[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / Hexagon / RDFGraph.h
blob585f43e116f96da54d4af75036096036efff8168
1 //===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF)
10 // for a non-SSA program representation (e.g. post-RA machine code).
13 // *** Introduction
15 // The RDF graph is a collection of nodes, each of which denotes some element
16 // of the program. There are two main types of such elements: code and refe-
17 // rences. Conceptually, "code" is something that represents the structure
18 // of the program, e.g. basic block or a statement, while "reference" is an
19 // instance of accessing a register, e.g. a definition or a use. Nodes are
20 // connected with each other based on the structure of the program (such as
21 // blocks, instructions, etc.), and based on the data flow (e.g. reaching
22 // definitions, reached uses, etc.). The single-reaching-definition principle
23 // of SSA is generally observed, although, due to the non-SSA representation
24 // of the program, there are some differences between the graph and a "pure"
25 // SSA representation.
28 // *** Implementation remarks
30 // Since the graph can contain a large number of nodes, memory consumption
31 // was one of the major design considerations. As a result, there is a single
32 // base class NodeBase which defines all members used by all possible derived
33 // classes. The members are arranged in a union, and a derived class cannot
34 // add any data members of its own. Each derived class only defines the
35 // functional interface, i.e. member functions. NodeBase must be a POD,
36 // which implies that all of its members must also be PODs.
37 // Since nodes need to be connected with other nodes, pointers have been
38 // replaced with 32-bit identifiers: each node has an id of type NodeId.
39 // There are mapping functions in the graph that translate between actual
40 // memory addresses and the corresponding identifiers.
41 // A node id of 0 is equivalent to nullptr.
44 // *** Structure of the graph
46 // A code node is always a collection of other nodes. For example, a code
47 // node corresponding to a basic block will contain code nodes corresponding
48 // to instructions. In turn, a code node corresponding to an instruction will
49 // contain a list of reference nodes that correspond to the definitions and
50 // uses of registers in that instruction. The members are arranged into a
51 // circular list, which is yet another consequence of the effort to save
52 // memory: for each member node it should be possible to obtain its owner,
53 // and it should be possible to access all other members. There are other
54 // ways to accomplish that, but the circular list seemed the most natural.
56 // +- CodeNode -+
57 // | | <---------------------------------------------------+
58 // +-+--------+-+ |
59 // |FirstM |LastM |
60 // | +-------------------------------------+ |
61 // | | |
62 // V V |
63 // +----------+ Next +----------+ Next Next +----------+ Next |
64 // | |----->| |-----> ... ----->| |----->-+
65 // +- Member -+ +- Member -+ +- Member -+
67 // The order of members is such that related reference nodes (see below)
68 // should be contiguous on the member list.
70 // A reference node is a node that encapsulates an access to a register,
71 // in other words, data flowing into or out of a register. There are two
72 // major kinds of reference nodes: defs and uses. A def node will contain
73 // the id of the first reached use, and the id of the first reached def.
74 // Each def and use will contain the id of the reaching def, and also the
75 // id of the next reached def (for def nodes) or use (for use nodes).
76 // The "next node sharing the same reaching def" is denoted as "sibling".
77 // In summary:
78 // - Def node contains: reaching def, sibling, first reached def, and first
79 // reached use.
80 // - Use node contains: reaching def and sibling.
82 // +-- DefNode --+
83 // | R2 = ... | <---+--------------------+
84 // ++---------+--+ | |
85 // |Reached |Reached | |
86 // |Def |Use | |
87 // | | |Reaching |Reaching
88 // | V |Def |Def
89 // | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
90 // | | ... = R2 |----->| ... = R2 |----> ... ----> 0
91 // | +-------------+ +-------------+
92 // V
93 // +-- DefNode --+ Sib
94 // | R2 = ... |----> ...
95 // ++---------+--+
96 // | |
97 // | |
98 // ... ...
100 // To get a full picture, the circular lists connecting blocks within a
101 // function, instructions within a block, etc. should be superimposed with
102 // the def-def, def-use links shown above.
103 // To illustrate this, consider a small example in a pseudo-assembly:
104 // foo:
105 // add r2, r0, r1 ; r2 = r0+r1
106 // addi r0, r2, 1 ; r0 = r2+1
107 // ret r0 ; return value in r0
109 // The graph (in a format used by the debugging functions) would look like:
111 // DFG dump:[
112 // f1: Function foo
113 // b2: === %bb.0 === preds(0), succs(0):
114 // p3: phi [d4<r0>(,d12,u9):]
115 // p5: phi [d6<r1>(,,u10):]
116 // s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117 // s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118 // s14: ret [u15<r0>(d12):]
119 // ]
121 // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122 // kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123 // ment, d - def, u - use).
124 // The format of a def node is:
125 // dN<R>(rd,d,u):sib,
126 // where
127 // N - numeric node id,
128 // R - register being defined
129 // rd - reaching def,
130 // d - reached def,
131 // u - reached use,
132 // sib - sibling.
133 // The format of a use node is:
134 // uN<R>[!](rd):sib,
135 // where
136 // N - numeric node id,
137 // R - register being used,
138 // rd - reaching def,
139 // sib - sibling.
140 // Possible annotations (usually preceding the node id):
141 // + - preserving def,
142 // ~ - clobbering def,
143 // " - shadow ref (follows the node id),
144 // ! - fixed register (appears after register name).
146 // The circular lists are not explicit in the dump.
149 // *** Node attributes
151 // NodeBase has a member "Attrs", which is the primary way of determining
152 // the node's characteristics. The fields in this member decide whether
153 // the node is a code node or a reference node (i.e. node's "type"), then
154 // within each type, the "kind" determines what specifically this node
155 // represents. The remaining bits, "flags", contain additional information
156 // that is even more detailed than the "kind".
157 // CodeNode's kinds are:
158 // - Phi: Phi node, members are reference nodes.
159 // - Stmt: Statement, members are reference nodes.
160 // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161 // - Func: The whole function. The members are basic block nodes.
162 // RefNode's kinds are:
163 // - Use.
164 // - Def.
166 // Meaning of flags:
167 // - Preserving: applies only to defs. A preserving def is one that can
168 // preserve some of the original bits among those that are included in
169 // the register associated with that def. For example, if R0 is a 32-bit
170 // register, but a def can only change the lower 16 bits, then it will
171 // be marked as preserving.
172 // - Shadow: a reference that has duplicates holding additional reaching
173 // defs (see more below).
174 // - Clobbering: applied only to defs, indicates that the value generated
175 // by this def is unspecified. A typical example would be volatile registers
176 // after function calls.
177 // - Fixed: the register in this def/use cannot be replaced with any other
178 // register. A typical case would be a parameter register to a call, or
179 // the register with the return value from a function.
180 // - Undef: the register in this reference the register is assumed to have
181 // no pre-existing value, even if it appears to be reached by some def.
182 // This is typically used to prevent keeping registers artificially live
183 // in cases when they are defined via predicated instructions. For example:
184 // r0 = add-if-true cond, r10, r11 (1)
185 // r0 = add-if-false cond, r12, r13, implicit r0 (2)
186 // ... = r0 (3)
187 // Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188 // not meant to be reached by any def preceding (1). However, since the
189 // defs in (1) and (2) are both preserving, these properties alone would
190 // imply that the use in (3) may indeed be reached by some prior def.
191 // Adding Undef flag to the def in (1) prevents that. The Undef flag
192 // may be applied to both defs and uses.
193 // - Dead: applies only to defs. The value coming out of a "dead" def is
194 // assumed to be unused, even if the def appears to be reaching other defs
195 // or uses. The motivation for this flag comes from dead defs on function
196 // calls: there is no way to determine if such a def is dead without
197 // analyzing the target's ABI. Hence the graph should contain this info,
198 // as it is unavailable otherwise. On the other hand, a def without any
199 // uses on a typical instruction is not the intended target for this flag.
201 // *** Shadow references
203 // It may happen that a super-register can have two (or more) non-overlapping
204 // sub-registers. When both of these sub-registers are defined and followed
205 // by a use of the super-register, the use of the super-register will not
206 // have a unique reaching def: both defs of the sub-registers need to be
207 // accounted for. In such cases, a duplicate use of the super-register is
208 // added and it points to the extra reaching def. Both uses are marked with
209 // a flag "shadow". Example:
210 // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211 // set r0, 1 ; r0 = 1
212 // set r1, 1 ; r1 = 1
213 // addi t1, t0, 1 ; t1 = t0+1
215 // The DFG:
216 // s1: set [d2<r0>(,,u9):]
217 // s3: set [d4<r1>(,,u10):]
218 // s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
220 // The statement s5 has two use nodes for t0: u7" and u9". The quotation
221 // mark " indicates that the node is a shadow.
224 #ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
225 #define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
227 #include "RDFRegisters.h"
228 #include "llvm/ADT/SmallVector.h"
229 #include "llvm/MC/LaneBitmask.h"
230 #include "llvm/Support/Allocator.h"
231 #include "llvm/Support/MathExtras.h"
232 #include <cassert>
233 #include <cstdint>
234 #include <cstring>
235 #include <map>
236 #include <set>
237 #include <unordered_map>
238 #include <utility>
239 #include <vector>
241 // RDF uses uint32_t to refer to registers. This is to ensure that the type
242 // size remains specific. In other places, registers are often stored using
243 // unsigned.
244 static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
246 namespace llvm {
248 class MachineBasicBlock;
249 class MachineDominanceFrontier;
250 class MachineDominatorTree;
251 class MachineFunction;
252 class MachineInstr;
253 class MachineOperand;
254 class raw_ostream;
255 class TargetInstrInfo;
256 class TargetRegisterInfo;
258 namespace rdf {
260 using NodeId = uint32_t;
262 struct DataFlowGraph;
264 struct NodeAttrs {
265 enum : uint16_t {
266 None = 0x0000, // Nothing
268 // Types: 2 bits
269 TypeMask = 0x0003,
270 Code = 0x0001, // 01, Container
271 Ref = 0x0002, // 10, Reference
273 // Kind: 3 bits
274 KindMask = 0x0007 << 2,
275 Def = 0x0001 << 2, // 001
276 Use = 0x0002 << 2, // 010
277 Phi = 0x0003 << 2, // 011
278 Stmt = 0x0004 << 2, // 100
279 Block = 0x0005 << 2, // 101
280 Func = 0x0006 << 2, // 110
282 // Flags: 7 bits for now
283 FlagMask = 0x007F << 5,
284 Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs.
285 Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values.
286 PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode.
287 Preserving = 0x0008 << 5, // 0001000, Def can keep original bits.
288 Fixed = 0x0010 << 5, // 0010000, Fixed register.
289 Undef = 0x0020 << 5, // 0100000, Has no pre-existing value.
290 Dead = 0x0040 << 5, // 1000000, Does not define a value.
293 static uint16_t type(uint16_t T) { return T & TypeMask; }
294 static uint16_t kind(uint16_t T) { return T & KindMask; }
295 static uint16_t flags(uint16_t T) { return T & FlagMask; }
297 static uint16_t set_type(uint16_t A, uint16_t T) {
298 return (A & ~TypeMask) | T;
301 static uint16_t set_kind(uint16_t A, uint16_t K) {
302 return (A & ~KindMask) | K;
305 static uint16_t set_flags(uint16_t A, uint16_t F) {
306 return (A & ~FlagMask) | F;
309 // Test if A contains B.
310 static bool contains(uint16_t A, uint16_t B) {
311 if (type(A) != Code)
312 return false;
313 uint16_t KB = kind(B);
314 switch (kind(A)) {
315 case Func:
316 return KB == Block;
317 case Block:
318 return KB == Phi || KB == Stmt;
319 case Phi:
320 case Stmt:
321 return type(B) == Ref;
323 return false;
327 struct BuildOptions {
328 enum : unsigned {
329 None = 0x00,
330 KeepDeadPhis = 0x01, // Do not remove dead phis during build.
334 template <typename T> struct NodeAddr {
335 NodeAddr() = default;
336 NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
338 // Type cast (casting constructor). The reason for having this class
339 // instead of std::pair.
340 template <typename S> NodeAddr(const NodeAddr<S> &NA)
341 : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
343 bool operator== (const NodeAddr<T> &NA) const {
344 assert((Addr == NA.Addr) == (Id == NA.Id));
345 return Addr == NA.Addr;
347 bool operator!= (const NodeAddr<T> &NA) const {
348 return !operator==(NA);
351 T Addr = nullptr;
352 NodeId Id = 0;
355 struct NodeBase;
357 // Fast memory allocation and translation between node id and node address.
358 // This is really the same idea as the one underlying the "bump pointer
359 // allocator", the difference being in the translation. A node id is
360 // composed of two components: the index of the block in which it was
361 // allocated, and the index within the block. With the default settings,
362 // where the number of nodes per block is 4096, the node id (minus 1) is:
364 // bit position: 11 0
365 // +----------------------------+--------------+
366 // | Index of the block |Index in block|
367 // +----------------------------+--------------+
369 // The actual node id is the above plus 1, to avoid creating a node id of 0.
371 // This method significantly improved the build time, compared to using maps
372 // (std::unordered_map or DenseMap) to translate between pointers and ids.
373 struct NodeAllocator {
374 // Amount of storage for a single node.
375 enum { NodeMemSize = 32 };
377 NodeAllocator(uint32_t NPB = 4096)
378 : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
379 IndexMask((1 << BitsPerIndex)-1) {
380 assert(isPowerOf2_32(NPB));
383 NodeBase *ptr(NodeId N) const {
384 uint32_t N1 = N-1;
385 uint32_t BlockN = N1 >> BitsPerIndex;
386 uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
387 return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
390 NodeId id(const NodeBase *P) const;
391 NodeAddr<NodeBase*> New();
392 void clear();
394 private:
395 void startNewBlock();
396 bool needNewBlock();
398 uint32_t makeId(uint32_t Block, uint32_t Index) const {
399 // Add 1 to the id, to avoid the id of 0, which is treated as "null".
400 return ((Block << BitsPerIndex) | Index) + 1;
403 const uint32_t NodesPerBlock;
404 const uint32_t BitsPerIndex;
405 const uint32_t IndexMask;
406 char *ActiveEnd = nullptr;
407 std::vector<char*> Blocks;
408 using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
409 AllocatorTy MemPool;
412 using RegisterSet = std::set<RegisterRef>;
414 struct TargetOperandInfo {
415 TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
416 virtual ~TargetOperandInfo() = default;
418 virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
419 virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
420 virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
422 const TargetInstrInfo &TII;
425 // Packed register reference. Only used for storage.
426 struct PackedRegisterRef {
427 RegisterId Reg;
428 uint32_t MaskId;
431 struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
432 LaneMaskIndex() = default;
434 LaneBitmask getLaneMaskForIndex(uint32_t K) const {
435 return K == 0 ? LaneBitmask::getAll() : get(K);
438 uint32_t getIndexForLaneMask(LaneBitmask LM) {
439 assert(LM.any());
440 return LM.all() ? 0 : insert(LM);
443 uint32_t getIndexForLaneMask(LaneBitmask LM) const {
444 assert(LM.any());
445 return LM.all() ? 0 : find(LM);
449 struct NodeBase {
450 public:
451 // Make sure this is a POD.
452 NodeBase() = default;
454 uint16_t getType() const { return NodeAttrs::type(Attrs); }
455 uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
456 uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
457 NodeId getNext() const { return Next; }
459 uint16_t getAttrs() const { return Attrs; }
460 void setAttrs(uint16_t A) { Attrs = A; }
461 void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
463 // Insert node NA after "this" in the circular chain.
464 void append(NodeAddr<NodeBase*> NA);
466 // Initialize all members to 0.
467 void init() { memset(this, 0, sizeof *this); }
469 void setNext(NodeId N) { Next = N; }
471 protected:
472 uint16_t Attrs;
473 uint16_t Reserved;
474 NodeId Next; // Id of the next node in the circular chain.
475 // Definitions of nested types. Using anonymous nested structs would make
476 // this class definition clearer, but unnamed structs are not a part of
477 // the standard.
478 struct Def_struct {
479 NodeId DD, DU; // Ids of the first reached def and use.
481 struct PhiU_struct {
482 NodeId PredB; // Id of the predecessor block for a phi use.
484 struct Code_struct {
485 void *CP; // Pointer to the actual code.
486 NodeId FirstM, LastM; // Id of the first member and last.
488 struct Ref_struct {
489 NodeId RD, Sib; // Ids of the reaching def and the sibling.
490 union {
491 Def_struct Def;
492 PhiU_struct PhiU;
494 union {
495 MachineOperand *Op; // Non-phi refs point to a machine operand.
496 PackedRegisterRef PR; // Phi refs store register info directly.
500 // The actual payload.
501 union {
502 Ref_struct Ref;
503 Code_struct Code;
506 // The allocator allocates chunks of 32 bytes for each node. The fact that
507 // each node takes 32 bytes in memory is used for fast translation between
508 // the node id and the node address.
509 static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
510 "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
512 using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
513 using NodeSet = std::set<NodeId>;
515 struct RefNode : public NodeBase {
516 RefNode() = default;
518 RegisterRef getRegRef(const DataFlowGraph &G) const;
520 MachineOperand &getOp() {
521 assert(!(getFlags() & NodeAttrs::PhiRef));
522 return *Ref.Op;
525 void setRegRef(RegisterRef RR, DataFlowGraph &G);
526 void setRegRef(MachineOperand *Op, DataFlowGraph &G);
528 NodeId getReachingDef() const {
529 return Ref.RD;
531 void setReachingDef(NodeId RD) {
532 Ref.RD = RD;
535 NodeId getSibling() const {
536 return Ref.Sib;
538 void setSibling(NodeId Sib) {
539 Ref.Sib = Sib;
542 bool isUse() const {
543 assert(getType() == NodeAttrs::Ref);
544 return getKind() == NodeAttrs::Use;
547 bool isDef() const {
548 assert(getType() == NodeAttrs::Ref);
549 return getKind() == NodeAttrs::Def;
552 template <typename Predicate>
553 NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
554 const DataFlowGraph &G);
555 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
558 struct DefNode : public RefNode {
559 NodeId getReachedDef() const {
560 return Ref.Def.DD;
562 void setReachedDef(NodeId D) {
563 Ref.Def.DD = D;
565 NodeId getReachedUse() const {
566 return Ref.Def.DU;
568 void setReachedUse(NodeId U) {
569 Ref.Def.DU = U;
572 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
575 struct UseNode : public RefNode {
576 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
579 struct PhiUseNode : public UseNode {
580 NodeId getPredecessor() const {
581 assert(getFlags() & NodeAttrs::PhiRef);
582 return Ref.PhiU.PredB;
584 void setPredecessor(NodeId B) {
585 assert(getFlags() & NodeAttrs::PhiRef);
586 Ref.PhiU.PredB = B;
590 struct CodeNode : public NodeBase {
591 template <typename T> T getCode() const {
592 return static_cast<T>(Code.CP);
594 void setCode(void *C) {
595 Code.CP = C;
598 NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
599 NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
600 void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
601 void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
602 const DataFlowGraph &G);
603 void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
605 NodeList members(const DataFlowGraph &G) const;
606 template <typename Predicate>
607 NodeList members_if(Predicate P, const DataFlowGraph &G) const;
610 struct InstrNode : public CodeNode {
611 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
614 struct PhiNode : public InstrNode {
615 MachineInstr *getCode() const {
616 return nullptr;
620 struct StmtNode : public InstrNode {
621 MachineInstr *getCode() const {
622 return CodeNode::getCode<MachineInstr*>();
626 struct BlockNode : public CodeNode {
627 MachineBasicBlock *getCode() const {
628 return CodeNode::getCode<MachineBasicBlock*>();
631 void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
634 struct FuncNode : public CodeNode {
635 MachineFunction *getCode() const {
636 return CodeNode::getCode<MachineFunction*>();
639 NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
640 const DataFlowGraph &G) const;
641 NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
644 struct DataFlowGraph {
645 DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
646 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
647 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
649 NodeBase *ptr(NodeId N) const;
650 template <typename T> T ptr(NodeId N) const {
651 return static_cast<T>(ptr(N));
654 NodeId id(const NodeBase *P) const;
656 template <typename T> NodeAddr<T> addr(NodeId N) const {
657 return { ptr<T>(N), N };
660 NodeAddr<FuncNode*> getFunc() const { return Func; }
661 MachineFunction &getMF() const { return MF; }
662 const TargetInstrInfo &getTII() const { return TII; }
663 const TargetRegisterInfo &getTRI() const { return TRI; }
664 const PhysicalRegisterInfo &getPRI() const { return PRI; }
665 const MachineDominatorTree &getDT() const { return MDT; }
666 const MachineDominanceFrontier &getDF() const { return MDF; }
667 const RegisterAggr &getLiveIns() const { return LiveIns; }
669 struct DefStack {
670 DefStack() = default;
672 bool empty() const { return Stack.empty() || top() == bottom(); }
674 private:
675 using value_type = NodeAddr<DefNode *>;
676 struct Iterator {
677 using value_type = DefStack::value_type;
679 Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
680 Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
682 value_type operator*() const {
683 assert(Pos >= 1);
684 return DS.Stack[Pos-1];
686 const value_type *operator->() const {
687 assert(Pos >= 1);
688 return &DS.Stack[Pos-1];
690 bool operator==(const Iterator &It) const { return Pos == It.Pos; }
691 bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
693 private:
694 friend struct DefStack;
696 Iterator(const DefStack &S, bool Top);
698 // Pos-1 is the index in the StorageType object that corresponds to
699 // the top of the DefStack.
700 const DefStack &DS;
701 unsigned Pos;
704 public:
705 using iterator = Iterator;
707 iterator top() const { return Iterator(*this, true); }
708 iterator bottom() const { return Iterator(*this, false); }
709 unsigned size() const;
711 void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
712 void pop();
713 void start_block(NodeId N);
714 void clear_block(NodeId N);
716 private:
717 friend struct Iterator;
719 using StorageType = std::vector<value_type>;
721 bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
722 return (P.Addr == nullptr) && (N == 0 || P.Id == N);
725 unsigned nextUp(unsigned P) const;
726 unsigned nextDown(unsigned P) const;
728 StorageType Stack;
731 // Make this std::unordered_map for speed of accessing elements.
732 // Map: Register (physical or virtual) -> DefStack
733 using DefStackMap = std::unordered_map<RegisterId, DefStack>;
735 void build(unsigned Options = BuildOptions::None);
736 void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
737 void markBlock(NodeId B, DefStackMap &DefM);
738 void releaseBlock(NodeId B, DefStackMap &DefM);
740 PackedRegisterRef pack(RegisterRef RR) {
741 return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
743 PackedRegisterRef pack(RegisterRef RR) const {
744 return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
746 RegisterRef unpack(PackedRegisterRef PR) const {
747 return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
750 RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
751 RegisterRef makeRegRef(const MachineOperand &Op) const;
752 RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
754 NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
755 NodeAddr<RefNode*> RA) const;
756 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
757 NodeAddr<RefNode*> RA, bool Create);
758 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
759 NodeAddr<RefNode*> RA) const;
760 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
761 NodeAddr<RefNode*> RA, bool Create);
762 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
763 NodeAddr<RefNode*> RA) const;
765 NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
766 NodeAddr<RefNode*> RA) const;
768 NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
769 return BlockNodes.at(BB);
772 void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
773 unlinkUseDF(UA);
774 if (RemoveFromOwner)
775 removeFromOwner(UA);
778 void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
779 unlinkDefDF(DA);
780 if (RemoveFromOwner)
781 removeFromOwner(DA);
784 // Some useful filters.
785 template <uint16_t Kind>
786 static bool IsRef(const NodeAddr<NodeBase*> BA) {
787 return BA.Addr->getType() == NodeAttrs::Ref &&
788 BA.Addr->getKind() == Kind;
791 template <uint16_t Kind>
792 static bool IsCode(const NodeAddr<NodeBase*> BA) {
793 return BA.Addr->getType() == NodeAttrs::Code &&
794 BA.Addr->getKind() == Kind;
797 static bool IsDef(const NodeAddr<NodeBase*> BA) {
798 return BA.Addr->getType() == NodeAttrs::Ref &&
799 BA.Addr->getKind() == NodeAttrs::Def;
802 static bool IsUse(const NodeAddr<NodeBase*> BA) {
803 return BA.Addr->getType() == NodeAttrs::Ref &&
804 BA.Addr->getKind() == NodeAttrs::Use;
807 static bool IsPhi(const NodeAddr<NodeBase*> BA) {
808 return BA.Addr->getType() == NodeAttrs::Code &&
809 BA.Addr->getKind() == NodeAttrs::Phi;
812 static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
813 uint16_t Flags = DA.Addr->getFlags();
814 return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
817 private:
818 void reset();
820 RegisterSet getLandingPadLiveIns() const;
822 NodeAddr<NodeBase*> newNode(uint16_t Attrs);
823 NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
824 NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
825 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
826 NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
827 RegisterRef RR, NodeAddr<BlockNode*> PredB,
828 uint16_t Flags = NodeAttrs::PhiRef);
829 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
830 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
831 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
832 RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
833 NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
834 NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
835 MachineInstr *MI);
836 NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
837 MachineBasicBlock *BB);
838 NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
840 template <typename Predicate>
841 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
842 locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
843 Predicate P) const;
845 using BlockRefsMap = std::map<NodeId, RegisterSet>;
847 void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
848 void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
849 void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
850 NodeAddr<BlockNode*> BA);
851 void removeUnusedPhis();
853 void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
854 void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
855 template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
856 NodeAddr<T> TA, DefStack &DS);
857 template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
858 NodeAddr<StmtNode*> SA, Predicate P);
859 void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
861 void unlinkUseDF(NodeAddr<UseNode*> UA);
862 void unlinkDefDF(NodeAddr<DefNode*> DA);
864 void removeFromOwner(NodeAddr<RefNode*> RA) {
865 NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
866 IA.Addr->removeMember(RA, *this);
869 MachineFunction &MF;
870 const TargetInstrInfo &TII;
871 const TargetRegisterInfo &TRI;
872 const PhysicalRegisterInfo PRI;
873 const MachineDominatorTree &MDT;
874 const MachineDominanceFrontier &MDF;
875 const TargetOperandInfo &TOI;
877 RegisterAggr LiveIns;
878 NodeAddr<FuncNode*> Func;
879 NodeAllocator Memory;
880 // Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
881 std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
882 // Lane mask map.
883 LaneMaskIndex LMI;
884 }; // struct DataFlowGraph
886 template <typename Predicate>
887 NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
888 bool NextOnly, const DataFlowGraph &G) {
889 // Get the "Next" reference in the circular list that references RR and
890 // satisfies predicate "Pred".
891 auto NA = G.addr<NodeBase*>(getNext());
893 while (NA.Addr != this) {
894 if (NA.Addr->getType() == NodeAttrs::Ref) {
895 NodeAddr<RefNode*> RA = NA;
896 if (RA.Addr->getRegRef(G) == RR && P(NA))
897 return NA;
898 if (NextOnly)
899 break;
900 NA = G.addr<NodeBase*>(NA.Addr->getNext());
901 } else {
902 // We've hit the beginning of the chain.
903 assert(NA.Addr->getType() == NodeAttrs::Code);
904 NodeAddr<CodeNode*> CA = NA;
905 NA = CA.Addr->getFirstMember(G);
908 // Return the equivalent of "nullptr" if such a node was not found.
909 return NodeAddr<RefNode*>();
912 template <typename Predicate>
913 NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
914 NodeList MM;
915 auto M = getFirstMember(G);
916 if (M.Id == 0)
917 return MM;
919 while (M.Addr != this) {
920 if (P(M))
921 MM.push_back(M);
922 M = G.addr<NodeBase*>(M.Addr->getNext());
924 return MM;
927 template <typename T>
928 struct Print {
929 Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
931 const T &Obj;
932 const DataFlowGraph &G;
935 template <typename T>
936 struct PrintNode : Print<NodeAddr<T>> {
937 PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
938 : Print<NodeAddr<T>>(x, g) {}
941 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
942 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
943 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
944 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
945 raw_ostream &operator<<(raw_ostream &OS,
946 const Print<NodeAddr<PhiUseNode *>> &P);
947 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
948 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
949 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
950 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
951 raw_ostream &operator<<(raw_ostream &OS,
952 const Print<NodeAddr<StmtNode *>> &P);
953 raw_ostream &operator<<(raw_ostream &OS,
954 const Print<NodeAddr<InstrNode *>> &P);
955 raw_ostream &operator<<(raw_ostream &OS,
956 const Print<NodeAddr<BlockNode *>> &P);
957 raw_ostream &operator<<(raw_ostream &OS,
958 const Print<NodeAddr<FuncNode *>> &P);
959 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
960 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
961 raw_ostream &operator<<(raw_ostream &OS,
962 const Print<DataFlowGraph::DefStack> &P);
964 } // end namespace rdf
966 } // end namespace llvm
968 #endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H