[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / Hexagon / HexagonExpandCondsets.cpp
blobc343e426ac7de855192b81ffc74c8db7a3baa81c
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 // Replace mux instructions with the corresponding legal instructions.
10 // It is meant to work post-SSA, but still on virtual registers. It was
11 // originally placed between register coalescing and machine instruction
12 // scheduler.
13 // In this place in the optimization sequence, live interval analysis had
14 // been performed, and the live intervals should be preserved. A large part
15 // of the code deals with preserving the liveness information.
17 // Liveness tracking aside, the main functionality of this pass is divided
18 // into two steps. The first step is to replace an instruction
19 // %0 = C2_mux %1, %2, %3
20 // with a pair of conditional transfers
21 // %0 = A2_tfrt %1, %2
22 // %0 = A2_tfrf %1, %3
23 // It is the intention that the execution of this pass could be terminated
24 // after this step, and the code generated would be functionally correct.
26 // If the uses of the source values %1 and %2 are kills, and their
27 // definitions are predicable, then in the second step, the conditional
28 // transfers will then be rewritten as predicated instructions. E.g.
29 // %0 = A2_or %1, %2
30 // %3 = A2_tfrt %99, killed %0
31 // will be rewritten as
32 // %3 = A2_port %99, %1, %2
34 // This replacement has two variants: "up" and "down". Consider this case:
35 // %0 = A2_or %1, %2
36 // ... [intervening instructions] ...
37 // %3 = A2_tfrt %99, killed %0
38 // variant "up":
39 // %3 = A2_port %99, %1, %2
40 // ... [intervening instructions, %0->vreg3] ...
41 // [deleted]
42 // variant "down":
43 // [deleted]
44 // ... [intervening instructions] ...
45 // %3 = A2_port %99, %1, %2
47 // Both, one or none of these variants may be valid, and checks are made
48 // to rule out inapplicable variants.
50 // As an additional optimization, before either of the two steps above is
51 // executed, the pass attempts to coalesce the target register with one of
52 // the source registers, e.g. given an instruction
53 // %3 = C2_mux %0, %1, %2
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
55 // the instruction would then be (for example)
56 // %3 = C2_mux %0, %3, %2
57 // and, under certain circumstances, this could result in only one predicated
58 // instruction:
59 // %3 = A2_tfrf %0, %2
62 // Splitting a definition of a register into two predicated transfers
63 // creates a complication in liveness tracking. Live interval computation
64 // will see both instructions as actual definitions, and will mark the
65 // first one as dead. The definition is not actually dead, and this
66 // situation will need to be fixed. For example:
67 // dead %1 = A2_tfrt ... ; marked as dead
68 // %1 = A2_tfrf ...
70 // Since any of the individual predicated transfers may end up getting
71 // removed (in case it is an identity copy), some pre-existing def may
72 // be marked as dead after live interval recomputation:
73 // dead %1 = ... ; marked as dead
74 // ...
75 // %1 = A2_tfrf ... ; if A2_tfrt is removed
76 // This case happens if %1 was used as a source in A2_tfrt, which means
77 // that is it actually live at the A2_tfrf, and so the now dead definition
78 // of %1 will need to be updated to non-dead at some point.
80 // This issue could be remedied by adding implicit uses to the predicated
81 // transfers, but this will create a problem with subsequent predication,
82 // since the transfers will no longer be possible to reorder. To avoid
83 // that, the initial splitting will not add any implicit uses. These
84 // implicit uses will be added later, after predication. The extra price,
85 // however, is that finding the locations where the implicit uses need
86 // to be added, and updating the live ranges will be more involved.
88 #include "HexagonInstrInfo.h"
89 #include "HexagonRegisterInfo.h"
90 #include "llvm/ADT/DenseMap.h"
91 #include "llvm/ADT/SetVector.h"
92 #include "llvm/ADT/SmallVector.h"
93 #include "llvm/ADT/StringRef.h"
94 #include "llvm/CodeGen/LiveInterval.h"
95 #include "llvm/CodeGen/LiveIntervals.h"
96 #include "llvm/CodeGen/MachineBasicBlock.h"
97 #include "llvm/CodeGen/MachineDominators.h"
98 #include "llvm/CodeGen/MachineFunction.h"
99 #include "llvm/CodeGen/MachineFunctionPass.h"
100 #include "llvm/CodeGen/MachineInstr.h"
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
102 #include "llvm/CodeGen/MachineOperand.h"
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
104 #include "llvm/CodeGen/SlotIndexes.h"
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/LaneBitmask.h"
110 #include "llvm/Pass.h"
111 #include "llvm/Support/CommandLine.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include <cassert>
116 #include <iterator>
117 #include <set>
118 #include <utility>
120 #define DEBUG_TYPE "expand-condsets"
122 using namespace llvm;
124 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
125 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
126 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
127 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
129 namespace llvm {
131 void initializeHexagonExpandCondsetsPass(PassRegistry&);
132 FunctionPass *createHexagonExpandCondsets();
134 } // end namespace llvm
136 namespace {
138 class HexagonExpandCondsets : public MachineFunctionPass {
139 public:
140 static char ID;
142 HexagonExpandCondsets() : MachineFunctionPass(ID) {
143 if (OptCoaLimit.getPosition())
144 CoaLimitActive = true, CoaLimit = OptCoaLimit;
145 if (OptTfrLimit.getPosition())
146 TfrLimitActive = true, TfrLimit = OptTfrLimit;
147 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
150 StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
152 void getAnalysisUsage(AnalysisUsage &AU) const override {
153 AU.addRequired<LiveIntervals>();
154 AU.addPreserved<LiveIntervals>();
155 AU.addPreserved<SlotIndexes>();
156 AU.addRequired<MachineDominatorTree>();
157 AU.addPreserved<MachineDominatorTree>();
158 MachineFunctionPass::getAnalysisUsage(AU);
161 bool runOnMachineFunction(MachineFunction &MF) override;
163 private:
164 const HexagonInstrInfo *HII = nullptr;
165 const TargetRegisterInfo *TRI = nullptr;
166 MachineDominatorTree *MDT;
167 MachineRegisterInfo *MRI = nullptr;
168 LiveIntervals *LIS = nullptr;
169 bool CoaLimitActive = false;
170 bool TfrLimitActive = false;
171 unsigned CoaLimit;
172 unsigned TfrLimit;
173 unsigned CoaCounter = 0;
174 unsigned TfrCounter = 0;
176 struct RegisterRef {
177 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
178 Sub(Op.getSubReg()) {}
179 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
181 bool operator== (RegisterRef RR) const {
182 return Reg == RR.Reg && Sub == RR.Sub;
184 bool operator!= (RegisterRef RR) const { return !operator==(RR); }
185 bool operator< (RegisterRef RR) const {
186 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
189 unsigned Reg, Sub;
192 using ReferenceMap = DenseMap<unsigned, unsigned>;
193 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
194 enum { Exec_Then = 0x10, Exec_Else = 0x20 };
196 unsigned getMaskForSub(unsigned Sub);
197 bool isCondset(const MachineInstr &MI);
198 LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);
200 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
201 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
203 void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
204 void updateKillFlags(unsigned Reg);
205 void updateDeadFlags(unsigned Reg);
206 void recalculateLiveInterval(unsigned Reg);
207 void removeInstr(MachineInstr &MI);
208 void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
209 bool UpdateKills, bool UpdateDeads);
211 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
212 MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
213 MachineBasicBlock::iterator At, unsigned DstR,
214 unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
215 bool ReadUndef, bool ImpUse);
216 bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);
218 bool isPredicable(MachineInstr *MI);
219 MachineInstr *getReachingDefForPred(RegisterRef RD,
220 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
221 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
222 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
223 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
224 MachineBasicBlock::iterator Where,
225 const MachineOperand &PredOp, bool Cond,
226 std::set<unsigned> &UpdRegs);
227 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
228 bool Cond, MachineBasicBlock::iterator First,
229 MachineBasicBlock::iterator Last);
230 bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
231 bool predicateInBlock(MachineBasicBlock &B,
232 std::set<unsigned> &UpdRegs);
234 bool isIntReg(RegisterRef RR, unsigned &BW);
235 bool isIntraBlocks(LiveInterval &LI);
236 bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
237 bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
238 std::set<unsigned> &UpdRegs);
241 } // end anonymous namespace
243 char HexagonExpandCondsets::ID = 0;
245 namespace llvm {
247 char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
249 } // end namespace llvm
251 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
252 "Hexagon Expand Condsets", false, false)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
255 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
256 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
257 "Hexagon Expand Condsets", false, false)
259 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
260 switch (Sub) {
261 case Hexagon::isub_lo:
262 case Hexagon::vsub_lo:
263 return Sub_Low;
264 case Hexagon::isub_hi:
265 case Hexagon::vsub_hi:
266 return Sub_High;
267 case Hexagon::NoSubRegister:
268 return Sub_None;
270 llvm_unreachable("Invalid subregister");
273 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
274 unsigned Opc = MI.getOpcode();
275 switch (Opc) {
276 case Hexagon::C2_mux:
277 case Hexagon::C2_muxii:
278 case Hexagon::C2_muxir:
279 case Hexagon::C2_muxri:
280 case Hexagon::PS_pselect:
281 return true;
282 break;
284 return false;
287 LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
288 assert(TargetRegisterInfo::isVirtualRegister(Reg));
289 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
290 : MRI->getMaxLaneMaskForVReg(Reg);
293 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
294 unsigned Exec) {
295 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
296 ReferenceMap::iterator F = Map.find(RR.Reg);
297 if (F == Map.end())
298 Map.insert(std::make_pair(RR.Reg, Mask));
299 else
300 F->second |= Mask;
303 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
304 unsigned Exec) {
305 ReferenceMap::iterator F = Map.find(RR.Reg);
306 if (F == Map.end())
307 return false;
308 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
309 if (Mask & F->second)
310 return true;
311 return false;
314 void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
315 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
316 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
317 MachineInstr *MI = LIS->getInstructionFromIndex(K);
318 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
319 MachineOperand &Op = MI->getOperand(i);
320 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
321 MI->isRegTiedToDefOperand(i))
322 continue;
323 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
324 if ((SLM & LM) == SLM) {
325 // Only set the kill flag on the first encountered use of Reg in this
326 // instruction.
327 Op.setIsKill(true);
328 break;
333 LiveInterval &LI = LIS->getInterval(Reg);
334 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
335 if (!I->end.isRegister())
336 continue;
337 // Do not mark the end of the segment as <kill>, if the next segment
338 // starts with a predicated instruction.
339 auto NextI = std::next(I);
340 if (NextI != E && NextI->start.isRegister()) {
341 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
342 if (HII->isPredicated(*DefI))
343 continue;
345 bool WholeReg = true;
346 if (LI.hasSubRanges()) {
347 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
348 LiveRange::iterator F = S.find(I->end);
349 return F != S.end() && I->end == F->end;
351 // Check if all subranges end at I->end. If so, make sure to kill
352 // the whole register.
353 for (LiveInterval::SubRange &S : LI.subranges()) {
354 if (EndsAtI(S))
355 KillAt(I->end, S.LaneMask);
356 else
357 WholeReg = false;
360 if (WholeReg)
361 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
365 void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
366 LiveRange &Range) {
367 assert(TargetRegisterInfo::isVirtualRegister(Reg));
368 if (Range.empty())
369 return;
371 // Return two booleans: { def-modifes-reg, def-covers-reg }.
372 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
373 if (!Op.isReg() || !Op.isDef())
374 return { false, false };
375 unsigned DR = Op.getReg(), DSR = Op.getSubReg();
376 if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
377 return { false, false };
378 LaneBitmask SLM = getLaneMask(DR, DSR);
379 LaneBitmask A = SLM & LM;
380 return { A.any(), A == SLM };
383 // The splitting step will create pairs of predicated definitions without
384 // any implicit uses (since implicit uses would interfere with predication).
385 // This can cause the reaching defs to become dead after live range
386 // recomputation, even though they are not really dead.
387 // We need to identify predicated defs that need implicit uses, and
388 // dead defs that are not really dead, and correct both problems.
390 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
391 MachineBasicBlock *Dest) -> bool {
392 for (MachineBasicBlock *D : Defs)
393 if (D != Dest && MDT->dominates(D, Dest))
394 return true;
396 MachineBasicBlock *Entry = &Dest->getParent()->front();
397 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
398 for (unsigned i = 0; i < Work.size(); ++i) {
399 MachineBasicBlock *B = Work[i];
400 if (Defs.count(B))
401 continue;
402 if (B == Entry)
403 return false;
404 for (auto *P : B->predecessors())
405 Work.insert(P);
407 return true;
410 // First, try to extend live range within individual basic blocks. This
411 // will leave us only with dead defs that do not reach any predicated
412 // defs in the same block.
413 SetVector<MachineBasicBlock*> Defs;
414 SmallVector<SlotIndex,4> PredDefs;
415 for (auto &Seg : Range) {
416 if (!Seg.start.isRegister())
417 continue;
418 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
419 Defs.insert(DefI->getParent());
420 if (HII->isPredicated(*DefI))
421 PredDefs.push_back(Seg.start);
424 SmallVector<SlotIndex,8> Undefs;
425 LiveInterval &LI = LIS->getInterval(Reg);
426 LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
428 for (auto &SI : PredDefs) {
429 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
430 auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
431 if (P.first != nullptr || P.second)
432 SI = SlotIndex();
435 // Calculate reachability for those predicated defs that were not handled
436 // by the in-block extension.
437 SmallVector<SlotIndex,4> ExtTo;
438 for (auto &SI : PredDefs) {
439 if (!SI.isValid())
440 continue;
441 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
442 if (BB->pred_empty())
443 continue;
444 // If the defs from this range reach SI via all predecessors, it is live.
445 // It can happen that SI is reached by the defs through some paths, but
446 // not all. In the IR coming into this optimization, SI would not be
447 // considered live, since the defs would then not jointly dominate SI.
448 // That means that SI is an overwriting def, and no implicit use is
449 // needed at this point. Do not add SI to the extension points, since
450 // extendToIndices will abort if there is no joint dominance.
451 // If the abort was avoided by adding extra undefs added to Undefs,
452 // extendToIndices could actually indicate that SI is live, contrary
453 // to the original IR.
454 if (Dominate(Defs, BB))
455 ExtTo.push_back(SI);
458 if (!ExtTo.empty())
459 LIS->extendToIndices(Range, ExtTo, Undefs);
461 // Remove <dead> flags from all defs that are not dead after live range
462 // extension, and collect all def operands. They will be used to generate
463 // the necessary implicit uses.
464 // At the same time, add <dead> flag to all defs that are actually dead.
465 // This can happen, for example, when a mux with identical inputs is
466 // replaced with a COPY: the use of the predicate register disappears and
467 // the dead can become dead.
468 std::set<RegisterRef> DefRegs;
469 for (auto &Seg : Range) {
470 if (!Seg.start.isRegister())
471 continue;
472 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
473 for (auto &Op : DefI->operands()) {
474 auto P = IsRegDef(Op);
475 if (P.second && Seg.end.isDead()) {
476 Op.setIsDead(true);
477 } else if (P.first) {
478 DefRegs.insert(Op);
479 Op.setIsDead(false);
484 // Now, add implicit uses to each predicated def that is reached
485 // by other defs.
486 for (auto &Seg : Range) {
487 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
488 continue;
489 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
490 if (!HII->isPredicated(*DefI))
491 continue;
492 // Construct the set of all necessary implicit uses, based on the def
493 // operands in the instruction. We need to tie the implicit uses to
494 // the corresponding defs.
495 std::map<RegisterRef,unsigned> ImpUses;
496 for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
497 MachineOperand &Op = DefI->getOperand(i);
498 if (!Op.isReg() || !DefRegs.count(Op))
499 continue;
500 if (Op.isDef()) {
501 // Tied defs will always have corresponding uses, so no extra
502 // implicit uses are needed.
503 if (!Op.isTied())
504 ImpUses.insert({Op, i});
505 } else {
506 // This function can be called for the same register with different
507 // lane masks. If the def in this instruction was for the whole
508 // register, we can get here more than once. Avoid adding multiple
509 // implicit uses (or adding an implicit use when an explicit one is
510 // present).
511 if (Op.isTied())
512 ImpUses.erase(Op);
515 if (ImpUses.empty())
516 continue;
517 MachineFunction &MF = *DefI->getParent()->getParent();
518 for (std::pair<RegisterRef, unsigned> P : ImpUses) {
519 RegisterRef R = P.first;
520 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
521 DefI->tieOperands(P.second, DefI->getNumOperands()-1);
526 void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
527 LiveInterval &LI = LIS->getInterval(Reg);
528 if (LI.hasSubRanges()) {
529 for (LiveInterval::SubRange &S : LI.subranges()) {
530 updateDeadsInRange(Reg, S.LaneMask, S);
531 LIS->shrinkToUses(S, Reg);
533 LI.clear();
534 LIS->constructMainRangeFromSubranges(LI);
535 } else {
536 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
540 void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
541 LIS->removeInterval(Reg);
542 LIS->createAndComputeVirtRegInterval(Reg);
545 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
546 LIS->RemoveMachineInstrFromMaps(MI);
547 MI.eraseFromParent();
550 void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
551 bool Recalc, bool UpdateKills, bool UpdateDeads) {
552 UpdateKills |= UpdateDeads;
553 for (unsigned R : RegSet) {
554 if (!TargetRegisterInfo::isVirtualRegister(R)) {
555 assert(TargetRegisterInfo::isPhysicalRegister(R));
556 // There shouldn't be any physical registers as operands, except
557 // possibly reserved registers.
558 assert(MRI->isReserved(R));
559 continue;
561 if (Recalc)
562 recalculateLiveInterval(R);
563 if (UpdateKills)
564 MRI->clearKillFlags(R);
565 if (UpdateDeads)
566 updateDeadFlags(R);
567 // Fixing <dead> flags may extend live ranges, so reset <kill> flags
568 // after that.
569 if (UpdateKills)
570 updateKillFlags(R);
571 LIS->getInterval(R).verify();
575 /// Get the opcode for a conditional transfer of the value in SO (source
576 /// operand). The condition (true/false) is given in Cond.
577 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
578 bool IfTrue) {
579 using namespace Hexagon;
581 if (SO.isReg()) {
582 unsigned PhysR;
583 RegisterRef RS = SO;
584 if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
585 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
586 assert(VC->begin() != VC->end() && "Empty register class");
587 PhysR = *VC->begin();
588 } else {
589 assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
590 PhysR = RS.Reg;
592 unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
593 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
594 switch (TRI->getRegSizeInBits(*RC)) {
595 case 32:
596 return IfTrue ? A2_tfrt : A2_tfrf;
597 case 64:
598 return IfTrue ? A2_tfrpt : A2_tfrpf;
600 llvm_unreachable("Invalid register operand");
602 switch (SO.getType()) {
603 case MachineOperand::MO_Immediate:
604 case MachineOperand::MO_FPImmediate:
605 case MachineOperand::MO_ConstantPoolIndex:
606 case MachineOperand::MO_TargetIndex:
607 case MachineOperand::MO_JumpTableIndex:
608 case MachineOperand::MO_ExternalSymbol:
609 case MachineOperand::MO_GlobalAddress:
610 case MachineOperand::MO_BlockAddress:
611 return IfTrue ? C2_cmoveit : C2_cmoveif;
612 default:
613 break;
615 llvm_unreachable("Unexpected source operand");
618 /// Generate a conditional transfer, copying the value SrcOp to the
619 /// destination register DstR:DstSR, and using the predicate register from
620 /// PredOp. The Cond argument specifies whether the predicate is to be
621 /// if(PredOp), or if(!PredOp).
622 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
623 MachineBasicBlock::iterator At,
624 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
625 bool PredSense, bool ReadUndef, bool ImpUse) {
626 MachineInstr *MI = SrcOp.getParent();
627 MachineBasicBlock &B = *At->getParent();
628 const DebugLoc &DL = MI->getDebugLoc();
630 // Don't avoid identity copies here (i.e. if the source and the destination
631 // are the same registers). It is actually better to generate them here,
632 // since this would cause the copy to potentially be predicated in the next
633 // step. The predication will remove such a copy if it is unable to
634 /// predicate.
636 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
637 unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
638 unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
639 MachineInstrBuilder MIB;
641 if (SrcOp.isReg()) {
642 unsigned SrcState = getRegState(SrcOp);
643 if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
644 SrcState &= ~RegState::Kill;
645 MIB = BuildMI(B, At, DL, HII->get(Opc))
646 .addReg(DstR, DstState, DstSR)
647 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
648 .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
649 } else {
650 MIB = BuildMI(B, At, DL, HII->get(Opc))
651 .addReg(DstR, DstState, DstSR)
652 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
653 .add(SrcOp);
656 LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
657 return &*MIB;
660 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
661 /// performs all necessary changes to complete the replacement.
662 bool HexagonExpandCondsets::split(MachineInstr &MI,
663 std::set<unsigned> &UpdRegs) {
664 if (TfrLimitActive) {
665 if (TfrCounter >= TfrLimit)
666 return false;
667 TfrCounter++;
669 LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
670 << ": " << MI);
671 MachineOperand &MD = MI.getOperand(0); // Definition
672 MachineOperand &MP = MI.getOperand(1); // Predicate register
673 assert(MD.isDef());
674 unsigned DR = MD.getReg(), DSR = MD.getSubReg();
675 bool ReadUndef = MD.isUndef();
676 MachineBasicBlock::iterator At = MI;
678 auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
679 for (auto &Op : MI.operands())
680 if (Op.isReg())
681 UpdRegs.insert(Op.getReg());
684 // If this is a mux of the same register, just replace it with COPY.
685 // Ideally, this would happen earlier, so that register coalescing would
686 // see it.
687 MachineOperand &ST = MI.getOperand(2);
688 MachineOperand &SF = MI.getOperand(3);
689 if (ST.isReg() && SF.isReg()) {
690 RegisterRef RT(ST);
691 if (RT == RegisterRef(SF)) {
692 // Copy regs to update first.
693 updateRegs(MI);
694 MI.setDesc(HII->get(TargetOpcode::COPY));
695 unsigned S = getRegState(ST);
696 while (MI.getNumOperands() > 1)
697 MI.RemoveOperand(MI.getNumOperands()-1);
698 MachineFunction &MF = *MI.getParent()->getParent();
699 MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
700 return true;
704 // First, create the two invididual conditional transfers, and add each
705 // of them to the live intervals information. Do that first and then remove
706 // the old instruction from live intervals.
707 MachineInstr *TfrT =
708 genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
709 MachineInstr *TfrF =
710 genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
711 LIS->InsertMachineInstrInMaps(*TfrT);
712 LIS->InsertMachineInstrInMaps(*TfrF);
714 // Will need to recalculate live intervals for all registers in MI.
715 updateRegs(MI);
717 removeInstr(MI);
718 return true;
721 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
722 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
723 return false;
724 if (MI->hasUnmodeledSideEffects() || MI->mayStore())
725 return false;
726 // Reject instructions with multiple defs (e.g. post-increment loads).
727 bool HasDef = false;
728 for (auto &Op : MI->operands()) {
729 if (!Op.isReg() || !Op.isDef())
730 continue;
731 if (HasDef)
732 return false;
733 HasDef = true;
735 for (auto &Mo : MI->memoperands())
736 if (Mo->isVolatile() || Mo->isAtomic())
737 return false;
738 return true;
741 /// Find the reaching definition for a predicated use of RD. The RD is used
742 /// under the conditions given by PredR and Cond, and this function will ignore
743 /// definitions that set RD under the opposite conditions.
744 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
745 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
746 MachineBasicBlock &B = *UseIt->getParent();
747 MachineBasicBlock::iterator I = UseIt, S = B.begin();
748 if (I == S)
749 return nullptr;
751 bool PredValid = true;
752 do {
753 --I;
754 MachineInstr *MI = &*I;
755 // Check if this instruction can be ignored, i.e. if it is predicated
756 // on the complementary condition.
757 if (PredValid && HII->isPredicated(*MI)) {
758 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
759 continue;
762 // Check the defs. If the PredR is defined, invalidate it. If RD is
763 // defined, return the instruction or 0, depending on the circumstances.
764 for (auto &Op : MI->operands()) {
765 if (!Op.isReg() || !Op.isDef())
766 continue;
767 RegisterRef RR = Op;
768 if (RR.Reg == PredR) {
769 PredValid = false;
770 continue;
772 if (RR.Reg != RD.Reg)
773 continue;
774 // If the "Reg" part agrees, there is still the subregister to check.
775 // If we are looking for %1:loreg, we can skip %1:hireg, but
776 // not %1 (w/o subregisters).
777 if (RR.Sub == RD.Sub)
778 return MI;
779 if (RR.Sub == 0 || RD.Sub == 0)
780 return nullptr;
781 // We have different subregisters, so we can continue looking.
783 } while (I != S);
785 return nullptr;
788 /// Check if the instruction MI can be safely moved over a set of instructions
789 /// whose side-effects (in terms of register defs and uses) are expressed in
790 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
791 /// that depend on the same predicate register to allow moving instructions
792 /// over instructions predicated on the opposite condition.
793 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
794 ReferenceMap &Uses) {
795 // In order to be able to safely move MI over instructions that define
796 // "Defs" and use "Uses", no def operand from MI can be defined or used
797 // and no use operand can be defined.
798 for (auto &Op : MI.operands()) {
799 if (!Op.isReg())
800 continue;
801 RegisterRef RR = Op;
802 // For physical register we would need to check register aliases, etc.
803 // and we don't want to bother with that. It would be of little value
804 // before the actual register rewriting (from virtual to physical).
805 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
806 return false;
807 // No redefs for any operand.
808 if (isRefInMap(RR, Defs, Exec_Then))
809 return false;
810 // For defs, there cannot be uses.
811 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
812 return false;
814 return true;
817 /// Check if the instruction accessing memory (TheI) can be moved to the
818 /// location ToI.
819 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
820 bool IsDown) {
821 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
822 if (!IsLoad && !IsStore)
823 return true;
824 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
825 return true;
826 if (TheI.hasUnmodeledSideEffects())
827 return false;
829 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
830 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
831 bool Ordered = TheI.hasOrderedMemoryRef();
833 // Search for aliased memory reference in (StartI, EndI).
834 for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
835 MachineInstr *MI = &*I;
836 if (MI->hasUnmodeledSideEffects())
837 return false;
838 bool L = MI->mayLoad(), S = MI->mayStore();
839 if (!L && !S)
840 continue;
841 if (Ordered && MI->hasOrderedMemoryRef())
842 return false;
844 bool Conflict = (L && IsStore) || S;
845 if (Conflict)
846 return false;
848 return true;
851 /// Generate a predicated version of MI (where the condition is given via
852 /// PredR and Cond) at the point indicated by Where.
853 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
854 MachineInstr &MI,
855 MachineBasicBlock::iterator Where,
856 const MachineOperand &PredOp, bool Cond,
857 std::set<unsigned> &UpdRegs) {
858 // The problem with updating live intervals is that we can move one def
859 // past another def. In particular, this can happen when moving an A2_tfrt
860 // over an A2_tfrf defining the same register. From the point of view of
861 // live intervals, these two instructions are two separate definitions,
862 // and each one starts another live segment. LiveIntervals's "handleMove"
863 // does not allow such moves, so we need to handle it ourselves. To avoid
864 // invalidating liveness data while we are using it, the move will be
865 // implemented in 4 steps: (1) add a clone of the instruction MI at the
866 // target location, (2) update liveness, (3) delete the old instruction,
867 // and (4) update liveness again.
869 MachineBasicBlock &B = *MI.getParent();
870 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
871 unsigned Opc = MI.getOpcode();
872 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
873 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
874 unsigned Ox = 0, NP = MI.getNumOperands();
875 // Skip all defs from MI first.
876 while (Ox < NP) {
877 MachineOperand &MO = MI.getOperand(Ox);
878 if (!MO.isReg() || !MO.isDef())
879 break;
880 Ox++;
882 // Add the new def, then the predicate register, then the rest of the
883 // operands.
884 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
885 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
886 PredOp.getSubReg());
887 while (Ox < NP) {
888 MachineOperand &MO = MI.getOperand(Ox);
889 if (!MO.isReg() || !MO.isImplicit())
890 MB.add(MO);
891 Ox++;
893 MB.cloneMemRefs(MI);
895 MachineInstr *NewI = MB;
896 NewI->clearKillInfo();
897 LIS->InsertMachineInstrInMaps(*NewI);
899 for (auto &Op : NewI->operands())
900 if (Op.isReg())
901 UpdRegs.insert(Op.getReg());
904 /// In the range [First, Last], rename all references to the "old" register RO
905 /// to the "new" register RN, but only in instructions predicated on the given
906 /// condition.
907 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
908 unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
909 MachineBasicBlock::iterator Last) {
910 MachineBasicBlock::iterator End = std::next(Last);
911 for (MachineBasicBlock::iterator I = First; I != End; ++I) {
912 MachineInstr *MI = &*I;
913 // Do not touch instructions that are not predicated, or are predicated
914 // on the opposite condition.
915 if (!HII->isPredicated(*MI))
916 continue;
917 if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
918 continue;
920 for (auto &Op : MI->operands()) {
921 if (!Op.isReg() || RO != RegisterRef(Op))
922 continue;
923 Op.setReg(RN.Reg);
924 Op.setSubReg(RN.Sub);
925 // In practice, this isn't supposed to see any defs.
926 assert(!Op.isDef() && "Not expecting a def");
931 /// For a given conditional copy, predicate the definition of the source of
932 /// the copy under the given condition (using the same predicate register as
933 /// the copy).
934 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
935 std::set<unsigned> &UpdRegs) {
936 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
937 unsigned Opc = TfrI.getOpcode();
938 (void)Opc;
939 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
940 LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
941 << ": " << TfrI);
943 MachineOperand &MD = TfrI.getOperand(0);
944 MachineOperand &MP = TfrI.getOperand(1);
945 MachineOperand &MS = TfrI.getOperand(2);
946 // The source operand should be a <kill>. This is not strictly necessary,
947 // but it makes things a lot simpler. Otherwise, we would need to rename
948 // some registers, which would complicate the transformation considerably.
949 if (!MS.isKill())
950 return false;
951 // Avoid predicating instructions that define a subregister if subregister
952 // liveness tracking is not enabled.
953 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
954 return false;
956 RegisterRef RT(MS);
957 unsigned PredR = MP.getReg();
958 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
959 if (!DefI || !isPredicable(DefI))
960 return false;
962 LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
964 // Collect the information about registers defined and used between the
965 // DefI and the TfrI.
966 // Map: reg -> bitmask of subregs
967 ReferenceMap Uses, Defs;
968 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
970 // Check if the predicate register is valid between DefI and TfrI.
971 // If it is, we can then ignore instructions predicated on the negated
972 // conditions when collecting def and use information.
973 bool PredValid = true;
974 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
975 if (!I->modifiesRegister(PredR, nullptr))
976 continue;
977 PredValid = false;
978 break;
981 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
982 MachineInstr *MI = &*I;
983 // If this instruction is predicated on the same register, it could
984 // potentially be ignored.
985 // By default assume that the instruction executes on the same condition
986 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
987 unsigned Exec = Exec_Then | Exec_Else;
988 if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
989 Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;
991 for (auto &Op : MI->operands()) {
992 if (!Op.isReg())
993 continue;
994 // We don't want to deal with physical registers. The reason is that
995 // they can be aliased with other physical registers. Aliased virtual
996 // registers must share the same register number, and can only differ
997 // in the subregisters, which we are keeping track of. Physical
998 // registers ters no longer have subregisters---their super- and
999 // subregisters are other physical registers, and we are not checking
1000 // that.
1001 RegisterRef RR = Op;
1002 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1003 return false;
1005 ReferenceMap &Map = Op.isDef() ? Defs : Uses;
1006 if (Op.isDef() && Op.isUndef()) {
1007 assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
1008 // If this is a <def,read-undef>, then it invalidates the non-written
1009 // part of the register. For the purpose of checking the validity of
1010 // the move, assume that it modifies the whole register.
1011 RR.Sub = 0;
1013 addRefToMap(RR, Map, Exec);
1017 // The situation:
1018 // RT = DefI
1019 // ...
1020 // RD = TfrI ..., RT
1022 // If the register-in-the-middle (RT) is used or redefined between
1023 // DefI and TfrI, we may not be able proceed with this transformation.
1024 // We can ignore a def that will not execute together with TfrI, and a
1025 // use that will. If there is such a use (that does execute together with
1026 // TfrI), we will not be able to move DefI down. If there is a use that
1027 // executed if TfrI's condition is false, then RT must be available
1028 // unconditionally (cannot be predicated).
1029 // Essentially, we need to be able to rename RT to RD in this segment.
1030 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
1031 return false;
1032 RegisterRef RD = MD;
1033 // If the predicate register is defined between DefI and TfrI, the only
1034 // potential thing to do would be to move the DefI down to TfrI, and then
1035 // predicate. The reaching def (DefI) must be movable down to the location
1036 // of the TfrI.
1037 // If the target register of the TfrI (RD) is not used or defined between
1038 // DefI and TfrI, consider moving TfrI up to DefI.
1039 bool CanUp = canMoveOver(TfrI, Defs, Uses);
1040 bool CanDown = canMoveOver(*DefI, Defs, Uses);
1041 // The TfrI does not access memory, but DefI could. Check if it's safe
1042 // to move DefI down to TfrI.
1043 if (DefI->mayLoad() || DefI->mayStore())
1044 if (!canMoveMemTo(*DefI, TfrI, true))
1045 CanDown = false;
1047 LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
1048 << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
1049 MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
1050 if (CanUp)
1051 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
1052 else if (CanDown)
1053 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
1054 else
1055 return false;
1057 if (RT != RD) {
1058 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
1059 UpdRegs.insert(RT.Reg);
1062 removeInstr(TfrI);
1063 removeInstr(*DefI);
1064 return true;
1067 /// Predicate all cases of conditional copies in the specified block.
1068 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
1069 std::set<unsigned> &UpdRegs) {
1070 bool Changed = false;
1071 MachineBasicBlock::iterator I, E, NextI;
1072 for (I = B.begin(), E = B.end(); I != E; I = NextI) {
1073 NextI = std::next(I);
1074 unsigned Opc = I->getOpcode();
1075 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
1076 bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
1077 if (!Done) {
1078 // If we didn't predicate I, we may need to remove it in case it is
1079 // an "identity" copy, e.g. %1 = A2_tfrt %2, %1.
1080 if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
1081 for (auto &Op : I->operands())
1082 if (Op.isReg())
1083 UpdRegs.insert(Op.getReg());
1084 removeInstr(*I);
1087 Changed |= Done;
1090 return Changed;
1093 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
1094 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
1095 return false;
1096 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
1097 if (RC == &Hexagon::IntRegsRegClass) {
1098 BW = 32;
1099 return true;
1101 if (RC == &Hexagon::DoubleRegsRegClass) {
1102 BW = (RR.Sub != 0) ? 32 : 64;
1103 return true;
1105 return false;
1108 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
1109 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
1110 LiveRange::Segment &LR = *I;
1111 // Range must start at a register...
1112 if (!LR.start.isRegister())
1113 return false;
1114 // ...and end in a register or in a dead slot.
1115 if (!LR.end.isRegister() && !LR.end.isDead())
1116 return false;
1118 return true;
1121 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
1122 if (CoaLimitActive) {
1123 if (CoaCounter >= CoaLimit)
1124 return false;
1125 CoaCounter++;
1127 unsigned BW1, BW2;
1128 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
1129 return false;
1130 if (MRI->isLiveIn(R1.Reg))
1131 return false;
1132 if (MRI->isLiveIn(R2.Reg))
1133 return false;
1135 LiveInterval &L1 = LIS->getInterval(R1.Reg);
1136 LiveInterval &L2 = LIS->getInterval(R2.Reg);
1137 if (L2.empty())
1138 return false;
1139 if (L1.hasSubRanges() || L2.hasSubRanges())
1140 return false;
1141 bool Overlap = L1.overlaps(L2);
1143 LLVM_DEBUG(dbgs() << "compatible registers: ("
1144 << (Overlap ? "overlap" : "disjoint") << ")\n "
1145 << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
1146 << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
1147 if (R1.Sub || R2.Sub)
1148 return false;
1149 if (Overlap)
1150 return false;
1152 // Coalescing could have a negative impact on scheduling, so try to limit
1153 // to some reasonable extent. Only consider coalescing segments, when one
1154 // of them does not cross basic block boundaries.
1155 if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
1156 return false;
1158 MRI->replaceRegWith(R2.Reg, R1.Reg);
1160 // Move all live segments from L2 to L1.
1161 using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
1162 ValueInfoMap VM;
1163 for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
1164 VNInfo *NewVN, *OldVN = I->valno;
1165 ValueInfoMap::iterator F = VM.find(OldVN);
1166 if (F == VM.end()) {
1167 NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
1168 VM.insert(std::make_pair(OldVN, NewVN));
1169 } else {
1170 NewVN = F->second;
1172 L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
1174 while (L2.begin() != L2.end())
1175 L2.removeSegment(*L2.begin());
1176 LIS->removeInterval(R2.Reg);
1178 updateKillFlags(R1.Reg);
1179 LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
1180 L1.verify();
1182 return true;
1185 /// Attempt to coalesce one of the source registers to a MUX instruction with
1186 /// the destination register. This could lead to having only one predicated
1187 /// instruction in the end instead of two.
1188 bool HexagonExpandCondsets::coalesceSegments(
1189 const SmallVectorImpl<MachineInstr*> &Condsets,
1190 std::set<unsigned> &UpdRegs) {
1191 SmallVector<MachineInstr*,16> TwoRegs;
1192 for (MachineInstr *MI : Condsets) {
1193 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
1194 if (!S1.isReg() && !S2.isReg())
1195 continue;
1196 TwoRegs.push_back(MI);
1199 bool Changed = false;
1200 for (MachineInstr *CI : TwoRegs) {
1201 RegisterRef RD = CI->getOperand(0);
1202 RegisterRef RP = CI->getOperand(1);
1203 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
1204 bool Done = false;
1205 // Consider this case:
1206 // %1 = instr1 ...
1207 // %2 = instr2 ...
1208 // %0 = C2_mux ..., %1, %2
1209 // If %0 was coalesced with %1, we could end up with the following
1210 // code:
1211 // %0 = instr1 ...
1212 // %2 = instr2 ...
1213 // %0 = A2_tfrf ..., %2
1214 // which will later become:
1215 // %0 = instr1 ...
1216 // %0 = instr2_cNotPt ...
1217 // i.e. there will be an unconditional definition (instr1) of %0
1218 // followed by a conditional one. The output dependency was there before
1219 // and it unavoidable, but if instr1 is predicable, we will no longer be
1220 // able to predicate it here.
1221 // To avoid this scenario, don't coalesce the destination register with
1222 // a source register that is defined by a predicable instruction.
1223 if (S1.isReg()) {
1224 RegisterRef RS = S1;
1225 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
1226 if (!RDef || !HII->isPredicable(*RDef)) {
1227 Done = coalesceRegisters(RD, RegisterRef(S1));
1228 if (Done) {
1229 UpdRegs.insert(RD.Reg);
1230 UpdRegs.insert(S1.getReg());
1234 if (!Done && S2.isReg()) {
1235 RegisterRef RS = S2;
1236 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
1237 if (!RDef || !HII->isPredicable(*RDef)) {
1238 Done = coalesceRegisters(RD, RegisterRef(S2));
1239 if (Done) {
1240 UpdRegs.insert(RD.Reg);
1241 UpdRegs.insert(S2.getReg());
1245 Changed |= Done;
1247 return Changed;
1250 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
1251 if (skipFunction(MF.getFunction()))
1252 return false;
1254 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
1255 TRI = MF.getSubtarget().getRegisterInfo();
1256 MDT = &getAnalysis<MachineDominatorTree>();
1257 LIS = &getAnalysis<LiveIntervals>();
1258 MRI = &MF.getRegInfo();
1260 LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
1261 MF.getFunction().getParent()));
1263 bool Changed = false;
1264 std::set<unsigned> CoalUpd, PredUpd;
1266 SmallVector<MachineInstr*,16> Condsets;
1267 for (auto &B : MF)
1268 for (auto &I : B)
1269 if (isCondset(I))
1270 Condsets.push_back(&I);
1272 // Try to coalesce the target of a mux with one of its sources.
1273 // This could eliminate a register copy in some circumstances.
1274 Changed |= coalesceSegments(Condsets, CoalUpd);
1276 // Update kill flags on all source operands. This is done here because
1277 // at this moment (when expand-condsets runs), there are no kill flags
1278 // in the IR (they have been removed by live range analysis).
1279 // Updating them right before we split is the easiest, because splitting
1280 // adds definitions which would interfere with updating kills afterwards.
1281 std::set<unsigned> KillUpd;
1282 for (MachineInstr *MI : Condsets)
1283 for (MachineOperand &Op : MI->operands())
1284 if (Op.isReg() && Op.isUse())
1285 if (!CoalUpd.count(Op.getReg()))
1286 KillUpd.insert(Op.getReg());
1287 updateLiveness(KillUpd, false, true, false);
1288 LLVM_DEBUG(
1289 LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
1291 // First, simply split all muxes into a pair of conditional transfers
1292 // and update the live intervals to reflect the new arrangement. The
1293 // goal is to update the kill flags, since predication will rely on
1294 // them.
1295 for (MachineInstr *MI : Condsets)
1296 Changed |= split(*MI, PredUpd);
1297 Condsets.clear(); // The contents of Condsets are invalid here anyway.
1299 // Do not update live ranges after splitting. Recalculation of live
1300 // intervals removes kill flags, which were preserved by splitting on
1301 // the source operands of condsets. These kill flags are needed by
1302 // predication, and after splitting they are difficult to recalculate
1303 // (because of predicated defs), so make sure they are left untouched.
1304 // Predication does not use live intervals.
1305 LLVM_DEBUG(
1306 LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
1308 // Traverse all blocks and collapse predicable instructions feeding
1309 // conditional transfers into predicated instructions.
1310 // Walk over all the instructions again, so we may catch pre-existing
1311 // cases that were not created in the previous step.
1312 for (auto &B : MF)
1313 Changed |= predicateInBlock(B, PredUpd);
1314 LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
1315 MF.getFunction().getParent()));
1317 PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
1318 updateLiveness(PredUpd, true, true, true);
1320 LLVM_DEBUG({
1321 if (Changed)
1322 LIS->print(dbgs() << "After expand-condsets\n",
1323 MF.getFunction().getParent());
1326 return Changed;
1329 //===----------------------------------------------------------------------===//
1330 // Public Constructor Functions
1331 //===----------------------------------------------------------------------===//
1332 FunctionPass *llvm::createHexagonExpandCondsets() {
1333 return new HexagonExpandCondsets();