[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / Hexagon / HexagonBitSimplify.cpp
blob7b75d251ccd3201edf1af2acf6e4d481784d322a
1 //===- HexagonBitSimplify.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 #include <limits>
43 #include <utility>
44 #include <vector>
46 #define DEBUG_TYPE "hexbit"
48 using namespace llvm;
50 static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
51 cl::init(true), cl::desc("Preserve subregisters in tied operands"));
52 static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
53 cl::init(true), cl::desc("Generate extract instructions"));
54 static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
55 cl::init(true), cl::desc("Generate bitsplit instructions"));
57 static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
58 cl::init(std::numeric_limits<unsigned>::max()));
59 static unsigned CountExtract = 0;
60 static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
61 cl::init(std::numeric_limits<unsigned>::max()));
62 static unsigned CountBitSplit = 0;
64 namespace llvm {
66 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
67 FunctionPass *createHexagonBitSimplify();
69 } // end namespace llvm
71 namespace {
73 // Set of virtual registers, based on BitVector.
74 struct RegisterSet : private BitVector {
75 RegisterSet() = default;
76 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
77 RegisterSet(const RegisterSet &RS) = default;
79 using BitVector::clear;
80 using BitVector::count;
82 unsigned find_first() const {
83 int First = BitVector::find_first();
84 if (First < 0)
85 return 0;
86 return x2v(First);
89 unsigned find_next(unsigned Prev) const {
90 int Next = BitVector::find_next(v2x(Prev));
91 if (Next < 0)
92 return 0;
93 return x2v(Next);
96 RegisterSet &insert(unsigned R) {
97 unsigned Idx = v2x(R);
98 ensure(Idx);
99 return static_cast<RegisterSet&>(BitVector::set(Idx));
101 RegisterSet &remove(unsigned R) {
102 unsigned Idx = v2x(R);
103 if (Idx >= size())
104 return *this;
105 return static_cast<RegisterSet&>(BitVector::reset(Idx));
108 RegisterSet &insert(const RegisterSet &Rs) {
109 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
111 RegisterSet &remove(const RegisterSet &Rs) {
112 return static_cast<RegisterSet&>(BitVector::reset(Rs));
115 reference operator[](unsigned R) {
116 unsigned Idx = v2x(R);
117 ensure(Idx);
118 return BitVector::operator[](Idx);
120 bool operator[](unsigned R) const {
121 unsigned Idx = v2x(R);
122 assert(Idx < size());
123 return BitVector::operator[](Idx);
125 bool has(unsigned R) const {
126 unsigned Idx = v2x(R);
127 if (Idx >= size())
128 return false;
129 return BitVector::test(Idx);
132 bool empty() const {
133 return !BitVector::any();
135 bool includes(const RegisterSet &Rs) const {
136 // A.BitVector::test(B) <=> A-B != {}
137 return !Rs.BitVector::test(*this);
139 bool intersects(const RegisterSet &Rs) const {
140 return BitVector::anyCommon(Rs);
143 private:
144 void ensure(unsigned Idx) {
145 if (size() <= Idx)
146 resize(std::max(Idx+1, 32U));
149 static inline unsigned v2x(unsigned v) {
150 return TargetRegisterInfo::virtReg2Index(v);
153 static inline unsigned x2v(unsigned x) {
154 return TargetRegisterInfo::index2VirtReg(x);
158 struct PrintRegSet {
159 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
160 : RS(S), TRI(RI) {}
162 friend raw_ostream &operator<< (raw_ostream &OS,
163 const PrintRegSet &P);
165 private:
166 const RegisterSet &RS;
167 const TargetRegisterInfo *TRI;
170 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
171 LLVM_ATTRIBUTE_UNUSED;
172 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
173 OS << '{';
174 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
175 OS << ' ' << printReg(R, P.TRI);
176 OS << " }";
177 return OS;
180 class Transformation;
182 class HexagonBitSimplify : public MachineFunctionPass {
183 public:
184 static char ID;
186 HexagonBitSimplify() : MachineFunctionPass(ID) {}
188 StringRef getPassName() const override {
189 return "Hexagon bit simplification";
192 void getAnalysisUsage(AnalysisUsage &AU) const override {
193 AU.addRequired<MachineDominatorTree>();
194 AU.addPreserved<MachineDominatorTree>();
195 MachineFunctionPass::getAnalysisUsage(AU);
198 bool runOnMachineFunction(MachineFunction &MF) override;
200 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
201 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
202 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
203 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
204 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
205 uint16_t W);
206 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
207 uint16_t W, uint64_t &U);
208 static bool replaceReg(unsigned OldR, unsigned NewR,
209 MachineRegisterInfo &MRI);
210 static bool getSubregMask(const BitTracker::RegisterRef &RR,
211 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
212 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
213 unsigned NewSR, MachineRegisterInfo &MRI);
214 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
215 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
216 static bool parseRegSequence(const MachineInstr &I,
217 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
218 const MachineRegisterInfo &MRI);
220 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
221 uint16_t Begin);
222 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
223 uint16_t Begin, const HexagonInstrInfo &HII);
225 static const TargetRegisterClass *getFinalVRegClass(
226 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
227 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
228 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
230 private:
231 MachineDominatorTree *MDT = nullptr;
233 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
234 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
235 unsigned NewSub = Hexagon::NoSubRegister);
238 using HBS = HexagonBitSimplify;
240 // The purpose of this class is to provide a common facility to traverse
241 // the function top-down or bottom-up via the dominator tree, and keep
242 // track of the available registers.
243 class Transformation {
244 public:
245 bool TopDown;
247 Transformation(bool TD) : TopDown(TD) {}
248 virtual ~Transformation() = default;
250 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
253 } // end anonymous namespace
255 char HexagonBitSimplify::ID = 0;
257 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
258 "Hexagon bit simplification", false, false)
259 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
260 INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
261 "Hexagon bit simplification", false, false)
263 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
264 RegisterSet &AVs) {
265 bool Changed = false;
267 if (T.TopDown)
268 Changed = T.processBlock(B, AVs);
270 RegisterSet Defs;
271 for (auto &I : B)
272 getInstrDefs(I, Defs);
273 RegisterSet NewAVs = AVs;
274 NewAVs.insert(Defs);
276 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
277 Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
279 if (!T.TopDown)
280 Changed |= T.processBlock(B, AVs);
282 return Changed;
286 // Utility functions:
288 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
289 RegisterSet &Defs) {
290 for (auto &Op : MI.operands()) {
291 if (!Op.isReg() || !Op.isDef())
292 continue;
293 unsigned R = Op.getReg();
294 if (!TargetRegisterInfo::isVirtualRegister(R))
295 continue;
296 Defs.insert(R);
300 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
301 RegisterSet &Uses) {
302 for (auto &Op : MI.operands()) {
303 if (!Op.isReg() || !Op.isUse())
304 continue;
305 unsigned R = Op.getReg();
306 if (!TargetRegisterInfo::isVirtualRegister(R))
307 continue;
308 Uses.insert(R);
312 // Check if all the bits in range [B, E) in both cells are equal.
313 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
314 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
315 uint16_t W) {
316 for (uint16_t i = 0; i < W; ++i) {
317 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
318 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
319 return false;
320 // Same for RC2[i].
321 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
322 return false;
323 if (RC1[B1+i] != RC2[B2+i])
324 return false;
326 return true;
329 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
330 uint16_t B, uint16_t W) {
331 assert(B < RC.width() && B+W <= RC.width());
332 for (uint16_t i = B; i < B+W; ++i)
333 if (!RC[i].is(0))
334 return false;
335 return true;
338 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
339 uint16_t B, uint16_t W, uint64_t &U) {
340 assert(B < RC.width() && B+W <= RC.width());
341 int64_t T = 0;
342 for (uint16_t i = B+W; i > B; --i) {
343 const BitTracker::BitValue &BV = RC[i-1];
344 T <<= 1;
345 if (BV.is(1))
346 T |= 1;
347 else if (!BV.is(0))
348 return false;
350 U = T;
351 return true;
354 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
355 MachineRegisterInfo &MRI) {
356 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
357 !TargetRegisterInfo::isVirtualRegister(NewR))
358 return false;
359 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
360 decltype(End) NextI;
361 for (auto I = Begin; I != End; I = NextI) {
362 NextI = std::next(I);
363 I->setReg(NewR);
365 return Begin != End;
368 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
369 unsigned NewSR, MachineRegisterInfo &MRI) {
370 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
371 !TargetRegisterInfo::isVirtualRegister(NewR))
372 return false;
373 if (hasTiedUse(OldR, MRI, NewSR))
374 return false;
375 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
376 decltype(End) NextI;
377 for (auto I = Begin; I != End; I = NextI) {
378 NextI = std::next(I);
379 I->setReg(NewR);
380 I->setSubReg(NewSR);
382 return Begin != End;
385 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
386 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
387 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
388 !TargetRegisterInfo::isVirtualRegister(NewR))
389 return false;
390 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
391 return false;
392 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
393 decltype(End) NextI;
394 for (auto I = Begin; I != End; I = NextI) {
395 NextI = std::next(I);
396 if (I->getSubReg() != OldSR)
397 continue;
398 I->setReg(NewR);
399 I->setSubReg(NewSR);
401 return Begin != End;
404 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
405 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
406 // if this succeeded, otherwise return false.
407 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
408 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
409 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
410 if (RR.Sub == 0) {
411 Begin = 0;
412 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
413 return true;
416 Begin = 0;
418 switch (RC->getID()) {
419 case Hexagon::DoubleRegsRegClassID:
420 case Hexagon::HvxWRRegClassID:
421 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
422 if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
423 Begin = Width;
424 break;
425 default:
426 return false;
428 return true;
432 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
433 // subregister.
434 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
435 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
436 const MachineRegisterInfo &MRI) {
437 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
438 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
439 auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
440 auto &HRI = static_cast<const HexagonRegisterInfo&>(
441 *MRI.getTargetRegisterInfo());
442 unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
443 unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
444 assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
445 if (Sub1 == SubLo && Sub2 == SubHi) {
446 SL = I.getOperand(1);
447 SH = I.getOperand(3);
448 return true;
450 if (Sub1 == SubHi && Sub2 == SubLo) {
451 SH = I.getOperand(1);
452 SL = I.getOperand(3);
453 return true;
455 return false;
458 // All stores (except 64-bit stores) take a 32-bit register as the source
459 // of the value to be stored. If the instruction stores into a location
460 // that is shorter than 32 bits, some bits of the source register are not
461 // used. For each store instruction, calculate the set of used bits in
462 // the source register, and set appropriate bits in Bits. Return true if
463 // the bits are calculated, false otherwise.
464 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
465 uint16_t Begin) {
466 using namespace Hexagon;
468 switch (Opc) {
469 // Store byte
470 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
471 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
472 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
473 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
474 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
475 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
476 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
477 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
478 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
479 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
480 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
481 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
482 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
483 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
484 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
485 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
486 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
487 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
488 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
489 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
490 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
491 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
492 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
493 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
494 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
495 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
496 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
497 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
498 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
499 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
500 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
501 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
502 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
503 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
504 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
505 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
506 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
507 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
508 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
509 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
510 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
511 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
512 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
513 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
514 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
515 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
516 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
517 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
518 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
519 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
520 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
521 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
522 Bits.set(Begin, Begin+8);
523 return true;
525 // Store low half
526 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
527 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
528 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
529 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
530 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
531 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
532 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
533 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
534 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
535 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
536 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
537 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
538 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
539 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
540 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
541 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
542 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
543 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
544 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
545 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
546 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
547 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
548 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
549 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
550 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
551 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
552 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
553 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
554 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
555 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
556 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
557 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
558 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
559 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
560 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
561 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
562 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
563 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
564 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
565 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
566 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
567 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
568 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
569 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
570 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
571 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
572 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
573 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
574 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
575 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
576 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
577 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
578 Bits.set(Begin, Begin+16);
579 return true;
581 // Store high half
582 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
583 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
584 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
585 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
586 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
587 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
588 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
589 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
590 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
591 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
592 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
593 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
594 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
595 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
596 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
597 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
598 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
599 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
600 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
601 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
602 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
603 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
604 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
605 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
606 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
607 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
608 Bits.set(Begin+16, Begin+32);
609 return true;
612 return false;
615 // For an instruction with opcode Opc, calculate the set of bits that it
616 // uses in a register in operand OpN. This only calculates the set of used
617 // bits for cases where it does not depend on any operands (as is the case
618 // in shifts, for example). For concrete instructions from a program, the
619 // operand may be a subregister of a larger register, while Bits would
620 // correspond to the larger register in its entirety. Because of that,
621 // the parameter Begin can be used to indicate which bit of Bits should be
622 // considered the LSB of the operand.
623 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
624 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
625 using namespace Hexagon;
627 const MCInstrDesc &D = HII.get(Opc);
628 if (D.mayStore()) {
629 if (OpN == D.getNumOperands()-1)
630 return getUsedBitsInStore(Opc, Bits, Begin);
631 return false;
634 switch (Opc) {
635 // One register source. Used bits: R1[0-7].
636 case A2_sxtb:
637 case A2_zxtb:
638 case A4_cmpbeqi:
639 case A4_cmpbgti:
640 case A4_cmpbgtui:
641 if (OpN == 1) {
642 Bits.set(Begin, Begin+8);
643 return true;
645 break;
647 // One register source. Used bits: R1[0-15].
648 case A2_aslh:
649 case A2_sxth:
650 case A2_zxth:
651 case A4_cmpheqi:
652 case A4_cmphgti:
653 case A4_cmphgtui:
654 if (OpN == 1) {
655 Bits.set(Begin, Begin+16);
656 return true;
658 break;
660 // One register source. Used bits: R1[16-31].
661 case A2_asrh:
662 if (OpN == 1) {
663 Bits.set(Begin+16, Begin+32);
664 return true;
666 break;
668 // Two register sources. Used bits: R1[0-7], R2[0-7].
669 case A4_cmpbeq:
670 case A4_cmpbgt:
671 case A4_cmpbgtu:
672 if (OpN == 1) {
673 Bits.set(Begin, Begin+8);
674 return true;
676 break;
678 // Two register sources. Used bits: R1[0-15], R2[0-15].
679 case A4_cmpheq:
680 case A4_cmphgt:
681 case A4_cmphgtu:
682 case A2_addh_h16_ll:
683 case A2_addh_h16_sat_ll:
684 case A2_addh_l16_ll:
685 case A2_addh_l16_sat_ll:
686 case A2_combine_ll:
687 case A2_subh_h16_ll:
688 case A2_subh_h16_sat_ll:
689 case A2_subh_l16_ll:
690 case A2_subh_l16_sat_ll:
691 case M2_mpy_acc_ll_s0:
692 case M2_mpy_acc_ll_s1:
693 case M2_mpy_acc_sat_ll_s0:
694 case M2_mpy_acc_sat_ll_s1:
695 case M2_mpy_ll_s0:
696 case M2_mpy_ll_s1:
697 case M2_mpy_nac_ll_s0:
698 case M2_mpy_nac_ll_s1:
699 case M2_mpy_nac_sat_ll_s0:
700 case M2_mpy_nac_sat_ll_s1:
701 case M2_mpy_rnd_ll_s0:
702 case M2_mpy_rnd_ll_s1:
703 case M2_mpy_sat_ll_s0:
704 case M2_mpy_sat_ll_s1:
705 case M2_mpy_sat_rnd_ll_s0:
706 case M2_mpy_sat_rnd_ll_s1:
707 case M2_mpyd_acc_ll_s0:
708 case M2_mpyd_acc_ll_s1:
709 case M2_mpyd_ll_s0:
710 case M2_mpyd_ll_s1:
711 case M2_mpyd_nac_ll_s0:
712 case M2_mpyd_nac_ll_s1:
713 case M2_mpyd_rnd_ll_s0:
714 case M2_mpyd_rnd_ll_s1:
715 case M2_mpyu_acc_ll_s0:
716 case M2_mpyu_acc_ll_s1:
717 case M2_mpyu_ll_s0:
718 case M2_mpyu_ll_s1:
719 case M2_mpyu_nac_ll_s0:
720 case M2_mpyu_nac_ll_s1:
721 case M2_mpyud_acc_ll_s0:
722 case M2_mpyud_acc_ll_s1:
723 case M2_mpyud_ll_s0:
724 case M2_mpyud_ll_s1:
725 case M2_mpyud_nac_ll_s0:
726 case M2_mpyud_nac_ll_s1:
727 if (OpN == 1 || OpN == 2) {
728 Bits.set(Begin, Begin+16);
729 return true;
731 break;
733 // Two register sources. Used bits: R1[0-15], R2[16-31].
734 case A2_addh_h16_lh:
735 case A2_addh_h16_sat_lh:
736 case A2_combine_lh:
737 case A2_subh_h16_lh:
738 case A2_subh_h16_sat_lh:
739 case M2_mpy_acc_lh_s0:
740 case M2_mpy_acc_lh_s1:
741 case M2_mpy_acc_sat_lh_s0:
742 case M2_mpy_acc_sat_lh_s1:
743 case M2_mpy_lh_s0:
744 case M2_mpy_lh_s1:
745 case M2_mpy_nac_lh_s0:
746 case M2_mpy_nac_lh_s1:
747 case M2_mpy_nac_sat_lh_s0:
748 case M2_mpy_nac_sat_lh_s1:
749 case M2_mpy_rnd_lh_s0:
750 case M2_mpy_rnd_lh_s1:
751 case M2_mpy_sat_lh_s0:
752 case M2_mpy_sat_lh_s1:
753 case M2_mpy_sat_rnd_lh_s0:
754 case M2_mpy_sat_rnd_lh_s1:
755 case M2_mpyd_acc_lh_s0:
756 case M2_mpyd_acc_lh_s1:
757 case M2_mpyd_lh_s0:
758 case M2_mpyd_lh_s1:
759 case M2_mpyd_nac_lh_s0:
760 case M2_mpyd_nac_lh_s1:
761 case M2_mpyd_rnd_lh_s0:
762 case M2_mpyd_rnd_lh_s1:
763 case M2_mpyu_acc_lh_s0:
764 case M2_mpyu_acc_lh_s1:
765 case M2_mpyu_lh_s0:
766 case M2_mpyu_lh_s1:
767 case M2_mpyu_nac_lh_s0:
768 case M2_mpyu_nac_lh_s1:
769 case M2_mpyud_acc_lh_s0:
770 case M2_mpyud_acc_lh_s1:
771 case M2_mpyud_lh_s0:
772 case M2_mpyud_lh_s1:
773 case M2_mpyud_nac_lh_s0:
774 case M2_mpyud_nac_lh_s1:
775 // These four are actually LH.
776 case A2_addh_l16_hl:
777 case A2_addh_l16_sat_hl:
778 case A2_subh_l16_hl:
779 case A2_subh_l16_sat_hl:
780 if (OpN == 1) {
781 Bits.set(Begin, Begin+16);
782 return true;
784 if (OpN == 2) {
785 Bits.set(Begin+16, Begin+32);
786 return true;
788 break;
790 // Two register sources, used bits: R1[16-31], R2[0-15].
791 case A2_addh_h16_hl:
792 case A2_addh_h16_sat_hl:
793 case A2_combine_hl:
794 case A2_subh_h16_hl:
795 case A2_subh_h16_sat_hl:
796 case M2_mpy_acc_hl_s0:
797 case M2_mpy_acc_hl_s1:
798 case M2_mpy_acc_sat_hl_s0:
799 case M2_mpy_acc_sat_hl_s1:
800 case M2_mpy_hl_s0:
801 case M2_mpy_hl_s1:
802 case M2_mpy_nac_hl_s0:
803 case M2_mpy_nac_hl_s1:
804 case M2_mpy_nac_sat_hl_s0:
805 case M2_mpy_nac_sat_hl_s1:
806 case M2_mpy_rnd_hl_s0:
807 case M2_mpy_rnd_hl_s1:
808 case M2_mpy_sat_hl_s0:
809 case M2_mpy_sat_hl_s1:
810 case M2_mpy_sat_rnd_hl_s0:
811 case M2_mpy_sat_rnd_hl_s1:
812 case M2_mpyd_acc_hl_s0:
813 case M2_mpyd_acc_hl_s1:
814 case M2_mpyd_hl_s0:
815 case M2_mpyd_hl_s1:
816 case M2_mpyd_nac_hl_s0:
817 case M2_mpyd_nac_hl_s1:
818 case M2_mpyd_rnd_hl_s0:
819 case M2_mpyd_rnd_hl_s1:
820 case M2_mpyu_acc_hl_s0:
821 case M2_mpyu_acc_hl_s1:
822 case M2_mpyu_hl_s0:
823 case M2_mpyu_hl_s1:
824 case M2_mpyu_nac_hl_s0:
825 case M2_mpyu_nac_hl_s1:
826 case M2_mpyud_acc_hl_s0:
827 case M2_mpyud_acc_hl_s1:
828 case M2_mpyud_hl_s0:
829 case M2_mpyud_hl_s1:
830 case M2_mpyud_nac_hl_s0:
831 case M2_mpyud_nac_hl_s1:
832 if (OpN == 1) {
833 Bits.set(Begin+16, Begin+32);
834 return true;
836 if (OpN == 2) {
837 Bits.set(Begin, Begin+16);
838 return true;
840 break;
842 // Two register sources, used bits: R1[16-31], R2[16-31].
843 case A2_addh_h16_hh:
844 case A2_addh_h16_sat_hh:
845 case A2_combine_hh:
846 case A2_subh_h16_hh:
847 case A2_subh_h16_sat_hh:
848 case M2_mpy_acc_hh_s0:
849 case M2_mpy_acc_hh_s1:
850 case M2_mpy_acc_sat_hh_s0:
851 case M2_mpy_acc_sat_hh_s1:
852 case M2_mpy_hh_s0:
853 case M2_mpy_hh_s1:
854 case M2_mpy_nac_hh_s0:
855 case M2_mpy_nac_hh_s1:
856 case M2_mpy_nac_sat_hh_s0:
857 case M2_mpy_nac_sat_hh_s1:
858 case M2_mpy_rnd_hh_s0:
859 case M2_mpy_rnd_hh_s1:
860 case M2_mpy_sat_hh_s0:
861 case M2_mpy_sat_hh_s1:
862 case M2_mpy_sat_rnd_hh_s0:
863 case M2_mpy_sat_rnd_hh_s1:
864 case M2_mpyd_acc_hh_s0:
865 case M2_mpyd_acc_hh_s1:
866 case M2_mpyd_hh_s0:
867 case M2_mpyd_hh_s1:
868 case M2_mpyd_nac_hh_s0:
869 case M2_mpyd_nac_hh_s1:
870 case M2_mpyd_rnd_hh_s0:
871 case M2_mpyd_rnd_hh_s1:
872 case M2_mpyu_acc_hh_s0:
873 case M2_mpyu_acc_hh_s1:
874 case M2_mpyu_hh_s0:
875 case M2_mpyu_hh_s1:
876 case M2_mpyu_nac_hh_s0:
877 case M2_mpyu_nac_hh_s1:
878 case M2_mpyud_acc_hh_s0:
879 case M2_mpyud_acc_hh_s1:
880 case M2_mpyud_hh_s0:
881 case M2_mpyud_hh_s1:
882 case M2_mpyud_nac_hh_s0:
883 case M2_mpyud_nac_hh_s1:
884 if (OpN == 1 || OpN == 2) {
885 Bits.set(Begin+16, Begin+32);
886 return true;
888 break;
891 return false;
894 // Calculate the register class that matches Reg:Sub. For example, if
895 // %1 is a double register, then %1:isub_hi would match the "int"
896 // register class.
897 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
898 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
899 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
900 return nullptr;
901 auto *RC = MRI.getRegClass(RR.Reg);
902 if (RR.Sub == 0)
903 return RC;
904 auto &HRI = static_cast<const HexagonRegisterInfo&>(
905 *MRI.getTargetRegisterInfo());
907 auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
908 (void)HRI;
909 assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
910 Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
913 switch (RC->getID()) {
914 case Hexagon::DoubleRegsRegClassID:
915 VerifySR(RC, RR.Sub);
916 return &Hexagon::IntRegsRegClass;
917 case Hexagon::HvxWRRegClassID:
918 VerifySR(RC, RR.Sub);
919 return &Hexagon::HvxVRRegClass;
921 return nullptr;
924 // Check if RD could be replaced with RS at any possible use of RD.
925 // For example a predicate register cannot be replaced with a integer
926 // register, but a 64-bit register with a subregister can be replaced
927 // with a 32-bit register.
928 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
929 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
930 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
931 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
932 return false;
933 // Return false if one (or both) classes are nullptr.
934 auto *DRC = getFinalVRegClass(RD, MRI);
935 if (!DRC)
936 return false;
938 return DRC == getFinalVRegClass(RS, MRI);
941 bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
942 unsigned NewSub) {
943 if (!PreserveTiedOps)
944 return false;
945 return llvm::any_of(MRI.use_operands(Reg),
946 [NewSub] (const MachineOperand &Op) -> bool {
947 return Op.getSubReg() != NewSub && Op.isTied();
951 namespace {
953 class DeadCodeElimination {
954 public:
955 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
956 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
957 MDT(mdt), MRI(mf.getRegInfo()) {}
959 bool run() {
960 return runOnNode(MDT.getRootNode());
963 private:
964 bool isDead(unsigned R) const;
965 bool runOnNode(MachineDomTreeNode *N);
967 MachineFunction &MF;
968 const HexagonInstrInfo &HII;
969 MachineDominatorTree &MDT;
970 MachineRegisterInfo &MRI;
973 } // end anonymous namespace
975 bool DeadCodeElimination::isDead(unsigned R) const {
976 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
977 MachineInstr *UseI = I->getParent();
978 if (UseI->isDebugValue())
979 continue;
980 if (UseI->isPHI()) {
981 assert(!UseI->getOperand(0).getSubReg());
982 unsigned DR = UseI->getOperand(0).getReg();
983 if (DR == R)
984 continue;
986 return false;
988 return true;
991 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
992 bool Changed = false;
994 for (auto *DTN : children<MachineDomTreeNode*>(N))
995 Changed |= runOnNode(DTN);
997 MachineBasicBlock *B = N->getBlock();
998 std::vector<MachineInstr*> Instrs;
999 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
1000 Instrs.push_back(&*I);
1002 for (auto MI : Instrs) {
1003 unsigned Opc = MI->getOpcode();
1004 // Do not touch lifetime markers. This is why the target-independent DCE
1005 // cannot be used.
1006 if (Opc == TargetOpcode::LIFETIME_START ||
1007 Opc == TargetOpcode::LIFETIME_END)
1008 continue;
1009 bool Store = false;
1010 if (MI->isInlineAsm())
1011 continue;
1012 // Delete PHIs if possible.
1013 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
1014 continue;
1016 bool AllDead = true;
1017 SmallVector<unsigned,2> Regs;
1018 for (auto &Op : MI->operands()) {
1019 if (!Op.isReg() || !Op.isDef())
1020 continue;
1021 unsigned R = Op.getReg();
1022 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
1023 AllDead = false;
1024 break;
1026 Regs.push_back(R);
1028 if (!AllDead)
1029 continue;
1031 B->erase(MI);
1032 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
1033 MRI.markUsesInDebugValueAsUndef(Regs[i]);
1034 Changed = true;
1037 return Changed;
1040 namespace {
1042 // Eliminate redundant instructions
1044 // This transformation will identify instructions where the output register
1045 // is the same as one of its input registers. This only works on instructions
1046 // that define a single register (unlike post-increment loads, for example).
1047 // The equality check is actually more detailed: the code calculates which
1048 // bits of the output are used, and only compares these bits with the input
1049 // registers.
1050 // If the output matches an input, the instruction is replaced with COPY.
1051 // The copies will be removed by another transformation.
1052 class RedundantInstrElimination : public Transformation {
1053 public:
1054 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1055 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1056 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1058 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1060 private:
1061 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1062 unsigned &LostB, unsigned &LostE);
1063 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1064 unsigned &LostB, unsigned &LostE);
1065 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1066 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1067 uint16_t Begin);
1068 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1070 const HexagonInstrInfo &HII;
1071 const HexagonRegisterInfo &HRI;
1072 MachineRegisterInfo &MRI;
1073 BitTracker &BT;
1076 } // end anonymous namespace
1078 // Check if the instruction is a lossy shift left, where the input being
1079 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1080 // of bit indices that are lost.
1081 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1082 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1083 using namespace Hexagon;
1085 unsigned Opc = MI.getOpcode();
1086 unsigned ImN, RegN, Width;
1087 switch (Opc) {
1088 case S2_asl_i_p:
1089 ImN = 2;
1090 RegN = 1;
1091 Width = 64;
1092 break;
1093 case S2_asl_i_p_acc:
1094 case S2_asl_i_p_and:
1095 case S2_asl_i_p_nac:
1096 case S2_asl_i_p_or:
1097 case S2_asl_i_p_xacc:
1098 ImN = 3;
1099 RegN = 2;
1100 Width = 64;
1101 break;
1102 case S2_asl_i_r:
1103 ImN = 2;
1104 RegN = 1;
1105 Width = 32;
1106 break;
1107 case S2_addasl_rrri:
1108 case S4_andi_asl_ri:
1109 case S4_ori_asl_ri:
1110 case S4_addi_asl_ri:
1111 case S4_subi_asl_ri:
1112 case S2_asl_i_r_acc:
1113 case S2_asl_i_r_and:
1114 case S2_asl_i_r_nac:
1115 case S2_asl_i_r_or:
1116 case S2_asl_i_r_sat:
1117 case S2_asl_i_r_xacc:
1118 ImN = 3;
1119 RegN = 2;
1120 Width = 32;
1121 break;
1122 default:
1123 return false;
1126 if (RegN != OpN)
1127 return false;
1129 assert(MI.getOperand(ImN).isImm());
1130 unsigned S = MI.getOperand(ImN).getImm();
1131 if (S == 0)
1132 return false;
1133 LostB = Width-S;
1134 LostE = Width;
1135 return true;
1138 // Check if the instruction is a lossy shift right, where the input being
1139 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1140 // of bit indices that are lost.
1141 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1142 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1143 using namespace Hexagon;
1145 unsigned Opc = MI.getOpcode();
1146 unsigned ImN, RegN;
1147 switch (Opc) {
1148 case S2_asr_i_p:
1149 case S2_lsr_i_p:
1150 ImN = 2;
1151 RegN = 1;
1152 break;
1153 case S2_asr_i_p_acc:
1154 case S2_asr_i_p_and:
1155 case S2_asr_i_p_nac:
1156 case S2_asr_i_p_or:
1157 case S2_lsr_i_p_acc:
1158 case S2_lsr_i_p_and:
1159 case S2_lsr_i_p_nac:
1160 case S2_lsr_i_p_or:
1161 case S2_lsr_i_p_xacc:
1162 ImN = 3;
1163 RegN = 2;
1164 break;
1165 case S2_asr_i_r:
1166 case S2_lsr_i_r:
1167 ImN = 2;
1168 RegN = 1;
1169 break;
1170 case S4_andi_lsr_ri:
1171 case S4_ori_lsr_ri:
1172 case S4_addi_lsr_ri:
1173 case S4_subi_lsr_ri:
1174 case S2_asr_i_r_acc:
1175 case S2_asr_i_r_and:
1176 case S2_asr_i_r_nac:
1177 case S2_asr_i_r_or:
1178 case S2_lsr_i_r_acc:
1179 case S2_lsr_i_r_and:
1180 case S2_lsr_i_r_nac:
1181 case S2_lsr_i_r_or:
1182 case S2_lsr_i_r_xacc:
1183 ImN = 3;
1184 RegN = 2;
1185 break;
1187 default:
1188 return false;
1191 if (RegN != OpN)
1192 return false;
1194 assert(MI.getOperand(ImN).isImm());
1195 unsigned S = MI.getOperand(ImN).getImm();
1196 LostB = 0;
1197 LostE = S;
1198 return true;
1201 // Calculate the bit vector that corresponds to the used bits of register Reg.
1202 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1203 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1204 // wise, it returns true and sets the corresponding bits in Bits.
1205 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1206 BitVector Used(Bits.size());
1207 RegisterSet Visited;
1208 std::vector<unsigned> Pending;
1209 Pending.push_back(Reg);
1211 for (unsigned i = 0; i < Pending.size(); ++i) {
1212 unsigned R = Pending[i];
1213 if (Visited.has(R))
1214 continue;
1215 Visited.insert(R);
1216 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1217 BitTracker::RegisterRef UR = *I;
1218 unsigned B, W;
1219 if (!HBS::getSubregMask(UR, B, W, MRI))
1220 return false;
1221 MachineInstr &UseI = *I->getParent();
1222 if (UseI.isPHI() || UseI.isCopy()) {
1223 unsigned DefR = UseI.getOperand(0).getReg();
1224 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1225 return false;
1226 Pending.push_back(DefR);
1227 } else {
1228 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1229 return false;
1233 Bits |= Used;
1234 return true;
1237 // Calculate the bits used by instruction MI in a register in operand OpN.
1238 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1239 // used bits in Bits. This function does not reset any bits in Bits, so
1240 // subsequent calls over different instructions will result in the union
1241 // of the used bits in all these instructions.
1242 // The register in question may be used with a sub-register, whereas Bits
1243 // holds the bits for the entire register. To keep track of that, the
1244 // argument Begin indicates where in Bits is the lowest-significant bit
1245 // of the register used in operand OpN. For example, in instruction:
1246 // %1 = S2_lsr_i_r %2:isub_hi, 10
1247 // the operand 1 is a 32-bit register, which happens to be a subregister
1248 // of the 64-bit register %2, and that subregister starts at position 32.
1249 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1250 // of %2:isub_hi.
1251 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1252 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1253 unsigned Opc = MI.getOpcode();
1254 BitVector T(Bits.size());
1255 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1256 // Even if we don't have bits yet, we could still provide some information
1257 // if the instruction is a lossy shift: the lost bits will be marked as
1258 // not used.
1259 unsigned LB, LE;
1260 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1261 assert(MI.getOperand(OpN).isReg());
1262 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1263 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1264 uint16_t Width = HRI.getRegSizeInBits(*RC);
1266 if (!GotBits)
1267 T.set(Begin, Begin+Width);
1268 assert(LB <= LE && LB < Width && LE <= Width);
1269 T.reset(Begin+LB, Begin+LE);
1270 GotBits = true;
1272 if (GotBits)
1273 Bits |= T;
1274 return GotBits;
1277 // Calculates the used bits in RD ("defined register"), and checks if these
1278 // bits in RS ("used register") and RD are identical.
1279 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1280 BitTracker::RegisterRef RS) {
1281 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1282 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1284 unsigned DB, DW;
1285 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1286 return false;
1287 unsigned SB, SW;
1288 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1289 return false;
1290 if (SW != DW)
1291 return false;
1293 BitVector Used(DC.width());
1294 if (!computeUsedBits(RD.Reg, Used))
1295 return false;
1297 for (unsigned i = 0; i != DW; ++i)
1298 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1299 return false;
1300 return true;
1303 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1304 const RegisterSet&) {
1305 if (!BT.reached(&B))
1306 return false;
1307 bool Changed = false;
1309 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1310 NextI = std::next(I);
1311 MachineInstr *MI = &*I;
1313 if (MI->getOpcode() == TargetOpcode::COPY)
1314 continue;
1315 if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1316 continue;
1317 unsigned NumD = MI->getDesc().getNumDefs();
1318 if (NumD != 1)
1319 continue;
1321 BitTracker::RegisterRef RD = MI->getOperand(0);
1322 if (!BT.has(RD.Reg))
1323 continue;
1324 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1325 auto At = MachineBasicBlock::iterator(MI);
1327 // Find a source operand that is equal to the result.
1328 for (auto &Op : MI->uses()) {
1329 if (!Op.isReg())
1330 continue;
1331 BitTracker::RegisterRef RS = Op;
1332 if (!BT.has(RS.Reg))
1333 continue;
1334 if (!HBS::isTransparentCopy(RD, RS, MRI))
1335 continue;
1337 unsigned BN, BW;
1338 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1339 continue;
1341 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1342 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1343 continue;
1345 // If found, replace the instruction with a COPY.
1346 const DebugLoc &DL = MI->getDebugLoc();
1347 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1348 unsigned NewR = MRI.createVirtualRegister(FRC);
1349 MachineInstr *CopyI =
1350 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1351 .addReg(RS.Reg, 0, RS.Sub);
1352 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1353 // This pass can create copies between registers that don't have the
1354 // exact same values. Updating the tracker has to involve updating
1355 // all dependent cells. Example:
1356 // %1 = inst %2 ; %1 != %2, but used bits are equal
1358 // %3 = copy %2 ; <- inserted
1359 // ... = %3 ; <- replaced from %2
1360 // Indirectly, we can create a "copy" between %1 and %2 even
1361 // though their exact values do not match.
1362 BT.visit(*CopyI);
1363 Changed = true;
1364 break;
1368 return Changed;
1371 namespace {
1373 // Recognize instructions that produce constant values known at compile-time.
1374 // Replace them with register definitions that load these constants directly.
1375 class ConstGeneration : public Transformation {
1376 public:
1377 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1378 MachineRegisterInfo &mri)
1379 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1381 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1382 static bool isTfrConst(const MachineInstr &MI);
1384 private:
1385 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1386 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1388 const HexagonInstrInfo &HII;
1389 MachineRegisterInfo &MRI;
1390 BitTracker &BT;
1393 } // end anonymous namespace
1395 bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1396 unsigned Opc = MI.getOpcode();
1397 switch (Opc) {
1398 case Hexagon::A2_combineii:
1399 case Hexagon::A4_combineii:
1400 case Hexagon::A2_tfrsi:
1401 case Hexagon::A2_tfrpi:
1402 case Hexagon::PS_true:
1403 case Hexagon::PS_false:
1404 case Hexagon::CONST32:
1405 case Hexagon::CONST64:
1406 return true;
1408 return false;
1411 // Generate a transfer-immediate instruction that is appropriate for the
1412 // register class and the actual value being transferred.
1413 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1414 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1415 unsigned Reg = MRI.createVirtualRegister(RC);
1416 if (RC == &Hexagon::IntRegsRegClass) {
1417 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1418 .addImm(int32_t(C));
1419 return Reg;
1422 if (RC == &Hexagon::DoubleRegsRegClass) {
1423 if (isInt<8>(C)) {
1424 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1425 .addImm(C);
1426 return Reg;
1429 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1430 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1431 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1432 : Hexagon::A4_combineii;
1433 BuildMI(B, At, DL, HII.get(Opc), Reg)
1434 .addImm(int32_t(Hi))
1435 .addImm(int32_t(Lo));
1436 return Reg;
1439 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1440 .addImm(C);
1441 return Reg;
1444 if (RC == &Hexagon::PredRegsRegClass) {
1445 unsigned Opc;
1446 if (C == 0)
1447 Opc = Hexagon::PS_false;
1448 else if ((C & 0xFF) == 0xFF)
1449 Opc = Hexagon::PS_true;
1450 else
1451 return 0;
1452 BuildMI(B, At, DL, HII.get(Opc), Reg);
1453 return Reg;
1456 return 0;
1459 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1460 if (!BT.reached(&B))
1461 return false;
1462 bool Changed = false;
1463 RegisterSet Defs;
1465 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1466 if (isTfrConst(*I))
1467 continue;
1468 Defs.clear();
1469 HBS::getInstrDefs(*I, Defs);
1470 if (Defs.count() != 1)
1471 continue;
1472 unsigned DR = Defs.find_first();
1473 if (!TargetRegisterInfo::isVirtualRegister(DR))
1474 continue;
1475 uint64_t U;
1476 const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1477 if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1478 int64_t C = U;
1479 DebugLoc DL = I->getDebugLoc();
1480 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1481 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1482 if (ImmReg) {
1483 HBS::replaceReg(DR, ImmReg, MRI);
1484 BT.put(ImmReg, DRC);
1485 Changed = true;
1489 return Changed;
1492 namespace {
1494 // Identify pairs of available registers which hold identical values.
1495 // In such cases, only one of them needs to be calculated, the other one
1496 // will be defined as a copy of the first.
1497 class CopyGeneration : public Transformation {
1498 public:
1499 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1500 const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1501 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1503 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1505 private:
1506 bool findMatch(const BitTracker::RegisterRef &Inp,
1507 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1509 const HexagonInstrInfo &HII;
1510 const HexagonRegisterInfo &HRI;
1511 MachineRegisterInfo &MRI;
1512 BitTracker &BT;
1513 RegisterSet Forbidden;
1516 // Eliminate register copies RD = RS, by replacing the uses of RD with
1517 // with uses of RS.
1518 class CopyPropagation : public Transformation {
1519 public:
1520 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1521 : Transformation(false), HRI(hri), MRI(mri) {}
1523 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1525 static bool isCopyReg(unsigned Opc, bool NoConv);
1527 private:
1528 bool propagateRegCopy(MachineInstr &MI);
1530 const HexagonRegisterInfo &HRI;
1531 MachineRegisterInfo &MRI;
1534 } // end anonymous namespace
1536 /// Check if there is a register in AVs that is identical to Inp. If so,
1537 /// set Out to the found register. The output may be a pair Reg:Sub.
1538 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1539 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1540 if (!BT.has(Inp.Reg))
1541 return false;
1542 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1543 auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1544 unsigned B, W;
1545 if (!HBS::getSubregMask(Inp, B, W, MRI))
1546 return false;
1548 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1549 if (!BT.has(R) || Forbidden[R])
1550 continue;
1551 const BitTracker::RegisterCell &RC = BT.lookup(R);
1552 unsigned RW = RC.width();
1553 if (W == RW) {
1554 if (FRC != MRI.getRegClass(R))
1555 continue;
1556 if (!HBS::isTransparentCopy(R, Inp, MRI))
1557 continue;
1558 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1559 continue;
1560 Out.Reg = R;
1561 Out.Sub = 0;
1562 return true;
1564 // Check if there is a super-register, whose part (with a subregister)
1565 // is equal to the input.
1566 // Only do double registers for now.
1567 if (W*2 != RW)
1568 continue;
1569 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1570 continue;
1572 if (HBS::isEqual(InpRC, B, RC, 0, W))
1573 Out.Sub = Hexagon::isub_lo;
1574 else if (HBS::isEqual(InpRC, B, RC, W, W))
1575 Out.Sub = Hexagon::isub_hi;
1576 else
1577 continue;
1578 Out.Reg = R;
1579 if (HBS::isTransparentCopy(Out, Inp, MRI))
1580 return true;
1582 return false;
1585 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1586 const RegisterSet &AVs) {
1587 if (!BT.reached(&B))
1588 return false;
1589 RegisterSet AVB(AVs);
1590 bool Changed = false;
1591 RegisterSet Defs;
1593 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1594 ++I, AVB.insert(Defs)) {
1595 NextI = std::next(I);
1596 Defs.clear();
1597 HBS::getInstrDefs(*I, Defs);
1599 unsigned Opc = I->getOpcode();
1600 if (CopyPropagation::isCopyReg(Opc, false) ||
1601 ConstGeneration::isTfrConst(*I))
1602 continue;
1604 DebugLoc DL = I->getDebugLoc();
1605 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1607 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1608 BitTracker::RegisterRef MR;
1609 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1611 if (findMatch(R, MR, AVB)) {
1612 unsigned NewR = MRI.createVirtualRegister(FRC);
1613 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1614 .addReg(MR.Reg, 0, MR.Sub);
1615 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1616 HBS::replaceReg(R, NewR, MRI);
1617 Forbidden.insert(R);
1618 continue;
1621 if (FRC == &Hexagon::DoubleRegsRegClass ||
1622 FRC == &Hexagon::HvxWRRegClass) {
1623 // Try to generate REG_SEQUENCE.
1624 unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1625 unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1626 BitTracker::RegisterRef TL = { R, SubLo };
1627 BitTracker::RegisterRef TH = { R, SubHi };
1628 BitTracker::RegisterRef ML, MH;
1629 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1630 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1631 unsigned NewR = MRI.createVirtualRegister(FRC);
1632 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1633 .addReg(ML.Reg, 0, ML.Sub)
1634 .addImm(SubLo)
1635 .addReg(MH.Reg, 0, MH.Sub)
1636 .addImm(SubHi);
1637 BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1638 HBS::replaceReg(R, NewR, MRI);
1639 Forbidden.insert(R);
1645 return Changed;
1648 bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1649 switch (Opc) {
1650 case TargetOpcode::COPY:
1651 case TargetOpcode::REG_SEQUENCE:
1652 case Hexagon::A4_combineir:
1653 case Hexagon::A4_combineri:
1654 return true;
1655 case Hexagon::A2_tfr:
1656 case Hexagon::A2_tfrp:
1657 case Hexagon::A2_combinew:
1658 case Hexagon::V6_vcombine:
1659 return NoConv;
1660 default:
1661 break;
1663 return false;
1666 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1667 bool Changed = false;
1668 unsigned Opc = MI.getOpcode();
1669 BitTracker::RegisterRef RD = MI.getOperand(0);
1670 assert(MI.getOperand(0).getSubReg() == 0);
1672 switch (Opc) {
1673 case TargetOpcode::COPY:
1674 case Hexagon::A2_tfr:
1675 case Hexagon::A2_tfrp: {
1676 BitTracker::RegisterRef RS = MI.getOperand(1);
1677 if (!HBS::isTransparentCopy(RD, RS, MRI))
1678 break;
1679 if (RS.Sub != 0)
1680 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1681 else
1682 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1683 break;
1685 case TargetOpcode::REG_SEQUENCE: {
1686 BitTracker::RegisterRef SL, SH;
1687 if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1688 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1689 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1690 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1691 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1692 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1694 break;
1696 case Hexagon::A2_combinew:
1697 case Hexagon::V6_vcombine: {
1698 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1699 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1700 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1701 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1702 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1703 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1704 break;
1706 case Hexagon::A4_combineir:
1707 case Hexagon::A4_combineri: {
1708 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1709 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1710 : Hexagon::isub_hi;
1711 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1712 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1713 break;
1716 return Changed;
1719 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1720 std::vector<MachineInstr*> Instrs;
1721 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1722 Instrs.push_back(&*I);
1724 bool Changed = false;
1725 for (auto I : Instrs) {
1726 unsigned Opc = I->getOpcode();
1727 if (!CopyPropagation::isCopyReg(Opc, true))
1728 continue;
1729 Changed |= propagateRegCopy(*I);
1732 return Changed;
1735 namespace {
1737 // Recognize patterns that can be simplified and replace them with the
1738 // simpler forms.
1739 // This is by no means complete
1740 class BitSimplification : public Transformation {
1741 public:
1742 BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1743 const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1744 MachineRegisterInfo &mri, MachineFunction &mf)
1745 : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1746 MF(mf), BT(bt) {}
1748 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1750 private:
1751 struct RegHalf : public BitTracker::RegisterRef {
1752 bool Low; // Low/High halfword.
1755 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1756 unsigned B, RegHalf &RH);
1757 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1759 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1760 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1761 unsigned getCombineOpcode(bool HLow, bool LLow);
1763 bool genStoreUpperHalf(MachineInstr *MI);
1764 bool genStoreImmediate(MachineInstr *MI);
1765 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1766 const BitTracker::RegisterCell &RC);
1767 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1768 const BitTracker::RegisterCell &RC);
1769 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1770 const BitTracker::RegisterCell &RC);
1771 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1772 const BitTracker::RegisterCell &RC);
1773 bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1774 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1775 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1776 const BitTracker::RegisterCell &RC);
1777 bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1778 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1779 bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1781 // Cache of created instructions to avoid creating duplicates.
1782 // XXX Currently only used by genBitSplit.
1783 std::vector<MachineInstr*> NewMIs;
1785 const MachineDominatorTree &MDT;
1786 const HexagonInstrInfo &HII;
1787 const HexagonRegisterInfo &HRI;
1788 MachineRegisterInfo &MRI;
1789 MachineFunction &MF;
1790 BitTracker &BT;
1793 } // end anonymous namespace
1795 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1796 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1797 // set the information about the found register in RH.
1798 bool BitSimplification::matchHalf(unsigned SelfR,
1799 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1800 // XXX This could be searching in the set of available registers, in case
1801 // the match is not exact.
1803 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1804 // register and all the bits B..B+15 match between RC and the register.
1805 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1806 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1807 bool Low = false;
1808 unsigned I = B;
1809 while (I < B+16 && RC[I].num())
1810 I++;
1811 if (I == B+16)
1812 return false;
1814 unsigned Reg = RC[I].RefI.Reg;
1815 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1816 if (P < I-B)
1817 return false;
1818 unsigned Pos = P - (I-B);
1820 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1821 return false;
1822 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1823 return false;
1824 if (!BT.has(Reg))
1825 return false;
1827 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1828 if (Pos+16 > SC.width())
1829 return false;
1831 for (unsigned i = 0; i < 16; ++i) {
1832 const BitTracker::BitValue &RV = RC[i+B];
1833 if (RV.Type == BitTracker::BitValue::Ref) {
1834 if (RV.RefI.Reg != Reg)
1835 return false;
1836 if (RV.RefI.Pos != i+Pos)
1837 return false;
1838 continue;
1840 if (RC[i+B] != SC[i+Pos])
1841 return false;
1844 unsigned Sub = 0;
1845 switch (Pos) {
1846 case 0:
1847 Sub = Hexagon::isub_lo;
1848 Low = true;
1849 break;
1850 case 16:
1851 Sub = Hexagon::isub_lo;
1852 Low = false;
1853 break;
1854 case 32:
1855 Sub = Hexagon::isub_hi;
1856 Low = true;
1857 break;
1858 case 48:
1859 Sub = Hexagon::isub_hi;
1860 Low = false;
1861 break;
1862 default:
1863 return false;
1866 RH.Reg = Reg;
1867 RH.Sub = Sub;
1868 RH.Low = Low;
1869 // If the subregister is not valid with the register, set it to 0.
1870 if (!HBS::getFinalVRegClass(RH, MRI))
1871 RH.Sub = 0;
1873 return true;
1876 bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1877 unsigned OpNum) {
1878 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1879 auto *RRC = HBS::getFinalVRegClass(R, MRI);
1880 return OpRC->hasSubClassEq(RRC);
1883 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1884 // set the inputs Rs and Rt.
1885 bool BitSimplification::matchPackhl(unsigned SelfR,
1886 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1887 BitTracker::RegisterRef &Rt) {
1888 RegHalf L1, H1, L2, H2;
1890 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1891 return false;
1892 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1893 return false;
1895 // Rs = H1.L1, Rt = H2.L2
1896 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1897 return false;
1898 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1899 return false;
1901 Rs = H1;
1902 Rt = H2;
1903 return true;
1906 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1907 return HLow ? LLow ? Hexagon::A2_combine_ll
1908 : Hexagon::A2_combine_lh
1909 : LLow ? Hexagon::A2_combine_hl
1910 : Hexagon::A2_combine_hh;
1913 // If MI stores the upper halfword of a register (potentially obtained via
1914 // shifts or extracts), replace it with a storerf instruction. This could
1915 // cause the "extraction" code to become dead.
1916 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1917 unsigned Opc = MI->getOpcode();
1918 if (Opc != Hexagon::S2_storerh_io)
1919 return false;
1921 MachineOperand &ValOp = MI->getOperand(2);
1922 BitTracker::RegisterRef RS = ValOp;
1923 if (!BT.has(RS.Reg))
1924 return false;
1925 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1926 RegHalf H;
1927 if (!matchHalf(0, RC, 0, H))
1928 return false;
1929 if (H.Low)
1930 return false;
1931 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1932 ValOp.setReg(H.Reg);
1933 ValOp.setSubReg(H.Sub);
1934 return true;
1937 // If MI stores a value known at compile-time, and the value is within a range
1938 // that avoids using constant-extenders, replace it with a store-immediate.
1939 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1940 unsigned Opc = MI->getOpcode();
1941 unsigned Align = 0;
1942 switch (Opc) {
1943 case Hexagon::S2_storeri_io:
1944 Align++;
1945 LLVM_FALLTHROUGH;
1946 case Hexagon::S2_storerh_io:
1947 Align++;
1948 LLVM_FALLTHROUGH;
1949 case Hexagon::S2_storerb_io:
1950 break;
1951 default:
1952 return false;
1955 // Avoid stores to frame-indices (due to an unknown offset).
1956 if (!MI->getOperand(0).isReg())
1957 return false;
1958 MachineOperand &OffOp = MI->getOperand(1);
1959 if (!OffOp.isImm())
1960 return false;
1962 int64_t Off = OffOp.getImm();
1963 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1964 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1965 return false;
1966 // Source register:
1967 BitTracker::RegisterRef RS = MI->getOperand(2);
1968 if (!BT.has(RS.Reg))
1969 return false;
1970 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1971 uint64_t U;
1972 if (!HBS::getConst(RC, 0, RC.width(), U))
1973 return false;
1975 // Only consider 8-bit values to avoid constant-extenders.
1976 int V;
1977 switch (Opc) {
1978 case Hexagon::S2_storerb_io:
1979 V = int8_t(U);
1980 break;
1981 case Hexagon::S2_storerh_io:
1982 V = int16_t(U);
1983 break;
1984 case Hexagon::S2_storeri_io:
1985 V = int32_t(U);
1986 break;
1987 default:
1988 // Opc is already checked above to be one of the three store instructions.
1989 // This silences a -Wuninitialized false positive on GCC 5.4.
1990 llvm_unreachable("Unexpected store opcode");
1992 if (!isInt<8>(V))
1993 return false;
1995 MI->RemoveOperand(2);
1996 switch (Opc) {
1997 case Hexagon::S2_storerb_io:
1998 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1999 break;
2000 case Hexagon::S2_storerh_io:
2001 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2002 break;
2003 case Hexagon::S2_storeri_io:
2004 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2005 break;
2007 MI->addOperand(MachineOperand::CreateImm(V));
2008 return true;
2011 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2012 // last instruction in a sequence that results in something equivalent to
2013 // the pack-halfwords. The intent is to cause the entire sequence to become
2014 // dead.
2015 bool BitSimplification::genPackhl(MachineInstr *MI,
2016 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2017 unsigned Opc = MI->getOpcode();
2018 if (Opc == Hexagon::S2_packhl)
2019 return false;
2020 BitTracker::RegisterRef Rs, Rt;
2021 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2022 return false;
2023 if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2024 !validateReg(Rt, Hexagon::S2_packhl, 2))
2025 return false;
2027 MachineBasicBlock &B = *MI->getParent();
2028 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2029 DebugLoc DL = MI->getDebugLoc();
2030 auto At = MI->isPHI() ? B.getFirstNonPHI()
2031 : MachineBasicBlock::iterator(MI);
2032 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2033 .addReg(Rs.Reg, 0, Rs.Sub)
2034 .addReg(Rt.Reg, 0, Rt.Sub);
2035 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2036 BT.put(BitTracker::RegisterRef(NewR), RC);
2037 return true;
2040 // If MI produces halfword of the input in the low half of the output,
2041 // replace it with zero-extend or extractu.
2042 bool BitSimplification::genExtractHalf(MachineInstr *MI,
2043 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2044 RegHalf L;
2045 // Check for halfword in low 16 bits, zeros elsewhere.
2046 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2047 return false;
2049 unsigned Opc = MI->getOpcode();
2050 MachineBasicBlock &B = *MI->getParent();
2051 DebugLoc DL = MI->getDebugLoc();
2053 // Prefer zxth, since zxth can go in any slot, while extractu only in
2054 // slots 2 and 3.
2055 unsigned NewR = 0;
2056 auto At = MI->isPHI() ? B.getFirstNonPHI()
2057 : MachineBasicBlock::iterator(MI);
2058 if (L.Low && Opc != Hexagon::A2_zxth) {
2059 if (validateReg(L, Hexagon::A2_zxth, 1)) {
2060 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2061 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2062 .addReg(L.Reg, 0, L.Sub);
2064 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2065 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2066 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2067 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2068 .addReg(L.Reg, 0, L.Sub)
2069 .addImm(16);
2072 if (NewR == 0)
2073 return false;
2074 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2075 BT.put(BitTracker::RegisterRef(NewR), RC);
2076 return true;
2079 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2080 // combine.
2081 bool BitSimplification::genCombineHalf(MachineInstr *MI,
2082 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2083 RegHalf L, H;
2084 // Check for combine h/l
2085 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2086 return false;
2087 // Do nothing if this is just a reg copy.
2088 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2089 return false;
2091 unsigned Opc = MI->getOpcode();
2092 unsigned COpc = getCombineOpcode(H.Low, L.Low);
2093 if (COpc == Opc)
2094 return false;
2095 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2096 return false;
2098 MachineBasicBlock &B = *MI->getParent();
2099 DebugLoc DL = MI->getDebugLoc();
2100 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2101 auto At = MI->isPHI() ? B.getFirstNonPHI()
2102 : MachineBasicBlock::iterator(MI);
2103 BuildMI(B, At, DL, HII.get(COpc), NewR)
2104 .addReg(H.Reg, 0, H.Sub)
2105 .addReg(L.Reg, 0, L.Sub);
2106 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2107 BT.put(BitTracker::RegisterRef(NewR), RC);
2108 return true;
2111 // If MI resets high bits of a register and keeps the lower ones, replace it
2112 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2113 bool BitSimplification::genExtractLow(MachineInstr *MI,
2114 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2115 unsigned Opc = MI->getOpcode();
2116 switch (Opc) {
2117 case Hexagon::A2_zxtb:
2118 case Hexagon::A2_zxth:
2119 case Hexagon::S2_extractu:
2120 return false;
2122 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2123 int32_t Imm = MI->getOperand(2).getImm();
2124 if (isInt<10>(Imm))
2125 return false;
2128 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2129 return false;
2130 unsigned W = RC.width();
2131 while (W > 0 && RC[W-1].is(0))
2132 W--;
2133 if (W == 0 || W == RC.width())
2134 return false;
2135 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2136 : (W == 16) ? Hexagon::A2_zxth
2137 : (W < 10) ? Hexagon::A2_andir
2138 : Hexagon::S2_extractu;
2139 MachineBasicBlock &B = *MI->getParent();
2140 DebugLoc DL = MI->getDebugLoc();
2142 for (auto &Op : MI->uses()) {
2143 if (!Op.isReg())
2144 continue;
2145 BitTracker::RegisterRef RS = Op;
2146 if (!BT.has(RS.Reg))
2147 continue;
2148 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2149 unsigned BN, BW;
2150 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2151 continue;
2152 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2153 continue;
2154 if (!validateReg(RS, NewOpc, 1))
2155 continue;
2157 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2158 auto At = MI->isPHI() ? B.getFirstNonPHI()
2159 : MachineBasicBlock::iterator(MI);
2160 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2161 .addReg(RS.Reg, 0, RS.Sub);
2162 if (NewOpc == Hexagon::A2_andir)
2163 MIB.addImm((1 << W) - 1);
2164 else if (NewOpc == Hexagon::S2_extractu)
2165 MIB.addImm(W).addImm(0);
2166 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2167 BT.put(BitTracker::RegisterRef(NewR), RC);
2168 return true;
2170 return false;
2173 bool BitSimplification::genBitSplit(MachineInstr *MI,
2174 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2175 const RegisterSet &AVs) {
2176 if (!GenBitSplit)
2177 return false;
2178 if (MaxBitSplit.getNumOccurrences()) {
2179 if (CountBitSplit >= MaxBitSplit)
2180 return false;
2183 unsigned Opc = MI->getOpcode();
2184 switch (Opc) {
2185 case Hexagon::A4_bitsplit:
2186 case Hexagon::A4_bitspliti:
2187 return false;
2190 unsigned W = RC.width();
2191 if (W != 32)
2192 return false;
2194 auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2195 unsigned Z = C.width();
2196 while (Z > 0 && C[Z-1].is(0))
2197 --Z;
2198 return C.width() - Z;
2201 // Count the number of leading zeros in the target RC.
2202 unsigned Z = ctlz(RC);
2203 if (Z == 0 || Z == W)
2204 return false;
2206 // A simplistic analysis: assume the source register (the one being split)
2207 // is fully unknown, and that all its bits are self-references.
2208 const BitTracker::BitValue &B0 = RC[0];
2209 if (B0.Type != BitTracker::BitValue::Ref)
2210 return false;
2212 unsigned SrcR = B0.RefI.Reg;
2213 unsigned SrcSR = 0;
2214 unsigned Pos = B0.RefI.Pos;
2216 // All the non-zero bits should be consecutive bits from the same register.
2217 for (unsigned i = 1; i < W-Z; ++i) {
2218 const BitTracker::BitValue &V = RC[i];
2219 if (V.Type != BitTracker::BitValue::Ref)
2220 return false;
2221 if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2222 return false;
2225 // Now, find the other bitfield among AVs.
2226 for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2227 // The number of leading zeros here should be the number of trailing
2228 // non-zeros in RC.
2229 unsigned SRC = MRI.getRegClass(S)->getID();
2230 if (SRC != Hexagon::IntRegsRegClassID &&
2231 SRC != Hexagon::DoubleRegsRegClassID)
2232 continue;
2233 if (!BT.has(S))
2234 continue;
2235 const BitTracker::RegisterCell &SC = BT.lookup(S);
2236 if (SC.width() != W || ctlz(SC) != W-Z)
2237 continue;
2238 // The Z lower bits should now match SrcR.
2239 const BitTracker::BitValue &S0 = SC[0];
2240 if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2241 continue;
2242 unsigned P = S0.RefI.Pos;
2244 if (Pos <= P && (Pos + W-Z) != P)
2245 continue;
2246 if (P < Pos && (P + Z) != Pos)
2247 continue;
2248 // The starting bitfield position must be at a subregister boundary.
2249 if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2250 continue;
2252 unsigned I;
2253 for (I = 1; I < Z; ++I) {
2254 const BitTracker::BitValue &V = SC[I];
2255 if (V.Type != BitTracker::BitValue::Ref)
2256 break;
2257 if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2258 break;
2260 if (I != Z)
2261 continue;
2263 // Generate bitsplit where S is defined.
2264 if (MaxBitSplit.getNumOccurrences())
2265 CountBitSplit++;
2266 MachineInstr *DefS = MRI.getVRegDef(S);
2267 assert(DefS != nullptr);
2268 DebugLoc DL = DefS->getDebugLoc();
2269 MachineBasicBlock &B = *DefS->getParent();
2270 auto At = DefS->isPHI() ? B.getFirstNonPHI()
2271 : MachineBasicBlock::iterator(DefS);
2272 if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2273 SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2274 if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2275 continue;
2276 unsigned ImmOp = Pos <= P ? W-Z : Z;
2278 // Find an existing bitsplit instruction if one already exists.
2279 unsigned NewR = 0;
2280 for (MachineInstr *In : NewMIs) {
2281 if (In->getOpcode() != Hexagon::A4_bitspliti)
2282 continue;
2283 MachineOperand &Op1 = In->getOperand(1);
2284 if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2285 continue;
2286 if (In->getOperand(2).getImm() != ImmOp)
2287 continue;
2288 // Check if the target register is available here.
2289 MachineOperand &Op0 = In->getOperand(0);
2290 MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2291 assert(DefI != nullptr);
2292 if (!MDT.dominates(DefI, &*At))
2293 continue;
2295 // Found one that can be reused.
2296 assert(Op0.getSubReg() == 0);
2297 NewR = Op0.getReg();
2298 break;
2300 if (!NewR) {
2301 NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2302 auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2303 .addReg(SrcR, 0, SrcSR)
2304 .addImm(ImmOp);
2305 NewMIs.push_back(NewBS);
2307 if (Pos <= P) {
2308 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2309 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
2310 } else {
2311 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
2312 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2314 return true;
2317 return false;
2320 // Check for tstbit simplification opportunity, where the bit being checked
2321 // can be tracked back to another register. For example:
2322 // %2 = S2_lsr_i_r %1, 5
2323 // %3 = S2_tstbit_i %2, 0
2324 // =>
2325 // %3 = S2_tstbit_i %1, 5
2326 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2327 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2328 unsigned Opc = MI->getOpcode();
2329 if (Opc != Hexagon::S2_tstbit_i)
2330 return false;
2332 unsigned BN = MI->getOperand(2).getImm();
2333 BitTracker::RegisterRef RS = MI->getOperand(1);
2334 unsigned F, W;
2335 DebugLoc DL = MI->getDebugLoc();
2336 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2337 return false;
2338 MachineBasicBlock &B = *MI->getParent();
2339 auto At = MI->isPHI() ? B.getFirstNonPHI()
2340 : MachineBasicBlock::iterator(MI);
2342 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2343 const BitTracker::BitValue &V = SC[F+BN];
2344 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2345 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2346 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2347 // a double register, need to use a subregister and adjust bit
2348 // number.
2349 unsigned P = std::numeric_limits<unsigned>::max();
2350 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2351 if (TC == &Hexagon::DoubleRegsRegClass) {
2352 P = V.RefI.Pos;
2353 RR.Sub = Hexagon::isub_lo;
2354 if (P >= 32) {
2355 P -= 32;
2356 RR.Sub = Hexagon::isub_hi;
2358 } else if (TC == &Hexagon::IntRegsRegClass) {
2359 P = V.RefI.Pos;
2361 if (P != std::numeric_limits<unsigned>::max()) {
2362 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2363 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2364 .addReg(RR.Reg, 0, RR.Sub)
2365 .addImm(P);
2366 HBS::replaceReg(RD.Reg, NewR, MRI);
2367 BT.put(NewR, RC);
2368 return true;
2370 } else if (V.is(0) || V.is(1)) {
2371 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2372 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2373 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2374 HBS::replaceReg(RD.Reg, NewR, MRI);
2375 return true;
2378 return false;
2381 // Detect whether RD is a bitfield extract (sign- or zero-extended) of
2382 // some register from the AVs set. Create a new corresponding instruction
2383 // at the location of MI. The intent is to recognize situations where
2384 // a sequence of instructions performs an operation that is equivalent to
2385 // an extract operation, such as a shift left followed by a shift right.
2386 bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2387 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
2388 const RegisterSet &AVs) {
2389 if (!GenExtract)
2390 return false;
2391 if (MaxExtract.getNumOccurrences()) {
2392 if (CountExtract >= MaxExtract)
2393 return false;
2394 CountExtract++;
2397 unsigned W = RC.width();
2398 unsigned RW = W;
2399 unsigned Len;
2400 bool Signed;
2402 // The code is mostly class-independent, except for the part that generates
2403 // the extract instruction, and establishes the source register (in case it
2404 // needs to use a subregister).
2405 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2406 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2407 return false;
2408 assert(RD.Sub == 0);
2410 // Observation:
2411 // If the cell has a form of 00..0xx..x with k zeros and n remaining
2412 // bits, this could be an extractu of the n bits, but it could also be
2413 // an extractu of a longer field which happens to have 0s in the top
2414 // bit positions.
2415 // The same logic applies to sign-extended fields.
2417 // Do not check for the extended extracts, since it would expand the
2418 // search space quite a bit. The search may be expensive as it is.
2420 const BitTracker::BitValue &TopV = RC[W-1];
2422 // Eliminate candidates that have self-referential bits, since they
2423 // cannot be extracts from other registers. Also, skip registers that
2424 // have compile-time constant values.
2425 bool IsConst = true;
2426 for (unsigned I = 0; I != W; ++I) {
2427 const BitTracker::BitValue &V = RC[I];
2428 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2429 return false;
2430 IsConst = IsConst && (V.is(0) || V.is(1));
2432 if (IsConst)
2433 return false;
2435 if (TopV.is(0) || TopV.is(1)) {
2436 bool S = TopV.is(1);
2437 for (--W; W > 0 && RC[W-1].is(S); --W)
2439 Len = W;
2440 Signed = S;
2441 // The sign bit must be a part of the field being extended.
2442 if (Signed)
2443 ++Len;
2444 } else {
2445 // This could still be a sign-extended extract.
2446 assert(TopV.Type == BitTracker::BitValue::Ref);
2447 if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2448 return false;
2449 for (--W; W > 0 && RC[W-1] == TopV; --W)
2451 // The top bits of RC are copies of TopV. One occurrence of TopV will
2452 // be a part of the field.
2453 Len = W + 1;
2454 Signed = true;
2457 // This would be just a copy. It should be handled elsewhere.
2458 if (Len == RW)
2459 return false;
2461 LLVM_DEBUG({
2462 dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2463 << ", MI: " << *MI;
2464 dbgs() << "Cell: " << RC << '\n';
2465 dbgs() << "Expected bitfield size: " << Len << " bits, "
2466 << (Signed ? "sign" : "zero") << "-extended\n";
2469 bool Changed = false;
2471 for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2472 if (!BT.has(R))
2473 continue;
2474 const BitTracker::RegisterCell &SC = BT.lookup(R);
2475 unsigned SW = SC.width();
2477 // The source can be longer than the destination, as long as its size is
2478 // a multiple of the size of the destination. Also, we would need to be
2479 // able to refer to the subregister in the source that would be of the
2480 // same size as the destination, but only check the sizes here.
2481 if (SW < RW || (SW % RW) != 0)
2482 continue;
2484 // The field can start at any offset in SC as long as it contains Len
2485 // bits and does not cross subregister boundary (if the source register
2486 // is longer than the destination).
2487 unsigned Off = 0;
2488 while (Off <= SW-Len) {
2489 unsigned OE = (Off+Len)/RW;
2490 if (OE != Off/RW) {
2491 // The assumption here is that if the source (R) is longer than the
2492 // destination, then the destination is a sequence of words of
2493 // size RW, and each such word in R can be accessed via a subregister.
2495 // If the beginning and the end of the field cross the subregister
2496 // boundary, advance to the next subregister.
2497 Off = OE*RW;
2498 continue;
2500 if (HBS::isEqual(RC, 0, SC, Off, Len))
2501 break;
2502 ++Off;
2505 if (Off > SW-Len)
2506 continue;
2508 // Found match.
2509 unsigned ExtOpc = 0;
2510 if (Off == 0) {
2511 if (Len == 8)
2512 ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2513 else if (Len == 16)
2514 ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2515 else if (Len < 10 && !Signed)
2516 ExtOpc = Hexagon::A2_andir;
2518 if (ExtOpc == 0) {
2519 ExtOpc =
2520 Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
2521 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2523 unsigned SR = 0;
2524 // This only recognizes isub_lo and isub_hi.
2525 if (RW != SW && RW*2 != SW)
2526 continue;
2527 if (RW != SW)
2528 SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2529 Off = Off % RW;
2531 if (!validateReg({R,SR}, ExtOpc, 1))
2532 continue;
2534 // Don't generate the same instruction as the one being optimized.
2535 if (MI->getOpcode() == ExtOpc) {
2536 // All possible ExtOpc's have the source in operand(1).
2537 const MachineOperand &SrcOp = MI->getOperand(1);
2538 if (SrcOp.getReg() == R)
2539 continue;
2542 DebugLoc DL = MI->getDebugLoc();
2543 MachineBasicBlock &B = *MI->getParent();
2544 unsigned NewR = MRI.createVirtualRegister(FRC);
2545 auto At = MI->isPHI() ? B.getFirstNonPHI()
2546 : MachineBasicBlock::iterator(MI);
2547 auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2548 .addReg(R, 0, SR);
2549 switch (ExtOpc) {
2550 case Hexagon::A2_sxtb:
2551 case Hexagon::A2_zxtb:
2552 case Hexagon::A2_sxth:
2553 case Hexagon::A2_zxth:
2554 break;
2555 case Hexagon::A2_andir:
2556 MIB.addImm((1u << Len) - 1);
2557 break;
2558 case Hexagon::S4_extract:
2559 case Hexagon::S2_extractu:
2560 case Hexagon::S4_extractp:
2561 case Hexagon::S2_extractup:
2562 MIB.addImm(Len)
2563 .addImm(Off);
2564 break;
2565 default:
2566 llvm_unreachable("Unexpected opcode");
2569 HBS::replaceReg(RD.Reg, NewR, MRI);
2570 BT.put(BitTracker::RegisterRef(NewR), RC);
2571 Changed = true;
2572 break;
2575 return Changed;
2578 bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2579 BitTracker::RegisterRef RD) {
2580 unsigned Opc = MI->getOpcode();
2581 if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2582 return false;
2583 MachineOperand &CmpOp = MI->getOperand(2);
2584 if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2585 return false;
2587 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2588 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2589 return false;
2590 assert(RD.Sub == 0);
2592 MachineBasicBlock &B = *MI->getParent();
2593 const DebugLoc &DL = MI->getDebugLoc();
2594 auto At = MI->isPHI() ? B.getFirstNonPHI()
2595 : MachineBasicBlock::iterator(MI);
2596 bool KnownZ = true;
2597 bool KnownNZ = false;
2599 BitTracker::RegisterRef SR = MI->getOperand(1);
2600 if (!BT.has(SR.Reg))
2601 return false;
2602 const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2603 unsigned F, W;
2604 if (!HBS::getSubregMask(SR, F, W, MRI))
2605 return false;
2607 for (uint16_t I = F; I != F+W; ++I) {
2608 const BitTracker::BitValue &V = SC[I];
2609 if (!V.is(0))
2610 KnownZ = false;
2611 if (V.is(1))
2612 KnownNZ = true;
2615 auto ReplaceWithConst = [&] (int C) {
2616 unsigned NewR = MRI.createVirtualRegister(FRC);
2617 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2618 .addImm(C);
2619 HBS::replaceReg(RD.Reg, NewR, MRI);
2620 BitTracker::RegisterCell NewRC(W);
2621 for (uint16_t I = 0; I != W; ++I) {
2622 NewRC[I] = BitTracker::BitValue(C & 1);
2623 C = unsigned(C) >> 1;
2625 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2626 return true;
2629 auto IsNonZero = [] (const MachineOperand &Op) {
2630 if (Op.isGlobal() || Op.isBlockAddress())
2631 return true;
2632 if (Op.isImm())
2633 return Op.getImm() != 0;
2634 if (Op.isCImm())
2635 return !Op.getCImm()->isZero();
2636 if (Op.isFPImm())
2637 return !Op.getFPImm()->isZero();
2638 return false;
2641 auto IsZero = [] (const MachineOperand &Op) {
2642 if (Op.isGlobal() || Op.isBlockAddress())
2643 return false;
2644 if (Op.isImm())
2645 return Op.getImm() == 0;
2646 if (Op.isCImm())
2647 return Op.getCImm()->isZero();
2648 if (Op.isFPImm())
2649 return Op.getFPImm()->isZero();
2650 return false;
2653 // If the source register is known to be 0 or non-0, the comparison can
2654 // be folded to a load of a constant.
2655 if (KnownZ || KnownNZ) {
2656 assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2657 return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2660 // Special case: if the compare comes from a C2_muxii, then we know the
2661 // two possible constants that can be the source value.
2662 MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2663 if (!InpDef)
2664 return false;
2665 if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2666 MachineOperand &Src1 = InpDef->getOperand(2);
2667 MachineOperand &Src2 = InpDef->getOperand(3);
2668 // Check if both are non-zero.
2669 bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2670 if (KnownNZ1 && KnownNZ2)
2671 return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2672 // Check if both are zero.
2673 bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2674 if (KnownZ1 && KnownZ2)
2675 return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2677 // If for both operands we know that they are either 0 or non-0,
2678 // replace the comparison with a C2_muxii, using the same predicate
2679 // register, but with operands substituted with 0/1 accordingly.
2680 if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2681 unsigned NewR = MRI.createVirtualRegister(FRC);
2682 BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2683 .addReg(InpDef->getOperand(1).getReg())
2684 .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2685 .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2686 HBS::replaceReg(RD.Reg, NewR, MRI);
2687 // Create a new cell with only the least significant bit unknown.
2688 BitTracker::RegisterCell NewRC(W);
2689 NewRC[0] = BitTracker::BitValue::self();
2690 NewRC.fill(1, W, BitTracker::BitValue::Zero);
2691 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2692 return true;
2696 return false;
2699 bool BitSimplification::processBlock(MachineBasicBlock &B,
2700 const RegisterSet &AVs) {
2701 if (!BT.reached(&B))
2702 return false;
2703 bool Changed = false;
2704 RegisterSet AVB = AVs;
2705 RegisterSet Defs;
2707 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2708 MachineInstr *MI = &*I;
2709 Defs.clear();
2710 HBS::getInstrDefs(*MI, Defs);
2712 unsigned Opc = MI->getOpcode();
2713 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2714 continue;
2716 if (MI->mayStore()) {
2717 bool T = genStoreUpperHalf(MI);
2718 T = T || genStoreImmediate(MI);
2719 Changed |= T;
2720 continue;
2723 if (Defs.count() != 1)
2724 continue;
2725 const MachineOperand &Op0 = MI->getOperand(0);
2726 if (!Op0.isReg() || !Op0.isDef())
2727 continue;
2728 BitTracker::RegisterRef RD = Op0;
2729 if (!BT.has(RD.Reg))
2730 continue;
2731 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2732 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2734 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2735 bool T = genPackhl(MI, RD, RC);
2736 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2737 Changed |= T;
2738 continue;
2741 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2742 bool T = genBitSplit(MI, RD, RC, AVB);
2743 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2744 T = T || genExtractHalf(MI, RD, RC);
2745 T = T || genCombineHalf(MI, RD, RC);
2746 T = T || genExtractLow(MI, RD, RC);
2747 T = T || simplifyRCmp0(MI, RD);
2748 Changed |= T;
2749 continue;
2752 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2753 bool T = simplifyTstbit(MI, RD, RC);
2754 Changed |= T;
2755 continue;
2758 return Changed;
2761 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2762 if (skipFunction(MF.getFunction()))
2763 return false;
2765 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2766 auto &HRI = *HST.getRegisterInfo();
2767 auto &HII = *HST.getInstrInfo();
2769 MDT = &getAnalysis<MachineDominatorTree>();
2770 MachineRegisterInfo &MRI = MF.getRegInfo();
2771 bool Changed;
2773 Changed = DeadCodeElimination(MF, *MDT).run();
2775 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2776 BitTracker BT(HE, MF);
2777 LLVM_DEBUG(BT.trace(true));
2778 BT.run();
2780 MachineBasicBlock &Entry = MF.front();
2782 RegisterSet AIG; // Available registers for IG.
2783 ConstGeneration ImmG(BT, HII, MRI);
2784 Changed |= visitBlock(Entry, ImmG, AIG);
2786 RegisterSet ARE; // Available registers for RIE.
2787 RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2788 bool Ried = visitBlock(Entry, RIE, ARE);
2789 if (Ried) {
2790 Changed = true;
2791 BT.run();
2794 RegisterSet ACG; // Available registers for CG.
2795 CopyGeneration CopyG(BT, HII, HRI, MRI);
2796 Changed |= visitBlock(Entry, CopyG, ACG);
2798 RegisterSet ACP; // Available registers for CP.
2799 CopyPropagation CopyP(HRI, MRI);
2800 Changed |= visitBlock(Entry, CopyP, ACP);
2802 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2804 BT.run();
2805 RegisterSet ABS; // Available registers for BS.
2806 BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2807 Changed |= visitBlock(Entry, BitS, ABS);
2809 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2811 if (Changed) {
2812 for (auto &B : MF)
2813 for (auto &I : B)
2814 I.clearKillInfo();
2815 DeadCodeElimination(MF, *MDT).run();
2817 return Changed;
2820 // Recognize loops where the code at the end of the loop matches the code
2821 // before the entry of the loop, and the matching code is such that is can
2822 // be simplified. This pass relies on the bit simplification above and only
2823 // prepares code in a way that can be handled by the bit simplifcation.
2825 // This is the motivating testcase (and explanation):
2827 // {
2828 // loop0(.LBB0_2, r1) // %for.body.preheader
2829 // r5:4 = memd(r0++#8)
2830 // }
2831 // {
2832 // r3 = lsr(r4, #16)
2833 // r7:6 = combine(r5, r5)
2834 // }
2835 // {
2836 // r3 = insert(r5, #16, #16)
2837 // r7:6 = vlsrw(r7:6, #16)
2838 // }
2839 // .LBB0_2:
2840 // {
2841 // memh(r2+#4) = r5
2842 // memh(r2+#6) = r6 # R6 is really R5.H
2843 // }
2844 // {
2845 // r2 = add(r2, #8)
2846 // memh(r2+#0) = r4
2847 // memh(r2+#2) = r3 # R3 is really R4.H
2848 // }
2849 // {
2850 // r5:4 = memd(r0++#8)
2851 // }
2852 // { # "Shuffling" code that sets up R3 and R6
2853 // r3 = lsr(r4, #16) # so that their halves can be stored in the
2854 // r7:6 = combine(r5, r5) # next iteration. This could be folded into
2855 // } # the stores if the code was at the beginning
2856 // { # of the loop iteration. Since the same code
2857 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2858 // r7:6 = vlsrw(r7:6, #16) # there.
2859 // }:endloop0
2862 // The outcome:
2864 // {
2865 // loop0(.LBB0_2, r1)
2866 // r5:4 = memd(r0++#8)
2867 // }
2868 // .LBB0_2:
2869 // {
2870 // memh(r2+#4) = r5
2871 // memh(r2+#6) = r5.h
2872 // }
2873 // {
2874 // r2 = add(r2, #8)
2875 // memh(r2+#0) = r4
2876 // memh(r2+#2) = r4.h
2877 // }
2878 // {
2879 // r5:4 = memd(r0++#8)
2880 // }:endloop0
2882 namespace llvm {
2884 FunctionPass *createHexagonLoopRescheduling();
2885 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2887 } // end namespace llvm
2889 namespace {
2891 class HexagonLoopRescheduling : public MachineFunctionPass {
2892 public:
2893 static char ID;
2895 HexagonLoopRescheduling() : MachineFunctionPass(ID) {
2896 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2899 bool runOnMachineFunction(MachineFunction &MF) override;
2901 private:
2902 const HexagonInstrInfo *HII = nullptr;
2903 const HexagonRegisterInfo *HRI = nullptr;
2904 MachineRegisterInfo *MRI = nullptr;
2905 BitTracker *BTP = nullptr;
2907 struct LoopCand {
2908 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2909 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2911 MachineBasicBlock *LB, *PB, *EB;
2913 using InstrList = std::vector<MachineInstr *>;
2914 struct InstrGroup {
2915 BitTracker::RegisterRef Inp, Out;
2916 InstrList Ins;
2918 struct PhiInfo {
2919 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2921 unsigned DefR;
2922 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2923 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
2926 static unsigned getDefReg(const MachineInstr *MI);
2927 bool isConst(unsigned Reg) const;
2928 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2929 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2930 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2931 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2932 unsigned &InpR2) const;
2933 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2934 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2935 bool processLoop(LoopCand &C);
2938 } // end anonymous namespace
2940 char HexagonLoopRescheduling::ID = 0;
2942 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2943 "Hexagon Loop Rescheduling", false, false)
2945 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2946 MachineBasicBlock &B) {
2947 DefR = HexagonLoopRescheduling::getDefReg(&P);
2948 LB = &B;
2949 PB = nullptr;
2950 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2951 const MachineOperand &OpB = P.getOperand(i+1);
2952 if (OpB.getMBB() == &B) {
2953 LR = P.getOperand(i);
2954 continue;
2956 PB = OpB.getMBB();
2957 PR = P.getOperand(i);
2961 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2962 RegisterSet Defs;
2963 HBS::getInstrDefs(*MI, Defs);
2964 if (Defs.count() != 1)
2965 return 0;
2966 return Defs.find_first();
2969 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2970 if (!BTP->has(Reg))
2971 return false;
2972 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2973 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2974 const BitTracker::BitValue &V = RC[i];
2975 if (!V.is(0) && !V.is(1))
2976 return false;
2978 return true;
2981 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2982 unsigned DefR) const {
2983 unsigned Opc = MI->getOpcode();
2984 switch (Opc) {
2985 case TargetOpcode::COPY:
2986 case Hexagon::S2_lsr_i_r:
2987 case Hexagon::S2_asr_i_r:
2988 case Hexagon::S2_asl_i_r:
2989 case Hexagon::S2_lsr_i_p:
2990 case Hexagon::S2_asr_i_p:
2991 case Hexagon::S2_asl_i_p:
2992 case Hexagon::S2_insert:
2993 case Hexagon::A2_or:
2994 case Hexagon::A2_orp:
2995 case Hexagon::A2_and:
2996 case Hexagon::A2_andp:
2997 case Hexagon::A2_combinew:
2998 case Hexagon::A4_combineri:
2999 case Hexagon::A4_combineir:
3000 case Hexagon::A2_combineii:
3001 case Hexagon::A4_combineii:
3002 case Hexagon::A2_combine_ll:
3003 case Hexagon::A2_combine_lh:
3004 case Hexagon::A2_combine_hl:
3005 case Hexagon::A2_combine_hh:
3006 return true;
3008 return false;
3011 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3012 unsigned InpR) const {
3013 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3014 const MachineOperand &Op = MI->getOperand(i);
3015 if (!Op.isReg())
3016 continue;
3017 if (Op.getReg() == InpR)
3018 return i == n-1;
3020 return false;
3023 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3024 if (!BTP->has(OutR) || !BTP->has(InpR))
3025 return false;
3026 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3027 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3028 const BitTracker::BitValue &V = OutC[i];
3029 if (V.Type != BitTracker::BitValue::Ref)
3030 continue;
3031 if (V.RefI.Reg != InpR)
3032 return false;
3034 return true;
3037 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3038 unsigned OutR2, unsigned &InpR2) const {
3039 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3040 return false;
3041 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3042 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3043 unsigned W = OutC1.width();
3044 unsigned MatchR = 0;
3045 if (W != OutC2.width())
3046 return false;
3047 for (unsigned i = 0; i < W; ++i) {
3048 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3049 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3050 return false;
3051 if (V1.Type != BitTracker::BitValue::Ref)
3052 continue;
3053 if (V1.RefI.Pos != V2.RefI.Pos)
3054 return false;
3055 if (V1.RefI.Reg != InpR1)
3056 return false;
3057 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3058 return false;
3059 if (!MatchR)
3060 MatchR = V2.RefI.Reg;
3061 else if (V2.RefI.Reg != MatchR)
3062 return false;
3064 InpR2 = MatchR;
3065 return true;
3068 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3069 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3070 unsigned NewPredR) {
3071 DenseMap<unsigned,unsigned> RegMap;
3073 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3074 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
3075 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3076 .addReg(NewPredR)
3077 .addMBB(&PB)
3078 .addReg(G.Inp.Reg)
3079 .addMBB(&LB);
3080 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3082 for (unsigned i = G.Ins.size(); i > 0; --i) {
3083 const MachineInstr *SI = G.Ins[i-1];
3084 unsigned DR = getDefReg(SI);
3085 const TargetRegisterClass *RC = MRI->getRegClass(DR);
3086 unsigned NewDR = MRI->createVirtualRegister(RC);
3087 DebugLoc DL = SI->getDebugLoc();
3089 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3090 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
3091 const MachineOperand &Op = SI->getOperand(j);
3092 if (!Op.isReg()) {
3093 MIB.add(Op);
3094 continue;
3096 if (!Op.isUse())
3097 continue;
3098 unsigned UseR = RegMap[Op.getReg()];
3099 MIB.addReg(UseR, 0, Op.getSubReg());
3101 RegMap.insert(std::make_pair(DR, NewDR));
3104 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3107 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3108 LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3109 << "\n");
3110 std::vector<PhiInfo> Phis;
3111 for (auto &I : *C.LB) {
3112 if (!I.isPHI())
3113 break;
3114 unsigned PR = getDefReg(&I);
3115 if (isConst(PR))
3116 continue;
3117 bool BadUse = false, GoodUse = false;
3118 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
3119 MachineInstr *UseI = UI->getParent();
3120 if (UseI->getParent() != C.LB) {
3121 BadUse = true;
3122 break;
3124 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3125 GoodUse = true;
3127 if (BadUse || !GoodUse)
3128 continue;
3130 Phis.push_back(PhiInfo(I, *C.LB));
3133 LLVM_DEBUG({
3134 dbgs() << "Phis: {";
3135 for (auto &I : Phis) {
3136 dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3137 << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3138 << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3139 << I.LB->getNumber() << ')';
3141 dbgs() << " }\n";
3144 if (Phis.empty())
3145 return false;
3147 bool Changed = false;
3148 InstrList ShufIns;
3150 // Go backwards in the block: for each bit shuffling instruction, check
3151 // if that instruction could potentially be moved to the front of the loop:
3152 // the output of the loop cannot be used in a non-shuffling instruction
3153 // in this loop.
3154 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
3155 if (I->isTerminator())
3156 continue;
3157 if (I->isPHI())
3158 break;
3160 RegisterSet Defs;
3161 HBS::getInstrDefs(*I, Defs);
3162 if (Defs.count() != 1)
3163 continue;
3164 unsigned DefR = Defs.find_first();
3165 if (!TargetRegisterInfo::isVirtualRegister(DefR))
3166 continue;
3167 if (!isBitShuffle(&*I, DefR))
3168 continue;
3170 bool BadUse = false;
3171 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3172 MachineInstr *UseI = UI->getParent();
3173 if (UseI->getParent() == C.LB) {
3174 if (UseI->isPHI()) {
3175 // If the use is in a phi node in this loop, then it should be
3176 // the value corresponding to the back edge.
3177 unsigned Idx = UI.getOperandNo();
3178 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3179 BadUse = true;
3180 } else {
3181 auto F = find(ShufIns, UseI);
3182 if (F == ShufIns.end())
3183 BadUse = true;
3185 } else {
3186 // There is a use outside of the loop, but there is no epilog block
3187 // suitable for a copy-out.
3188 if (C.EB == nullptr)
3189 BadUse = true;
3191 if (BadUse)
3192 break;
3195 if (BadUse)
3196 continue;
3197 ShufIns.push_back(&*I);
3200 // Partition the list of shuffling instructions into instruction groups,
3201 // where each group has to be moved as a whole (i.e. a group is a chain of
3202 // dependent instructions). A group produces a single live output register,
3203 // which is meant to be the input of the loop phi node (although this is
3204 // not checked here yet). It also uses a single register as its input,
3205 // which is some value produced in the loop body. After moving the group
3206 // to the beginning of the loop, that input register would need to be
3207 // the loop-carried register (through a phi node) instead of the (currently
3208 // loop-carried) output register.
3209 using InstrGroupList = std::vector<InstrGroup>;
3210 InstrGroupList Groups;
3212 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3213 MachineInstr *SI = ShufIns[i];
3214 if (SI == nullptr)
3215 continue;
3217 InstrGroup G;
3218 G.Ins.push_back(SI);
3219 G.Out.Reg = getDefReg(SI);
3220 RegisterSet Inputs;
3221 HBS::getInstrUses(*SI, Inputs);
3223 for (unsigned j = i+1; j < n; ++j) {
3224 MachineInstr *MI = ShufIns[j];
3225 if (MI == nullptr)
3226 continue;
3227 RegisterSet Defs;
3228 HBS::getInstrDefs(*MI, Defs);
3229 // If this instruction does not define any pending inputs, skip it.
3230 if (!Defs.intersects(Inputs))
3231 continue;
3232 // Otherwise, add it to the current group and remove the inputs that
3233 // are defined by MI.
3234 G.Ins.push_back(MI);
3235 Inputs.remove(Defs);
3236 // Then add all registers used by MI.
3237 HBS::getInstrUses(*MI, Inputs);
3238 ShufIns[j] = nullptr;
3241 // Only add a group if it requires at most one register.
3242 if (Inputs.count() > 1)
3243 continue;
3244 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3245 return G.Out.Reg == P.LR.Reg;
3247 if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
3248 continue;
3250 G.Inp.Reg = Inputs.find_first();
3251 Groups.push_back(G);
3254 LLVM_DEBUG({
3255 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3256 InstrGroup &G = Groups[i];
3257 dbgs() << "Group[" << i << "] inp: "
3258 << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3259 << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3260 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
3261 dbgs() << " " << *G.Ins[j];
3265 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3266 InstrGroup &G = Groups[i];
3267 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3268 continue;
3269 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3270 return G.Out.Reg == P.LR.Reg;
3272 auto F = llvm::find_if(Phis, LoopInpEq);
3273 if (F == Phis.end())
3274 continue;
3275 unsigned PrehR = 0;
3276 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3277 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3278 unsigned Opc = DefPrehR->getOpcode();
3279 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3280 continue;
3281 if (!DefPrehR->getOperand(1).isImm())
3282 continue;
3283 if (DefPrehR->getOperand(1).getImm() != 0)
3284 continue;
3285 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3286 if (RC != MRI->getRegClass(F->PR.Reg)) {
3287 PrehR = MRI->createVirtualRegister(RC);
3288 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3289 : Hexagon::A2_tfrpi;
3290 auto T = C.PB->getFirstTerminator();
3291 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3292 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3293 .addImm(0);
3294 } else {
3295 PrehR = F->PR.Reg;
3298 // isSameShuffle could match with PrehR being of a wider class than
3299 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3300 // it would match for the input being a 32-bit register, and PrehR
3301 // being a 64-bit register (where the low 32 bits match). This could
3302 // be handled, but for now skip these cases.
3303 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3304 continue;
3305 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3306 Changed = true;
3309 return Changed;
3312 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3313 if (skipFunction(MF.getFunction()))
3314 return false;
3316 auto &HST = MF.getSubtarget<HexagonSubtarget>();
3317 HII = HST.getInstrInfo();
3318 HRI = HST.getRegisterInfo();
3319 MRI = &MF.getRegInfo();
3320 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3321 BitTracker BT(HE, MF);
3322 LLVM_DEBUG(BT.trace(true));
3323 BT.run();
3324 BTP = &BT;
3326 std::vector<LoopCand> Cand;
3328 for (auto &B : MF) {
3329 if (B.pred_size() != 2 || B.succ_size() != 2)
3330 continue;
3331 MachineBasicBlock *PB = nullptr;
3332 bool IsLoop = false;
3333 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
3334 if (*PI != &B)
3335 PB = *PI;
3336 else
3337 IsLoop = true;
3339 if (!IsLoop)
3340 continue;
3342 MachineBasicBlock *EB = nullptr;
3343 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
3344 if (*SI == &B)
3345 continue;
3346 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3347 // edge from B to EP is non-critical.
3348 if ((*SI)->pred_size() == 1)
3349 EB = *SI;
3350 break;
3353 Cand.push_back(LoopCand(&B, PB, EB));
3356 bool Changed = false;
3357 for (auto &C : Cand)
3358 Changed |= processLoop(C);
3360 return Changed;
3363 //===----------------------------------------------------------------------===//
3364 // Public Constructor Functions
3365 //===----------------------------------------------------------------------===//
3367 FunctionPass *llvm::createHexagonLoopRescheduling() {
3368 return new HexagonLoopRescheduling();
3371 FunctionPass *llvm::createHexagonBitSimplify() {
3372 return new HexagonBitSimplify();