will be created and later on
917 // when traversing mapdef, since "ptr->struct m" exists,
918 // the traversal of "struct m" will be omitted.
919 if (MapDefNotCollected) {
920 processGlobals(true);
921 MapDefNotCollected = false;
924 // Collect all types locally referenced in this function.
925 // Use RetainedNodes so we can collect all argument names
926 // even if the argument is not used.
927 std::unordered_map<uint32_t, StringRef> FuncArgNames;
928 for (const DINode *DN : SP->getRetainedNodes()) {
929 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
930 // Collect function arguments for subprogram func type.
931 uint32_t Arg = DV->getArg();
932 if (Arg) {
933 visitTypeEntry(DV->getType());
934 FuncArgNames[Arg] = DV->getName();
939 // Construct subprogram func proto type.
940 uint32_t ProtoTypeId;
941 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
943 // Construct subprogram func type
944 auto FuncTypeEntry =
945 llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
946 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
948 for (const auto &TypeEntry : TypeEntries)
949 TypeEntry->completeType(*this);
951 // Construct funcinfo and the first lineinfo for the function.
952 MCSymbol *FuncLabel = Asm->getFunctionBegin();
953 BTFFuncInfo FuncInfo;
954 FuncInfo.Label = FuncLabel;
955 FuncInfo.TypeId = FuncTypeId;
956 if (FuncLabel->isInSection()) {
957 MCSection &Section = FuncLabel->getSection();
958 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
959 assert(SectionELF && "Null section for Function Label");
960 SecNameOff = addString(SectionELF->getSectionName());
961 } else {
962 SecNameOff = addString(".text");
964 FuncInfoTable[SecNameOff].push_back(FuncInfo);
967 void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
968 SkipInstruction = false;
969 LineInfoGenerated = false;
970 SecNameOff = 0;
973 /// On-demand populate struct types as requested from abstract member
974 /// accessing.
975 unsigned BTFDebug::populateStructType(const DIType *Ty) {
976 unsigned Id;
977 visitTypeEntry(Ty, Id, false, false);
978 for (const auto &TypeEntry : TypeEntries)
979 TypeEntry->completeType(*this);
980 return Id;
983 // Find struct/array debuginfo types given a type id.
984 void BTFDebug::setTypeFromId(uint32_t TypeId, BTFTypeStruct **PrevStructType,
985 BTFTypeArray **PrevArrayType) {
986 for (const auto &StructType : StructTypes) {
987 if (StructType->getId() == TypeId) {
988 *PrevStructType = StructType;
989 return;
992 for (const auto &ArrayType : ArrayTypes) {
993 if (ArrayType->getId() == TypeId) {
994 *PrevArrayType = ArrayType;
995 return;
1000 /// Generate a struct member offset relocation.
1001 void BTFDebug::generateOffsetReloc(const MachineInstr *MI,
1002 const MCSymbol *ORSym, DIType *RootTy,
1003 StringRef AccessPattern) {
1004 BTFTypeStruct *PrevStructType = nullptr;
1005 BTFTypeArray *PrevArrayType = nullptr;
1006 unsigned RootId = populateStructType(RootTy);
1007 setTypeFromId(RootId, &PrevStructType, &PrevArrayType);
1008 unsigned RootTySize = PrevStructType->getStructSize();
1010 BTFOffsetReloc OffsetReloc;
1011 OffsetReloc.Label = ORSym;
1012 OffsetReloc.OffsetNameOff = addString(AccessPattern.drop_back());
1013 OffsetReloc.TypeID = RootId;
1015 uint32_t Start = 0, End = 0, Offset = 0;
1016 bool FirstAccess = true;
1017 for (auto C : AccessPattern) {
1018 if (C != ':') {
1019 End++;
1020 } else {
1021 std::string SubStr = AccessPattern.substr(Start, End - Start);
1022 int Loc = std::stoi(SubStr);
1024 if (FirstAccess) {
1025 Offset = Loc * RootTySize;
1026 FirstAccess = false;
1027 } else if (PrevStructType) {
1028 uint32_t MemberOffset, MemberTypeId;
1029 PrevStructType->getMemberInfo(Loc, MemberOffset, MemberTypeId);
1031 Offset += MemberOffset >> 3;
1032 PrevStructType = nullptr;
1033 setTypeFromId(MemberTypeId, &PrevStructType, &PrevArrayType);
1034 } else if (PrevArrayType) {
1035 uint32_t LocOffset, ElementTypeId;
1036 PrevArrayType->getLocInfo(Loc, LocOffset, ElementTypeId);
1038 Offset += LocOffset;
1039 PrevArrayType = nullptr;
1040 setTypeFromId(ElementTypeId, &PrevStructType, &PrevArrayType);
1042 Start = End + 1;
1043 End = Start;
1046 AccessOffsets[RootTy->getName().str() + ":" + AccessPattern.str()] = Offset;
1047 OffsetRelocTable[SecNameOff].push_back(OffsetReloc);
1050 void BTFDebug::processLDimm64(const MachineInstr *MI) {
1051 // If the insn is an LD_imm64, the following two cases
1052 // will generate an .BTF.ext record.
1054 // If the insn is "r2 = LD_imm64 @__BTF_...",
1055 // add this insn into the .BTF.ext OffsetReloc subsection.
1056 // Relocation looks like:
1057 // . SecName:
1058 // . InstOffset
1059 // . TypeID
1060 // . OffSetNameOff
1061 // Later, the insn is replaced with "r2 = <offset>"
1062 // where "<offset>" equals to the offset based on current
1063 // type definitions.
1065 // If the insn is "r2 = LD_imm64 @VAR" and VAR is
1066 // a patchable external global, add this insn into the .BTF.ext
1067 // ExternReloc subsection.
1068 // Relocation looks like:
1069 // . SecName:
1070 // . InstOffset
1071 // . ExternNameOff
1072 // Later, the insn is replaced with "r2 = <value>" or
1073 // "LD_imm64 r2, <value>" where "<value>" = 0.
1075 // check whether this is a candidate or not
1076 const MachineOperand &MO = MI->getOperand(1);
1077 if (MO.isGlobal()) {
1078 const GlobalValue *GVal = MO.getGlobal();
1079 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1080 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1081 MCSymbol *ORSym = OS.getContext().createTempSymbol();
1082 OS.EmitLabel(ORSym);
1084 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1085 DIType *Ty = dyn_cast<DIType>(MDN);
1086 generateOffsetReloc(MI, ORSym, Ty, GVar->getName());
1087 } else if (GVar && !GVar->hasInitializer() && GVar->hasExternalLinkage() &&
1088 GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
1089 MCSymbol *ORSym = OS.getContext().createTempSymbol();
1090 OS.EmitLabel(ORSym);
1092 BTFExternReloc ExternReloc;
1093 ExternReloc.Label = ORSym;
1094 ExternReloc.ExternNameOff = addString(GVar->getName());
1095 ExternRelocTable[SecNameOff].push_back(ExternReloc);
1100 void BTFDebug::beginInstruction(const MachineInstr *MI) {
1101 DebugHandlerBase::beginInstruction(MI);
1103 if (SkipInstruction || MI->isMetaInstruction() ||
1104 MI->getFlag(MachineInstr::FrameSetup))
1105 return;
1107 if (MI->isInlineAsm()) {
1108 // Count the number of register definitions to find the asm string.
1109 unsigned NumDefs = 0;
1110 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
1111 ++NumDefs)
1114 // Skip this inline asm instruction if the asmstr is empty.
1115 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
1116 if (AsmStr[0] == 0)
1117 return;
1120 if (MI->getOpcode() == BPF::LD_imm64)
1121 processLDimm64(MI);
1123 // Skip this instruction if no DebugLoc or the DebugLoc
1124 // is the same as the previous instruction.
1125 const DebugLoc &DL = MI->getDebugLoc();
1126 if (!DL || PrevInstLoc == DL) {
1127 // This instruction will be skipped, no LineInfo has
1128 // been generated, construct one based on function signature.
1129 if (LineInfoGenerated == false) {
1130 auto *S = MI->getMF()->getFunction().getSubprogram();
1131 MCSymbol *FuncLabel = Asm->getFunctionBegin();
1132 constructLineInfo(S, FuncLabel, S->getLine(), 0);
1133 LineInfoGenerated = true;
1136 return;
1139 // Create a temporary label to remember the insn for lineinfo.
1140 MCSymbol *LineSym = OS.getContext().createTempSymbol();
1141 OS.EmitLabel(LineSym);
1143 // Construct the lineinfo.
1144 auto SP = DL.get()->getScope()->getSubprogram();
1145 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
1147 LineInfoGenerated = true;
1148 PrevInstLoc = DL;
1151 void BTFDebug::processGlobals(bool ProcessingMapDef) {
1152 // Collect all types referenced by globals.
1153 const Module *M = MMI->getModule();
1154 for (const GlobalVariable &Global : M->globals()) {
1155 // Ignore external globals for now.
1156 if (!Global.hasInitializer() && Global.hasExternalLinkage())
1157 continue;
1159 // Decide the section name.
1160 StringRef SecName;
1161 if (Global.hasSection()) {
1162 SecName = Global.getSection();
1163 } else {
1164 // data, bss, or readonly sections
1165 if (Global.isConstant())
1166 SecName = ".rodata";
1167 else
1168 SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
1171 if (ProcessingMapDef != SecName.startswith(".maps"))
1172 continue;
1174 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1175 Global.getDebugInfo(GVs);
1176 uint32_t GVTypeId = 0;
1177 for (auto *GVE : GVs) {
1178 if (SecName.startswith(".maps"))
1179 visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
1180 else
1181 visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
1182 break;
1185 // Only support the following globals:
1186 // . static variables
1187 // . non-static global variables with section attributes
1188 // Essentially means:
1189 // . .bcc/.data/.rodata DataSec entities only contain static data
1190 // . Other DataSec entities contain static or initialized global data.
1191 // Initialized global data are mostly used for finding map key/value type
1192 // id's. Whether DataSec is readonly or not can be found from
1193 // corresponding ELF section flags.
1194 auto Linkage = Global.getLinkage();
1195 if (Linkage != GlobalValue::InternalLinkage &&
1196 (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection()))
1197 continue;
1199 uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage
1200 ? BTF::VAR_GLOBAL_ALLOCATED
1201 : BTF::VAR_STATIC;
1202 auto VarEntry =
1203 llvm::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
1204 uint32_t VarId = addType(std::move(VarEntry));
1206 // Find or create a DataSec
1207 if (DataSecEntries.find(SecName) == DataSecEntries.end()) {
1208 DataSecEntries[SecName] = llvm::make_unique<BTFKindDataSec>(Asm, SecName);
1211 // Calculate symbol size
1212 const DataLayout &DL = Global.getParent()->getDataLayout();
1213 uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
1215 DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size);
1219 /// Emit proper patchable instructions.
1220 bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
1221 if (MI->getOpcode() == BPF::LD_imm64) {
1222 const MachineOperand &MO = MI->getOperand(1);
1223 if (MO.isGlobal()) {
1224 const GlobalValue *GVal = MO.getGlobal();
1225 auto *GVar = dyn_cast<GlobalVariable>(GVal);
1226 if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
1227 MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
1228 DIType *Ty = dyn_cast<DIType>(MDN);
1229 std::string TypeName = Ty->getName();
1230 int64_t Imm = AccessOffsets[TypeName + ":" + GVar->getName().str()];
1232 // Emit "mov ri, <imm>" for abstract member accesses.
1233 OutMI.setOpcode(BPF::MOV_ri);
1234 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1235 OutMI.addOperand(MCOperand::createImm(Imm));
1236 return true;
1237 } else if (GVar && !GVar->hasInitializer() &&
1238 GVar->hasExternalLinkage() &&
1239 GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
1240 const IntegerType *IntTy = dyn_cast<IntegerType>(GVar->getValueType());
1241 assert(IntTy);
1242 // For patchable externals, emit "LD_imm64, ri, 0" if the external
1243 // variable is 64bit width, emit "mov ri, 0" otherwise.
1244 if (IntTy->getBitWidth() == 64)
1245 OutMI.setOpcode(BPF::LD_imm64);
1246 else
1247 OutMI.setOpcode(BPF::MOV_ri);
1248 OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1249 OutMI.addOperand(MCOperand::createImm(0));
1250 return true;
1254 return false;
1257 void BTFDebug::endModule() {
1258 // Collect MapDef globals if not collected yet.
1259 if (MapDefNotCollected) {
1260 processGlobals(true);
1261 MapDefNotCollected = false;
1264 // Collect global types/variables except MapDef globals.
1265 processGlobals(false);
1266 for (auto &DataSec : DataSecEntries)
1267 addType(std::move(DataSec.second));
1269 // Fixups
1270 for (auto &Fixup : FixupDerivedTypes) {
1271 StringRef TypeName = Fixup.first;
1272 bool IsUnion = Fixup.second.first;
1274 // Search through struct types
1275 uint32_t StructTypeId = 0;
1276 for (const auto &StructType : StructTypes) {
1277 if (StructType->getName() == TypeName) {
1278 StructTypeId = StructType->getId();
1279 break;
1283 if (StructTypeId == 0) {
1284 auto FwdTypeEntry = llvm::make_unique<BTFTypeFwd>(TypeName, IsUnion);
1285 StructTypeId = addType(std::move(FwdTypeEntry));
1288 for (auto &DType : Fixup.second.second) {
1289 DType->setPointeeType(StructTypeId);
1293 // Complete BTF type cross refereences.
1294 for (const auto &TypeEntry : TypeEntries)
1295 TypeEntry->completeType(*this);
1297 // Emit BTF sections.
1298 emitBTFSection();
1299 emitBTFExtSection();