[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / Hexagon / HexagonISelLowering.cpp
blobfef5a98cdb00055eb1d8c5e4feff0f5c4167e468
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <limits>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "hexagon-lowering"
67 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
68 cl::init(true), cl::Hidden,
69 cl::desc("Control jump table emission on Hexagon target"));
71 static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
72 cl::Hidden, cl::ZeroOrMore, cl::init(false),
73 cl::desc("Enable Hexagon SDNode scheduling"));
75 static cl::opt<bool> EnableFastMath("ffast-math",
76 cl::Hidden, cl::ZeroOrMore, cl::init(false),
77 cl::desc("Enable Fast Math processing"));
79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
80 cl::Hidden, cl::ZeroOrMore, cl::init(5),
81 cl::desc("Set minimum jump tables"));
83 static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
84 cl::Hidden, cl::ZeroOrMore, cl::init(6),
85 cl::desc("Max #stores to inline memcpy"));
87 static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
88 cl::Hidden, cl::ZeroOrMore, cl::init(4),
89 cl::desc("Max #stores to inline memcpy"));
91 static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
92 cl::Hidden, cl::ZeroOrMore, cl::init(6),
93 cl::desc("Max #stores to inline memmove"));
95 static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
96 cl::Hidden, cl::ZeroOrMore, cl::init(4),
97 cl::desc("Max #stores to inline memmove"));
99 static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
100 cl::Hidden, cl::ZeroOrMore, cl::init(8),
101 cl::desc("Max #stores to inline memset"));
103 static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
104 cl::Hidden, cl::ZeroOrMore, cl::init(4),
105 cl::desc("Max #stores to inline memset"));
107 static cl::opt<bool> AlignLoads("hexagon-align-loads",
108 cl::Hidden, cl::init(false),
109 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
112 namespace {
114 class HexagonCCState : public CCState {
115 unsigned NumNamedVarArgParams = 0;
117 public:
118 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
119 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
120 unsigned NumNamedArgs)
121 : CCState(CC, IsVarArg, MF, locs, C),
122 NumNamedVarArgParams(NumNamedArgs) {}
123 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
126 } // end anonymous namespace
129 // Implement calling convention for Hexagon.
131 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
132 CCValAssign::LocInfo &LocInfo,
133 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
134 static const MCPhysReg ArgRegs[] = {
135 Hexagon::R0, Hexagon::R1, Hexagon::R2,
136 Hexagon::R3, Hexagon::R4, Hexagon::R5
138 const unsigned NumArgRegs = array_lengthof(ArgRegs);
139 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
141 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
142 if (RegNum != NumArgRegs && RegNum % 2 == 1)
143 State.AllocateReg(ArgRegs[RegNum]);
145 // Always return false here, as this function only makes sure that the first
146 // unallocated register has an even register number and does not actually
147 // allocate a register for the current argument.
148 return false;
151 #include "HexagonGenCallingConv.inc"
154 SDValue
155 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
156 const {
157 return SDValue();
160 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
161 /// by "Src" to address "Dst" of size "Size". Alignment information is
162 /// specified by the specific parameter attribute. The copy will be passed as
163 /// a byval function parameter. Sometimes what we are copying is the end of a
164 /// larger object, the part that does not fit in registers.
165 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
166 SDValue Chain, ISD::ArgFlagsTy Flags,
167 SelectionDAG &DAG, const SDLoc &dl) {
168 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
169 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
170 /*isVolatile=*/false, /*AlwaysInline=*/false,
171 /*isTailCall=*/false,
172 MachinePointerInfo(), MachinePointerInfo());
175 bool
176 HexagonTargetLowering::CanLowerReturn(
177 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
178 const SmallVectorImpl<ISD::OutputArg> &Outs,
179 LLVMContext &Context) const {
180 SmallVector<CCValAssign, 16> RVLocs;
181 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
183 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
184 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
185 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
188 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
189 // passed by value, the function prototype is modified to return void and
190 // the value is stored in memory pointed by a pointer passed by caller.
191 SDValue
192 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
193 bool IsVarArg,
194 const SmallVectorImpl<ISD::OutputArg> &Outs,
195 const SmallVectorImpl<SDValue> &OutVals,
196 const SDLoc &dl, SelectionDAG &DAG) const {
197 // CCValAssign - represent the assignment of the return value to locations.
198 SmallVector<CCValAssign, 16> RVLocs;
200 // CCState - Info about the registers and stack slot.
201 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
202 *DAG.getContext());
204 // Analyze return values of ISD::RET
205 if (Subtarget.useHVXOps())
206 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
207 else
208 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
210 SDValue Flag;
211 SmallVector<SDValue, 4> RetOps(1, Chain);
213 // Copy the result values into the output registers.
214 for (unsigned i = 0; i != RVLocs.size(); ++i) {
215 CCValAssign &VA = RVLocs[i];
217 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
219 // Guarantee that all emitted copies are stuck together with flags.
220 Flag = Chain.getValue(1);
221 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
224 RetOps[0] = Chain; // Update chain.
226 // Add the flag if we have it.
227 if (Flag.getNode())
228 RetOps.push_back(Flag);
230 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
233 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
234 // If either no tail call or told not to tail call at all, don't.
235 auto Attr =
236 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
237 if (!CI->isTailCall() || Attr.getValueAsString() == "true")
238 return false;
240 return true;
243 unsigned HexagonTargetLowering::getRegisterByName(const char* RegName, EVT VT,
244 SelectionDAG &DAG) const {
245 // Just support r19, the linux kernel uses it.
246 unsigned Reg = StringSwitch<unsigned>(RegName)
247 .Case("r19", Hexagon::R19)
248 .Default(0);
249 if (Reg)
250 return Reg;
252 report_fatal_error("Invalid register name global variable");
255 /// LowerCallResult - Lower the result values of an ISD::CALL into the
256 /// appropriate copies out of appropriate physical registers. This assumes that
257 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
258 /// being lowered. Returns a SDNode with the same number of values as the
259 /// ISD::CALL.
260 SDValue HexagonTargetLowering::LowerCallResult(
261 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
262 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
263 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
264 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
265 // Assign locations to each value returned by this call.
266 SmallVector<CCValAssign, 16> RVLocs;
268 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
269 *DAG.getContext());
271 if (Subtarget.useHVXOps())
272 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
273 else
274 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
276 // Copy all of the result registers out of their specified physreg.
277 for (unsigned i = 0; i != RVLocs.size(); ++i) {
278 SDValue RetVal;
279 if (RVLocs[i].getValVT() == MVT::i1) {
280 // Return values of type MVT::i1 require special handling. The reason
281 // is that MVT::i1 is associated with the PredRegs register class, but
282 // values of that type are still returned in R0. Generate an explicit
283 // copy into a predicate register from R0, and treat the value of the
284 // predicate register as the call result.
285 auto &MRI = DAG.getMachineFunction().getRegInfo();
286 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
287 MVT::i32, Glue);
288 // FR0 = (Value, Chain, Glue)
289 unsigned PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
290 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
291 FR0.getValue(0), FR0.getValue(2));
292 // TPR = (Chain, Glue)
293 // Don't glue this CopyFromReg, because it copies from a virtual
294 // register. If it is glued to the call, InstrEmitter will add it
295 // as an implicit def to the call (EmitMachineNode).
296 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
297 Glue = TPR.getValue(1);
298 Chain = TPR.getValue(0);
299 } else {
300 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
301 RVLocs[i].getValVT(), Glue);
302 Glue = RetVal.getValue(2);
303 Chain = RetVal.getValue(1);
305 InVals.push_back(RetVal.getValue(0));
308 return Chain;
311 /// LowerCall - Functions arguments are copied from virtual regs to
312 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
313 SDValue
314 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
315 SmallVectorImpl<SDValue> &InVals) const {
316 SelectionDAG &DAG = CLI.DAG;
317 SDLoc &dl = CLI.DL;
318 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
319 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
320 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
321 SDValue Chain = CLI.Chain;
322 SDValue Callee = CLI.Callee;
323 CallingConv::ID CallConv = CLI.CallConv;
324 bool IsVarArg = CLI.IsVarArg;
325 bool DoesNotReturn = CLI.DoesNotReturn;
327 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
328 MachineFunction &MF = DAG.getMachineFunction();
329 MachineFrameInfo &MFI = MF.getFrameInfo();
330 auto PtrVT = getPointerTy(MF.getDataLayout());
332 unsigned NumParams = CLI.CS.getInstruction()
333 ? CLI.CS.getFunctionType()->getNumParams()
334 : 0;
335 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
336 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
338 // Analyze operands of the call, assigning locations to each operand.
339 SmallVector<CCValAssign, 16> ArgLocs;
340 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
341 NumParams);
343 if (Subtarget.useHVXOps())
344 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
345 else
346 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
348 auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
349 if (Attr.getValueAsString() == "true")
350 CLI.IsTailCall = false;
352 if (CLI.IsTailCall) {
353 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
354 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
355 IsVarArg, IsStructRet, StructAttrFlag, Outs,
356 OutVals, Ins, DAG);
357 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
358 CCValAssign &VA = ArgLocs[i];
359 if (VA.isMemLoc()) {
360 CLI.IsTailCall = false;
361 break;
364 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
365 : "Argument must be passed on stack. "
366 "Not eligible for Tail Call\n"));
368 // Get a count of how many bytes are to be pushed on the stack.
369 unsigned NumBytes = CCInfo.getNextStackOffset();
370 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
371 SmallVector<SDValue, 8> MemOpChains;
373 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
374 SDValue StackPtr =
375 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
377 bool NeedsArgAlign = false;
378 unsigned LargestAlignSeen = 0;
379 // Walk the register/memloc assignments, inserting copies/loads.
380 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
381 CCValAssign &VA = ArgLocs[i];
382 SDValue Arg = OutVals[i];
383 ISD::ArgFlagsTy Flags = Outs[i].Flags;
384 // Record if we need > 8 byte alignment on an argument.
385 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
386 NeedsArgAlign |= ArgAlign;
388 // Promote the value if needed.
389 switch (VA.getLocInfo()) {
390 default:
391 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
392 llvm_unreachable("Unknown loc info!");
393 case CCValAssign::Full:
394 break;
395 case CCValAssign::BCvt:
396 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
397 break;
398 case CCValAssign::SExt:
399 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
400 break;
401 case CCValAssign::ZExt:
402 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
403 break;
404 case CCValAssign::AExt:
405 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
406 break;
409 if (VA.isMemLoc()) {
410 unsigned LocMemOffset = VA.getLocMemOffset();
411 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
412 StackPtr.getValueType());
413 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
414 if (ArgAlign)
415 LargestAlignSeen = std::max(LargestAlignSeen,
416 VA.getLocVT().getStoreSizeInBits() >> 3);
417 if (Flags.isByVal()) {
418 // The argument is a struct passed by value. According to LLVM, "Arg"
419 // is a pointer.
420 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
421 Flags, DAG, dl));
422 } else {
423 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
424 DAG.getMachineFunction(), LocMemOffset);
425 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
426 MemOpChains.push_back(S);
428 continue;
431 // Arguments that can be passed on register must be kept at RegsToPass
432 // vector.
433 if (VA.isRegLoc())
434 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
437 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
438 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
439 unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
440 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
441 MFI.ensureMaxAlignment(LargestAlignSeen);
443 // Transform all store nodes into one single node because all store
444 // nodes are independent of each other.
445 if (!MemOpChains.empty())
446 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
448 SDValue Glue;
449 if (!CLI.IsTailCall) {
450 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
451 Glue = Chain.getValue(1);
454 // Build a sequence of copy-to-reg nodes chained together with token
455 // chain and flag operands which copy the outgoing args into registers.
456 // The Glue is necessary since all emitted instructions must be
457 // stuck together.
458 if (!CLI.IsTailCall) {
459 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
460 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
461 RegsToPass[i].second, Glue);
462 Glue = Chain.getValue(1);
464 } else {
465 // For tail calls lower the arguments to the 'real' stack slot.
467 // Force all the incoming stack arguments to be loaded from the stack
468 // before any new outgoing arguments are stored to the stack, because the
469 // outgoing stack slots may alias the incoming argument stack slots, and
470 // the alias isn't otherwise explicit. This is slightly more conservative
471 // than necessary, because it means that each store effectively depends
472 // on every argument instead of just those arguments it would clobber.
474 // Do not flag preceding copytoreg stuff together with the following stuff.
475 Glue = SDValue();
476 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
477 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
478 RegsToPass[i].second, Glue);
479 Glue = Chain.getValue(1);
481 Glue = SDValue();
484 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
485 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
487 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
488 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
489 // node so that legalize doesn't hack it.
490 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
491 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
492 } else if (ExternalSymbolSDNode *S =
493 dyn_cast<ExternalSymbolSDNode>(Callee)) {
494 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
497 // Returns a chain & a flag for retval copy to use.
498 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
499 SmallVector<SDValue, 8> Ops;
500 Ops.push_back(Chain);
501 Ops.push_back(Callee);
503 // Add argument registers to the end of the list so that they are
504 // known live into the call.
505 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
506 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
507 RegsToPass[i].second.getValueType()));
510 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
511 assert(Mask && "Missing call preserved mask for calling convention");
512 Ops.push_back(DAG.getRegisterMask(Mask));
514 if (Glue.getNode())
515 Ops.push_back(Glue);
517 if (CLI.IsTailCall) {
518 MFI.setHasTailCall();
519 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
522 // Set this here because we need to know this for "hasFP" in frame lowering.
523 // The target-independent code calls getFrameRegister before setting it, and
524 // getFrameRegister uses hasFP to determine whether the function has FP.
525 MFI.setHasCalls(true);
527 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
528 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
529 Glue = Chain.getValue(1);
531 // Create the CALLSEQ_END node.
532 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
533 DAG.getIntPtrConstant(0, dl, true), Glue, dl);
534 Glue = Chain.getValue(1);
536 // Handle result values, copying them out of physregs into vregs that we
537 // return.
538 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
539 InVals, OutVals, Callee);
542 /// Returns true by value, base pointer and offset pointer and addressing
543 /// mode by reference if this node can be combined with a load / store to
544 /// form a post-indexed load / store.
545 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
546 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
547 SelectionDAG &DAG) const {
548 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
549 if (!LSN)
550 return false;
551 EVT VT = LSN->getMemoryVT();
552 if (!VT.isSimple())
553 return false;
554 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
555 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
556 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
557 VT == MVT::v4i16 || VT == MVT::v8i8 ||
558 Subtarget.isHVXVectorType(VT.getSimpleVT());
559 if (!IsLegalType)
560 return false;
562 if (Op->getOpcode() != ISD::ADD)
563 return false;
564 Base = Op->getOperand(0);
565 Offset = Op->getOperand(1);
566 if (!isa<ConstantSDNode>(Offset.getNode()))
567 return false;
568 AM = ISD::POST_INC;
570 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
571 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
574 SDValue
575 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
576 MachineFunction &MF = DAG.getMachineFunction();
577 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
578 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
579 unsigned LR = HRI.getRARegister();
581 if ((Op.getOpcode() != ISD::INLINEASM &&
582 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
583 return Op;
585 unsigned NumOps = Op.getNumOperands();
586 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
587 --NumOps; // Ignore the flag operand.
589 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
590 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
591 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
592 ++i; // Skip the ID value.
594 switch (InlineAsm::getKind(Flags)) {
595 default:
596 llvm_unreachable("Bad flags!");
597 case InlineAsm::Kind_RegUse:
598 case InlineAsm::Kind_Imm:
599 case InlineAsm::Kind_Mem:
600 i += NumVals;
601 break;
602 case InlineAsm::Kind_Clobber:
603 case InlineAsm::Kind_RegDef:
604 case InlineAsm::Kind_RegDefEarlyClobber: {
605 for (; NumVals; --NumVals, ++i) {
606 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
607 if (Reg != LR)
608 continue;
609 HMFI.setHasClobberLR(true);
610 return Op;
612 break;
617 return Op;
620 // Need to transform ISD::PREFETCH into something that doesn't inherit
621 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
622 // SDNPMayStore.
623 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
624 SelectionDAG &DAG) const {
625 SDValue Chain = Op.getOperand(0);
626 SDValue Addr = Op.getOperand(1);
627 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
628 // if the "reg" is fed by an "add".
629 SDLoc DL(Op);
630 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
631 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
634 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
635 // is marked as having side-effects, while the register read on Hexagon does
636 // not have any. TableGen refuses to accept the direct pattern from that node
637 // to the A4_tfrcpp.
638 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
639 SelectionDAG &DAG) const {
640 SDValue Chain = Op.getOperand(0);
641 SDLoc dl(Op);
642 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
643 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
646 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
647 SelectionDAG &DAG) const {
648 SDValue Chain = Op.getOperand(0);
649 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
650 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
651 if (IntNo == Intrinsic::hexagon_prefetch) {
652 SDValue Addr = Op.getOperand(2);
653 SDLoc DL(Op);
654 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
655 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
657 return SDValue();
660 SDValue
661 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
662 SelectionDAG &DAG) const {
663 SDValue Chain = Op.getOperand(0);
664 SDValue Size = Op.getOperand(1);
665 SDValue Align = Op.getOperand(2);
666 SDLoc dl(Op);
668 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
669 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
671 unsigned A = AlignConst->getSExtValue();
672 auto &HFI = *Subtarget.getFrameLowering();
673 // "Zero" means natural stack alignment.
674 if (A == 0)
675 A = HFI.getStackAlignment();
677 LLVM_DEBUG({
678 dbgs () << __func__ << " Align: " << A << " Size: ";
679 Size.getNode()->dump(&DAG);
680 dbgs() << "\n";
683 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
684 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
685 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
687 DAG.ReplaceAllUsesOfValueWith(Op, AA);
688 return AA;
691 SDValue HexagonTargetLowering::LowerFormalArguments(
692 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
693 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
694 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
695 MachineFunction &MF = DAG.getMachineFunction();
696 MachineFrameInfo &MFI = MF.getFrameInfo();
697 MachineRegisterInfo &MRI = MF.getRegInfo();
699 // Assign locations to all of the incoming arguments.
700 SmallVector<CCValAssign, 16> ArgLocs;
701 HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
702 MF.getFunction().getFunctionType()->getNumParams());
704 if (Subtarget.useHVXOps())
705 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
706 else
707 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
709 // For LLVM, in the case when returning a struct by value (>8byte),
710 // the first argument is a pointer that points to the location on caller's
711 // stack where the return value will be stored. For Hexagon, the location on
712 // caller's stack is passed only when the struct size is smaller than (and
713 // equal to) 8 bytes. If not, no address will be passed into callee and
714 // callee return the result direclty through R0/R1.
716 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
718 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
719 CCValAssign &VA = ArgLocs[i];
720 ISD::ArgFlagsTy Flags = Ins[i].Flags;
721 bool ByVal = Flags.isByVal();
723 // Arguments passed in registers:
724 // 1. 32- and 64-bit values and HVX vectors are passed directly,
725 // 2. Large structs are passed via an address, and the address is
726 // passed in a register.
727 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
728 llvm_unreachable("ByValSize must be bigger than 8 bytes");
730 bool InReg = VA.isRegLoc() &&
731 (!ByVal || (ByVal && Flags.getByValSize() > 8));
733 if (InReg) {
734 MVT RegVT = VA.getLocVT();
735 if (VA.getLocInfo() == CCValAssign::BCvt)
736 RegVT = VA.getValVT();
738 const TargetRegisterClass *RC = getRegClassFor(RegVT);
739 unsigned VReg = MRI.createVirtualRegister(RC);
740 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
742 // Treat values of type MVT::i1 specially: they are passed in
743 // registers of type i32, but they need to remain as values of
744 // type i1 for consistency of the argument lowering.
745 if (VA.getValVT() == MVT::i1) {
746 assert(RegVT.getSizeInBits() <= 32);
747 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
748 Copy, DAG.getConstant(1, dl, RegVT));
749 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
750 ISD::SETNE);
751 } else {
752 #ifndef NDEBUG
753 unsigned RegSize = RegVT.getSizeInBits();
754 assert(RegSize == 32 || RegSize == 64 ||
755 Subtarget.isHVXVectorType(RegVT));
756 #endif
758 InVals.push_back(Copy);
759 MRI.addLiveIn(VA.getLocReg(), VReg);
760 } else {
761 assert(VA.isMemLoc() && "Argument should be passed in memory");
763 // If it's a byval parameter, then we need to compute the
764 // "real" size, not the size of the pointer.
765 unsigned ObjSize = Flags.isByVal()
766 ? Flags.getByValSize()
767 : VA.getLocVT().getStoreSizeInBits() / 8;
769 // Create the frame index object for this incoming parameter.
770 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
771 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
772 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
774 if (Flags.isByVal()) {
775 // If it's a pass-by-value aggregate, then do not dereference the stack
776 // location. Instead, we should generate a reference to the stack
777 // location.
778 InVals.push_back(FIN);
779 } else {
780 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
781 MachinePointerInfo::getFixedStack(MF, FI, 0));
782 InVals.push_back(L);
788 if (IsVarArg) {
789 // This will point to the next argument passed via stack.
790 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
791 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
792 HMFI.setVarArgsFrameIndex(FI);
795 return Chain;
798 SDValue
799 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
800 // VASTART stores the address of the VarArgsFrameIndex slot into the
801 // memory location argument.
802 MachineFunction &MF = DAG.getMachineFunction();
803 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
804 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
805 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
806 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
807 MachinePointerInfo(SV));
810 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
811 const SDLoc &dl(Op);
812 SDValue LHS = Op.getOperand(0);
813 SDValue RHS = Op.getOperand(1);
814 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
815 MVT ResTy = ty(Op);
816 MVT OpTy = ty(LHS);
818 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
819 MVT ElemTy = OpTy.getVectorElementType();
820 assert(ElemTy.isScalarInteger());
821 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
822 OpTy.getVectorNumElements());
823 return DAG.getSetCC(dl, ResTy,
824 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
825 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
828 // Treat all other vector types as legal.
829 if (ResTy.isVector())
830 return Op;
832 // Comparisons of short integers should use sign-extend, not zero-extend,
833 // since we can represent small negative values in the compare instructions.
834 // The LLVM default is to use zero-extend arbitrarily in these cases.
835 auto isSExtFree = [this](SDValue N) {
836 switch (N.getOpcode()) {
837 case ISD::TRUNCATE: {
838 // A sign-extend of a truncate of a sign-extend is free.
839 SDValue Op = N.getOperand(0);
840 if (Op.getOpcode() != ISD::AssertSext)
841 return false;
842 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
843 unsigned ThisBW = ty(N).getSizeInBits();
844 unsigned OrigBW = OrigTy.getSizeInBits();
845 // The type that was sign-extended to get the AssertSext must be
846 // narrower than the type of N (so that N has still the same value
847 // as the original).
848 return ThisBW >= OrigBW;
850 case ISD::LOAD:
851 // We have sign-extended loads.
852 return true;
854 return false;
857 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
858 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
859 bool IsNegative = C && C->getAPIntValue().isNegative();
860 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
861 return DAG.getSetCC(dl, ResTy,
862 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
863 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
866 return SDValue();
869 SDValue
870 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
871 SDValue PredOp = Op.getOperand(0);
872 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
873 EVT OpVT = Op1.getValueType();
874 SDLoc DL(Op);
876 if (OpVT == MVT::v2i16) {
877 SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
878 SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
879 SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
880 SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
881 return TR;
884 return SDValue();
887 static Constant *convert_i1_to_i8(const Constant *ConstVal) {
888 SmallVector<Constant *, 128> NewConst;
889 const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
890 if (!CV)
891 return nullptr;
893 LLVMContext &Ctx = ConstVal->getContext();
894 IRBuilder<> IRB(Ctx);
895 unsigned NumVectorElements = CV->getNumOperands();
896 assert(isPowerOf2_32(NumVectorElements) &&
897 "conversion only supported for pow2 VectorSize!");
899 for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
900 uint8_t x = 0;
901 for (unsigned j = 0; j < 8; ++j) {
902 uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
903 x |= y << (7 - j);
905 assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
906 NewConst.push_back(IRB.getInt8(x));
908 return ConstantVector::get(NewConst);
911 SDValue
912 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
913 EVT ValTy = Op.getValueType();
914 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
915 Constant *CVal = nullptr;
916 bool isVTi1Type = false;
917 if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
918 Type *CValTy = ConstVal->getType();
919 if (CValTy->isVectorTy() &&
920 CValTy->getVectorElementType()->isIntegerTy(1)) {
921 CVal = convert_i1_to_i8(ConstVal);
922 isVTi1Type = (CVal != nullptr);
925 unsigned Align = CPN->getAlignment();
926 bool IsPositionIndependent = isPositionIndependent();
927 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
929 unsigned Offset = 0;
930 SDValue T;
931 if (CPN->isMachineConstantPoolEntry())
932 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
933 TF);
934 else if (isVTi1Type)
935 T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
936 else
937 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
939 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
940 "Inconsistent target flag encountered");
942 if (IsPositionIndependent)
943 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
944 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
947 SDValue
948 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
949 EVT VT = Op.getValueType();
950 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
951 if (isPositionIndependent()) {
952 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
953 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
956 SDValue T = DAG.getTargetJumpTable(Idx, VT);
957 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
960 SDValue
961 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
962 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
963 MachineFunction &MF = DAG.getMachineFunction();
964 MachineFrameInfo &MFI = MF.getFrameInfo();
965 MFI.setReturnAddressIsTaken(true);
967 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
968 return SDValue();
970 EVT VT = Op.getValueType();
971 SDLoc dl(Op);
972 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
973 if (Depth) {
974 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
975 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
976 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
977 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
978 MachinePointerInfo());
981 // Return LR, which contains the return address. Mark it an implicit live-in.
982 unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
983 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
986 SDValue
987 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
988 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
989 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
990 MFI.setFrameAddressIsTaken(true);
992 EVT VT = Op.getValueType();
993 SDLoc dl(Op);
994 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
995 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
996 HRI.getFrameRegister(), VT);
997 while (Depth--)
998 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
999 MachinePointerInfo());
1000 return FrameAddr;
1003 SDValue
1004 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1005 SDLoc dl(Op);
1006 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1009 SDValue
1010 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1011 SDLoc dl(Op);
1012 auto *GAN = cast<GlobalAddressSDNode>(Op);
1013 auto PtrVT = getPointerTy(DAG.getDataLayout());
1014 auto *GV = GAN->getGlobal();
1015 int64_t Offset = GAN->getOffset();
1017 auto &HLOF = *HTM.getObjFileLowering();
1018 Reloc::Model RM = HTM.getRelocationModel();
1020 if (RM == Reloc::Static) {
1021 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1022 const GlobalObject *GO = GV->getBaseObject();
1023 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1024 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1025 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1028 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1029 if (UsePCRel) {
1030 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1031 HexagonII::MO_PCREL);
1032 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1035 // Use GOT index.
1036 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1037 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1038 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1039 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1042 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1043 SDValue
1044 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1045 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1046 SDLoc dl(Op);
1047 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1049 Reloc::Model RM = HTM.getRelocationModel();
1050 if (RM == Reloc::Static) {
1051 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1052 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1055 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1056 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1059 SDValue
1060 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1061 const {
1062 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1063 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1064 HexagonII::MO_PCREL);
1065 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1068 SDValue
1069 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1070 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1071 unsigned char OperandFlags) const {
1072 MachineFunction &MF = DAG.getMachineFunction();
1073 MachineFrameInfo &MFI = MF.getFrameInfo();
1074 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1075 SDLoc dl(GA);
1076 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1077 GA->getValueType(0),
1078 GA->getOffset(),
1079 OperandFlags);
1080 // Create Operands for the call.The Operands should have the following:
1081 // 1. Chain SDValue
1082 // 2. Callee which in this case is the Global address value.
1083 // 3. Registers live into the call.In this case its R0, as we
1084 // have just one argument to be passed.
1085 // 4. Glue.
1086 // Note: The order is important.
1088 const auto &HRI = *Subtarget.getRegisterInfo();
1089 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1090 assert(Mask && "Missing call preserved mask for calling convention");
1091 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1092 DAG.getRegisterMask(Mask), Glue };
1093 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1095 // Inform MFI that function has calls.
1096 MFI.setAdjustsStack(true);
1098 Glue = Chain.getValue(1);
1099 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1103 // Lower using the intial executable model for TLS addresses
1105 SDValue
1106 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1107 SelectionDAG &DAG) const {
1108 SDLoc dl(GA);
1109 int64_t Offset = GA->getOffset();
1110 auto PtrVT = getPointerTy(DAG.getDataLayout());
1112 // Get the thread pointer.
1113 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1115 bool IsPositionIndependent = isPositionIndependent();
1116 unsigned char TF =
1117 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1119 // First generate the TLS symbol address
1120 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1121 Offset, TF);
1123 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1125 if (IsPositionIndependent) {
1126 // Generate the GOT pointer in case of position independent code
1127 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1129 // Add the TLS Symbol address to GOT pointer.This gives
1130 // GOT relative relocation for the symbol.
1131 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1134 // Load the offset value for TLS symbol.This offset is relative to
1135 // thread pointer.
1136 SDValue LoadOffset =
1137 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1139 // Address of the thread local variable is the add of thread
1140 // pointer and the offset of the variable.
1141 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1145 // Lower using the local executable model for TLS addresses
1147 SDValue
1148 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1149 SelectionDAG &DAG) const {
1150 SDLoc dl(GA);
1151 int64_t Offset = GA->getOffset();
1152 auto PtrVT = getPointerTy(DAG.getDataLayout());
1154 // Get the thread pointer.
1155 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1156 // Generate the TLS symbol address
1157 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1158 HexagonII::MO_TPREL);
1159 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1161 // Address of the thread local variable is the add of thread
1162 // pointer and the offset of the variable.
1163 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1167 // Lower using the general dynamic model for TLS addresses
1169 SDValue
1170 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1171 SelectionDAG &DAG) const {
1172 SDLoc dl(GA);
1173 int64_t Offset = GA->getOffset();
1174 auto PtrVT = getPointerTy(DAG.getDataLayout());
1176 // First generate the TLS symbol address
1177 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1178 HexagonII::MO_GDGOT);
1180 // Then, generate the GOT pointer
1181 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1183 // Add the TLS symbol and the GOT pointer
1184 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1185 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1187 // Copy over the argument to R0
1188 SDValue InFlag;
1189 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1190 InFlag = Chain.getValue(1);
1192 unsigned Flags =
1193 static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1194 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1195 : HexagonII::MO_GDPLT;
1197 return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1198 Hexagon::R0, Flags);
1202 // Lower TLS addresses.
1204 // For now for dynamic models, we only support the general dynamic model.
1206 SDValue
1207 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1208 SelectionDAG &DAG) const {
1209 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1211 switch (HTM.getTLSModel(GA->getGlobal())) {
1212 case TLSModel::GeneralDynamic:
1213 case TLSModel::LocalDynamic:
1214 return LowerToTLSGeneralDynamicModel(GA, DAG);
1215 case TLSModel::InitialExec:
1216 return LowerToTLSInitialExecModel(GA, DAG);
1217 case TLSModel::LocalExec:
1218 return LowerToTLSLocalExecModel(GA, DAG);
1220 llvm_unreachable("Bogus TLS model");
1223 //===----------------------------------------------------------------------===//
1224 // TargetLowering Implementation
1225 //===----------------------------------------------------------------------===//
1227 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1228 const HexagonSubtarget &ST)
1229 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1230 Subtarget(ST) {
1231 auto &HRI = *Subtarget.getRegisterInfo();
1233 setPrefLoopAlignment(4);
1234 setPrefFunctionAlignment(4);
1235 setMinFunctionAlignment(2);
1236 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1237 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1238 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1240 setMaxAtomicSizeInBitsSupported(64);
1241 setMinCmpXchgSizeInBits(32);
1243 if (EnableHexSDNodeSched)
1244 setSchedulingPreference(Sched::VLIW);
1245 else
1246 setSchedulingPreference(Sched::Source);
1248 // Limits for inline expansion of memcpy/memmove
1249 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1250 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1251 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1252 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1253 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1254 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1257 // Set up register classes.
1260 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1261 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1262 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1263 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1264 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1265 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1266 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1267 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1268 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1269 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1270 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1272 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1273 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1276 // Handling of scalar operations.
1278 // All operations default to "legal", except:
1279 // - indexed loads and stores (pre-/post-incremented),
1280 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1281 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1282 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1283 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1284 // which default to "expand" for at least one type.
1286 // Misc operations.
1287 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1288 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1289 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1290 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1291 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1292 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1293 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1294 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1295 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1296 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1297 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1298 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1299 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1300 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1301 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1302 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1304 // Custom legalize GlobalAddress nodes into CONST32.
1305 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1306 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1307 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1309 // Hexagon needs to optimize cases with negative constants.
1310 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1311 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1312 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1313 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1315 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1316 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1317 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1318 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1319 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1321 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1323 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1325 if (EmitJumpTables)
1326 setMinimumJumpTableEntries(MinimumJumpTables);
1327 else
1328 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1329 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1331 setOperationAction(ISD::ABS, MVT::i32, Legal);
1332 setOperationAction(ISD::ABS, MVT::i64, Legal);
1334 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1335 // but they only operate on i64.
1336 for (MVT VT : MVT::integer_valuetypes()) {
1337 setOperationAction(ISD::UADDO, VT, Custom);
1338 setOperationAction(ISD::USUBO, VT, Custom);
1339 setOperationAction(ISD::SADDO, VT, Expand);
1340 setOperationAction(ISD::SSUBO, VT, Expand);
1341 setOperationAction(ISD::ADDCARRY, VT, Expand);
1342 setOperationAction(ISD::SUBCARRY, VT, Expand);
1344 setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1345 setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1347 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1348 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1349 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1350 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1352 // Popcount can count # of 1s in i64 but returns i32.
1353 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1354 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1355 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1356 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1358 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1359 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1360 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1361 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1363 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1364 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1365 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1366 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1368 for (unsigned IntExpOp :
1369 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1370 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1371 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1372 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1373 for (MVT VT : MVT::integer_valuetypes())
1374 setOperationAction(IntExpOp, VT, Expand);
1377 for (unsigned FPExpOp :
1378 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1379 ISD::FPOW, ISD::FCOPYSIGN}) {
1380 for (MVT VT : MVT::fp_valuetypes())
1381 setOperationAction(FPExpOp, VT, Expand);
1384 // No extending loads from i32.
1385 for (MVT VT : MVT::integer_valuetypes()) {
1386 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1387 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1388 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1390 // Turn FP truncstore into trunc + store.
1391 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1392 // Turn FP extload into load/fpextend.
1393 for (MVT VT : MVT::fp_valuetypes())
1394 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1396 // Expand BR_CC and SELECT_CC for all integer and fp types.
1397 for (MVT VT : MVT::integer_valuetypes()) {
1398 setOperationAction(ISD::BR_CC, VT, Expand);
1399 setOperationAction(ISD::SELECT_CC, VT, Expand);
1401 for (MVT VT : MVT::fp_valuetypes()) {
1402 setOperationAction(ISD::BR_CC, VT, Expand);
1403 setOperationAction(ISD::SELECT_CC, VT, Expand);
1405 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1408 // Handling of vector operations.
1411 // Set the action for vector operations to "expand", then override it with
1412 // either "custom" or "legal" for specific cases.
1413 static const unsigned VectExpOps[] = {
1414 // Integer arithmetic:
1415 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1416 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1417 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1418 // Logical/bit:
1419 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1420 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ,
1421 // Floating point arithmetic/math functions:
1422 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1423 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1424 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1425 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1426 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1427 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1428 // Misc:
1429 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1430 // Vector:
1431 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1432 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1433 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1434 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
1437 for (MVT VT : MVT::vector_valuetypes()) {
1438 for (unsigned VectExpOp : VectExpOps)
1439 setOperationAction(VectExpOp, VT, Expand);
1441 // Expand all extending loads and truncating stores:
1442 for (MVT TargetVT : MVT::vector_valuetypes()) {
1443 if (TargetVT == VT)
1444 continue;
1445 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1446 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1447 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1448 setTruncStoreAction(VT, TargetVT, Expand);
1451 // Normalize all inputs to SELECT to be vectors of i32.
1452 if (VT.getVectorElementType() != MVT::i32) {
1453 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1454 setOperationAction(ISD::SELECT, VT, Promote);
1455 AddPromotedToType(ISD::SELECT, VT, VT32);
1457 setOperationAction(ISD::SRA, VT, Custom);
1458 setOperationAction(ISD::SHL, VT, Custom);
1459 setOperationAction(ISD::SRL, VT, Custom);
1462 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1463 // are legal.
1464 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1465 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1466 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1467 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1468 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1469 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1471 // Types natively supported:
1472 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1473 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1474 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1475 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1476 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1477 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1478 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1479 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1481 setOperationAction(ISD::ADD, NativeVT, Legal);
1482 setOperationAction(ISD::SUB, NativeVT, Legal);
1483 setOperationAction(ISD::MUL, NativeVT, Legal);
1484 setOperationAction(ISD::AND, NativeVT, Legal);
1485 setOperationAction(ISD::OR, NativeVT, Legal);
1486 setOperationAction(ISD::XOR, NativeVT, Legal);
1489 // Custom lower unaligned loads.
1490 // Also, for both loads and stores, verify the alignment of the address
1491 // in case it is a compile-time constant. This is a usability feature to
1492 // provide a meaningful error message to users.
1493 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1494 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1495 setOperationAction(ISD::LOAD, VT, Custom);
1496 setOperationAction(ISD::STORE, VT, Custom);
1499 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v2i32, MVT::v4i16, MVT::v2i32}) {
1500 setCondCodeAction(ISD::SETLT, VT, Expand);
1501 setCondCodeAction(ISD::SETLE, VT, Expand);
1502 setCondCodeAction(ISD::SETULT, VT, Expand);
1503 setCondCodeAction(ISD::SETULE, VT, Expand);
1506 // Custom-lower bitcasts from i8 to v8i1.
1507 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1508 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1509 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1510 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1511 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1512 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1514 // V5+.
1515 setOperationAction(ISD::FMA, MVT::f64, Expand);
1516 setOperationAction(ISD::FADD, MVT::f64, Expand);
1517 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1518 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1520 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1521 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1523 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1524 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1525 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1526 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1527 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1528 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1529 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1530 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1531 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1532 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1533 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1534 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1536 // Handling of indexed loads/stores: default is "expand".
1538 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1539 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1540 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1541 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1544 // Subtarget-specific operation actions.
1546 if (Subtarget.hasV60Ops()) {
1547 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1548 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1549 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1550 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1552 if (Subtarget.hasV66Ops()) {
1553 setOperationAction(ISD::FADD, MVT::f64, Legal);
1554 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1557 if (Subtarget.useHVXOps())
1558 initializeHVXLowering();
1560 computeRegisterProperties(&HRI);
1563 // Library calls for unsupported operations
1565 bool FastMath = EnableFastMath;
1567 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1568 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1569 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1570 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1571 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1572 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1573 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1574 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1576 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1577 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1578 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1579 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1580 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1581 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1583 // This is the only fast library function for sqrtd.
1584 if (FastMath)
1585 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1587 // Prefix is: nothing for "slow-math",
1588 // "fast2_" for V5+ fast-math double-precision
1589 // (actually, keep fast-math and fast-math2 separate for now)
1590 if (FastMath) {
1591 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1592 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1593 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1594 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1595 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1596 } else {
1597 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1598 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1599 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1600 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1601 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1604 if (FastMath)
1605 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1606 else
1607 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1609 // These cause problems when the shift amount is non-constant.
1610 setLibcallName(RTLIB::SHL_I128, nullptr);
1611 setLibcallName(RTLIB::SRL_I128, nullptr);
1612 setLibcallName(RTLIB::SRA_I128, nullptr);
1615 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1616 switch ((HexagonISD::NodeType)Opcode) {
1617 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1618 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1619 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1620 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1621 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1622 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1623 case HexagonISD::CALL: return "HexagonISD::CALL";
1624 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1625 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1626 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1627 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1628 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1629 case HexagonISD::CP: return "HexagonISD::CP";
1630 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1631 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1632 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1633 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1634 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1635 case HexagonISD::JT: return "HexagonISD::JT";
1636 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1637 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1638 case HexagonISD::VASL: return "HexagonISD::VASL";
1639 case HexagonISD::VASR: return "HexagonISD::VASR";
1640 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1641 case HexagonISD::VSPLAT: return "HexagonISD::VSPLAT";
1642 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1643 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1644 case HexagonISD::VROR: return "HexagonISD::VROR";
1645 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1646 case HexagonISD::VZERO: return "HexagonISD::VZERO";
1647 case HexagonISD::VSPLATW: return "HexagonISD::VSPLATW";
1648 case HexagonISD::D2P: return "HexagonISD::D2P";
1649 case HexagonISD::P2D: return "HexagonISD::P2D";
1650 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1651 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1652 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1653 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1654 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1655 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1656 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1657 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1658 case HexagonISD::OP_END: break;
1660 return nullptr;
1663 void
1664 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1665 unsigned NeedAlign) const {
1666 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1667 if (!CA)
1668 return;
1669 unsigned Addr = CA->getZExtValue();
1670 unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1671 if (HaveAlign < NeedAlign) {
1672 std::string ErrMsg;
1673 raw_string_ostream O(ErrMsg);
1674 O << "Misaligned constant address: " << format_hex(Addr, 10)
1675 << " has alignment " << HaveAlign
1676 << ", but the memory access requires " << NeedAlign;
1677 if (DebugLoc DL = dl.getDebugLoc())
1678 DL.print(O << ", at ");
1679 report_fatal_error(O.str());
1683 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1684 // intrinsic.
1685 static bool isBrevLdIntrinsic(const Value *Inst) {
1686 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1687 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1688 ID == Intrinsic::hexagon_L2_loadri_pbr ||
1689 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1690 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1691 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1692 ID == Intrinsic::hexagon_L2_loadrub_pbr);
1695 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1696 // instruction. So far we only handle bitcast, extract value and bit reverse
1697 // load intrinsic instructions. Should we handle CGEP ?
1698 static Value *getBrevLdObject(Value *V) {
1699 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1700 Operator::getOpcode(V) == Instruction::BitCast)
1701 V = cast<Operator>(V)->getOperand(0);
1702 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1703 V = cast<Instruction>(V)->getOperand(0);
1704 return V;
1707 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1708 // a back edge. If the back edge comes from the intrinsic itself, the incoming
1709 // edge is returned.
1710 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1711 const BasicBlock *Parent = PN->getParent();
1712 int Idx = -1;
1713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1714 BasicBlock *Blk = PN->getIncomingBlock(i);
1715 // Determine if the back edge is originated from intrinsic.
1716 if (Blk == Parent) {
1717 Value *BackEdgeVal = PN->getIncomingValue(i);
1718 Value *BaseVal;
1719 // Loop over till we return the same Value or we hit the IntrBaseVal.
1720 do {
1721 BaseVal = BackEdgeVal;
1722 BackEdgeVal = getBrevLdObject(BackEdgeVal);
1723 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1724 // If the getBrevLdObject returns IntrBaseVal, we should return the
1725 // incoming edge.
1726 if (IntrBaseVal == BackEdgeVal)
1727 continue;
1728 Idx = i;
1729 break;
1730 } else // Set the node to incoming edge.
1731 Idx = i;
1733 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1734 return PN->getIncomingValue(Idx);
1737 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
1738 // pointer points to, for the bit-reverse load intrinsic. Setting this to
1739 // memoperand might help alias analysis to figure out the dependencies.
1740 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1741 Value *IntrBaseVal = V;
1742 Value *BaseVal;
1743 // Loop over till we return the same Value, implies we either figure out
1744 // the object or we hit a PHI
1745 do {
1746 BaseVal = V;
1747 V = getBrevLdObject(V);
1748 } while (BaseVal != V);
1750 // Identify the object from PHINode.
1751 if (const PHINode *PN = dyn_cast<PHINode>(V))
1752 return returnEdge(PN, IntrBaseVal);
1753 // For non PHI nodes, the object is the last value returned by getBrevLdObject
1754 else
1755 return V;
1758 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1759 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1760 /// true and store the intrinsic information into the IntrinsicInfo that was
1761 /// passed to the function.
1762 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1763 const CallInst &I,
1764 MachineFunction &MF,
1765 unsigned Intrinsic) const {
1766 switch (Intrinsic) {
1767 case Intrinsic::hexagon_L2_loadrd_pbr:
1768 case Intrinsic::hexagon_L2_loadri_pbr:
1769 case Intrinsic::hexagon_L2_loadrh_pbr:
1770 case Intrinsic::hexagon_L2_loadruh_pbr:
1771 case Intrinsic::hexagon_L2_loadrb_pbr:
1772 case Intrinsic::hexagon_L2_loadrub_pbr: {
1773 Info.opc = ISD::INTRINSIC_W_CHAIN;
1774 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1775 auto &Cont = I.getCalledFunction()->getParent()->getContext();
1776 // The intrinsic function call is of the form { ElTy, i8* }
1777 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1778 // should be derived from ElTy.
1779 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1780 Info.memVT = MVT::getVT(ElTy);
1781 llvm::Value *BasePtrVal = I.getOperand(0);
1782 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1783 // The offset value comes through Modifier register. For now, assume the
1784 // offset is 0.
1785 Info.offset = 0;
1786 Info.align = DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont));
1787 Info.flags = MachineMemOperand::MOLoad;
1788 return true;
1790 case Intrinsic::hexagon_V6_vgathermw:
1791 case Intrinsic::hexagon_V6_vgathermw_128B:
1792 case Intrinsic::hexagon_V6_vgathermh:
1793 case Intrinsic::hexagon_V6_vgathermh_128B:
1794 case Intrinsic::hexagon_V6_vgathermhw:
1795 case Intrinsic::hexagon_V6_vgathermhw_128B:
1796 case Intrinsic::hexagon_V6_vgathermwq:
1797 case Intrinsic::hexagon_V6_vgathermwq_128B:
1798 case Intrinsic::hexagon_V6_vgathermhq:
1799 case Intrinsic::hexagon_V6_vgathermhq_128B:
1800 case Intrinsic::hexagon_V6_vgathermhwq:
1801 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1802 const Module &M = *I.getParent()->getParent()->getParent();
1803 Info.opc = ISD::INTRINSIC_W_CHAIN;
1804 Type *VecTy = I.getArgOperand(1)->getType();
1805 Info.memVT = MVT::getVT(VecTy);
1806 Info.ptrVal = I.getArgOperand(0);
1807 Info.offset = 0;
1808 Info.align = M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8;
1809 Info.flags = MachineMemOperand::MOLoad |
1810 MachineMemOperand::MOStore |
1811 MachineMemOperand::MOVolatile;
1812 return true;
1814 default:
1815 break;
1817 return false;
1820 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1821 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1824 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1825 if (!VT1.isSimple() || !VT2.isSimple())
1826 return false;
1827 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1830 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1831 return isOperationLegalOrCustom(ISD::FMA, VT);
1834 // Should we expand the build vector with shuffles?
1835 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1836 unsigned DefinedValues) const {
1837 return false;
1840 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1841 EVT VT) const {
1842 return true;
1845 TargetLoweringBase::LegalizeTypeAction
1846 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1847 if (VT.getVectorNumElements() == 1)
1848 return TargetLoweringBase::TypeScalarizeVector;
1850 // Always widen vectors of i1.
1851 MVT ElemTy = VT.getVectorElementType();
1852 if (ElemTy == MVT::i1)
1853 return TargetLoweringBase::TypeWidenVector;
1855 if (Subtarget.useHVXOps()) {
1856 // If the size of VT is at least half of the vector length,
1857 // widen the vector. Note: the threshold was not selected in
1858 // any scientific way.
1859 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1860 if (llvm::find(Tys, ElemTy) != Tys.end()) {
1861 unsigned HwWidth = 8*Subtarget.getVectorLength();
1862 unsigned VecWidth = VT.getSizeInBits();
1863 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1864 return TargetLoweringBase::TypeWidenVector;
1867 return TargetLoweringBase::TypeSplitVector;
1870 std::pair<SDValue, int>
1871 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1872 if (Addr.getOpcode() == ISD::ADD) {
1873 SDValue Op1 = Addr.getOperand(1);
1874 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1875 return { Addr.getOperand(0), CN->getSExtValue() };
1877 return { Addr, 0 };
1880 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
1881 // to select data from, V3 is the permutation.
1882 SDValue
1883 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1884 const {
1885 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1886 ArrayRef<int> AM = SVN->getMask();
1887 assert(AM.size() <= 8 && "Unexpected shuffle mask");
1888 unsigned VecLen = AM.size();
1890 MVT VecTy = ty(Op);
1891 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1892 "HVX shuffles should be legal");
1893 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1895 SDValue Op0 = Op.getOperand(0);
1896 SDValue Op1 = Op.getOperand(1);
1897 const SDLoc &dl(Op);
1899 // If the inputs are not the same as the output, bail. This is not an
1900 // error situation, but complicates the handling and the default expansion
1901 // (into BUILD_VECTOR) should be adequate.
1902 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1903 return SDValue();
1905 // Normalize the mask so that the first non-negative index comes from
1906 // the first operand.
1907 SmallVector<int,8> Mask(AM.begin(), AM.end());
1908 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1909 if (F == AM.size())
1910 return DAG.getUNDEF(VecTy);
1911 if (AM[F] >= int(VecLen)) {
1912 ShuffleVectorSDNode::commuteMask(Mask);
1913 std::swap(Op0, Op1);
1916 // Express the shuffle mask in terms of bytes.
1917 SmallVector<int,8> ByteMask;
1918 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
1919 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1920 int M = Mask[i];
1921 if (M < 0) {
1922 for (unsigned j = 0; j != ElemBytes; ++j)
1923 ByteMask.push_back(-1);
1924 } else {
1925 for (unsigned j = 0; j != ElemBytes; ++j)
1926 ByteMask.push_back(M*ElemBytes + j);
1929 assert(ByteMask.size() <= 8);
1931 // All non-undef (non-negative) indexes are well within [0..127], so they
1932 // fit in a single byte. Build two 64-bit words:
1933 // - MaskIdx where each byte is the corresponding index (for non-negative
1934 // indexes), and 0xFF for negative indexes, and
1935 // - MaskUnd that has 0xFF for each negative index.
1936 uint64_t MaskIdx = 0;
1937 uint64_t MaskUnd = 0;
1938 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
1939 unsigned S = 8*i;
1940 uint64_t M = ByteMask[i] & 0xFF;
1941 if (M == 0xFF)
1942 MaskUnd |= M << S;
1943 MaskIdx |= M << S;
1946 if (ByteMask.size() == 4) {
1947 // Identity.
1948 if (MaskIdx == (0x03020100 | MaskUnd))
1949 return Op0;
1950 // Byte swap.
1951 if (MaskIdx == (0x00010203 | MaskUnd)) {
1952 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
1953 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
1954 return DAG.getBitcast(VecTy, T1);
1957 // Byte packs.
1958 SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
1959 typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
1960 if (MaskIdx == (0x06040200 | MaskUnd))
1961 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
1962 if (MaskIdx == (0x07050301 | MaskUnd))
1963 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
1965 SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
1966 typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
1967 if (MaskIdx == (0x02000604 | MaskUnd))
1968 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
1969 if (MaskIdx == (0x03010705 | MaskUnd))
1970 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
1973 if (ByteMask.size() == 8) {
1974 // Identity.
1975 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
1976 return Op0;
1977 // Byte swap.
1978 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
1979 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
1980 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
1981 return DAG.getBitcast(VecTy, T1);
1984 // Halfword picks.
1985 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
1986 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
1987 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
1988 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
1989 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
1990 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
1991 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
1992 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
1993 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
1994 VectorPair P = opSplit(Op0, dl, DAG);
1995 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
1998 // Byte packs.
1999 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2000 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2001 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2002 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2005 return SDValue();
2008 // Create a Hexagon-specific node for shifting a vector by an integer.
2009 SDValue
2010 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2011 const {
2012 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2013 if (SDValue S = BVN->getSplatValue()) {
2014 unsigned NewOpc;
2015 switch (Op.getOpcode()) {
2016 case ISD::SHL:
2017 NewOpc = HexagonISD::VASL;
2018 break;
2019 case ISD::SRA:
2020 NewOpc = HexagonISD::VASR;
2021 break;
2022 case ISD::SRL:
2023 NewOpc = HexagonISD::VLSR;
2024 break;
2025 default:
2026 llvm_unreachable("Unexpected shift opcode");
2028 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2032 return SDValue();
2035 SDValue
2036 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2037 return getVectorShiftByInt(Op, DAG);
2040 SDValue
2041 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2042 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2043 return Op;
2044 return SDValue();
2047 SDValue
2048 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2049 MVT ResTy = ty(Op);
2050 SDValue InpV = Op.getOperand(0);
2051 MVT InpTy = ty(InpV);
2052 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2053 const SDLoc &dl(Op);
2055 // Handle conversion from i8 to v8i1.
2056 if (ResTy == MVT::v8i1) {
2057 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2058 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2059 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2062 return SDValue();
2065 bool
2066 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2067 MVT VecTy, SelectionDAG &DAG,
2068 MutableArrayRef<ConstantInt*> Consts) const {
2069 MVT ElemTy = VecTy.getVectorElementType();
2070 unsigned ElemWidth = ElemTy.getSizeInBits();
2071 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2072 bool AllConst = true;
2074 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2075 SDValue V = Values[i];
2076 if (V.isUndef()) {
2077 Consts[i] = ConstantInt::get(IntTy, 0);
2078 continue;
2080 // Make sure to always cast to IntTy.
2081 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2082 const ConstantInt *CI = CN->getConstantIntValue();
2083 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2084 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2085 const ConstantFP *CF = CN->getConstantFPValue();
2086 APInt A = CF->getValueAPF().bitcastToAPInt();
2087 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2088 } else {
2089 AllConst = false;
2092 return AllConst;
2095 SDValue
2096 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2097 MVT VecTy, SelectionDAG &DAG) const {
2098 MVT ElemTy = VecTy.getVectorElementType();
2099 assert(VecTy.getVectorNumElements() == Elem.size());
2101 SmallVector<ConstantInt*,4> Consts(Elem.size());
2102 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2104 unsigned First, Num = Elem.size();
2105 for (First = 0; First != Num; ++First)
2106 if (!isUndef(Elem[First]))
2107 break;
2108 if (First == Num)
2109 return DAG.getUNDEF(VecTy);
2111 if (AllConst &&
2112 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2113 return getZero(dl, VecTy, DAG);
2115 if (ElemTy == MVT::i16) {
2116 assert(Elem.size() == 2);
2117 if (AllConst) {
2118 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2119 Consts[1]->getZExtValue() << 16;
2120 return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2122 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2123 {Elem[1], Elem[0]}, DAG);
2124 return DAG.getBitcast(MVT::v2i16, N);
2127 if (ElemTy == MVT::i8) {
2128 // First try generating a constant.
2129 if (AllConst) {
2130 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2131 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2132 (Consts[1]->getZExtValue() & 0xFF) << 16 |
2133 Consts[2]->getZExtValue() << 24;
2134 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2137 // Then try splat.
2138 bool IsSplat = true;
2139 for (unsigned i = 0; i != Num; ++i) {
2140 if (i == First)
2141 continue;
2142 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2143 continue;
2144 IsSplat = false;
2145 break;
2147 if (IsSplat) {
2148 // Legalize the operand to VSPLAT.
2149 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2150 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2153 // Generate
2154 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2155 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2156 assert(Elem.size() == 4);
2157 SDValue Vs[4];
2158 for (unsigned i = 0; i != 4; ++i) {
2159 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2160 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2162 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2163 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2164 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2165 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2166 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2168 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2169 return DAG.getBitcast(MVT::v4i8, R);
2172 #ifndef NDEBUG
2173 dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2174 #endif
2175 llvm_unreachable("Unexpected vector element type");
2178 SDValue
2179 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2180 MVT VecTy, SelectionDAG &DAG) const {
2181 MVT ElemTy = VecTy.getVectorElementType();
2182 assert(VecTy.getVectorNumElements() == Elem.size());
2184 SmallVector<ConstantInt*,8> Consts(Elem.size());
2185 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2187 unsigned First, Num = Elem.size();
2188 for (First = 0; First != Num; ++First)
2189 if (!isUndef(Elem[First]))
2190 break;
2191 if (First == Num)
2192 return DAG.getUNDEF(VecTy);
2194 if (AllConst &&
2195 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2196 return getZero(dl, VecTy, DAG);
2198 // First try splat if possible.
2199 if (ElemTy == MVT::i16) {
2200 bool IsSplat = true;
2201 for (unsigned i = 0; i != Num; ++i) {
2202 if (i == First)
2203 continue;
2204 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2205 continue;
2206 IsSplat = false;
2207 break;
2209 if (IsSplat) {
2210 // Legalize the operand to VSPLAT.
2211 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2212 return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2216 // Then try constant.
2217 if (AllConst) {
2218 uint64_t Val = 0;
2219 unsigned W = ElemTy.getSizeInBits();
2220 uint64_t Mask = (ElemTy == MVT::i8) ? 0xFFull
2221 : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2222 for (unsigned i = 0; i != Num; ++i)
2223 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2224 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2225 return DAG.getBitcast(VecTy, V0);
2228 // Build two 32-bit vectors and concatenate.
2229 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2230 SDValue L = (ElemTy == MVT::i32)
2231 ? Elem[0]
2232 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2233 SDValue H = (ElemTy == MVT::i32)
2234 ? Elem[1]
2235 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2236 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2239 SDValue
2240 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2241 const SDLoc &dl, MVT ValTy, MVT ResTy,
2242 SelectionDAG &DAG) const {
2243 MVT VecTy = ty(VecV);
2244 assert(!ValTy.isVector() ||
2245 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2246 unsigned VecWidth = VecTy.getSizeInBits();
2247 unsigned ValWidth = ValTy.getSizeInBits();
2248 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2249 assert((VecWidth % ElemWidth) == 0);
2250 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2252 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2253 // without any coprocessors).
2254 if (ElemWidth == 1) {
2255 assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2256 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2257 // Check if this is an extract of the lowest bit.
2258 if (IdxN) {
2259 // Extracting the lowest bit is a no-op, but it changes the type,
2260 // so it must be kept as an operation to avoid errors related to
2261 // type mismatches.
2262 if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2263 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2266 // If the value extracted is a single bit, use tstbit.
2267 if (ValWidth == 1) {
2268 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2269 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2270 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2271 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2274 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2275 // a predicate register. The elements of the vector are repeated
2276 // in the register (if necessary) so that the total number is 8.
2277 // The extracted subvector will need to be expanded in such a way.
2278 unsigned Scale = VecWidth / ValWidth;
2280 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2281 // position 0.
2282 assert(ty(IdxV) == MVT::i32);
2283 unsigned VecRep = 8 / VecWidth;
2284 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2285 DAG.getConstant(8*VecRep, dl, MVT::i32));
2286 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2287 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2288 while (Scale > 1) {
2289 // The longest possible subvector is at most 32 bits, so it is always
2290 // contained in the low subregister.
2291 T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2292 T1 = expandPredicate(T1, dl, DAG);
2293 Scale /= 2;
2296 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2299 assert(VecWidth == 32 || VecWidth == 64);
2301 // Cast everything to scalar integer types.
2302 MVT ScalarTy = tyScalar(VecTy);
2303 VecV = DAG.getBitcast(ScalarTy, VecV);
2305 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2306 SDValue ExtV;
2308 if (IdxN) {
2309 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2310 if (VecWidth == 64 && ValWidth == 32) {
2311 assert(Off == 0 || Off == 32);
2312 unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2313 ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2314 } else if (Off == 0 && (ValWidth % 8) == 0) {
2315 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2316 } else {
2317 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2318 // The return type of EXTRACTU must be the same as the type of the
2319 // input vector.
2320 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2321 {VecV, WidthV, OffV});
2323 } else {
2324 if (ty(IdxV) != MVT::i32)
2325 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2326 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2327 DAG.getConstant(ElemWidth, dl, MVT::i32));
2328 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2329 {VecV, WidthV, OffV});
2332 // Cast ExtV to the requested result type.
2333 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2334 ExtV = DAG.getBitcast(ResTy, ExtV);
2335 return ExtV;
2338 SDValue
2339 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2340 const SDLoc &dl, MVT ValTy,
2341 SelectionDAG &DAG) const {
2342 MVT VecTy = ty(VecV);
2343 if (VecTy.getVectorElementType() == MVT::i1) {
2344 MVT ValTy = ty(ValV);
2345 assert(ValTy.getVectorElementType() == MVT::i1);
2346 SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2347 unsigned VecLen = VecTy.getVectorNumElements();
2348 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2349 assert(Scale > 1);
2351 for (unsigned R = Scale; R > 1; R /= 2) {
2352 ValR = contractPredicate(ValR, dl, DAG);
2353 ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2354 DAG.getUNDEF(MVT::i32), ValR);
2356 // The longest possible subvector is at most 32 bits, so it is always
2357 // contained in the low subregister.
2358 ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2360 unsigned ValBytes = 64 / Scale;
2361 SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2362 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2363 DAG.getConstant(8, dl, MVT::i32));
2364 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2365 SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2366 {VecR, ValR, Width, Idx});
2367 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2370 unsigned VecWidth = VecTy.getSizeInBits();
2371 unsigned ValWidth = ValTy.getSizeInBits();
2372 assert(VecWidth == 32 || VecWidth == 64);
2373 assert((VecWidth % ValWidth) == 0);
2375 // Cast everything to scalar integer types.
2376 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2377 // The actual type of ValV may be different than ValTy (which is related
2378 // to the vector type).
2379 unsigned VW = ty(ValV).getSizeInBits();
2380 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2381 VecV = DAG.getBitcast(ScalarTy, VecV);
2382 if (VW != VecWidth)
2383 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2385 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2386 SDValue InsV;
2388 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2389 unsigned W = C->getZExtValue() * ValWidth;
2390 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2391 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2392 {VecV, ValV, WidthV, OffV});
2393 } else {
2394 if (ty(IdxV) != MVT::i32)
2395 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2396 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2397 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2398 {VecV, ValV, WidthV, OffV});
2401 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2404 SDValue
2405 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2406 SelectionDAG &DAG) const {
2407 assert(ty(Vec32).getSizeInBits() == 32);
2408 if (isUndef(Vec32))
2409 return DAG.getUNDEF(MVT::i64);
2410 return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2413 SDValue
2414 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2415 SelectionDAG &DAG) const {
2416 assert(ty(Vec64).getSizeInBits() == 64);
2417 if (isUndef(Vec64))
2418 return DAG.getUNDEF(MVT::i32);
2419 return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2422 SDValue
2423 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2424 const {
2425 if (Ty.isVector()) {
2426 assert(Ty.isInteger() && "Only integer vectors are supported here");
2427 unsigned W = Ty.getSizeInBits();
2428 if (W <= 64)
2429 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2430 return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2433 if (Ty.isInteger())
2434 return DAG.getConstant(0, dl, Ty);
2435 if (Ty.isFloatingPoint())
2436 return DAG.getConstantFP(0.0, dl, Ty);
2437 llvm_unreachable("Invalid type for zero");
2440 SDValue
2441 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2442 MVT VecTy = ty(Op);
2443 unsigned BW = VecTy.getSizeInBits();
2444 const SDLoc &dl(Op);
2445 SmallVector<SDValue,8> Ops;
2446 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2447 Ops.push_back(Op.getOperand(i));
2449 if (BW == 32)
2450 return buildVector32(Ops, dl, VecTy, DAG);
2451 if (BW == 64)
2452 return buildVector64(Ops, dl, VecTy, DAG);
2454 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2455 // For each i1 element in the resulting predicate register, put 1
2456 // shifted by the index of the element into a general-purpose register,
2457 // then or them together and transfer it back into a predicate register.
2458 SDValue Rs[8];
2459 SDValue Z = getZero(dl, MVT::i32, DAG);
2460 // Always produce 8 bits, repeat inputs if necessary.
2461 unsigned Rep = 8 / VecTy.getVectorNumElements();
2462 for (unsigned i = 0; i != 8; ++i) {
2463 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2464 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2466 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2467 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2468 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2470 // Move the value directly to a predicate register.
2471 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2474 return SDValue();
2477 SDValue
2478 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2479 SelectionDAG &DAG) const {
2480 MVT VecTy = ty(Op);
2481 const SDLoc &dl(Op);
2482 if (VecTy.getSizeInBits() == 64) {
2483 assert(Op.getNumOperands() == 2);
2484 return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2485 Op.getOperand(0));
2488 MVT ElemTy = VecTy.getVectorElementType();
2489 if (ElemTy == MVT::i1) {
2490 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2491 MVT OpTy = ty(Op.getOperand(0));
2492 // Scale is how many times the operands need to be contracted to match
2493 // the representation in the target register.
2494 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2495 assert(Scale == Op.getNumOperands() && Scale > 1);
2497 // First, convert all bool vectors to integers, then generate pairwise
2498 // inserts to form values of doubled length. Up until there are only
2499 // two values left to concatenate, all of these values will fit in a
2500 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2501 SmallVector<SDValue,4> Words[2];
2502 unsigned IdxW = 0;
2504 for (SDValue P : Op.getNode()->op_values()) {
2505 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2506 for (unsigned R = Scale; R > 1; R /= 2) {
2507 W = contractPredicate(W, dl, DAG);
2508 W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2509 DAG.getUNDEF(MVT::i32), W);
2511 W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2512 Words[IdxW].push_back(W);
2515 while (Scale > 2) {
2516 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2517 Words[IdxW ^ 1].clear();
2519 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2520 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2521 // Insert W1 into W0 right next to the significant bits of W0.
2522 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2523 {W0, W1, WidthV, WidthV});
2524 Words[IdxW ^ 1].push_back(T);
2526 IdxW ^= 1;
2527 Scale /= 2;
2530 // Another sanity check. At this point there should only be two words
2531 // left, and Scale should be 2.
2532 assert(Scale == 2 && Words[IdxW].size() == 2);
2534 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2535 Words[IdxW][1], Words[IdxW][0]);
2536 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2539 return SDValue();
2542 SDValue
2543 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2544 SelectionDAG &DAG) const {
2545 SDValue Vec = Op.getOperand(0);
2546 MVT ElemTy = ty(Vec).getVectorElementType();
2547 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2550 SDValue
2551 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2552 SelectionDAG &DAG) const {
2553 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2554 ty(Op), ty(Op), DAG);
2557 SDValue
2558 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2559 SelectionDAG &DAG) const {
2560 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2561 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2564 SDValue
2565 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2566 SelectionDAG &DAG) const {
2567 SDValue ValV = Op.getOperand(1);
2568 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2569 SDLoc(Op), ty(ValV), DAG);
2572 bool
2573 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2574 // Assuming the caller does not have either a signext or zeroext modifier, and
2575 // only one value is accepted, any reasonable truncation is allowed.
2576 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2577 return false;
2579 // FIXME: in principle up to 64-bit could be made safe, but it would be very
2580 // fragile at the moment: any support for multiple value returns would be
2581 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2582 return Ty1->getPrimitiveSizeInBits() <= 32;
2585 SDValue
2586 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2587 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2588 unsigned ClaimAlign = LN->getAlignment();
2589 validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2590 // Call LowerUnalignedLoad for all loads, it recognizes loads that
2591 // don't need extra aligning.
2592 return LowerUnalignedLoad(Op, DAG);
2595 SDValue
2596 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2597 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2598 unsigned ClaimAlign = SN->getAlignment();
2599 SDValue Ptr = SN->getBasePtr();
2600 const SDLoc &dl(Op);
2601 validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2603 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2604 unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2605 if (ClaimAlign < NeedAlign)
2606 return expandUnalignedStore(SN, DAG);
2607 return Op;
2610 SDValue
2611 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2612 const {
2613 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2614 MVT LoadTy = ty(Op);
2615 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2616 unsigned HaveAlign = LN->getAlignment();
2617 if (HaveAlign >= NeedAlign)
2618 return Op;
2620 const SDLoc &dl(Op);
2621 const DataLayout &DL = DAG.getDataLayout();
2622 LLVMContext &Ctx = *DAG.getContext();
2624 // If the load aligning is disabled or the load can be broken up into two
2625 // smaller legal loads, do the default (target-independent) expansion.
2626 bool DoDefault = false;
2627 // Handle it in the default way if this is an indexed load.
2628 if (!LN->isUnindexed())
2629 DoDefault = true;
2631 if (!AlignLoads) {
2632 if (allowsMemoryAccess(Ctx, DL, LN->getMemoryVT(), *LN->getMemOperand()))
2633 return Op;
2634 DoDefault = true;
2636 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2637 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2638 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2639 : MVT::getVectorVT(MVT::i8, HaveAlign);
2640 DoDefault = allowsMemoryAccess(Ctx, DL, PartTy, *LN->getMemOperand());
2642 if (DoDefault) {
2643 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2644 return DAG.getMergeValues({P.first, P.second}, dl);
2647 // The code below generates two loads, both aligned as NeedAlign, and
2648 // with the distance of NeedAlign between them. For that to cover the
2649 // bits that need to be loaded (and without overlapping), the size of
2650 // the loads should be equal to NeedAlign. This is true for all loadable
2651 // types, but add an assertion in case something changes in the future.
2652 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2654 unsigned LoadLen = NeedAlign;
2655 SDValue Base = LN->getBasePtr();
2656 SDValue Chain = LN->getChain();
2657 auto BO = getBaseAndOffset(Base);
2658 unsigned BaseOpc = BO.first.getOpcode();
2659 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2660 return Op;
2662 if (BO.second % LoadLen != 0) {
2663 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2664 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2665 BO.second -= BO.second % LoadLen;
2667 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2668 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2669 DAG.getConstant(NeedAlign, dl, MVT::i32))
2670 : BO.first;
2671 SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2672 SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2674 MachineMemOperand *WideMMO = nullptr;
2675 if (MachineMemOperand *MMO = LN->getMemOperand()) {
2676 MachineFunction &MF = DAG.getMachineFunction();
2677 WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2678 2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2679 MMO->getSyncScopeID(), MMO->getOrdering(),
2680 MMO->getFailureOrdering());
2683 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2684 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2686 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2687 {Load1, Load0, BaseNoOff.getOperand(0)});
2688 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2689 Load0.getValue(1), Load1.getValue(1));
2690 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2691 return M;
2694 SDValue
2695 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2696 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2697 auto *CY = dyn_cast<ConstantSDNode>(Y);
2698 if (!CY)
2699 return SDValue();
2701 const SDLoc &dl(Op);
2702 SDVTList VTs = Op.getNode()->getVTList();
2703 assert(VTs.NumVTs == 2);
2704 assert(VTs.VTs[1] == MVT::i1);
2705 unsigned Opc = Op.getOpcode();
2707 if (CY) {
2708 uint32_t VY = CY->getZExtValue();
2709 assert(VY != 0 && "This should have been folded");
2710 // X +/- 1
2711 if (VY != 1)
2712 return SDValue();
2714 if (Opc == ISD::UADDO) {
2715 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2716 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2717 ISD::SETEQ);
2718 return DAG.getMergeValues({Op, Ov}, dl);
2720 if (Opc == ISD::USUBO) {
2721 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2722 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2723 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2724 return DAG.getMergeValues({Op, Ov}, dl);
2728 return SDValue();
2731 SDValue
2732 HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2733 const SDLoc &dl(Op);
2734 unsigned Opc = Op.getOpcode();
2735 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2737 if (Opc == ISD::ADDCARRY)
2738 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2739 { X, Y, C });
2741 EVT CarryTy = C.getValueType();
2742 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2743 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2744 SDValue Out[] = { SubC.getValue(0),
2745 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2746 return DAG.getMergeValues(Out, dl);
2749 SDValue
2750 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2751 SDValue Chain = Op.getOperand(0);
2752 SDValue Offset = Op.getOperand(1);
2753 SDValue Handler = Op.getOperand(2);
2754 SDLoc dl(Op);
2755 auto PtrVT = getPointerTy(DAG.getDataLayout());
2757 // Mark function as containing a call to EH_RETURN.
2758 HexagonMachineFunctionInfo *FuncInfo =
2759 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2760 FuncInfo->setHasEHReturn();
2762 unsigned OffsetReg = Hexagon::R28;
2764 SDValue StoreAddr =
2765 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2766 DAG.getIntPtrConstant(4, dl));
2767 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2768 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2770 // Not needed we already use it as explict input to EH_RETURN.
2771 // MF.getRegInfo().addLiveOut(OffsetReg);
2773 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2776 SDValue
2777 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2778 unsigned Opc = Op.getOpcode();
2780 // Handle INLINEASM first.
2781 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2782 return LowerINLINEASM(Op, DAG);
2784 if (isHvxOperation(Op)) {
2785 // If HVX lowering returns nothing, try the default lowering.
2786 if (SDValue V = LowerHvxOperation(Op, DAG))
2787 return V;
2790 switch (Opc) {
2791 default:
2792 #ifndef NDEBUG
2793 Op.getNode()->dumpr(&DAG);
2794 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2795 errs() << "Error: check for a non-legal type in this operation\n";
2796 #endif
2797 llvm_unreachable("Should not custom lower this!");
2798 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2799 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
2800 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
2801 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
2802 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2803 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2804 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2805 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
2806 case ISD::LOAD: return LowerLoad(Op, DAG);
2807 case ISD::STORE: return LowerStore(Op, DAG);
2808 case ISD::UADDO:
2809 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
2810 case ISD::ADDCARRY:
2811 case ISD::SUBCARRY: return LowerAddSubCarry(Op, DAG);
2812 case ISD::SRA:
2813 case ISD::SHL:
2814 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
2815 case ISD::ROTL: return LowerROTL(Op, DAG);
2816 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2817 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2818 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
2819 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
2820 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
2821 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2822 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
2823 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
2824 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2825 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2826 case ISD::VASTART: return LowerVASTART(Op, DAG);
2827 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2828 case ISD::SETCC: return LowerSETCC(Op, DAG);
2829 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
2830 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2831 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
2832 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
2833 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
2834 break;
2837 return SDValue();
2840 void
2841 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2842 SmallVectorImpl<SDValue> &Results,
2843 SelectionDAG &DAG) const {
2844 // We are only custom-lowering stores to verify the alignment of the
2845 // address if it is a compile-time constant. Since a store can be modified
2846 // during type-legalization (the value being stored may need legalization),
2847 // return empty Results here to indicate that we don't really make any
2848 // changes in the custom lowering.
2849 if (N->getOpcode() != ISD::STORE)
2850 return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2853 void
2854 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2855 SmallVectorImpl<SDValue> &Results,
2856 SelectionDAG &DAG) const {
2857 const SDLoc &dl(N);
2858 switch (N->getOpcode()) {
2859 case ISD::SRL:
2860 case ISD::SRA:
2861 case ISD::SHL:
2862 return;
2863 case ISD::BITCAST:
2864 // Handle a bitcast from v8i1 to i8.
2865 if (N->getValueType(0) == MVT::i8) {
2866 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2867 N->getOperand(0), DAG);
2868 Results.push_back(P);
2870 break;
2874 /// Returns relocation base for the given PIC jumptable.
2875 SDValue
2876 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2877 SelectionDAG &DAG) const {
2878 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
2879 EVT VT = Table.getValueType();
2880 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
2881 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
2884 //===----------------------------------------------------------------------===//
2885 // Inline Assembly Support
2886 //===----------------------------------------------------------------------===//
2888 TargetLowering::ConstraintType
2889 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
2890 if (Constraint.size() == 1) {
2891 switch (Constraint[0]) {
2892 case 'q':
2893 case 'v':
2894 if (Subtarget.useHVXOps())
2895 return C_RegisterClass;
2896 break;
2897 case 'a':
2898 return C_RegisterClass;
2899 default:
2900 break;
2903 return TargetLowering::getConstraintType(Constraint);
2906 std::pair<unsigned, const TargetRegisterClass*>
2907 HexagonTargetLowering::getRegForInlineAsmConstraint(
2908 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
2910 if (Constraint.size() == 1) {
2911 switch (Constraint[0]) {
2912 case 'r': // R0-R31
2913 switch (VT.SimpleTy) {
2914 default:
2915 return {0u, nullptr};
2916 case MVT::i1:
2917 case MVT::i8:
2918 case MVT::i16:
2919 case MVT::i32:
2920 case MVT::f32:
2921 return {0u, &Hexagon::IntRegsRegClass};
2922 case MVT::i64:
2923 case MVT::f64:
2924 return {0u, &Hexagon::DoubleRegsRegClass};
2926 break;
2927 case 'a': // M0-M1
2928 if (VT != MVT::i32)
2929 return {0u, nullptr};
2930 return {0u, &Hexagon::ModRegsRegClass};
2931 case 'q': // q0-q3
2932 switch (VT.getSizeInBits()) {
2933 default:
2934 return {0u, nullptr};
2935 case 512:
2936 case 1024:
2937 return {0u, &Hexagon::HvxQRRegClass};
2939 break;
2940 case 'v': // V0-V31
2941 switch (VT.getSizeInBits()) {
2942 default:
2943 return {0u, nullptr};
2944 case 512:
2945 return {0u, &Hexagon::HvxVRRegClass};
2946 case 1024:
2947 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
2948 return {0u, &Hexagon::HvxVRRegClass};
2949 return {0u, &Hexagon::HvxWRRegClass};
2950 case 2048:
2951 return {0u, &Hexagon::HvxWRRegClass};
2953 break;
2954 default:
2955 return {0u, nullptr};
2959 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2962 /// isFPImmLegal - Returns true if the target can instruction select the
2963 /// specified FP immediate natively. If false, the legalizer will
2964 /// materialize the FP immediate as a load from a constant pool.
2965 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
2966 bool ForCodeSize) const {
2967 return true;
2970 /// isLegalAddressingMode - Return true if the addressing mode represented by
2971 /// AM is legal for this target, for a load/store of the specified type.
2972 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
2973 const AddrMode &AM, Type *Ty,
2974 unsigned AS, Instruction *I) const {
2975 if (Ty->isSized()) {
2976 // When LSR detects uses of the same base address to access different
2977 // types (e.g. unions), it will assume a conservative type for these
2978 // uses:
2979 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
2980 // The type Ty passed here would then be "void". Skip the alignment
2981 // checks, but do not return false right away, since that confuses
2982 // LSR into crashing.
2983 unsigned A = DL.getABITypeAlignment(Ty);
2984 // The base offset must be a multiple of the alignment.
2985 if ((AM.BaseOffs % A) != 0)
2986 return false;
2987 // The shifted offset must fit in 11 bits.
2988 if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
2989 return false;
2992 // No global is ever allowed as a base.
2993 if (AM.BaseGV)
2994 return false;
2996 int Scale = AM.Scale;
2997 if (Scale < 0)
2998 Scale = -Scale;
2999 switch (Scale) {
3000 case 0: // No scale reg, "r+i", "r", or just "i".
3001 break;
3002 default: // No scaled addressing mode.
3003 return false;
3005 return true;
3008 /// Return true if folding a constant offset with the given GlobalAddress is
3009 /// legal. It is frequently not legal in PIC relocation models.
3010 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3011 const {
3012 return HTM.getRelocationModel() == Reloc::Static;
3015 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3016 /// icmp immediate, that is the target has icmp instructions which can compare
3017 /// a register against the immediate without having to materialize the
3018 /// immediate into a register.
3019 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3020 return Imm >= -512 && Imm <= 511;
3023 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3024 /// for tail call optimization. Targets which want to do tail call
3025 /// optimization should implement this function.
3026 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3027 SDValue Callee,
3028 CallingConv::ID CalleeCC,
3029 bool IsVarArg,
3030 bool IsCalleeStructRet,
3031 bool IsCallerStructRet,
3032 const SmallVectorImpl<ISD::OutputArg> &Outs,
3033 const SmallVectorImpl<SDValue> &OutVals,
3034 const SmallVectorImpl<ISD::InputArg> &Ins,
3035 SelectionDAG& DAG) const {
3036 const Function &CallerF = DAG.getMachineFunction().getFunction();
3037 CallingConv::ID CallerCC = CallerF.getCallingConv();
3038 bool CCMatch = CallerCC == CalleeCC;
3040 // ***************************************************************************
3041 // Look for obvious safe cases to perform tail call optimization that do not
3042 // require ABI changes.
3043 // ***************************************************************************
3045 // If this is a tail call via a function pointer, then don't do it!
3046 if (!isa<GlobalAddressSDNode>(Callee) &&
3047 !isa<ExternalSymbolSDNode>(Callee)) {
3048 return false;
3051 // Do not optimize if the calling conventions do not match and the conventions
3052 // used are not C or Fast.
3053 if (!CCMatch) {
3054 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3055 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3056 // If R & E, then ok.
3057 if (!R || !E)
3058 return false;
3061 // Do not tail call optimize vararg calls.
3062 if (IsVarArg)
3063 return false;
3065 // Also avoid tail call optimization if either caller or callee uses struct
3066 // return semantics.
3067 if (IsCalleeStructRet || IsCallerStructRet)
3068 return false;
3070 // In addition to the cases above, we also disable Tail Call Optimization if
3071 // the calling convention code that at least one outgoing argument needs to
3072 // go on the stack. We cannot check that here because at this point that
3073 // information is not available.
3074 return true;
3077 /// Returns the target specific optimal type for load and store operations as
3078 /// a result of memset, memcpy, and memmove lowering.
3080 /// If DstAlign is zero that means it's safe to destination alignment can
3081 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3082 /// a need to check it against alignment requirement, probably because the
3083 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3084 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3085 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3086 /// does not need to be loaded. It returns EVT::Other if the type should be
3087 /// determined using generic target-independent logic.
3088 EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3089 unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3090 bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3092 auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3093 return (GivenA % MinA) == 0;
3096 if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3097 return MVT::i64;
3098 if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3099 return MVT::i32;
3100 if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3101 return MVT::i16;
3103 return MVT::Other;
3106 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3107 EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3108 bool *Fast) const {
3109 if (Fast)
3110 *Fast = false;
3111 return Subtarget.isHVXVectorType(VT.getSimpleVT());
3114 std::pair<const TargetRegisterClass*, uint8_t>
3115 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3116 MVT VT) const {
3117 if (Subtarget.isHVXVectorType(VT, true)) {
3118 unsigned BitWidth = VT.getSizeInBits();
3119 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3121 if (VT.getVectorElementType() == MVT::i1)
3122 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3123 if (BitWidth == VecWidth)
3124 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3125 assert(BitWidth == 2 * VecWidth);
3126 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3129 return TargetLowering::findRepresentativeClass(TRI, VT);
3132 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3133 ISD::LoadExtType ExtTy, EVT NewVT) const {
3134 // TODO: This may be worth removing. Check regression tests for diffs.
3135 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3136 return false;
3138 auto *L = cast<LoadSDNode>(Load);
3139 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3140 // Small-data object, do not shrink.
3141 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3142 return false;
3143 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3144 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3145 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3146 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3148 return true;
3151 Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3152 AtomicOrdering Ord) const {
3153 BasicBlock *BB = Builder.GetInsertBlock();
3154 Module *M = BB->getParent()->getParent();
3155 auto PT = cast<PointerType>(Addr->getType());
3156 Type *Ty = PT->getElementType();
3157 unsigned SZ = Ty->getPrimitiveSizeInBits();
3158 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3159 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3160 : Intrinsic::hexagon_L4_loadd_locked;
3161 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3163 PointerType *NewPtrTy
3164 = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3165 Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3167 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3169 return Builder.CreateBitCast(Call, Ty);
3172 /// Perform a store-conditional operation to Addr. Return the status of the
3173 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3174 Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3175 Value *Val, Value *Addr, AtomicOrdering Ord) const {
3176 BasicBlock *BB = Builder.GetInsertBlock();
3177 Module *M = BB->getParent()->getParent();
3178 Type *Ty = Val->getType();
3179 unsigned SZ = Ty->getPrimitiveSizeInBits();
3181 Type *CastTy = Builder.getIntNTy(SZ);
3182 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3183 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3184 : Intrinsic::hexagon_S4_stored_locked;
3185 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3187 unsigned AS = Addr->getType()->getPointerAddressSpace();
3188 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3189 Val = Builder.CreateBitCast(Val, CastTy);
3191 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3192 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3193 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3194 return Ext;
3197 TargetLowering::AtomicExpansionKind
3198 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3199 // Do not expand loads and stores that don't exceed 64 bits.
3200 return LI->getType()->getPrimitiveSizeInBits() > 64
3201 ? AtomicExpansionKind::LLOnly
3202 : AtomicExpansionKind::None;
3205 bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3206 // Do not expand loads and stores that don't exceed 64 bits.
3207 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3210 TargetLowering::AtomicExpansionKind
3211 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3212 AtomicCmpXchgInst *AI) const {
3213 const DataLayout &DL = AI->getModule()->getDataLayout();
3214 unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3215 if (Size >= 4 && Size <= 8)
3216 return AtomicExpansionKind::LLSC;
3217 return AtomicExpansionKind::None;