1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the PPCISelLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCContext.h"
74 #include "llvm/MC/MCExpr.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCSymbolXCOFF.h"
77 #include "llvm/Support/AtomicOrdering.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CodeGen.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/Format.h"
86 #include "llvm/Support/KnownBits.h"
87 #include "llvm/Support/MachineValueType.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Target/TargetMachine.h"
91 #include "llvm/Target/TargetOptions.h"
100 using namespace llvm
;
102 #define DEBUG_TYPE "ppc-lowering"
104 static cl::opt
<bool> DisablePPCPreinc("disable-ppc-preinc",
105 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden
);
107 static cl::opt
<bool> DisableILPPref("disable-ppc-ilp-pref",
108 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden
);
110 static cl::opt
<bool> DisablePPCUnaligned("disable-ppc-unaligned",
111 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden
);
113 static cl::opt
<bool> DisableSCO("disable-ppc-sco",
114 cl::desc("disable sibling call optimization on ppc"), cl::Hidden
);
116 static cl::opt
<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
117 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden
);
119 static cl::opt
<bool> EnableQuadPrecision("enable-ppc-quad-precision",
120 cl::desc("enable quad precision float support on ppc"), cl::Hidden
);
122 STATISTIC(NumTailCalls
, "Number of tail calls");
123 STATISTIC(NumSiblingCalls
, "Number of sibling calls");
125 static bool isNByteElemShuffleMask(ShuffleVectorSDNode
*, unsigned, int);
127 static SDValue
widenVec(SelectionDAG
&DAG
, SDValue Vec
, const SDLoc
&dl
);
129 // FIXME: Remove this once the bug has been fixed!
130 extern cl::opt
<bool> ANDIGlueBug
;
132 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine
&TM
,
133 const PPCSubtarget
&STI
)
134 : TargetLowering(TM
), Subtarget(STI
) {
135 // Use _setjmp/_longjmp instead of setjmp/longjmp.
136 setUseUnderscoreSetJmp(true);
137 setUseUnderscoreLongJmp(true);
139 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
140 // arguments are at least 4/8 bytes aligned.
141 bool isPPC64
= Subtarget
.isPPC64();
142 setMinStackArgumentAlignment(isPPC64
? 8:4);
144 // Set up the register classes.
145 addRegisterClass(MVT::i32
, &PPC::GPRCRegClass
);
146 if (!useSoftFloat()) {
148 addRegisterClass(MVT::f32
, &PPC::SPE4RCRegClass
);
149 addRegisterClass(MVT::f64
, &PPC::SPERCRegClass
);
151 addRegisterClass(MVT::f32
, &PPC::F4RCRegClass
);
152 addRegisterClass(MVT::f64
, &PPC::F8RCRegClass
);
156 // Match BITREVERSE to customized fast code sequence in the td file.
157 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
158 setOperationAction(ISD::BITREVERSE
, MVT::i64
, Legal
);
160 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
161 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, Custom
);
163 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
164 for (MVT VT
: MVT::integer_valuetypes()) {
165 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
166 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Expand
);
169 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
171 // PowerPC has pre-inc load and store's.
172 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
173 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
174 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
175 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
176 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
177 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
178 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
179 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
180 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
181 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
182 if (!Subtarget
.hasSPE()) {
183 setIndexedLoadAction(ISD::PRE_INC
, MVT::f32
, Legal
);
184 setIndexedLoadAction(ISD::PRE_INC
, MVT::f64
, Legal
);
185 setIndexedStoreAction(ISD::PRE_INC
, MVT::f32
, Legal
);
186 setIndexedStoreAction(ISD::PRE_INC
, MVT::f64
, Legal
);
189 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
190 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
191 for (MVT VT
: ScalarIntVTs
) {
192 setOperationAction(ISD::ADDC
, VT
, Legal
);
193 setOperationAction(ISD::ADDE
, VT
, Legal
);
194 setOperationAction(ISD::SUBC
, VT
, Legal
);
195 setOperationAction(ISD::SUBE
, VT
, Legal
);
198 if (Subtarget
.useCRBits()) {
199 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
201 if (isPPC64
|| Subtarget
.hasFPCVT()) {
202 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Promote
);
203 AddPromotedToType (ISD::SINT_TO_FP
, MVT::i1
,
204 isPPC64
? MVT::i64
: MVT::i32
);
205 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Promote
);
206 AddPromotedToType(ISD::UINT_TO_FP
, MVT::i1
,
207 isPPC64
? MVT::i64
: MVT::i32
);
209 setOperationAction(ISD::SINT_TO_FP
, MVT::i1
, Custom
);
210 setOperationAction(ISD::UINT_TO_FP
, MVT::i1
, Custom
);
213 // PowerPC does not support direct load/store of condition registers.
214 setOperationAction(ISD::LOAD
, MVT::i1
, Custom
);
215 setOperationAction(ISD::STORE
, MVT::i1
, Custom
);
217 // FIXME: Remove this once the ANDI glue bug is fixed:
219 setOperationAction(ISD::TRUNCATE
, MVT::i1
, Custom
);
221 for (MVT VT
: MVT::integer_valuetypes()) {
222 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
223 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
224 setTruncStoreAction(VT
, MVT::i1
, Expand
);
227 addRegisterClass(MVT::i1
, &PPC::CRBITRCRegClass
);
230 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
231 // PPC (the libcall is not available).
232 setOperationAction(ISD::FP_TO_SINT
, MVT::ppcf128
, Custom
);
233 setOperationAction(ISD::FP_TO_UINT
, MVT::ppcf128
, Custom
);
235 // We do not currently implement these libm ops for PowerPC.
236 setOperationAction(ISD::FFLOOR
, MVT::ppcf128
, Expand
);
237 setOperationAction(ISD::FCEIL
, MVT::ppcf128
, Expand
);
238 setOperationAction(ISD::FTRUNC
, MVT::ppcf128
, Expand
);
239 setOperationAction(ISD::FRINT
, MVT::ppcf128
, Expand
);
240 setOperationAction(ISD::FNEARBYINT
, MVT::ppcf128
, Expand
);
241 setOperationAction(ISD::FREM
, MVT::ppcf128
, Expand
);
243 // PowerPC has no SREM/UREM instructions unless we are on P9
244 // On P9 we may use a hardware instruction to compute the remainder.
245 // The instructions are not legalized directly because in the cases where the
246 // result of both the remainder and the division is required it is more
247 // efficient to compute the remainder from the result of the division rather
248 // than use the remainder instruction.
249 if (Subtarget
.isISA3_0()) {
250 setOperationAction(ISD::SREM
, MVT::i32
, Custom
);
251 setOperationAction(ISD::UREM
, MVT::i32
, Custom
);
252 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
253 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
255 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
256 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
257 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
258 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
261 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
262 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
263 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
264 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
265 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
266 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
267 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
268 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
269 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
271 // We don't support sin/cos/sqrt/fmod/pow
272 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
273 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
274 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
275 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
276 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
277 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
278 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
279 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
280 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
281 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
282 if (Subtarget
.hasSPE()) {
283 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
284 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
286 setOperationAction(ISD::FMA
, MVT::f64
, Legal
);
287 setOperationAction(ISD::FMA
, MVT::f32
, Legal
);
290 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
292 // If we're enabling GP optimizations, use hardware square root
293 if (!Subtarget
.hasFSQRT() &&
294 !(TM
.Options
.UnsafeFPMath
&& Subtarget
.hasFRSQRTE() &&
296 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
298 if (!Subtarget
.hasFSQRT() &&
299 !(TM
.Options
.UnsafeFPMath
&& Subtarget
.hasFRSQRTES() &&
300 Subtarget
.hasFRES()))
301 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
303 if (Subtarget
.hasFCPSGN()) {
304 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Legal
);
305 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Legal
);
307 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
308 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
311 if (Subtarget
.hasFPRND()) {
312 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
313 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
314 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
315 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
317 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
318 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
319 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
320 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
323 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
324 // to speed up scalar BSWAP64.
325 // CTPOP or CTTZ were introduced in P8/P9 respectively
326 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
327 if (Subtarget
.hasP9Vector())
328 setOperationAction(ISD::BSWAP
, MVT::i64
, Custom
);
330 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
331 if (Subtarget
.isISA3_0()) {
332 setOperationAction(ISD::CTTZ
, MVT::i32
, Legal
);
333 setOperationAction(ISD::CTTZ
, MVT::i64
, Legal
);
335 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
336 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
339 if (Subtarget
.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast
) {
340 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
341 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
343 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
344 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
347 // PowerPC does not have ROTR
348 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
349 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
351 if (!Subtarget
.useCRBits()) {
352 // PowerPC does not have Select
353 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
354 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
355 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
356 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
359 // PowerPC wants to turn select_cc of FP into fsel when possible.
360 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
361 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
363 // PowerPC wants to optimize integer setcc a bit
364 if (!Subtarget
.useCRBits())
365 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
367 // PowerPC does not have BRCOND which requires SetCC
368 if (!Subtarget
.useCRBits())
369 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
371 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
373 if (Subtarget
.hasSPE()) {
374 // SPE has built-in conversions
375 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Legal
);
376 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Legal
);
377 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Legal
);
379 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
380 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
382 // PowerPC does not have [U|S]INT_TO_FP
383 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
384 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
387 if (Subtarget
.hasDirectMove() && isPPC64
) {
388 setOperationAction(ISD::BITCAST
, MVT::f32
, Legal
);
389 setOperationAction(ISD::BITCAST
, MVT::i32
, Legal
);
390 setOperationAction(ISD::BITCAST
, MVT::i64
, Legal
);
391 setOperationAction(ISD::BITCAST
, MVT::f64
, Legal
);
393 setOperationAction(ISD::BITCAST
, MVT::f32
, Expand
);
394 setOperationAction(ISD::BITCAST
, MVT::i32
, Expand
);
395 setOperationAction(ISD::BITCAST
, MVT::i64
, Expand
);
396 setOperationAction(ISD::BITCAST
, MVT::f64
, Expand
);
399 // We cannot sextinreg(i1). Expand to shifts.
400 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
402 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
403 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
404 // support continuation, user-level threading, and etc.. As a result, no
405 // other SjLj exception interfaces are implemented and please don't build
406 // your own exception handling based on them.
407 // LLVM/Clang supports zero-cost DWARF exception handling.
408 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
409 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
411 // We want to legalize GlobalAddress and ConstantPool nodes into the
412 // appropriate instructions to materialize the address.
413 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
414 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
415 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
416 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
417 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
418 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
419 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
420 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
421 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
422 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
425 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
427 // TRAMPOLINE is custom lowered.
428 setOperationAction(ISD::INIT_TRAMPOLINE
, MVT::Other
, Custom
);
429 setOperationAction(ISD::ADJUST_TRAMPOLINE
, MVT::Other
, Custom
);
431 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
432 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
434 if (Subtarget
.isSVR4ABI()) {
436 // VAARG always uses double-word chunks, so promote anything smaller.
437 setOperationAction(ISD::VAARG
, MVT::i1
, Promote
);
438 AddPromotedToType (ISD::VAARG
, MVT::i1
, MVT::i64
);
439 setOperationAction(ISD::VAARG
, MVT::i8
, Promote
);
440 AddPromotedToType (ISD::VAARG
, MVT::i8
, MVT::i64
);
441 setOperationAction(ISD::VAARG
, MVT::i16
, Promote
);
442 AddPromotedToType (ISD::VAARG
, MVT::i16
, MVT::i64
);
443 setOperationAction(ISD::VAARG
, MVT::i32
, Promote
);
444 AddPromotedToType (ISD::VAARG
, MVT::i32
, MVT::i64
);
445 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
447 // VAARG is custom lowered with the 32-bit SVR4 ABI.
448 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
449 setOperationAction(ISD::VAARG
, MVT::i64
, Custom
);
452 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
454 if (Subtarget
.isSVR4ABI() && !isPPC64
)
455 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
456 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
458 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
460 // Use the default implementation.
461 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
462 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
463 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
464 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
465 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
466 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET
, MVT::i32
, Custom
);
467 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET
, MVT::i64
, Custom
);
468 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
469 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
471 // We want to custom lower some of our intrinsics.
472 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
474 // To handle counter-based loop conditions.
475 setOperationAction(ISD::INTRINSIC_W_CHAIN
, MVT::i1
, Custom
);
477 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i8
, Custom
);
478 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i16
, Custom
);
479 setOperationAction(ISD::INTRINSIC_VOID
, MVT::i32
, Custom
);
480 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
482 // Comparisons that require checking two conditions.
483 if (Subtarget
.hasSPE()) {
484 setCondCodeAction(ISD::SETO
, MVT::f32
, Expand
);
485 setCondCodeAction(ISD::SETO
, MVT::f64
, Expand
);
486 setCondCodeAction(ISD::SETUO
, MVT::f32
, Expand
);
487 setCondCodeAction(ISD::SETUO
, MVT::f64
, Expand
);
489 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
490 setCondCodeAction(ISD::SETULT
, MVT::f64
, Expand
);
491 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
492 setCondCodeAction(ISD::SETUGT
, MVT::f64
, Expand
);
493 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
494 setCondCodeAction(ISD::SETUEQ
, MVT::f64
, Expand
);
495 setCondCodeAction(ISD::SETOGE
, MVT::f32
, Expand
);
496 setCondCodeAction(ISD::SETOGE
, MVT::f64
, Expand
);
497 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
498 setCondCodeAction(ISD::SETOLE
, MVT::f64
, Expand
);
499 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
500 setCondCodeAction(ISD::SETONE
, MVT::f64
, Expand
);
502 if (Subtarget
.has64BitSupport()) {
503 // They also have instructions for converting between i64 and fp.
504 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
505 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
506 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
507 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
508 // This is just the low 32 bits of a (signed) fp->i64 conversion.
509 // We cannot do this with Promote because i64 is not a legal type.
510 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
512 if (Subtarget
.hasLFIWAX() || Subtarget
.isPPC64())
513 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
515 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
516 if (Subtarget
.hasSPE())
517 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Legal
);
519 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
522 // With the instructions enabled under FPCVT, we can do everything.
523 if (Subtarget
.hasFPCVT()) {
524 if (Subtarget
.has64BitSupport()) {
525 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
526 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
527 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
528 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
531 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
532 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
533 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
534 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
537 if (Subtarget
.use64BitRegs()) {
538 // 64-bit PowerPC implementations can support i64 types directly
539 addRegisterClass(MVT::i64
, &PPC::G8RCRegClass
);
540 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
541 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
542 // 64-bit PowerPC wants to expand i128 shifts itself.
543 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
544 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
545 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
547 // 32-bit PowerPC wants to expand i64 shifts itself.
548 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
549 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
550 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
553 if (Subtarget
.hasAltivec()) {
554 // First set operation action for all vector types to expand. Then we
555 // will selectively turn on ones that can be effectively codegen'd.
556 for (MVT VT
: MVT::vector_valuetypes()) {
557 // add/sub are legal for all supported vector VT's.
558 setOperationAction(ISD::ADD
, VT
, Legal
);
559 setOperationAction(ISD::SUB
, VT
, Legal
);
561 // For v2i64, these are only valid with P8Vector. This is corrected after
563 setOperationAction(ISD::SMAX
, VT
, Legal
);
564 setOperationAction(ISD::SMIN
, VT
, Legal
);
565 setOperationAction(ISD::UMAX
, VT
, Legal
);
566 setOperationAction(ISD::UMIN
, VT
, Legal
);
568 if (Subtarget
.hasVSX()) {
569 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
570 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
573 // Vector instructions introduced in P8
574 if (Subtarget
.hasP8Altivec() && (VT
.SimpleTy
!= MVT::v1i128
)) {
575 setOperationAction(ISD::CTPOP
, VT
, Legal
);
576 setOperationAction(ISD::CTLZ
, VT
, Legal
);
579 setOperationAction(ISD::CTPOP
, VT
, Expand
);
580 setOperationAction(ISD::CTLZ
, VT
, Expand
);
583 // Vector instructions introduced in P9
584 if (Subtarget
.hasP9Altivec() && (VT
.SimpleTy
!= MVT::v1i128
))
585 setOperationAction(ISD::CTTZ
, VT
, Legal
);
587 setOperationAction(ISD::CTTZ
, VT
, Expand
);
589 // We promote all shuffles to v16i8.
590 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Promote
);
591 AddPromotedToType (ISD::VECTOR_SHUFFLE
, VT
, MVT::v16i8
);
593 // We promote all non-typed operations to v4i32.
594 setOperationAction(ISD::AND
, VT
, Promote
);
595 AddPromotedToType (ISD::AND
, VT
, MVT::v4i32
);
596 setOperationAction(ISD::OR
, VT
, Promote
);
597 AddPromotedToType (ISD::OR
, VT
, MVT::v4i32
);
598 setOperationAction(ISD::XOR
, VT
, Promote
);
599 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i32
);
600 setOperationAction(ISD::LOAD
, VT
, Promote
);
601 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i32
);
602 setOperationAction(ISD::SELECT
, VT
, Promote
);
603 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i32
);
604 setOperationAction(ISD::VSELECT
, VT
, Legal
);
605 setOperationAction(ISD::SELECT_CC
, VT
, Promote
);
606 AddPromotedToType (ISD::SELECT_CC
, VT
, MVT::v4i32
);
607 setOperationAction(ISD::STORE
, VT
, Promote
);
608 AddPromotedToType (ISD::STORE
, VT
, MVT::v4i32
);
610 // No other operations are legal.
611 setOperationAction(ISD::MUL
, VT
, Expand
);
612 setOperationAction(ISD::SDIV
, VT
, Expand
);
613 setOperationAction(ISD::SREM
, VT
, Expand
);
614 setOperationAction(ISD::UDIV
, VT
, Expand
);
615 setOperationAction(ISD::UREM
, VT
, Expand
);
616 setOperationAction(ISD::FDIV
, VT
, Expand
);
617 setOperationAction(ISD::FREM
, VT
, Expand
);
618 setOperationAction(ISD::FNEG
, VT
, Expand
);
619 setOperationAction(ISD::FSQRT
, VT
, Expand
);
620 setOperationAction(ISD::FLOG
, VT
, Expand
);
621 setOperationAction(ISD::FLOG10
, VT
, Expand
);
622 setOperationAction(ISD::FLOG2
, VT
, Expand
);
623 setOperationAction(ISD::FEXP
, VT
, Expand
);
624 setOperationAction(ISD::FEXP2
, VT
, Expand
);
625 setOperationAction(ISD::FSIN
, VT
, Expand
);
626 setOperationAction(ISD::FCOS
, VT
, Expand
);
627 setOperationAction(ISD::FABS
, VT
, Expand
);
628 setOperationAction(ISD::FFLOOR
, VT
, Expand
);
629 setOperationAction(ISD::FCEIL
, VT
, Expand
);
630 setOperationAction(ISD::FTRUNC
, VT
, Expand
);
631 setOperationAction(ISD::FRINT
, VT
, Expand
);
632 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
633 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Expand
);
634 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Expand
);
635 setOperationAction(ISD::BUILD_VECTOR
, VT
, Expand
);
636 setOperationAction(ISD::MULHU
, VT
, Expand
);
637 setOperationAction(ISD::MULHS
, VT
, Expand
);
638 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
639 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
640 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
641 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
642 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
643 setOperationAction(ISD::FPOW
, VT
, Expand
);
644 setOperationAction(ISD::BSWAP
, VT
, Expand
);
645 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
646 setOperationAction(ISD::ROTL
, VT
, Expand
);
647 setOperationAction(ISD::ROTR
, VT
, Expand
);
649 for (MVT InnerVT
: MVT::vector_valuetypes()) {
650 setTruncStoreAction(VT
, InnerVT
, Expand
);
651 setLoadExtAction(ISD::SEXTLOAD
, VT
, InnerVT
, Expand
);
652 setLoadExtAction(ISD::ZEXTLOAD
, VT
, InnerVT
, Expand
);
653 setLoadExtAction(ISD::EXTLOAD
, VT
, InnerVT
, Expand
);
656 if (!Subtarget
.hasP8Vector()) {
657 setOperationAction(ISD::SMAX
, MVT::v2i64
, Expand
);
658 setOperationAction(ISD::SMIN
, MVT::v2i64
, Expand
);
659 setOperationAction(ISD::UMAX
, MVT::v2i64
, Expand
);
660 setOperationAction(ISD::UMIN
, MVT::v2i64
, Expand
);
663 for (auto VT
: {MVT::v2i64
, MVT::v4i32
, MVT::v8i16
, MVT::v16i8
})
664 setOperationAction(ISD::ABS
, VT
, Custom
);
666 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
667 // with merges, splats, etc.
668 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
670 // Vector truncates to sub-word integer that fit in an Altivec/VSX register
671 // are cheap, so handle them before they get expanded to scalar.
672 setOperationAction(ISD::TRUNCATE
, MVT::v8i8
, Custom
);
673 setOperationAction(ISD::TRUNCATE
, MVT::v4i8
, Custom
);
674 setOperationAction(ISD::TRUNCATE
, MVT::v2i8
, Custom
);
675 setOperationAction(ISD::TRUNCATE
, MVT::v4i16
, Custom
);
676 setOperationAction(ISD::TRUNCATE
, MVT::v2i16
, Custom
);
678 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
679 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
680 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
681 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
682 setOperationAction(ISD::SELECT
, MVT::v4i32
,
683 Subtarget
.useCRBits() ? Legal
: Expand
);
684 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
685 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i32
, Legal
);
686 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i32
, Legal
);
687 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Legal
);
688 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i32
, Legal
);
689 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Legal
);
690 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Legal
);
691 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Legal
);
692 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Legal
);
694 // Without hasP8Altivec set, v2i64 SMAX isn't available.
695 // But ABS custom lowering requires SMAX support.
696 if (!Subtarget
.hasP8Altivec())
697 setOperationAction(ISD::ABS
, MVT::v2i64
, Expand
);
699 addRegisterClass(MVT::v4f32
, &PPC::VRRCRegClass
);
700 addRegisterClass(MVT::v4i32
, &PPC::VRRCRegClass
);
701 addRegisterClass(MVT::v8i16
, &PPC::VRRCRegClass
);
702 addRegisterClass(MVT::v16i8
, &PPC::VRRCRegClass
);
704 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
705 setOperationAction(ISD::FMA
, MVT::v4f32
, Legal
);
707 if (TM
.Options
.UnsafeFPMath
|| Subtarget
.hasVSX()) {
708 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
709 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
712 if (Subtarget
.hasP8Altivec())
713 setOperationAction(ISD::MUL
, MVT::v4i32
, Legal
);
715 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
717 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
718 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
720 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
721 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
723 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
724 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
725 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
726 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
728 // Altivec does not contain unordered floating-point compare instructions
729 setCondCodeAction(ISD::SETUO
, MVT::v4f32
, Expand
);
730 setCondCodeAction(ISD::SETUEQ
, MVT::v4f32
, Expand
);
731 setCondCodeAction(ISD::SETO
, MVT::v4f32
, Expand
);
732 setCondCodeAction(ISD::SETONE
, MVT::v4f32
, Expand
);
734 if (Subtarget
.hasVSX()) {
735 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f64
, Legal
);
736 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Legal
);
737 if (Subtarget
.hasP8Vector()) {
738 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Legal
);
739 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Legal
);
741 if (Subtarget
.hasDirectMove() && isPPC64
) {
742 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v16i8
, Legal
);
743 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v8i16
, Legal
);
744 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Legal
);
745 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2i64
, Legal
);
746 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v16i8
, Legal
);
747 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v8i16
, Legal
);
748 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Legal
);
749 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i64
, Legal
);
751 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f64
, Legal
);
753 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Legal
);
754 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Legal
);
755 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Legal
);
756 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Legal
);
757 setOperationAction(ISD::FROUND
, MVT::v2f64
, Legal
);
759 setOperationAction(ISD::FROUND
, MVT::v4f32
, Legal
);
761 setOperationAction(ISD::MUL
, MVT::v2f64
, Legal
);
762 setOperationAction(ISD::FMA
, MVT::v2f64
, Legal
);
764 setOperationAction(ISD::FDIV
, MVT::v2f64
, Legal
);
765 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Legal
);
767 // Share the Altivec comparison restrictions.
768 setCondCodeAction(ISD::SETUO
, MVT::v2f64
, Expand
);
769 setCondCodeAction(ISD::SETUEQ
, MVT::v2f64
, Expand
);
770 setCondCodeAction(ISD::SETO
, MVT::v2f64
, Expand
);
771 setCondCodeAction(ISD::SETONE
, MVT::v2f64
, Expand
);
773 setOperationAction(ISD::LOAD
, MVT::v2f64
, Legal
);
774 setOperationAction(ISD::STORE
, MVT::v2f64
, Legal
);
776 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2f64
, Legal
);
778 if (Subtarget
.hasP8Vector())
779 addRegisterClass(MVT::f32
, &PPC::VSSRCRegClass
);
781 addRegisterClass(MVT::f64
, &PPC::VSFRCRegClass
);
783 addRegisterClass(MVT::v4i32
, &PPC::VSRCRegClass
);
784 addRegisterClass(MVT::v4f32
, &PPC::VSRCRegClass
);
785 addRegisterClass(MVT::v2f64
, &PPC::VSRCRegClass
);
787 if (Subtarget
.hasP8Altivec()) {
788 setOperationAction(ISD::SHL
, MVT::v2i64
, Legal
);
789 setOperationAction(ISD::SRA
, MVT::v2i64
, Legal
);
790 setOperationAction(ISD::SRL
, MVT::v2i64
, Legal
);
792 // 128 bit shifts can be accomplished via 3 instructions for SHL and
793 // SRL, but not for SRA because of the instructions available:
794 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
796 setOperationAction(ISD::SHL
, MVT::v1i128
, Expand
);
797 setOperationAction(ISD::SRL
, MVT::v1i128
, Expand
);
798 setOperationAction(ISD::SRA
, MVT::v1i128
, Expand
);
800 setOperationAction(ISD::SETCC
, MVT::v2i64
, Legal
);
803 setOperationAction(ISD::SHL
, MVT::v2i64
, Expand
);
804 setOperationAction(ISD::SRA
, MVT::v2i64
, Expand
);
805 setOperationAction(ISD::SRL
, MVT::v2i64
, Expand
);
807 setOperationAction(ISD::SETCC
, MVT::v2i64
, Custom
);
809 // VSX v2i64 only supports non-arithmetic operations.
810 setOperationAction(ISD::ADD
, MVT::v2i64
, Expand
);
811 setOperationAction(ISD::SUB
, MVT::v2i64
, Expand
);
814 setOperationAction(ISD::LOAD
, MVT::v2i64
, Promote
);
815 AddPromotedToType (ISD::LOAD
, MVT::v2i64
, MVT::v2f64
);
816 setOperationAction(ISD::STORE
, MVT::v2i64
, Promote
);
817 AddPromotedToType (ISD::STORE
, MVT::v2i64
, MVT::v2f64
);
819 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v2i64
, Legal
);
821 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i64
, Legal
);
822 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i64
, Legal
);
823 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i64
, Legal
);
824 setOperationAction(ISD::FP_TO_UINT
, MVT::v2i64
, Legal
);
826 // Custom handling for partial vectors of integers converted to
827 // floating point. We already have optimal handling for v2i32 through
828 // the DAG combine, so those aren't necessary.
829 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i8
, Custom
);
830 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i8
, Custom
);
831 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i16
, Custom
);
832 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
833 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i8
, Custom
);
834 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i8
, Custom
);
835 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i16
, Custom
);
836 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
838 setOperationAction(ISD::FNEG
, MVT::v4f32
, Legal
);
839 setOperationAction(ISD::FNEG
, MVT::v2f64
, Legal
);
840 setOperationAction(ISD::FABS
, MVT::v4f32
, Legal
);
841 setOperationAction(ISD::FABS
, MVT::v2f64
, Legal
);
842 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f32
, Legal
);
843 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Legal
);
845 if (Subtarget
.hasDirectMove())
846 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2i64
, Custom
);
847 setOperationAction(ISD::BUILD_VECTOR
, MVT::v2f64
, Custom
);
849 addRegisterClass(MVT::v2i64
, &PPC::VSRCRegClass
);
852 if (Subtarget
.hasP8Altivec()) {
853 addRegisterClass(MVT::v2i64
, &PPC::VRRCRegClass
);
854 addRegisterClass(MVT::v1i128
, &PPC::VRRCRegClass
);
857 if (Subtarget
.hasP9Vector()) {
858 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
859 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
861 // 128 bit shifts can be accomplished via 3 instructions for SHL and
862 // SRL, but not for SRA because of the instructions available:
863 // VS{RL} and VS{RL}O.
864 setOperationAction(ISD::SHL
, MVT::v1i128
, Legal
);
865 setOperationAction(ISD::SRL
, MVT::v1i128
, Legal
);
866 setOperationAction(ISD::SRA
, MVT::v1i128
, Expand
);
868 if (EnableQuadPrecision
) {
869 addRegisterClass(MVT::f128
, &PPC::VRRCRegClass
);
870 setOperationAction(ISD::FADD
, MVT::f128
, Legal
);
871 setOperationAction(ISD::FSUB
, MVT::f128
, Legal
);
872 setOperationAction(ISD::FDIV
, MVT::f128
, Legal
);
873 setOperationAction(ISD::FMUL
, MVT::f128
, Legal
);
874 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Legal
);
875 // No extending loads to f128 on PPC.
876 for (MVT FPT
: MVT::fp_valuetypes())
877 setLoadExtAction(ISD::EXTLOAD
, MVT::f128
, FPT
, Expand
);
878 setOperationAction(ISD::FMA
, MVT::f128
, Legal
);
879 setCondCodeAction(ISD::SETULT
, MVT::f128
, Expand
);
880 setCondCodeAction(ISD::SETUGT
, MVT::f128
, Expand
);
881 setCondCodeAction(ISD::SETUEQ
, MVT::f128
, Expand
);
882 setCondCodeAction(ISD::SETOGE
, MVT::f128
, Expand
);
883 setCondCodeAction(ISD::SETOLE
, MVT::f128
, Expand
);
884 setCondCodeAction(ISD::SETONE
, MVT::f128
, Expand
);
886 setOperationAction(ISD::FTRUNC
, MVT::f128
, Legal
);
887 setOperationAction(ISD::FRINT
, MVT::f128
, Legal
);
888 setOperationAction(ISD::FFLOOR
, MVT::f128
, Legal
);
889 setOperationAction(ISD::FCEIL
, MVT::f128
, Legal
);
890 setOperationAction(ISD::FNEARBYINT
, MVT::f128
, Legal
);
891 setOperationAction(ISD::FROUND
, MVT::f128
, Legal
);
893 setOperationAction(ISD::SELECT
, MVT::f128
, Expand
);
894 setOperationAction(ISD::FP_ROUND
, MVT::f64
, Legal
);
895 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Legal
);
896 setTruncStoreAction(MVT::f128
, MVT::f64
, Expand
);
897 setTruncStoreAction(MVT::f128
, MVT::f32
, Expand
);
898 setOperationAction(ISD::BITCAST
, MVT::i128
, Custom
);
899 // No implementation for these ops for PowerPC.
900 setOperationAction(ISD::FSIN
, MVT::f128
, Expand
);
901 setOperationAction(ISD::FCOS
, MVT::f128
, Expand
);
902 setOperationAction(ISD::FPOW
, MVT::f128
, Expand
);
903 setOperationAction(ISD::FPOWI
, MVT::f128
, Expand
);
904 setOperationAction(ISD::FREM
, MVT::f128
, Expand
);
906 setOperationAction(ISD::FP_EXTEND
, MVT::v2f32
, Custom
);
910 if (Subtarget
.hasP9Altivec()) {
911 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v8i16
, Custom
);
912 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v16i8
, Custom
);
916 if (Subtarget
.hasQPX()) {
917 setOperationAction(ISD::FADD
, MVT::v4f64
, Legal
);
918 setOperationAction(ISD::FSUB
, MVT::v4f64
, Legal
);
919 setOperationAction(ISD::FMUL
, MVT::v4f64
, Legal
);
920 setOperationAction(ISD::FREM
, MVT::v4f64
, Expand
);
922 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f64
, Legal
);
923 setOperationAction(ISD::FGETSIGN
, MVT::v4f64
, Expand
);
925 setOperationAction(ISD::LOAD
, MVT::v4f64
, Custom
);
926 setOperationAction(ISD::STORE
, MVT::v4f64
, Custom
);
928 setTruncStoreAction(MVT::v4f64
, MVT::v4f32
, Custom
);
929 setLoadExtAction(ISD::EXTLOAD
, MVT::v4f64
, MVT::v4f32
, Custom
);
931 if (!Subtarget
.useCRBits())
932 setOperationAction(ISD::SELECT
, MVT::v4f64
, Expand
);
933 setOperationAction(ISD::VSELECT
, MVT::v4f64
, Legal
);
935 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f64
, Legal
);
936 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f64
, Expand
);
937 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f64
, Expand
);
938 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f64
, Expand
);
939 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f64
, Custom
);
940 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f64
, Legal
);
941 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f64
, Custom
);
943 setOperationAction(ISD::FP_TO_SINT
, MVT::v4f64
, Legal
);
944 setOperationAction(ISD::FP_TO_UINT
, MVT::v4f64
, Expand
);
946 setOperationAction(ISD::FP_ROUND
, MVT::v4f32
, Legal
);
947 setOperationAction(ISD::FP_ROUND_INREG
, MVT::v4f32
, Expand
);
948 setOperationAction(ISD::FP_EXTEND
, MVT::v4f64
, Legal
);
950 setOperationAction(ISD::FNEG
, MVT::v4f64
, Legal
);
951 setOperationAction(ISD::FABS
, MVT::v4f64
, Legal
);
952 setOperationAction(ISD::FSIN
, MVT::v4f64
, Expand
);
953 setOperationAction(ISD::FCOS
, MVT::v4f64
, Expand
);
954 setOperationAction(ISD::FPOW
, MVT::v4f64
, Expand
);
955 setOperationAction(ISD::FLOG
, MVT::v4f64
, Expand
);
956 setOperationAction(ISD::FLOG2
, MVT::v4f64
, Expand
);
957 setOperationAction(ISD::FLOG10
, MVT::v4f64
, Expand
);
958 setOperationAction(ISD::FEXP
, MVT::v4f64
, Expand
);
959 setOperationAction(ISD::FEXP2
, MVT::v4f64
, Expand
);
961 setOperationAction(ISD::FMINNUM
, MVT::v4f64
, Legal
);
962 setOperationAction(ISD::FMAXNUM
, MVT::v4f64
, Legal
);
964 setIndexedLoadAction(ISD::PRE_INC
, MVT::v4f64
, Legal
);
965 setIndexedStoreAction(ISD::PRE_INC
, MVT::v4f64
, Legal
);
967 addRegisterClass(MVT::v4f64
, &PPC::QFRCRegClass
);
969 setOperationAction(ISD::FADD
, MVT::v4f32
, Legal
);
970 setOperationAction(ISD::FSUB
, MVT::v4f32
, Legal
);
971 setOperationAction(ISD::FMUL
, MVT::v4f32
, Legal
);
972 setOperationAction(ISD::FREM
, MVT::v4f32
, Expand
);
974 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f32
, Legal
);
975 setOperationAction(ISD::FGETSIGN
, MVT::v4f32
, Expand
);
977 setOperationAction(ISD::LOAD
, MVT::v4f32
, Custom
);
978 setOperationAction(ISD::STORE
, MVT::v4f32
, Custom
);
980 if (!Subtarget
.useCRBits())
981 setOperationAction(ISD::SELECT
, MVT::v4f32
, Expand
);
982 setOperationAction(ISD::VSELECT
, MVT::v4f32
, Legal
);
984 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Legal
);
985 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Expand
);
986 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4f32
, Expand
);
987 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4f32
, Expand
);
988 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4f32
, Custom
);
989 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Legal
);
990 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
992 setOperationAction(ISD::FP_TO_SINT
, MVT::v4f32
, Legal
);
993 setOperationAction(ISD::FP_TO_UINT
, MVT::v4f32
, Expand
);
995 setOperationAction(ISD::FNEG
, MVT::v4f32
, Legal
);
996 setOperationAction(ISD::FABS
, MVT::v4f32
, Legal
);
997 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
998 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
999 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
1000 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
1001 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
1002 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
1003 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
1004 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
1006 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1007 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1009 setIndexedLoadAction(ISD::PRE_INC
, MVT::v4f32
, Legal
);
1010 setIndexedStoreAction(ISD::PRE_INC
, MVT::v4f32
, Legal
);
1012 addRegisterClass(MVT::v4f32
, &PPC::QSRCRegClass
);
1014 setOperationAction(ISD::AND
, MVT::v4i1
, Legal
);
1015 setOperationAction(ISD::OR
, MVT::v4i1
, Legal
);
1016 setOperationAction(ISD::XOR
, MVT::v4i1
, Legal
);
1018 if (!Subtarget
.useCRBits())
1019 setOperationAction(ISD::SELECT
, MVT::v4i1
, Expand
);
1020 setOperationAction(ISD::VSELECT
, MVT::v4i1
, Legal
);
1022 setOperationAction(ISD::LOAD
, MVT::v4i1
, Custom
);
1023 setOperationAction(ISD::STORE
, MVT::v4i1
, Custom
);
1025 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i1
, Custom
);
1026 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i1
, Expand
);
1027 setOperationAction(ISD::CONCAT_VECTORS
, MVT::v4i1
, Expand
);
1028 setOperationAction(ISD::EXTRACT_SUBVECTOR
, MVT::v4i1
, Expand
);
1029 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v4i1
, Custom
);
1030 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i1
, Expand
);
1031 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i1
, Custom
);
1033 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i1
, Custom
);
1034 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i1
, Custom
);
1036 addRegisterClass(MVT::v4i1
, &PPC::QBRCRegClass
);
1038 setOperationAction(ISD::FFLOOR
, MVT::v4f64
, Legal
);
1039 setOperationAction(ISD::FCEIL
, MVT::v4f64
, Legal
);
1040 setOperationAction(ISD::FTRUNC
, MVT::v4f64
, Legal
);
1041 setOperationAction(ISD::FROUND
, MVT::v4f64
, Legal
);
1043 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Legal
);
1044 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Legal
);
1045 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Legal
);
1046 setOperationAction(ISD::FROUND
, MVT::v4f32
, Legal
);
1048 setOperationAction(ISD::FNEARBYINT
, MVT::v4f64
, Expand
);
1049 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
1051 // These need to set FE_INEXACT, and so cannot be vectorized here.
1052 setOperationAction(ISD::FRINT
, MVT::v4f64
, Expand
);
1053 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
1055 if (TM
.Options
.UnsafeFPMath
) {
1056 setOperationAction(ISD::FDIV
, MVT::v4f64
, Legal
);
1057 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Legal
);
1059 setOperationAction(ISD::FDIV
, MVT::v4f32
, Legal
);
1060 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Legal
);
1062 setOperationAction(ISD::FDIV
, MVT::v4f64
, Expand
);
1063 setOperationAction(ISD::FSQRT
, MVT::v4f64
, Expand
);
1065 setOperationAction(ISD::FDIV
, MVT::v4f32
, Expand
);
1066 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
1070 if (Subtarget
.has64BitSupport())
1071 setOperationAction(ISD::PREFETCH
, MVT::Other
, Legal
);
1073 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, isPPC64
? Legal
: Custom
);
1076 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
1077 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
1080 setBooleanContents(ZeroOrOneBooleanContent
);
1082 if (Subtarget
.hasAltivec()) {
1083 // Altivec instructions set fields to all zeros or all ones.
1084 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
1088 // These libcalls are not available in 32-bit.
1089 setLibcallName(RTLIB::SHL_I128
, nullptr);
1090 setLibcallName(RTLIB::SRL_I128
, nullptr);
1091 setLibcallName(RTLIB::SRA_I128
, nullptr);
1094 setStackPointerRegisterToSaveRestore(isPPC64
? PPC::X1
: PPC::R1
);
1096 // We have target-specific dag combine patterns for the following nodes:
1097 setTargetDAGCombine(ISD::ADD
);
1098 setTargetDAGCombine(ISD::SHL
);
1099 setTargetDAGCombine(ISD::SRA
);
1100 setTargetDAGCombine(ISD::SRL
);
1101 setTargetDAGCombine(ISD::MUL
);
1102 setTargetDAGCombine(ISD::SINT_TO_FP
);
1103 setTargetDAGCombine(ISD::BUILD_VECTOR
);
1104 if (Subtarget
.hasFPCVT())
1105 setTargetDAGCombine(ISD::UINT_TO_FP
);
1106 setTargetDAGCombine(ISD::LOAD
);
1107 setTargetDAGCombine(ISD::STORE
);
1108 setTargetDAGCombine(ISD::BR_CC
);
1109 if (Subtarget
.useCRBits())
1110 setTargetDAGCombine(ISD::BRCOND
);
1111 setTargetDAGCombine(ISD::BSWAP
);
1112 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
1113 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
1114 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
1116 setTargetDAGCombine(ISD::SIGN_EXTEND
);
1117 setTargetDAGCombine(ISD::ZERO_EXTEND
);
1118 setTargetDAGCombine(ISD::ANY_EXTEND
);
1120 setTargetDAGCombine(ISD::TRUNCATE
);
1122 if (Subtarget
.useCRBits()) {
1123 setTargetDAGCombine(ISD::TRUNCATE
);
1124 setTargetDAGCombine(ISD::SETCC
);
1125 setTargetDAGCombine(ISD::SELECT_CC
);
1128 // Use reciprocal estimates.
1129 if (TM
.Options
.UnsafeFPMath
) {
1130 setTargetDAGCombine(ISD::FDIV
);
1131 setTargetDAGCombine(ISD::FSQRT
);
1134 if (Subtarget
.hasP9Altivec()) {
1135 setTargetDAGCombine(ISD::ABS
);
1136 setTargetDAGCombine(ISD::VSELECT
);
1139 // Darwin long double math library functions have $LDBL128 appended.
1140 if (Subtarget
.isDarwin()) {
1141 setLibcallName(RTLIB::COS_PPCF128
, "cosl$LDBL128");
1142 setLibcallName(RTLIB::POW_PPCF128
, "powl$LDBL128");
1143 setLibcallName(RTLIB::REM_PPCF128
, "fmodl$LDBL128");
1144 setLibcallName(RTLIB::SIN_PPCF128
, "sinl$LDBL128");
1145 setLibcallName(RTLIB::SQRT_PPCF128
, "sqrtl$LDBL128");
1146 setLibcallName(RTLIB::LOG_PPCF128
, "logl$LDBL128");
1147 setLibcallName(RTLIB::LOG2_PPCF128
, "log2l$LDBL128");
1148 setLibcallName(RTLIB::LOG10_PPCF128
, "log10l$LDBL128");
1149 setLibcallName(RTLIB::EXP_PPCF128
, "expl$LDBL128");
1150 setLibcallName(RTLIB::EXP2_PPCF128
, "exp2l$LDBL128");
1153 if (EnableQuadPrecision
) {
1154 setLibcallName(RTLIB::LOG_F128
, "logf128");
1155 setLibcallName(RTLIB::LOG2_F128
, "log2f128");
1156 setLibcallName(RTLIB::LOG10_F128
, "log10f128");
1157 setLibcallName(RTLIB::EXP_F128
, "expf128");
1158 setLibcallName(RTLIB::EXP2_F128
, "exp2f128");
1159 setLibcallName(RTLIB::SIN_F128
, "sinf128");
1160 setLibcallName(RTLIB::COS_F128
, "cosf128");
1161 setLibcallName(RTLIB::POW_F128
, "powf128");
1162 setLibcallName(RTLIB::FMIN_F128
, "fminf128");
1163 setLibcallName(RTLIB::FMAX_F128
, "fmaxf128");
1164 setLibcallName(RTLIB::POWI_F128
, "__powikf2");
1165 setLibcallName(RTLIB::REM_F128
, "fmodf128");
1168 // With 32 condition bits, we don't need to sink (and duplicate) compares
1169 // aggressively in CodeGenPrep.
1170 if (Subtarget
.useCRBits()) {
1171 setHasMultipleConditionRegisters();
1172 setJumpIsExpensive();
1175 setMinFunctionAlignment(2);
1176 if (Subtarget
.isDarwin())
1177 setPrefFunctionAlignment(4);
1179 switch (Subtarget
.getDarwinDirective()) {
1184 case PPC::DIR_E500mc
:
1185 case PPC::DIR_E5500
:
1188 case PPC::DIR_PWR5X
:
1190 case PPC::DIR_PWR6X
:
1194 setPrefFunctionAlignment(4);
1195 setPrefLoopAlignment(4);
1199 if (Subtarget
.enableMachineScheduler())
1200 setSchedulingPreference(Sched::Source
);
1202 setSchedulingPreference(Sched::Hybrid
);
1204 computeRegisterProperties(STI
.getRegisterInfo());
1206 // The Freescale cores do better with aggressive inlining of memcpy and
1207 // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1208 if (Subtarget
.getDarwinDirective() == PPC::DIR_E500mc
||
1209 Subtarget
.getDarwinDirective() == PPC::DIR_E5500
) {
1210 MaxStoresPerMemset
= 32;
1211 MaxStoresPerMemsetOptSize
= 16;
1212 MaxStoresPerMemcpy
= 32;
1213 MaxStoresPerMemcpyOptSize
= 8;
1214 MaxStoresPerMemmove
= 32;
1215 MaxStoresPerMemmoveOptSize
= 8;
1216 } else if (Subtarget
.getDarwinDirective() == PPC::DIR_A2
) {
1217 // The A2 also benefits from (very) aggressive inlining of memcpy and
1218 // friends. The overhead of a the function call, even when warm, can be
1219 // over one hundred cycles.
1220 MaxStoresPerMemset
= 128;
1221 MaxStoresPerMemcpy
= 128;
1222 MaxStoresPerMemmove
= 128;
1223 MaxLoadsPerMemcmp
= 128;
1225 MaxLoadsPerMemcmp
= 8;
1226 MaxLoadsPerMemcmpOptSize
= 4;
1230 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1231 /// the desired ByVal argument alignment.
1232 static void getMaxByValAlign(Type
*Ty
, unsigned &MaxAlign
,
1233 unsigned MaxMaxAlign
) {
1234 if (MaxAlign
== MaxMaxAlign
)
1236 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
1237 if (MaxMaxAlign
>= 32 && VTy
->getBitWidth() >= 256)
1239 else if (VTy
->getBitWidth() >= 128 && MaxAlign
< 16)
1241 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1242 unsigned EltAlign
= 0;
1243 getMaxByValAlign(ATy
->getElementType(), EltAlign
, MaxMaxAlign
);
1244 if (EltAlign
> MaxAlign
)
1245 MaxAlign
= EltAlign
;
1246 } else if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1247 for (auto *EltTy
: STy
->elements()) {
1248 unsigned EltAlign
= 0;
1249 getMaxByValAlign(EltTy
, EltAlign
, MaxMaxAlign
);
1250 if (EltAlign
> MaxAlign
)
1251 MaxAlign
= EltAlign
;
1252 if (MaxAlign
== MaxMaxAlign
)
1258 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1259 /// function arguments in the caller parameter area.
1260 unsigned PPCTargetLowering::getByValTypeAlignment(Type
*Ty
,
1261 const DataLayout
&DL
) const {
1262 // Darwin passes everything on 4 byte boundary.
1263 if (Subtarget
.isDarwin())
1266 // 16byte and wider vectors are passed on 16byte boundary.
1267 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1268 unsigned Align
= Subtarget
.isPPC64() ? 8 : 4;
1269 if (Subtarget
.hasAltivec() || Subtarget
.hasQPX())
1270 getMaxByValAlign(Ty
, Align
, Subtarget
.hasQPX() ? 32 : 16);
1274 bool PPCTargetLowering::useSoftFloat() const {
1275 return Subtarget
.useSoftFloat();
1278 bool PPCTargetLowering::hasSPE() const {
1279 return Subtarget
.hasSPE();
1282 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
1283 return VT
.isScalarInteger();
1286 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1287 switch ((PPCISD::NodeType
)Opcode
) {
1288 case PPCISD::FIRST_NUMBER
: break;
1289 case PPCISD::FSEL
: return "PPCISD::FSEL";
1290 case PPCISD::FCFID
: return "PPCISD::FCFID";
1291 case PPCISD::FCFIDU
: return "PPCISD::FCFIDU";
1292 case PPCISD::FCFIDS
: return "PPCISD::FCFIDS";
1293 case PPCISD::FCFIDUS
: return "PPCISD::FCFIDUS";
1294 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
1295 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
1296 case PPCISD::FCTIDUZ
: return "PPCISD::FCTIDUZ";
1297 case PPCISD::FCTIWUZ
: return "PPCISD::FCTIWUZ";
1298 case PPCISD::FP_TO_UINT_IN_VSR
:
1299 return "PPCISD::FP_TO_UINT_IN_VSR,";
1300 case PPCISD::FP_TO_SINT_IN_VSR
:
1301 return "PPCISD::FP_TO_SINT_IN_VSR";
1302 case PPCISD::FRE
: return "PPCISD::FRE";
1303 case PPCISD::FRSQRTE
: return "PPCISD::FRSQRTE";
1304 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
1305 case PPCISD::VMADDFP
: return "PPCISD::VMADDFP";
1306 case PPCISD::VNMSUBFP
: return "PPCISD::VNMSUBFP";
1307 case PPCISD::VPERM
: return "PPCISD::VPERM";
1308 case PPCISD::XXSPLT
: return "PPCISD::XXSPLT";
1309 case PPCISD::VECINSERT
: return "PPCISD::VECINSERT";
1310 case PPCISD::XXREVERSE
: return "PPCISD::XXREVERSE";
1311 case PPCISD::XXPERMDI
: return "PPCISD::XXPERMDI";
1312 case PPCISD::VECSHL
: return "PPCISD::VECSHL";
1313 case PPCISD::CMPB
: return "PPCISD::CMPB";
1314 case PPCISD::Hi
: return "PPCISD::Hi";
1315 case PPCISD::Lo
: return "PPCISD::Lo";
1316 case PPCISD::TOC_ENTRY
: return "PPCISD::TOC_ENTRY";
1317 case PPCISD::ATOMIC_CMP_SWAP_8
: return "PPCISD::ATOMIC_CMP_SWAP_8";
1318 case PPCISD::ATOMIC_CMP_SWAP_16
: return "PPCISD::ATOMIC_CMP_SWAP_16";
1319 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
1320 case PPCISD::DYNAREAOFFSET
: return "PPCISD::DYNAREAOFFSET";
1321 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
1322 case PPCISD::SRL
: return "PPCISD::SRL";
1323 case PPCISD::SRA
: return "PPCISD::SRA";
1324 case PPCISD::SHL
: return "PPCISD::SHL";
1325 case PPCISD::SRA_ADDZE
: return "PPCISD::SRA_ADDZE";
1326 case PPCISD::CALL
: return "PPCISD::CALL";
1327 case PPCISD::CALL_NOP
: return "PPCISD::CALL_NOP";
1328 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
1329 case PPCISD::BCTRL
: return "PPCISD::BCTRL";
1330 case PPCISD::BCTRL_LOAD_TOC
: return "PPCISD::BCTRL_LOAD_TOC";
1331 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
1332 case PPCISD::READ_TIME_BASE
: return "PPCISD::READ_TIME_BASE";
1333 case PPCISD::EH_SJLJ_SETJMP
: return "PPCISD::EH_SJLJ_SETJMP";
1334 case PPCISD::EH_SJLJ_LONGJMP
: return "PPCISD::EH_SJLJ_LONGJMP";
1335 case PPCISD::MFOCRF
: return "PPCISD::MFOCRF";
1336 case PPCISD::MFVSR
: return "PPCISD::MFVSR";
1337 case PPCISD::MTVSRA
: return "PPCISD::MTVSRA";
1338 case PPCISD::MTVSRZ
: return "PPCISD::MTVSRZ";
1339 case PPCISD::SINT_VEC_TO_FP
: return "PPCISD::SINT_VEC_TO_FP";
1340 case PPCISD::UINT_VEC_TO_FP
: return "PPCISD::UINT_VEC_TO_FP";
1341 case PPCISD::ANDIo_1_EQ_BIT
: return "PPCISD::ANDIo_1_EQ_BIT";
1342 case PPCISD::ANDIo_1_GT_BIT
: return "PPCISD::ANDIo_1_GT_BIT";
1343 case PPCISD::VCMP
: return "PPCISD::VCMP";
1344 case PPCISD::VCMPo
: return "PPCISD::VCMPo";
1345 case PPCISD::LBRX
: return "PPCISD::LBRX";
1346 case PPCISD::STBRX
: return "PPCISD::STBRX";
1347 case PPCISD::LFIWAX
: return "PPCISD::LFIWAX";
1348 case PPCISD::LFIWZX
: return "PPCISD::LFIWZX";
1349 case PPCISD::LXSIZX
: return "PPCISD::LXSIZX";
1350 case PPCISD::STXSIX
: return "PPCISD::STXSIX";
1351 case PPCISD::VEXTS
: return "PPCISD::VEXTS";
1352 case PPCISD::SExtVElems
: return "PPCISD::SExtVElems";
1353 case PPCISD::LXVD2X
: return "PPCISD::LXVD2X";
1354 case PPCISD::STXVD2X
: return "PPCISD::STXVD2X";
1355 case PPCISD::ST_VSR_SCAL_INT
:
1356 return "PPCISD::ST_VSR_SCAL_INT";
1357 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
1358 case PPCISD::BDNZ
: return "PPCISD::BDNZ";
1359 case PPCISD::BDZ
: return "PPCISD::BDZ";
1360 case PPCISD::MFFS
: return "PPCISD::MFFS";
1361 case PPCISD::FADDRTZ
: return "PPCISD::FADDRTZ";
1362 case PPCISD::TC_RETURN
: return "PPCISD::TC_RETURN";
1363 case PPCISD::CR6SET
: return "PPCISD::CR6SET";
1364 case PPCISD::CR6UNSET
: return "PPCISD::CR6UNSET";
1365 case PPCISD::PPC32_GOT
: return "PPCISD::PPC32_GOT";
1366 case PPCISD::PPC32_PICGOT
: return "PPCISD::PPC32_PICGOT";
1367 case PPCISD::ADDIS_GOT_TPREL_HA
: return "PPCISD::ADDIS_GOT_TPREL_HA";
1368 case PPCISD::LD_GOT_TPREL_L
: return "PPCISD::LD_GOT_TPREL_L";
1369 case PPCISD::ADD_TLS
: return "PPCISD::ADD_TLS";
1370 case PPCISD::ADDIS_TLSGD_HA
: return "PPCISD::ADDIS_TLSGD_HA";
1371 case PPCISD::ADDI_TLSGD_L
: return "PPCISD::ADDI_TLSGD_L";
1372 case PPCISD::GET_TLS_ADDR
: return "PPCISD::GET_TLS_ADDR";
1373 case PPCISD::ADDI_TLSGD_L_ADDR
: return "PPCISD::ADDI_TLSGD_L_ADDR";
1374 case PPCISD::ADDIS_TLSLD_HA
: return "PPCISD::ADDIS_TLSLD_HA";
1375 case PPCISD::ADDI_TLSLD_L
: return "PPCISD::ADDI_TLSLD_L";
1376 case PPCISD::GET_TLSLD_ADDR
: return "PPCISD::GET_TLSLD_ADDR";
1377 case PPCISD::ADDI_TLSLD_L_ADDR
: return "PPCISD::ADDI_TLSLD_L_ADDR";
1378 case PPCISD::ADDIS_DTPREL_HA
: return "PPCISD::ADDIS_DTPREL_HA";
1379 case PPCISD::ADDI_DTPREL_L
: return "PPCISD::ADDI_DTPREL_L";
1380 case PPCISD::VADD_SPLAT
: return "PPCISD::VADD_SPLAT";
1381 case PPCISD::SC
: return "PPCISD::SC";
1382 case PPCISD::CLRBHRB
: return "PPCISD::CLRBHRB";
1383 case PPCISD::MFBHRBE
: return "PPCISD::MFBHRBE";
1384 case PPCISD::RFEBB
: return "PPCISD::RFEBB";
1385 case PPCISD::XXSWAPD
: return "PPCISD::XXSWAPD";
1386 case PPCISD::SWAP_NO_CHAIN
: return "PPCISD::SWAP_NO_CHAIN";
1387 case PPCISD::VABSD
: return "PPCISD::VABSD";
1388 case PPCISD::QVFPERM
: return "PPCISD::QVFPERM";
1389 case PPCISD::QVGPCI
: return "PPCISD::QVGPCI";
1390 case PPCISD::QVALIGNI
: return "PPCISD::QVALIGNI";
1391 case PPCISD::QVESPLATI
: return "PPCISD::QVESPLATI";
1392 case PPCISD::QBFLT
: return "PPCISD::QBFLT";
1393 case PPCISD::QVLFSb
: return "PPCISD::QVLFSb";
1394 case PPCISD::BUILD_FP128
: return "PPCISD::BUILD_FP128";
1395 case PPCISD::BUILD_SPE64
: return "PPCISD::BUILD_SPE64";
1396 case PPCISD::EXTRACT_SPE
: return "PPCISD::EXTRACT_SPE";
1397 case PPCISD::EXTSWSLI
: return "PPCISD::EXTSWSLI";
1398 case PPCISD::LD_VSX_LH
: return "PPCISD::LD_VSX_LH";
1399 case PPCISD::FP_EXTEND_LH
: return "PPCISD::FP_EXTEND_LH";
1404 EVT
PPCTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&C
,
1407 return Subtarget
.useCRBits() ? MVT::i1
: MVT::i32
;
1409 if (Subtarget
.hasQPX())
1410 return EVT::getVectorVT(C
, MVT::i1
, VT
.getVectorNumElements());
1412 return VT
.changeVectorElementTypeToInteger();
1415 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT
) const {
1416 assert(VT
.isFloatingPoint() && "Non-floating-point FMA?");
1420 //===----------------------------------------------------------------------===//
1421 // Node matching predicates, for use by the tblgen matching code.
1422 //===----------------------------------------------------------------------===//
1424 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1425 static bool isFloatingPointZero(SDValue Op
) {
1426 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
1427 return CFP
->getValueAPF().isZero();
1428 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
1429 // Maybe this has already been legalized into the constant pool?
1430 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
1431 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
1432 return CFP
->getValueAPF().isZero();
1437 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
1438 /// true if Op is undef or if it matches the specified value.
1439 static bool isConstantOrUndef(int Op
, int Val
) {
1440 return Op
< 0 || Op
== Val
;
1443 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1444 /// VPKUHUM instruction.
1445 /// The ShuffleKind distinguishes between big-endian operations with
1446 /// two different inputs (0), either-endian operations with two identical
1447 /// inputs (1), and little-endian operations with two different inputs (2).
1448 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1449 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1450 SelectionDAG
&DAG
) {
1451 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1452 if (ShuffleKind
== 0) {
1455 for (unsigned i
= 0; i
!= 16; ++i
)
1456 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1))
1458 } else if (ShuffleKind
== 2) {
1461 for (unsigned i
= 0; i
!= 16; ++i
)
1462 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2))
1464 } else if (ShuffleKind
== 1) {
1465 unsigned j
= IsLE
? 0 : 1;
1466 for (unsigned i
= 0; i
!= 8; ++i
)
1467 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1468 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
))
1474 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1475 /// VPKUWUM instruction.
1476 /// The ShuffleKind distinguishes between big-endian operations with
1477 /// two different inputs (0), either-endian operations with two identical
1478 /// inputs (1), and little-endian operations with two different inputs (2).
1479 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1480 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1481 SelectionDAG
&DAG
) {
1482 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1483 if (ShuffleKind
== 0) {
1486 for (unsigned i
= 0; i
!= 16; i
+= 2)
1487 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
1488 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3))
1490 } else if (ShuffleKind
== 2) {
1493 for (unsigned i
= 0; i
!= 16; i
+= 2)
1494 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2) ||
1495 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+1))
1497 } else if (ShuffleKind
== 1) {
1498 unsigned j
= IsLE
? 0 : 2;
1499 for (unsigned i
= 0; i
!= 8; i
+= 2)
1500 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1501 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+j
+1) ||
1502 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
) ||
1503 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+j
+1))
1509 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1510 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1511 /// current subtarget.
1513 /// The ShuffleKind distinguishes between big-endian operations with
1514 /// two different inputs (0), either-endian operations with two identical
1515 /// inputs (1), and little-endian operations with two different inputs (2).
1516 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1517 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
1518 SelectionDAG
&DAG
) {
1519 const PPCSubtarget
& Subtarget
=
1520 static_cast<const PPCSubtarget
&>(DAG
.getSubtarget());
1521 if (!Subtarget
.hasP8Vector())
1524 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
1525 if (ShuffleKind
== 0) {
1528 for (unsigned i
= 0; i
!= 16; i
+= 4)
1529 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+4) ||
1530 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+5) ||
1531 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+6) ||
1532 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+7))
1534 } else if (ShuffleKind
== 2) {
1537 for (unsigned i
= 0; i
!= 16; i
+= 4)
1538 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2) ||
1539 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+1) ||
1540 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+2) ||
1541 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+3))
1543 } else if (ShuffleKind
== 1) {
1544 unsigned j
= IsLE
? 0 : 4;
1545 for (unsigned i
= 0; i
!= 8; i
+= 4)
1546 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+j
) ||
1547 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+j
+1) ||
1548 !isConstantOrUndef(N
->getMaskElt(i
+2), i
*2+j
+2) ||
1549 !isConstantOrUndef(N
->getMaskElt(i
+3), i
*2+j
+3) ||
1550 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+j
) ||
1551 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+j
+1) ||
1552 !isConstantOrUndef(N
->getMaskElt(i
+10), i
*2+j
+2) ||
1553 !isConstantOrUndef(N
->getMaskElt(i
+11), i
*2+j
+3))
1559 /// isVMerge - Common function, used to match vmrg* shuffles.
1561 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1562 unsigned LHSStart
, unsigned RHSStart
) {
1563 if (N
->getValueType(0) != MVT::v16i8
)
1565 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
1566 "Unsupported merge size!");
1568 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
1569 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
1570 if (!isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+j
),
1571 LHSStart
+j
+i
*UnitSize
) ||
1572 !isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+UnitSize
+j
),
1573 RHSStart
+j
+i
*UnitSize
))
1579 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1580 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1581 /// The ShuffleKind distinguishes between big-endian merges with two
1582 /// different inputs (0), either-endian merges with two identical inputs (1),
1583 /// and little-endian merges with two different inputs (2). For the latter,
1584 /// the input operands are swapped (see PPCInstrAltivec.td).
1585 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1586 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
1587 if (DAG
.getDataLayout().isLittleEndian()) {
1588 if (ShuffleKind
== 1) // unary
1589 return isVMerge(N
, UnitSize
, 0, 0);
1590 else if (ShuffleKind
== 2) // swapped
1591 return isVMerge(N
, UnitSize
, 0, 16);
1595 if (ShuffleKind
== 1) // unary
1596 return isVMerge(N
, UnitSize
, 8, 8);
1597 else if (ShuffleKind
== 0) // normal
1598 return isVMerge(N
, UnitSize
, 8, 24);
1604 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1605 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1606 /// The ShuffleKind distinguishes between big-endian merges with two
1607 /// different inputs (0), either-endian merges with two identical inputs (1),
1608 /// and little-endian merges with two different inputs (2). For the latter,
1609 /// the input operands are swapped (see PPCInstrAltivec.td).
1610 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
1611 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
1612 if (DAG
.getDataLayout().isLittleEndian()) {
1613 if (ShuffleKind
== 1) // unary
1614 return isVMerge(N
, UnitSize
, 8, 8);
1615 else if (ShuffleKind
== 2) // swapped
1616 return isVMerge(N
, UnitSize
, 8, 24);
1620 if (ShuffleKind
== 1) // unary
1621 return isVMerge(N
, UnitSize
, 0, 0);
1622 else if (ShuffleKind
== 0) // normal
1623 return isVMerge(N
, UnitSize
, 0, 16);
1630 * Common function used to match vmrgew and vmrgow shuffles
1632 * The indexOffset determines whether to look for even or odd words in
1633 * the shuffle mask. This is based on the of the endianness of the target
1636 * - Use offset of 0 to check for odd elements
1637 * - Use offset of 4 to check for even elements
1639 * - Use offset of 0 to check for even elements
1640 * - Use offset of 4 to check for odd elements
1641 * A detailed description of the vector element ordering for little endian and
1642 * big endian can be found at
1643 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1644 * Targeting your applications - what little endian and big endian IBM XL C/C++
1645 * compiler differences mean to you
1647 * The mask to the shuffle vector instruction specifies the indices of the
1648 * elements from the two input vectors to place in the result. The elements are
1649 * numbered in array-access order, starting with the first vector. These vectors
1650 * are always of type v16i8, thus each vector will contain 16 elements of size
1651 * 8. More info on the shuffle vector can be found in the
1652 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1653 * Language Reference.
1655 * The RHSStartValue indicates whether the same input vectors are used (unary)
1656 * or two different input vectors are used, based on the following:
1657 * - If the instruction uses the same vector for both inputs, the range of the
1658 * indices will be 0 to 15. In this case, the RHSStart value passed should
1660 * - If the instruction has two different vectors then the range of the
1661 * indices will be 0 to 31. In this case, the RHSStart value passed should
1662 * be 16 (indices 0-15 specify elements in the first vector while indices 16
1663 * to 31 specify elements in the second vector).
1665 * \param[in] N The shuffle vector SD Node to analyze
1666 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1667 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1668 * vector to the shuffle_vector instruction
1669 * \return true iff this shuffle vector represents an even or odd word merge
1671 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned IndexOffset
,
1672 unsigned RHSStartValue
) {
1673 if (N
->getValueType(0) != MVT::v16i8
)
1676 for (unsigned i
= 0; i
< 2; ++i
)
1677 for (unsigned j
= 0; j
< 4; ++j
)
1678 if (!isConstantOrUndef(N
->getMaskElt(i
*4+j
),
1679 i
*RHSStartValue
+j
+IndexOffset
) ||
1680 !isConstantOrUndef(N
->getMaskElt(i
*4+j
+8),
1681 i
*RHSStartValue
+j
+IndexOffset
+8))
1687 * Determine if the specified shuffle mask is suitable for the vmrgew or
1688 * vmrgow instructions.
1690 * \param[in] N The shuffle vector SD Node to analyze
1691 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1692 * \param[in] ShuffleKind Identify the type of merge:
1693 * - 0 = big-endian merge with two different inputs;
1694 * - 1 = either-endian merge with two identical inputs;
1695 * - 2 = little-endian merge with two different inputs (inputs are swapped for
1696 * little-endian merges).
1697 * \param[in] DAG The current SelectionDAG
1698 * \return true iff this shuffle mask
1700 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
1701 unsigned ShuffleKind
, SelectionDAG
&DAG
) {
1702 if (DAG
.getDataLayout().isLittleEndian()) {
1703 unsigned indexOffset
= CheckEven
? 4 : 0;
1704 if (ShuffleKind
== 1) // Unary
1705 return isVMerge(N
, indexOffset
, 0);
1706 else if (ShuffleKind
== 2) // swapped
1707 return isVMerge(N
, indexOffset
, 16);
1712 unsigned indexOffset
= CheckEven
? 0 : 4;
1713 if (ShuffleKind
== 1) // Unary
1714 return isVMerge(N
, indexOffset
, 0);
1715 else if (ShuffleKind
== 0) // Normal
1716 return isVMerge(N
, indexOffset
, 16);
1723 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1724 /// amount, otherwise return -1.
1725 /// The ShuffleKind distinguishes between big-endian operations with two
1726 /// different inputs (0), either-endian operations with two identical inputs
1727 /// (1), and little-endian operations with two different inputs (2). For the
1728 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1729 int PPC::isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
1730 SelectionDAG
&DAG
) {
1731 if (N
->getValueType(0) != MVT::v16i8
)
1734 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
1736 // Find the first non-undef value in the shuffle mask.
1738 for (i
= 0; i
!= 16 && SVOp
->getMaskElt(i
) < 0; ++i
)
1741 if (i
== 16) return -1; // all undef.
1743 // Otherwise, check to see if the rest of the elements are consecutively
1744 // numbered from this value.
1745 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
1746 if (ShiftAmt
< i
) return -1;
1749 bool isLE
= DAG
.getDataLayout().isLittleEndian();
1751 if ((ShuffleKind
== 0 && !isLE
) || (ShuffleKind
== 2 && isLE
)) {
1752 // Check the rest of the elements to see if they are consecutive.
1753 for (++i
; i
!= 16; ++i
)
1754 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
1756 } else if (ShuffleKind
== 1) {
1757 // Check the rest of the elements to see if they are consecutive.
1758 for (++i
; i
!= 16; ++i
)
1759 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), (ShiftAmt
+i
) & 15))
1765 ShiftAmt
= 16 - ShiftAmt
;
1770 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1771 /// specifies a splat of a single element that is suitable for input to
1772 /// VSPLTB/VSPLTH/VSPLTW.
1773 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
) {
1774 assert(N
->getValueType(0) == MVT::v16i8
&&
1775 (EltSize
== 1 || EltSize
== 2 || EltSize
== 4));
1777 // The consecutive indices need to specify an element, not part of two
1778 // different elements. So abandon ship early if this isn't the case.
1779 if (N
->getMaskElt(0) % EltSize
!= 0)
1782 // This is a splat operation if each element of the permute is the same, and
1783 // if the value doesn't reference the second vector.
1784 unsigned ElementBase
= N
->getMaskElt(0);
1786 // FIXME: Handle UNDEF elements too!
1787 if (ElementBase
>= 16)
1790 // Check that the indices are consecutive, in the case of a multi-byte element
1791 // splatted with a v16i8 mask.
1792 for (unsigned i
= 1; i
!= EltSize
; ++i
)
1793 if (N
->getMaskElt(i
) < 0 || N
->getMaskElt(i
) != (int)(i
+ElementBase
))
1796 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
1797 if (N
->getMaskElt(i
) < 0) continue;
1798 for (unsigned j
= 0; j
!= EltSize
; ++j
)
1799 if (N
->getMaskElt(i
+j
) != N
->getMaskElt(j
))
1805 /// Check that the mask is shuffling N byte elements. Within each N byte
1806 /// element of the mask, the indices could be either in increasing or
1807 /// decreasing order as long as they are consecutive.
1808 /// \param[in] N the shuffle vector SD Node to analyze
1809 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1810 /// Word/DoubleWord/QuadWord).
1811 /// \param[in] StepLen the delta indices number among the N byte element, if
1812 /// the mask is in increasing/decreasing order then it is 1/-1.
1813 /// \return true iff the mask is shuffling N byte elements.
1814 static bool isNByteElemShuffleMask(ShuffleVectorSDNode
*N
, unsigned Width
,
1816 assert((Width
== 2 || Width
== 4 || Width
== 8 || Width
== 16) &&
1817 "Unexpected element width.");
1818 assert((StepLen
== 1 || StepLen
== -1) && "Unexpected element width.");
1820 unsigned NumOfElem
= 16 / Width
;
1821 unsigned MaskVal
[16]; // Width is never greater than 16
1822 for (unsigned i
= 0; i
< NumOfElem
; ++i
) {
1823 MaskVal
[0] = N
->getMaskElt(i
* Width
);
1824 if ((StepLen
== 1) && (MaskVal
[0] % Width
)) {
1826 } else if ((StepLen
== -1) && ((MaskVal
[0] + 1) % Width
)) {
1830 for (unsigned int j
= 1; j
< Width
; ++j
) {
1831 MaskVal
[j
] = N
->getMaskElt(i
* Width
+ j
);
1832 if (MaskVal
[j
] != MaskVal
[j
-1] + StepLen
) {
1841 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
1842 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
) {
1843 if (!isNByteElemShuffleMask(N
, 4, 1))
1846 // Now we look at mask elements 0,4,8,12
1847 unsigned M0
= N
->getMaskElt(0) / 4;
1848 unsigned M1
= N
->getMaskElt(4) / 4;
1849 unsigned M2
= N
->getMaskElt(8) / 4;
1850 unsigned M3
= N
->getMaskElt(12) / 4;
1851 unsigned LittleEndianShifts
[] = { 2, 1, 0, 3 };
1852 unsigned BigEndianShifts
[] = { 3, 0, 1, 2 };
1854 // Below, let H and L be arbitrary elements of the shuffle mask
1855 // where H is in the range [4,7] and L is in the range [0,3].
1856 // H, 1, 2, 3 or L, 5, 6, 7
1857 if ((M0
> 3 && M1
== 1 && M2
== 2 && M3
== 3) ||
1858 (M0
< 4 && M1
== 5 && M2
== 6 && M3
== 7)) {
1859 ShiftElts
= IsLE
? LittleEndianShifts
[M0
& 0x3] : BigEndianShifts
[M0
& 0x3];
1860 InsertAtByte
= IsLE
? 12 : 0;
1864 // 0, H, 2, 3 or 4, L, 6, 7
1865 if ((M1
> 3 && M0
== 0 && M2
== 2 && M3
== 3) ||
1866 (M1
< 4 && M0
== 4 && M2
== 6 && M3
== 7)) {
1867 ShiftElts
= IsLE
? LittleEndianShifts
[M1
& 0x3] : BigEndianShifts
[M1
& 0x3];
1868 InsertAtByte
= IsLE
? 8 : 4;
1872 // 0, 1, H, 3 or 4, 5, L, 7
1873 if ((M2
> 3 && M0
== 0 && M1
== 1 && M3
== 3) ||
1874 (M2
< 4 && M0
== 4 && M1
== 5 && M3
== 7)) {
1875 ShiftElts
= IsLE
? LittleEndianShifts
[M2
& 0x3] : BigEndianShifts
[M2
& 0x3];
1876 InsertAtByte
= IsLE
? 4 : 8;
1880 // 0, 1, 2, H or 4, 5, 6, L
1881 if ((M3
> 3 && M0
== 0 && M1
== 1 && M2
== 2) ||
1882 (M3
< 4 && M0
== 4 && M1
== 5 && M2
== 6)) {
1883 ShiftElts
= IsLE
? LittleEndianShifts
[M3
& 0x3] : BigEndianShifts
[M3
& 0x3];
1884 InsertAtByte
= IsLE
? 0 : 12;
1889 // If both vector operands for the shuffle are the same vector, the mask will
1890 // contain only elements from the first one and the second one will be undef.
1891 if (N
->getOperand(1).isUndef()) {
1894 unsigned XXINSERTWSrcElem
= IsLE
? 2 : 1;
1895 if (M0
== XXINSERTWSrcElem
&& M1
== 1 && M2
== 2 && M3
== 3) {
1896 InsertAtByte
= IsLE
? 12 : 0;
1899 if (M0
== 0 && M1
== XXINSERTWSrcElem
&& M2
== 2 && M3
== 3) {
1900 InsertAtByte
= IsLE
? 8 : 4;
1903 if (M0
== 0 && M1
== 1 && M2
== XXINSERTWSrcElem
&& M3
== 3) {
1904 InsertAtByte
= IsLE
? 4 : 8;
1907 if (M0
== 0 && M1
== 1 && M2
== 2 && M3
== XXINSERTWSrcElem
) {
1908 InsertAtByte
= IsLE
? 0 : 12;
1916 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
1917 bool &Swap
, bool IsLE
) {
1918 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
1919 // Ensure each byte index of the word is consecutive.
1920 if (!isNByteElemShuffleMask(N
, 4, 1))
1923 // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1924 unsigned M0
= N
->getMaskElt(0) / 4;
1925 unsigned M1
= N
->getMaskElt(4) / 4;
1926 unsigned M2
= N
->getMaskElt(8) / 4;
1927 unsigned M3
= N
->getMaskElt(12) / 4;
1929 // If both vector operands for the shuffle are the same vector, the mask will
1930 // contain only elements from the first one and the second one will be undef.
1931 if (N
->getOperand(1).isUndef()) {
1932 assert(M0
< 4 && "Indexing into an undef vector?");
1933 if (M1
!= (M0
+ 1) % 4 || M2
!= (M1
+ 1) % 4 || M3
!= (M2
+ 1) % 4)
1936 ShiftElts
= IsLE
? (4 - M0
) % 4 : M0
;
1941 // Ensure each word index of the ShuffleVector Mask is consecutive.
1942 if (M1
!= (M0
+ 1) % 8 || M2
!= (M1
+ 1) % 8 || M3
!= (M2
+ 1) % 8)
1946 if (M0
== 0 || M0
== 7 || M0
== 6 || M0
== 5) {
1947 // Input vectors don't need to be swapped if the leading element
1948 // of the result is one of the 3 left elements of the second vector
1949 // (or if there is no shift to be done at all).
1951 ShiftElts
= (8 - M0
) % 8;
1952 } else if (M0
== 4 || M0
== 3 || M0
== 2 || M0
== 1) {
1953 // Input vectors need to be swapped if the leading element
1954 // of the result is one of the 3 left elements of the first vector
1955 // (or if we're shifting by 4 - thereby simply swapping the vectors).
1957 ShiftElts
= (4 - M0
) % 4;
1962 if (M0
== 0 || M0
== 1 || M0
== 2 || M0
== 3) {
1963 // Input vectors don't need to be swapped if the leading element
1964 // of the result is one of the 4 elements of the first vector.
1967 } else if (M0
== 4 || M0
== 5 || M0
== 6 || M0
== 7) {
1968 // Input vectors need to be swapped if the leading element
1969 // of the result is one of the 4 elements of the right vector.
1978 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode
*N
, int Width
) {
1979 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
1981 if (!isNByteElemShuffleMask(N
, Width
, -1))
1984 for (int i
= 0; i
< 16; i
+= Width
)
1985 if (N
->getMaskElt(i
) != i
+ Width
- 1)
1991 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode
*N
) {
1992 return isXXBRShuffleMaskHelper(N
, 2);
1995 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode
*N
) {
1996 return isXXBRShuffleMaskHelper(N
, 4);
1999 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode
*N
) {
2000 return isXXBRShuffleMaskHelper(N
, 8);
2003 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode
*N
) {
2004 return isXXBRShuffleMaskHelper(N
, 16);
2007 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2008 /// if the inputs to the instruction should be swapped and set \p DM to the
2009 /// value for the immediate.
2010 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2011 /// AND element 0 of the result comes from the first input (LE) or second input
2012 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2013 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2015 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &DM
,
2016 bool &Swap
, bool IsLE
) {
2017 assert(N
->getValueType(0) == MVT::v16i8
&& "Shuffle vector expects v16i8");
2019 // Ensure each byte index of the double word is consecutive.
2020 if (!isNByteElemShuffleMask(N
, 8, 1))
2023 unsigned M0
= N
->getMaskElt(0) / 8;
2024 unsigned M1
= N
->getMaskElt(8) / 8;
2025 assert(((M0
| M1
) < 4) && "A mask element out of bounds?");
2027 // If both vector operands for the shuffle are the same vector, the mask will
2028 // contain only elements from the first one and the second one will be undef.
2029 if (N
->getOperand(1).isUndef()) {
2030 if ((M0
| M1
) < 2) {
2031 DM
= IsLE
? (((~M1
) & 1) << 1) + ((~M0
) & 1) : (M0
<< 1) + (M1
& 1);
2039 if (M0
> 1 && M1
< 2) {
2041 } else if (M0
< 2 && M1
> 1) {
2048 // Note: if control flow comes here that means Swap is already set above
2049 DM
= (((~M1
) & 1) << 1) + ((~M0
) & 1);
2052 if (M0
< 2 && M1
> 1) {
2054 } else if (M0
> 1 && M1
< 2) {
2061 // Note: if control flow comes here that means Swap is already set above
2062 DM
= (M0
<< 1) + (M1
& 1);
2068 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2069 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
2070 unsigned PPC::getVSPLTImmediate(SDNode
*N
, unsigned EltSize
,
2071 SelectionDAG
&DAG
) {
2072 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2073 assert(isSplatShuffleMask(SVOp
, EltSize
));
2074 if (DAG
.getDataLayout().isLittleEndian())
2075 return (16 / EltSize
) - 1 - (SVOp
->getMaskElt(0) / EltSize
);
2077 return SVOp
->getMaskElt(0) / EltSize
;
2080 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2081 /// by using a vspltis[bhw] instruction of the specified element size, return
2082 /// the constant being splatted. The ByteSize field indicates the number of
2083 /// bytes of each element [124] -> [bhw].
2084 SDValue
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
2085 SDValue
OpVal(nullptr, 0);
2087 // If ByteSize of the splat is bigger than the element size of the
2088 // build_vector, then we have a case where we are checking for a splat where
2089 // multiple elements of the buildvector are folded together into a single
2090 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2091 unsigned EltSize
= 16/N
->getNumOperands();
2092 if (EltSize
< ByteSize
) {
2093 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
2094 SDValue UniquedVals
[4];
2095 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
2097 // See if all of the elements in the buildvector agree across.
2098 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
2099 if (N
->getOperand(i
).isUndef()) continue;
2100 // If the element isn't a constant, bail fully out.
2101 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDValue();
2103 if (!UniquedVals
[i
&(Multiple
-1)].getNode())
2104 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
2105 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
2106 return SDValue(); // no match.
2109 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2110 // either constant or undef values that are identical for each chunk. See
2111 // if these chunks can form into a larger vspltis*.
2113 // Check to see if all of the leading entries are either 0 or -1. If
2114 // neither, then this won't fit into the immediate field.
2115 bool LeadingZero
= true;
2116 bool LeadingOnes
= true;
2117 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
2118 if (!UniquedVals
[i
].getNode()) continue; // Must have been undefs.
2120 LeadingZero
&= isNullConstant(UniquedVals
[i
]);
2121 LeadingOnes
&= isAllOnesConstant(UniquedVals
[i
]);
2123 // Finally, check the least significant entry.
2125 if (!UniquedVals
[Multiple
-1].getNode())
2126 return DAG
.getTargetConstant(0, SDLoc(N
), MVT::i32
); // 0,0,0,undef
2127 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getZExtValue();
2128 if (Val
< 16) // 0,0,0,4 -> vspltisw(4)
2129 return DAG
.getTargetConstant(Val
, SDLoc(N
), MVT::i32
);
2132 if (!UniquedVals
[Multiple
-1].getNode())
2133 return DAG
.getTargetConstant(~0U, SDLoc(N
), MVT::i32
); // -1,-1,-1,undef
2134 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSExtValue();
2135 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
2136 return DAG
.getTargetConstant(Val
, SDLoc(N
), MVT::i32
);
2142 // Check to see if this buildvec has a single non-undef value in its elements.
2143 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
2144 if (N
->getOperand(i
).isUndef()) continue;
2145 if (!OpVal
.getNode())
2146 OpVal
= N
->getOperand(i
);
2147 else if (OpVal
!= N
->getOperand(i
))
2151 if (!OpVal
.getNode()) return SDValue(); // All UNDEF: use implicit def.
2153 unsigned ValSizeInBytes
= EltSize
;
2155 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
2156 Value
= CN
->getZExtValue();
2157 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
2158 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
2159 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
2162 // If the splat value is larger than the element value, then we can never do
2163 // this splat. The only case that we could fit the replicated bits into our
2164 // immediate field for would be zero, and we prefer to use vxor for it.
2165 if (ValSizeInBytes
< ByteSize
) return SDValue();
2167 // If the element value is larger than the splat value, check if it consists
2168 // of a repeated bit pattern of size ByteSize.
2169 if (!APInt(ValSizeInBytes
* 8, Value
).isSplat(ByteSize
* 8))
2172 // Properly sign extend the value.
2173 int MaskVal
= SignExtend32(Value
, ByteSize
* 8);
2175 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2176 if (MaskVal
== 0) return SDValue();
2178 // Finally, if this value fits in a 5 bit sext field, return it
2179 if (SignExtend32
<5>(MaskVal
) == MaskVal
)
2180 return DAG
.getTargetConstant(MaskVal
, SDLoc(N
), MVT::i32
);
2184 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2185 /// amount, otherwise return -1.
2186 int PPC::isQVALIGNIShuffleMask(SDNode
*N
) {
2187 EVT VT
= N
->getValueType(0);
2188 if (VT
!= MVT::v4f64
&& VT
!= MVT::v4f32
&& VT
!= MVT::v4i1
)
2191 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
2193 // Find the first non-undef value in the shuffle mask.
2195 for (i
= 0; i
!= 4 && SVOp
->getMaskElt(i
) < 0; ++i
)
2198 if (i
== 4) return -1; // all undef.
2200 // Otherwise, check to see if the rest of the elements are consecutively
2201 // numbered from this value.
2202 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
2203 if (ShiftAmt
< i
) return -1;
2206 // Check the rest of the elements to see if they are consecutive.
2207 for (++i
; i
!= 4; ++i
)
2208 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
2214 //===----------------------------------------------------------------------===//
2215 // Addressing Mode Selection
2216 //===----------------------------------------------------------------------===//
2218 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2219 /// or 64-bit immediate, and if the value can be accurately represented as a
2220 /// sign extension from a 16-bit value. If so, this returns true and the
2222 bool llvm::isIntS16Immediate(SDNode
*N
, int16_t &Imm
) {
2223 if (!isa
<ConstantSDNode
>(N
))
2226 Imm
= (int16_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2227 if (N
->getValueType(0) == MVT::i32
)
2228 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2230 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
2232 bool llvm::isIntS16Immediate(SDValue Op
, int16_t &Imm
) {
2233 return isIntS16Immediate(Op
.getNode(), Imm
);
2236 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2237 /// can be represented as an indexed [r+r] operation. Returns false if it
2238 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2239 /// non-zero and N can be represented by a base register plus a signed 16-bit
2240 /// displacement, make a more precise judgement by checking (displacement % \p
2241 /// EncodingAlignment).
2242 bool PPCTargetLowering::SelectAddressRegReg(SDValue N
, SDValue
&Base
,
2243 SDValue
&Index
, SelectionDAG
&DAG
,
2244 unsigned EncodingAlignment
) const {
2246 if (N
.getOpcode() == ISD::ADD
) {
2247 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2248 (!EncodingAlignment
|| !(imm
% EncodingAlignment
)))
2249 return false; // r+i
2250 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
2251 return false; // r+i
2253 Base
= N
.getOperand(0);
2254 Index
= N
.getOperand(1);
2256 } else if (N
.getOpcode() == ISD::OR
) {
2257 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2258 (!EncodingAlignment
|| !(imm
% EncodingAlignment
)))
2259 return false; // r+i can fold it if we can.
2261 // If this is an or of disjoint bitfields, we can codegen this as an add
2262 // (for better address arithmetic) if the LHS and RHS of the OR are provably
2264 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2266 if (LHSKnown
.Zero
.getBoolValue()) {
2267 KnownBits RHSKnown
= DAG
.computeKnownBits(N
.getOperand(1));
2268 // If all of the bits are known zero on the LHS or RHS, the add won't
2270 if (~(LHSKnown
.Zero
| RHSKnown
.Zero
) == 0) {
2271 Base
= N
.getOperand(0);
2272 Index
= N
.getOperand(1);
2281 // If we happen to be doing an i64 load or store into a stack slot that has
2282 // less than a 4-byte alignment, then the frame-index elimination may need to
2283 // use an indexed load or store instruction (because the offset may not be a
2284 // multiple of 4). The extra register needed to hold the offset comes from the
2285 // register scavenger, and it is possible that the scavenger will need to use
2286 // an emergency spill slot. As a result, we need to make sure that a spill slot
2287 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2289 static void fixupFuncForFI(SelectionDAG
&DAG
, int FrameIdx
, EVT VT
) {
2290 // FIXME: This does not handle the LWA case.
2294 // NOTE: We'll exclude negative FIs here, which come from argument
2295 // lowering, because there are no known test cases triggering this problem
2296 // using packed structures (or similar). We can remove this exclusion if
2297 // we find such a test case. The reason why this is so test-case driven is
2298 // because this entire 'fixup' is only to prevent crashes (from the
2299 // register scavenger) on not-really-valid inputs. For example, if we have:
2301 // %b = bitcast i1* %a to i64*
2302 // store i64* a, i64 b
2303 // then the store should really be marked as 'align 1', but is not. If it
2304 // were marked as 'align 1' then the indexed form would have been
2305 // instruction-selected initially, and the problem this 'fixup' is preventing
2306 // won't happen regardless.
2310 MachineFunction
&MF
= DAG
.getMachineFunction();
2311 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2313 unsigned Align
= MFI
.getObjectAlignment(FrameIdx
);
2317 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
2318 FuncInfo
->setHasNonRISpills();
2321 /// Returns true if the address N can be represented by a base register plus
2322 /// a signed 16-bit displacement [r+imm], and if it is not better
2323 /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept
2324 /// displacements that are multiples of that value.
2325 bool PPCTargetLowering::SelectAddressRegImm(SDValue N
, SDValue
&Disp
,
2328 unsigned EncodingAlignment
) const {
2329 // FIXME dl should come from parent load or store, not from address
2331 // If this can be more profitably realized as r+r, fail.
2332 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
, EncodingAlignment
))
2335 if (N
.getOpcode() == ISD::ADD
) {
2337 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2338 (!EncodingAlignment
|| (imm
% EncodingAlignment
) == 0)) {
2339 Disp
= DAG
.getTargetConstant(imm
, dl
, N
.getValueType());
2340 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
2341 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2342 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2344 Base
= N
.getOperand(0);
2346 return true; // [r+i]
2347 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
2348 // Match LOAD (ADD (X, Lo(G))).
2349 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
2350 && "Cannot handle constant offsets yet!");
2351 Disp
= N
.getOperand(1).getOperand(0); // The global address.
2352 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
2353 Disp
.getOpcode() == ISD::TargetGlobalTLSAddress
||
2354 Disp
.getOpcode() == ISD::TargetConstantPool
||
2355 Disp
.getOpcode() == ISD::TargetJumpTable
);
2356 Base
= N
.getOperand(0);
2357 return true; // [&g+r]
2359 } else if (N
.getOpcode() == ISD::OR
) {
2361 if (isIntS16Immediate(N
.getOperand(1), imm
) &&
2362 (!EncodingAlignment
|| (imm
% EncodingAlignment
) == 0)) {
2363 // If this is an or of disjoint bitfields, we can codegen this as an add
2364 // (for better address arithmetic) if the LHS and RHS of the OR are
2365 // provably disjoint.
2366 KnownBits LHSKnown
= DAG
.computeKnownBits(N
.getOperand(0));
2368 if ((LHSKnown
.Zero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
2369 // If all of the bits are known zero on the LHS or RHS, the add won't
2371 if (FrameIndexSDNode
*FI
=
2372 dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
2373 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2374 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2376 Base
= N
.getOperand(0);
2378 Disp
= DAG
.getTargetConstant(imm
, dl
, N
.getValueType());
2382 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2383 // Loading from a constant address.
2385 // If this address fits entirely in a 16-bit sext immediate field, codegen
2388 if (isIntS16Immediate(CN
, Imm
) &&
2389 (!EncodingAlignment
|| (Imm
% EncodingAlignment
) == 0)) {
2390 Disp
= DAG
.getTargetConstant(Imm
, dl
, CN
->getValueType(0));
2391 Base
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
2392 CN
->getValueType(0));
2396 // Handle 32-bit sext immediates with LIS + addr mode.
2397 if ((CN
->getValueType(0) == MVT::i32
||
2398 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) &&
2399 (!EncodingAlignment
|| (CN
->getZExtValue() % EncodingAlignment
) == 0)) {
2400 int Addr
= (int)CN
->getZExtValue();
2402 // Otherwise, break this down into an LIS + disp.
2403 Disp
= DAG
.getTargetConstant((short)Addr
, dl
, MVT::i32
);
2405 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, dl
,
2407 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
2408 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
), 0);
2413 Disp
= DAG
.getTargetConstant(0, dl
, getPointerTy(DAG
.getDataLayout()));
2414 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
)) {
2415 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
2416 fixupFuncForFI(DAG
, FI
->getIndex(), N
.getValueType());
2419 return true; // [r+0]
2422 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2423 /// represented as an indexed [r+r] operation.
2424 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
,
2426 SelectionDAG
&DAG
) const {
2427 // Check to see if we can easily represent this as an [r+r] address. This
2428 // will fail if it thinks that the address is more profitably represented as
2429 // reg+imm, e.g. where imm = 0.
2430 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
2433 // If the address is the result of an add, we will utilize the fact that the
2434 // address calculation includes an implicit add. However, we can reduce
2435 // register pressure if we do not materialize a constant just for use as the
2436 // index register. We only get rid of the add if it is not an add of a
2437 // value and a 16-bit signed constant and both have a single use.
2439 if (N
.getOpcode() == ISD::ADD
&&
2440 (!isIntS16Immediate(N
.getOperand(1), imm
) ||
2441 !N
.getOperand(1).hasOneUse() || !N
.getOperand(0).hasOneUse())) {
2442 Base
= N
.getOperand(0);
2443 Index
= N
.getOperand(1);
2447 // Otherwise, do it the hard way, using R0 as the base register.
2448 Base
= DAG
.getRegister(Subtarget
.isPPC64() ? PPC::ZERO8
: PPC::ZERO
,
2454 /// Returns true if we should use a direct load into vector instruction
2455 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2456 static bool usePartialVectorLoads(SDNode
*N
, const PPCSubtarget
& ST
) {
2458 // If there are any other uses other than scalar to vector, then we should
2459 // keep it as a scalar load -> direct move pattern to prevent multiple
2461 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
);
2465 EVT MemVT
= LD
->getMemoryVT();
2466 if (!MemVT
.isSimple())
2468 switch(MemVT
.getSimpleVT().SimpleTy
) {
2472 if (!ST
.hasP8Vector())
2477 if (!ST
.hasP9Vector())
2484 SDValue
LoadedVal(N
, 0);
2485 if (!LoadedVal
.hasOneUse())
2488 for (SDNode::use_iterator UI
= LD
->use_begin(), UE
= LD
->use_end();
2490 if (UI
.getUse().get().getResNo() == 0 &&
2491 UI
->getOpcode() != ISD::SCALAR_TO_VECTOR
)
2497 /// getPreIndexedAddressParts - returns true by value, base pointer and
2498 /// offset pointer and addressing mode by reference if the node's address
2499 /// can be legally represented as pre-indexed load / store address.
2500 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
2502 ISD::MemIndexedMode
&AM
,
2503 SelectionDAG
&DAG
) const {
2504 if (DisablePPCPreinc
) return false;
2510 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
2511 Ptr
= LD
->getBasePtr();
2512 VT
= LD
->getMemoryVT();
2513 Alignment
= LD
->getAlignment();
2514 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
2515 Ptr
= ST
->getBasePtr();
2516 VT
= ST
->getMemoryVT();
2517 Alignment
= ST
->getAlignment();
2522 // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2523 // instructions because we can fold these into a more efficient instruction
2524 // instead, (such as LXSD).
2525 if (isLoad
&& usePartialVectorLoads(N
, Subtarget
)) {
2529 // PowerPC doesn't have preinc load/store instructions for vectors (except
2530 // for QPX, which does have preinc r+r forms).
2531 if (VT
.isVector()) {
2532 if (!Subtarget
.hasQPX() || (VT
!= MVT::v4f64
&& VT
!= MVT::v4f32
)) {
2534 } else if (SelectAddressRegRegOnly(Ptr
, Offset
, Base
, DAG
)) {
2540 if (SelectAddressRegReg(Ptr
, Base
, Offset
, DAG
)) {
2541 // Common code will reject creating a pre-inc form if the base pointer
2542 // is a frame index, or if N is a store and the base pointer is either
2543 // the same as or a predecessor of the value being stored. Check for
2544 // those situations here, and try with swapped Base/Offset instead.
2547 if (isa
<FrameIndexSDNode
>(Base
) || isa
<RegisterSDNode
>(Base
))
2550 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
2551 if (Val
== Base
|| Base
.getNode()->isPredecessorOf(Val
.getNode()))
2556 std::swap(Base
, Offset
);
2562 // LDU/STU can only handle immediates that are a multiple of 4.
2563 if (VT
!= MVT::i64
) {
2564 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
, 0))
2567 // LDU/STU need an address with at least 4-byte alignment.
2571 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
, 4))
2575 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
2576 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
2577 // sext i32 to i64 when addr mode is r+i.
2578 if (LD
->getValueType(0) == MVT::i64
&& LD
->getMemoryVT() == MVT::i32
&&
2579 LD
->getExtensionType() == ISD::SEXTLOAD
&&
2580 isa
<ConstantSDNode
>(Offset
))
2588 //===----------------------------------------------------------------------===//
2589 // LowerOperation implementation
2590 //===----------------------------------------------------------------------===//
2592 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2593 /// and LoOpFlags to the target MO flags.
2594 static void getLabelAccessInfo(bool IsPIC
, const PPCSubtarget
&Subtarget
,
2595 unsigned &HiOpFlags
, unsigned &LoOpFlags
,
2596 const GlobalValue
*GV
= nullptr) {
2597 HiOpFlags
= PPCII::MO_HA
;
2598 LoOpFlags
= PPCII::MO_LO
;
2600 // Don't use the pic base if not in PIC relocation model.
2602 HiOpFlags
|= PPCII::MO_PIC_FLAG
;
2603 LoOpFlags
|= PPCII::MO_PIC_FLAG
;
2606 // If this is a reference to a global value that requires a non-lazy-ptr, make
2607 // sure that instruction lowering adds it.
2608 if (GV
&& Subtarget
.hasLazyResolverStub(GV
)) {
2609 HiOpFlags
|= PPCII::MO_NLP_FLAG
;
2610 LoOpFlags
|= PPCII::MO_NLP_FLAG
;
2612 if (GV
->hasHiddenVisibility()) {
2613 HiOpFlags
|= PPCII::MO_NLP_HIDDEN_FLAG
;
2614 LoOpFlags
|= PPCII::MO_NLP_HIDDEN_FLAG
;
2619 static SDValue
LowerLabelRef(SDValue HiPart
, SDValue LoPart
, bool isPIC
,
2620 SelectionDAG
&DAG
) {
2622 EVT PtrVT
= HiPart
.getValueType();
2623 SDValue Zero
= DAG
.getConstant(0, DL
, PtrVT
);
2625 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, DL
, PtrVT
, HiPart
, Zero
);
2626 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, DL
, PtrVT
, LoPart
, Zero
);
2628 // With PIC, the first instruction is actually "GR+hi(&G)".
2630 Hi
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
2631 DAG
.getNode(PPCISD::GlobalBaseReg
, DL
, PtrVT
), Hi
);
2633 // Generate non-pic code that has direct accesses to the constant pool.
2634 // The address of the global is just (hi(&g)+lo(&g)).
2635 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2638 static void setUsesTOCBasePtr(MachineFunction
&MF
) {
2639 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
2640 FuncInfo
->setUsesTOCBasePtr();
2643 static void setUsesTOCBasePtr(SelectionDAG
&DAG
) {
2644 setUsesTOCBasePtr(DAG
.getMachineFunction());
2647 static SDValue
getTOCEntry(SelectionDAG
&DAG
, const SDLoc
&dl
, bool Is64Bit
,
2649 EVT VT
= Is64Bit
? MVT::i64
: MVT::i32
;
2650 SDValue Reg
= Is64Bit
? DAG
.getRegister(PPC::X2
, VT
) :
2651 DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, VT
);
2653 SDValue Ops
[] = { GA
, Reg
};
2654 return DAG
.getMemIntrinsicNode(
2655 PPCISD::TOC_ENTRY
, dl
, DAG
.getVTList(VT
, MVT::Other
), Ops
, VT
,
2656 MachinePointerInfo::getGOT(DAG
.getMachineFunction()), 0,
2657 MachineMemOperand::MOLoad
);
2660 SDValue
PPCTargetLowering::LowerConstantPool(SDValue Op
,
2661 SelectionDAG
&DAG
) const {
2662 EVT PtrVT
= Op
.getValueType();
2663 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
2664 const Constant
*C
= CP
->getConstVal();
2666 // 64-bit SVR4 ABI code is always position-independent.
2667 // The actual address of the GlobalValue is stored in the TOC.
2668 if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64()) {
2669 setUsesTOCBasePtr(DAG
);
2670 SDValue GA
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(), 0);
2671 return getTOCEntry(DAG
, SDLoc(CP
), true, GA
);
2674 unsigned MOHiFlag
, MOLoFlag
;
2675 bool IsPIC
= isPositionIndependent();
2676 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
2678 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
2679 SDValue GA
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(),
2680 PPCII::MO_PIC_FLAG
);
2681 return getTOCEntry(DAG
, SDLoc(CP
), false, GA
);
2685 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(), 0, MOHiFlag
);
2687 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(), 0, MOLoFlag
);
2688 return LowerLabelRef(CPIHi
, CPILo
, IsPIC
, DAG
);
2691 // For 64-bit PowerPC, prefer the more compact relative encodings.
2692 // This trades 32 bits per jump table entry for one or two instructions
2693 // on the jump site.
2694 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2695 if (isJumpTableRelative())
2696 return MachineJumpTableInfo::EK_LabelDifference32
;
2698 return TargetLowering::getJumpTableEncoding();
2701 bool PPCTargetLowering::isJumpTableRelative() const {
2702 if (Subtarget
.isPPC64())
2704 return TargetLowering::isJumpTableRelative();
2707 SDValue
PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table
,
2708 SelectionDAG
&DAG
) const {
2709 if (!Subtarget
.isPPC64())
2710 return TargetLowering::getPICJumpTableRelocBase(Table
, DAG
);
2712 switch (getTargetMachine().getCodeModel()) {
2713 case CodeModel::Small
:
2714 case CodeModel::Medium
:
2715 return TargetLowering::getPICJumpTableRelocBase(Table
, DAG
);
2717 return DAG
.getNode(PPCISD::GlobalBaseReg
, SDLoc(),
2718 getPointerTy(DAG
.getDataLayout()));
2723 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
2725 MCContext
&Ctx
) const {
2726 if (!Subtarget
.isPPC64())
2727 return TargetLowering::getPICJumpTableRelocBaseExpr(MF
, JTI
, Ctx
);
2729 switch (getTargetMachine().getCodeModel()) {
2730 case CodeModel::Small
:
2731 case CodeModel::Medium
:
2732 return TargetLowering::getPICJumpTableRelocBaseExpr(MF
, JTI
, Ctx
);
2734 return MCSymbolRefExpr::create(MF
->getPICBaseSymbol(), Ctx
);
2738 SDValue
PPCTargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const {
2739 EVT PtrVT
= Op
.getValueType();
2740 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
2742 // 64-bit SVR4 ABI code is always position-independent.
2743 // The actual address of the GlobalValue is stored in the TOC.
2744 if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64()) {
2745 setUsesTOCBasePtr(DAG
);
2746 SDValue GA
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
2747 return getTOCEntry(DAG
, SDLoc(JT
), true, GA
);
2750 unsigned MOHiFlag
, MOLoFlag
;
2751 bool IsPIC
= isPositionIndependent();
2752 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
2754 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
2755 SDValue GA
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
,
2756 PPCII::MO_PIC_FLAG
);
2757 return getTOCEntry(DAG
, SDLoc(GA
), false, GA
);
2760 SDValue JTIHi
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOHiFlag
);
2761 SDValue JTILo
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOLoFlag
);
2762 return LowerLabelRef(JTIHi
, JTILo
, IsPIC
, DAG
);
2765 SDValue
PPCTargetLowering::LowerBlockAddress(SDValue Op
,
2766 SelectionDAG
&DAG
) const {
2767 EVT PtrVT
= Op
.getValueType();
2768 BlockAddressSDNode
*BASDN
= cast
<BlockAddressSDNode
>(Op
);
2769 const BlockAddress
*BA
= BASDN
->getBlockAddress();
2771 // 64-bit SVR4 ABI code is always position-independent.
2772 // The actual BlockAddress is stored in the TOC.
2773 if (Subtarget
.isSVR4ABI() &&
2774 (Subtarget
.isPPC64() || isPositionIndependent())) {
2775 if (Subtarget
.isPPC64())
2776 setUsesTOCBasePtr(DAG
);
2777 SDValue GA
= DAG
.getTargetBlockAddress(BA
, PtrVT
, BASDN
->getOffset());
2778 return getTOCEntry(DAG
, SDLoc(BASDN
), Subtarget
.isPPC64(), GA
);
2781 unsigned MOHiFlag
, MOLoFlag
;
2782 bool IsPIC
= isPositionIndependent();
2783 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
);
2784 SDValue TgtBAHi
= DAG
.getTargetBlockAddress(BA
, PtrVT
, 0, MOHiFlag
);
2785 SDValue TgtBALo
= DAG
.getTargetBlockAddress(BA
, PtrVT
, 0, MOLoFlag
);
2786 return LowerLabelRef(TgtBAHi
, TgtBALo
, IsPIC
, DAG
);
2789 SDValue
PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op
,
2790 SelectionDAG
&DAG
) const {
2791 // FIXME: TLS addresses currently use medium model code sequences,
2792 // which is the most useful form. Eventually support for small and
2793 // large models could be added if users need it, at the cost of
2794 // additional complexity.
2795 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2796 if (DAG
.getTarget().useEmulatedTLS())
2797 return LowerToTLSEmulatedModel(GA
, DAG
);
2800 const GlobalValue
*GV
= GA
->getGlobal();
2801 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2802 bool is64bit
= Subtarget
.isPPC64();
2803 const Module
*M
= DAG
.getMachineFunction().getFunction().getParent();
2804 PICLevel::Level picLevel
= M
->getPICLevel();
2806 const TargetMachine
&TM
= getTargetMachine();
2807 TLSModel::Model Model
= TM
.getTLSModel(GV
);
2809 if (Model
== TLSModel::LocalExec
) {
2810 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
2811 PPCII::MO_TPREL_HA
);
2812 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
2813 PPCII::MO_TPREL_LO
);
2814 SDValue TLSReg
= is64bit
? DAG
.getRegister(PPC::X13
, MVT::i64
)
2815 : DAG
.getRegister(PPC::R2
, MVT::i32
);
2817 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, dl
, PtrVT
, TGAHi
, TLSReg
);
2818 return DAG
.getNode(PPCISD::Lo
, dl
, PtrVT
, TGALo
, Hi
);
2821 if (Model
== TLSModel::InitialExec
) {
2822 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, 0);
2823 SDValue TGATLS
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0,
2827 setUsesTOCBasePtr(DAG
);
2828 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
2829 GOTPtr
= DAG
.getNode(PPCISD::ADDIS_GOT_TPREL_HA
, dl
,
2830 PtrVT
, GOTReg
, TGA
);
2832 if (!TM
.isPositionIndependent())
2833 GOTPtr
= DAG
.getNode(PPCISD::PPC32_GOT
, dl
, PtrVT
);
2834 else if (picLevel
== PICLevel::SmallPIC
)
2835 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
2837 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
2839 SDValue TPOffset
= DAG
.getNode(PPCISD::LD_GOT_TPREL_L
, dl
,
2840 PtrVT
, TGA
, GOTPtr
);
2841 return DAG
.getNode(PPCISD::ADD_TLS
, dl
, PtrVT
, TPOffset
, TGATLS
);
2844 if (Model
== TLSModel::GeneralDynamic
) {
2845 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, 0);
2848 setUsesTOCBasePtr(DAG
);
2849 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
2850 GOTPtr
= DAG
.getNode(PPCISD::ADDIS_TLSGD_HA
, dl
, PtrVT
,
2853 if (picLevel
== PICLevel::SmallPIC
)
2854 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
2856 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
2858 return DAG
.getNode(PPCISD::ADDI_TLSGD_L_ADDR
, dl
, PtrVT
,
2862 if (Model
== TLSModel::LocalDynamic
) {
2863 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, 0);
2866 setUsesTOCBasePtr(DAG
);
2867 SDValue GOTReg
= DAG
.getRegister(PPC::X2
, MVT::i64
);
2868 GOTPtr
= DAG
.getNode(PPCISD::ADDIS_TLSLD_HA
, dl
, PtrVT
,
2871 if (picLevel
== PICLevel::SmallPIC
)
2872 GOTPtr
= DAG
.getNode(PPCISD::GlobalBaseReg
, dl
, PtrVT
);
2874 GOTPtr
= DAG
.getNode(PPCISD::PPC32_PICGOT
, dl
, PtrVT
);
2876 SDValue TLSAddr
= DAG
.getNode(PPCISD::ADDI_TLSLD_L_ADDR
, dl
,
2877 PtrVT
, GOTPtr
, TGA
, TGA
);
2878 SDValue DtvOffsetHi
= DAG
.getNode(PPCISD::ADDIS_DTPREL_HA
, dl
,
2879 PtrVT
, TLSAddr
, TGA
);
2880 return DAG
.getNode(PPCISD::ADDI_DTPREL_L
, dl
, PtrVT
, DtvOffsetHi
, TGA
);
2883 llvm_unreachable("Unknown TLS model!");
2886 SDValue
PPCTargetLowering::LowerGlobalAddress(SDValue Op
,
2887 SelectionDAG
&DAG
) const {
2888 EVT PtrVT
= Op
.getValueType();
2889 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
2891 const GlobalValue
*GV
= GSDN
->getGlobal();
2893 // 64-bit SVR4 ABI code is always position-independent.
2894 // The actual address of the GlobalValue is stored in the TOC.
2895 if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64()) {
2896 setUsesTOCBasePtr(DAG
);
2897 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset());
2898 return getTOCEntry(DAG
, DL
, true, GA
);
2901 unsigned MOHiFlag
, MOLoFlag
;
2902 bool IsPIC
= isPositionIndependent();
2903 getLabelAccessInfo(IsPIC
, Subtarget
, MOHiFlag
, MOLoFlag
, GV
);
2905 if (IsPIC
&& Subtarget
.isSVR4ABI()) {
2906 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
,
2908 PPCII::MO_PIC_FLAG
);
2909 return getTOCEntry(DAG
, DL
, false, GA
);
2913 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOHiFlag
);
2915 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOLoFlag
);
2917 SDValue Ptr
= LowerLabelRef(GAHi
, GALo
, IsPIC
, DAG
);
2919 // If the global reference is actually to a non-lazy-pointer, we have to do an
2920 // extra load to get the address of the global.
2921 if (MOHiFlag
& PPCII::MO_NLP_FLAG
)
2922 Ptr
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Ptr
, MachinePointerInfo());
2926 SDValue
PPCTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
2927 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
2930 if (Op
.getValueType() == MVT::v2i64
) {
2931 // When the operands themselves are v2i64 values, we need to do something
2932 // special because VSX has no underlying comparison operations for these.
2933 if (Op
.getOperand(0).getValueType() == MVT::v2i64
) {
2934 // Equality can be handled by casting to the legal type for Altivec
2935 // comparisons, everything else needs to be expanded.
2936 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) {
2937 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
,
2938 DAG
.getSetCC(dl
, MVT::v4i32
,
2939 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, Op
.getOperand(0)),
2940 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, Op
.getOperand(1)),
2947 // We handle most of these in the usual way.
2951 // If we're comparing for equality to zero, expose the fact that this is
2952 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2953 // fold the new nodes.
2954 if (SDValue V
= lowerCmpEqZeroToCtlzSrl(Op
, DAG
))
2957 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2958 // Leave comparisons against 0 and -1 alone for now, since they're usually
2959 // optimized. FIXME: revisit this when we can custom lower all setcc
2961 if (C
->isAllOnesValue() || C
->isNullValue())
2965 // If we have an integer seteq/setne, turn it into a compare against zero
2966 // by xor'ing the rhs with the lhs, which is faster than setting a
2967 // condition register, reading it back out, and masking the correct bit. The
2968 // normal approach here uses sub to do this instead of xor. Using xor exposes
2969 // the result to other bit-twiddling opportunities.
2970 EVT LHSVT
= Op
.getOperand(0).getValueType();
2971 if (LHSVT
.isInteger() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
2972 EVT VT
= Op
.getValueType();
2973 SDValue Sub
= DAG
.getNode(ISD::XOR
, dl
, LHSVT
, Op
.getOperand(0),
2975 return DAG
.getSetCC(dl
, VT
, Sub
, DAG
.getConstant(0, dl
, LHSVT
), CC
);
2980 SDValue
PPCTargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2981 SDNode
*Node
= Op
.getNode();
2982 EVT VT
= Node
->getValueType(0);
2983 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2984 SDValue InChain
= Node
->getOperand(0);
2985 SDValue VAListPtr
= Node
->getOperand(1);
2986 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2989 assert(!Subtarget
.isPPC64() && "LowerVAARG is PPC32 only");
2992 SDValue GprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
2993 VAListPtr
, MachinePointerInfo(SV
), MVT::i8
);
2994 InChain
= GprIndex
.getValue(1);
2996 if (VT
== MVT::i64
) {
2997 // Check if GprIndex is even
2998 SDValue GprAnd
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, GprIndex
,
2999 DAG
.getConstant(1, dl
, MVT::i32
));
3000 SDValue CC64
= DAG
.getSetCC(dl
, MVT::i32
, GprAnd
,
3001 DAG
.getConstant(0, dl
, MVT::i32
), ISD::SETNE
);
3002 SDValue GprIndexPlusOne
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, GprIndex
,
3003 DAG
.getConstant(1, dl
, MVT::i32
));
3004 // Align GprIndex to be even if it isn't
3005 GprIndex
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC64
, GprIndexPlusOne
,
3009 // fpr index is 1 byte after gpr
3010 SDValue FprPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3011 DAG
.getConstant(1, dl
, MVT::i32
));
3014 SDValue FprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
3015 FprPtr
, MachinePointerInfo(SV
), MVT::i8
);
3016 InChain
= FprIndex
.getValue(1);
3018 SDValue RegSaveAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3019 DAG
.getConstant(8, dl
, MVT::i32
));
3021 SDValue OverflowAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
3022 DAG
.getConstant(4, dl
, MVT::i32
));
3025 SDValue OverflowArea
=
3026 DAG
.getLoad(MVT::i32
, dl
, InChain
, OverflowAreaPtr
, MachinePointerInfo());
3027 InChain
= OverflowArea
.getValue(1);
3029 SDValue RegSaveArea
=
3030 DAG
.getLoad(MVT::i32
, dl
, InChain
, RegSaveAreaPtr
, MachinePointerInfo());
3031 InChain
= RegSaveArea
.getValue(1);
3033 // select overflow_area if index > 8
3034 SDValue CC
= DAG
.getSetCC(dl
, MVT::i32
, VT
.isInteger() ? GprIndex
: FprIndex
,
3035 DAG
.getConstant(8, dl
, MVT::i32
), ISD::SETLT
);
3037 // adjustment constant gpr_index * 4/8
3038 SDValue RegConstant
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
,
3039 VT
.isInteger() ? GprIndex
: FprIndex
,
3040 DAG
.getConstant(VT
.isInteger() ? 4 : 8, dl
,
3043 // OurReg = RegSaveArea + RegConstant
3044 SDValue OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, RegSaveArea
,
3047 // Floating types are 32 bytes into RegSaveArea
3048 if (VT
.isFloatingPoint())
3049 OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OurReg
,
3050 DAG
.getConstant(32, dl
, MVT::i32
));
3052 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3053 SDValue IndexPlus1
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
3054 VT
.isInteger() ? GprIndex
: FprIndex
,
3055 DAG
.getConstant(VT
== MVT::i64
? 2 : 1, dl
,
3058 InChain
= DAG
.getTruncStore(InChain
, dl
, IndexPlus1
,
3059 VT
.isInteger() ? VAListPtr
: FprPtr
,
3060 MachinePointerInfo(SV
), MVT::i8
);
3062 // determine if we should load from reg_save_area or overflow_area
3063 SDValue Result
= DAG
.getNode(ISD::SELECT
, dl
, PtrVT
, CC
, OurReg
, OverflowArea
);
3065 // increase overflow_area by 4/8 if gpr/fpr > 8
3066 SDValue OverflowAreaPlusN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OverflowArea
,
3067 DAG
.getConstant(VT
.isInteger() ? 4 : 8,
3070 OverflowArea
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC
, OverflowArea
,
3073 InChain
= DAG
.getTruncStore(InChain
, dl
, OverflowArea
, OverflowAreaPtr
,
3074 MachinePointerInfo(), MVT::i32
);
3076 return DAG
.getLoad(VT
, dl
, InChain
, Result
, MachinePointerInfo());
3079 SDValue
PPCTargetLowering::LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const {
3080 assert(!Subtarget
.isPPC64() && "LowerVACOPY is PPC32 only");
3082 // We have to copy the entire va_list struct:
3083 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3084 return DAG
.getMemcpy(Op
.getOperand(0), Op
,
3085 Op
.getOperand(1), Op
.getOperand(2),
3086 DAG
.getConstant(12, SDLoc(Op
), MVT::i32
), 8, false, true,
3087 false, MachinePointerInfo(), MachinePointerInfo());
3090 SDValue
PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op
,
3091 SelectionDAG
&DAG
) const {
3092 return Op
.getOperand(0);
3095 SDValue
PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op
,
3096 SelectionDAG
&DAG
) const {
3097 SDValue Chain
= Op
.getOperand(0);
3098 SDValue Trmp
= Op
.getOperand(1); // trampoline
3099 SDValue FPtr
= Op
.getOperand(2); // nested function
3100 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
3103 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3104 bool isPPC64
= (PtrVT
== MVT::i64
);
3105 Type
*IntPtrTy
= DAG
.getDataLayout().getIntPtrType(*DAG
.getContext());
3107 TargetLowering::ArgListTy Args
;
3108 TargetLowering::ArgListEntry Entry
;
3110 Entry
.Ty
= IntPtrTy
;
3111 Entry
.Node
= Trmp
; Args
.push_back(Entry
);
3113 // TrampSize == (isPPC64 ? 48 : 40);
3114 Entry
.Node
= DAG
.getConstant(isPPC64
? 48 : 40, dl
,
3115 isPPC64
? MVT::i64
: MVT::i32
);
3116 Args
.push_back(Entry
);
3118 Entry
.Node
= FPtr
; Args
.push_back(Entry
);
3119 Entry
.Node
= Nest
; Args
.push_back(Entry
);
3121 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3122 TargetLowering::CallLoweringInfo
CLI(DAG
);
3123 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3124 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3125 DAG
.getExternalSymbol("__trampoline_setup", PtrVT
), std::move(Args
));
3127 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3128 return CallResult
.second
;
3131 SDValue
PPCTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
3132 MachineFunction
&MF
= DAG
.getMachineFunction();
3133 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3134 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
3138 if (Subtarget
.isDarwinABI() || Subtarget
.isPPC64()) {
3139 // vastart just stores the address of the VarArgsFrameIndex slot into the
3140 // memory location argument.
3141 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3142 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3143 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
3144 MachinePointerInfo(SV
));
3147 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3148 // We suppose the given va_list is already allocated.
3151 // char gpr; /* index into the array of 8 GPRs
3152 // * stored in the register save area
3153 // * gpr=0 corresponds to r3,
3154 // * gpr=1 to r4, etc.
3156 // char fpr; /* index into the array of 8 FPRs
3157 // * stored in the register save area
3158 // * fpr=0 corresponds to f1,
3159 // * fpr=1 to f2, etc.
3161 // char *overflow_arg_area;
3162 // /* location on stack that holds
3163 // * the next overflow argument
3165 // char *reg_save_area;
3166 // /* where r3:r10 and f1:f8 (if saved)
3171 SDValue ArgGPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumGPR(), dl
, MVT::i32
);
3172 SDValue ArgFPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumFPR(), dl
, MVT::i32
);
3173 SDValue StackOffsetFI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackOffset(),
3175 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
3178 uint64_t FrameOffset
= PtrVT
.getSizeInBits()/8;
3179 SDValue ConstFrameOffset
= DAG
.getConstant(FrameOffset
, dl
, PtrVT
);
3181 uint64_t StackOffset
= PtrVT
.getSizeInBits()/8 - 1;
3182 SDValue ConstStackOffset
= DAG
.getConstant(StackOffset
, dl
, PtrVT
);
3184 uint64_t FPROffset
= 1;
3185 SDValue ConstFPROffset
= DAG
.getConstant(FPROffset
, dl
, PtrVT
);
3187 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
3189 // Store first byte : number of int regs
3190 SDValue firstStore
=
3191 DAG
.getTruncStore(Op
.getOperand(0), dl
, ArgGPR
, Op
.getOperand(1),
3192 MachinePointerInfo(SV
), MVT::i8
);
3193 uint64_t nextOffset
= FPROffset
;
3194 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Op
.getOperand(1),
3197 // Store second byte : number of float regs
3198 SDValue secondStore
=
3199 DAG
.getTruncStore(firstStore
, dl
, ArgFPR
, nextPtr
,
3200 MachinePointerInfo(SV
, nextOffset
), MVT::i8
);
3201 nextOffset
+= StackOffset
;
3202 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstStackOffset
);
3204 // Store second word : arguments given on stack
3205 SDValue thirdStore
= DAG
.getStore(secondStore
, dl
, StackOffsetFI
, nextPtr
,
3206 MachinePointerInfo(SV
, nextOffset
));
3207 nextOffset
+= FrameOffset
;
3208 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstFrameOffset
);
3210 // Store third word : arguments given in registers
3211 return DAG
.getStore(thirdStore
, dl
, FR
, nextPtr
,
3212 MachinePointerInfo(SV
, nextOffset
));
3215 /// FPR - The set of FP registers that should be allocated for arguments,
3217 static const MCPhysReg FPR
[] = {PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
,
3218 PPC::F6
, PPC::F7
, PPC::F8
, PPC::F9
, PPC::F10
,
3219 PPC::F11
, PPC::F12
, PPC::F13
};
3221 /// QFPR - The set of QPX registers that should be allocated for arguments.
3222 static const MCPhysReg QFPR
[] = {
3223 PPC::QF1
, PPC::QF2
, PPC::QF3
, PPC::QF4
, PPC::QF5
, PPC::QF6
, PPC::QF7
,
3224 PPC::QF8
, PPC::QF9
, PPC::QF10
, PPC::QF11
, PPC::QF12
, PPC::QF13
};
3226 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3228 static unsigned CalculateStackSlotSize(EVT ArgVT
, ISD::ArgFlagsTy Flags
,
3229 unsigned PtrByteSize
) {
3230 unsigned ArgSize
= ArgVT
.getStoreSize();
3231 if (Flags
.isByVal())
3232 ArgSize
= Flags
.getByValSize();
3234 // Round up to multiples of the pointer size, except for array members,
3235 // which are always packed.
3236 if (!Flags
.isInConsecutiveRegs())
3237 ArgSize
= ((ArgSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3242 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3244 static unsigned CalculateStackSlotAlignment(EVT ArgVT
, EVT OrigVT
,
3245 ISD::ArgFlagsTy Flags
,
3246 unsigned PtrByteSize
) {
3247 unsigned Align
= PtrByteSize
;
3249 // Altivec parameters are padded to a 16 byte boundary.
3250 if (ArgVT
== MVT::v4f32
|| ArgVT
== MVT::v4i32
||
3251 ArgVT
== MVT::v8i16
|| ArgVT
== MVT::v16i8
||
3252 ArgVT
== MVT::v2f64
|| ArgVT
== MVT::v2i64
||
3253 ArgVT
== MVT::v1i128
|| ArgVT
== MVT::f128
)
3255 // QPX vector types stored in double-precision are padded to a 32 byte
3257 else if (ArgVT
== MVT::v4f64
|| ArgVT
== MVT::v4i1
)
3260 // ByVal parameters are aligned as requested.
3261 if (Flags
.isByVal()) {
3262 unsigned BVAlign
= Flags
.getByValAlign();
3263 if (BVAlign
> PtrByteSize
) {
3264 if (BVAlign
% PtrByteSize
!= 0)
3266 "ByVal alignment is not a multiple of the pointer size");
3272 // Array members are always packed to their original alignment.
3273 if (Flags
.isInConsecutiveRegs()) {
3274 // If the array member was split into multiple registers, the first
3275 // needs to be aligned to the size of the full type. (Except for
3276 // ppcf128, which is only aligned as its f64 components.)
3277 if (Flags
.isSplit() && OrigVT
!= MVT::ppcf128
)
3278 Align
= OrigVT
.getStoreSize();
3280 Align
= ArgVT
.getStoreSize();
3286 /// CalculateStackSlotUsed - Return whether this argument will use its
3287 /// stack slot (instead of being passed in registers). ArgOffset,
3288 /// AvailableFPRs, and AvailableVRs must hold the current argument
3289 /// position, and will be updated to account for this argument.
3290 static bool CalculateStackSlotUsed(EVT ArgVT
, EVT OrigVT
,
3291 ISD::ArgFlagsTy Flags
,
3292 unsigned PtrByteSize
,
3293 unsigned LinkageSize
,
3294 unsigned ParamAreaSize
,
3295 unsigned &ArgOffset
,
3296 unsigned &AvailableFPRs
,
3297 unsigned &AvailableVRs
, bool HasQPX
) {
3298 bool UseMemory
= false;
3300 // Respect alignment of argument on the stack.
3302 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
3303 ArgOffset
= ((ArgOffset
+ Align
- 1) / Align
) * Align
;
3304 // If there's no space left in the argument save area, we must
3305 // use memory (this check also catches zero-sized arguments).
3306 if (ArgOffset
>= LinkageSize
+ ParamAreaSize
)
3309 // Allocate argument on the stack.
3310 ArgOffset
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
3311 if (Flags
.isInConsecutiveRegsLast())
3312 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3313 // If we overran the argument save area, we must use memory
3314 // (this check catches arguments passed partially in memory)
3315 if (ArgOffset
> LinkageSize
+ ParamAreaSize
)
3318 // However, if the argument is actually passed in an FPR or a VR,
3319 // we don't use memory after all.
3320 if (!Flags
.isByVal()) {
3321 if (ArgVT
== MVT::f32
|| ArgVT
== MVT::f64
||
3322 // QPX registers overlap with the scalar FP registers.
3323 (HasQPX
&& (ArgVT
== MVT::v4f32
||
3324 ArgVT
== MVT::v4f64
||
3325 ArgVT
== MVT::v4i1
)))
3326 if (AvailableFPRs
> 0) {
3330 if (ArgVT
== MVT::v4f32
|| ArgVT
== MVT::v4i32
||
3331 ArgVT
== MVT::v8i16
|| ArgVT
== MVT::v16i8
||
3332 ArgVT
== MVT::v2f64
|| ArgVT
== MVT::v2i64
||
3333 ArgVT
== MVT::v1i128
|| ArgVT
== MVT::f128
)
3334 if (AvailableVRs
> 0) {
3343 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3344 /// ensure minimum alignment required for target.
3345 static unsigned EnsureStackAlignment(const PPCFrameLowering
*Lowering
,
3346 unsigned NumBytes
) {
3347 unsigned TargetAlign
= Lowering
->getStackAlignment();
3348 unsigned AlignMask
= TargetAlign
- 1;
3349 NumBytes
= (NumBytes
+ AlignMask
) & ~AlignMask
;
3353 SDValue
PPCTargetLowering::LowerFormalArguments(
3354 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3355 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3356 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3357 if (Subtarget
.isSVR4ABI()) {
3358 if (Subtarget
.isPPC64())
3359 return LowerFormalArguments_64SVR4(Chain
, CallConv
, isVarArg
, Ins
,
3362 return LowerFormalArguments_32SVR4(Chain
, CallConv
, isVarArg
, Ins
,
3365 return LowerFormalArguments_Darwin(Chain
, CallConv
, isVarArg
, Ins
,
3370 SDValue
PPCTargetLowering::LowerFormalArguments_32SVR4(
3371 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3372 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3373 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3375 // 32-bit SVR4 ABI Stack Frame Layout:
3376 // +-----------------------------------+
3377 // +--> | Back chain |
3378 // | +-----------------------------------+
3379 // | | Floating-point register save area |
3380 // | +-----------------------------------+
3381 // | | General register save area |
3382 // | +-----------------------------------+
3383 // | | CR save word |
3384 // | +-----------------------------------+
3385 // | | VRSAVE save word |
3386 // | +-----------------------------------+
3387 // | | Alignment padding |
3388 // | +-----------------------------------+
3389 // | | Vector register save area |
3390 // | +-----------------------------------+
3391 // | | Local variable space |
3392 // | +-----------------------------------+
3393 // | | Parameter list area |
3394 // | +-----------------------------------+
3395 // | | LR save word |
3396 // | +-----------------------------------+
3397 // SP--> +--- | Back chain |
3398 // +-----------------------------------+
3401 // System V Application Binary Interface PowerPC Processor Supplement
3402 // AltiVec Technology Programming Interface Manual
3404 MachineFunction
&MF
= DAG
.getMachineFunction();
3405 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3406 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3408 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
3409 // Potential tail calls could cause overwriting of argument stack slots.
3410 bool isImmutable
= !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
3411 (CallConv
== CallingConv::Fast
));
3412 unsigned PtrByteSize
= 4;
3414 // Assign locations to all of the incoming arguments.
3415 SmallVector
<CCValAssign
, 16> ArgLocs
;
3416 PPCCCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3419 // Reserve space for the linkage area on the stack.
3420 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
3421 CCInfo
.AllocateStack(LinkageSize
, PtrByteSize
);
3423 CCInfo
.PreAnalyzeFormalArguments(Ins
);
3425 CCInfo
.AnalyzeFormalArguments(Ins
, CC_PPC32_SVR4
);
3426 CCInfo
.clearWasPPCF128();
3428 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3429 CCValAssign
&VA
= ArgLocs
[i
];
3431 // Arguments stored in registers.
3432 if (VA
.isRegLoc()) {
3433 const TargetRegisterClass
*RC
;
3434 EVT ValVT
= VA
.getValVT();
3436 switch (ValVT
.getSimpleVT().SimpleTy
) {
3438 llvm_unreachable("ValVT not supported by formal arguments Lowering");
3441 RC
= &PPC::GPRCRegClass
;
3444 if (Subtarget
.hasP8Vector())
3445 RC
= &PPC::VSSRCRegClass
;
3446 else if (Subtarget
.hasSPE())
3447 RC
= &PPC::SPE4RCRegClass
;
3449 RC
= &PPC::F4RCRegClass
;
3452 if (Subtarget
.hasVSX())
3453 RC
= &PPC::VSFRCRegClass
;
3454 else if (Subtarget
.hasSPE())
3455 // SPE passes doubles in GPR pairs.
3456 RC
= &PPC::GPRCRegClass
;
3458 RC
= &PPC::F8RCRegClass
;
3463 RC
= &PPC::VRRCRegClass
;
3466 RC
= Subtarget
.hasQPX() ? &PPC::QSRCRegClass
: &PPC::VRRCRegClass
;
3470 RC
= &PPC::VRRCRegClass
;
3473 RC
= &PPC::QFRCRegClass
;
3476 RC
= &PPC::QBRCRegClass
;
3481 // Transform the arguments stored in physical registers into
3483 if (VA
.getLocVT() == MVT::f64
&& Subtarget
.hasSPE()) {
3484 assert(i
+ 1 < e
&& "No second half of double precision argument");
3485 unsigned RegLo
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3486 unsigned RegHi
= MF
.addLiveIn(ArgLocs
[++i
].getLocReg(), RC
);
3487 SDValue ArgValueLo
= DAG
.getCopyFromReg(Chain
, dl
, RegLo
, MVT::i32
);
3488 SDValue ArgValueHi
= DAG
.getCopyFromReg(Chain
, dl
, RegHi
, MVT::i32
);
3489 if (!Subtarget
.isLittleEndian())
3490 std::swap (ArgValueLo
, ArgValueHi
);
3491 ArgValue
= DAG
.getNode(PPCISD::BUILD_SPE64
, dl
, MVT::f64
, ArgValueLo
,
3494 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3495 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
,
3496 ValVT
== MVT::i1
? MVT::i32
: ValVT
);
3497 if (ValVT
== MVT::i1
)
3498 ArgValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, ArgValue
);
3501 InVals
.push_back(ArgValue
);
3503 // Argument stored in memory.
3504 assert(VA
.isMemLoc());
3506 // Get the extended size of the argument type in stack
3507 unsigned ArgSize
= VA
.getLocVT().getStoreSize();
3508 // Get the actual size of the argument type
3509 unsigned ObjSize
= VA
.getValVT().getStoreSize();
3510 unsigned ArgOffset
= VA
.getLocMemOffset();
3511 // Stack objects in PPC32 are right justified.
3512 ArgOffset
+= ArgSize
- ObjSize
;
3513 int FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, isImmutable
);
3515 // Create load nodes to retrieve arguments from the stack.
3516 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3518 DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
, MachinePointerInfo()));
3522 // Assign locations to all of the incoming aggregate by value arguments.
3523 // Aggregates passed by value are stored in the local variable space of the
3524 // caller's stack frame, right above the parameter list area.
3525 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
3526 CCState
CCByValInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
3527 ByValArgLocs
, *DAG
.getContext());
3529 // Reserve stack space for the allocations in CCInfo.
3530 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
3532 CCByValInfo
.AnalyzeFormalArguments(Ins
, CC_PPC32_SVR4_ByVal
);
3534 // Area that is at least reserved in the caller of this function.
3535 unsigned MinReservedArea
= CCByValInfo
.getNextStackOffset();
3536 MinReservedArea
= std::max(MinReservedArea
, LinkageSize
);
3538 // Set the size that is at least reserved in caller of this function. Tail
3539 // call optimized function's reserved stack space needs to be aligned so that
3540 // taking the difference between two stack areas will result in an aligned
3543 EnsureStackAlignment(Subtarget
.getFrameLowering(), MinReservedArea
);
3544 FuncInfo
->setMinReservedArea(MinReservedArea
);
3546 SmallVector
<SDValue
, 8> MemOps
;
3548 // If the function takes variable number of arguments, make a frame index for
3549 // the start of the first vararg value... for expansion of llvm.va_start.
3551 static const MCPhysReg GPArgRegs
[] = {
3552 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
3553 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
3555 const unsigned NumGPArgRegs
= array_lengthof(GPArgRegs
);
3557 static const MCPhysReg FPArgRegs
[] = {
3558 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
3561 unsigned NumFPArgRegs
= array_lengthof(FPArgRegs
);
3563 if (useSoftFloat() || hasSPE())
3566 FuncInfo
->setVarArgsNumGPR(CCInfo
.getFirstUnallocated(GPArgRegs
));
3567 FuncInfo
->setVarArgsNumFPR(CCInfo
.getFirstUnallocated(FPArgRegs
));
3569 // Make room for NumGPArgRegs and NumFPArgRegs.
3570 int Depth
= NumGPArgRegs
* PtrVT
.getSizeInBits()/8 +
3571 NumFPArgRegs
* MVT(MVT::f64
).getSizeInBits()/8;
3573 FuncInfo
->setVarArgsStackOffset(
3574 MFI
.CreateFixedObject(PtrVT
.getSizeInBits()/8,
3575 CCInfo
.getNextStackOffset(), true));
3577 FuncInfo
->setVarArgsFrameIndex(MFI
.CreateStackObject(Depth
, 8, false));
3578 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
3580 // The fixed integer arguments of a variadic function are stored to the
3581 // VarArgsFrameIndex on the stack so that they may be loaded by
3582 // dereferencing the result of va_next.
3583 for (unsigned GPRIndex
= 0; GPRIndex
!= NumGPArgRegs
; ++GPRIndex
) {
3584 // Get an existing live-in vreg, or add a new one.
3585 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(GPArgRegs
[GPRIndex
]);
3587 VReg
= MF
.addLiveIn(GPArgRegs
[GPRIndex
], &PPC::GPRCRegClass
);
3589 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
3591 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
3592 MemOps
.push_back(Store
);
3593 // Increment the address by four for the next argument to store
3594 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, dl
, PtrVT
);
3595 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
3598 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3600 // The double arguments are stored to the VarArgsFrameIndex
3602 for (unsigned FPRIndex
= 0; FPRIndex
!= NumFPArgRegs
; ++FPRIndex
) {
3603 // Get an existing live-in vreg, or add a new one.
3604 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(FPArgRegs
[FPRIndex
]);
3606 VReg
= MF
.addLiveIn(FPArgRegs
[FPRIndex
], &PPC::F8RCRegClass
);
3608 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::f64
);
3610 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
3611 MemOps
.push_back(Store
);
3612 // Increment the address by eight for the next argument to store
3613 SDValue PtrOff
= DAG
.getConstant(MVT(MVT::f64
).getSizeInBits()/8, dl
,
3615 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
3619 if (!MemOps
.empty())
3620 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
3625 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3626 // value to MVT::i64 and then truncate to the correct register size.
3627 SDValue
PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags
,
3628 EVT ObjectVT
, SelectionDAG
&DAG
,
3630 const SDLoc
&dl
) const {
3632 ArgVal
= DAG
.getNode(ISD::AssertSext
, dl
, MVT::i64
, ArgVal
,
3633 DAG
.getValueType(ObjectVT
));
3634 else if (Flags
.isZExt())
3635 ArgVal
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i64
, ArgVal
,
3636 DAG
.getValueType(ObjectVT
));
3638 return DAG
.getNode(ISD::TRUNCATE
, dl
, ObjectVT
, ArgVal
);
3641 SDValue
PPCTargetLowering::LowerFormalArguments_64SVR4(
3642 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3643 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
3644 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3645 // TODO: add description of PPC stack frame format, or at least some docs.
3647 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
3648 bool isLittleEndian
= Subtarget
.isLittleEndian();
3649 MachineFunction
&MF
= DAG
.getMachineFunction();
3650 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3651 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3653 assert(!(CallConv
== CallingConv::Fast
&& isVarArg
) &&
3654 "fastcc not supported on varargs functions");
3656 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
3657 // Potential tail calls could cause overwriting of argument stack slots.
3658 bool isImmutable
= !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
3659 (CallConv
== CallingConv::Fast
));
3660 unsigned PtrByteSize
= 8;
3661 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
3663 static const MCPhysReg GPR
[] = {
3664 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
3665 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
3667 static const MCPhysReg VR
[] = {
3668 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
3669 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
3672 const unsigned Num_GPR_Regs
= array_lengthof(GPR
);
3673 const unsigned Num_FPR_Regs
= useSoftFloat() ? 0 : 13;
3674 const unsigned Num_VR_Regs
= array_lengthof(VR
);
3675 const unsigned Num_QFPR_Regs
= Num_FPR_Regs
;
3677 // Do a first pass over the arguments to determine whether the ABI
3678 // guarantees that our caller has allocated the parameter save area
3679 // on its stack frame. In the ELFv1 ABI, this is always the case;
3680 // in the ELFv2 ABI, it is true if this is a vararg function or if
3681 // any parameter is located in a stack slot.
3683 bool HasParameterArea
= !isELFv2ABI
|| isVarArg
;
3684 unsigned ParamAreaSize
= Num_GPR_Regs
* PtrByteSize
;
3685 unsigned NumBytes
= LinkageSize
;
3686 unsigned AvailableFPRs
= Num_FPR_Regs
;
3687 unsigned AvailableVRs
= Num_VR_Regs
;
3688 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
3689 if (Ins
[i
].Flags
.isNest())
3692 if (CalculateStackSlotUsed(Ins
[i
].VT
, Ins
[i
].ArgVT
, Ins
[i
].Flags
,
3693 PtrByteSize
, LinkageSize
, ParamAreaSize
,
3694 NumBytes
, AvailableFPRs
, AvailableVRs
,
3695 Subtarget
.hasQPX()))
3696 HasParameterArea
= true;
3699 // Add DAG nodes to load the arguments or copy them out of registers. On
3700 // entry to a function on PPC, the arguments start after the linkage area,
3701 // although the first ones are often in registers.
3703 unsigned ArgOffset
= LinkageSize
;
3704 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
3705 unsigned &QFPR_idx
= FPR_idx
;
3706 SmallVector
<SDValue
, 8> MemOps
;
3707 Function::const_arg_iterator FuncArg
= MF
.getFunction().arg_begin();
3708 unsigned CurArgIdx
= 0;
3709 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
3711 bool needsLoad
= false;
3712 EVT ObjectVT
= Ins
[ArgNo
].VT
;
3713 EVT OrigVT
= Ins
[ArgNo
].ArgVT
;
3714 unsigned ObjSize
= ObjectVT
.getStoreSize();
3715 unsigned ArgSize
= ObjSize
;
3716 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
3717 if (Ins
[ArgNo
].isOrigArg()) {
3718 std::advance(FuncArg
, Ins
[ArgNo
].getOrigArgIndex() - CurArgIdx
);
3719 CurArgIdx
= Ins
[ArgNo
].getOrigArgIndex();
3721 // We re-align the argument offset for each argument, except when using the
3722 // fast calling convention, when we need to make sure we do that only when
3723 // we'll actually use a stack slot.
3724 unsigned CurArgOffset
, Align
;
3725 auto ComputeArgOffset
= [&]() {
3726 /* Respect alignment of argument on the stack. */
3727 Align
= CalculateStackSlotAlignment(ObjectVT
, OrigVT
, Flags
, PtrByteSize
);
3728 ArgOffset
= ((ArgOffset
+ Align
- 1) / Align
) * Align
;
3729 CurArgOffset
= ArgOffset
;
3732 if (CallConv
!= CallingConv::Fast
) {
3735 /* Compute GPR index associated with argument offset. */
3736 GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
3737 GPR_idx
= std::min(GPR_idx
, Num_GPR_Regs
);
3740 // FIXME the codegen can be much improved in some cases.
3741 // We do not have to keep everything in memory.
3742 if (Flags
.isByVal()) {
3743 assert(Ins
[ArgNo
].isOrigArg() && "Byval arguments cannot be implicit");
3745 if (CallConv
== CallingConv::Fast
)
3748 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3749 ObjSize
= Flags
.getByValSize();
3750 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3751 // Empty aggregate parameters do not take up registers. Examples:
3755 // etc. However, we have to provide a place-holder in InVals, so
3756 // pretend we have an 8-byte item at the current address for that
3759 int FI
= MFI
.CreateFixedObject(PtrByteSize
, ArgOffset
, true);
3760 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3761 InVals
.push_back(FIN
);
3765 // Create a stack object covering all stack doublewords occupied
3766 // by the argument. If the argument is (fully or partially) on
3767 // the stack, or if the argument is fully in registers but the
3768 // caller has allocated the parameter save anyway, we can refer
3769 // directly to the caller's stack frame. Otherwise, create a
3770 // local copy in our own frame.
3772 if (HasParameterArea
||
3773 ArgSize
+ ArgOffset
> LinkageSize
+ Num_GPR_Regs
* PtrByteSize
)
3774 FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false, true);
3776 FI
= MFI
.CreateStackObject(ArgSize
, Align
, false);
3777 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
3779 // Handle aggregates smaller than 8 bytes.
3780 if (ObjSize
< PtrByteSize
) {
3781 // The value of the object is its address, which differs from the
3782 // address of the enclosing doubleword on big-endian systems.
3784 if (!isLittleEndian
) {
3785 SDValue ArgOff
= DAG
.getConstant(PtrByteSize
- ObjSize
, dl
, PtrVT
);
3786 Arg
= DAG
.getNode(ISD::ADD
, dl
, ArgOff
.getValueType(), Arg
, ArgOff
);
3788 InVals
.push_back(Arg
);
3790 if (GPR_idx
!= Num_GPR_Regs
) {
3791 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
3792 FuncInfo
->addLiveInAttr(VReg
, Flags
);
3793 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
3796 if (ObjSize
==1 || ObjSize
==2 || ObjSize
==4) {
3797 EVT ObjType
= (ObjSize
== 1 ? MVT::i8
:
3798 (ObjSize
== 2 ? MVT::i16
: MVT::i32
));
3799 Store
= DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, Arg
,
3800 MachinePointerInfo(&*FuncArg
), ObjType
);
3802 // For sizes that don't fit a truncating store (3, 5, 6, 7),
3803 // store the whole register as-is to the parameter save area
3805 Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
3806 MachinePointerInfo(&*FuncArg
));
3809 MemOps
.push_back(Store
);
3811 // Whether we copied from a register or not, advance the offset
3812 // into the parameter save area by a full doubleword.
3813 ArgOffset
+= PtrByteSize
;
3817 // The value of the object is its address, which is the address of
3818 // its first stack doubleword.
3819 InVals
.push_back(FIN
);
3821 // Store whatever pieces of the object are in registers to memory.
3822 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
3823 if (GPR_idx
== Num_GPR_Regs
)
3826 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
3827 FuncInfo
->addLiveInAttr(VReg
, Flags
);
3828 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
3831 SDValue Off
= DAG
.getConstant(j
, dl
, PtrVT
);
3832 Addr
= DAG
.getNode(ISD::ADD
, dl
, Off
.getValueType(), Addr
, Off
);
3834 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, Addr
,
3835 MachinePointerInfo(&*FuncArg
, j
));
3836 MemOps
.push_back(Store
);
3839 ArgOffset
+= ArgSize
;
3843 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
3844 default: llvm_unreachable("Unhandled argument type!");
3848 if (Flags
.isNest()) {
3849 // The 'nest' parameter, if any, is passed in R11.
3850 unsigned VReg
= MF
.addLiveIn(PPC::X11
, &PPC::G8RCRegClass
);
3851 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
3853 if (ObjectVT
== MVT::i32
|| ObjectVT
== MVT::i1
)
3854 ArgVal
= extendArgForPPC64(Flags
, ObjectVT
, DAG
, ArgVal
, dl
);
3859 // These can be scalar arguments or elements of an integer array type
3860 // passed directly. Clang may use those instead of "byval" aggregate
3861 // types to avoid forcing arguments to memory unnecessarily.
3862 if (GPR_idx
!= Num_GPR_Regs
) {
3863 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
3864 FuncInfo
->addLiveInAttr(VReg
, Flags
);
3865 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
3867 if (ObjectVT
== MVT::i32
|| ObjectVT
== MVT::i1
)
3868 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3869 // value to MVT::i64 and then truncate to the correct register size.
3870 ArgVal
= extendArgForPPC64(Flags
, ObjectVT
, DAG
, ArgVal
, dl
);
3872 if (CallConv
== CallingConv::Fast
)
3876 ArgSize
= PtrByteSize
;
3878 if (CallConv
!= CallingConv::Fast
|| needsLoad
)
3884 // These can be scalar arguments or elements of a float array type
3885 // passed directly. The latter are used to implement ELFv2 homogenous
3886 // float aggregates.
3887 if (FPR_idx
!= Num_FPR_Regs
) {
3890 if (ObjectVT
== MVT::f32
)
3891 VReg
= MF
.addLiveIn(FPR
[FPR_idx
],
3892 Subtarget
.hasP8Vector()
3893 ? &PPC::VSSRCRegClass
3894 : &PPC::F4RCRegClass
);
3896 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], Subtarget
.hasVSX()
3897 ? &PPC::VSFRCRegClass
3898 : &PPC::F8RCRegClass
);
3900 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
3902 } else if (GPR_idx
!= Num_GPR_Regs
&& CallConv
!= CallingConv::Fast
) {
3903 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3904 // once we support fp <-> gpr moves.
3906 // This can only ever happen in the presence of f32 array types,
3907 // since otherwise we never run out of FPRs before running out
3909 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
++], &PPC::G8RCRegClass
);
3910 FuncInfo
->addLiveInAttr(VReg
, Flags
);
3911 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
3913 if (ObjectVT
== MVT::f32
) {
3914 if ((ArgOffset
% PtrByteSize
) == (isLittleEndian
? 4 : 0))
3915 ArgVal
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, ArgVal
,
3916 DAG
.getConstant(32, dl
, MVT::i32
));
3917 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, ArgVal
);
3920 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, ObjectVT
, ArgVal
);
3922 if (CallConv
== CallingConv::Fast
)
3928 // When passing an array of floats, the array occupies consecutive
3929 // space in the argument area; only round up to the next doubleword
3930 // at the end of the array. Otherwise, each float takes 8 bytes.
3931 if (CallConv
!= CallingConv::Fast
|| needsLoad
) {
3932 ArgSize
= Flags
.isInConsecutiveRegs() ? ObjSize
: PtrByteSize
;
3933 ArgOffset
+= ArgSize
;
3934 if (Flags
.isInConsecutiveRegsLast())
3935 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
3946 if (!Subtarget
.hasQPX()) {
3947 // These can be scalar arguments or elements of a vector array type
3948 // passed directly. The latter are used to implement ELFv2 homogenous
3949 // vector aggregates.
3950 if (VR_idx
!= Num_VR_Regs
) {
3951 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
3952 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
3955 if (CallConv
== CallingConv::Fast
)
3959 if (CallConv
!= CallingConv::Fast
|| needsLoad
)
3964 assert(ObjectVT
.getSimpleVT().SimpleTy
== MVT::v4f32
&&
3965 "Invalid QPX parameter type");
3970 // QPX vectors are treated like their scalar floating-point subregisters
3971 // (except that they're larger).
3972 unsigned Sz
= ObjectVT
.getSimpleVT().SimpleTy
== MVT::v4f32
? 16 : 32;
3973 if (QFPR_idx
!= Num_QFPR_Regs
) {
3974 const TargetRegisterClass
*RC
;
3975 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
3976 case MVT::v4f64
: RC
= &PPC::QFRCRegClass
; break;
3977 case MVT::v4f32
: RC
= &PPC::QSRCRegClass
; break;
3978 default: RC
= &PPC::QBRCRegClass
; break;
3981 unsigned VReg
= MF
.addLiveIn(QFPR
[QFPR_idx
], RC
);
3982 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
3985 if (CallConv
== CallingConv::Fast
)
3989 if (CallConv
!= CallingConv::Fast
|| needsLoad
)
3994 // We need to load the argument to a virtual register if we determined
3995 // above that we ran out of physical registers of the appropriate type.
3997 if (ObjSize
< ArgSize
&& !isLittleEndian
)
3998 CurArgOffset
+= ArgSize
- ObjSize
;
3999 int FI
= MFI
.CreateFixedObject(ObjSize
, CurArgOffset
, isImmutable
);
4000 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4001 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, MachinePointerInfo());
4004 InVals
.push_back(ArgVal
);
4007 // Area that is at least reserved in the caller of this function.
4008 unsigned MinReservedArea
;
4009 if (HasParameterArea
)
4010 MinReservedArea
= std::max(ArgOffset
, LinkageSize
+ 8 * PtrByteSize
);
4012 MinReservedArea
= LinkageSize
;
4014 // Set the size that is at least reserved in caller of this function. Tail
4015 // call optimized functions' reserved stack space needs to be aligned so that
4016 // taking the difference between two stack areas will result in an aligned
4019 EnsureStackAlignment(Subtarget
.getFrameLowering(), MinReservedArea
);
4020 FuncInfo
->setMinReservedArea(MinReservedArea
);
4022 // If the function takes variable number of arguments, make a frame index for
4023 // the start of the first vararg value... for expansion of llvm.va_start.
4025 int Depth
= ArgOffset
;
4027 FuncInfo
->setVarArgsFrameIndex(
4028 MFI
.CreateFixedObject(PtrByteSize
, Depth
, true));
4029 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
4031 // If this function is vararg, store any remaining integer argument regs
4032 // to their spots on the stack so that they may be loaded by dereferencing
4033 // the result of va_next.
4034 for (GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
4035 GPR_idx
< Num_GPR_Regs
; ++GPR_idx
) {
4036 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4037 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4039 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
4040 MemOps
.push_back(Store
);
4041 // Increment the address by four for the next argument to store
4042 SDValue PtrOff
= DAG
.getConstant(PtrByteSize
, dl
, PtrVT
);
4043 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
4047 if (!MemOps
.empty())
4048 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
4053 SDValue
PPCTargetLowering::LowerFormalArguments_Darwin(
4054 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
4055 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
4056 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
4057 // TODO: add description of PPC stack frame format, or at least some docs.
4059 MachineFunction
&MF
= DAG
.getMachineFunction();
4060 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4061 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
4063 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
4064 bool isPPC64
= PtrVT
== MVT::i64
;
4065 // Potential tail calls could cause overwriting of argument stack slots.
4066 bool isImmutable
= !(getTargetMachine().Options
.GuaranteedTailCallOpt
&&
4067 (CallConv
== CallingConv::Fast
));
4068 unsigned PtrByteSize
= isPPC64
? 8 : 4;
4069 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
4070 unsigned ArgOffset
= LinkageSize
;
4071 // Area that is at least reserved in caller of this function.
4072 unsigned MinReservedArea
= ArgOffset
;
4074 static const MCPhysReg GPR_32
[] = { // 32-bit registers.
4075 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
4076 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
4078 static const MCPhysReg GPR_64
[] = { // 64-bit registers.
4079 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
4080 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
4082 static const MCPhysReg VR
[] = {
4083 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
4084 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
4087 const unsigned Num_GPR_Regs
= array_lengthof(GPR_32
);
4088 const unsigned Num_FPR_Regs
= useSoftFloat() ? 0 : 13;
4089 const unsigned Num_VR_Regs
= array_lengthof( VR
);
4091 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
4093 const MCPhysReg
*GPR
= isPPC64
? GPR_64
: GPR_32
;
4095 // In 32-bit non-varargs functions, the stack space for vectors is after the
4096 // stack space for non-vectors. We do not use this space unless we have
4097 // too many vectors to fit in registers, something that only occurs in
4098 // constructed examples:), but we have to walk the arglist to figure
4099 // that out...for the pathological case, compute VecArgOffset as the
4100 // start of the vector parameter area. Computing VecArgOffset is the
4101 // entire point of the following loop.
4102 unsigned VecArgOffset
= ArgOffset
;
4103 if (!isVarArg
&& !isPPC64
) {
4104 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
;
4106 EVT ObjectVT
= Ins
[ArgNo
].VT
;
4107 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
4109 if (Flags
.isByVal()) {
4110 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4111 unsigned ObjSize
= Flags
.getByValSize();
4113 ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
4114 VecArgOffset
+= ArgSize
;
4118 switch(ObjectVT
.getSimpleVT().SimpleTy
) {
4119 default: llvm_unreachable("Unhandled argument type!");
4125 case MVT::i64
: // PPC64
4127 // FIXME: We are guaranteed to be !isPPC64 at this point.
4128 // Does MVT::i64 apply?
4135 // Nothing to do, we're only looking at Nonvector args here.
4140 // We've found where the vector parameter area in memory is. Skip the
4141 // first 12 parameters; these don't use that memory.
4142 VecArgOffset
= ((VecArgOffset
+15)/16)*16;
4143 VecArgOffset
+= 12*16;
4145 // Add DAG nodes to load the arguments or copy them out of registers. On
4146 // entry to a function on PPC, the arguments start after the linkage area,
4147 // although the first ones are often in registers.
4149 SmallVector
<SDValue
, 8> MemOps
;
4150 unsigned nAltivecParamsAtEnd
= 0;
4151 Function::const_arg_iterator FuncArg
= MF
.getFunction().arg_begin();
4152 unsigned CurArgIdx
= 0;
4153 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
4155 bool needsLoad
= false;
4156 EVT ObjectVT
= Ins
[ArgNo
].VT
;
4157 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
4158 unsigned ArgSize
= ObjSize
;
4159 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
4160 if (Ins
[ArgNo
].isOrigArg()) {
4161 std::advance(FuncArg
, Ins
[ArgNo
].getOrigArgIndex() - CurArgIdx
);
4162 CurArgIdx
= Ins
[ArgNo
].getOrigArgIndex();
4164 unsigned CurArgOffset
= ArgOffset
;
4166 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4167 if (ObjectVT
==MVT::v4f32
|| ObjectVT
==MVT::v4i32
||
4168 ObjectVT
==MVT::v8i16
|| ObjectVT
==MVT::v16i8
) {
4169 if (isVarArg
|| isPPC64
) {
4170 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
4171 MinReservedArea
+= CalculateStackSlotSize(ObjectVT
,
4174 } else nAltivecParamsAtEnd
++;
4176 // Calculate min reserved area.
4177 MinReservedArea
+= CalculateStackSlotSize(Ins
[ArgNo
].VT
,
4181 // FIXME the codegen can be much improved in some cases.
4182 // We do not have to keep everything in memory.
4183 if (Flags
.isByVal()) {
4184 assert(Ins
[ArgNo
].isOrigArg() && "Byval arguments cannot be implicit");
4186 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4187 ObjSize
= Flags
.getByValSize();
4188 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
4189 // Objects of size 1 and 2 are right justified, everything else is
4190 // left justified. This means the memory address is adjusted forwards.
4191 if (ObjSize
==1 || ObjSize
==2) {
4192 CurArgOffset
= CurArgOffset
+ (4 - ObjSize
);
4194 // The value of the object is its address.
4195 int FI
= MFI
.CreateFixedObject(ObjSize
, CurArgOffset
, false, true);
4196 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4197 InVals
.push_back(FIN
);
4198 if (ObjSize
==1 || ObjSize
==2) {
4199 if (GPR_idx
!= Num_GPR_Regs
) {
4202 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4204 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
4205 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4206 EVT ObjType
= ObjSize
== 1 ? MVT::i8
: MVT::i16
;
4208 DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, FIN
,
4209 MachinePointerInfo(&*FuncArg
), ObjType
);
4210 MemOps
.push_back(Store
);
4214 ArgOffset
+= PtrByteSize
;
4218 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
4219 // Store whatever pieces of the object are in registers
4220 // to memory. ArgOffset will be the address of the beginning
4222 if (GPR_idx
!= Num_GPR_Regs
) {
4225 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4227 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
4228 int FI
= MFI
.CreateFixedObject(PtrByteSize
, ArgOffset
, true);
4229 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4230 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4231 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
4232 MachinePointerInfo(&*FuncArg
, j
));
4233 MemOps
.push_back(Store
);
4235 ArgOffset
+= PtrByteSize
;
4237 ArgOffset
+= ArgSize
- (ArgOffset
-CurArgOffset
);
4244 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
4245 default: llvm_unreachable("Unhandled argument type!");
4249 if (GPR_idx
!= Num_GPR_Regs
) {
4250 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
4251 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
4253 if (ObjectVT
== MVT::i1
)
4254 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, ArgVal
);
4259 ArgSize
= PtrByteSize
;
4261 // All int arguments reserve stack space in the Darwin ABI.
4262 ArgOffset
+= PtrByteSize
;
4266 case MVT::i64
: // PPC64
4267 if (GPR_idx
!= Num_GPR_Regs
) {
4268 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4269 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
4271 if (ObjectVT
== MVT::i32
|| ObjectVT
== MVT::i1
)
4272 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4273 // value to MVT::i64 and then truncate to the correct register size.
4274 ArgVal
= extendArgForPPC64(Flags
, ObjectVT
, DAG
, ArgVal
, dl
);
4279 ArgSize
= PtrByteSize
;
4281 // All int arguments reserve stack space in the Darwin ABI.
4287 // Every 4 bytes of argument space consumes one of the GPRs available for
4288 // argument passing.
4289 if (GPR_idx
!= Num_GPR_Regs
) {
4291 if (ObjSize
== 8 && GPR_idx
!= Num_GPR_Regs
&& !isPPC64
)
4294 if (FPR_idx
!= Num_FPR_Regs
) {
4297 if (ObjectVT
== MVT::f32
)
4298 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F4RCRegClass
);
4300 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F8RCRegClass
);
4302 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
4308 // All FP arguments reserve stack space in the Darwin ABI.
4309 ArgOffset
+= isPPC64
? 8 : ObjSize
;
4315 // Note that vector arguments in registers don't reserve stack space,
4316 // except in varargs functions.
4317 if (VR_idx
!= Num_VR_Regs
) {
4318 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
4319 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
4321 while ((ArgOffset
% 16) != 0) {
4322 ArgOffset
+= PtrByteSize
;
4323 if (GPR_idx
!= Num_GPR_Regs
)
4327 GPR_idx
= std::min(GPR_idx
+4, Num_GPR_Regs
); // FIXME correct for ppc64?
4331 if (!isVarArg
&& !isPPC64
) {
4332 // Vectors go after all the nonvectors.
4333 CurArgOffset
= VecArgOffset
;
4336 // Vectors are aligned.
4337 ArgOffset
= ((ArgOffset
+15)/16)*16;
4338 CurArgOffset
= ArgOffset
;
4346 // We need to load the argument to a virtual register if we determined above
4347 // that we ran out of physical registers of the appropriate type.
4349 int FI
= MFI
.CreateFixedObject(ObjSize
,
4350 CurArgOffset
+ (ArgSize
- ObjSize
),
4352 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4353 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, MachinePointerInfo());
4356 InVals
.push_back(ArgVal
);
4359 // Allow for Altivec parameters at the end, if needed.
4360 if (nAltivecParamsAtEnd
) {
4361 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
4362 MinReservedArea
+= 16*nAltivecParamsAtEnd
;
4365 // Area that is at least reserved in the caller of this function.
4366 MinReservedArea
= std::max(MinReservedArea
, LinkageSize
+ 8 * PtrByteSize
);
4368 // Set the size that is at least reserved in caller of this function. Tail
4369 // call optimized functions' reserved stack space needs to be aligned so that
4370 // taking the difference between two stack areas will result in an aligned
4373 EnsureStackAlignment(Subtarget
.getFrameLowering(), MinReservedArea
);
4374 FuncInfo
->setMinReservedArea(MinReservedArea
);
4376 // If the function takes variable number of arguments, make a frame index for
4377 // the start of the first vararg value... for expansion of llvm.va_start.
4379 int Depth
= ArgOffset
;
4381 FuncInfo
->setVarArgsFrameIndex(
4382 MFI
.CreateFixedObject(PtrVT
.getSizeInBits()/8,
4384 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
4386 // If this function is vararg, store any remaining integer argument regs
4387 // to their spots on the stack so that they may be loaded by dereferencing
4388 // the result of va_next.
4389 for (; GPR_idx
!= Num_GPR_Regs
; ++GPR_idx
) {
4393 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
4395 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
4397 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
4399 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
4400 MemOps
.push_back(Store
);
4401 // Increment the address by four for the next argument to store
4402 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, dl
, PtrVT
);
4403 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
4407 if (!MemOps
.empty())
4408 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
4413 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4414 /// adjusted to accommodate the arguments for the tailcall.
4415 static int CalculateTailCallSPDiff(SelectionDAG
& DAG
, bool isTailCall
,
4416 unsigned ParamSize
) {
4418 if (!isTailCall
) return 0;
4420 PPCFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<PPCFunctionInfo
>();
4421 unsigned CallerMinReservedArea
= FI
->getMinReservedArea();
4422 int SPDiff
= (int)CallerMinReservedArea
- (int)ParamSize
;
4423 // Remember only if the new adjustment is bigger.
4424 if (SPDiff
< FI
->getTailCallSPDelta())
4425 FI
->setTailCallSPDelta(SPDiff
);
4430 static bool isFunctionGlobalAddress(SDValue Callee
);
4433 callsShareTOCBase(const Function
*Caller
, SDValue Callee
,
4434 const TargetMachine
&TM
) {
4435 // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4436 // don't have enough information to determine if the caller and calle share
4437 // the same TOC base, so we have to pessimistically assume they don't for
4439 GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
);
4443 const GlobalValue
*GV
= G
->getGlobal();
4444 // The medium and large code models are expected to provide a sufficiently
4445 // large TOC to provide all data addressing needs of a module with a
4446 // single TOC. Since each module will be addressed with a single TOC then we
4447 // only need to check that caller and callee don't cross dso boundaries.
4448 if (CodeModel::Medium
== TM
.getCodeModel() ||
4449 CodeModel::Large
== TM
.getCodeModel())
4450 return TM
.shouldAssumeDSOLocal(*Caller
->getParent(), GV
);
4452 // Otherwise we need to ensure callee and caller are in the same section,
4453 // since the linker may allocate multiple TOCs, and we don't know which
4454 // sections will belong to the same TOC base.
4456 if (!GV
->isStrongDefinitionForLinker())
4459 // Any explicitly-specified sections and section prefixes must also match.
4460 // Also, if we're using -ffunction-sections, then each function is always in
4461 // a different section (the same is true for COMDAT functions).
4462 if (TM
.getFunctionSections() || GV
->hasComdat() || Caller
->hasComdat() ||
4463 GV
->getSection() != Caller
->getSection())
4465 if (const auto *F
= dyn_cast
<Function
>(GV
)) {
4466 if (F
->getSectionPrefix() != Caller
->getSectionPrefix())
4470 // If the callee might be interposed, then we can't assume the ultimate call
4471 // target will be in the same section. Even in cases where we can assume that
4472 // interposition won't happen, in any case where the linker might insert a
4473 // stub to allow for interposition, we must generate code as though
4474 // interposition might occur. To understand why this matters, consider a
4475 // situation where: a -> b -> c where the arrows indicate calls. b and c are
4476 // in the same section, but a is in a different module (i.e. has a different
4477 // TOC base pointer). If the linker allows for interposition between b and c,
4478 // then it will generate a stub for the call edge between b and c which will
4479 // save the TOC pointer into the designated stack slot allocated by b. If we
4480 // return true here, and therefore allow a tail call between b and c, that
4481 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4482 // pointer into the stack slot allocated by a (where the a -> b stub saved
4483 // a's TOC base pointer). If we're not considering a tail call, but rather,
4484 // whether a nop is needed after the call instruction in b, because the linker
4485 // will insert a stub, it might complain about a missing nop if we omit it
4486 // (although many don't complain in this case).
4487 if (!TM
.shouldAssumeDSOLocal(*Caller
->getParent(), GV
))
4494 needStackSlotPassParameters(const PPCSubtarget
&Subtarget
,
4495 const SmallVectorImpl
<ISD::OutputArg
> &Outs
) {
4496 assert(Subtarget
.isSVR4ABI() && Subtarget
.isPPC64());
4498 const unsigned PtrByteSize
= 8;
4499 const unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
4501 static const MCPhysReg GPR
[] = {
4502 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
4503 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
4505 static const MCPhysReg VR
[] = {
4506 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
4507 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
4510 const unsigned NumGPRs
= array_lengthof(GPR
);
4511 const unsigned NumFPRs
= 13;
4512 const unsigned NumVRs
= array_lengthof(VR
);
4513 const unsigned ParamAreaSize
= NumGPRs
* PtrByteSize
;
4515 unsigned NumBytes
= LinkageSize
;
4516 unsigned AvailableFPRs
= NumFPRs
;
4517 unsigned AvailableVRs
= NumVRs
;
4519 for (const ISD::OutputArg
& Param
: Outs
) {
4520 if (Param
.Flags
.isNest()) continue;
4522 if (CalculateStackSlotUsed(Param
.VT
, Param
.ArgVT
, Param
.Flags
,
4523 PtrByteSize
, LinkageSize
, ParamAreaSize
,
4524 NumBytes
, AvailableFPRs
, AvailableVRs
,
4525 Subtarget
.hasQPX()))
4532 hasSameArgumentList(const Function
*CallerFn
, ImmutableCallSite CS
) {
4533 if (CS
.arg_size() != CallerFn
->arg_size())
4536 ImmutableCallSite::arg_iterator CalleeArgIter
= CS
.arg_begin();
4537 ImmutableCallSite::arg_iterator CalleeArgEnd
= CS
.arg_end();
4538 Function::const_arg_iterator CallerArgIter
= CallerFn
->arg_begin();
4540 for (; CalleeArgIter
!= CalleeArgEnd
; ++CalleeArgIter
, ++CallerArgIter
) {
4541 const Value
* CalleeArg
= *CalleeArgIter
;
4542 const Value
* CallerArg
= &(*CallerArgIter
);
4543 if (CalleeArg
== CallerArg
)
4546 // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4547 // tail call @callee([4 x i64] undef, [4 x i64] %b)
4549 // 1st argument of callee is undef and has the same type as caller.
4550 if (CalleeArg
->getType() == CallerArg
->getType() &&
4551 isa
<UndefValue
>(CalleeArg
))
4560 // Returns true if TCO is possible between the callers and callees
4561 // calling conventions.
4563 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC
,
4564 CallingConv::ID CalleeCC
) {
4565 // Tail calls are possible with fastcc and ccc.
4566 auto isTailCallableCC
= [] (CallingConv::ID CC
){
4567 return CC
== CallingConv::C
|| CC
== CallingConv::Fast
;
4569 if (!isTailCallableCC(CallerCC
) || !isTailCallableCC(CalleeCC
))
4572 // We can safely tail call both fastcc and ccc callees from a c calling
4573 // convention caller. If the caller is fastcc, we may have less stack space
4574 // than a non-fastcc caller with the same signature so disable tail-calls in
4576 return CallerCC
== CallingConv::C
|| CallerCC
== CalleeCC
;
4580 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4582 CallingConv::ID CalleeCC
,
4583 ImmutableCallSite CS
,
4585 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4586 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
4587 SelectionDAG
& DAG
) const {
4588 bool TailCallOpt
= getTargetMachine().Options
.GuaranteedTailCallOpt
;
4590 if (DisableSCO
&& !TailCallOpt
) return false;
4592 // Variadic argument functions are not supported.
4593 if (isVarArg
) return false;
4595 auto &Caller
= DAG
.getMachineFunction().getFunction();
4596 // Check that the calling conventions are compatible for tco.
4597 if (!areCallingConvEligibleForTCO_64SVR4(Caller
.getCallingConv(), CalleeCC
))
4600 // Caller contains any byval parameter is not supported.
4601 if (any_of(Ins
, [](const ISD::InputArg
&IA
) { return IA
.Flags
.isByVal(); }))
4604 // Callee contains any byval parameter is not supported, too.
4605 // Note: This is a quick work around, because in some cases, e.g.
4606 // caller's stack size > callee's stack size, we are still able to apply
4607 // sibling call optimization. For example, gcc is able to do SCO for caller1
4608 // in the following example, but not for caller2.
4613 // __attribute__((noinline)) int callee(struct test v, struct test *b) {
4617 // void caller1(struct test a, struct test c, struct test *b) {
4618 // callee(gTest, b); }
4619 // void caller2(struct test *b) { callee(gTest, b); }
4620 if (any_of(Outs
, [](const ISD::OutputArg
& OA
) { return OA
.Flags
.isByVal(); }))
4623 // If callee and caller use different calling conventions, we cannot pass
4624 // parameters on stack since offsets for the parameter area may be different.
4625 if (Caller
.getCallingConv() != CalleeCC
&&
4626 needStackSlotPassParameters(Subtarget
, Outs
))
4629 // No TCO/SCO on indirect call because Caller have to restore its TOC
4630 if (!isFunctionGlobalAddress(Callee
) &&
4631 !isa
<ExternalSymbolSDNode
>(Callee
))
4634 // If the caller and callee potentially have different TOC bases then we
4635 // cannot tail call since we need to restore the TOC pointer after the call.
4636 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4637 if (!callsShareTOCBase(&Caller
, Callee
, getTargetMachine()))
4640 // TCO allows altering callee ABI, so we don't have to check further.
4641 if (CalleeCC
== CallingConv::Fast
&& TailCallOpt
)
4644 if (DisableSCO
) return false;
4646 // If callee use the same argument list that caller is using, then we can
4647 // apply SCO on this case. If it is not, then we need to check if callee needs
4648 // stack for passing arguments.
4649 if (!hasSameArgumentList(&Caller
, CS
) &&
4650 needStackSlotPassParameters(Subtarget
, Outs
)) {
4657 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4658 /// for tail call optimization. Targets which want to do tail call
4659 /// optimization should implement this function.
4661 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
4662 CallingConv::ID CalleeCC
,
4664 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
4665 SelectionDAG
& DAG
) const {
4666 if (!getTargetMachine().Options
.GuaranteedTailCallOpt
)
4669 // Variable argument functions are not supported.
4673 MachineFunction
&MF
= DAG
.getMachineFunction();
4674 CallingConv::ID CallerCC
= MF
.getFunction().getCallingConv();
4675 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
4676 // Functions containing by val parameters are not supported.
4677 for (unsigned i
= 0; i
!= Ins
.size(); i
++) {
4678 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
4679 if (Flags
.isByVal()) return false;
4682 // Non-PIC/GOT tail calls are supported.
4683 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
4686 // At the moment we can only do local tail calls (in same module, hidden
4687 // or protected) if we are generating PIC.
4688 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
4689 return G
->getGlobal()->hasHiddenVisibility()
4690 || G
->getGlobal()->hasProtectedVisibility();
4696 /// isCallCompatibleAddress - Return the immediate to use if the specified
4697 /// 32-bit value is representable in the immediate field of a BxA instruction.
4698 static SDNode
*isBLACompatibleAddress(SDValue Op
, SelectionDAG
&DAG
) {
4699 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
4700 if (!C
) return nullptr;
4702 int Addr
= C
->getZExtValue();
4703 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
4704 SignExtend32
<26>(Addr
) != Addr
)
4705 return nullptr; // Top 6 bits have to be sext of immediate.
4709 (int)C
->getZExtValue() >> 2, SDLoc(Op
),
4710 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()))
4716 struct TailCallArgumentInfo
{
4721 TailCallArgumentInfo() = default;
4724 } // end anonymous namespace
4726 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4727 static void StoreTailCallArgumentsToStackSlot(
4728 SelectionDAG
&DAG
, SDValue Chain
,
4729 const SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArgs
,
4730 SmallVectorImpl
<SDValue
> &MemOpChains
, const SDLoc
&dl
) {
4731 for (unsigned i
= 0, e
= TailCallArgs
.size(); i
!= e
; ++i
) {
4732 SDValue Arg
= TailCallArgs
[i
].Arg
;
4733 SDValue FIN
= TailCallArgs
[i
].FrameIdxOp
;
4734 int FI
= TailCallArgs
[i
].FrameIdx
;
4735 // Store relative to framepointer.
4736 MemOpChains
.push_back(DAG
.getStore(
4737 Chain
, dl
, Arg
, FIN
,
4738 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
)));
4742 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4743 /// the appropriate stack slot for the tail call optimized function call.
4744 static SDValue
EmitTailCallStoreFPAndRetAddr(SelectionDAG
&DAG
, SDValue Chain
,
4745 SDValue OldRetAddr
, SDValue OldFP
,
4746 int SPDiff
, const SDLoc
&dl
) {
4748 // Calculate the new stack slot for the return address.
4749 MachineFunction
&MF
= DAG
.getMachineFunction();
4750 const PPCSubtarget
&Subtarget
= MF
.getSubtarget
<PPCSubtarget
>();
4751 const PPCFrameLowering
*FL
= Subtarget
.getFrameLowering();
4752 bool isPPC64
= Subtarget
.isPPC64();
4753 int SlotSize
= isPPC64
? 8 : 4;
4754 int NewRetAddrLoc
= SPDiff
+ FL
->getReturnSaveOffset();
4755 int NewRetAddr
= MF
.getFrameInfo().CreateFixedObject(SlotSize
,
4756 NewRetAddrLoc
, true);
4757 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
4758 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewRetAddr
, VT
);
4759 Chain
= DAG
.getStore(Chain
, dl
, OldRetAddr
, NewRetAddrFrIdx
,
4760 MachinePointerInfo::getFixedStack(MF
, NewRetAddr
));
4762 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4763 // slot as the FP is never overwritten.
4764 if (Subtarget
.isDarwinABI()) {
4765 int NewFPLoc
= SPDiff
+ FL
->getFramePointerSaveOffset();
4766 int NewFPIdx
= MF
.getFrameInfo().CreateFixedObject(SlotSize
, NewFPLoc
,
4768 SDValue NewFramePtrIdx
= DAG
.getFrameIndex(NewFPIdx
, VT
);
4769 Chain
= DAG
.getStore(Chain
, dl
, OldFP
, NewFramePtrIdx
,
4770 MachinePointerInfo::getFixedStack(
4771 DAG
.getMachineFunction(), NewFPIdx
));
4777 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4778 /// the position of the argument.
4780 CalculateTailCallArgDest(SelectionDAG
&DAG
, MachineFunction
&MF
, bool isPPC64
,
4781 SDValue Arg
, int SPDiff
, unsigned ArgOffset
,
4782 SmallVectorImpl
<TailCallArgumentInfo
>& TailCallArguments
) {
4783 int Offset
= ArgOffset
+ SPDiff
;
4784 uint32_t OpSize
= (Arg
.getValueSizeInBits() + 7) / 8;
4785 int FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
4786 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
4787 SDValue FIN
= DAG
.getFrameIndex(FI
, VT
);
4788 TailCallArgumentInfo Info
;
4790 Info
.FrameIdxOp
= FIN
;
4792 TailCallArguments
.push_back(Info
);
4795 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4796 /// stack slot. Returns the chain as result and the loaded frame pointers in
4797 /// LROpOut/FPOpout. Used when tail calling.
4798 SDValue
PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4799 SelectionDAG
&DAG
, int SPDiff
, SDValue Chain
, SDValue
&LROpOut
,
4800 SDValue
&FPOpOut
, const SDLoc
&dl
) const {
4802 // Load the LR and FP stack slot for later adjusting.
4803 EVT VT
= Subtarget
.isPPC64() ? MVT::i64
: MVT::i32
;
4804 LROpOut
= getReturnAddrFrameIndex(DAG
);
4805 LROpOut
= DAG
.getLoad(VT
, dl
, Chain
, LROpOut
, MachinePointerInfo());
4806 Chain
= SDValue(LROpOut
.getNode(), 1);
4808 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4809 // slot as the FP is never overwritten.
4810 if (Subtarget
.isDarwinABI()) {
4811 FPOpOut
= getFramePointerFrameIndex(DAG
);
4812 FPOpOut
= DAG
.getLoad(VT
, dl
, Chain
, FPOpOut
, MachinePointerInfo());
4813 Chain
= SDValue(FPOpOut
.getNode(), 1);
4819 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4820 /// by "Src" to address "Dst" of size "Size". Alignment information is
4821 /// specified by the specific parameter attribute. The copy will be passed as
4822 /// a byval function parameter.
4823 /// Sometimes what we are copying is the end of a larger object, the part that
4824 /// does not fit in registers.
4825 static SDValue
CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
,
4826 SDValue Chain
, ISD::ArgFlagsTy Flags
,
4827 SelectionDAG
&DAG
, const SDLoc
&dl
) {
4828 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), dl
, MVT::i32
);
4829 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
4830 false, false, false, MachinePointerInfo(),
4831 MachinePointerInfo());
4834 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4836 static void LowerMemOpCallTo(
4837 SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
, SDValue Arg
,
4838 SDValue PtrOff
, int SPDiff
, unsigned ArgOffset
, bool isPPC64
,
4839 bool isTailCall
, bool isVector
, SmallVectorImpl
<SDValue
> &MemOpChains
,
4840 SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArguments
, const SDLoc
&dl
) {
4841 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
4846 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
4848 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
4849 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
4850 DAG
.getConstant(ArgOffset
, dl
, PtrVT
));
4852 MemOpChains
.push_back(
4853 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo()));
4854 // Calculate and remember argument location.
4855 } else CalculateTailCallArgDest(DAG
, MF
, isPPC64
, Arg
, SPDiff
, ArgOffset
,
4860 PrepareTailCall(SelectionDAG
&DAG
, SDValue
&InFlag
, SDValue
&Chain
,
4861 const SDLoc
&dl
, int SPDiff
, unsigned NumBytes
, SDValue LROp
,
4863 SmallVectorImpl
<TailCallArgumentInfo
> &TailCallArguments
) {
4864 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4865 // might overwrite each other in case of tail call optimization.
4866 SmallVector
<SDValue
, 8> MemOpChains2
;
4867 // Do not flag preceding copytoreg stuff together with the following stuff.
4869 StoreTailCallArgumentsToStackSlot(DAG
, Chain
, TailCallArguments
,
4871 if (!MemOpChains2
.empty())
4872 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains2
);
4874 // Store the return address to the appropriate stack slot.
4875 Chain
= EmitTailCallStoreFPAndRetAddr(DAG
, Chain
, LROp
, FPOp
, SPDiff
, dl
);
4877 // Emit callseq_end just before tailcall node.
4878 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
4879 DAG
.getIntPtrConstant(0, dl
, true), InFlag
, dl
);
4880 InFlag
= Chain
.getValue(1);
4883 // Is this global address that of a function that can be called by name? (as
4884 // opposed to something that must hold a descriptor for an indirect call).
4885 static bool isFunctionGlobalAddress(SDValue Callee
) {
4886 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
4887 if (Callee
.getOpcode() == ISD::GlobalTLSAddress
||
4888 Callee
.getOpcode() == ISD::TargetGlobalTLSAddress
)
4891 return G
->getGlobal()->getValueType()->isFunctionTy();
4898 PrepareCall(SelectionDAG
&DAG
, SDValue
&Callee
, SDValue
&InFlag
, SDValue
&Chain
,
4899 SDValue CallSeqStart
, const SDLoc
&dl
, int SPDiff
, bool isTailCall
,
4900 bool isPatchPoint
, bool hasNest
,
4901 SmallVectorImpl
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4902 SmallVectorImpl
<SDValue
> &Ops
, std::vector
<EVT
> &NodeTys
,
4903 ImmutableCallSite CS
, const PPCSubtarget
&Subtarget
) {
4904 bool isPPC64
= Subtarget
.isPPC64();
4905 bool isSVR4ABI
= Subtarget
.isSVR4ABI();
4906 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
4907 bool isAIXABI
= Subtarget
.isAIXABI();
4909 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
4910 NodeTys
.push_back(MVT::Other
); // Returns a chain
4911 NodeTys
.push_back(MVT::Glue
); // Returns a flag for retval copy to use.
4913 unsigned CallOpc
= PPCISD::CALL
;
4915 bool needIndirectCall
= true;
4916 if (!isSVR4ABI
|| !isPPC64
)
4917 if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
)) {
4918 // If this is an absolute destination address, use the munged value.
4919 Callee
= SDValue(Dest
, 0);
4920 needIndirectCall
= false;
4923 // PC-relative references to external symbols should go through $stub, unless
4924 // we're building with the leopard linker or later, which automatically
4925 // synthesizes these stubs.
4926 const TargetMachine
&TM
= DAG
.getTarget();
4927 const Module
*Mod
= DAG
.getMachineFunction().getFunction().getParent();
4928 const GlobalValue
*GV
= nullptr;
4929 if (auto *G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
4930 GV
= G
->getGlobal();
4931 bool Local
= TM
.shouldAssumeDSOLocal(*Mod
, GV
);
4932 bool UsePlt
= !Local
&& Subtarget
.isTargetELF() && !isPPC64
;
4934 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4935 // every direct call is) turn it into a TargetGlobalAddress /
4936 // TargetExternalSymbol node so that legalize doesn't hack it.
4937 if (isFunctionGlobalAddress(Callee
)) {
4938 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Callee
);
4940 // A call to a TLS address is actually an indirect call to a
4941 // thread-specific pointer.
4942 unsigned OpFlags
= 0;
4944 OpFlags
= PPCII::MO_PLT
;
4946 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
,
4947 Callee
.getValueType(), 0, OpFlags
);
4948 needIndirectCall
= false;
4951 if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
4952 unsigned char OpFlags
= 0;
4955 OpFlags
= PPCII::MO_PLT
;
4957 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), Callee
.getValueType(),
4959 needIndirectCall
= false;
4963 // We'll form an invalid direct call when lowering a patchpoint; the full
4964 // sequence for an indirect call is complicated, and many of the
4965 // instructions introduced might have side effects (and, thus, can't be
4966 // removed later). The call itself will be removed as soon as the
4967 // argument/return lowering is complete, so the fact that it has the wrong
4968 // kind of operands should not really matter.
4969 needIndirectCall
= false;
4972 if (needIndirectCall
) {
4973 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
4974 // to do the call, we can't use PPCISD::CALL.
4975 SDValue MTCTROps
[] = {Chain
, Callee
, InFlag
};
4977 if (isSVR4ABI
&& isPPC64
&& !isELFv2ABI
) {
4978 // Function pointers in the 64-bit SVR4 ABI do not point to the function
4979 // entry point, but to the function descriptor (the function entry point
4980 // address is part of the function descriptor though).
4981 // The function descriptor is a three doubleword structure with the
4982 // following fields: function entry point, TOC base address and
4983 // environment pointer.
4984 // Thus for a call through a function pointer, the following actions need
4986 // 1. Save the TOC of the caller in the TOC save area of its stack
4987 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4988 // 2. Load the address of the function entry point from the function
4990 // 3. Load the TOC of the callee from the function descriptor into r2.
4991 // 4. Load the environment pointer from the function descriptor into
4993 // 5. Branch to the function entry point address.
4994 // 6. On return of the callee, the TOC of the caller needs to be
4995 // restored (this is done in FinishCall()).
4997 // The loads are scheduled at the beginning of the call sequence, and the
4998 // register copies are flagged together to ensure that no other
4999 // operations can be scheduled in between. E.g. without flagging the
5000 // copies together, a TOC access in the caller could be scheduled between
5001 // the assignment of the callee TOC and the branch to the callee, which
5002 // results in the TOC access going through the TOC of the callee instead
5003 // of going through the TOC of the caller, which leads to incorrect code.
5005 // Load the address of the function entry point from the function
5007 SDValue LDChain
= CallSeqStart
.getValue(CallSeqStart
->getNumValues()-1);
5008 if (LDChain
.getValueType() == MVT::Glue
)
5009 LDChain
= CallSeqStart
.getValue(CallSeqStart
->getNumValues()-2);
5011 auto MMOFlags
= Subtarget
.hasInvariantFunctionDescriptors()
5012 ? (MachineMemOperand::MODereferenceable
|
5013 MachineMemOperand::MOInvariant
)
5014 : MachineMemOperand::MONone
;
5016 MachinePointerInfo
MPI(CS
? CS
.getCalledValue() : nullptr);
5017 SDValue LoadFuncPtr
= DAG
.getLoad(MVT::i64
, dl
, LDChain
, Callee
, MPI
,
5018 /* Alignment = */ 8, MMOFlags
);
5020 // Load environment pointer into r11.
5021 SDValue PtrOff
= DAG
.getIntPtrConstant(16, dl
);
5022 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Callee
, PtrOff
);
5023 SDValue LoadEnvPtr
=
5024 DAG
.getLoad(MVT::i64
, dl
, LDChain
, AddPtr
, MPI
.getWithOffset(16),
5025 /* Alignment = */ 8, MMOFlags
);
5027 SDValue TOCOff
= DAG
.getIntPtrConstant(8, dl
);
5028 SDValue AddTOC
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Callee
, TOCOff
);
5030 DAG
.getLoad(MVT::i64
, dl
, LDChain
, AddTOC
, MPI
.getWithOffset(8),
5031 /* Alignment = */ 8, MMOFlags
);
5033 setUsesTOCBasePtr(DAG
);
5034 SDValue TOCVal
= DAG
.getCopyToReg(Chain
, dl
, PPC::X2
, TOCPtr
,
5036 Chain
= TOCVal
.getValue(0);
5037 InFlag
= TOCVal
.getValue(1);
5039 // If the function call has an explicit 'nest' parameter, it takes the
5040 // place of the environment pointer.
5042 SDValue EnvVal
= DAG
.getCopyToReg(Chain
, dl
, PPC::X11
, LoadEnvPtr
,
5045 Chain
= EnvVal
.getValue(0);
5046 InFlag
= EnvVal
.getValue(1);
5049 MTCTROps
[0] = Chain
;
5050 MTCTROps
[1] = LoadFuncPtr
;
5051 MTCTROps
[2] = InFlag
;
5054 Chain
= DAG
.getNode(PPCISD::MTCTR
, dl
, NodeTys
,
5055 makeArrayRef(MTCTROps
, InFlag
.getNode() ? 3 : 2));
5056 InFlag
= Chain
.getValue(1);
5059 NodeTys
.push_back(MVT::Other
);
5060 NodeTys
.push_back(MVT::Glue
);
5061 Ops
.push_back(Chain
);
5062 CallOpc
= PPCISD::BCTRL
;
5063 Callee
.setNode(nullptr);
5064 // Add use of X11 (holding environment pointer)
5065 if (isSVR4ABI
&& isPPC64
&& !isELFv2ABI
&& !hasNest
)
5066 Ops
.push_back(DAG
.getRegister(PPC::X11
, PtrVT
));
5067 // Add CTR register as callee so a bctr can be emitted later.
5069 Ops
.push_back(DAG
.getRegister(isPPC64
? PPC::CTR8
: PPC::CTR
, PtrVT
));
5072 // If this is a direct call, pass the chain and the callee.
5073 if (Callee
.getNode()) {
5074 Ops
.push_back(Chain
);
5075 Ops
.push_back(Callee
);
5077 // If this is a tail call add stack pointer delta.
5079 Ops
.push_back(DAG
.getConstant(SPDiff
, dl
, MVT::i32
));
5081 // Add argument registers to the end of the list so that they are known live
5083 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
5084 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
5085 RegsToPass
[i
].second
.getValueType()));
5087 // All calls, in the AIX ABI and 64-bit ELF ABIs, need the TOC register
5088 // live into the call.
5089 // We do need to reserve R2/X2 to appease the verifier for the PATCHPOINT.
5090 if ((isSVR4ABI
&& isPPC64
) || isAIXABI
) {
5091 setUsesTOCBasePtr(DAG
);
5093 // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5094 // no way to mark dependencies as implicit here.
5095 // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5097 Ops
.push_back(DAG
.getRegister(isPPC64
? PPC::X2
5104 SDValue
PPCTargetLowering::LowerCallResult(
5105 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
5106 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5107 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
5108 SmallVector
<CCValAssign
, 16> RVLocs
;
5109 CCState
CCRetInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
5112 CCRetInfo
.AnalyzeCallResult(
5113 Ins
, (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
5117 // Copy all of the result registers out of their specified physreg.
5118 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
5119 CCValAssign
&VA
= RVLocs
[i
];
5120 assert(VA
.isRegLoc() && "Can only return in registers!");
5124 if (Subtarget
.hasSPE() && VA
.getLocVT() == MVT::f64
) {
5125 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
5127 Chain
= Lo
.getValue(1);
5128 InFlag
= Lo
.getValue(2);
5129 VA
= RVLocs
[++i
]; // skip ahead to next loc
5130 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
5132 Chain
= Hi
.getValue(1);
5133 InFlag
= Hi
.getValue(2);
5134 if (!Subtarget
.isLittleEndian())
5136 Val
= DAG
.getNode(PPCISD::BUILD_SPE64
, dl
, MVT::f64
, Lo
, Hi
);
5138 Val
= DAG
.getCopyFromReg(Chain
, dl
,
5139 VA
.getLocReg(), VA
.getLocVT(), InFlag
);
5140 Chain
= Val
.getValue(1);
5141 InFlag
= Val
.getValue(2);
5144 switch (VA
.getLocInfo()) {
5145 default: llvm_unreachable("Unknown loc info!");
5146 case CCValAssign::Full
: break;
5147 case CCValAssign::AExt
:
5148 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5150 case CCValAssign::ZExt
:
5151 Val
= DAG
.getNode(ISD::AssertZext
, dl
, VA
.getLocVT(), Val
,
5152 DAG
.getValueType(VA
.getValVT()));
5153 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5155 case CCValAssign::SExt
:
5156 Val
= DAG
.getNode(ISD::AssertSext
, dl
, VA
.getLocVT(), Val
,
5157 DAG
.getValueType(VA
.getValVT()));
5158 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
, VA
.getValVT(), Val
);
5162 InVals
.push_back(Val
);
5168 SDValue
PPCTargetLowering::FinishCall(
5169 CallingConv::ID CallConv
, const SDLoc
&dl
, bool isTailCall
, bool isVarArg
,
5170 bool isPatchPoint
, bool hasNest
, SelectionDAG
&DAG
,
5171 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
, SDValue InFlag
,
5172 SDValue Chain
, SDValue CallSeqStart
, SDValue
&Callee
, int SPDiff
,
5173 unsigned NumBytes
, const SmallVectorImpl
<ISD::InputArg
> &Ins
,
5174 SmallVectorImpl
<SDValue
> &InVals
, ImmutableCallSite CS
) const {
5175 std::vector
<EVT
> NodeTys
;
5176 SmallVector
<SDValue
, 8> Ops
;
5177 unsigned CallOpc
= PrepareCall(DAG
, Callee
, InFlag
, Chain
, CallSeqStart
, dl
,
5178 SPDiff
, isTailCall
, isPatchPoint
, hasNest
,
5179 RegsToPass
, Ops
, NodeTys
, CS
, Subtarget
);
5181 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5182 if (isVarArg
&& Subtarget
.isSVR4ABI() && !Subtarget
.isPPC64())
5183 Ops
.push_back(DAG
.getRegister(PPC::CR1EQ
, MVT::i32
));
5185 // When performing tail call optimization the callee pops its arguments off
5186 // the stack. Account for this here so these bytes can be pushed back on in
5187 // PPCFrameLowering::eliminateCallFramePseudoInstr.
5188 int BytesCalleePops
=
5189 (CallConv
== CallingConv::Fast
&&
5190 getTargetMachine().Options
.GuaranteedTailCallOpt
) ? NumBytes
: 0;
5192 // Add a register mask operand representing the call-preserved registers.
5193 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
5194 const uint32_t *Mask
=
5195 TRI
->getCallPreservedMask(DAG
.getMachineFunction(), CallConv
);
5196 assert(Mask
&& "Missing call preserved mask for calling convention");
5197 Ops
.push_back(DAG
.getRegisterMask(Mask
));
5199 if (InFlag
.getNode())
5200 Ops
.push_back(InFlag
);
5204 assert(((Callee
.getOpcode() == ISD::Register
&&
5205 cast
<RegisterSDNode
>(Callee
)->getReg() == PPC::CTR
) ||
5206 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
5207 Callee
.getOpcode() == ISD::TargetGlobalAddress
||
5208 isa
<ConstantSDNode
>(Callee
)) &&
5209 "Expecting an global address, external symbol, absolute value or register");
5211 DAG
.getMachineFunction().getFrameInfo().setHasTailCall();
5212 return DAG
.getNode(PPCISD::TC_RETURN
, dl
, MVT::Other
, Ops
);
5215 // Add a NOP immediately after the branch instruction when using the 64-bit
5216 // SVR4 or the AIX ABI.
5217 // At link time, if caller and callee are in a different module and
5218 // thus have a different TOC, the call will be replaced with a call to a stub
5219 // function which saves the current TOC, loads the TOC of the callee and
5220 // branches to the callee. The NOP will be replaced with a load instruction
5221 // which restores the TOC of the caller from the TOC save slot of the current
5222 // stack frame. If caller and callee belong to the same module (and have the
5223 // same TOC), the NOP will remain unchanged, or become some other NOP.
5225 MachineFunction
&MF
= DAG
.getMachineFunction();
5226 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
5227 if (!isTailCall
&& !isPatchPoint
&&
5228 ((Subtarget
.isSVR4ABI() && Subtarget
.isPPC64()) ||
5229 Subtarget
.isAIXABI())) {
5230 if (CallOpc
== PPCISD::BCTRL
) {
5231 if (Subtarget
.isAIXABI())
5232 report_fatal_error("Indirect call on AIX is not implemented.");
5234 // This is a call through a function pointer.
5235 // Restore the caller TOC from the save area into R2.
5236 // See PrepareCall() for more information about calls through function
5237 // pointers in the 64-bit SVR4 ABI.
5238 // We are using a target-specific load with r2 hard coded, because the
5239 // result of a target-independent load would never go directly into r2,
5240 // since r2 is a reserved register (which prevents the register allocator
5241 // from allocating it), resulting in an additional register being
5242 // allocated and an unnecessary move instruction being generated.
5243 CallOpc
= PPCISD::BCTRL_LOAD_TOC
;
5245 SDValue StackPtr
= DAG
.getRegister(PPC::X1
, PtrVT
);
5246 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
5247 SDValue TOCOff
= DAG
.getIntPtrConstant(TOCSaveOffset
, dl
);
5248 SDValue AddTOC
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, StackPtr
, TOCOff
);
5250 // The address needs to go after the chain input but before the flag (or
5251 // any other variadic arguments).
5252 Ops
.insert(std::next(Ops
.begin()), AddTOC
);
5253 } else if (CallOpc
== PPCISD::CALL
&&
5254 !callsShareTOCBase(&MF
.getFunction(), Callee
, DAG
.getTarget())) {
5255 // Otherwise insert NOP for non-local calls.
5256 CallOpc
= PPCISD::CALL_NOP
;
5260 if (Subtarget
.isAIXABI() && isFunctionGlobalAddress(Callee
)) {
5261 // On AIX, direct function calls reference the symbol for the function's
5262 // entry point, which is named by inserting a "." before the function's
5264 GlobalAddressSDNode
*G
= cast
<GlobalAddressSDNode
>(Callee
);
5265 auto &Context
= DAG
.getMachineFunction().getMMI().getContext();
5266 MCSymbol
*S
= Context
.getOrCreateSymbol(Twine(".") +
5267 Twine(G
->getGlobal()->getName()));
5268 Callee
= DAG
.getMCSymbol(S
, PtrVT
);
5269 // Replace the GlobalAddressSDNode Callee with the MCSymbolSDNode.
5273 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, Ops
);
5274 InFlag
= Chain
.getValue(1);
5276 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, dl
, true),
5277 DAG
.getIntPtrConstant(BytesCalleePops
, dl
, true),
5280 InFlag
= Chain
.getValue(1);
5282 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
5283 Ins
, dl
, DAG
, InVals
);
5287 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
5288 SmallVectorImpl
<SDValue
> &InVals
) const {
5289 SelectionDAG
&DAG
= CLI
.DAG
;
5291 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
5292 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
5293 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
5294 SDValue Chain
= CLI
.Chain
;
5295 SDValue Callee
= CLI
.Callee
;
5296 bool &isTailCall
= CLI
.IsTailCall
;
5297 CallingConv::ID CallConv
= CLI
.CallConv
;
5298 bool isVarArg
= CLI
.IsVarArg
;
5299 bool isPatchPoint
= CLI
.IsPatchPoint
;
5300 ImmutableCallSite CS
= CLI
.CS
;
5303 if (Subtarget
.useLongCalls() && !(CS
&& CS
.isMustTailCall()))
5305 else if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64())
5307 IsEligibleForTailCallOptimization_64SVR4(Callee
, CallConv
, CS
,
5308 isVarArg
, Outs
, Ins
, DAG
);
5310 isTailCall
= IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
,
5314 if (!getTargetMachine().Options
.GuaranteedTailCallOpt
)
5317 assert(isa
<GlobalAddressSDNode
>(Callee
) &&
5318 "Callee should be an llvm::Function object.");
5320 const GlobalValue
*GV
=
5321 cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
5322 const unsigned Width
=
5323 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5324 dbgs() << "TCO caller: "
5325 << left_justify(DAG
.getMachineFunction().getName(), Width
)
5326 << ", callee linkage: " << GV
->getVisibility() << ", "
5327 << GV
->getLinkage() << "\n");
5331 if (!isTailCall
&& CS
&& CS
.isMustTailCall())
5332 report_fatal_error("failed to perform tail call elimination on a call "
5333 "site marked musttail");
5335 // When long calls (i.e. indirect calls) are always used, calls are always
5336 // made via function pointer. If we have a function name, first translate it
5338 if (Subtarget
.useLongCalls() && isa
<GlobalAddressSDNode
>(Callee
) &&
5340 Callee
= LowerGlobalAddress(Callee
, DAG
);
5342 if (Subtarget
.isSVR4ABI() && Subtarget
.isPPC64())
5343 return LowerCall_64SVR4(Chain
, Callee
, CallConv
, isVarArg
,
5344 isTailCall
, isPatchPoint
, Outs
, OutVals
, Ins
,
5345 dl
, DAG
, InVals
, CS
);
5347 if (Subtarget
.isSVR4ABI())
5348 return LowerCall_32SVR4(Chain
, Callee
, CallConv
, isVarArg
,
5349 isTailCall
, isPatchPoint
, Outs
, OutVals
, Ins
,
5350 dl
, DAG
, InVals
, CS
);
5352 if (Subtarget
.isAIXABI())
5353 return LowerCall_AIX(Chain
, Callee
, CallConv
, isVarArg
,
5354 isTailCall
, isPatchPoint
, Outs
, OutVals
, Ins
,
5355 dl
, DAG
, InVals
, CS
);
5357 return LowerCall_Darwin(Chain
, Callee
, CallConv
, isVarArg
,
5358 isTailCall
, isPatchPoint
, Outs
, OutVals
, Ins
,
5359 dl
, DAG
, InVals
, CS
);
5362 SDValue
PPCTargetLowering::LowerCall_32SVR4(
5363 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
5364 bool isTailCall
, bool isPatchPoint
,
5365 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
5366 const SmallVectorImpl
<SDValue
> &OutVals
,
5367 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5368 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
5369 ImmutableCallSite CS
) const {
5370 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5371 // of the 32-bit SVR4 ABI stack frame layout.
5373 assert((CallConv
== CallingConv::C
||
5374 CallConv
== CallingConv::Cold
||
5375 CallConv
== CallingConv::Fast
) && "Unknown calling convention!");
5377 unsigned PtrByteSize
= 4;
5379 MachineFunction
&MF
= DAG
.getMachineFunction();
5381 // Mark this function as potentially containing a function that contains a
5382 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5383 // and restoring the callers stack pointer in this functions epilog. This is
5384 // done because by tail calling the called function might overwrite the value
5385 // in this function's (MF) stack pointer stack slot 0(SP).
5386 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
5387 CallConv
== CallingConv::Fast
)
5388 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
5390 // Count how many bytes are to be pushed on the stack, including the linkage
5391 // area, parameter list area and the part of the local variable space which
5392 // contains copies of aggregates which are passed by value.
5394 // Assign locations to all of the outgoing arguments.
5395 SmallVector
<CCValAssign
, 16> ArgLocs
;
5396 PPCCCState
CCInfo(CallConv
, isVarArg
, MF
, ArgLocs
, *DAG
.getContext());
5398 // Reserve space for the linkage area on the stack.
5399 CCInfo
.AllocateStack(Subtarget
.getFrameLowering()->getLinkageSize(),
5402 CCInfo
.PreAnalyzeCallOperands(Outs
);
5405 // Handle fixed and variable vector arguments differently.
5406 // Fixed vector arguments go into registers as long as registers are
5407 // available. Variable vector arguments always go into memory.
5408 unsigned NumArgs
= Outs
.size();
5410 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
5411 MVT ArgVT
= Outs
[i
].VT
;
5412 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
5415 if (Outs
[i
].IsFixed
) {
5416 Result
= CC_PPC32_SVR4(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
,
5419 Result
= CC_PPC32_SVR4_VarArg(i
, ArgVT
, ArgVT
, CCValAssign::Full
,
5425 errs() << "Call operand #" << i
<< " has unhandled type "
5426 << EVT(ArgVT
).getEVTString() << "\n";
5428 llvm_unreachable(nullptr);
5432 // All arguments are treated the same.
5433 CCInfo
.AnalyzeCallOperands(Outs
, CC_PPC32_SVR4
);
5435 CCInfo
.clearWasPPCF128();
5437 // Assign locations to all of the outgoing aggregate by value arguments.
5438 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
5439 CCState
CCByValInfo(CallConv
, isVarArg
, MF
, ByValArgLocs
, *DAG
.getContext());
5441 // Reserve stack space for the allocations in CCInfo.
5442 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
5444 CCByValInfo
.AnalyzeCallOperands(Outs
, CC_PPC32_SVR4_ByVal
);
5446 // Size of the linkage area, parameter list area and the part of the local
5447 // space variable where copies of aggregates which are passed by value are
5449 unsigned NumBytes
= CCByValInfo
.getNextStackOffset();
5451 // Calculate by how many bytes the stack has to be adjusted in case of tail
5452 // call optimization.
5453 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
5455 // Adjust the stack pointer for the new arguments...
5456 // These operations are automatically eliminated by the prolog/epilog pass
5457 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
5458 SDValue CallSeqStart
= Chain
;
5460 // Load the return address and frame pointer so it can be moved somewhere else
5463 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, dl
);
5465 // Set up a copy of the stack pointer for use loading and storing any
5466 // arguments that may not fit in the registers available for argument
5468 SDValue StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
5470 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
5471 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
5472 SmallVector
<SDValue
, 8> MemOpChains
;
5474 bool seenFloatArg
= false;
5475 // Walk the register/memloc assignments, inserting copies/loads.
5476 // i - Tracks the index into the list of registers allocated for the call
5477 // RealArgIdx - Tracks the index into the list of actual function arguments
5478 // j - Tracks the index into the list of byval arguments
5479 for (unsigned i
= 0, RealArgIdx
= 0, j
= 0, e
= ArgLocs
.size();
5481 ++i
, ++RealArgIdx
) {
5482 CCValAssign
&VA
= ArgLocs
[i
];
5483 SDValue Arg
= OutVals
[RealArgIdx
];
5484 ISD::ArgFlagsTy Flags
= Outs
[RealArgIdx
].Flags
;
5486 if (Flags
.isByVal()) {
5487 // Argument is an aggregate which is passed by value, thus we need to
5488 // create a copy of it in the local variable space of the current stack
5489 // frame (which is the stack frame of the caller) and pass the address of
5490 // this copy to the callee.
5491 assert((j
< ByValArgLocs
.size()) && "Index out of bounds!");
5492 CCValAssign
&ByValVA
= ByValArgLocs
[j
++];
5493 assert((VA
.getValNo() == ByValVA
.getValNo()) && "ValNo mismatch!");
5495 // Memory reserved in the local variable space of the callers stack frame.
5496 unsigned LocMemOffset
= ByValVA
.getLocMemOffset();
5498 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
5499 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(MF
.getDataLayout()),
5502 // Create a copy of the argument in the local area of the current
5504 SDValue MemcpyCall
=
5505 CreateCopyOfByValArgument(Arg
, PtrOff
,
5506 CallSeqStart
.getNode()->getOperand(0),
5509 // This must go outside the CALLSEQ_START..END.
5510 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
, NumBytes
, 0,
5512 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
5513 NewCallSeqStart
.getNode());
5514 Chain
= CallSeqStart
= NewCallSeqStart
;
5516 // Pass the address of the aggregate copy on the stack either in a
5517 // physical register or in the parameter list area of the current stack
5518 // frame to the callee.
5522 // When useCRBits() is true, there can be i1 arguments.
5523 // It is because getRegisterType(MVT::i1) => MVT::i1,
5524 // and for other integer types getRegisterType() => MVT::i32.
5525 // Extend i1 and ensure callee will get i32.
5526 if (Arg
.getValueType() == MVT::i1
)
5527 Arg
= DAG
.getNode(Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
5530 if (VA
.isRegLoc()) {
5531 seenFloatArg
|= VA
.getLocVT().isFloatingPoint();
5532 // Put argument in a physical register.
5533 if (Subtarget
.hasSPE() && Arg
.getValueType() == MVT::f64
) {
5534 bool IsLE
= Subtarget
.isLittleEndian();
5535 SDValue SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
5536 DAG
.getIntPtrConstant(IsLE
? 0 : 1, dl
));
5537 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), SVal
.getValue(0)));
5538 SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
5539 DAG
.getIntPtrConstant(IsLE
? 1 : 0, dl
));
5540 RegsToPass
.push_back(std::make_pair(ArgLocs
[++i
].getLocReg(),
5543 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
5545 // Put argument in the parameter list area of the current stack frame.
5546 assert(VA
.isMemLoc());
5547 unsigned LocMemOffset
= VA
.getLocMemOffset();
5550 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
, dl
);
5551 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(MF
.getDataLayout()),
5554 MemOpChains
.push_back(
5555 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo()));
5557 // Calculate and remember argument location.
5558 CalculateTailCallArgDest(DAG
, MF
, false, Arg
, SPDiff
, LocMemOffset
,
5564 if (!MemOpChains
.empty())
5565 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
5567 // Build a sequence of copy-to-reg nodes chained together with token chain
5568 // and flag operands which copy the outgoing args into the appropriate regs.
5570 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
5571 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
5572 RegsToPass
[i
].second
, InFlag
);
5573 InFlag
= Chain
.getValue(1);
5576 // Set CR bit 6 to true if this is a vararg call with floating args passed in
5579 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
5580 SDValue Ops
[] = { Chain
, InFlag
};
5582 Chain
= DAG
.getNode(seenFloatArg
? PPCISD::CR6SET
: PPCISD::CR6UNSET
,
5583 dl
, VTs
, makeArrayRef(Ops
, InFlag
.getNode() ? 2 : 1));
5585 InFlag
= Chain
.getValue(1);
5589 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, SPDiff
, NumBytes
, LROp
, FPOp
,
5592 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, isPatchPoint
,
5593 /* unused except on PPC64 ELFv1 */ false, DAG
,
5594 RegsToPass
, InFlag
, Chain
, CallSeqStart
, Callee
, SPDiff
,
5595 NumBytes
, Ins
, InVals
, CS
);
5598 // Copy an argument into memory, being careful to do this outside the
5599 // call sequence for the call to which the argument belongs.
5600 SDValue
PPCTargetLowering::createMemcpyOutsideCallSeq(
5601 SDValue Arg
, SDValue PtrOff
, SDValue CallSeqStart
, ISD::ArgFlagsTy Flags
,
5602 SelectionDAG
&DAG
, const SDLoc
&dl
) const {
5603 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, PtrOff
,
5604 CallSeqStart
.getNode()->getOperand(0),
5606 // The MEMCPY must go outside the CALLSEQ_START..END.
5607 int64_t FrameSize
= CallSeqStart
.getConstantOperandVal(1);
5608 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
, FrameSize
, 0,
5610 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
5611 NewCallSeqStart
.getNode());
5612 return NewCallSeqStart
;
5615 SDValue
PPCTargetLowering::LowerCall_64SVR4(
5616 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
5617 bool isTailCall
, bool isPatchPoint
,
5618 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
5619 const SmallVectorImpl
<SDValue
> &OutVals
,
5620 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
5621 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
5622 ImmutableCallSite CS
) const {
5623 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
5624 bool isLittleEndian
= Subtarget
.isLittleEndian();
5625 unsigned NumOps
= Outs
.size();
5626 bool hasNest
= false;
5627 bool IsSibCall
= false;
5629 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
5630 unsigned PtrByteSize
= 8;
5632 MachineFunction
&MF
= DAG
.getMachineFunction();
5634 if (isTailCall
&& !getTargetMachine().Options
.GuaranteedTailCallOpt
)
5637 // Mark this function as potentially containing a function that contains a
5638 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5639 // and restoring the callers stack pointer in this functions epilog. This is
5640 // done because by tail calling the called function might overwrite the value
5641 // in this function's (MF) stack pointer stack slot 0(SP).
5642 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
5643 CallConv
== CallingConv::Fast
)
5644 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
5646 assert(!(CallConv
== CallingConv::Fast
&& isVarArg
) &&
5647 "fastcc not supported on varargs functions");
5649 // Count how many bytes are to be pushed on the stack, including the linkage
5650 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
5651 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5652 // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5653 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
5654 unsigned NumBytes
= LinkageSize
;
5655 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
5656 unsigned &QFPR_idx
= FPR_idx
;
5658 static const MCPhysReg GPR
[] = {
5659 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
5660 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
5662 static const MCPhysReg VR
[] = {
5663 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
5664 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
5667 const unsigned NumGPRs
= array_lengthof(GPR
);
5668 const unsigned NumFPRs
= useSoftFloat() ? 0 : 13;
5669 const unsigned NumVRs
= array_lengthof(VR
);
5670 const unsigned NumQFPRs
= NumFPRs
;
5672 // On ELFv2, we can avoid allocating the parameter area if all the arguments
5673 // can be passed to the callee in registers.
5674 // For the fast calling convention, there is another check below.
5675 // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5676 bool HasParameterArea
= !isELFv2ABI
|| isVarArg
|| CallConv
== CallingConv::Fast
;
5677 if (!HasParameterArea
) {
5678 unsigned ParamAreaSize
= NumGPRs
* PtrByteSize
;
5679 unsigned AvailableFPRs
= NumFPRs
;
5680 unsigned AvailableVRs
= NumVRs
;
5681 unsigned NumBytesTmp
= NumBytes
;
5682 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5683 if (Outs
[i
].Flags
.isNest()) continue;
5684 if (CalculateStackSlotUsed(Outs
[i
].VT
, Outs
[i
].ArgVT
, Outs
[i
].Flags
,
5685 PtrByteSize
, LinkageSize
, ParamAreaSize
,
5686 NumBytesTmp
, AvailableFPRs
, AvailableVRs
,
5687 Subtarget
.hasQPX()))
5688 HasParameterArea
= true;
5692 // When using the fast calling convention, we don't provide backing for
5693 // arguments that will be in registers.
5694 unsigned NumGPRsUsed
= 0, NumFPRsUsed
= 0, NumVRsUsed
= 0;
5696 // Avoid allocating parameter area for fastcc functions if all the arguments
5697 // can be passed in the registers.
5698 if (CallConv
== CallingConv::Fast
)
5699 HasParameterArea
= false;
5701 // Add up all the space actually used.
5702 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5703 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
5704 EVT ArgVT
= Outs
[i
].VT
;
5705 EVT OrigVT
= Outs
[i
].ArgVT
;
5710 if (CallConv
== CallingConv::Fast
) {
5711 if (Flags
.isByVal()) {
5712 NumGPRsUsed
+= (Flags
.getByValSize()+7)/8;
5713 if (NumGPRsUsed
> NumGPRs
)
5714 HasParameterArea
= true;
5716 switch (ArgVT
.getSimpleVT().SimpleTy
) {
5717 default: llvm_unreachable("Unexpected ValueType for argument!");
5721 if (++NumGPRsUsed
<= NumGPRs
)
5731 if (++NumVRsUsed
<= NumVRs
)
5735 // When using QPX, this is handled like a FP register, otherwise, it
5736 // is an Altivec register.
5737 if (Subtarget
.hasQPX()) {
5738 if (++NumFPRsUsed
<= NumFPRs
)
5741 if (++NumVRsUsed
<= NumVRs
)
5747 case MVT::v4f64
: // QPX
5748 case MVT::v4i1
: // QPX
5749 if (++NumFPRsUsed
<= NumFPRs
)
5753 HasParameterArea
= true;
5757 /* Respect alignment of argument on the stack. */
5759 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
5760 NumBytes
= ((NumBytes
+ Align
- 1) / Align
) * Align
;
5762 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
5763 if (Flags
.isInConsecutiveRegsLast())
5764 NumBytes
= ((NumBytes
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
5767 unsigned NumBytesActuallyUsed
= NumBytes
;
5769 // In the old ELFv1 ABI,
5770 // the prolog code of the callee may store up to 8 GPR argument registers to
5771 // the stack, allowing va_start to index over them in memory if its varargs.
5772 // Because we cannot tell if this is needed on the caller side, we have to
5773 // conservatively assume that it is needed. As such, make sure we have at
5774 // least enough stack space for the caller to store the 8 GPRs.
5775 // In the ELFv2 ABI, we allocate the parameter area iff a callee
5776 // really requires memory operands, e.g. a vararg function.
5777 if (HasParameterArea
)
5778 NumBytes
= std::max(NumBytes
, LinkageSize
+ 8 * PtrByteSize
);
5780 NumBytes
= LinkageSize
;
5782 // Tail call needs the stack to be aligned.
5783 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
5784 CallConv
== CallingConv::Fast
)
5785 NumBytes
= EnsureStackAlignment(Subtarget
.getFrameLowering(), NumBytes
);
5789 // Calculate by how many bytes the stack has to be adjusted in case of tail
5790 // call optimization.
5792 SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
5794 // To protect arguments on the stack from being clobbered in a tail call,
5795 // force all the loads to happen before doing any other lowering.
5797 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
5799 // Adjust the stack pointer for the new arguments...
5800 // These operations are automatically eliminated by the prolog/epilog pass
5802 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
5803 SDValue CallSeqStart
= Chain
;
5805 // Load the return address and frame pointer so it can be move somewhere else
5808 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, dl
);
5810 // Set up a copy of the stack pointer for use loading and storing any
5811 // arguments that may not fit in the registers available for argument
5813 SDValue StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
5815 // Figure out which arguments are going to go in registers, and which in
5816 // memory. Also, if this is a vararg function, floating point operations
5817 // must be stored to our stack, and loaded into integer regs as well, if
5818 // any integer regs are available for argument passing.
5819 unsigned ArgOffset
= LinkageSize
;
5821 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
5822 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
5824 SmallVector
<SDValue
, 8> MemOpChains
;
5825 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
5826 SDValue Arg
= OutVals
[i
];
5827 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
5828 EVT ArgVT
= Outs
[i
].VT
;
5829 EVT OrigVT
= Outs
[i
].ArgVT
;
5831 // PtrOff will be used to store the current argument to the stack if a
5832 // register cannot be found for it.
5835 // We re-align the argument offset for each argument, except when using the
5836 // fast calling convention, when we need to make sure we do that only when
5837 // we'll actually use a stack slot.
5838 auto ComputePtrOff
= [&]() {
5839 /* Respect alignment of argument on the stack. */
5841 CalculateStackSlotAlignment(ArgVT
, OrigVT
, Flags
, PtrByteSize
);
5842 ArgOffset
= ((ArgOffset
+ Align
- 1) / Align
) * Align
;
5844 PtrOff
= DAG
.getConstant(ArgOffset
, dl
, StackPtr
.getValueType());
5846 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
5849 if (CallConv
!= CallingConv::Fast
) {
5852 /* Compute GPR index associated with argument offset. */
5853 GPR_idx
= (ArgOffset
- LinkageSize
) / PtrByteSize
;
5854 GPR_idx
= std::min(GPR_idx
, NumGPRs
);
5857 // Promote integers to 64-bit values.
5858 if (Arg
.getValueType() == MVT::i32
|| Arg
.getValueType() == MVT::i1
) {
5859 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5860 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
5861 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
5864 // FIXME memcpy is used way more than necessary. Correctness first.
5865 // Note: "by value" is code for passing a structure by value, not
5867 if (Flags
.isByVal()) {
5868 // Note: Size includes alignment padding, so
5869 // struct x { short a; char b; }
5870 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
5871 // These are the proper values we need for right-justifying the
5872 // aggregate in a parameter register.
5873 unsigned Size
= Flags
.getByValSize();
5875 // An empty aggregate parameter takes up no storage and no
5880 if (CallConv
== CallingConv::Fast
)
5883 // All aggregates smaller than 8 bytes must be passed right-justified.
5884 if (Size
==1 || Size
==2 || Size
==4) {
5885 EVT VT
= (Size
==1) ? MVT::i8
: ((Size
==2) ? MVT::i16
: MVT::i32
);
5886 if (GPR_idx
!= NumGPRs
) {
5887 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, PtrVT
, Chain
, Arg
,
5888 MachinePointerInfo(), VT
);
5889 MemOpChains
.push_back(Load
.getValue(1));
5890 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
5892 ArgOffset
+= PtrByteSize
;
5897 if (GPR_idx
== NumGPRs
&& Size
< 8) {
5898 SDValue AddPtr
= PtrOff
;
5899 if (!isLittleEndian
) {
5900 SDValue Const
= DAG
.getConstant(PtrByteSize
- Size
, dl
,
5901 PtrOff
.getValueType());
5902 AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
5904 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, AddPtr
,
5907 ArgOffset
+= PtrByteSize
;
5910 // Copy entire object into memory. There are cases where gcc-generated
5911 // code assumes it is there, even if it could be put entirely into
5912 // registers. (This is not what the doc says.)
5914 // FIXME: The above statement is likely due to a misunderstanding of the
5915 // documents. All arguments must be copied into the parameter area BY
5916 // THE CALLEE in the event that the callee takes the address of any
5917 // formal argument. That has not yet been implemented. However, it is
5918 // reasonable to use the stack area as a staging area for the register
5921 // Skip this for small aggregates, as we will use the same slot for a
5922 // right-justified copy, below.
5924 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, PtrOff
,
5928 // When a register is available, pass a small aggregate right-justified.
5929 if (Size
< 8 && GPR_idx
!= NumGPRs
) {
5930 // The easiest way to get this right-justified in a register
5931 // is to copy the structure into the rightmost portion of a
5932 // local variable slot, then load the whole slot into the
5934 // FIXME: The memcpy seems to produce pretty awful code for
5935 // small aggregates, particularly for packed ones.
5936 // FIXME: It would be preferable to use the slot in the
5937 // parameter save area instead of a new local variable.
5938 SDValue AddPtr
= PtrOff
;
5939 if (!isLittleEndian
) {
5940 SDValue Const
= DAG
.getConstant(8 - Size
, dl
, PtrOff
.getValueType());
5941 AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
5943 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, AddPtr
,
5947 // Load the slot into the register.
5949 DAG
.getLoad(PtrVT
, dl
, Chain
, PtrOff
, MachinePointerInfo());
5950 MemOpChains
.push_back(Load
.getValue(1));
5951 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
5953 // Done with this argument.
5954 ArgOffset
+= PtrByteSize
;
5958 // For aggregates larger than PtrByteSize, copy the pieces of the
5959 // object that fit into registers from the parameter save area.
5960 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
5961 SDValue Const
= DAG
.getConstant(j
, dl
, PtrOff
.getValueType());
5962 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
5963 if (GPR_idx
!= NumGPRs
) {
5965 DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
, MachinePointerInfo());
5966 MemOpChains
.push_back(Load
.getValue(1));
5967 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
5968 ArgOffset
+= PtrByteSize
;
5970 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
5977 switch (Arg
.getSimpleValueType().SimpleTy
) {
5978 default: llvm_unreachable("Unexpected ValueType for argument!");
5982 if (Flags
.isNest()) {
5983 // The 'nest' parameter, if any, is passed in R11.
5984 RegsToPass
.push_back(std::make_pair(PPC::X11
, Arg
));
5989 // These can be scalar arguments or elements of an integer array type
5990 // passed directly. Clang may use those instead of "byval" aggregate
5991 // types to avoid forcing arguments to memory unnecessarily.
5992 if (GPR_idx
!= NumGPRs
) {
5993 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
5995 if (CallConv
== CallingConv::Fast
)
5998 assert(HasParameterArea
&&
5999 "Parameter area must exist to pass an argument in memory.");
6000 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6001 true, isTailCall
, false, MemOpChains
,
6002 TailCallArguments
, dl
);
6003 if (CallConv
== CallingConv::Fast
)
6004 ArgOffset
+= PtrByteSize
;
6006 if (CallConv
!= CallingConv::Fast
)
6007 ArgOffset
+= PtrByteSize
;
6011 // These can be scalar arguments or elements of a float array type
6012 // passed directly. The latter are used to implement ELFv2 homogenous
6013 // float aggregates.
6015 // Named arguments go into FPRs first, and once they overflow, the
6016 // remaining arguments go into GPRs and then the parameter save area.
6017 // Unnamed arguments for vararg functions always go to GPRs and
6018 // then the parameter save area. For now, put all arguments to vararg
6019 // routines always in both locations (FPR *and* GPR or stack slot).
6020 bool NeedGPROrStack
= isVarArg
|| FPR_idx
== NumFPRs
;
6021 bool NeededLoad
= false;
6023 // First load the argument into the next available FPR.
6024 if (FPR_idx
!= NumFPRs
)
6025 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
6027 // Next, load the argument into GPR or stack slot if needed.
6028 if (!NeedGPROrStack
)
6030 else if (GPR_idx
!= NumGPRs
&& CallConv
!= CallingConv::Fast
) {
6031 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6032 // once we support fp <-> gpr moves.
6034 // In the non-vararg case, this can only ever happen in the
6035 // presence of f32 array types, since otherwise we never run
6036 // out of FPRs before running out of GPRs.
6039 // Double values are always passed in a single GPR.
6040 if (Arg
.getValueType() != MVT::f32
) {
6041 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, Arg
);
6043 // Non-array float values are extended and passed in a GPR.
6044 } else if (!Flags
.isInConsecutiveRegs()) {
6045 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6046 ArgVal
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i64
, ArgVal
);
6048 // If we have an array of floats, we collect every odd element
6049 // together with its predecessor into one GPR.
6050 } else if (ArgOffset
% PtrByteSize
!= 0) {
6052 Lo
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, OutVals
[i
- 1]);
6053 Hi
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6054 if (!isLittleEndian
)
6056 ArgVal
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6058 // The final element, if even, goes into the first half of a GPR.
6059 } else if (Flags
.isInConsecutiveRegsLast()) {
6060 ArgVal
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Arg
);
6061 ArgVal
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i64
, ArgVal
);
6062 if (!isLittleEndian
)
6063 ArgVal
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, ArgVal
,
6064 DAG
.getConstant(32, dl
, MVT::i32
));
6066 // Non-final even elements are skipped; they will be handled
6067 // together the with subsequent argument on the next go-around.
6071 if (ArgVal
.getNode())
6072 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], ArgVal
));
6074 if (CallConv
== CallingConv::Fast
)
6077 // Single-precision floating-point values are mapped to the
6078 // second (rightmost) word of the stack doubleword.
6079 if (Arg
.getValueType() == MVT::f32
&&
6080 !isLittleEndian
&& !Flags
.isInConsecutiveRegs()) {
6081 SDValue ConstFour
= DAG
.getConstant(4, dl
, PtrOff
.getValueType());
6082 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
6085 assert(HasParameterArea
&&
6086 "Parameter area must exist to pass an argument in memory.");
6087 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6088 true, isTailCall
, false, MemOpChains
,
6089 TailCallArguments
, dl
);
6093 // When passing an array of floats, the array occupies consecutive
6094 // space in the argument area; only round up to the next doubleword
6095 // at the end of the array. Otherwise, each float takes 8 bytes.
6096 if (CallConv
!= CallingConv::Fast
|| NeededLoad
) {
6097 ArgOffset
+= (Arg
.getValueType() == MVT::f32
&&
6098 Flags
.isInConsecutiveRegs()) ? 4 : 8;
6099 if (Flags
.isInConsecutiveRegsLast())
6100 ArgOffset
= ((ArgOffset
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
6112 if (!Subtarget
.hasQPX()) {
6113 // These can be scalar arguments or elements of a vector array type
6114 // passed directly. The latter are used to implement ELFv2 homogenous
6115 // vector aggregates.
6117 // For a varargs call, named arguments go into VRs or on the stack as
6118 // usual; unnamed arguments always go to the stack or the corresponding
6119 // GPRs when within range. For now, we always put the value in both
6120 // locations (or even all three).
6122 assert(HasParameterArea
&&
6123 "Parameter area must exist if we have a varargs call.");
6124 // We could elide this store in the case where the object fits
6125 // entirely in R registers. Maybe later.
6127 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
6128 MemOpChains
.push_back(Store
);
6129 if (VR_idx
!= NumVRs
) {
6131 DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
, MachinePointerInfo());
6132 MemOpChains
.push_back(Load
.getValue(1));
6133 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
6136 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
6137 if (GPR_idx
== NumGPRs
)
6139 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
6140 DAG
.getConstant(i
, dl
, PtrVT
));
6142 DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo());
6143 MemOpChains
.push_back(Load
.getValue(1));
6144 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6149 // Non-varargs Altivec params go into VRs or on the stack.
6150 if (VR_idx
!= NumVRs
) {
6151 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
6153 if (CallConv
== CallingConv::Fast
)
6156 assert(HasParameterArea
&&
6157 "Parameter area must exist to pass an argument in memory.");
6158 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6159 true, isTailCall
, true, MemOpChains
,
6160 TailCallArguments
, dl
);
6161 if (CallConv
== CallingConv::Fast
)
6165 if (CallConv
!= CallingConv::Fast
)
6170 assert(Arg
.getValueType().getSimpleVT().SimpleTy
== MVT::v4f32
&&
6171 "Invalid QPX parameter type");
6176 bool IsF32
= Arg
.getValueType().getSimpleVT().SimpleTy
== MVT::v4f32
;
6178 assert(HasParameterArea
&&
6179 "Parameter area must exist if we have a varargs call.");
6180 // We could elide this store in the case where the object fits
6181 // entirely in R registers. Maybe later.
6183 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
6184 MemOpChains
.push_back(Store
);
6185 if (QFPR_idx
!= NumQFPRs
) {
6186 SDValue Load
= DAG
.getLoad(IsF32
? MVT::v4f32
: MVT::v4f64
, dl
, Store
,
6187 PtrOff
, MachinePointerInfo());
6188 MemOpChains
.push_back(Load
.getValue(1));
6189 RegsToPass
.push_back(std::make_pair(QFPR
[QFPR_idx
++], Load
));
6191 ArgOffset
+= (IsF32
? 16 : 32);
6192 for (unsigned i
= 0; i
< (IsF32
? 16U : 32U); i
+= PtrByteSize
) {
6193 if (GPR_idx
== NumGPRs
)
6195 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
6196 DAG
.getConstant(i
, dl
, PtrVT
));
6198 DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo());
6199 MemOpChains
.push_back(Load
.getValue(1));
6200 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6205 // Non-varargs QPX params go into registers or on the stack.
6206 if (QFPR_idx
!= NumQFPRs
) {
6207 RegsToPass
.push_back(std::make_pair(QFPR
[QFPR_idx
++], Arg
));
6209 if (CallConv
== CallingConv::Fast
)
6212 assert(HasParameterArea
&&
6213 "Parameter area must exist to pass an argument in memory.");
6214 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6215 true, isTailCall
, true, MemOpChains
,
6216 TailCallArguments
, dl
);
6217 if (CallConv
== CallingConv::Fast
)
6218 ArgOffset
+= (IsF32
? 16 : 32);
6221 if (CallConv
!= CallingConv::Fast
)
6222 ArgOffset
+= (IsF32
? 16 : 32);
6228 assert((!HasParameterArea
|| NumBytesActuallyUsed
== ArgOffset
) &&
6229 "mismatch in size of parameter area");
6230 (void)NumBytesActuallyUsed
;
6232 if (!MemOpChains
.empty())
6233 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
6235 // Check if this is an indirect call (MTCTR/BCTRL).
6236 // See PrepareCall() for more information about calls through function
6237 // pointers in the 64-bit SVR4 ABI.
6238 if (!isTailCall
&& !isPatchPoint
&&
6239 !isFunctionGlobalAddress(Callee
) &&
6240 !isa
<ExternalSymbolSDNode
>(Callee
)) {
6241 // Load r2 into a virtual register and store it to the TOC save area.
6242 setUsesTOCBasePtr(DAG
);
6243 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, PPC::X2
, MVT::i64
);
6244 // TOC save area offset.
6245 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
6246 SDValue PtrOff
= DAG
.getIntPtrConstant(TOCSaveOffset
, dl
);
6247 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
6248 Chain
= DAG
.getStore(
6249 Val
.getValue(1), dl
, Val
, AddPtr
,
6250 MachinePointerInfo::getStack(DAG
.getMachineFunction(), TOCSaveOffset
));
6251 // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6252 // This does not mean the MTCTR instruction must use R12; it's easier
6253 // to model this as an extra parameter, so do that.
6254 if (isELFv2ABI
&& !isPatchPoint
)
6255 RegsToPass
.push_back(std::make_pair((unsigned)PPC::X12
, Callee
));
6258 // Build a sequence of copy-to-reg nodes chained together with token chain
6259 // and flag operands which copy the outgoing args into the appropriate regs.
6261 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
6262 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
6263 RegsToPass
[i
].second
, InFlag
);
6264 InFlag
= Chain
.getValue(1);
6267 if (isTailCall
&& !IsSibCall
)
6268 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, SPDiff
, NumBytes
, LROp
, FPOp
,
6271 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, isPatchPoint
, hasNest
,
6272 DAG
, RegsToPass
, InFlag
, Chain
, CallSeqStart
, Callee
,
6273 SPDiff
, NumBytes
, Ins
, InVals
, CS
);
6276 SDValue
PPCTargetLowering::LowerCall_Darwin(
6277 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
6278 bool isTailCall
, bool isPatchPoint
,
6279 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
6280 const SmallVectorImpl
<SDValue
> &OutVals
,
6281 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
6282 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
6283 ImmutableCallSite CS
) const {
6284 unsigned NumOps
= Outs
.size();
6286 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6287 bool isPPC64
= PtrVT
== MVT::i64
;
6288 unsigned PtrByteSize
= isPPC64
? 8 : 4;
6290 MachineFunction
&MF
= DAG
.getMachineFunction();
6292 // Mark this function as potentially containing a function that contains a
6293 // tail call. As a consequence the frame pointer will be used for dynamicalloc
6294 // and restoring the callers stack pointer in this functions epilog. This is
6295 // done because by tail calling the called function might overwrite the value
6296 // in this function's (MF) stack pointer stack slot 0(SP).
6297 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
6298 CallConv
== CallingConv::Fast
)
6299 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
6301 // Count how many bytes are to be pushed on the stack, including the linkage
6302 // area, and parameter passing area. We start with 24/48 bytes, which is
6303 // prereserved space for [SP][CR][LR][3 x unused].
6304 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
6305 unsigned NumBytes
= LinkageSize
;
6307 // Add up all the space actually used.
6308 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6309 // they all go in registers, but we must reserve stack space for them for
6310 // possible use by the caller. In varargs or 64-bit calls, parameters are
6311 // assigned stack space in order, with padding so Altivec parameters are
6313 unsigned nAltivecParamsAtEnd
= 0;
6314 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
6315 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
6316 EVT ArgVT
= Outs
[i
].VT
;
6317 // Varargs Altivec parameters are padded to a 16 byte boundary.
6318 if (ArgVT
== MVT::v4f32
|| ArgVT
== MVT::v4i32
||
6319 ArgVT
== MVT::v8i16
|| ArgVT
== MVT::v16i8
||
6320 ArgVT
== MVT::v2f64
|| ArgVT
== MVT::v2i64
) {
6321 if (!isVarArg
&& !isPPC64
) {
6322 // Non-varargs Altivec parameters go after all the non-Altivec
6323 // parameters; handle those later so we know how much padding we need.
6324 nAltivecParamsAtEnd
++;
6327 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6328 NumBytes
= ((NumBytes
+15)/16)*16;
6330 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
6333 // Allow for Altivec parameters at the end, if needed.
6334 if (nAltivecParamsAtEnd
) {
6335 NumBytes
= ((NumBytes
+15)/16)*16;
6336 NumBytes
+= 16*nAltivecParamsAtEnd
;
6339 // The prolog code of the callee may store up to 8 GPR argument registers to
6340 // the stack, allowing va_start to index over them in memory if its varargs.
6341 // Because we cannot tell if this is needed on the caller side, we have to
6342 // conservatively assume that it is needed. As such, make sure we have at
6343 // least enough stack space for the caller to store the 8 GPRs.
6344 NumBytes
= std::max(NumBytes
, LinkageSize
+ 8 * PtrByteSize
);
6346 // Tail call needs the stack to be aligned.
6347 if (getTargetMachine().Options
.GuaranteedTailCallOpt
&&
6348 CallConv
== CallingConv::Fast
)
6349 NumBytes
= EnsureStackAlignment(Subtarget
.getFrameLowering(), NumBytes
);
6351 // Calculate by how many bytes the stack has to be adjusted in case of tail
6352 // call optimization.
6353 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
6355 // To protect arguments on the stack from being clobbered in a tail call,
6356 // force all the loads to happen before doing any other lowering.
6358 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
6360 // Adjust the stack pointer for the new arguments...
6361 // These operations are automatically eliminated by the prolog/epilog pass
6362 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
6363 SDValue CallSeqStart
= Chain
;
6365 // Load the return address and frame pointer so it can be move somewhere else
6368 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, dl
);
6370 // Set up a copy of the stack pointer for use loading and storing any
6371 // arguments that may not fit in the registers available for argument
6375 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
6377 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
6379 // Figure out which arguments are going to go in registers, and which in
6380 // memory. Also, if this is a vararg function, floating point operations
6381 // must be stored to our stack, and loaded into integer regs as well, if
6382 // any integer regs are available for argument passing.
6383 unsigned ArgOffset
= LinkageSize
;
6384 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
6386 static const MCPhysReg GPR_32
[] = { // 32-bit registers.
6387 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
6388 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
6390 static const MCPhysReg GPR_64
[] = { // 64-bit registers.
6391 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
6392 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
6394 static const MCPhysReg VR
[] = {
6395 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
6396 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
6398 const unsigned NumGPRs
= array_lengthof(GPR_32
);
6399 const unsigned NumFPRs
= 13;
6400 const unsigned NumVRs
= array_lengthof(VR
);
6402 const MCPhysReg
*GPR
= isPPC64
? GPR_64
: GPR_32
;
6404 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
6405 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
6407 SmallVector
<SDValue
, 8> MemOpChains
;
6408 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
6409 SDValue Arg
= OutVals
[i
];
6410 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
6412 // PtrOff will be used to store the current argument to the stack if a
6413 // register cannot be found for it.
6416 PtrOff
= DAG
.getConstant(ArgOffset
, dl
, StackPtr
.getValueType());
6418 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
6420 // On PPC64, promote integers to 64-bit values.
6421 if (isPPC64
&& Arg
.getValueType() == MVT::i32
) {
6422 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6423 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
6424 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
6427 // FIXME memcpy is used way more than necessary. Correctness first.
6428 // Note: "by value" is code for passing a structure by value, not
6430 if (Flags
.isByVal()) {
6431 unsigned Size
= Flags
.getByValSize();
6432 // Very small objects are passed right-justified. Everything else is
6433 // passed left-justified.
6434 if (Size
==1 || Size
==2) {
6435 EVT VT
= (Size
==1) ? MVT::i8
: MVT::i16
;
6436 if (GPR_idx
!= NumGPRs
) {
6437 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, PtrVT
, Chain
, Arg
,
6438 MachinePointerInfo(), VT
);
6439 MemOpChains
.push_back(Load
.getValue(1));
6440 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6442 ArgOffset
+= PtrByteSize
;
6444 SDValue Const
= DAG
.getConstant(PtrByteSize
- Size
, dl
,
6445 PtrOff
.getValueType());
6446 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
6447 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, AddPtr
,
6450 ArgOffset
+= PtrByteSize
;
6454 // Copy entire object into memory. There are cases where gcc-generated
6455 // code assumes it is there, even if it could be put entirely into
6456 // registers. (This is not what the doc says.)
6457 Chain
= CallSeqStart
= createMemcpyOutsideCallSeq(Arg
, PtrOff
,
6461 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6462 // copy the pieces of the object that fit into registers from the
6463 // parameter save area.
6464 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
6465 SDValue Const
= DAG
.getConstant(j
, dl
, PtrOff
.getValueType());
6466 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
6467 if (GPR_idx
!= NumGPRs
) {
6469 DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
, MachinePointerInfo());
6470 MemOpChains
.push_back(Load
.getValue(1));
6471 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6472 ArgOffset
+= PtrByteSize
;
6474 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
6481 switch (Arg
.getSimpleValueType().SimpleTy
) {
6482 default: llvm_unreachable("Unexpected ValueType for argument!");
6486 if (GPR_idx
!= NumGPRs
) {
6487 if (Arg
.getValueType() == MVT::i1
)
6488 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PtrVT
, Arg
);
6490 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
6492 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6493 isPPC64
, isTailCall
, false, MemOpChains
,
6494 TailCallArguments
, dl
);
6496 ArgOffset
+= PtrByteSize
;
6500 if (FPR_idx
!= NumFPRs
) {
6501 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
6505 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
6506 MemOpChains
.push_back(Store
);
6508 // Float varargs are always shadowed in available integer registers
6509 if (GPR_idx
!= NumGPRs
) {
6511 DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
, MachinePointerInfo());
6512 MemOpChains
.push_back(Load
.getValue(1));
6513 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6515 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&& !isPPC64
){
6516 SDValue ConstFour
= DAG
.getConstant(4, dl
, PtrOff
.getValueType());
6517 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
6519 DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
, MachinePointerInfo());
6520 MemOpChains
.push_back(Load
.getValue(1));
6521 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6524 // If we have any FPRs remaining, we may also have GPRs remaining.
6525 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6527 if (GPR_idx
!= NumGPRs
)
6529 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&&
6530 !isPPC64
) // PPC64 has 64-bit GPR's obviously :)
6534 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6535 isPPC64
, isTailCall
, false, MemOpChains
,
6536 TailCallArguments
, dl
);
6540 ArgOffset
+= Arg
.getValueType() == MVT::f32
? 4 : 8;
6547 // These go aligned on the stack, or in the corresponding R registers
6548 // when within range. The Darwin PPC ABI doc claims they also go in
6549 // V registers; in fact gcc does this only for arguments that are
6550 // prototyped, not for those that match the ... We do it for all
6551 // arguments, seems to work.
6552 while (ArgOffset
% 16 !=0) {
6553 ArgOffset
+= PtrByteSize
;
6554 if (GPR_idx
!= NumGPRs
)
6557 // We could elide this store in the case where the object fits
6558 // entirely in R registers. Maybe later.
6559 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
6560 DAG
.getConstant(ArgOffset
, dl
, PtrVT
));
6562 DAG
.getStore(Chain
, dl
, Arg
, PtrOff
, MachinePointerInfo());
6563 MemOpChains
.push_back(Store
);
6564 if (VR_idx
!= NumVRs
) {
6566 DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
, MachinePointerInfo());
6567 MemOpChains
.push_back(Load
.getValue(1));
6568 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
6571 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
6572 if (GPR_idx
== NumGPRs
)
6574 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
6575 DAG
.getConstant(i
, dl
, PtrVT
));
6577 DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo());
6578 MemOpChains
.push_back(Load
.getValue(1));
6579 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
6584 // Non-varargs Altivec params generally go in registers, but have
6585 // stack space allocated at the end.
6586 if (VR_idx
!= NumVRs
) {
6587 // Doesn't have GPR space allocated.
6588 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
6589 } else if (nAltivecParamsAtEnd
==0) {
6590 // We are emitting Altivec params in order.
6591 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6592 isPPC64
, isTailCall
, true, MemOpChains
,
6593 TailCallArguments
, dl
);
6599 // If all Altivec parameters fit in registers, as they usually do,
6600 // they get stack space following the non-Altivec parameters. We
6601 // don't track this here because nobody below needs it.
6602 // If there are more Altivec parameters than fit in registers emit
6604 if (!isVarArg
&& nAltivecParamsAtEnd
> NumVRs
) {
6606 // Offset is aligned; skip 1st 12 params which go in V registers.
6607 ArgOffset
= ((ArgOffset
+15)/16)*16;
6609 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
6610 SDValue Arg
= OutVals
[i
];
6611 EVT ArgType
= Outs
[i
].VT
;
6612 if (ArgType
==MVT::v4f32
|| ArgType
==MVT::v4i32
||
6613 ArgType
==MVT::v8i16
|| ArgType
==MVT::v16i8
) {
6616 // We are emitting Altivec params in order.
6617 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
6618 isPPC64
, isTailCall
, true, MemOpChains
,
6619 TailCallArguments
, dl
);
6626 if (!MemOpChains
.empty())
6627 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
6629 // On Darwin, R12 must contain the address of an indirect callee. This does
6630 // not mean the MTCTR instruction must use R12; it's easier to model this as
6631 // an extra parameter, so do that.
6633 !isFunctionGlobalAddress(Callee
) &&
6634 !isa
<ExternalSymbolSDNode
>(Callee
) &&
6635 !isBLACompatibleAddress(Callee
, DAG
))
6636 RegsToPass
.push_back(std::make_pair((unsigned)(isPPC64
? PPC::X12
:
6637 PPC::R12
), Callee
));
6639 // Build a sequence of copy-to-reg nodes chained together with token chain
6640 // and flag operands which copy the outgoing args into the appropriate regs.
6642 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
6643 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
6644 RegsToPass
[i
].second
, InFlag
);
6645 InFlag
= Chain
.getValue(1);
6649 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, SPDiff
, NumBytes
, LROp
, FPOp
,
6652 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, isPatchPoint
,
6653 /* unused except on PPC64 ELFv1 */ false, DAG
,
6654 RegsToPass
, InFlag
, Chain
, CallSeqStart
, Callee
, SPDiff
,
6655 NumBytes
, Ins
, InVals
, CS
);
6659 SDValue
PPCTargetLowering::LowerCall_AIX(
6660 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
6661 bool isTailCall
, bool isPatchPoint
,
6662 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
6663 const SmallVectorImpl
<SDValue
> &OutVals
,
6664 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
6665 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
6666 ImmutableCallSite CS
) const {
6668 assert((CallConv
== CallingConv::C
|| CallConv
== CallingConv::Fast
) &&
6669 "Unimplemented calling convention!");
6670 if (isVarArg
|| isPatchPoint
)
6671 report_fatal_error("This call type is unimplemented on AIX.");
6673 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6674 bool isPPC64
= PtrVT
== MVT::i64
;
6675 unsigned PtrByteSize
= isPPC64
? 8 : 4;
6676 unsigned NumOps
= Outs
.size();
6679 // Count how many bytes are to be pushed on the stack, including the linkage
6680 // area, parameter list area.
6681 // On XCOFF, we start with 24/48, which is reserved space for
6682 // [SP][CR][LR][2 x reserved][TOC].
6683 unsigned LinkageSize
= Subtarget
.getFrameLowering()->getLinkageSize();
6685 // The prolog code of the callee may store up to 8 GPR argument registers to
6686 // the stack, allowing va_start to index over them in memory if the callee
6688 // Because we cannot tell if this is needed on the caller side, we have to
6689 // conservatively assume that it is needed. As such, make sure we have at
6690 // least enough stack space for the caller to store the 8 GPRs.
6691 unsigned NumBytes
= LinkageSize
+ 8 * PtrByteSize
;
6693 // Adjust the stack pointer for the new arguments...
6694 // These operations are automatically eliminated by the prolog/epilog
6696 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
6697 SDValue CallSeqStart
= Chain
;
6699 static const MCPhysReg GPR_32
[] = { // 32-bit registers.
6700 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
6701 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
6703 static const MCPhysReg GPR_64
[] = { // 64-bit registers.
6704 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
6705 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
6708 const unsigned NumGPRs
= isPPC64
? array_lengthof(GPR_64
)
6709 : array_lengthof(GPR_32
);
6710 const MCPhysReg
*GPR
= isPPC64
? GPR_64
: GPR_32
;
6711 unsigned GPR_idx
= 0;
6713 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
6716 report_fatal_error("Handling of tail call is unimplemented!");
6719 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
6720 SDValue Arg
= OutVals
[i
];
6721 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
6723 // Promote integers if needed.
6724 if (Arg
.getValueType() == MVT::i1
||
6725 (isPPC64
&& Arg
.getValueType() == MVT::i32
)) {
6726 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
6727 Arg
= DAG
.getNode(ExtOp
, dl
, PtrVT
, Arg
);
6730 // Note: "by value" is code for passing a structure by value, not
6732 if (Flags
.isByVal())
6733 report_fatal_error("Passing structure by value is unimplemented!");
6735 switch (Arg
.getSimpleValueType().SimpleTy
) {
6736 default: llvm_unreachable("Unexpected ValueType for argument!");
6740 if (GPR_idx
!= NumGPRs
)
6741 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
6743 report_fatal_error("Handling of placing parameters on the stack is "
6758 report_fatal_error("Handling of this parameter type is unimplemented!");
6762 if (!isFunctionGlobalAddress(Callee
) &&
6763 !isa
<ExternalSymbolSDNode
>(Callee
))
6764 report_fatal_error("Handling of indirect call is unimplemented!");
6766 // Build a sequence of copy-to-reg nodes chained together with token chain
6767 // and flag operands which copy the outgoing args into the appropriate regs.
6769 for (auto Reg
: RegsToPass
) {
6770 Chain
= DAG
.getCopyToReg(Chain
, dl
, Reg
.first
, Reg
.second
, InFlag
);
6771 InFlag
= Chain
.getValue(1);
6774 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, isPatchPoint
,
6775 /* unused except on PPC64 ELFv1 */ false, DAG
,
6776 RegsToPass
, InFlag
, Chain
, CallSeqStart
, Callee
, SPDiff
,
6777 NumBytes
, Ins
, InVals
, CS
);
6781 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
6782 MachineFunction
&MF
, bool isVarArg
,
6783 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
6784 LLVMContext
&Context
) const {
6785 SmallVector
<CCValAssign
, 16> RVLocs
;
6786 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
6787 return CCInfo
.CheckReturn(
6788 Outs
, (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
6794 PPCTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
6796 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
6797 const SmallVectorImpl
<SDValue
> &OutVals
,
6798 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
6799 SmallVector
<CCValAssign
, 16> RVLocs
;
6800 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
6802 CCInfo
.AnalyzeReturn(Outs
,
6803 (Subtarget
.isSVR4ABI() && CallConv
== CallingConv::Cold
)
6808 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
6810 // Copy the result values into the output registers.
6811 for (unsigned i
= 0, RealResIdx
= 0; i
!= RVLocs
.size(); ++i
, ++RealResIdx
) {
6812 CCValAssign
&VA
= RVLocs
[i
];
6813 assert(VA
.isRegLoc() && "Can only return in registers!");
6815 SDValue Arg
= OutVals
[RealResIdx
];
6817 switch (VA
.getLocInfo()) {
6818 default: llvm_unreachable("Unknown loc info!");
6819 case CCValAssign::Full
: break;
6820 case CCValAssign::AExt
:
6821 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
6823 case CCValAssign::ZExt
:
6824 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
6826 case CCValAssign::SExt
:
6827 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
6830 if (Subtarget
.hasSPE() && VA
.getLocVT() == MVT::f64
) {
6831 bool isLittleEndian
= Subtarget
.isLittleEndian();
6832 // Legalize ret f64 -> ret 2 x i32.
6834 DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
6835 DAG
.getIntPtrConstant(isLittleEndian
? 0 : 1, dl
));
6836 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), SVal
, Flag
);
6837 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
6838 SVal
= DAG
.getNode(PPCISD::EXTRACT_SPE
, dl
, MVT::i32
, Arg
,
6839 DAG
.getIntPtrConstant(isLittleEndian
? 1 : 0, dl
));
6840 Flag
= Chain
.getValue(1);
6841 VA
= RVLocs
[++i
]; // skip ahead to next loc
6842 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), SVal
, Flag
);
6844 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Flag
);
6845 Flag
= Chain
.getValue(1);
6846 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
6849 const PPCRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
6850 const MCPhysReg
*I
=
6851 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
6855 if (PPC::G8RCRegClass
.contains(*I
))
6856 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i64
));
6857 else if (PPC::F8RCRegClass
.contains(*I
))
6858 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
6859 else if (PPC::CRRCRegClass
.contains(*I
))
6860 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i1
));
6861 else if (PPC::VRRCRegClass
.contains(*I
))
6862 RetOps
.push_back(DAG
.getRegister(*I
, MVT::Other
));
6864 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6868 RetOps
[0] = Chain
; // Update chain.
6870 // Add the flag if we have it.
6872 RetOps
.push_back(Flag
);
6874 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, RetOps
);
6878 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
,
6879 SelectionDAG
&DAG
) const {
6882 // Get the correct type for integers.
6883 EVT IntVT
= Op
.getValueType();
6886 SDValue Chain
= Op
.getOperand(0);
6887 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
6888 // Build a DYNAREAOFFSET node.
6889 SDValue Ops
[2] = {Chain
, FPSIdx
};
6890 SDVTList VTs
= DAG
.getVTList(IntVT
);
6891 return DAG
.getNode(PPCISD::DYNAREAOFFSET
, dl
, VTs
, Ops
);
6894 SDValue
PPCTargetLowering::LowerSTACKRESTORE(SDValue Op
,
6895 SelectionDAG
&DAG
) const {
6896 // When we pop the dynamic allocation we need to restore the SP link.
6899 // Get the correct type for pointers.
6900 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6902 // Construct the stack pointer operand.
6903 bool isPPC64
= Subtarget
.isPPC64();
6904 unsigned SP
= isPPC64
? PPC::X1
: PPC::R1
;
6905 SDValue StackPtr
= DAG
.getRegister(SP
, PtrVT
);
6907 // Get the operands for the STACKRESTORE.
6908 SDValue Chain
= Op
.getOperand(0);
6909 SDValue SaveSP
= Op
.getOperand(1);
6911 // Load the old link SP.
6912 SDValue LoadLinkSP
=
6913 DAG
.getLoad(PtrVT
, dl
, Chain
, StackPtr
, MachinePointerInfo());
6915 // Restore the stack pointer.
6916 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), dl
, SP
, SaveSP
);
6918 // Store the old link SP.
6919 return DAG
.getStore(Chain
, dl
, LoadLinkSP
, StackPtr
, MachinePointerInfo());
6922 SDValue
PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG
&DAG
) const {
6923 MachineFunction
&MF
= DAG
.getMachineFunction();
6924 bool isPPC64
= Subtarget
.isPPC64();
6925 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
6927 // Get current frame pointer save index. The users of this index will be
6928 // primarily DYNALLOC instructions.
6929 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
6930 int RASI
= FI
->getReturnAddrSaveIndex();
6932 // If the frame pointer save index hasn't been defined yet.
6934 // Find out what the fix offset of the frame pointer save area.
6935 int LROffset
= Subtarget
.getFrameLowering()->getReturnSaveOffset();
6936 // Allocate the frame index for frame pointer save area.
6937 RASI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, LROffset
, false);
6939 FI
->setReturnAddrSaveIndex(RASI
);
6941 return DAG
.getFrameIndex(RASI
, PtrVT
);
6945 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG
& DAG
) const {
6946 MachineFunction
&MF
= DAG
.getMachineFunction();
6947 bool isPPC64
= Subtarget
.isPPC64();
6948 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
6950 // Get current frame pointer save index. The users of this index will be
6951 // primarily DYNALLOC instructions.
6952 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
6953 int FPSI
= FI
->getFramePointerSaveIndex();
6955 // If the frame pointer save index hasn't been defined yet.
6957 // Find out what the fix offset of the frame pointer save area.
6958 int FPOffset
= Subtarget
.getFrameLowering()->getFramePointerSaveOffset();
6959 // Allocate the frame index for frame pointer save area.
6960 FPSI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, FPOffset
, true);
6962 FI
->setFramePointerSaveIndex(FPSI
);
6964 return DAG
.getFrameIndex(FPSI
, PtrVT
);
6967 SDValue
PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
6968 SelectionDAG
&DAG
) const {
6970 SDValue Chain
= Op
.getOperand(0);
6971 SDValue Size
= Op
.getOperand(1);
6974 // Get the correct type for pointers.
6975 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6977 SDValue NegSize
= DAG
.getNode(ISD::SUB
, dl
, PtrVT
,
6978 DAG
.getConstant(0, dl
, PtrVT
), Size
);
6979 // Construct a node for the frame pointer save index.
6980 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
6981 // Build a DYNALLOC node.
6982 SDValue Ops
[3] = { Chain
, NegSize
, FPSIdx
};
6983 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
6984 return DAG
.getNode(PPCISD::DYNALLOC
, dl
, VTs
, Ops
);
6987 SDValue
PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op
,
6988 SelectionDAG
&DAG
) const {
6989 MachineFunction
&MF
= DAG
.getMachineFunction();
6991 bool isPPC64
= Subtarget
.isPPC64();
6992 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
6994 int FI
= MF
.getFrameInfo().CreateFixedObject(isPPC64
? 8 : 4, 0, false);
6995 return DAG
.getFrameIndex(FI
, PtrVT
);
6998 SDValue
PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op
,
6999 SelectionDAG
&DAG
) const {
7001 return DAG
.getNode(PPCISD::EH_SJLJ_SETJMP
, DL
,
7002 DAG
.getVTList(MVT::i32
, MVT::Other
),
7003 Op
.getOperand(0), Op
.getOperand(1));
7006 SDValue
PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op
,
7007 SelectionDAG
&DAG
) const {
7009 return DAG
.getNode(PPCISD::EH_SJLJ_LONGJMP
, DL
, MVT::Other
,
7010 Op
.getOperand(0), Op
.getOperand(1));
7013 SDValue
PPCTargetLowering::LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
7014 if (Op
.getValueType().isVector())
7015 return LowerVectorLoad(Op
, DAG
);
7017 assert(Op
.getValueType() == MVT::i1
&&
7018 "Custom lowering only for i1 loads");
7020 // First, load 8 bits into 32 bits, then truncate to 1 bit.
7023 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
7025 SDValue Chain
= LD
->getChain();
7026 SDValue BasePtr
= LD
->getBasePtr();
7027 MachineMemOperand
*MMO
= LD
->getMemOperand();
7030 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, getPointerTy(DAG
.getDataLayout()), Chain
,
7031 BasePtr
, MVT::i8
, MMO
);
7032 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, NewLD
);
7034 SDValue Ops
[] = { Result
, SDValue(NewLD
.getNode(), 1) };
7035 return DAG
.getMergeValues(Ops
, dl
);
7038 SDValue
PPCTargetLowering::LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
7039 if (Op
.getOperand(1).getValueType().isVector())
7040 return LowerVectorStore(Op
, DAG
);
7042 assert(Op
.getOperand(1).getValueType() == MVT::i1
&&
7043 "Custom lowering only for i1 stores");
7045 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7048 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
);
7050 SDValue Chain
= ST
->getChain();
7051 SDValue BasePtr
= ST
->getBasePtr();
7052 SDValue Value
= ST
->getValue();
7053 MachineMemOperand
*MMO
= ST
->getMemOperand();
7055 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, getPointerTy(DAG
.getDataLayout()),
7057 return DAG
.getTruncStore(Chain
, dl
, Value
, BasePtr
, MVT::i8
, MMO
);
7060 // FIXME: Remove this once the ANDI glue bug is fixed:
7061 SDValue
PPCTargetLowering::LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const {
7062 assert(Op
.getValueType() == MVT::i1
&&
7063 "Custom lowering only for i1 results");
7066 return DAG
.getNode(PPCISD::ANDIo_1_GT_BIT
, DL
, MVT::i1
,
7070 SDValue
PPCTargetLowering::LowerTRUNCATEVector(SDValue Op
,
7071 SelectionDAG
&DAG
) const {
7073 // Implements a vector truncate that fits in a vector register as a shuffle.
7074 // We want to legalize vector truncates down to where the source fits in
7075 // a vector register (and target is therefore smaller than vector register
7076 // size). At that point legalization will try to custom lower the sub-legal
7077 // result and get here - where we can contain the truncate as a single target
7080 // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7081 // <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7083 // We will implement it for big-endian ordering as this (where x denotes
7085 // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7086 // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7088 // The same operation in little-endian ordering will be:
7089 // <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7090 // <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7092 assert(Op
.getValueType().isVector() && "Vector type expected.");
7095 SDValue N1
= Op
.getOperand(0);
7096 unsigned SrcSize
= N1
.getValueType().getSizeInBits();
7097 assert(SrcSize
<= 128 && "Source must fit in an Altivec/VSX vector");
7098 SDValue WideSrc
= SrcSize
== 128 ? N1
: widenVec(DAG
, N1
, DL
);
7100 EVT TrgVT
= Op
.getValueType();
7101 unsigned TrgNumElts
= TrgVT
.getVectorNumElements();
7102 EVT EltVT
= TrgVT
.getVectorElementType();
7103 unsigned WideNumElts
= 128 / EltVT
.getSizeInBits();
7104 EVT WideVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, WideNumElts
);
7106 // First list the elements we want to keep.
7107 unsigned SizeMult
= SrcSize
/ TrgVT
.getSizeInBits();
7108 SmallVector
<int, 16> ShuffV
;
7109 if (Subtarget
.isLittleEndian())
7110 for (unsigned i
= 0; i
< TrgNumElts
; ++i
)
7111 ShuffV
.push_back(i
* SizeMult
);
7113 for (unsigned i
= 1; i
<= TrgNumElts
; ++i
)
7114 ShuffV
.push_back(i
* SizeMult
- 1);
7116 // Populate the remaining elements with undefs.
7117 for (unsigned i
= TrgNumElts
; i
< WideNumElts
; ++i
)
7118 // ShuffV.push_back(i + WideNumElts);
7119 ShuffV
.push_back(WideNumElts
+ 1);
7121 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, DL
, WideVT
, WideSrc
);
7122 return DAG
.getVectorShuffle(WideVT
, DL
, Conv
, DAG
.getUNDEF(WideVT
), ShuffV
);
7125 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7127 SDValue
PPCTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
7128 // Not FP? Not a fsel.
7129 if (!Op
.getOperand(0).getValueType().isFloatingPoint() ||
7130 !Op
.getOperand(2).getValueType().isFloatingPoint())
7133 // We might be able to do better than this under some circumstances, but in
7134 // general, fsel-based lowering of select is a finite-math-only optimization.
7135 // For more information, see section F.3 of the 2.06 ISA specification.
7136 if (!DAG
.getTarget().Options
.NoInfsFPMath
||
7137 !DAG
.getTarget().Options
.NoNaNsFPMath
)
7139 // TODO: Propagate flags from the select rather than global settings.
7141 Flags
.setNoInfs(true);
7142 Flags
.setNoNaNs(true);
7144 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
7146 EVT ResVT
= Op
.getValueType();
7147 EVT CmpVT
= Op
.getOperand(0).getValueType();
7148 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
7149 SDValue TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
7152 // If the RHS of the comparison is a 0.0, we don't need to do the
7153 // subtraction at all.
7155 if (isFloatingPointZero(RHS
))
7157 default: break; // SETUO etc aren't handled by fsel.
7162 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7163 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7164 Sel1
= DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
7165 if (Sel1
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7166 Sel1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Sel1
);
7167 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7168 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), Sel1
, FV
);
7171 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
7175 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7176 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7177 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
7180 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
7184 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7185 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
7186 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7187 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), TV
, FV
);
7192 default: break; // SETUO etc aren't handled by fsel.
7197 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7198 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7199 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7200 Sel1
= DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7201 if (Sel1
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7202 Sel1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Sel1
);
7203 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
7204 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, Cmp
), Sel1
, FV
);
7207 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7208 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7209 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7210 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
7213 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
, Flags
);
7214 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7215 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7216 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7219 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
, Flags
);
7220 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7221 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7222 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
7225 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
, Flags
);
7226 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
7227 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
7228 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
7233 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
7235 const SDLoc
&dl
) const {
7236 assert(Op
.getOperand(0).getValueType().isFloatingPoint());
7237 SDValue Src
= Op
.getOperand(0);
7238 if (Src
.getValueType() == MVT::f32
)
7239 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
7242 switch (Op
.getSimpleValueType().SimpleTy
) {
7243 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7246 Op
.getOpcode() == ISD::FP_TO_SINT
7248 : (Subtarget
.hasFPCVT() ? PPCISD::FCTIWUZ
: PPCISD::FCTIDZ
),
7252 assert((Op
.getOpcode() == ISD::FP_TO_SINT
|| Subtarget
.hasFPCVT()) &&
7253 "i64 FP_TO_UINT is supported only with FPCVT");
7254 Tmp
= DAG
.getNode(Op
.getOpcode()==ISD::FP_TO_SINT
? PPCISD::FCTIDZ
:
7260 // Convert the FP value to an int value through memory.
7261 bool i32Stack
= Op
.getValueType() == MVT::i32
&& Subtarget
.hasSTFIWX() &&
7262 (Op
.getOpcode() == ISD::FP_TO_SINT
|| Subtarget
.hasFPCVT());
7263 SDValue FIPtr
= DAG
.CreateStackTemporary(i32Stack
? MVT::i32
: MVT::f64
);
7264 int FI
= cast
<FrameIndexSDNode
>(FIPtr
)->getIndex();
7265 MachinePointerInfo MPI
=
7266 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
7268 // Emit a store to the stack slot.
7271 MachineFunction
&MF
= DAG
.getMachineFunction();
7272 MachineMemOperand
*MMO
=
7273 MF
.getMachineMemOperand(MPI
, MachineMemOperand::MOStore
, 4, 4);
7274 SDValue Ops
[] = { DAG
.getEntryNode(), Tmp
, FIPtr
};
7275 Chain
= DAG
.getMemIntrinsicNode(PPCISD::STFIWX
, dl
,
7276 DAG
.getVTList(MVT::Other
), Ops
, MVT::i32
, MMO
);
7278 Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp
, FIPtr
, MPI
);
7280 // Result is a load from the stack slot. If loading 4 bytes, make sure to
7281 // add in a bias on big endian.
7282 if (Op
.getValueType() == MVT::i32
&& !i32Stack
) {
7283 FIPtr
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
,
7284 DAG
.getConstant(4, dl
, FIPtr
.getValueType()));
7285 MPI
= MPI
.getWithOffset(Subtarget
.isLittleEndian() ? 0 : 4);
7293 /// Custom lowers floating point to integer conversions to use
7294 /// the direct move instructions available in ISA 2.07 to avoid the
7295 /// need for load/store combinations.
7296 SDValue
PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op
,
7298 const SDLoc
&dl
) const {
7299 assert(Op
.getOperand(0).getValueType().isFloatingPoint());
7300 SDValue Src
= Op
.getOperand(0);
7302 if (Src
.getValueType() == MVT::f32
)
7303 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
7306 switch (Op
.getSimpleValueType().SimpleTy
) {
7307 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7310 Op
.getOpcode() == ISD::FP_TO_SINT
7312 : (Subtarget
.hasFPCVT() ? PPCISD::FCTIWUZ
: PPCISD::FCTIDZ
),
7314 Tmp
= DAG
.getNode(PPCISD::MFVSR
, dl
, MVT::i32
, Tmp
);
7317 assert((Op
.getOpcode() == ISD::FP_TO_SINT
|| Subtarget
.hasFPCVT()) &&
7318 "i64 FP_TO_UINT is supported only with FPCVT");
7319 Tmp
= DAG
.getNode(Op
.getOpcode()==ISD::FP_TO_SINT
? PPCISD::FCTIDZ
:
7322 Tmp
= DAG
.getNode(PPCISD::MFVSR
, dl
, MVT::i64
, Tmp
);
7328 SDValue
PPCTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
7329 const SDLoc
&dl
) const {
7331 // FP to INT conversions are legal for f128.
7332 if (EnableQuadPrecision
&& (Op
->getOperand(0).getValueType() == MVT::f128
))
7335 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7336 // PPC (the libcall is not available).
7337 if (Op
.getOperand(0).getValueType() == MVT::ppcf128
) {
7338 if (Op
.getValueType() == MVT::i32
) {
7339 if (Op
.getOpcode() == ISD::FP_TO_SINT
) {
7340 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
7341 MVT::f64
, Op
.getOperand(0),
7342 DAG
.getIntPtrConstant(0, dl
));
7343 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
7344 MVT::f64
, Op
.getOperand(0),
7345 DAG
.getIntPtrConstant(1, dl
));
7347 // Add the two halves of the long double in round-to-zero mode.
7348 SDValue Res
= DAG
.getNode(PPCISD::FADDRTZ
, dl
, MVT::f64
, Lo
, Hi
);
7350 // Now use a smaller FP_TO_SINT.
7351 return DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, Res
);
7353 if (Op
.getOpcode() == ISD::FP_TO_UINT
) {
7354 const uint64_t TwoE31
[] = {0x41e0000000000000LL
, 0};
7355 APFloat APF
= APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31
));
7356 SDValue Tmp
= DAG
.getConstantFP(APF
, dl
, MVT::ppcf128
);
7357 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7358 // FIXME: generated code sucks.
7359 // TODO: Are there fast-math-flags to propagate to this FSUB?
7360 SDValue True
= DAG
.getNode(ISD::FSUB
, dl
, MVT::ppcf128
,
7361 Op
.getOperand(0), Tmp
);
7362 True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, True
);
7363 True
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, True
,
7364 DAG
.getConstant(0x80000000, dl
, MVT::i32
));
7365 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
,
7367 return DAG
.getSelectCC(dl
, Op
.getOperand(0), Tmp
, True
, False
,
7375 if (Subtarget
.hasDirectMove() && Subtarget
.isPPC64())
7376 return LowerFP_TO_INTDirectMove(Op
, DAG
, dl
);
7379 LowerFP_TO_INTForReuse(Op
, RLI
, DAG
, dl
);
7381 return DAG
.getLoad(Op
.getValueType(), dl
, RLI
.Chain
, RLI
.Ptr
, RLI
.MPI
,
7382 RLI
.Alignment
, RLI
.MMOFlags(), RLI
.AAInfo
, RLI
.Ranges
);
7385 // We're trying to insert a regular store, S, and then a load, L. If the
7386 // incoming value, O, is a load, we might just be able to have our load use the
7387 // address used by O. However, we don't know if anything else will store to
7388 // that address before we can load from it. To prevent this situation, we need
7389 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7390 // the same chain operand as O, we create a token factor from the chain results
7391 // of O and L, and we replace all uses of O's chain result with that token
7392 // factor (see spliceIntoChain below for this last part).
7393 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op
, EVT MemVT
,
7396 ISD::LoadExtType ET
) const {
7398 if (ET
== ISD::NON_EXTLOAD
&&
7399 (Op
.getOpcode() == ISD::FP_TO_UINT
||
7400 Op
.getOpcode() == ISD::FP_TO_SINT
) &&
7401 isOperationLegalOrCustom(Op
.getOpcode(),
7402 Op
.getOperand(0).getValueType())) {
7404 LowerFP_TO_INTForReuse(Op
, RLI
, DAG
, dl
);
7408 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
);
7409 if (!LD
|| LD
->getExtensionType() != ET
|| LD
->isVolatile() ||
7410 LD
->isNonTemporal())
7412 if (LD
->getMemoryVT() != MemVT
)
7415 RLI
.Ptr
= LD
->getBasePtr();
7416 if (LD
->isIndexed() && !LD
->getOffset().isUndef()) {
7417 assert(LD
->getAddressingMode() == ISD::PRE_INC
&&
7418 "Non-pre-inc AM on PPC?");
7419 RLI
.Ptr
= DAG
.getNode(ISD::ADD
, dl
, RLI
.Ptr
.getValueType(), RLI
.Ptr
,
7423 RLI
.Chain
= LD
->getChain();
7424 RLI
.MPI
= LD
->getPointerInfo();
7425 RLI
.IsDereferenceable
= LD
->isDereferenceable();
7426 RLI
.IsInvariant
= LD
->isInvariant();
7427 RLI
.Alignment
= LD
->getAlignment();
7428 RLI
.AAInfo
= LD
->getAAInfo();
7429 RLI
.Ranges
= LD
->getRanges();
7431 RLI
.ResChain
= SDValue(LD
, LD
->isIndexed() ? 2 : 1);
7435 // Given the head of the old chain, ResChain, insert a token factor containing
7436 // it and NewResChain, and make users of ResChain now be users of that token
7438 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7439 void PPCTargetLowering::spliceIntoChain(SDValue ResChain
,
7440 SDValue NewResChain
,
7441 SelectionDAG
&DAG
) const {
7445 SDLoc
dl(NewResChain
);
7447 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
7448 NewResChain
, DAG
.getUNDEF(MVT::Other
));
7449 assert(TF
.getNode() != NewResChain
.getNode() &&
7450 "A new TF really is required here");
7452 DAG
.ReplaceAllUsesOfValueWith(ResChain
, TF
);
7453 DAG
.UpdateNodeOperands(TF
.getNode(), ResChain
, NewResChain
);
7456 /// Analyze profitability of direct move
7457 /// prefer float load to int load plus direct move
7458 /// when there is no integer use of int load
7459 bool PPCTargetLowering::directMoveIsProfitable(const SDValue
&Op
) const {
7460 SDNode
*Origin
= Op
.getOperand(0).getNode();
7461 if (Origin
->getOpcode() != ISD::LOAD
)
7464 // If there is no LXSIBZX/LXSIHZX, like Power8,
7465 // prefer direct move if the memory size is 1 or 2 bytes.
7466 MachineMemOperand
*MMO
= cast
<LoadSDNode
>(Origin
)->getMemOperand();
7467 if (!Subtarget
.hasP9Vector() && MMO
->getSize() <= 2)
7470 for (SDNode::use_iterator UI
= Origin
->use_begin(),
7471 UE
= Origin
->use_end();
7474 // Only look at the users of the loaded value.
7475 if (UI
.getUse().get().getResNo() != 0)
7478 if (UI
->getOpcode() != ISD::SINT_TO_FP
&&
7479 UI
->getOpcode() != ISD::UINT_TO_FP
)
7486 /// Custom lowers integer to floating point conversions to use
7487 /// the direct move instructions available in ISA 2.07 to avoid the
7488 /// need for load/store combinations.
7489 SDValue
PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op
,
7491 const SDLoc
&dl
) const {
7492 assert((Op
.getValueType() == MVT::f32
||
7493 Op
.getValueType() == MVT::f64
) &&
7494 "Invalid floating point type as target of conversion");
7495 assert(Subtarget
.hasFPCVT() &&
7496 "Int to FP conversions with direct moves require FPCVT");
7498 SDValue Src
= Op
.getOperand(0);
7499 bool SinglePrec
= Op
.getValueType() == MVT::f32
;
7500 bool WordInt
= Src
.getSimpleValueType().SimpleTy
== MVT::i32
;
7501 bool Signed
= Op
.getOpcode() == ISD::SINT_TO_FP
;
7502 unsigned ConvOp
= Signed
? (SinglePrec
? PPCISD::FCFIDS
: PPCISD::FCFID
) :
7503 (SinglePrec
? PPCISD::FCFIDUS
: PPCISD::FCFIDU
);
7506 FP
= DAG
.getNode(Signed
? PPCISD::MTVSRA
: PPCISD::MTVSRZ
,
7508 FP
= DAG
.getNode(ConvOp
, dl
, SinglePrec
? MVT::f32
: MVT::f64
, FP
);
7511 FP
= DAG
.getNode(PPCISD::MTVSRA
, dl
, MVT::f64
, Src
);
7512 FP
= DAG
.getNode(ConvOp
, dl
, SinglePrec
? MVT::f32
: MVT::f64
, FP
);
7518 static SDValue
widenVec(SelectionDAG
&DAG
, SDValue Vec
, const SDLoc
&dl
) {
7520 EVT VecVT
= Vec
.getValueType();
7521 assert(VecVT
.isVector() && "Expected a vector type.");
7522 assert(VecVT
.getSizeInBits() < 128 && "Vector is already full width.");
7524 EVT EltVT
= VecVT
.getVectorElementType();
7525 unsigned WideNumElts
= 128 / EltVT
.getSizeInBits();
7526 EVT WideVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, WideNumElts
);
7528 unsigned NumConcat
= WideNumElts
/ VecVT
.getVectorNumElements();
7529 SmallVector
<SDValue
, 16> Ops(NumConcat
);
7531 SDValue UndefVec
= DAG
.getUNDEF(VecVT
);
7532 for (unsigned i
= 1; i
< NumConcat
; ++i
)
7535 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, WideVT
, Ops
);
7538 SDValue
PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op
, SelectionDAG
&DAG
,
7539 const SDLoc
&dl
) const {
7541 unsigned Opc
= Op
.getOpcode();
7542 assert((Opc
== ISD::UINT_TO_FP
|| Opc
== ISD::SINT_TO_FP
) &&
7543 "Unexpected conversion type");
7544 assert((Op
.getValueType() == MVT::v2f64
|| Op
.getValueType() == MVT::v4f32
) &&
7545 "Supports conversions to v2f64/v4f32 only.");
7547 bool SignedConv
= Opc
== ISD::SINT_TO_FP
;
7548 bool FourEltRes
= Op
.getValueType() == MVT::v4f32
;
7550 SDValue Wide
= widenVec(DAG
, Op
.getOperand(0), dl
);
7551 EVT WideVT
= Wide
.getValueType();
7552 unsigned WideNumElts
= WideVT
.getVectorNumElements();
7553 MVT IntermediateVT
= FourEltRes
? MVT::v4i32
: MVT::v2i64
;
7555 SmallVector
<int, 16> ShuffV
;
7556 for (unsigned i
= 0; i
< WideNumElts
; ++i
)
7557 ShuffV
.push_back(i
+ WideNumElts
);
7559 int Stride
= FourEltRes
? WideNumElts
/ 4 : WideNumElts
/ 2;
7560 int SaveElts
= FourEltRes
? 4 : 2;
7561 if (Subtarget
.isLittleEndian())
7562 for (int i
= 0; i
< SaveElts
; i
++)
7563 ShuffV
[i
* Stride
] = i
;
7565 for (int i
= 1; i
<= SaveElts
; i
++)
7566 ShuffV
[i
* Stride
- 1] = i
- 1;
7568 SDValue ShuffleSrc2
=
7569 SignedConv
? DAG
.getUNDEF(WideVT
) : DAG
.getConstant(0, dl
, WideVT
);
7570 SDValue Arrange
= DAG
.getVectorShuffle(WideVT
, dl
, Wide
, ShuffleSrc2
, ShuffV
);
7572 SignedConv
? (unsigned)PPCISD::SExtVElems
: (unsigned)ISD::BITCAST
;
7575 if (!Subtarget
.hasP9Altivec() && SignedConv
) {
7576 Arrange
= DAG
.getBitcast(IntermediateVT
, Arrange
);
7577 Extend
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, IntermediateVT
, Arrange
,
7578 DAG
.getValueType(Op
.getOperand(0).getValueType()));
7580 Extend
= DAG
.getNode(ExtendOp
, dl
, IntermediateVT
, Arrange
);
7582 return DAG
.getNode(Opc
, dl
, Op
.getValueType(), Extend
);
7585 SDValue
PPCTargetLowering::LowerINT_TO_FP(SDValue Op
,
7586 SelectionDAG
&DAG
) const {
7589 EVT InVT
= Op
.getOperand(0).getValueType();
7590 EVT OutVT
= Op
.getValueType();
7591 if (OutVT
.isVector() && OutVT
.isFloatingPoint() &&
7592 isOperationCustom(Op
.getOpcode(), InVT
))
7593 return LowerINT_TO_FPVector(Op
, DAG
, dl
);
7595 // Conversions to f128 are legal.
7596 if (EnableQuadPrecision
&& (Op
.getValueType() == MVT::f128
))
7599 if (Subtarget
.hasQPX() && Op
.getOperand(0).getValueType() == MVT::v4i1
) {
7600 if (Op
.getValueType() != MVT::v4f32
&& Op
.getValueType() != MVT::v4f64
)
7603 SDValue Value
= Op
.getOperand(0);
7604 // The values are now known to be -1 (false) or 1 (true). To convert this
7605 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7606 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7607 Value
= DAG
.getNode(PPCISD::QBFLT
, dl
, MVT::v4f64
, Value
);
7609 SDValue FPHalfs
= DAG
.getConstantFP(0.5, dl
, MVT::v4f64
);
7611 Value
= DAG
.getNode(ISD::FMA
, dl
, MVT::v4f64
, Value
, FPHalfs
, FPHalfs
);
7613 if (Op
.getValueType() != MVT::v4f64
)
7614 Value
= DAG
.getNode(ISD::FP_ROUND
, dl
,
7615 Op
.getValueType(), Value
,
7616 DAG
.getIntPtrConstant(1, dl
));
7620 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7621 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
7624 if (Op
.getOperand(0).getValueType() == MVT::i1
)
7625 return DAG
.getNode(ISD::SELECT
, dl
, Op
.getValueType(), Op
.getOperand(0),
7626 DAG
.getConstantFP(1.0, dl
, Op
.getValueType()),
7627 DAG
.getConstantFP(0.0, dl
, Op
.getValueType()));
7629 // If we have direct moves, we can do all the conversion, skip the store/load
7630 // however, without FPCVT we can't do most conversions.
7631 if (Subtarget
.hasDirectMove() && directMoveIsProfitable(Op
) &&
7632 Subtarget
.isPPC64() && Subtarget
.hasFPCVT())
7633 return LowerINT_TO_FPDirectMove(Op
, DAG
, dl
);
7635 assert((Op
.getOpcode() == ISD::SINT_TO_FP
|| Subtarget
.hasFPCVT()) &&
7636 "UINT_TO_FP is supported only with FPCVT");
7638 // If we have FCFIDS, then use it when converting to single-precision.
7639 // Otherwise, convert to double-precision and then round.
7640 unsigned FCFOp
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
7641 ? (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDUS
7643 : (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDU
7645 MVT FCFTy
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
7649 if (Op
.getOperand(0).getValueType() == MVT::i64
) {
7650 SDValue SINT
= Op
.getOperand(0);
7651 // When converting to single-precision, we actually need to convert
7652 // to double-precision first and then round to single-precision.
7653 // To avoid double-rounding effects during that operation, we have
7654 // to prepare the input operand. Bits that might be truncated when
7655 // converting to double-precision are replaced by a bit that won't
7656 // be lost at this stage, but is below the single-precision rounding
7659 // However, if -enable-unsafe-fp-math is in effect, accept double
7660 // rounding to avoid the extra overhead.
7661 if (Op
.getValueType() == MVT::f32
&&
7662 !Subtarget
.hasFPCVT() &&
7663 !DAG
.getTarget().Options
.UnsafeFPMath
) {
7665 // Twiddle input to make sure the low 11 bits are zero. (If this
7666 // is the case, we are guaranteed the value will fit into the 53 bit
7667 // mantissa of an IEEE double-precision value without rounding.)
7668 // If any of those low 11 bits were not zero originally, make sure
7669 // bit 12 (value 2048) is set instead, so that the final rounding
7670 // to single-precision gets the correct result.
7671 SDValue Round
= DAG
.getNode(ISD::AND
, dl
, MVT::i64
,
7672 SINT
, DAG
.getConstant(2047, dl
, MVT::i64
));
7673 Round
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
,
7674 Round
, DAG
.getConstant(2047, dl
, MVT::i64
));
7675 Round
= DAG
.getNode(ISD::OR
, dl
, MVT::i64
, Round
, SINT
);
7676 Round
= DAG
.getNode(ISD::AND
, dl
, MVT::i64
,
7677 Round
, DAG
.getConstant(-2048, dl
, MVT::i64
));
7679 // However, we cannot use that value unconditionally: if the magnitude
7680 // of the input value is small, the bit-twiddling we did above might
7681 // end up visibly changing the output. Fortunately, in that case, we
7682 // don't need to twiddle bits since the original input will convert
7683 // exactly to double-precision floating-point already. Therefore,
7684 // construct a conditional to use the original value if the top 11
7685 // bits are all sign-bit copies, and use the rounded value computed
7687 SDValue Cond
= DAG
.getNode(ISD::SRA
, dl
, MVT::i64
,
7688 SINT
, DAG
.getConstant(53, dl
, MVT::i32
));
7689 Cond
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
,
7690 Cond
, DAG
.getConstant(1, dl
, MVT::i64
));
7691 Cond
= DAG
.getSetCC(dl
, MVT::i32
,
7692 Cond
, DAG
.getConstant(1, dl
, MVT::i64
), ISD::SETUGT
);
7694 SINT
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i64
, Cond
, Round
, SINT
);
7700 MachineFunction
&MF
= DAG
.getMachineFunction();
7701 if (canReuseLoadAddress(SINT
, MVT::i64
, RLI
, DAG
)) {
7702 Bits
= DAG
.getLoad(MVT::f64
, dl
, RLI
.Chain
, RLI
.Ptr
, RLI
.MPI
,
7703 RLI
.Alignment
, RLI
.MMOFlags(), RLI
.AAInfo
, RLI
.Ranges
);
7704 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
7705 } else if (Subtarget
.hasLFIWAX() &&
7706 canReuseLoadAddress(SINT
, MVT::i32
, RLI
, DAG
, ISD::SEXTLOAD
)) {
7707 MachineMemOperand
*MMO
=
7708 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
7709 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
7710 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
7711 Bits
= DAG
.getMemIntrinsicNode(PPCISD::LFIWAX
, dl
,
7712 DAG
.getVTList(MVT::f64
, MVT::Other
),
7713 Ops
, MVT::i32
, MMO
);
7714 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
7715 } else if (Subtarget
.hasFPCVT() &&
7716 canReuseLoadAddress(SINT
, MVT::i32
, RLI
, DAG
, ISD::ZEXTLOAD
)) {
7717 MachineMemOperand
*MMO
=
7718 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
7719 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
7720 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
7721 Bits
= DAG
.getMemIntrinsicNode(PPCISD::LFIWZX
, dl
,
7722 DAG
.getVTList(MVT::f64
, MVT::Other
),
7723 Ops
, MVT::i32
, MMO
);
7724 spliceIntoChain(RLI
.ResChain
, Bits
.getValue(1), DAG
);
7725 } else if (((Subtarget
.hasLFIWAX() &&
7726 SINT
.getOpcode() == ISD::SIGN_EXTEND
) ||
7727 (Subtarget
.hasFPCVT() &&
7728 SINT
.getOpcode() == ISD::ZERO_EXTEND
)) &&
7729 SINT
.getOperand(0).getValueType() == MVT::i32
) {
7730 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7731 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
7733 int FrameIdx
= MFI
.CreateStackObject(4, 4, false);
7734 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
7737 DAG
.getStore(DAG
.getEntryNode(), dl
, SINT
.getOperand(0), FIdx
,
7738 MachinePointerInfo::getFixedStack(
7739 DAG
.getMachineFunction(), FrameIdx
));
7741 assert(cast
<StoreSDNode
>(Store
)->getMemoryVT() == MVT::i32
&&
7742 "Expected an i32 store");
7747 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
7750 MachineMemOperand
*MMO
=
7751 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
7752 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
7753 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
7754 Bits
= DAG
.getMemIntrinsicNode(SINT
.getOpcode() == ISD::ZERO_EXTEND
?
7755 PPCISD::LFIWZX
: PPCISD::LFIWAX
,
7756 dl
, DAG
.getVTList(MVT::f64
, MVT::Other
),
7757 Ops
, MVT::i32
, MMO
);
7759 Bits
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, SINT
);
7761 SDValue FP
= DAG
.getNode(FCFOp
, dl
, FCFTy
, Bits
);
7763 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT())
7764 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
7765 MVT::f32
, FP
, DAG
.getIntPtrConstant(0, dl
));
7769 assert(Op
.getOperand(0).getValueType() == MVT::i32
&&
7770 "Unhandled INT_TO_FP type in custom expander!");
7771 // Since we only generate this in 64-bit mode, we can take advantage of
7772 // 64-bit registers. In particular, sign extend the input value into the
7773 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7774 // then lfd it and fcfid it.
7775 MachineFunction
&MF
= DAG
.getMachineFunction();
7776 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7777 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
7780 if (Subtarget
.hasLFIWAX() || Subtarget
.hasFPCVT()) {
7783 if (!(ReusingLoad
= canReuseLoadAddress(Op
.getOperand(0), MVT::i32
, RLI
,
7785 int FrameIdx
= MFI
.CreateStackObject(4, 4, false);
7786 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
7789 DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0), FIdx
,
7790 MachinePointerInfo::getFixedStack(
7791 DAG
.getMachineFunction(), FrameIdx
));
7793 assert(cast
<StoreSDNode
>(Store
)->getMemoryVT() == MVT::i32
&&
7794 "Expected an i32 store");
7799 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
7803 MachineMemOperand
*MMO
=
7804 MF
.getMachineMemOperand(RLI
.MPI
, MachineMemOperand::MOLoad
, 4,
7805 RLI
.Alignment
, RLI
.AAInfo
, RLI
.Ranges
);
7806 SDValue Ops
[] = { RLI
.Chain
, RLI
.Ptr
};
7807 Ld
= DAG
.getMemIntrinsicNode(Op
.getOpcode() == ISD::UINT_TO_FP
?
7808 PPCISD::LFIWZX
: PPCISD::LFIWAX
,
7809 dl
, DAG
.getVTList(MVT::f64
, MVT::Other
),
7810 Ops
, MVT::i32
, MMO
);
7812 spliceIntoChain(RLI
.ResChain
, Ld
.getValue(1), DAG
);
7814 assert(Subtarget
.isPPC64() &&
7815 "i32->FP without LFIWAX supported only on PPC64");
7817 int FrameIdx
= MFI
.CreateStackObject(8, 8, false);
7818 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
7820 SDValue Ext64
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::i64
,
7823 // STD the extended value into the stack slot.
7824 SDValue Store
= DAG
.getStore(
7825 DAG
.getEntryNode(), dl
, Ext64
, FIdx
,
7826 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
));
7828 // Load the value as a double.
7830 MVT::f64
, dl
, Store
, FIdx
,
7831 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
));
7834 // FCFID it and return it.
7835 SDValue FP
= DAG
.getNode(FCFOp
, dl
, FCFTy
, Ld
);
7836 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT())
7837 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
,
7838 DAG
.getIntPtrConstant(0, dl
));
7842 SDValue
PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
7843 SelectionDAG
&DAG
) const {
7846 The rounding mode is in bits 30:31 of FPSR, and has the following
7853 FLT_ROUNDS, on the other hand, expects the following:
7860 To perform the conversion, we do:
7861 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7864 MachineFunction
&MF
= DAG
.getMachineFunction();
7865 EVT VT
= Op
.getValueType();
7866 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
7868 // Save FP Control Word to register
7870 MVT::f64
, // return register
7871 MVT::Glue
// unused in this context
7873 SDValue Chain
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, None
);
7875 // Save FP register to stack slot
7876 int SSFI
= MF
.getFrameInfo().CreateStackObject(8, 8, false);
7877 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, PtrVT
);
7878 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Chain
, StackSlot
,
7879 MachinePointerInfo());
7881 // Load FP Control Word from low 32 bits of stack slot.
7882 SDValue Four
= DAG
.getConstant(4, dl
, PtrVT
);
7883 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackSlot
, Four
);
7884 SDValue CWD
= DAG
.getLoad(MVT::i32
, dl
, Store
, Addr
, MachinePointerInfo());
7886 // Transform as necessary
7888 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
7889 CWD
, DAG
.getConstant(3, dl
, MVT::i32
));
7891 DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
7892 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
7893 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
,
7894 CWD
, DAG
.getConstant(3, dl
, MVT::i32
)),
7895 DAG
.getConstant(3, dl
, MVT::i32
)),
7896 DAG
.getConstant(1, dl
, MVT::i32
));
7899 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, CWD1
, CWD2
);
7901 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
7902 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
7905 SDValue
PPCTargetLowering::LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
7906 EVT VT
= Op
.getValueType();
7907 unsigned BitWidth
= VT
.getSizeInBits();
7909 assert(Op
.getNumOperands() == 3 &&
7910 VT
== Op
.getOperand(1).getValueType() &&
7913 // Expand into a bunch of logical ops. Note that these ops
7914 // depend on the PPC behavior for oversized shift amounts.
7915 SDValue Lo
= Op
.getOperand(0);
7916 SDValue Hi
= Op
.getOperand(1);
7917 SDValue Amt
= Op
.getOperand(2);
7918 EVT AmtVT
= Amt
.getValueType();
7920 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
7921 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
7922 SDValue Tmp2
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Amt
);
7923 SDValue Tmp3
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Tmp1
);
7924 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
7925 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
7926 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
7927 SDValue Tmp6
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Tmp5
);
7928 SDValue OutHi
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
7929 SDValue OutLo
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Amt
);
7930 SDValue OutOps
[] = { OutLo
, OutHi
};
7931 return DAG
.getMergeValues(OutOps
, dl
);
7934 SDValue
PPCTargetLowering::LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
7935 EVT VT
= Op
.getValueType();
7937 unsigned BitWidth
= VT
.getSizeInBits();
7938 assert(Op
.getNumOperands() == 3 &&
7939 VT
== Op
.getOperand(1).getValueType() &&
7942 // Expand into a bunch of logical ops. Note that these ops
7943 // depend on the PPC behavior for oversized shift amounts.
7944 SDValue Lo
= Op
.getOperand(0);
7945 SDValue Hi
= Op
.getOperand(1);
7946 SDValue Amt
= Op
.getOperand(2);
7947 EVT AmtVT
= Amt
.getValueType();
7949 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
7950 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
7951 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
7952 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
7953 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
7954 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
7955 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
7956 SDValue Tmp6
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Tmp5
);
7957 SDValue OutLo
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
7958 SDValue OutHi
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Amt
);
7959 SDValue OutOps
[] = { OutLo
, OutHi
};
7960 return DAG
.getMergeValues(OutOps
, dl
);
7963 SDValue
PPCTargetLowering::LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
7965 EVT VT
= Op
.getValueType();
7966 unsigned BitWidth
= VT
.getSizeInBits();
7967 assert(Op
.getNumOperands() == 3 &&
7968 VT
== Op
.getOperand(1).getValueType() &&
7971 // Expand into a bunch of logical ops, followed by a select_cc.
7972 SDValue Lo
= Op
.getOperand(0);
7973 SDValue Hi
= Op
.getOperand(1);
7974 SDValue Amt
= Op
.getOperand(2);
7975 EVT AmtVT
= Amt
.getValueType();
7977 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
7978 DAG
.getConstant(BitWidth
, dl
, AmtVT
), Amt
);
7979 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
7980 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
7981 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
7982 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
7983 DAG
.getConstant(-BitWidth
, dl
, AmtVT
));
7984 SDValue Tmp6
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Tmp5
);
7985 SDValue OutHi
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Amt
);
7986 SDValue OutLo
= DAG
.getSelectCC(dl
, Tmp5
, DAG
.getConstant(0, dl
, AmtVT
),
7987 Tmp4
, Tmp6
, ISD::SETLE
);
7988 SDValue OutOps
[] = { OutLo
, OutHi
};
7989 return DAG
.getMergeValues(OutOps
, dl
);
7992 //===----------------------------------------------------------------------===//
7993 // Vector related lowering.
7996 /// BuildSplatI - Build a canonical splati of Val with an element size of
7997 /// SplatSize. Cast the result to VT.
7998 static SDValue
BuildSplatI(int Val
, unsigned SplatSize
, EVT VT
,
7999 SelectionDAG
&DAG
, const SDLoc
&dl
) {
8000 assert(Val
>= -16 && Val
<= 15 && "vsplti is out of range!");
8002 static const MVT VTys
[] = { // canonical VT to use for each size.
8003 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
8006 EVT ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
8008 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8012 EVT CanonicalVT
= VTys
[SplatSize
-1];
8014 // Build a canonical splat for this value.
8015 return DAG
.getBitcast(ReqVT
, DAG
.getConstant(Val
, dl
, CanonicalVT
));
8018 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8019 /// specified intrinsic ID.
8020 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op
, SelectionDAG
&DAG
,
8021 const SDLoc
&dl
, EVT DestVT
= MVT::Other
) {
8022 if (DestVT
== MVT::Other
) DestVT
= Op
.getValueType();
8023 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8024 DAG
.getConstant(IID
, dl
, MVT::i32
), Op
);
8027 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8028 /// specified intrinsic ID.
8029 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue LHS
, SDValue RHS
,
8030 SelectionDAG
&DAG
, const SDLoc
&dl
,
8031 EVT DestVT
= MVT::Other
) {
8032 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
8033 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8034 DAG
.getConstant(IID
, dl
, MVT::i32
), LHS
, RHS
);
8037 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8038 /// specified intrinsic ID.
8039 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op0
, SDValue Op1
,
8040 SDValue Op2
, SelectionDAG
&DAG
, const SDLoc
&dl
,
8041 EVT DestVT
= MVT::Other
) {
8042 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
8043 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
8044 DAG
.getConstant(IID
, dl
, MVT::i32
), Op0
, Op1
, Op2
);
8047 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8048 /// amount. The result has the specified value type.
8049 static SDValue
BuildVSLDOI(SDValue LHS
, SDValue RHS
, unsigned Amt
, EVT VT
,
8050 SelectionDAG
&DAG
, const SDLoc
&dl
) {
8051 // Force LHS/RHS to be the right type.
8052 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, LHS
);
8053 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, RHS
);
8056 for (unsigned i
= 0; i
!= 16; ++i
)
8058 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, LHS
, RHS
, Ops
);
8059 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
8062 /// Do we have an efficient pattern in a .td file for this node?
8064 /// \param V - pointer to the BuildVectorSDNode being matched
8065 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8067 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8068 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8069 /// the opposite is true (expansion is beneficial) are:
8070 /// - The node builds a vector out of integers that are not 32 or 64-bits
8071 /// - The node builds a vector out of constants
8072 /// - The node is a "load-and-splat"
8073 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8074 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode
*V
,
8077 EVT VecVT
= V
->getValueType(0);
8078 bool RightType
= VecVT
== MVT::v2f64
||
8079 (HasP8Vector
&& VecVT
== MVT::v4f32
) ||
8080 (HasDirectMove
&& (VecVT
== MVT::v2i64
|| VecVT
== MVT::v4i32
));
8084 bool IsSplat
= true;
8085 bool IsLoad
= false;
8086 SDValue Op0
= V
->getOperand(0);
8088 // This function is called in a block that confirms the node is not a constant
8089 // splat. So a constant BUILD_VECTOR here means the vector is built out of
8090 // different constants.
8091 if (V
->isConstant())
8093 for (int i
= 0, e
= V
->getNumOperands(); i
< e
; ++i
) {
8094 if (V
->getOperand(i
).isUndef())
8096 // We want to expand nodes that represent load-and-splat even if the
8097 // loaded value is a floating point truncation or conversion to int.
8098 if (V
->getOperand(i
).getOpcode() == ISD::LOAD
||
8099 (V
->getOperand(i
).getOpcode() == ISD::FP_ROUND
&&
8100 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
) ||
8101 (V
->getOperand(i
).getOpcode() == ISD::FP_TO_SINT
&&
8102 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
) ||
8103 (V
->getOperand(i
).getOpcode() == ISD::FP_TO_UINT
&&
8104 V
->getOperand(i
).getOperand(0).getOpcode() == ISD::LOAD
))
8106 // If the operands are different or the input is not a load and has more
8107 // uses than just this BV node, then it isn't a splat.
8108 if (V
->getOperand(i
) != Op0
||
8109 (!IsLoad
&& !V
->isOnlyUserOf(V
->getOperand(i
).getNode())))
8112 return !(IsSplat
&& IsLoad
);
8115 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8116 SDValue
PPCTargetLowering::LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) const {
8119 SDValue Op0
= Op
->getOperand(0);
8121 if (!EnableQuadPrecision
||
8122 (Op
.getValueType() != MVT::f128
) ||
8123 (Op0
.getOpcode() != ISD::BUILD_PAIR
) ||
8124 (Op0
.getOperand(0).getValueType() != MVT::i64
) ||
8125 (Op0
.getOperand(1).getValueType() != MVT::i64
))
8128 return DAG
.getNode(PPCISD::BUILD_FP128
, dl
, MVT::f128
, Op0
.getOperand(0),
8132 // If this is a case we can't handle, return null and let the default
8133 // expansion code take care of it. If we CAN select this case, and if it
8134 // selects to a single instruction, return Op. Otherwise, if we can codegen
8135 // this case more efficiently than a constant pool load, lower it to the
8136 // sequence of ops that should be used.
8137 SDValue
PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op
,
8138 SelectionDAG
&DAG
) const {
8140 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
8141 assert(BVN
&& "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8143 if (Subtarget
.hasQPX() && Op
.getValueType() == MVT::v4i1
) {
8144 // We first build an i32 vector, load it into a QPX register,
8145 // then convert it to a floating-point vector and compare it
8146 // to a zero vector to get the boolean result.
8147 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
8148 int FrameIdx
= MFI
.CreateStackObject(16, 16, false);
8149 MachinePointerInfo PtrInfo
=
8150 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
8151 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
8152 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
8154 assert(BVN
->getNumOperands() == 4 &&
8155 "BUILD_VECTOR for v4i1 does not have 4 operands");
8157 bool IsConst
= true;
8158 for (unsigned i
= 0; i
< 4; ++i
) {
8159 if (BVN
->getOperand(i
).isUndef()) continue;
8160 if (!isa
<ConstantSDNode
>(BVN
->getOperand(i
))) {
8168 ConstantFP::get(Type::getFloatTy(*DAG
.getContext()), 1.0);
8170 ConstantFP::get(Type::getFloatTy(*DAG
.getContext()), -1.0);
8173 for (unsigned i
= 0; i
< 4; ++i
) {
8174 if (BVN
->getOperand(i
).isUndef())
8175 CV
[i
] = UndefValue::get(Type::getFloatTy(*DAG
.getContext()));
8176 else if (isNullConstant(BVN
->getOperand(i
)))
8182 Constant
*CP
= ConstantVector::get(CV
);
8183 SDValue CPIdx
= DAG
.getConstantPool(CP
, getPointerTy(DAG
.getDataLayout()),
8184 16 /* alignment */);
8186 SDValue Ops
[] = {DAG
.getEntryNode(), CPIdx
};
8187 SDVTList VTs
= DAG
.getVTList({MVT::v4i1
, /*chain*/ MVT::Other
});
8188 return DAG
.getMemIntrinsicNode(
8189 PPCISD::QVLFSb
, dl
, VTs
, Ops
, MVT::v4f32
,
8190 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
8193 SmallVector
<SDValue
, 4> Stores
;
8194 for (unsigned i
= 0; i
< 4; ++i
) {
8195 if (BVN
->getOperand(i
).isUndef()) continue;
8197 unsigned Offset
= 4*i
;
8198 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIdx
.getValueType());
8199 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIdx
.getValueType(), FIdx
, Idx
);
8201 unsigned StoreSize
= BVN
->getOperand(i
).getValueType().getStoreSize();
8202 if (StoreSize
> 4) {
8204 DAG
.getTruncStore(DAG
.getEntryNode(), dl
, BVN
->getOperand(i
), Idx
,
8205 PtrInfo
.getWithOffset(Offset
), MVT::i32
));
8207 SDValue StoreValue
= BVN
->getOperand(i
);
8209 StoreValue
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, StoreValue
);
8211 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, StoreValue
, Idx
,
8212 PtrInfo
.getWithOffset(Offset
)));
8217 if (!Stores
.empty())
8218 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
8220 StoreChain
= DAG
.getEntryNode();
8222 // Now load from v4i32 into the QPX register; this will extend it to
8223 // v4i64 but not yet convert it to a floating point. Nevertheless, this
8224 // is typed as v4f64 because the QPX register integer states are not
8225 // explicitly represented.
8227 SDValue Ops
[] = {StoreChain
,
8228 DAG
.getConstant(Intrinsic::ppc_qpx_qvlfiwz
, dl
, MVT::i32
),
8230 SDVTList VTs
= DAG
.getVTList({MVT::v4f64
, /*chain*/ MVT::Other
});
8232 SDValue LoadedVect
= DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
,
8233 dl
, VTs
, Ops
, MVT::v4i32
, PtrInfo
);
8234 LoadedVect
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f64
,
8235 DAG
.getConstant(Intrinsic::ppc_qpx_qvfcfidu
, dl
, MVT::i32
),
8238 SDValue FPZeros
= DAG
.getConstantFP(0.0, dl
, MVT::v4f64
);
8240 return DAG
.getSetCC(dl
, MVT::v4i1
, LoadedVect
, FPZeros
, ISD::SETEQ
);
8243 // All other QPX vectors are handled by generic code.
8244 if (Subtarget
.hasQPX())
8247 // Check if this is a splat of a constant value.
8248 APInt APSplatBits
, APSplatUndef
;
8249 unsigned SplatBitSize
;
8251 if (! BVN
->isConstantSplat(APSplatBits
, APSplatUndef
, SplatBitSize
,
8252 HasAnyUndefs
, 0, !Subtarget
.isLittleEndian()) ||
8253 SplatBitSize
> 32) {
8254 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8255 // lowered to VSX instructions under certain conditions.
8256 // Without VSX, there is no pattern more efficient than expanding the node.
8257 if (Subtarget
.hasVSX() &&
8258 haveEfficientBuildVectorPattern(BVN
, Subtarget
.hasDirectMove(),
8259 Subtarget
.hasP8Vector()))
8264 unsigned SplatBits
= APSplatBits
.getZExtValue();
8265 unsigned SplatUndef
= APSplatUndef
.getZExtValue();
8266 unsigned SplatSize
= SplatBitSize
/ 8;
8268 // First, handle single instruction cases.
8271 if (SplatBits
== 0) {
8272 // Canonicalize all zero vectors to be v4i32.
8273 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
8274 SDValue Z
= DAG
.getConstant(0, dl
, MVT::v4i32
);
8275 Op
= DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Z
);
8280 // We have XXSPLTIB for constant splats one byte wide
8281 if (Subtarget
.hasP9Vector() && SplatSize
== 1) {
8282 // This is a splat of 1-byte elements with some elements potentially undef.
8283 // Rather than trying to match undef in the SDAG patterns, ensure that all
8284 // elements are the same constant.
8285 if (HasAnyUndefs
|| ISD::isBuildVectorAllOnes(BVN
)) {
8286 SmallVector
<SDValue
, 16> Ops(16, DAG
.getConstant(SplatBits
,
8288 SDValue NewBV
= DAG
.getBuildVector(MVT::v16i8
, dl
, Ops
);
8289 if (Op
.getValueType() != MVT::v16i8
)
8290 return DAG
.getBitcast(Op
.getValueType(), NewBV
);
8294 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
8295 // detect that constant splats like v8i16: 0xABAB are really just splats
8296 // of a 1-byte constant. In this case, we need to convert the node to a
8297 // splat of v16i8 and a bitcast.
8298 if (Op
.getValueType() != MVT::v16i8
)
8299 return DAG
.getBitcast(Op
.getValueType(),
8300 DAG
.getConstant(SplatBits
, dl
, MVT::v16i8
));
8305 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8306 int32_t SextVal
= (int32_t(SplatBits
<< (32-SplatBitSize
)) >>
8308 if (SextVal
>= -16 && SextVal
<= 15)
8309 return BuildSplatI(SextVal
, SplatSize
, Op
.getValueType(), DAG
, dl
);
8311 // Two instruction sequences.
8313 // If this value is in the range [-32,30] and is even, use:
8314 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8315 // If this value is in the range [17,31] and is odd, use:
8316 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8317 // If this value is in the range [-31,-17] and is odd, use:
8318 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8319 // Note the last two are three-instruction sequences.
8320 if (SextVal
>= -32 && SextVal
<= 31) {
8321 // To avoid having these optimizations undone by constant folding,
8322 // we convert to a pseudo that will be expanded later into one of
8324 SDValue Elt
= DAG
.getConstant(SextVal
, dl
, MVT::i32
);
8325 EVT VT
= (SplatSize
== 1 ? MVT::v16i8
:
8326 (SplatSize
== 2 ? MVT::v8i16
: MVT::v4i32
));
8327 SDValue EltSize
= DAG
.getConstant(SplatSize
, dl
, MVT::i32
);
8328 SDValue RetVal
= DAG
.getNode(PPCISD::VADD_SPLAT
, dl
, VT
, Elt
, EltSize
);
8329 if (VT
== Op
.getValueType())
8332 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), RetVal
);
8335 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
8336 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
8338 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
8339 // Make -1 and vspltisw -1:
8340 SDValue OnesV
= BuildSplatI(-1, 4, MVT::v4i32
, DAG
, dl
);
8342 // Make the VSLW intrinsic, computing 0x8000_0000.
8343 SDValue Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
8346 // xor by OnesV to invert it.
8347 Res
= DAG
.getNode(ISD::XOR
, dl
, MVT::v4i32
, Res
, OnesV
);
8348 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
8351 // Check to see if this is a wide variety of vsplti*, binop self cases.
8352 static const signed char SplatCsts
[] = {
8353 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8354 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8357 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
8358 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8359 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
8360 int i
= SplatCsts
[idx
];
8362 // Figure out what shift amount will be used by altivec if shifted by i in
8364 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
8366 // vsplti + shl self.
8367 if (SextVal
== (int)((unsigned)i
<< TypeShiftAmt
)) {
8368 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
8369 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
8370 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
8371 Intrinsic::ppc_altivec_vslw
8373 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
8374 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
8377 // vsplti + srl self.
8378 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
8379 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
8380 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
8381 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
8382 Intrinsic::ppc_altivec_vsrw
8384 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
8385 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
8388 // vsplti + sra self.
8389 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
8390 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
8391 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
8392 Intrinsic::ppc_altivec_vsrab
, Intrinsic::ppc_altivec_vsrah
, 0,
8393 Intrinsic::ppc_altivec_vsraw
8395 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
8396 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
8399 // vsplti + rol self.
8400 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
8401 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
8402 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
8403 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
8404 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
8405 Intrinsic::ppc_altivec_vrlw
8407 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
8408 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
8411 // t = vsplti c, result = vsldoi t, t, 1
8412 if (SextVal
== (int)(((unsigned)i
<< 8) | (i
< 0 ? 0xFF : 0))) {
8413 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
8414 unsigned Amt
= Subtarget
.isLittleEndian() ? 15 : 1;
8415 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
8417 // t = vsplti c, result = vsldoi t, t, 2
8418 if (SextVal
== (int)(((unsigned)i
<< 16) | (i
< 0 ? 0xFFFF : 0))) {
8419 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
8420 unsigned Amt
= Subtarget
.isLittleEndian() ? 14 : 2;
8421 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
8423 // t = vsplti c, result = vsldoi t, t, 3
8424 if (SextVal
== (int)(((unsigned)i
<< 24) | (i
< 0 ? 0xFFFFFF : 0))) {
8425 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
8426 unsigned Amt
= Subtarget
.isLittleEndian() ? 13 : 3;
8427 return BuildVSLDOI(T
, T
, Amt
, Op
.getValueType(), DAG
, dl
);
8434 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8435 /// the specified operations to build the shuffle.
8436 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
8437 SDValue RHS
, SelectionDAG
&DAG
,
8439 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
8440 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
8441 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
8444 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8456 if (OpNum
== OP_COPY
) {
8457 if (LHSID
== (1*9+2)*9+3) return LHS
;
8458 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8462 SDValue OpLHS
, OpRHS
;
8463 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
8464 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
8468 default: llvm_unreachable("Unknown i32 permute!");
8470 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
8471 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
8472 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
8473 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
8476 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
8477 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
8478 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
8479 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
8482 for (unsigned i
= 0; i
!= 16; ++i
)
8483 ShufIdxs
[i
] = (i
&3)+0;
8486 for (unsigned i
= 0; i
!= 16; ++i
)
8487 ShufIdxs
[i
] = (i
&3)+4;
8490 for (unsigned i
= 0; i
!= 16; ++i
)
8491 ShufIdxs
[i
] = (i
&3)+8;
8494 for (unsigned i
= 0; i
!= 16; ++i
)
8495 ShufIdxs
[i
] = (i
&3)+12;
8498 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
, dl
);
8500 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
, dl
);
8502 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
, dl
);
8504 EVT VT
= OpLHS
.getValueType();
8505 OpLHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpLHS
);
8506 OpRHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpRHS
);
8507 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, OpLHS
, OpRHS
, ShufIdxs
);
8508 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
8511 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8512 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8514 SDValue
PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode
*N
,
8515 SelectionDAG
&DAG
) const {
8516 const unsigned BytesInVector
= 16;
8517 bool IsLE
= Subtarget
.isLittleEndian();
8519 SDValue V1
= N
->getOperand(0);
8520 SDValue V2
= N
->getOperand(1);
8521 unsigned ShiftElts
= 0, InsertAtByte
= 0;
8524 // Shifts required to get the byte we want at element 7.
8525 unsigned LittleEndianShifts
[] = {8, 7, 6, 5, 4, 3, 2, 1,
8526 0, 15, 14, 13, 12, 11, 10, 9};
8527 unsigned BigEndianShifts
[] = {9, 10, 11, 12, 13, 14, 15, 0,
8528 1, 2, 3, 4, 5, 6, 7, 8};
8530 ArrayRef
<int> Mask
= N
->getMask();
8531 int OriginalOrder
[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8533 // For each mask element, find out if we're just inserting something
8534 // from V2 into V1 or vice versa.
8535 // Possible permutations inserting an element from V2 into V1:
8536 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8537 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8539 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8540 // Inserting from V1 into V2 will be similar, except mask range will be
8543 bool FoundCandidate
= false;
8544 // If both vector operands for the shuffle are the same vector, the mask
8545 // will contain only elements from the first one and the second one will be
8547 unsigned VINSERTBSrcElem
= IsLE
? 8 : 7;
8548 // Go through the mask of half-words to find an element that's being moved
8549 // from one vector to the other.
8550 for (unsigned i
= 0; i
< BytesInVector
; ++i
) {
8551 unsigned CurrentElement
= Mask
[i
];
8552 // If 2nd operand is undefined, we should only look for element 7 in the
8554 if (V2
.isUndef() && CurrentElement
!= VINSERTBSrcElem
)
8557 bool OtherElementsInOrder
= true;
8558 // Examine the other elements in the Mask to see if they're in original
8560 for (unsigned j
= 0; j
< BytesInVector
; ++j
) {
8563 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8564 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
8565 // in which we always assume we're always picking from the 1st operand.
8567 (!V2
.isUndef() && CurrentElement
< BytesInVector
) ? BytesInVector
: 0;
8568 if (Mask
[j
] != OriginalOrder
[j
] + MaskOffset
) {
8569 OtherElementsInOrder
= false;
8573 // If other elements are in original order, we record the number of shifts
8574 // we need to get the element we want into element 7. Also record which byte
8575 // in the vector we should insert into.
8576 if (OtherElementsInOrder
) {
8577 // If 2nd operand is undefined, we assume no shifts and no swapping.
8582 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8583 ShiftElts
= IsLE
? LittleEndianShifts
[CurrentElement
& 0xF]
8584 : BigEndianShifts
[CurrentElement
& 0xF];
8585 Swap
= CurrentElement
< BytesInVector
;
8587 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) : i
;
8588 FoundCandidate
= true;
8593 if (!FoundCandidate
)
8596 // Candidate found, construct the proper SDAG sequence with VINSERTB,
8597 // optionally with VECSHL if shift is required.
8603 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v16i8
, V2
, V2
,
8604 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
8605 return DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v16i8
, V1
, Shl
,
8606 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8608 return DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v16i8
, V1
, V2
,
8609 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8612 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8613 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8615 SDValue
PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode
*N
,
8616 SelectionDAG
&DAG
) const {
8617 const unsigned NumHalfWords
= 8;
8618 const unsigned BytesInVector
= NumHalfWords
* 2;
8619 // Check that the shuffle is on half-words.
8620 if (!isNByteElemShuffleMask(N
, 2, 1))
8623 bool IsLE
= Subtarget
.isLittleEndian();
8625 SDValue V1
= N
->getOperand(0);
8626 SDValue V2
= N
->getOperand(1);
8627 unsigned ShiftElts
= 0, InsertAtByte
= 0;
8630 // Shifts required to get the half-word we want at element 3.
8631 unsigned LittleEndianShifts
[] = {4, 3, 2, 1, 0, 7, 6, 5};
8632 unsigned BigEndianShifts
[] = {5, 6, 7, 0, 1, 2, 3, 4};
8635 uint32_t OriginalOrderLow
= 0x1234567;
8636 uint32_t OriginalOrderHigh
= 0x89ABCDEF;
8637 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
8638 // 32-bit space, only need 4-bit nibbles per element.
8639 for (unsigned i
= 0; i
< NumHalfWords
; ++i
) {
8640 unsigned MaskShift
= (NumHalfWords
- 1 - i
) * 4;
8641 Mask
|= ((uint32_t)(N
->getMaskElt(i
* 2) / 2) << MaskShift
);
8644 // For each mask element, find out if we're just inserting something
8645 // from V2 into V1 or vice versa. Possible permutations inserting an element
8647 // X, 1, 2, 3, 4, 5, 6, 7
8648 // 0, X, 2, 3, 4, 5, 6, 7
8649 // 0, 1, X, 3, 4, 5, 6, 7
8650 // 0, 1, 2, X, 4, 5, 6, 7
8651 // 0, 1, 2, 3, X, 5, 6, 7
8652 // 0, 1, 2, 3, 4, X, 6, 7
8653 // 0, 1, 2, 3, 4, 5, X, 7
8654 // 0, 1, 2, 3, 4, 5, 6, X
8655 // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8657 bool FoundCandidate
= false;
8658 // Go through the mask of half-words to find an element that's being moved
8659 // from one vector to the other.
8660 for (unsigned i
= 0; i
< NumHalfWords
; ++i
) {
8661 unsigned MaskShift
= (NumHalfWords
- 1 - i
) * 4;
8662 uint32_t MaskOneElt
= (Mask
>> MaskShift
) & 0xF;
8663 uint32_t MaskOtherElts
= ~(0xF << MaskShift
);
8664 uint32_t TargetOrder
= 0x0;
8666 // If both vector operands for the shuffle are the same vector, the mask
8667 // will contain only elements from the first one and the second one will be
8671 unsigned VINSERTHSrcElem
= IsLE
? 4 : 3;
8672 TargetOrder
= OriginalOrderLow
;
8674 // Skip if not the correct element or mask of other elements don't equal
8675 // to our expected order.
8676 if (MaskOneElt
== VINSERTHSrcElem
&&
8677 (Mask
& MaskOtherElts
) == (TargetOrder
& MaskOtherElts
)) {
8678 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) * 2 : i
* 2;
8679 FoundCandidate
= true;
8682 } else { // If both operands are defined.
8683 // Target order is [8,15] if the current mask is between [0,7].
8685 (MaskOneElt
< NumHalfWords
) ? OriginalOrderHigh
: OriginalOrderLow
;
8686 // Skip if mask of other elements don't equal our expected order.
8687 if ((Mask
& MaskOtherElts
) == (TargetOrder
& MaskOtherElts
)) {
8688 // We only need the last 3 bits for the number of shifts.
8689 ShiftElts
= IsLE
? LittleEndianShifts
[MaskOneElt
& 0x7]
8690 : BigEndianShifts
[MaskOneElt
& 0x7];
8691 InsertAtByte
= IsLE
? BytesInVector
- (i
+ 1) * 2 : i
* 2;
8692 Swap
= MaskOneElt
< NumHalfWords
;
8693 FoundCandidate
= true;
8699 if (!FoundCandidate
)
8702 // Candidate found, construct the proper SDAG sequence with VINSERTH,
8703 // optionally with VECSHL if shift is required.
8708 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V1
);
8710 // Double ShiftElts because we're left shifting on v16i8 type.
8711 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v16i8
, V2
, V2
,
8712 DAG
.getConstant(2 * ShiftElts
, dl
, MVT::i32
));
8713 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, Shl
);
8714 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v8i16
, Conv1
, Conv2
,
8715 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8716 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
8718 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V2
);
8719 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v8i16
, Conv1
, Conv2
,
8720 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8721 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
8724 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
8725 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
8726 /// return the code it can be lowered into. Worst case, it can always be
8727 /// lowered into a vperm.
8728 SDValue
PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
8729 SelectionDAG
&DAG
) const {
8731 SDValue V1
= Op
.getOperand(0);
8732 SDValue V2
= Op
.getOperand(1);
8733 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
8734 EVT VT
= Op
.getValueType();
8735 bool isLittleEndian
= Subtarget
.isLittleEndian();
8737 unsigned ShiftElts
, InsertAtByte
;
8739 if (Subtarget
.hasP9Vector() &&
8740 PPC::isXXINSERTWMask(SVOp
, ShiftElts
, InsertAtByte
, Swap
,
8744 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
8745 SDValue Conv2
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V2
);
8747 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v4i32
, Conv2
, Conv2
,
8748 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
8749 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v4i32
, Conv1
, Shl
,
8750 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8751 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
8753 SDValue Ins
= DAG
.getNode(PPCISD::VECINSERT
, dl
, MVT::v4i32
, Conv1
, Conv2
,
8754 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
8755 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Ins
);
8758 if (Subtarget
.hasP9Altivec()) {
8760 if ((NewISDNode
= lowerToVINSERTH(SVOp
, DAG
)))
8763 if ((NewISDNode
= lowerToVINSERTB(SVOp
, DAG
)))
8767 if (Subtarget
.hasVSX() &&
8768 PPC::isXXSLDWIShuffleMask(SVOp
, ShiftElts
, Swap
, isLittleEndian
)) {
8771 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
8773 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V2
.isUndef() ? V1
: V2
);
8775 SDValue Shl
= DAG
.getNode(PPCISD::VECSHL
, dl
, MVT::v4i32
, Conv1
, Conv2
,
8776 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
8777 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Shl
);
8780 if (Subtarget
.hasVSX() &&
8781 PPC::isXXPERMDIShuffleMask(SVOp
, ShiftElts
, Swap
, isLittleEndian
)) {
8784 SDValue Conv1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V1
);
8786 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V2
.isUndef() ? V1
: V2
);
8788 SDValue PermDI
= DAG
.getNode(PPCISD::XXPERMDI
, dl
, MVT::v2i64
, Conv1
, Conv2
,
8789 DAG
.getConstant(ShiftElts
, dl
, MVT::i32
));
8790 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, PermDI
);
8793 if (Subtarget
.hasP9Vector()) {
8794 if (PPC::isXXBRHShuffleMask(SVOp
)) {
8795 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, V1
);
8796 SDValue ReveHWord
= DAG
.getNode(PPCISD::XXREVERSE
, dl
, MVT::v8i16
, Conv
);
8797 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveHWord
);
8798 } else if (PPC::isXXBRWShuffleMask(SVOp
)) {
8799 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
8800 SDValue ReveWord
= DAG
.getNode(PPCISD::XXREVERSE
, dl
, MVT::v4i32
, Conv
);
8801 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveWord
);
8802 } else if (PPC::isXXBRDShuffleMask(SVOp
)) {
8803 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2i64
, V1
);
8804 SDValue ReveDWord
= DAG
.getNode(PPCISD::XXREVERSE
, dl
, MVT::v2i64
, Conv
);
8805 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveDWord
);
8806 } else if (PPC::isXXBRQShuffleMask(SVOp
)) {
8807 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i128
, V1
);
8808 SDValue ReveQWord
= DAG
.getNode(PPCISD::XXREVERSE
, dl
, MVT::v1i128
, Conv
);
8809 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, ReveQWord
);
8813 if (Subtarget
.hasVSX()) {
8814 if (V2
.isUndef() && PPC::isSplatShuffleMask(SVOp
, 4)) {
8815 int SplatIdx
= PPC::getVSPLTImmediate(SVOp
, 4, DAG
);
8817 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, V1
);
8818 SDValue Splat
= DAG
.getNode(PPCISD::XXSPLT
, dl
, MVT::v4i32
, Conv
,
8819 DAG
.getConstant(SplatIdx
, dl
, MVT::i32
));
8820 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Splat
);
8823 // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8824 if (V2
.isUndef() && PPC::isVSLDOIShuffleMask(SVOp
, 1, DAG
) == 8) {
8825 SDValue Conv
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f64
, V1
);
8826 SDValue Swap
= DAG
.getNode(PPCISD::SWAP_NO_CHAIN
, dl
, MVT::v2f64
, Conv
);
8827 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, Swap
);
8831 if (Subtarget
.hasQPX()) {
8832 if (VT
.getVectorNumElements() != 4)
8835 if (V2
.isUndef()) V2
= V1
;
8837 int AlignIdx
= PPC::isQVALIGNIShuffleMask(SVOp
);
8838 if (AlignIdx
!= -1) {
8839 return DAG
.getNode(PPCISD::QVALIGNI
, dl
, VT
, V1
, V2
,
8840 DAG
.getConstant(AlignIdx
, dl
, MVT::i32
));
8841 } else if (SVOp
->isSplat()) {
8842 int SplatIdx
= SVOp
->getSplatIndex();
8843 if (SplatIdx
>= 4) {
8848 return DAG
.getNode(PPCISD::QVESPLATI
, dl
, VT
, V1
,
8849 DAG
.getConstant(SplatIdx
, dl
, MVT::i32
));
8852 // Lower this into a qvgpci/qvfperm pair.
8854 // Compute the qvgpci literal
8856 for (unsigned i
= 0; i
< 4; ++i
) {
8857 int m
= SVOp
->getMaskElt(i
);
8858 unsigned mm
= m
>= 0 ? (unsigned) m
: i
;
8859 idx
|= mm
<< (3-i
)*3;
8862 SDValue V3
= DAG
.getNode(PPCISD::QVGPCI
, dl
, MVT::v4f64
,
8863 DAG
.getConstant(idx
, dl
, MVT::i32
));
8864 return DAG
.getNode(PPCISD::QVFPERM
, dl
, VT
, V1
, V2
, V3
);
8867 // Cases that are handled by instructions that take permute immediates
8868 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8869 // selected by the instruction selector.
8871 if (PPC::isSplatShuffleMask(SVOp
, 1) ||
8872 PPC::isSplatShuffleMask(SVOp
, 2) ||
8873 PPC::isSplatShuffleMask(SVOp
, 4) ||
8874 PPC::isVPKUWUMShuffleMask(SVOp
, 1, DAG
) ||
8875 PPC::isVPKUHUMShuffleMask(SVOp
, 1, DAG
) ||
8876 PPC::isVSLDOIShuffleMask(SVOp
, 1, DAG
) != -1 ||
8877 PPC::isVMRGLShuffleMask(SVOp
, 1, 1, DAG
) ||
8878 PPC::isVMRGLShuffleMask(SVOp
, 2, 1, DAG
) ||
8879 PPC::isVMRGLShuffleMask(SVOp
, 4, 1, DAG
) ||
8880 PPC::isVMRGHShuffleMask(SVOp
, 1, 1, DAG
) ||
8881 PPC::isVMRGHShuffleMask(SVOp
, 2, 1, DAG
) ||
8882 PPC::isVMRGHShuffleMask(SVOp
, 4, 1, DAG
) ||
8883 (Subtarget
.hasP8Altivec() && (
8884 PPC::isVPKUDUMShuffleMask(SVOp
, 1, DAG
) ||
8885 PPC::isVMRGEOShuffleMask(SVOp
, true, 1, DAG
) ||
8886 PPC::isVMRGEOShuffleMask(SVOp
, false, 1, DAG
)))) {
8891 // Altivec has a variety of "shuffle immediates" that take two vector inputs
8892 // and produce a fixed permutation. If any of these match, do not lower to
8894 unsigned int ShuffleKind
= isLittleEndian
? 2 : 0;
8895 if (PPC::isVPKUWUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
8896 PPC::isVPKUHUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
8897 PPC::isVSLDOIShuffleMask(SVOp
, ShuffleKind
, DAG
) != -1 ||
8898 PPC::isVMRGLShuffleMask(SVOp
, 1, ShuffleKind
, DAG
) ||
8899 PPC::isVMRGLShuffleMask(SVOp
, 2, ShuffleKind
, DAG
) ||
8900 PPC::isVMRGLShuffleMask(SVOp
, 4, ShuffleKind
, DAG
) ||
8901 PPC::isVMRGHShuffleMask(SVOp
, 1, ShuffleKind
, DAG
) ||
8902 PPC::isVMRGHShuffleMask(SVOp
, 2, ShuffleKind
, DAG
) ||
8903 PPC::isVMRGHShuffleMask(SVOp
, 4, ShuffleKind
, DAG
) ||
8904 (Subtarget
.hasP8Altivec() && (
8905 PPC::isVPKUDUMShuffleMask(SVOp
, ShuffleKind
, DAG
) ||
8906 PPC::isVMRGEOShuffleMask(SVOp
, true, ShuffleKind
, DAG
) ||
8907 PPC::isVMRGEOShuffleMask(SVOp
, false, ShuffleKind
, DAG
))))
8910 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
8911 // perfect shuffle table to emit an optimal matching sequence.
8912 ArrayRef
<int> PermMask
= SVOp
->getMask();
8914 unsigned PFIndexes
[4];
8915 bool isFourElementShuffle
= true;
8916 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
8917 unsigned EltNo
= 8; // Start out undef.
8918 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
8919 if (PermMask
[i
*4+j
] < 0)
8920 continue; // Undef, ignore it.
8922 unsigned ByteSource
= PermMask
[i
*4+j
];
8923 if ((ByteSource
& 3) != j
) {
8924 isFourElementShuffle
= false;
8929 EltNo
= ByteSource
/4;
8930 } else if (EltNo
!= ByteSource
/4) {
8931 isFourElementShuffle
= false;
8935 PFIndexes
[i
] = EltNo
;
8938 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8939 // perfect shuffle vector to determine if it is cost effective to do this as
8940 // discrete instructions, or whether we should use a vperm.
8941 // For now, we skip this for little endian until such time as we have a
8942 // little-endian perfect shuffle table.
8943 if (isFourElementShuffle
&& !isLittleEndian
) {
8944 // Compute the index in the perfect shuffle table.
8945 unsigned PFTableIndex
=
8946 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
8948 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
8949 unsigned Cost
= (PFEntry
>> 30);
8951 // Determining when to avoid vperm is tricky. Many things affect the cost
8952 // of vperm, particularly how many times the perm mask needs to be computed.
8953 // For example, if the perm mask can be hoisted out of a loop or is already
8954 // used (perhaps because there are multiple permutes with the same shuffle
8955 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
8956 // the loop requires an extra register.
8958 // As a compromise, we only emit discrete instructions if the shuffle can be
8959 // generated in 3 or fewer operations. When we have loop information
8960 // available, if this block is within a loop, we should avoid using vperm
8961 // for 3-operation perms and use a constant pool load instead.
8963 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
8966 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8967 // vector that will get spilled to the constant pool.
8968 if (V2
.isUndef()) V2
= V1
;
8970 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8971 // that it is in input element units, not in bytes. Convert now.
8973 // For little endian, the order of the input vectors is reversed, and
8974 // the permutation mask is complemented with respect to 31. This is
8975 // necessary to produce proper semantics with the big-endian-biased vperm
8977 EVT EltVT
= V1
.getValueType().getVectorElementType();
8978 unsigned BytesPerElement
= EltVT
.getSizeInBits()/8;
8980 SmallVector
<SDValue
, 16> ResultMask
;
8981 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
8982 unsigned SrcElt
= PermMask
[i
] < 0 ? 0 : PermMask
[i
];
8984 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
8986 ResultMask
.push_back(DAG
.getConstant(31 - (SrcElt
*BytesPerElement
+ j
),
8989 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+ j
, dl
,
8993 SDValue VPermMask
= DAG
.getBuildVector(MVT::v16i8
, dl
, ResultMask
);
8995 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(),
8998 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(),
9002 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9003 /// vector comparison. If it is, return true and fill in Opc/isDot with
9004 /// information about the intrinsic.
9005 static bool getVectorCompareInfo(SDValue Intrin
, int &CompareOpc
,
9006 bool &isDot
, const PPCSubtarget
&Subtarget
) {
9007 unsigned IntrinsicID
=
9008 cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getZExtValue();
9011 switch (IntrinsicID
) {
9014 // Comparison predicates.
9015 case Intrinsic::ppc_altivec_vcmpbfp_p
:
9019 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
9023 case Intrinsic::ppc_altivec_vcmpequb_p
:
9027 case Intrinsic::ppc_altivec_vcmpequh_p
:
9031 case Intrinsic::ppc_altivec_vcmpequw_p
:
9035 case Intrinsic::ppc_altivec_vcmpequd_p
:
9036 if (Subtarget
.hasP8Altivec()) {
9042 case Intrinsic::ppc_altivec_vcmpneb_p
:
9043 case Intrinsic::ppc_altivec_vcmpneh_p
:
9044 case Intrinsic::ppc_altivec_vcmpnew_p
:
9045 case Intrinsic::ppc_altivec_vcmpnezb_p
:
9046 case Intrinsic::ppc_altivec_vcmpnezh_p
:
9047 case Intrinsic::ppc_altivec_vcmpnezw_p
:
9048 if (Subtarget
.hasP9Altivec()) {
9049 switch (IntrinsicID
) {
9051 llvm_unreachable("Unknown comparison intrinsic.");
9052 case Intrinsic::ppc_altivec_vcmpneb_p
:
9055 case Intrinsic::ppc_altivec_vcmpneh_p
:
9058 case Intrinsic::ppc_altivec_vcmpnew_p
:
9061 case Intrinsic::ppc_altivec_vcmpnezb_p
:
9064 case Intrinsic::ppc_altivec_vcmpnezh_p
:
9067 case Intrinsic::ppc_altivec_vcmpnezw_p
:
9075 case Intrinsic::ppc_altivec_vcmpgefp_p
:
9079 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
9083 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
9087 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
9091 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
9095 case Intrinsic::ppc_altivec_vcmpgtsd_p
:
9096 if (Subtarget
.hasP8Altivec()) {
9102 case Intrinsic::ppc_altivec_vcmpgtub_p
:
9106 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
9110 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
9114 case Intrinsic::ppc_altivec_vcmpgtud_p
:
9115 if (Subtarget
.hasP8Altivec()) {
9122 // VSX predicate comparisons use the same infrastructure
9123 case Intrinsic::ppc_vsx_xvcmpeqdp_p
:
9124 case Intrinsic::ppc_vsx_xvcmpgedp_p
:
9125 case Intrinsic::ppc_vsx_xvcmpgtdp_p
:
9126 case Intrinsic::ppc_vsx_xvcmpeqsp_p
:
9127 case Intrinsic::ppc_vsx_xvcmpgesp_p
:
9128 case Intrinsic::ppc_vsx_xvcmpgtsp_p
:
9129 if (Subtarget
.hasVSX()) {
9130 switch (IntrinsicID
) {
9131 case Intrinsic::ppc_vsx_xvcmpeqdp_p
:
9134 case Intrinsic::ppc_vsx_xvcmpgedp_p
:
9137 case Intrinsic::ppc_vsx_xvcmpgtdp_p
:
9140 case Intrinsic::ppc_vsx_xvcmpeqsp_p
:
9143 case Intrinsic::ppc_vsx_xvcmpgesp_p
:
9146 case Intrinsic::ppc_vsx_xvcmpgtsp_p
:
9155 // Normal Comparisons.
9156 case Intrinsic::ppc_altivec_vcmpbfp
:
9159 case Intrinsic::ppc_altivec_vcmpeqfp
:
9162 case Intrinsic::ppc_altivec_vcmpequb
:
9165 case Intrinsic::ppc_altivec_vcmpequh
:
9168 case Intrinsic::ppc_altivec_vcmpequw
:
9171 case Intrinsic::ppc_altivec_vcmpequd
:
9172 if (Subtarget
.hasP8Altivec())
9177 case Intrinsic::ppc_altivec_vcmpneb
:
9178 case Intrinsic::ppc_altivec_vcmpneh
:
9179 case Intrinsic::ppc_altivec_vcmpnew
:
9180 case Intrinsic::ppc_altivec_vcmpnezb
:
9181 case Intrinsic::ppc_altivec_vcmpnezh
:
9182 case Intrinsic::ppc_altivec_vcmpnezw
:
9183 if (Subtarget
.hasP9Altivec())
9184 switch (IntrinsicID
) {
9186 llvm_unreachable("Unknown comparison intrinsic.");
9187 case Intrinsic::ppc_altivec_vcmpneb
:
9190 case Intrinsic::ppc_altivec_vcmpneh
:
9193 case Intrinsic::ppc_altivec_vcmpnew
:
9196 case Intrinsic::ppc_altivec_vcmpnezb
:
9199 case Intrinsic::ppc_altivec_vcmpnezh
:
9202 case Intrinsic::ppc_altivec_vcmpnezw
:
9209 case Intrinsic::ppc_altivec_vcmpgefp
:
9212 case Intrinsic::ppc_altivec_vcmpgtfp
:
9215 case Intrinsic::ppc_altivec_vcmpgtsb
:
9218 case Intrinsic::ppc_altivec_vcmpgtsh
:
9221 case Intrinsic::ppc_altivec_vcmpgtsw
:
9224 case Intrinsic::ppc_altivec_vcmpgtsd
:
9225 if (Subtarget
.hasP8Altivec())
9230 case Intrinsic::ppc_altivec_vcmpgtub
:
9233 case Intrinsic::ppc_altivec_vcmpgtuh
:
9236 case Intrinsic::ppc_altivec_vcmpgtuw
:
9239 case Intrinsic::ppc_altivec_vcmpgtud
:
9240 if (Subtarget
.hasP8Altivec())
9249 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9250 /// lower, do it, otherwise return null.
9251 SDValue
PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
9252 SelectionDAG
&DAG
) const {
9253 unsigned IntrinsicID
=
9254 cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
9258 if (IntrinsicID
== Intrinsic::thread_pointer
) {
9259 // Reads the thread pointer register, used for __builtin_thread_pointer.
9260 if (Subtarget
.isPPC64())
9261 return DAG
.getRegister(PPC::X13
, MVT::i64
);
9262 return DAG
.getRegister(PPC::R2
, MVT::i32
);
9265 // If this is a lowered altivec predicate compare, CompareOpc is set to the
9266 // opcode number of the comparison.
9269 if (!getVectorCompareInfo(Op
, CompareOpc
, isDot
, Subtarget
))
9270 return SDValue(); // Don't custom lower most intrinsics.
9272 // If this is a non-dot comparison, make the VCMP node and we are done.
9274 SDValue Tmp
= DAG
.getNode(PPCISD::VCMP
, dl
, Op
.getOperand(2).getValueType(),
9275 Op
.getOperand(1), Op
.getOperand(2),
9276 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
));
9277 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Tmp
);
9280 // Create the PPCISD altivec 'dot' comparison node.
9282 Op
.getOperand(2), // LHS
9283 Op
.getOperand(3), // RHS
9284 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
)
9286 EVT VTs
[] = { Op
.getOperand(2).getValueType(), MVT::Glue
};
9287 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
);
9289 // Now that we have the comparison, emit a copy from the CR to a GPR.
9290 // This is flagged to the above dot comparison.
9291 SDValue Flags
= DAG
.getNode(PPCISD::MFOCRF
, dl
, MVT::i32
,
9292 DAG
.getRegister(PPC::CR6
, MVT::i32
),
9293 CompNode
.getValue(1));
9295 // Unpack the result based on how the target uses it.
9296 unsigned BitNo
; // Bit # of CR6.
9297 bool InvertBit
; // Invert result?
9298 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue()) {
9299 default: // Can't happen, don't crash on invalid number though.
9300 case 0: // Return the value of the EQ bit of CR6.
9301 BitNo
= 0; InvertBit
= false;
9303 case 1: // Return the inverted value of the EQ bit of CR6.
9304 BitNo
= 0; InvertBit
= true;
9306 case 2: // Return the value of the LT bit of CR6.
9307 BitNo
= 2; InvertBit
= false;
9309 case 3: // Return the inverted value of the LT bit of CR6.
9310 BitNo
= 2; InvertBit
= true;
9314 // Shift the bit into the low position.
9315 Flags
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Flags
,
9316 DAG
.getConstant(8 - (3 - BitNo
), dl
, MVT::i32
));
9318 Flags
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Flags
,
9319 DAG
.getConstant(1, dl
, MVT::i32
));
9321 // If we are supposed to, toggle the bit.
9323 Flags
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Flags
,
9324 DAG
.getConstant(1, dl
, MVT::i32
));
9328 SDValue
PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op
,
9329 SelectionDAG
&DAG
) const {
9330 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9331 // the beginning of the argument list.
9332 int ArgStart
= isa
<ConstantSDNode
>(Op
.getOperand(0)) ? 0 : 1;
9334 switch (cast
<ConstantSDNode
>(Op
.getOperand(ArgStart
))->getZExtValue()) {
9335 case Intrinsic::ppc_cfence
: {
9336 assert(ArgStart
== 1 && "llvm.ppc.cfence must carry a chain argument.");
9337 assert(Subtarget
.isPPC64() && "Only 64-bit is supported for now.");
9338 return SDValue(DAG
.getMachineNode(PPC::CFENCE8
, DL
, MVT::Other
,
9339 DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i64
,
9340 Op
.getOperand(ArgStart
+ 1)),
9350 SDValue
PPCTargetLowering::LowerREM(SDValue Op
, SelectionDAG
&DAG
) const {
9351 // Check for a DIV with the same operands as this REM.
9352 for (auto UI
: Op
.getOperand(1)->uses()) {
9353 if ((Op
.getOpcode() == ISD::SREM
&& UI
->getOpcode() == ISD::SDIV
) ||
9354 (Op
.getOpcode() == ISD::UREM
&& UI
->getOpcode() == ISD::UDIV
))
9355 if (UI
->getOperand(0) == Op
.getOperand(0) &&
9356 UI
->getOperand(1) == Op
.getOperand(1))
9362 // Lower scalar BSWAP64 to xxbrd.
9363 SDValue
PPCTargetLowering::LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const {
9366 Op
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v2i64
, Op
.getOperand(0),
9369 Op
= DAG
.getNode(PPCISD::XXREVERSE
, dl
, MVT::v2i64
, Op
);
9371 int VectorIndex
= 0;
9372 if (Subtarget
.isLittleEndian())
9374 Op
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
, Op
,
9375 DAG
.getTargetConstant(VectorIndex
, dl
, MVT::i32
));
9379 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9380 // compared to a value that is atomically loaded (atomic loads zero-extend).
9381 SDValue
PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op
,
9382 SelectionDAG
&DAG
) const {
9383 assert(Op
.getOpcode() == ISD::ATOMIC_CMP_SWAP
&&
9384 "Expecting an atomic compare-and-swap here.");
9386 auto *AtomicNode
= cast
<AtomicSDNode
>(Op
.getNode());
9387 EVT MemVT
= AtomicNode
->getMemoryVT();
9388 if (MemVT
.getSizeInBits() >= 32)
9391 SDValue CmpOp
= Op
.getOperand(2);
9392 // If this is already correctly zero-extended, leave it alone.
9393 auto HighBits
= APInt::getHighBitsSet(32, 32 - MemVT
.getSizeInBits());
9394 if (DAG
.MaskedValueIsZero(CmpOp
, HighBits
))
9397 // Clear the high bits of the compare operand.
9398 unsigned MaskVal
= (1 << MemVT
.getSizeInBits()) - 1;
9400 DAG
.getNode(ISD::AND
, dl
, MVT::i32
, CmpOp
,
9401 DAG
.getConstant(MaskVal
, dl
, MVT::i32
));
9403 // Replace the existing compare operand with the properly zero-extended one.
9404 SmallVector
<SDValue
, 4> Ops
;
9405 for (int i
= 0, e
= AtomicNode
->getNumOperands(); i
< e
; i
++)
9406 Ops
.push_back(AtomicNode
->getOperand(i
));
9408 MachineMemOperand
*MMO
= AtomicNode
->getMemOperand();
9409 SDVTList Tys
= DAG
.getVTList(MVT::i32
, MVT::Other
);
9411 (MemVT
== MVT::i8
) ? PPCISD::ATOMIC_CMP_SWAP_8
: PPCISD::ATOMIC_CMP_SWAP_16
;
9412 return DAG
.getMemIntrinsicNode(NodeTy
, dl
, Tys
, Ops
, MemVT
, MMO
);
9415 SDValue
PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
,
9416 SelectionDAG
&DAG
) const {
9418 // Create a stack slot that is 16-byte aligned.
9419 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
9420 int FrameIdx
= MFI
.CreateStackObject(16, 16, false);
9421 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
9422 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
9424 // Store the input value into Value#0 of the stack slot.
9425 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
.getOperand(0), FIdx
,
9426 MachinePointerInfo());
9428 return DAG
.getLoad(Op
.getValueType(), dl
, Store
, FIdx
, MachinePointerInfo());
9431 SDValue
PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
9432 SelectionDAG
&DAG
) const {
9433 assert(Op
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
9434 "Should only be called for ISD::INSERT_VECTOR_ELT");
9436 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
9437 // We have legal lowering for constant indices but not for variable ones.
9441 EVT VT
= Op
.getValueType();
9443 SDValue V1
= Op
.getOperand(0);
9444 SDValue V2
= Op
.getOperand(1);
9445 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9446 if (VT
== MVT::v8i16
|| VT
== MVT::v16i8
) {
9447 SDValue Mtvsrz
= DAG
.getNode(PPCISD::MTVSRZ
, dl
, VT
, V2
);
9448 unsigned BytesInEachElement
= VT
.getVectorElementType().getSizeInBits() / 8;
9449 unsigned InsertAtElement
= C
->getZExtValue();
9450 unsigned InsertAtByte
= InsertAtElement
* BytesInEachElement
;
9451 if (Subtarget
.isLittleEndian()) {
9452 InsertAtByte
= (16 - BytesInEachElement
) - InsertAtByte
;
9454 return DAG
.getNode(PPCISD::VECINSERT
, dl
, VT
, V1
, Mtvsrz
,
9455 DAG
.getConstant(InsertAtByte
, dl
, MVT::i32
));
9460 SDValue
PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
9461 SelectionDAG
&DAG
) const {
9463 SDNode
*N
= Op
.getNode();
9465 assert(N
->getOperand(0).getValueType() == MVT::v4i1
&&
9466 "Unknown extract_vector_elt type");
9468 SDValue Value
= N
->getOperand(0);
9470 // The first part of this is like the store lowering except that we don't
9471 // need to track the chain.
9473 // The values are now known to be -1 (false) or 1 (true). To convert this
9474 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9475 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9476 Value
= DAG
.getNode(PPCISD::QBFLT
, dl
, MVT::v4f64
, Value
);
9478 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9479 // understand how to form the extending load.
9480 SDValue FPHalfs
= DAG
.getConstantFP(0.5, dl
, MVT::v4f64
);
9482 Value
= DAG
.getNode(ISD::FMA
, dl
, MVT::v4f64
, Value
, FPHalfs
, FPHalfs
);
9484 // Now convert to an integer and store.
9485 Value
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f64
,
9486 DAG
.getConstant(Intrinsic::ppc_qpx_qvfctiwu
, dl
, MVT::i32
),
9489 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
9490 int FrameIdx
= MFI
.CreateStackObject(16, 16, false);
9491 MachinePointerInfo PtrInfo
=
9492 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
9493 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
9494 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
9496 SDValue StoreChain
= DAG
.getEntryNode();
9497 SDValue Ops
[] = {StoreChain
,
9498 DAG
.getConstant(Intrinsic::ppc_qpx_qvstfiw
, dl
, MVT::i32
),
9500 SDVTList VTs
= DAG
.getVTList(/*chain*/ MVT::Other
);
9502 StoreChain
= DAG
.getMemIntrinsicNode(ISD::INTRINSIC_VOID
,
9503 dl
, VTs
, Ops
, MVT::v4i32
, PtrInfo
);
9505 // Extract the value requested.
9506 unsigned Offset
= 4*cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
9507 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIdx
.getValueType());
9508 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIdx
.getValueType(), FIdx
, Idx
);
9511 DAG
.getLoad(MVT::i32
, dl
, StoreChain
, Idx
, PtrInfo
.getWithOffset(Offset
));
9513 if (!Subtarget
.useCRBits())
9516 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, IntVal
);
9519 /// Lowering for QPX v4i1 loads
9520 SDValue
PPCTargetLowering::LowerVectorLoad(SDValue Op
,
9521 SelectionDAG
&DAG
) const {
9523 LoadSDNode
*LN
= cast
<LoadSDNode
>(Op
.getNode());
9524 SDValue LoadChain
= LN
->getChain();
9525 SDValue BasePtr
= LN
->getBasePtr();
9527 if (Op
.getValueType() == MVT::v4f64
||
9528 Op
.getValueType() == MVT::v4f32
) {
9529 EVT MemVT
= LN
->getMemoryVT();
9530 unsigned Alignment
= LN
->getAlignment();
9532 // If this load is properly aligned, then it is legal.
9533 if (Alignment
>= MemVT
.getStoreSize())
9536 EVT ScalarVT
= Op
.getValueType().getScalarType(),
9537 ScalarMemVT
= MemVT
.getScalarType();
9538 unsigned Stride
= ScalarMemVT
.getStoreSize();
9540 SDValue Vals
[4], LoadChains
[4];
9541 for (unsigned Idx
= 0; Idx
< 4; ++Idx
) {
9543 if (ScalarVT
!= ScalarMemVT
)
9544 Load
= DAG
.getExtLoad(LN
->getExtensionType(), dl
, ScalarVT
, LoadChain
,
9546 LN
->getPointerInfo().getWithOffset(Idx
* Stride
),
9547 ScalarMemVT
, MinAlign(Alignment
, Idx
* Stride
),
9548 LN
->getMemOperand()->getFlags(), LN
->getAAInfo());
9550 Load
= DAG
.getLoad(ScalarVT
, dl
, LoadChain
, BasePtr
,
9551 LN
->getPointerInfo().getWithOffset(Idx
* Stride
),
9552 MinAlign(Alignment
, Idx
* Stride
),
9553 LN
->getMemOperand()->getFlags(), LN
->getAAInfo());
9555 if (Idx
== 0 && LN
->isIndexed()) {
9556 assert(LN
->getAddressingMode() == ISD::PRE_INC
&&
9557 "Unknown addressing mode on vector load");
9558 Load
= DAG
.getIndexedLoad(Load
, dl
, BasePtr
, LN
->getOffset(),
9559 LN
->getAddressingMode());
9563 LoadChains
[Idx
] = Load
.getValue(1);
9565 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
9566 DAG
.getConstant(Stride
, dl
,
9567 BasePtr
.getValueType()));
9570 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
9571 SDValue Value
= DAG
.getBuildVector(Op
.getValueType(), dl
, Vals
);
9573 if (LN
->isIndexed()) {
9574 SDValue RetOps
[] = { Value
, Vals
[0].getValue(1), TF
};
9575 return DAG
.getMergeValues(RetOps
, dl
);
9578 SDValue RetOps
[] = { Value
, TF
};
9579 return DAG
.getMergeValues(RetOps
, dl
);
9582 assert(Op
.getValueType() == MVT::v4i1
&& "Unknown load to lower");
9583 assert(LN
->isUnindexed() && "Indexed v4i1 loads are not supported");
9585 // To lower v4i1 from a byte array, we load the byte elements of the
9586 // vector and then reuse the BUILD_VECTOR logic.
9588 SDValue VectElmts
[4], VectElmtChains
[4];
9589 for (unsigned i
= 0; i
< 4; ++i
) {
9590 SDValue Idx
= DAG
.getConstant(i
, dl
, BasePtr
.getValueType());
9591 Idx
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
, Idx
);
9593 VectElmts
[i
] = DAG
.getExtLoad(
9594 ISD::EXTLOAD
, dl
, MVT::i32
, LoadChain
, Idx
,
9595 LN
->getPointerInfo().getWithOffset(i
), MVT::i8
,
9596 /* Alignment = */ 1, LN
->getMemOperand()->getFlags(), LN
->getAAInfo());
9597 VectElmtChains
[i
] = VectElmts
[i
].getValue(1);
9600 LoadChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, VectElmtChains
);
9601 SDValue Value
= DAG
.getBuildVector(MVT::v4i1
, dl
, VectElmts
);
9603 SDValue RVals
[] = { Value
, LoadChain
};
9604 return DAG
.getMergeValues(RVals
, dl
);
9607 /// Lowering for QPX v4i1 stores
9608 SDValue
PPCTargetLowering::LowerVectorStore(SDValue Op
,
9609 SelectionDAG
&DAG
) const {
9611 StoreSDNode
*SN
= cast
<StoreSDNode
>(Op
.getNode());
9612 SDValue StoreChain
= SN
->getChain();
9613 SDValue BasePtr
= SN
->getBasePtr();
9614 SDValue Value
= SN
->getValue();
9616 if (Value
.getValueType() == MVT::v4f64
||
9617 Value
.getValueType() == MVT::v4f32
) {
9618 EVT MemVT
= SN
->getMemoryVT();
9619 unsigned Alignment
= SN
->getAlignment();
9621 // If this store is properly aligned, then it is legal.
9622 if (Alignment
>= MemVT
.getStoreSize())
9625 EVT ScalarVT
= Value
.getValueType().getScalarType(),
9626 ScalarMemVT
= MemVT
.getScalarType();
9627 unsigned Stride
= ScalarMemVT
.getStoreSize();
9630 for (unsigned Idx
= 0; Idx
< 4; ++Idx
) {
9631 SDValue Ex
= DAG
.getNode(
9632 ISD::EXTRACT_VECTOR_ELT
, dl
, ScalarVT
, Value
,
9633 DAG
.getConstant(Idx
, dl
, getVectorIdxTy(DAG
.getDataLayout())));
9635 if (ScalarVT
!= ScalarMemVT
)
9637 DAG
.getTruncStore(StoreChain
, dl
, Ex
, BasePtr
,
9638 SN
->getPointerInfo().getWithOffset(Idx
* Stride
),
9639 ScalarMemVT
, MinAlign(Alignment
, Idx
* Stride
),
9640 SN
->getMemOperand()->getFlags(), SN
->getAAInfo());
9642 Store
= DAG
.getStore(StoreChain
, dl
, Ex
, BasePtr
,
9643 SN
->getPointerInfo().getWithOffset(Idx
* Stride
),
9644 MinAlign(Alignment
, Idx
* Stride
),
9645 SN
->getMemOperand()->getFlags(), SN
->getAAInfo());
9647 if (Idx
== 0 && SN
->isIndexed()) {
9648 assert(SN
->getAddressingMode() == ISD::PRE_INC
&&
9649 "Unknown addressing mode on vector store");
9650 Store
= DAG
.getIndexedStore(Store
, dl
, BasePtr
, SN
->getOffset(),
9651 SN
->getAddressingMode());
9654 BasePtr
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
9655 DAG
.getConstant(Stride
, dl
,
9656 BasePtr
.getValueType()));
9657 Stores
[Idx
] = Store
;
9660 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
9662 if (SN
->isIndexed()) {
9663 SDValue RetOps
[] = { TF
, Stores
[0].getValue(1) };
9664 return DAG
.getMergeValues(RetOps
, dl
);
9670 assert(SN
->isUnindexed() && "Indexed v4i1 stores are not supported");
9671 assert(Value
.getValueType() == MVT::v4i1
&& "Unknown store to lower");
9673 // The values are now known to be -1 (false) or 1 (true). To convert this
9674 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9675 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9676 Value
= DAG
.getNode(PPCISD::QBFLT
, dl
, MVT::v4f64
, Value
);
9678 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9679 // understand how to form the extending load.
9680 SDValue FPHalfs
= DAG
.getConstantFP(0.5, dl
, MVT::v4f64
);
9682 Value
= DAG
.getNode(ISD::FMA
, dl
, MVT::v4f64
, Value
, FPHalfs
, FPHalfs
);
9684 // Now convert to an integer and store.
9685 Value
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f64
,
9686 DAG
.getConstant(Intrinsic::ppc_qpx_qvfctiwu
, dl
, MVT::i32
),
9689 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
9690 int FrameIdx
= MFI
.CreateStackObject(16, 16, false);
9691 MachinePointerInfo PtrInfo
=
9692 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FrameIdx
);
9693 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
9694 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
9696 SDValue Ops
[] = {StoreChain
,
9697 DAG
.getConstant(Intrinsic::ppc_qpx_qvstfiw
, dl
, MVT::i32
),
9699 SDVTList VTs
= DAG
.getVTList(/*chain*/ MVT::Other
);
9701 StoreChain
= DAG
.getMemIntrinsicNode(ISD::INTRINSIC_VOID
,
9702 dl
, VTs
, Ops
, MVT::v4i32
, PtrInfo
);
9704 // Move data into the byte array.
9705 SDValue Loads
[4], LoadChains
[4];
9706 for (unsigned i
= 0; i
< 4; ++i
) {
9707 unsigned Offset
= 4*i
;
9708 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIdx
.getValueType());
9709 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIdx
.getValueType(), FIdx
, Idx
);
9711 Loads
[i
] = DAG
.getLoad(MVT::i32
, dl
, StoreChain
, Idx
,
9712 PtrInfo
.getWithOffset(Offset
));
9713 LoadChains
[i
] = Loads
[i
].getValue(1);
9716 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
9719 for (unsigned i
= 0; i
< 4; ++i
) {
9720 SDValue Idx
= DAG
.getConstant(i
, dl
, BasePtr
.getValueType());
9721 Idx
= DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
, Idx
);
9723 Stores
[i
] = DAG
.getTruncStore(
9724 StoreChain
, dl
, Loads
[i
], Idx
, SN
->getPointerInfo().getWithOffset(i
),
9725 MVT::i8
, /* Alignment = */ 1, SN
->getMemOperand()->getFlags(),
9729 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
9734 SDValue
PPCTargetLowering::LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const {
9736 if (Op
.getValueType() == MVT::v4i32
) {
9737 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
9739 SDValue Zero
= BuildSplatI( 0, 1, MVT::v4i32
, DAG
, dl
);
9740 SDValue Neg16
= BuildSplatI(-16, 4, MVT::v4i32
, DAG
, dl
);//+16 as shift amt.
9742 SDValue RHSSwap
= // = vrlw RHS, 16
9743 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
, dl
);
9745 // Shrinkify inputs to v8i16.
9746 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, LHS
);
9747 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHS
);
9748 RHSSwap
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHSSwap
);
9750 // Low parts multiplied together, generating 32-bit results (we ignore the
9752 SDValue LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
9753 LHS
, RHS
, DAG
, dl
, MVT::v4i32
);
9755 SDValue HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
9756 LHS
, RHSSwap
, Zero
, DAG
, dl
, MVT::v4i32
);
9757 // Shift the high parts up 16 bits.
9758 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
,
9760 return DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, LoProd
, HiProd
);
9761 } else if (Op
.getValueType() == MVT::v8i16
) {
9762 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
9764 SDValue Zero
= BuildSplatI(0, 1, MVT::v8i16
, DAG
, dl
);
9766 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm
,
9767 LHS
, RHS
, Zero
, DAG
, dl
);
9768 } else if (Op
.getValueType() == MVT::v16i8
) {
9769 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
9770 bool isLittleEndian
= Subtarget
.isLittleEndian();
9772 // Multiply the even 8-bit parts, producing 16-bit sums.
9773 SDValue EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
9774 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
9775 EvenParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, EvenParts
);
9777 // Multiply the odd 8-bit parts, producing 16-bit sums.
9778 SDValue OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
9779 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
9780 OddParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OddParts
);
9782 // Merge the results together. Because vmuleub and vmuloub are
9783 // instructions with a big-endian bias, we must reverse the
9784 // element numbering and reverse the meaning of "odd" and "even"
9785 // when generating little endian code.
9787 for (unsigned i
= 0; i
!= 8; ++i
) {
9788 if (isLittleEndian
) {
9790 Ops
[i
*2+1] = 2*i
+16;
9793 Ops
[i
*2+1] = 2*i
+1+16;
9797 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, OddParts
, EvenParts
, Ops
);
9799 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, EvenParts
, OddParts
, Ops
);
9801 llvm_unreachable("Unknown mul to lower!");
9805 SDValue
PPCTargetLowering::LowerABS(SDValue Op
, SelectionDAG
&DAG
) const {
9807 assert(Op
.getOpcode() == ISD::ABS
&& "Should only be called for ISD::ABS");
9809 EVT VT
= Op
.getValueType();
9810 assert(VT
.isVector() &&
9811 "Only set vector abs as custom, scalar abs shouldn't reach here!");
9812 assert((VT
== MVT::v2i64
|| VT
== MVT::v4i32
|| VT
== MVT::v8i16
||
9813 VT
== MVT::v16i8
) &&
9814 "Unexpected vector element type!");
9815 assert((VT
!= MVT::v2i64
|| Subtarget
.hasP8Altivec()) &&
9816 "Current subtarget doesn't support smax v2i64!");
9818 // For vector abs, it can be lowered to:
9825 SDValue X
= Op
.getOperand(0);
9826 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
9827 SDValue Y
= DAG
.getNode(ISD::SUB
, dl
, VT
, Zero
, X
);
9829 // SMAX patch https://reviews.llvm.org/D47332
9830 // hasn't landed yet, so use intrinsic first here.
9831 // TODO: Should use SMAX directly once SMAX patch landed
9832 Intrinsic::ID BifID
= Intrinsic::ppc_altivec_vmaxsw
;
9833 if (VT
== MVT::v2i64
)
9834 BifID
= Intrinsic::ppc_altivec_vmaxsd
;
9835 else if (VT
== MVT::v8i16
)
9836 BifID
= Intrinsic::ppc_altivec_vmaxsh
;
9837 else if (VT
== MVT::v16i8
)
9838 BifID
= Intrinsic::ppc_altivec_vmaxsb
;
9840 return BuildIntrinsicOp(BifID
, X
, Y
, DAG
, dl
, VT
);
9843 // Custom lowering for fpext vf32 to v2f64
9844 SDValue
PPCTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
9846 assert(Op
.getOpcode() == ISD::FP_EXTEND
&&
9847 "Should only be called for ISD::FP_EXTEND");
9849 // We only want to custom lower an extend from v2f32 to v2f64.
9850 if (Op
.getValueType() != MVT::v2f64
||
9851 Op
.getOperand(0).getValueType() != MVT::v2f32
)
9855 SDValue Op0
= Op
.getOperand(0);
9857 switch (Op0
.getOpcode()) {
9864 for (unsigned i
= 0, ie
= Op0
.getNumOperands(); i
!= ie
; ++i
) {
9865 // Ensure both input are loads.
9866 SDValue LdOp
= Op0
.getOperand(i
);
9867 if (LdOp
.getOpcode() != ISD::LOAD
)
9869 // Generate new load node.
9870 LoadSDNode
*LD
= cast
<LoadSDNode
>(LdOp
);
9871 SDValue LoadOps
[] = { LD
->getChain(), LD
->getBasePtr() };
9873 DAG
.getMemIntrinsicNode(PPCISD::LD_VSX_LH
, dl
,
9874 DAG
.getVTList(MVT::v4f32
, MVT::Other
),
9875 LoadOps
, LD
->getMemoryVT(),
9876 LD
->getMemOperand());
9878 SDValue NewOp
= DAG
.getNode(Op0
.getOpcode(), SDLoc(Op0
), MVT::v4f32
,
9879 NewLoad
[0], NewLoad
[1],
9880 Op0
.getNode()->getFlags());
9881 return DAG
.getNode(PPCISD::FP_EXTEND_LH
, dl
, MVT::v2f64
, NewOp
);
9884 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op0
);
9885 SDValue LoadOps
[] = { LD
->getChain(), LD
->getBasePtr() };
9887 DAG
.getMemIntrinsicNode(PPCISD::LD_VSX_LH
, dl
,
9888 DAG
.getVTList(MVT::v4f32
, MVT::Other
),
9889 LoadOps
, LD
->getMemoryVT(), LD
->getMemOperand());
9890 return DAG
.getNode(PPCISD::FP_EXTEND_LH
, dl
, MVT::v2f64
, NewLd
);
9893 llvm_unreachable("ERROR:Should return for all cases within swtich.");
9896 /// LowerOperation - Provide custom lowering hooks for some operations.
9898 SDValue
PPCTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9899 switch (Op
.getOpcode()) {
9900 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9901 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
9902 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
9903 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
9904 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
9905 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
9906 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
9907 case ISD::INIT_TRAMPOLINE
: return LowerINIT_TRAMPOLINE(Op
, DAG
);
9908 case ISD::ADJUST_TRAMPOLINE
: return LowerADJUST_TRAMPOLINE(Op
, DAG
);
9910 // Variable argument lowering.
9911 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
9912 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
9913 case ISD::VACOPY
: return LowerVACOPY(Op
, DAG
);
9915 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
);
9916 case ISD::DYNAMIC_STACKALLOC
: return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
9917 case ISD::GET_DYNAMIC_AREA_OFFSET
:
9918 return LowerGET_DYNAMIC_AREA_OFFSET(Op
, DAG
);
9920 // Exception handling lowering.
9921 case ISD::EH_DWARF_CFA
: return LowerEH_DWARF_CFA(Op
, DAG
);
9922 case ISD::EH_SJLJ_SETJMP
: return lowerEH_SJLJ_SETJMP(Op
, DAG
);
9923 case ISD::EH_SJLJ_LONGJMP
: return lowerEH_SJLJ_LONGJMP(Op
, DAG
);
9925 case ISD::LOAD
: return LowerLOAD(Op
, DAG
);
9926 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
9927 case ISD::TRUNCATE
: return LowerTRUNCATE(Op
, DAG
);
9928 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
9929 case ISD::FP_TO_UINT
:
9930 case ISD::FP_TO_SINT
: return LowerFP_TO_INT(Op
, DAG
, SDLoc(Op
));
9931 case ISD::UINT_TO_FP
:
9932 case ISD::SINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
9933 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
9935 // Lower 64-bit shifts.
9936 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
9937 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
9938 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
9940 // Vector-related lowering.
9941 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
9942 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
9943 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
9944 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
9945 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
9946 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
9947 case ISD::MUL
: return LowerMUL(Op
, DAG
);
9948 case ISD::ABS
: return LowerABS(Op
, DAG
);
9949 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
9951 // For counter-based loop handling.
9952 case ISD::INTRINSIC_W_CHAIN
: return SDValue();
9954 case ISD::BITCAST
: return LowerBITCAST(Op
, DAG
);
9956 // Frame & Return address.
9957 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
9958 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
9960 case ISD::INTRINSIC_VOID
:
9961 return LowerINTRINSIC_VOID(Op
, DAG
);
9964 return LowerREM(Op
, DAG
);
9966 return LowerBSWAP(Op
, DAG
);
9967 case ISD::ATOMIC_CMP_SWAP
:
9968 return LowerATOMIC_CMP_SWAP(Op
, DAG
);
9972 void PPCTargetLowering::ReplaceNodeResults(SDNode
*N
,
9973 SmallVectorImpl
<SDValue
>&Results
,
9974 SelectionDAG
&DAG
) const {
9976 switch (N
->getOpcode()) {
9978 llvm_unreachable("Do not know how to custom type legalize this operation!");
9979 case ISD::READCYCLECOUNTER
: {
9980 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
);
9981 SDValue RTB
= DAG
.getNode(PPCISD::READ_TIME_BASE
, dl
, VTs
, N
->getOperand(0));
9983 Results
.push_back(RTB
);
9984 Results
.push_back(RTB
.getValue(1));
9985 Results
.push_back(RTB
.getValue(2));
9988 case ISD::INTRINSIC_W_CHAIN
: {
9989 if (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue() !=
9990 Intrinsic::loop_decrement
)
9993 assert(N
->getValueType(0) == MVT::i1
&&
9994 "Unexpected result type for CTR decrement intrinsic");
9995 EVT SVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
9996 N
->getValueType(0));
9997 SDVTList VTs
= DAG
.getVTList(SVT
, MVT::Other
);
9998 SDValue NewInt
= DAG
.getNode(N
->getOpcode(), dl
, VTs
, N
->getOperand(0),
10001 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, NewInt
));
10002 Results
.push_back(NewInt
.getValue(1));
10006 if (!Subtarget
.isSVR4ABI() || Subtarget
.isPPC64())
10009 EVT VT
= N
->getValueType(0);
10011 if (VT
== MVT::i64
) {
10012 SDValue NewNode
= LowerVAARG(SDValue(N
, 1), DAG
);
10014 Results
.push_back(NewNode
);
10015 Results
.push_back(NewNode
.getValue(1));
10019 case ISD::FP_TO_SINT
:
10020 case ISD::FP_TO_UINT
:
10021 // LowerFP_TO_INT() can only handle f32 and f64.
10022 if (N
->getOperand(0).getValueType() == MVT::ppcf128
)
10024 Results
.push_back(LowerFP_TO_INT(SDValue(N
, 0), DAG
, dl
));
10026 case ISD::TRUNCATE
: {
10027 EVT TrgVT
= N
->getValueType(0);
10028 if (TrgVT
.isVector() &&
10029 isOperationCustom(N
->getOpcode(), TrgVT
) &&
10030 N
->getOperand(0).getValueType().getSizeInBits() <= 128)
10031 Results
.push_back(LowerTRUNCATEVector(SDValue(N
, 0), DAG
));
10035 // Don't handle bitcast here.
10040 //===----------------------------------------------------------------------===//
10041 // Other Lowering Code
10042 //===----------------------------------------------------------------------===//
10044 static Instruction
* callIntrinsic(IRBuilder
<> &Builder
, Intrinsic::ID Id
) {
10045 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
10046 Function
*Func
= Intrinsic::getDeclaration(M
, Id
);
10047 return Builder
.CreateCall(Func
, {});
10050 // The mappings for emitLeading/TrailingFence is taken from
10051 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10052 Instruction
*PPCTargetLowering::emitLeadingFence(IRBuilder
<> &Builder
,
10054 AtomicOrdering Ord
) const {
10055 if (Ord
== AtomicOrdering::SequentiallyConsistent
)
10056 return callIntrinsic(Builder
, Intrinsic::ppc_sync
);
10057 if (isReleaseOrStronger(Ord
))
10058 return callIntrinsic(Builder
, Intrinsic::ppc_lwsync
);
10062 Instruction
*PPCTargetLowering::emitTrailingFence(IRBuilder
<> &Builder
,
10064 AtomicOrdering Ord
) const {
10065 if (Inst
->hasAtomicLoad() && isAcquireOrStronger(Ord
)) {
10066 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10067 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10068 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10069 if (isa
<LoadInst
>(Inst
) && Subtarget
.isPPC64())
10070 return Builder
.CreateCall(
10071 Intrinsic::getDeclaration(
10072 Builder
.GetInsertBlock()->getParent()->getParent(),
10073 Intrinsic::ppc_cfence
, {Inst
->getType()}),
10075 // FIXME: Can use isync for rmw operation.
10076 return callIntrinsic(Builder
, Intrinsic::ppc_lwsync
);
10081 MachineBasicBlock
*
10082 PPCTargetLowering::EmitAtomicBinary(MachineInstr
&MI
, MachineBasicBlock
*BB
,
10083 unsigned AtomicSize
,
10084 unsigned BinOpcode
,
10085 unsigned CmpOpcode
,
10086 unsigned CmpPred
) const {
10087 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10088 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
10090 auto LoadMnemonic
= PPC::LDARX
;
10091 auto StoreMnemonic
= PPC::STDCX
;
10092 switch (AtomicSize
) {
10094 llvm_unreachable("Unexpected size of atomic entity");
10096 LoadMnemonic
= PPC::LBARX
;
10097 StoreMnemonic
= PPC::STBCX
;
10098 assert(Subtarget
.hasPartwordAtomics() && "Call this only with size >=4");
10101 LoadMnemonic
= PPC::LHARX
;
10102 StoreMnemonic
= PPC::STHCX
;
10103 assert(Subtarget
.hasPartwordAtomics() && "Call this only with size >=4");
10106 LoadMnemonic
= PPC::LWARX
;
10107 StoreMnemonic
= PPC::STWCX
;
10110 LoadMnemonic
= PPC::LDARX
;
10111 StoreMnemonic
= PPC::STDCX
;
10115 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10116 MachineFunction
*F
= BB
->getParent();
10117 MachineFunction::iterator It
= ++BB
->getIterator();
10119 Register dest
= MI
.getOperand(0).getReg();
10120 Register ptrA
= MI
.getOperand(1).getReg();
10121 Register ptrB
= MI
.getOperand(2).getReg();
10122 Register incr
= MI
.getOperand(3).getReg();
10123 DebugLoc dl
= MI
.getDebugLoc();
10125 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10126 MachineBasicBlock
*loop2MBB
=
10127 CmpOpcode
? F
->CreateMachineBasicBlock(LLVM_BB
) : nullptr;
10128 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10129 F
->insert(It
, loopMBB
);
10131 F
->insert(It
, loop2MBB
);
10132 F
->insert(It
, exitMBB
);
10133 exitMBB
->splice(exitMBB
->begin(), BB
,
10134 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10135 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10137 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
10138 Register TmpReg
= (!BinOpcode
) ? incr
:
10139 RegInfo
.createVirtualRegister( AtomicSize
== 8 ? &PPC::G8RCRegClass
10140 : &PPC::GPRCRegClass
);
10144 // fallthrough --> loopMBB
10145 BB
->addSuccessor(loopMBB
);
10148 // l[wd]arx dest, ptr
10149 // add r0, dest, incr
10150 // st[wd]cx. r0, ptr
10152 // fallthrough --> exitMBB
10156 // l[wd]arx dest, ptr
10157 // cmpl?[wd] incr, dest
10160 // st[wd]cx. dest, ptr
10162 // fallthrough --> exitMBB
10165 BuildMI(BB
, dl
, TII
->get(LoadMnemonic
), dest
)
10166 .addReg(ptrA
).addReg(ptrB
);
10168 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
).addReg(incr
).addReg(dest
);
10170 // Signed comparisons of byte or halfword values must be sign-extended.
10171 if (CmpOpcode
== PPC::CMPW
&& AtomicSize
< 4) {
10172 unsigned ExtReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
10173 BuildMI(BB
, dl
, TII
->get(AtomicSize
== 1 ? PPC::EXTSB
: PPC::EXTSH
),
10174 ExtReg
).addReg(dest
);
10175 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
10176 .addReg(incr
).addReg(ExtReg
);
10178 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
10179 .addReg(incr
).addReg(dest
);
10181 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10182 .addImm(CmpPred
).addReg(PPC::CR0
).addMBB(exitMBB
);
10183 BB
->addSuccessor(loop2MBB
);
10184 BB
->addSuccessor(exitMBB
);
10187 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
10188 .addReg(TmpReg
).addReg(ptrA
).addReg(ptrB
);
10189 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10190 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
10191 BB
->addSuccessor(loopMBB
);
10192 BB
->addSuccessor(exitMBB
);
10200 MachineBasicBlock
*PPCTargetLowering::EmitPartwordAtomicBinary(
10201 MachineInstr
&MI
, MachineBasicBlock
*BB
,
10202 bool is8bit
, // operation
10203 unsigned BinOpcode
, unsigned CmpOpcode
, unsigned CmpPred
) const {
10204 // If we support part-word atomic mnemonics, just use them
10205 if (Subtarget
.hasPartwordAtomics())
10206 return EmitAtomicBinary(MI
, BB
, is8bit
? 1 : 2, BinOpcode
, CmpOpcode
,
10209 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10210 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
10211 // In 64 bit mode we have to use 64 bits for addresses, even though the
10212 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
10213 // registers without caring whether they're 32 or 64, but here we're
10214 // doing actual arithmetic on the addresses.
10215 bool is64bit
= Subtarget
.isPPC64();
10216 bool isLittleEndian
= Subtarget
.isLittleEndian();
10217 unsigned ZeroReg
= is64bit
? PPC::ZERO8
: PPC::ZERO
;
10219 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10220 MachineFunction
*F
= BB
->getParent();
10221 MachineFunction::iterator It
= ++BB
->getIterator();
10223 unsigned dest
= MI
.getOperand(0).getReg();
10224 unsigned ptrA
= MI
.getOperand(1).getReg();
10225 unsigned ptrB
= MI
.getOperand(2).getReg();
10226 unsigned incr
= MI
.getOperand(3).getReg();
10227 DebugLoc dl
= MI
.getDebugLoc();
10229 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10230 MachineBasicBlock
*loop2MBB
=
10231 CmpOpcode
? F
->CreateMachineBasicBlock(LLVM_BB
) : nullptr;
10232 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10233 F
->insert(It
, loopMBB
);
10235 F
->insert(It
, loop2MBB
);
10236 F
->insert(It
, exitMBB
);
10237 exitMBB
->splice(exitMBB
->begin(), BB
,
10238 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10239 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10241 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
10242 const TargetRegisterClass
*RC
=
10243 is64bit
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
10244 const TargetRegisterClass
*GPRC
= &PPC::GPRCRegClass
;
10246 Register PtrReg
= RegInfo
.createVirtualRegister(RC
);
10247 Register Shift1Reg
= RegInfo
.createVirtualRegister(GPRC
);
10248 Register ShiftReg
=
10249 isLittleEndian
? Shift1Reg
: RegInfo
.createVirtualRegister(GPRC
);
10250 Register Incr2Reg
= RegInfo
.createVirtualRegister(GPRC
);
10251 Register MaskReg
= RegInfo
.createVirtualRegister(GPRC
);
10252 Register Mask2Reg
= RegInfo
.createVirtualRegister(GPRC
);
10253 Register Mask3Reg
= RegInfo
.createVirtualRegister(GPRC
);
10254 Register Tmp2Reg
= RegInfo
.createVirtualRegister(GPRC
);
10255 Register Tmp3Reg
= RegInfo
.createVirtualRegister(GPRC
);
10256 Register Tmp4Reg
= RegInfo
.createVirtualRegister(GPRC
);
10257 Register TmpDestReg
= RegInfo
.createVirtualRegister(GPRC
);
10260 (!BinOpcode
) ? Incr2Reg
: RegInfo
.createVirtualRegister(GPRC
);
10264 // fallthrough --> loopMBB
10265 BB
->addSuccessor(loopMBB
);
10267 // The 4-byte load must be aligned, while a char or short may be
10268 // anywhere in the word. Hence all this nasty bookkeeping code.
10269 // add ptr1, ptrA, ptrB [copy if ptrA==0]
10270 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10271 // xori shift, shift1, 24 [16]
10272 // rlwinm ptr, ptr1, 0, 0, 29
10273 // slw incr2, incr, shift
10274 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10275 // slw mask, mask2, shift
10277 // lwarx tmpDest, ptr
10278 // add tmp, tmpDest, incr2
10279 // andc tmp2, tmpDest, mask
10280 // and tmp3, tmp, mask
10281 // or tmp4, tmp3, tmp2
10282 // stwcx. tmp4, ptr
10284 // fallthrough --> exitMBB
10285 // srw dest, tmpDest, shift
10286 if (ptrA
!= ZeroReg
) {
10287 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
10288 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
10294 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10296 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
)
10297 .addReg(Ptr1Reg
, 0, is64bit
? PPC::sub_32
: 0)
10300 .addImm(is8bit
? 28 : 27);
10301 if (!isLittleEndian
)
10302 BuildMI(BB
, dl
, TII
->get(PPC::XORI
), ShiftReg
)
10304 .addImm(is8bit
? 24 : 16);
10306 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
10311 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
10316 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), Incr2Reg
).addReg(incr
).addReg(ShiftReg
);
10318 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
10320 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
10321 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
10325 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
10330 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
10334 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
)
10336 .addReg(TmpDestReg
);
10337 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
), Tmp2Reg
)
10338 .addReg(TmpDestReg
)
10340 BuildMI(BB
, dl
, TII
->get(PPC::AND
), Tmp3Reg
).addReg(TmpReg
).addReg(MaskReg
);
10342 // For unsigned comparisons, we can directly compare the shifted values.
10343 // For signed comparisons we shift and sign extend.
10344 unsigned SReg
= RegInfo
.createVirtualRegister(GPRC
);
10345 BuildMI(BB
, dl
, TII
->get(PPC::AND
), SReg
)
10346 .addReg(TmpDestReg
)
10348 unsigned ValueReg
= SReg
;
10349 unsigned CmpReg
= Incr2Reg
;
10350 if (CmpOpcode
== PPC::CMPW
) {
10351 ValueReg
= RegInfo
.createVirtualRegister(GPRC
);
10352 BuildMI(BB
, dl
, TII
->get(PPC::SRW
), ValueReg
)
10355 unsigned ValueSReg
= RegInfo
.createVirtualRegister(GPRC
);
10356 BuildMI(BB
, dl
, TII
->get(is8bit
? PPC::EXTSB
: PPC::EXTSH
), ValueSReg
)
10358 ValueReg
= ValueSReg
;
10361 BuildMI(BB
, dl
, TII
->get(CmpOpcode
), PPC::CR0
)
10364 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10368 BB
->addSuccessor(loop2MBB
);
10369 BB
->addSuccessor(exitMBB
);
10372 BuildMI(BB
, dl
, TII
->get(PPC::OR
), Tmp4Reg
).addReg(Tmp3Reg
).addReg(Tmp2Reg
);
10373 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
10377 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10378 .addImm(PPC::PRED_NE
)
10381 BB
->addSuccessor(loopMBB
);
10382 BB
->addSuccessor(exitMBB
);
10387 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
), dest
)
10388 .addReg(TmpDestReg
)
10393 llvm::MachineBasicBlock
*
10394 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr
&MI
,
10395 MachineBasicBlock
*MBB
) const {
10396 DebugLoc DL
= MI
.getDebugLoc();
10397 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
10398 const PPCRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
10400 MachineFunction
*MF
= MBB
->getParent();
10401 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10403 const BasicBlock
*BB
= MBB
->getBasicBlock();
10404 MachineFunction::iterator I
= ++MBB
->getIterator();
10406 unsigned DstReg
= MI
.getOperand(0).getReg();
10407 const TargetRegisterClass
*RC
= MRI
.getRegClass(DstReg
);
10408 assert(TRI
->isTypeLegalForClass(*RC
, MVT::i32
) && "Invalid destination!");
10409 unsigned mainDstReg
= MRI
.createVirtualRegister(RC
);
10410 unsigned restoreDstReg
= MRI
.createVirtualRegister(RC
);
10412 MVT PVT
= getPointerTy(MF
->getDataLayout());
10413 assert((PVT
== MVT::i64
|| PVT
== MVT::i32
) &&
10414 "Invalid Pointer Size!");
10415 // For v = setjmp(buf), we generate
10418 // SjLjSetup mainMBB
10424 // buf[LabelOffset] = LR
10428 // v = phi(main, restore)
10431 MachineBasicBlock
*thisMBB
= MBB
;
10432 MachineBasicBlock
*mainMBB
= MF
->CreateMachineBasicBlock(BB
);
10433 MachineBasicBlock
*sinkMBB
= MF
->CreateMachineBasicBlock(BB
);
10434 MF
->insert(I
, mainMBB
);
10435 MF
->insert(I
, sinkMBB
);
10437 MachineInstrBuilder MIB
;
10439 // Transfer the remainder of BB and its successor edges to sinkMBB.
10440 sinkMBB
->splice(sinkMBB
->begin(), MBB
,
10441 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
10442 sinkMBB
->transferSuccessorsAndUpdatePHIs(MBB
);
10444 // Note that the structure of the jmp_buf used here is not compatible
10445 // with that used by libc, and is not designed to be. Specifically, it
10446 // stores only those 'reserved' registers that LLVM does not otherwise
10447 // understand how to spill. Also, by convention, by the time this
10448 // intrinsic is called, Clang has already stored the frame address in the
10449 // first slot of the buffer and stack address in the third. Following the
10450 // X86 target code, we'll store the jump address in the second slot. We also
10451 // need to save the TOC pointer (R2) to handle jumps between shared
10452 // libraries, and that will be stored in the fourth slot. The thread
10453 // identifier (R13) is not affected.
10456 const int64_t LabelOffset
= 1 * PVT
.getStoreSize();
10457 const int64_t TOCOffset
= 3 * PVT
.getStoreSize();
10458 const int64_t BPOffset
= 4 * PVT
.getStoreSize();
10460 // Prepare IP either in reg.
10461 const TargetRegisterClass
*PtrRC
= getRegClassFor(PVT
);
10462 unsigned LabelReg
= MRI
.createVirtualRegister(PtrRC
);
10463 unsigned BufReg
= MI
.getOperand(1).getReg();
10465 if (Subtarget
.isPPC64() && Subtarget
.isSVR4ABI()) {
10466 setUsesTOCBasePtr(*MBB
->getParent());
10467 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::STD
))
10474 // Naked functions never have a base pointer, and so we use r1. For all
10475 // other functions, this decision must be delayed until during PEI.
10477 if (MF
->getFunction().hasFnAttribute(Attribute::Naked
))
10478 BaseReg
= Subtarget
.isPPC64() ? PPC::X1
: PPC::R1
;
10480 BaseReg
= Subtarget
.isPPC64() ? PPC::BP8
: PPC::BP
;
10482 MIB
= BuildMI(*thisMBB
, MI
, DL
,
10483 TII
->get(Subtarget
.isPPC64() ? PPC::STD
: PPC::STW
))
10490 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::BCLalways
)).addMBB(mainMBB
);
10491 MIB
.addRegMask(TRI
->getNoPreservedMask());
10493 BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::LI
), restoreDstReg
).addImm(1);
10495 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::EH_SjLj_Setup
))
10497 MIB
= BuildMI(*thisMBB
, MI
, DL
, TII
->get(PPC::B
)).addMBB(sinkMBB
);
10499 thisMBB
->addSuccessor(mainMBB
, BranchProbability::getZero());
10500 thisMBB
->addSuccessor(sinkMBB
, BranchProbability::getOne());
10505 BuildMI(mainMBB
, DL
,
10506 TII
->get(Subtarget
.isPPC64() ? PPC::MFLR8
: PPC::MFLR
), LabelReg
);
10509 if (Subtarget
.isPPC64()) {
10510 MIB
= BuildMI(mainMBB
, DL
, TII
->get(PPC::STD
))
10512 .addImm(LabelOffset
)
10515 MIB
= BuildMI(mainMBB
, DL
, TII
->get(PPC::STW
))
10517 .addImm(LabelOffset
)
10520 MIB
.cloneMemRefs(MI
);
10522 BuildMI(mainMBB
, DL
, TII
->get(PPC::LI
), mainDstReg
).addImm(0);
10523 mainMBB
->addSuccessor(sinkMBB
);
10526 BuildMI(*sinkMBB
, sinkMBB
->begin(), DL
,
10527 TII
->get(PPC::PHI
), DstReg
)
10528 .addReg(mainDstReg
).addMBB(mainMBB
)
10529 .addReg(restoreDstReg
).addMBB(thisMBB
);
10531 MI
.eraseFromParent();
10535 MachineBasicBlock
*
10536 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr
&MI
,
10537 MachineBasicBlock
*MBB
) const {
10538 DebugLoc DL
= MI
.getDebugLoc();
10539 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
10541 MachineFunction
*MF
= MBB
->getParent();
10542 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
10544 MVT PVT
= getPointerTy(MF
->getDataLayout());
10545 assert((PVT
== MVT::i64
|| PVT
== MVT::i32
) &&
10546 "Invalid Pointer Size!");
10548 const TargetRegisterClass
*RC
=
10549 (PVT
== MVT::i64
) ? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
10550 unsigned Tmp
= MRI
.createVirtualRegister(RC
);
10551 // Since FP is only updated here but NOT referenced, it's treated as GPR.
10552 unsigned FP
= (PVT
== MVT::i64
) ? PPC::X31
: PPC::R31
;
10553 unsigned SP
= (PVT
== MVT::i64
) ? PPC::X1
: PPC::R1
;
10557 : (Subtarget
.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10560 MachineInstrBuilder MIB
;
10562 const int64_t LabelOffset
= 1 * PVT
.getStoreSize();
10563 const int64_t SPOffset
= 2 * PVT
.getStoreSize();
10564 const int64_t TOCOffset
= 3 * PVT
.getStoreSize();
10565 const int64_t BPOffset
= 4 * PVT
.getStoreSize();
10567 unsigned BufReg
= MI
.getOperand(0).getReg();
10569 // Reload FP (the jumped-to function may not have had a
10570 // frame pointer, and if so, then its r31 will be restored
10572 if (PVT
== MVT::i64
) {
10573 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), FP
)
10577 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), FP
)
10581 MIB
.cloneMemRefs(MI
);
10584 if (PVT
== MVT::i64
) {
10585 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), Tmp
)
10586 .addImm(LabelOffset
)
10589 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), Tmp
)
10590 .addImm(LabelOffset
)
10593 MIB
.cloneMemRefs(MI
);
10596 if (PVT
== MVT::i64
) {
10597 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), SP
)
10601 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), SP
)
10605 MIB
.cloneMemRefs(MI
);
10608 if (PVT
== MVT::i64
) {
10609 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), BP
)
10613 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LWZ
), BP
)
10617 MIB
.cloneMemRefs(MI
);
10620 if (PVT
== MVT::i64
&& Subtarget
.isSVR4ABI()) {
10621 setUsesTOCBasePtr(*MBB
->getParent());
10622 MIB
= BuildMI(*MBB
, MI
, DL
, TII
->get(PPC::LD
), PPC::X2
)
10629 BuildMI(*MBB
, MI
, DL
,
10630 TII
->get(PVT
== MVT::i64
? PPC::MTCTR8
: PPC::MTCTR
)).addReg(Tmp
);
10631 BuildMI(*MBB
, MI
, DL
, TII
->get(PVT
== MVT::i64
? PPC::BCTR8
: PPC::BCTR
));
10633 MI
.eraseFromParent();
10637 MachineBasicBlock
*
10638 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
10639 MachineBasicBlock
*BB
) const {
10640 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
10641 MI
.getOpcode() == TargetOpcode::PATCHPOINT
) {
10642 if (Subtarget
.isPPC64() && Subtarget
.isSVR4ABI() &&
10643 MI
.getOpcode() == TargetOpcode::PATCHPOINT
) {
10644 // Call lowering should have added an r2 operand to indicate a dependence
10645 // on the TOC base pointer value. It can't however, because there is no
10646 // way to mark the dependence as implicit there, and so the stackmap code
10647 // will confuse it with a regular operand. Instead, add the dependence
10649 MI
.addOperand(MachineOperand::CreateReg(PPC::X2
, false, true));
10652 return emitPatchPoint(MI
, BB
);
10655 if (MI
.getOpcode() == PPC::EH_SjLj_SetJmp32
||
10656 MI
.getOpcode() == PPC::EH_SjLj_SetJmp64
) {
10657 return emitEHSjLjSetJmp(MI
, BB
);
10658 } else if (MI
.getOpcode() == PPC::EH_SjLj_LongJmp32
||
10659 MI
.getOpcode() == PPC::EH_SjLj_LongJmp64
) {
10660 return emitEHSjLjLongJmp(MI
, BB
);
10663 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
10665 // To "insert" these instructions we actually have to insert their
10666 // control-flow patterns.
10667 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
10668 MachineFunction::iterator It
= ++BB
->getIterator();
10670 MachineFunction
*F
= BB
->getParent();
10672 if (MI
.getOpcode() == PPC::SELECT_CC_I4
||
10673 MI
.getOpcode() == PPC::SELECT_CC_I8
|| MI
.getOpcode() == PPC::SELECT_I4
||
10674 MI
.getOpcode() == PPC::SELECT_I8
) {
10675 SmallVector
<MachineOperand
, 2> Cond
;
10676 if (MI
.getOpcode() == PPC::SELECT_CC_I4
||
10677 MI
.getOpcode() == PPC::SELECT_CC_I8
)
10678 Cond
.push_back(MI
.getOperand(4));
10680 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
10681 Cond
.push_back(MI
.getOperand(1));
10683 DebugLoc dl
= MI
.getDebugLoc();
10684 TII
->insertSelect(*BB
, MI
, dl
, MI
.getOperand(0).getReg(), Cond
,
10685 MI
.getOperand(2).getReg(), MI
.getOperand(3).getReg());
10686 } else if (MI
.getOpcode() == PPC::SELECT_CC_I4
||
10687 MI
.getOpcode() == PPC::SELECT_CC_I8
||
10688 MI
.getOpcode() == PPC::SELECT_CC_F4
||
10689 MI
.getOpcode() == PPC::SELECT_CC_F8
||
10690 MI
.getOpcode() == PPC::SELECT_CC_F16
||
10691 MI
.getOpcode() == PPC::SELECT_CC_QFRC
||
10692 MI
.getOpcode() == PPC::SELECT_CC_QSRC
||
10693 MI
.getOpcode() == PPC::SELECT_CC_QBRC
||
10694 MI
.getOpcode() == PPC::SELECT_CC_VRRC
||
10695 MI
.getOpcode() == PPC::SELECT_CC_VSFRC
||
10696 MI
.getOpcode() == PPC::SELECT_CC_VSSRC
||
10697 MI
.getOpcode() == PPC::SELECT_CC_VSRC
||
10698 MI
.getOpcode() == PPC::SELECT_CC_SPE4
||
10699 MI
.getOpcode() == PPC::SELECT_CC_SPE
||
10700 MI
.getOpcode() == PPC::SELECT_I4
||
10701 MI
.getOpcode() == PPC::SELECT_I8
||
10702 MI
.getOpcode() == PPC::SELECT_F4
||
10703 MI
.getOpcode() == PPC::SELECT_F8
||
10704 MI
.getOpcode() == PPC::SELECT_F16
||
10705 MI
.getOpcode() == PPC::SELECT_QFRC
||
10706 MI
.getOpcode() == PPC::SELECT_QSRC
||
10707 MI
.getOpcode() == PPC::SELECT_QBRC
||
10708 MI
.getOpcode() == PPC::SELECT_SPE
||
10709 MI
.getOpcode() == PPC::SELECT_SPE4
||
10710 MI
.getOpcode() == PPC::SELECT_VRRC
||
10711 MI
.getOpcode() == PPC::SELECT_VSFRC
||
10712 MI
.getOpcode() == PPC::SELECT_VSSRC
||
10713 MI
.getOpcode() == PPC::SELECT_VSRC
) {
10714 // The incoming instruction knows the destination vreg to set, the
10715 // condition code register to branch on, the true/false values to
10716 // select between, and a branch opcode to use.
10721 // cmpTY ccX, r1, r2
10723 // fallthrough --> copy0MBB
10724 MachineBasicBlock
*thisMBB
= BB
;
10725 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10726 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10727 DebugLoc dl
= MI
.getDebugLoc();
10728 F
->insert(It
, copy0MBB
);
10729 F
->insert(It
, sinkMBB
);
10731 // Transfer the remainder of BB and its successor edges to sinkMBB.
10732 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10733 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10734 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10736 // Next, add the true and fallthrough blocks as its successors.
10737 BB
->addSuccessor(copy0MBB
);
10738 BB
->addSuccessor(sinkMBB
);
10740 if (MI
.getOpcode() == PPC::SELECT_I4
|| MI
.getOpcode() == PPC::SELECT_I8
||
10741 MI
.getOpcode() == PPC::SELECT_F4
|| MI
.getOpcode() == PPC::SELECT_F8
||
10742 MI
.getOpcode() == PPC::SELECT_F16
||
10743 MI
.getOpcode() == PPC::SELECT_SPE4
||
10744 MI
.getOpcode() == PPC::SELECT_SPE
||
10745 MI
.getOpcode() == PPC::SELECT_QFRC
||
10746 MI
.getOpcode() == PPC::SELECT_QSRC
||
10747 MI
.getOpcode() == PPC::SELECT_QBRC
||
10748 MI
.getOpcode() == PPC::SELECT_VRRC
||
10749 MI
.getOpcode() == PPC::SELECT_VSFRC
||
10750 MI
.getOpcode() == PPC::SELECT_VSSRC
||
10751 MI
.getOpcode() == PPC::SELECT_VSRC
) {
10752 BuildMI(BB
, dl
, TII
->get(PPC::BC
))
10753 .addReg(MI
.getOperand(1).getReg())
10756 unsigned SelectPred
= MI
.getOperand(4).getImm();
10757 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10758 .addImm(SelectPred
)
10759 .addReg(MI
.getOperand(1).getReg())
10764 // %FalseValue = ...
10765 // # fallthrough to sinkMBB
10768 // Update machine-CFG edges
10769 BB
->addSuccessor(sinkMBB
);
10772 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10775 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::PHI
), MI
.getOperand(0).getReg())
10776 .addReg(MI
.getOperand(3).getReg())
10778 .addReg(MI
.getOperand(2).getReg())
10780 } else if (MI
.getOpcode() == PPC::ReadTB
) {
10781 // To read the 64-bit time-base register on a 32-bit target, we read the
10782 // two halves. Should the counter have wrapped while it was being read, we
10783 // need to try again.
10786 // mfspr Rx,TBU # load from TBU
10787 // mfspr Ry,TB # load from TB
10788 // mfspr Rz,TBU # load from TBU
10789 // cmpw crX,Rx,Rz # check if 'old'='new'
10790 // bne readLoop # branch if they're not equal
10793 MachineBasicBlock
*readMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10794 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10795 DebugLoc dl
= MI
.getDebugLoc();
10796 F
->insert(It
, readMBB
);
10797 F
->insert(It
, sinkMBB
);
10799 // Transfer the remainder of BB and its successor edges to sinkMBB.
10800 sinkMBB
->splice(sinkMBB
->begin(), BB
,
10801 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10802 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10804 BB
->addSuccessor(readMBB
);
10807 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
10808 unsigned ReadAgainReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
10809 unsigned LoReg
= MI
.getOperand(0).getReg();
10810 unsigned HiReg
= MI
.getOperand(1).getReg();
10812 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), HiReg
).addImm(269);
10813 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), LoReg
).addImm(268);
10814 BuildMI(BB
, dl
, TII
->get(PPC::MFSPR
), ReadAgainReg
).addImm(269);
10816 unsigned CmpReg
= RegInfo
.createVirtualRegister(&PPC::CRRCRegClass
);
10818 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), CmpReg
)
10820 .addReg(ReadAgainReg
);
10821 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10822 .addImm(PPC::PRED_NE
)
10826 BB
->addSuccessor(readMBB
);
10827 BB
->addSuccessor(sinkMBB
);
10828 } else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8
)
10829 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ADD4
);
10830 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16
)
10831 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ADD4
);
10832 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32
)
10833 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::ADD4
);
10834 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64
)
10835 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::ADD8
);
10837 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I8
)
10838 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::AND
);
10839 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I16
)
10840 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::AND
);
10841 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I32
)
10842 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::AND
);
10843 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_AND_I64
)
10844 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::AND8
);
10846 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I8
)
10847 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::OR
);
10848 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I16
)
10849 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::OR
);
10850 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I32
)
10851 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::OR
);
10852 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_OR_I64
)
10853 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::OR8
);
10855 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8
)
10856 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::XOR
);
10857 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16
)
10858 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::XOR
);
10859 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32
)
10860 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::XOR
);
10861 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64
)
10862 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::XOR8
);
10864 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8
)
10865 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::NAND
);
10866 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16
)
10867 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::NAND
);
10868 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32
)
10869 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::NAND
);
10870 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64
)
10871 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::NAND8
);
10873 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8
)
10874 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::SUBF
);
10875 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16
)
10876 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::SUBF
);
10877 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32
)
10878 BB
= EmitAtomicBinary(MI
, BB
, 4, PPC::SUBF
);
10879 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64
)
10880 BB
= EmitAtomicBinary(MI
, BB
, 8, PPC::SUBF8
);
10882 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8
)
10883 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPW
, PPC::PRED_GE
);
10884 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16
)
10885 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPW
, PPC::PRED_GE
);
10886 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32
)
10887 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPW
, PPC::PRED_GE
);
10888 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64
)
10889 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPD
, PPC::PRED_GE
);
10891 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8
)
10892 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPW
, PPC::PRED_LE
);
10893 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16
)
10894 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPW
, PPC::PRED_LE
);
10895 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32
)
10896 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPW
, PPC::PRED_LE
);
10897 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64
)
10898 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPD
, PPC::PRED_LE
);
10900 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8
)
10901 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPLW
, PPC::PRED_GE
);
10902 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16
)
10903 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPLW
, PPC::PRED_GE
);
10904 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32
)
10905 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPLW
, PPC::PRED_GE
);
10906 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64
)
10907 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPLD
, PPC::PRED_GE
);
10909 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8
)
10910 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0, PPC::CMPLW
, PPC::PRED_LE
);
10911 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16
)
10912 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0, PPC::CMPLW
, PPC::PRED_LE
);
10913 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32
)
10914 BB
= EmitAtomicBinary(MI
, BB
, 4, 0, PPC::CMPLW
, PPC::PRED_LE
);
10915 else if (MI
.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64
)
10916 BB
= EmitAtomicBinary(MI
, BB
, 8, 0, PPC::CMPLD
, PPC::PRED_LE
);
10918 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I8
)
10919 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0);
10920 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I16
)
10921 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0);
10922 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I32
)
10923 BB
= EmitAtomicBinary(MI
, BB
, 4, 0);
10924 else if (MI
.getOpcode() == PPC::ATOMIC_SWAP_I64
)
10925 BB
= EmitAtomicBinary(MI
, BB
, 8, 0);
10926 else if (MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32
||
10927 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
||
10928 (Subtarget
.hasPartwordAtomics() &&
10929 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
) ||
10930 (Subtarget
.hasPartwordAtomics() &&
10931 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
)) {
10932 bool is64bit
= MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
;
10934 auto LoadMnemonic
= PPC::LDARX
;
10935 auto StoreMnemonic
= PPC::STDCX
;
10936 switch (MI
.getOpcode()) {
10938 llvm_unreachable("Compare and swap of unknown size");
10939 case PPC::ATOMIC_CMP_SWAP_I8
:
10940 LoadMnemonic
= PPC::LBARX
;
10941 StoreMnemonic
= PPC::STBCX
;
10942 assert(Subtarget
.hasPartwordAtomics() && "No support partword atomics.");
10944 case PPC::ATOMIC_CMP_SWAP_I16
:
10945 LoadMnemonic
= PPC::LHARX
;
10946 StoreMnemonic
= PPC::STHCX
;
10947 assert(Subtarget
.hasPartwordAtomics() && "No support partword atomics.");
10949 case PPC::ATOMIC_CMP_SWAP_I32
:
10950 LoadMnemonic
= PPC::LWARX
;
10951 StoreMnemonic
= PPC::STWCX
;
10953 case PPC::ATOMIC_CMP_SWAP_I64
:
10954 LoadMnemonic
= PPC::LDARX
;
10955 StoreMnemonic
= PPC::STDCX
;
10958 unsigned dest
= MI
.getOperand(0).getReg();
10959 unsigned ptrA
= MI
.getOperand(1).getReg();
10960 unsigned ptrB
= MI
.getOperand(2).getReg();
10961 unsigned oldval
= MI
.getOperand(3).getReg();
10962 unsigned newval
= MI
.getOperand(4).getReg();
10963 DebugLoc dl
= MI
.getDebugLoc();
10965 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10966 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10967 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10968 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
10969 F
->insert(It
, loop1MBB
);
10970 F
->insert(It
, loop2MBB
);
10971 F
->insert(It
, midMBB
);
10972 F
->insert(It
, exitMBB
);
10973 exitMBB
->splice(exitMBB
->begin(), BB
,
10974 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
10975 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
10979 // fallthrough --> loopMBB
10980 BB
->addSuccessor(loop1MBB
);
10983 // l[bhwd]arx dest, ptr
10984 // cmp[wd] dest, oldval
10987 // st[bhwd]cx. newval, ptr
10991 // st[bhwd]cx. dest, ptr
10994 BuildMI(BB
, dl
, TII
->get(LoadMnemonic
), dest
).addReg(ptrA
).addReg(ptrB
);
10995 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::CMPD
: PPC::CMPW
), PPC::CR0
)
10998 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
10999 .addImm(PPC::PRED_NE
)
11002 BB
->addSuccessor(loop2MBB
);
11003 BB
->addSuccessor(midMBB
);
11006 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
11010 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11011 .addImm(PPC::PRED_NE
)
11014 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
11015 BB
->addSuccessor(loop1MBB
);
11016 BB
->addSuccessor(exitMBB
);
11019 BuildMI(BB
, dl
, TII
->get(StoreMnemonic
))
11023 BB
->addSuccessor(exitMBB
);
11028 } else if (MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
||
11029 MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
) {
11030 // We must use 64-bit registers for addresses when targeting 64-bit,
11031 // since we're actually doing arithmetic on them. Other registers
11033 bool is64bit
= Subtarget
.isPPC64();
11034 bool isLittleEndian
= Subtarget
.isLittleEndian();
11035 bool is8bit
= MI
.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
;
11037 unsigned dest
= MI
.getOperand(0).getReg();
11038 unsigned ptrA
= MI
.getOperand(1).getReg();
11039 unsigned ptrB
= MI
.getOperand(2).getReg();
11040 unsigned oldval
= MI
.getOperand(3).getReg();
11041 unsigned newval
= MI
.getOperand(4).getReg();
11042 DebugLoc dl
= MI
.getDebugLoc();
11044 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11045 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11046 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11047 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
11048 F
->insert(It
, loop1MBB
);
11049 F
->insert(It
, loop2MBB
);
11050 F
->insert(It
, midMBB
);
11051 F
->insert(It
, exitMBB
);
11052 exitMBB
->splice(exitMBB
->begin(), BB
,
11053 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
11054 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
11056 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11057 const TargetRegisterClass
*RC
=
11058 is64bit
? &PPC::G8RCRegClass
: &PPC::GPRCRegClass
;
11059 const TargetRegisterClass
*GPRC
= &PPC::GPRCRegClass
;
11061 Register PtrReg
= RegInfo
.createVirtualRegister(RC
);
11062 Register Shift1Reg
= RegInfo
.createVirtualRegister(GPRC
);
11063 Register ShiftReg
=
11064 isLittleEndian
? Shift1Reg
: RegInfo
.createVirtualRegister(GPRC
);
11065 Register NewVal2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11066 Register NewVal3Reg
= RegInfo
.createVirtualRegister(GPRC
);
11067 Register OldVal2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11068 Register OldVal3Reg
= RegInfo
.createVirtualRegister(GPRC
);
11069 Register MaskReg
= RegInfo
.createVirtualRegister(GPRC
);
11070 Register Mask2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11071 Register Mask3Reg
= RegInfo
.createVirtualRegister(GPRC
);
11072 Register Tmp2Reg
= RegInfo
.createVirtualRegister(GPRC
);
11073 Register Tmp4Reg
= RegInfo
.createVirtualRegister(GPRC
);
11074 Register TmpDestReg
= RegInfo
.createVirtualRegister(GPRC
);
11076 Register TmpReg
= RegInfo
.createVirtualRegister(GPRC
);
11077 Register ZeroReg
= is64bit
? PPC::ZERO8
: PPC::ZERO
;
11080 // fallthrough --> loopMBB
11081 BB
->addSuccessor(loop1MBB
);
11083 // The 4-byte load must be aligned, while a char or short may be
11084 // anywhere in the word. Hence all this nasty bookkeeping code.
11085 // add ptr1, ptrA, ptrB [copy if ptrA==0]
11086 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11087 // xori shift, shift1, 24 [16]
11088 // rlwinm ptr, ptr1, 0, 0, 29
11089 // slw newval2, newval, shift
11090 // slw oldval2, oldval,shift
11091 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11092 // slw mask, mask2, shift
11093 // and newval3, newval2, mask
11094 // and oldval3, oldval2, mask
11096 // lwarx tmpDest, ptr
11097 // and tmp, tmpDest, mask
11098 // cmpw tmp, oldval3
11101 // andc tmp2, tmpDest, mask
11102 // or tmp4, tmp2, newval3
11103 // stwcx. tmp4, ptr
11107 // stwcx. tmpDest, ptr
11109 // srw dest, tmpDest, shift
11110 if (ptrA
!= ZeroReg
) {
11111 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
11112 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
11119 // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11121 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
)
11122 .addReg(Ptr1Reg
, 0, is64bit
? PPC::sub_32
: 0)
11125 .addImm(is8bit
? 28 : 27);
11126 if (!isLittleEndian
)
11127 BuildMI(BB
, dl
, TII
->get(PPC::XORI
), ShiftReg
)
11129 .addImm(is8bit
? 24 : 16);
11131 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
11136 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
11141 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), NewVal2Reg
)
11144 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), OldVal2Reg
)
11148 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
11150 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
11151 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
11155 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
11158 BuildMI(BB
, dl
, TII
->get(PPC::AND
), NewVal3Reg
)
11159 .addReg(NewVal2Reg
)
11161 BuildMI(BB
, dl
, TII
->get(PPC::AND
), OldVal3Reg
)
11162 .addReg(OldVal2Reg
)
11166 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
11169 BuildMI(BB
, dl
, TII
->get(PPC::AND
), TmpReg
)
11170 .addReg(TmpDestReg
)
11172 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), PPC::CR0
)
11174 .addReg(OldVal3Reg
);
11175 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11176 .addImm(PPC::PRED_NE
)
11179 BB
->addSuccessor(loop2MBB
);
11180 BB
->addSuccessor(midMBB
);
11183 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
), Tmp2Reg
)
11184 .addReg(TmpDestReg
)
11186 BuildMI(BB
, dl
, TII
->get(PPC::OR
), Tmp4Reg
)
11188 .addReg(NewVal3Reg
);
11189 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
11193 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
11194 .addImm(PPC::PRED_NE
)
11197 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
11198 BB
->addSuccessor(loop1MBB
);
11199 BB
->addSuccessor(exitMBB
);
11202 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
))
11203 .addReg(TmpDestReg
)
11206 BB
->addSuccessor(exitMBB
);
11211 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
), dest
)
11214 } else if (MI
.getOpcode() == PPC::FADDrtz
) {
11215 // This pseudo performs an FADD with rounding mode temporarily forced
11216 // to round-to-zero. We emit this via custom inserter since the FPSCR
11217 // is not modeled at the SelectionDAG level.
11218 unsigned Dest
= MI
.getOperand(0).getReg();
11219 unsigned Src1
= MI
.getOperand(1).getReg();
11220 unsigned Src2
= MI
.getOperand(2).getReg();
11221 DebugLoc dl
= MI
.getDebugLoc();
11223 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11224 unsigned MFFSReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
11226 // Save FPSCR value.
11227 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), MFFSReg
);
11229 // Set rounding mode to round-to-zero.
11230 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSB1
)).addImm(31);
11231 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSB0
)).addImm(30);
11233 // Perform addition.
11234 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::FADD
), Dest
).addReg(Src1
).addReg(Src2
);
11236 // Restore FPSCR value.
11237 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSFb
)).addImm(1).addReg(MFFSReg
);
11238 } else if (MI
.getOpcode() == PPC::ANDIo_1_EQ_BIT
||
11239 MI
.getOpcode() == PPC::ANDIo_1_GT_BIT
||
11240 MI
.getOpcode() == PPC::ANDIo_1_EQ_BIT8
||
11241 MI
.getOpcode() == PPC::ANDIo_1_GT_BIT8
) {
11242 unsigned Opcode
= (MI
.getOpcode() == PPC::ANDIo_1_EQ_BIT8
||
11243 MI
.getOpcode() == PPC::ANDIo_1_GT_BIT8
)
11246 bool isEQ
= (MI
.getOpcode() == PPC::ANDIo_1_EQ_BIT
||
11247 MI
.getOpcode() == PPC::ANDIo_1_EQ_BIT8
);
11249 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11250 unsigned Dest
= RegInfo
.createVirtualRegister(
11251 Opcode
== PPC::ANDIo
? &PPC::GPRCRegClass
: &PPC::G8RCRegClass
);
11253 DebugLoc dl
= MI
.getDebugLoc();
11254 BuildMI(*BB
, MI
, dl
, TII
->get(Opcode
), Dest
)
11255 .addReg(MI
.getOperand(1).getReg())
11257 BuildMI(*BB
, MI
, dl
, TII
->get(TargetOpcode::COPY
),
11258 MI
.getOperand(0).getReg())
11259 .addReg(isEQ
? PPC::CR0EQ
: PPC::CR0GT
);
11260 } else if (MI
.getOpcode() == PPC::TCHECK_RET
) {
11261 DebugLoc Dl
= MI
.getDebugLoc();
11262 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11263 unsigned CRReg
= RegInfo
.createVirtualRegister(&PPC::CRRCRegClass
);
11264 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::TCHECK
), CRReg
);
11265 BuildMI(*BB
, MI
, Dl
, TII
->get(TargetOpcode::COPY
),
11266 MI
.getOperand(0).getReg())
11268 } else if (MI
.getOpcode() == PPC::TBEGIN_RET
) {
11269 DebugLoc Dl
= MI
.getDebugLoc();
11270 unsigned Imm
= MI
.getOperand(1).getImm();
11271 BuildMI(*BB
, MI
, Dl
, TII
->get(PPC::TBEGIN
)).addImm(Imm
);
11272 BuildMI(*BB
, MI
, Dl
, TII
->get(TargetOpcode::COPY
),
11273 MI
.getOperand(0).getReg())
11274 .addReg(PPC::CR0EQ
);
11275 } else if (MI
.getOpcode() == PPC::SETRNDi
) {
11276 DebugLoc dl
= MI
.getDebugLoc();
11277 unsigned OldFPSCRReg
= MI
.getOperand(0).getReg();
11279 // Save FPSCR value.
11280 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), OldFPSCRReg
);
11282 // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11283 // the following settings:
11284 // 00 Round to nearest
11286 // 10 Round to +inf
11287 // 11 Round to -inf
11289 // When the operand is immediate, using the two least significant bits of
11290 // the immediate to set the bits 62:63 of FPSCR.
11291 unsigned Mode
= MI
.getOperand(1).getImm();
11292 BuildMI(*BB
, MI
, dl
, TII
->get((Mode
& 1) ? PPC::MTFSB1
: PPC::MTFSB0
))
11295 BuildMI(*BB
, MI
, dl
, TII
->get((Mode
& 2) ? PPC::MTFSB1
: PPC::MTFSB0
))
11297 } else if (MI
.getOpcode() == PPC::SETRND
) {
11298 DebugLoc dl
= MI
.getDebugLoc();
11300 // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11301 // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11302 // If the target doesn't have DirectMove, we should use stack to do the
11303 // conversion, because the target doesn't have the instructions like mtvsrd
11304 // or mfvsrd to do this conversion directly.
11305 auto copyRegFromG8RCOrF8RC
= [&] (unsigned DestReg
, unsigned SrcReg
) {
11306 if (Subtarget
.hasDirectMove()) {
11307 BuildMI(*BB
, MI
, dl
, TII
->get(TargetOpcode::COPY
), DestReg
)
11310 // Use stack to do the register copy.
11311 unsigned StoreOp
= PPC::STD
, LoadOp
= PPC::LFD
;
11312 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11313 const TargetRegisterClass
*RC
= RegInfo
.getRegClass(SrcReg
);
11314 if (RC
== &PPC::F8RCRegClass
) {
11315 // Copy register from F8RCRegClass to G8RCRegclass.
11316 assert((RegInfo
.getRegClass(DestReg
) == &PPC::G8RCRegClass
) &&
11317 "Unsupported RegClass.");
11319 StoreOp
= PPC::STFD
;
11322 // Copy register from G8RCRegClass to F8RCRegclass.
11323 assert((RegInfo
.getRegClass(SrcReg
) == &PPC::G8RCRegClass
) &&
11324 (RegInfo
.getRegClass(DestReg
) == &PPC::F8RCRegClass
) &&
11325 "Unsupported RegClass.");
11328 MachineFrameInfo
&MFI
= F
->getFrameInfo();
11329 int FrameIdx
= MFI
.CreateStackObject(8, 8, false);
11331 MachineMemOperand
*MMOStore
= F
->getMachineMemOperand(
11332 MachinePointerInfo::getFixedStack(*F
, FrameIdx
, 0),
11333 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
11334 MFI
.getObjectAlignment(FrameIdx
));
11336 // Store the SrcReg into the stack.
11337 BuildMI(*BB
, MI
, dl
, TII
->get(StoreOp
))
11340 .addFrameIndex(FrameIdx
)
11341 .addMemOperand(MMOStore
);
11343 MachineMemOperand
*MMOLoad
= F
->getMachineMemOperand(
11344 MachinePointerInfo::getFixedStack(*F
, FrameIdx
, 0),
11345 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
11346 MFI
.getObjectAlignment(FrameIdx
));
11348 // Load from the stack where SrcReg is stored, and save to DestReg,
11349 // so we have done the RegClass conversion from RegClass::SrcReg to
11350 // RegClass::DestReg.
11351 BuildMI(*BB
, MI
, dl
, TII
->get(LoadOp
), DestReg
)
11353 .addFrameIndex(FrameIdx
)
11354 .addMemOperand(MMOLoad
);
11358 unsigned OldFPSCRReg
= MI
.getOperand(0).getReg();
11360 // Save FPSCR value.
11361 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MFFS
), OldFPSCRReg
);
11363 // When the operand is gprc register, use two least significant bits of the
11364 // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11366 // copy OldFPSCRTmpReg, OldFPSCRReg
11367 // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11368 // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11369 // copy NewFPSCRReg, NewFPSCRTmpReg
11370 // mtfsf 255, NewFPSCRReg
11371 MachineOperand SrcOp
= MI
.getOperand(1);
11372 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
11373 unsigned OldFPSCRTmpReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
11375 copyRegFromG8RCOrF8RC(OldFPSCRTmpReg
, OldFPSCRReg
);
11377 unsigned ImDefReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
11378 unsigned ExtSrcReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
11380 // The first operand of INSERT_SUBREG should be a register which has
11381 // subregisters, we only care about its RegClass, so we should use an
11382 // IMPLICIT_DEF register.
11383 BuildMI(*BB
, MI
, dl
, TII
->get(TargetOpcode::IMPLICIT_DEF
), ImDefReg
);
11384 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::INSERT_SUBREG
), ExtSrcReg
)
11389 unsigned NewFPSCRTmpReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
11390 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::RLDIMI
), NewFPSCRTmpReg
)
11391 .addReg(OldFPSCRTmpReg
)
11396 unsigned NewFPSCRReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
11397 copyRegFromG8RCOrF8RC(NewFPSCRReg
, NewFPSCRTmpReg
);
11399 // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11401 BuildMI(*BB
, MI
, dl
, TII
->get(PPC::MTFSF
))
11403 .addReg(NewFPSCRReg
)
11407 llvm_unreachable("Unexpected instr type to insert");
11410 MI
.eraseFromParent(); // The pseudo instruction is gone now.
11414 //===----------------------------------------------------------------------===//
11415 // Target Optimization Hooks
11416 //===----------------------------------------------------------------------===//
11418 static int getEstimateRefinementSteps(EVT VT
, const PPCSubtarget
&Subtarget
) {
11419 // For the estimates, convergence is quadratic, so we essentially double the
11420 // number of digits correct after every iteration. For both FRE and FRSQRTE,
11421 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11422 // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11423 int RefinementSteps
= Subtarget
.hasRecipPrec() ? 1 : 3;
11424 if (VT
.getScalarType() == MVT::f64
)
11426 return RefinementSteps
;
11429 SDValue
PPCTargetLowering::getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
,
11430 int Enabled
, int &RefinementSteps
,
11431 bool &UseOneConstNR
,
11432 bool Reciprocal
) const {
11433 EVT VT
= Operand
.getValueType();
11434 if ((VT
== MVT::f32
&& Subtarget
.hasFRSQRTES()) ||
11435 (VT
== MVT::f64
&& Subtarget
.hasFRSQRTE()) ||
11436 (VT
== MVT::v4f32
&& Subtarget
.hasAltivec()) ||
11437 (VT
== MVT::v2f64
&& Subtarget
.hasVSX()) ||
11438 (VT
== MVT::v4f32
&& Subtarget
.hasQPX()) ||
11439 (VT
== MVT::v4f64
&& Subtarget
.hasQPX())) {
11440 if (RefinementSteps
== ReciprocalEstimate::Unspecified
)
11441 RefinementSteps
= getEstimateRefinementSteps(VT
, Subtarget
);
11443 // The Newton-Raphson computation with a single constant does not provide
11444 // enough accuracy on some CPUs.
11445 UseOneConstNR
= !Subtarget
.needsTwoConstNR();
11446 return DAG
.getNode(PPCISD::FRSQRTE
, SDLoc(Operand
), VT
, Operand
);
11451 SDValue
PPCTargetLowering::getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
,
11453 int &RefinementSteps
) const {
11454 EVT VT
= Operand
.getValueType();
11455 if ((VT
== MVT::f32
&& Subtarget
.hasFRES()) ||
11456 (VT
== MVT::f64
&& Subtarget
.hasFRE()) ||
11457 (VT
== MVT::v4f32
&& Subtarget
.hasAltivec()) ||
11458 (VT
== MVT::v2f64
&& Subtarget
.hasVSX()) ||
11459 (VT
== MVT::v4f32
&& Subtarget
.hasQPX()) ||
11460 (VT
== MVT::v4f64
&& Subtarget
.hasQPX())) {
11461 if (RefinementSteps
== ReciprocalEstimate::Unspecified
)
11462 RefinementSteps
= getEstimateRefinementSteps(VT
, Subtarget
);
11463 return DAG
.getNode(PPCISD::FRE
, SDLoc(Operand
), VT
, Operand
);
11468 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
11469 // Note: This functionality is used only when unsafe-fp-math is enabled, and
11470 // on cores with reciprocal estimates (which are used when unsafe-fp-math is
11471 // enabled for division), this functionality is redundant with the default
11472 // combiner logic (once the division -> reciprocal/multiply transformation
11473 // has taken place). As a result, this matters more for older cores than for
11476 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11477 // reciprocal if there are two or more FDIVs (for embedded cores with only
11478 // one FP pipeline) for three or more FDIVs (for generic OOO cores).
11479 switch (Subtarget
.getDarwinDirective()) {
11484 case PPC::DIR_E500
:
11485 case PPC::DIR_E500mc
:
11486 case PPC::DIR_E5500
:
11491 // isConsecutiveLSLoc needs to work even if all adds have not yet been
11492 // collapsed, and so we need to look through chains of them.
11493 static void getBaseWithConstantOffset(SDValue Loc
, SDValue
&Base
,
11494 int64_t& Offset
, SelectionDAG
&DAG
) {
11495 if (DAG
.isBaseWithConstantOffset(Loc
)) {
11496 Base
= Loc
.getOperand(0);
11497 Offset
+= cast
<ConstantSDNode
>(Loc
.getOperand(1))->getSExtValue();
11499 // The base might itself be a base plus an offset, and if so, accumulate
11501 getBaseWithConstantOffset(Loc
.getOperand(0), Base
, Offset
, DAG
);
11505 static bool isConsecutiveLSLoc(SDValue Loc
, EVT VT
, LSBaseSDNode
*Base
,
11506 unsigned Bytes
, int Dist
,
11507 SelectionDAG
&DAG
) {
11508 if (VT
.getSizeInBits() / 8 != Bytes
)
11511 SDValue BaseLoc
= Base
->getBasePtr();
11512 if (Loc
.getOpcode() == ISD::FrameIndex
) {
11513 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
11515 const MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
11516 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
11517 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
11518 int FS
= MFI
.getObjectSize(FI
);
11519 int BFS
= MFI
.getObjectSize(BFI
);
11520 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
11521 return MFI
.getObjectOffset(FI
) == (MFI
.getObjectOffset(BFI
) + Dist
*Bytes
);
11524 SDValue Base1
= Loc
, Base2
= BaseLoc
;
11525 int64_t Offset1
= 0, Offset2
= 0;
11526 getBaseWithConstantOffset(Loc
, Base1
, Offset1
, DAG
);
11527 getBaseWithConstantOffset(BaseLoc
, Base2
, Offset2
, DAG
);
11528 if (Base1
== Base2
&& Offset1
== (Offset2
+ Dist
* Bytes
))
11531 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11532 const GlobalValue
*GV1
= nullptr;
11533 const GlobalValue
*GV2
= nullptr;
11536 bool isGA1
= TLI
.isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
11537 bool isGA2
= TLI
.isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
11538 if (isGA1
&& isGA2
&& GV1
== GV2
)
11539 return Offset1
== (Offset2
+ Dist
*Bytes
);
11543 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
11544 // not enforce equality of the chain operands.
11545 static bool isConsecutiveLS(SDNode
*N
, LSBaseSDNode
*Base
,
11546 unsigned Bytes
, int Dist
,
11547 SelectionDAG
&DAG
) {
11548 if (LSBaseSDNode
*LS
= dyn_cast
<LSBaseSDNode
>(N
)) {
11549 EVT VT
= LS
->getMemoryVT();
11550 SDValue Loc
= LS
->getBasePtr();
11551 return isConsecutiveLSLoc(Loc
, VT
, Base
, Bytes
, Dist
, DAG
);
11554 if (N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
) {
11556 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
11557 default: return false;
11558 case Intrinsic::ppc_qpx_qvlfd
:
11559 case Intrinsic::ppc_qpx_qvlfda
:
11562 case Intrinsic::ppc_qpx_qvlfs
:
11563 case Intrinsic::ppc_qpx_qvlfsa
:
11566 case Intrinsic::ppc_qpx_qvlfcd
:
11567 case Intrinsic::ppc_qpx_qvlfcda
:
11570 case Intrinsic::ppc_qpx_qvlfcs
:
11571 case Intrinsic::ppc_qpx_qvlfcsa
:
11574 case Intrinsic::ppc_qpx_qvlfiwa
:
11575 case Intrinsic::ppc_qpx_qvlfiwz
:
11576 case Intrinsic::ppc_altivec_lvx
:
11577 case Intrinsic::ppc_altivec_lvxl
:
11578 case Intrinsic::ppc_vsx_lxvw4x
:
11579 case Intrinsic::ppc_vsx_lxvw4x_be
:
11582 case Intrinsic::ppc_vsx_lxvd2x
:
11583 case Intrinsic::ppc_vsx_lxvd2x_be
:
11586 case Intrinsic::ppc_altivec_lvebx
:
11589 case Intrinsic::ppc_altivec_lvehx
:
11592 case Intrinsic::ppc_altivec_lvewx
:
11597 return isConsecutiveLSLoc(N
->getOperand(2), VT
, Base
, Bytes
, Dist
, DAG
);
11600 if (N
->getOpcode() == ISD::INTRINSIC_VOID
) {
11602 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
11603 default: return false;
11604 case Intrinsic::ppc_qpx_qvstfd
:
11605 case Intrinsic::ppc_qpx_qvstfda
:
11608 case Intrinsic::ppc_qpx_qvstfs
:
11609 case Intrinsic::ppc_qpx_qvstfsa
:
11612 case Intrinsic::ppc_qpx_qvstfcd
:
11613 case Intrinsic::ppc_qpx_qvstfcda
:
11616 case Intrinsic::ppc_qpx_qvstfcs
:
11617 case Intrinsic::ppc_qpx_qvstfcsa
:
11620 case Intrinsic::ppc_qpx_qvstfiw
:
11621 case Intrinsic::ppc_qpx_qvstfiwa
:
11622 case Intrinsic::ppc_altivec_stvx
:
11623 case Intrinsic::ppc_altivec_stvxl
:
11624 case Intrinsic::ppc_vsx_stxvw4x
:
11627 case Intrinsic::ppc_vsx_stxvd2x
:
11630 case Intrinsic::ppc_vsx_stxvw4x_be
:
11633 case Intrinsic::ppc_vsx_stxvd2x_be
:
11636 case Intrinsic::ppc_altivec_stvebx
:
11639 case Intrinsic::ppc_altivec_stvehx
:
11642 case Intrinsic::ppc_altivec_stvewx
:
11647 return isConsecutiveLSLoc(N
->getOperand(3), VT
, Base
, Bytes
, Dist
, DAG
);
11653 // Return true is there is a nearyby consecutive load to the one provided
11654 // (regardless of alignment). We search up and down the chain, looking though
11655 // token factors and other loads (but nothing else). As a result, a true result
11656 // indicates that it is safe to create a new consecutive load adjacent to the
11658 static bool findConsecutiveLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) {
11659 SDValue Chain
= LD
->getChain();
11660 EVT VT
= LD
->getMemoryVT();
11662 SmallSet
<SDNode
*, 16> LoadRoots
;
11663 SmallVector
<SDNode
*, 8> Queue(1, Chain
.getNode());
11664 SmallSet
<SDNode
*, 16> Visited
;
11666 // First, search up the chain, branching to follow all token-factor operands.
11667 // If we find a consecutive load, then we're done, otherwise, record all
11668 // nodes just above the top-level loads and token factors.
11669 while (!Queue
.empty()) {
11670 SDNode
*ChainNext
= Queue
.pop_back_val();
11671 if (!Visited
.insert(ChainNext
).second
)
11674 if (MemSDNode
*ChainLD
= dyn_cast
<MemSDNode
>(ChainNext
)) {
11675 if (isConsecutiveLS(ChainLD
, LD
, VT
.getStoreSize(), 1, DAG
))
11678 if (!Visited
.count(ChainLD
->getChain().getNode()))
11679 Queue
.push_back(ChainLD
->getChain().getNode());
11680 } else if (ChainNext
->getOpcode() == ISD::TokenFactor
) {
11681 for (const SDUse
&O
: ChainNext
->ops())
11682 if (!Visited
.count(O
.getNode()))
11683 Queue
.push_back(O
.getNode());
11685 LoadRoots
.insert(ChainNext
);
11688 // Second, search down the chain, starting from the top-level nodes recorded
11689 // in the first phase. These top-level nodes are the nodes just above all
11690 // loads and token factors. Starting with their uses, recursively look though
11691 // all loads (just the chain uses) and token factors to find a consecutive
11696 for (SmallSet
<SDNode
*, 16>::iterator I
= LoadRoots
.begin(),
11697 IE
= LoadRoots
.end(); I
!= IE
; ++I
) {
11698 Queue
.push_back(*I
);
11700 while (!Queue
.empty()) {
11701 SDNode
*LoadRoot
= Queue
.pop_back_val();
11702 if (!Visited
.insert(LoadRoot
).second
)
11705 if (MemSDNode
*ChainLD
= dyn_cast
<MemSDNode
>(LoadRoot
))
11706 if (isConsecutiveLS(ChainLD
, LD
, VT
.getStoreSize(), 1, DAG
))
11709 for (SDNode::use_iterator UI
= LoadRoot
->use_begin(),
11710 UE
= LoadRoot
->use_end(); UI
!= UE
; ++UI
)
11711 if (((isa
<MemSDNode
>(*UI
) &&
11712 cast
<MemSDNode
>(*UI
)->getChain().getNode() == LoadRoot
) ||
11713 UI
->getOpcode() == ISD::TokenFactor
) && !Visited
.count(*UI
))
11714 Queue
.push_back(*UI
);
11721 /// This function is called when we have proved that a SETCC node can be replaced
11722 /// by subtraction (and other supporting instructions) so that the result of
11723 /// comparison is kept in a GPR instead of CR. This function is purely for
11724 /// codegen purposes and has some flags to guide the codegen process.
11725 static SDValue
generateEquivalentSub(SDNode
*N
, int Size
, bool Complement
,
11726 bool Swap
, SDLoc
&DL
, SelectionDAG
&DAG
) {
11727 assert(N
->getOpcode() == ISD::SETCC
&& "ISD::SETCC Expected.");
11729 // Zero extend the operands to the largest legal integer. Originally, they
11730 // must be of a strictly smaller size.
11731 auto Op0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, N
->getOperand(0),
11732 DAG
.getConstant(Size
, DL
, MVT::i32
));
11733 auto Op1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, N
->getOperand(1),
11734 DAG
.getConstant(Size
, DL
, MVT::i32
));
11736 // Swap if needed. Depends on the condition code.
11738 std::swap(Op0
, Op1
);
11740 // Subtract extended integers.
11741 auto SubNode
= DAG
.getNode(ISD::SUB
, DL
, MVT::i64
, Op0
, Op1
);
11743 // Move the sign bit to the least significant position and zero out the rest.
11744 // Now the least significant bit carries the result of original comparison.
11745 auto Shifted
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SubNode
,
11746 DAG
.getConstant(Size
- 1, DL
, MVT::i32
));
11747 auto Final
= Shifted
;
11749 // Complement the result if needed. Based on the condition code.
11751 Final
= DAG
.getNode(ISD::XOR
, DL
, MVT::i64
, Shifted
,
11752 DAG
.getConstant(1, DL
, MVT::i64
));
11754 return DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Final
);
11757 SDValue
PPCTargetLowering::ConvertSETCCToSubtract(SDNode
*N
,
11758 DAGCombinerInfo
&DCI
) const {
11759 assert(N
->getOpcode() == ISD::SETCC
&& "ISD::SETCC Expected.");
11761 SelectionDAG
&DAG
= DCI
.DAG
;
11764 // Size of integers being compared has a critical role in the following
11765 // analysis, so we prefer to do this when all types are legal.
11766 if (!DCI
.isAfterLegalizeDAG())
11769 // If all users of SETCC extend its value to a legal integer type
11770 // then we replace SETCC with a subtraction
11771 for (SDNode::use_iterator UI
= N
->use_begin(),
11772 UE
= N
->use_end(); UI
!= UE
; ++UI
) {
11773 if (UI
->getOpcode() != ISD::ZERO_EXTEND
)
11777 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
11778 auto OpSize
= N
->getOperand(0).getValueSizeInBits();
11780 unsigned Size
= DAG
.getDataLayout().getLargestLegalIntTypeSizeInBits();
11782 if (OpSize
< Size
) {
11786 return generateEquivalentSub(N
, Size
, false, false, DL
, DAG
);
11788 return generateEquivalentSub(N
, Size
, true, true, DL
, DAG
);
11790 return generateEquivalentSub(N
, Size
, false, true, DL
, DAG
);
11792 return generateEquivalentSub(N
, Size
, true, false, DL
, DAG
);
11799 SDValue
PPCTargetLowering::DAGCombineTruncBoolExt(SDNode
*N
,
11800 DAGCombinerInfo
&DCI
) const {
11801 SelectionDAG
&DAG
= DCI
.DAG
;
11804 assert(Subtarget
.useCRBits() && "Expecting to be tracking CR bits");
11805 // If we're tracking CR bits, we need to be careful that we don't have:
11806 // trunc(binary-ops(zext(x), zext(y)))
11808 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11809 // such that we're unnecessarily moving things into GPRs when it would be
11810 // better to keep them in CR bits.
11812 // Note that trunc here can be an actual i1 trunc, or can be the effective
11813 // truncation that comes from a setcc or select_cc.
11814 if (N
->getOpcode() == ISD::TRUNCATE
&&
11815 N
->getValueType(0) != MVT::i1
)
11818 if (N
->getOperand(0).getValueType() != MVT::i32
&&
11819 N
->getOperand(0).getValueType() != MVT::i64
)
11822 if (N
->getOpcode() == ISD::SETCC
||
11823 N
->getOpcode() == ISD::SELECT_CC
) {
11824 // If we're looking at a comparison, then we need to make sure that the
11825 // high bits (all except for the first) don't matter the result.
11827 cast
<CondCodeSDNode
>(N
->getOperand(
11828 N
->getOpcode() == ISD::SETCC
? 2 : 4))->get();
11829 unsigned OpBits
= N
->getOperand(0).getValueSizeInBits();
11831 if (ISD::isSignedIntSetCC(CC
)) {
11832 if (DAG
.ComputeNumSignBits(N
->getOperand(0)) != OpBits
||
11833 DAG
.ComputeNumSignBits(N
->getOperand(1)) != OpBits
)
11835 } else if (ISD::isUnsignedIntSetCC(CC
)) {
11836 if (!DAG
.MaskedValueIsZero(N
->getOperand(0),
11837 APInt::getHighBitsSet(OpBits
, OpBits
-1)) ||
11838 !DAG
.MaskedValueIsZero(N
->getOperand(1),
11839 APInt::getHighBitsSet(OpBits
, OpBits
-1)))
11840 return (N
->getOpcode() == ISD::SETCC
? ConvertSETCCToSubtract(N
, DCI
)
11843 // This is neither a signed nor an unsigned comparison, just make sure
11844 // that the high bits are equal.
11845 KnownBits Op1Known
= DAG
.computeKnownBits(N
->getOperand(0));
11846 KnownBits Op2Known
= DAG
.computeKnownBits(N
->getOperand(1));
11848 // We don't really care about what is known about the first bit (if
11849 // anything), so clear it in all masks prior to comparing them.
11850 Op1Known
.Zero
.clearBit(0); Op1Known
.One
.clearBit(0);
11851 Op2Known
.Zero
.clearBit(0); Op2Known
.One
.clearBit(0);
11853 if (Op1Known
.Zero
!= Op2Known
.Zero
|| Op1Known
.One
!= Op2Known
.One
)
11858 // We now know that the higher-order bits are irrelevant, we just need to
11859 // make sure that all of the intermediate operations are bit operations, and
11860 // all inputs are extensions.
11861 if (N
->getOperand(0).getOpcode() != ISD::AND
&&
11862 N
->getOperand(0).getOpcode() != ISD::OR
&&
11863 N
->getOperand(0).getOpcode() != ISD::XOR
&&
11864 N
->getOperand(0).getOpcode() != ISD::SELECT
&&
11865 N
->getOperand(0).getOpcode() != ISD::SELECT_CC
&&
11866 N
->getOperand(0).getOpcode() != ISD::TRUNCATE
&&
11867 N
->getOperand(0).getOpcode() != ISD::SIGN_EXTEND
&&
11868 N
->getOperand(0).getOpcode() != ISD::ZERO_EXTEND
&&
11869 N
->getOperand(0).getOpcode() != ISD::ANY_EXTEND
)
11872 if ((N
->getOpcode() == ISD::SETCC
|| N
->getOpcode() == ISD::SELECT_CC
) &&
11873 N
->getOperand(1).getOpcode() != ISD::AND
&&
11874 N
->getOperand(1).getOpcode() != ISD::OR
&&
11875 N
->getOperand(1).getOpcode() != ISD::XOR
&&
11876 N
->getOperand(1).getOpcode() != ISD::SELECT
&&
11877 N
->getOperand(1).getOpcode() != ISD::SELECT_CC
&&
11878 N
->getOperand(1).getOpcode() != ISD::TRUNCATE
&&
11879 N
->getOperand(1).getOpcode() != ISD::SIGN_EXTEND
&&
11880 N
->getOperand(1).getOpcode() != ISD::ZERO_EXTEND
&&
11881 N
->getOperand(1).getOpcode() != ISD::ANY_EXTEND
)
11884 SmallVector
<SDValue
, 4> Inputs
;
11885 SmallVector
<SDValue
, 8> BinOps
, PromOps
;
11886 SmallPtrSet
<SDNode
*, 16> Visited
;
11888 for (unsigned i
= 0; i
< 2; ++i
) {
11889 if (((N
->getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
11890 N
->getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
11891 N
->getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) &&
11892 N
->getOperand(i
).getOperand(0).getValueType() == MVT::i1
) ||
11893 isa
<ConstantSDNode
>(N
->getOperand(i
)))
11894 Inputs
.push_back(N
->getOperand(i
));
11896 BinOps
.push_back(N
->getOperand(i
));
11898 if (N
->getOpcode() == ISD::TRUNCATE
)
11902 // Visit all inputs, collect all binary operations (and, or, xor and
11903 // select) that are all fed by extensions.
11904 while (!BinOps
.empty()) {
11905 SDValue BinOp
= BinOps
.back();
11908 if (!Visited
.insert(BinOp
.getNode()).second
)
11911 PromOps
.push_back(BinOp
);
11913 for (unsigned i
= 0, ie
= BinOp
.getNumOperands(); i
!= ie
; ++i
) {
11914 // The condition of the select is not promoted.
11915 if (BinOp
.getOpcode() == ISD::SELECT
&& i
== 0)
11917 if (BinOp
.getOpcode() == ISD::SELECT_CC
&& i
!= 2 && i
!= 3)
11920 if (((BinOp
.getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
11921 BinOp
.getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
11922 BinOp
.getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) &&
11923 BinOp
.getOperand(i
).getOperand(0).getValueType() == MVT::i1
) ||
11924 isa
<ConstantSDNode
>(BinOp
.getOperand(i
))) {
11925 Inputs
.push_back(BinOp
.getOperand(i
));
11926 } else if (BinOp
.getOperand(i
).getOpcode() == ISD::AND
||
11927 BinOp
.getOperand(i
).getOpcode() == ISD::OR
||
11928 BinOp
.getOperand(i
).getOpcode() == ISD::XOR
||
11929 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT
||
11930 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT_CC
||
11931 BinOp
.getOperand(i
).getOpcode() == ISD::TRUNCATE
||
11932 BinOp
.getOperand(i
).getOpcode() == ISD::SIGN_EXTEND
||
11933 BinOp
.getOperand(i
).getOpcode() == ISD::ZERO_EXTEND
||
11934 BinOp
.getOperand(i
).getOpcode() == ISD::ANY_EXTEND
) {
11935 BinOps
.push_back(BinOp
.getOperand(i
));
11937 // We have an input that is not an extension or another binary
11938 // operation; we'll abort this transformation.
11944 // Make sure that this is a self-contained cluster of operations (which
11945 // is not quite the same thing as saying that everything has only one
11947 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
11948 if (isa
<ConstantSDNode
>(Inputs
[i
]))
11951 for (SDNode::use_iterator UI
= Inputs
[i
].getNode()->use_begin(),
11952 UE
= Inputs
[i
].getNode()->use_end();
11954 SDNode
*User
= *UI
;
11955 if (User
!= N
&& !Visited
.count(User
))
11958 // Make sure that we're not going to promote the non-output-value
11959 // operand(s) or SELECT or SELECT_CC.
11960 // FIXME: Although we could sometimes handle this, and it does occur in
11961 // practice that one of the condition inputs to the select is also one of
11962 // the outputs, we currently can't deal with this.
11963 if (User
->getOpcode() == ISD::SELECT
) {
11964 if (User
->getOperand(0) == Inputs
[i
])
11966 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
11967 if (User
->getOperand(0) == Inputs
[i
] ||
11968 User
->getOperand(1) == Inputs
[i
])
11974 for (unsigned i
= 0, ie
= PromOps
.size(); i
!= ie
; ++i
) {
11975 for (SDNode::use_iterator UI
= PromOps
[i
].getNode()->use_begin(),
11976 UE
= PromOps
[i
].getNode()->use_end();
11978 SDNode
*User
= *UI
;
11979 if (User
!= N
&& !Visited
.count(User
))
11982 // Make sure that we're not going to promote the non-output-value
11983 // operand(s) or SELECT or SELECT_CC.
11984 // FIXME: Although we could sometimes handle this, and it does occur in
11985 // practice that one of the condition inputs to the select is also one of
11986 // the outputs, we currently can't deal with this.
11987 if (User
->getOpcode() == ISD::SELECT
) {
11988 if (User
->getOperand(0) == PromOps
[i
])
11990 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
11991 if (User
->getOperand(0) == PromOps
[i
] ||
11992 User
->getOperand(1) == PromOps
[i
])
11998 // Replace all inputs with the extension operand.
11999 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
12000 // Constants may have users outside the cluster of to-be-promoted nodes,
12001 // and so we need to replace those as we do the promotions.
12002 if (isa
<ConstantSDNode
>(Inputs
[i
]))
12005 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
], Inputs
[i
].getOperand(0));
12008 std::list
<HandleSDNode
> PromOpHandles
;
12009 for (auto &PromOp
: PromOps
)
12010 PromOpHandles
.emplace_back(PromOp
);
12012 // Replace all operations (these are all the same, but have a different
12013 // (i1) return type). DAG.getNode will validate that the types of
12014 // a binary operator match, so go through the list in reverse so that
12015 // we've likely promoted both operands first. Any intermediate truncations or
12016 // extensions disappear.
12017 while (!PromOpHandles
.empty()) {
12018 SDValue PromOp
= PromOpHandles
.back().getValue();
12019 PromOpHandles
.pop_back();
12021 if (PromOp
.getOpcode() == ISD::TRUNCATE
||
12022 PromOp
.getOpcode() == ISD::SIGN_EXTEND
||
12023 PromOp
.getOpcode() == ISD::ZERO_EXTEND
||
12024 PromOp
.getOpcode() == ISD::ANY_EXTEND
) {
12025 if (!isa
<ConstantSDNode
>(PromOp
.getOperand(0)) &&
12026 PromOp
.getOperand(0).getValueType() != MVT::i1
) {
12027 // The operand is not yet ready (see comment below).
12028 PromOpHandles
.emplace_front(PromOp
);
12032 SDValue RepValue
= PromOp
.getOperand(0);
12033 if (isa
<ConstantSDNode
>(RepValue
))
12034 RepValue
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, RepValue
);
12036 DAG
.ReplaceAllUsesOfValueWith(PromOp
, RepValue
);
12041 switch (PromOp
.getOpcode()) {
12042 default: C
= 0; break;
12043 case ISD::SELECT
: C
= 1; break;
12044 case ISD::SELECT_CC
: C
= 2; break;
12047 if ((!isa
<ConstantSDNode
>(PromOp
.getOperand(C
)) &&
12048 PromOp
.getOperand(C
).getValueType() != MVT::i1
) ||
12049 (!isa
<ConstantSDNode
>(PromOp
.getOperand(C
+1)) &&
12050 PromOp
.getOperand(C
+1).getValueType() != MVT::i1
)) {
12051 // The to-be-promoted operands of this node have not yet been
12052 // promoted (this should be rare because we're going through the
12053 // list backward, but if one of the operands has several users in
12054 // this cluster of to-be-promoted nodes, it is possible).
12055 PromOpHandles
.emplace_front(PromOp
);
12059 SmallVector
<SDValue
, 3> Ops(PromOp
.getNode()->op_begin(),
12060 PromOp
.getNode()->op_end());
12062 // If there are any constant inputs, make sure they're replaced now.
12063 for (unsigned i
= 0; i
< 2; ++i
)
12064 if (isa
<ConstantSDNode
>(Ops
[C
+i
]))
12065 Ops
[C
+i
] = DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i1
, Ops
[C
+i
]);
12067 DAG
.ReplaceAllUsesOfValueWith(PromOp
,
12068 DAG
.getNode(PromOp
.getOpcode(), dl
, MVT::i1
, Ops
));
12071 // Now we're left with the initial truncation itself.
12072 if (N
->getOpcode() == ISD::TRUNCATE
)
12073 return N
->getOperand(0);
12075 // Otherwise, this is a comparison. The operands to be compared have just
12076 // changed type (to i1), but everything else is the same.
12077 return SDValue(N
, 0);
12080 SDValue
PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode
*N
,
12081 DAGCombinerInfo
&DCI
) const {
12082 SelectionDAG
&DAG
= DCI
.DAG
;
12085 // If we're tracking CR bits, we need to be careful that we don't have:
12086 // zext(binary-ops(trunc(x), trunc(y)))
12088 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12089 // such that we're unnecessarily moving things into CR bits that can more
12090 // efficiently stay in GPRs. Note that if we're not certain that the high
12091 // bits are set as required by the final extension, we still may need to do
12092 // some masking to get the proper behavior.
12094 // This same functionality is important on PPC64 when dealing with
12095 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12096 // the return values of functions. Because it is so similar, it is handled
12099 if (N
->getValueType(0) != MVT::i32
&&
12100 N
->getValueType(0) != MVT::i64
)
12103 if (!((N
->getOperand(0).getValueType() == MVT::i1
&& Subtarget
.useCRBits()) ||
12104 (N
->getOperand(0).getValueType() == MVT::i32
&& Subtarget
.isPPC64())))
12107 if (N
->getOperand(0).getOpcode() != ISD::AND
&&
12108 N
->getOperand(0).getOpcode() != ISD::OR
&&
12109 N
->getOperand(0).getOpcode() != ISD::XOR
&&
12110 N
->getOperand(0).getOpcode() != ISD::SELECT
&&
12111 N
->getOperand(0).getOpcode() != ISD::SELECT_CC
)
12114 SmallVector
<SDValue
, 4> Inputs
;
12115 SmallVector
<SDValue
, 8> BinOps(1, N
->getOperand(0)), PromOps
;
12116 SmallPtrSet
<SDNode
*, 16> Visited
;
12118 // Visit all inputs, collect all binary operations (and, or, xor and
12119 // select) that are all fed by truncations.
12120 while (!BinOps
.empty()) {
12121 SDValue BinOp
= BinOps
.back();
12124 if (!Visited
.insert(BinOp
.getNode()).second
)
12127 PromOps
.push_back(BinOp
);
12129 for (unsigned i
= 0, ie
= BinOp
.getNumOperands(); i
!= ie
; ++i
) {
12130 // The condition of the select is not promoted.
12131 if (BinOp
.getOpcode() == ISD::SELECT
&& i
== 0)
12133 if (BinOp
.getOpcode() == ISD::SELECT_CC
&& i
!= 2 && i
!= 3)
12136 if (BinOp
.getOperand(i
).getOpcode() == ISD::TRUNCATE
||
12137 isa
<ConstantSDNode
>(BinOp
.getOperand(i
))) {
12138 Inputs
.push_back(BinOp
.getOperand(i
));
12139 } else if (BinOp
.getOperand(i
).getOpcode() == ISD::AND
||
12140 BinOp
.getOperand(i
).getOpcode() == ISD::OR
||
12141 BinOp
.getOperand(i
).getOpcode() == ISD::XOR
||
12142 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT
||
12143 BinOp
.getOperand(i
).getOpcode() == ISD::SELECT_CC
) {
12144 BinOps
.push_back(BinOp
.getOperand(i
));
12146 // We have an input that is not a truncation or another binary
12147 // operation; we'll abort this transformation.
12153 // The operands of a select that must be truncated when the select is
12154 // promoted because the operand is actually part of the to-be-promoted set.
12155 DenseMap
<SDNode
*, EVT
> SelectTruncOp
[2];
12157 // Make sure that this is a self-contained cluster of operations (which
12158 // is not quite the same thing as saying that everything has only one
12160 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
12161 if (isa
<ConstantSDNode
>(Inputs
[i
]))
12164 for (SDNode::use_iterator UI
= Inputs
[i
].getNode()->use_begin(),
12165 UE
= Inputs
[i
].getNode()->use_end();
12167 SDNode
*User
= *UI
;
12168 if (User
!= N
&& !Visited
.count(User
))
12171 // If we're going to promote the non-output-value operand(s) or SELECT or
12172 // SELECT_CC, record them for truncation.
12173 if (User
->getOpcode() == ISD::SELECT
) {
12174 if (User
->getOperand(0) == Inputs
[i
])
12175 SelectTruncOp
[0].insert(std::make_pair(User
,
12176 User
->getOperand(0).getValueType()));
12177 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
12178 if (User
->getOperand(0) == Inputs
[i
])
12179 SelectTruncOp
[0].insert(std::make_pair(User
,
12180 User
->getOperand(0).getValueType()));
12181 if (User
->getOperand(1) == Inputs
[i
])
12182 SelectTruncOp
[1].insert(std::make_pair(User
,
12183 User
->getOperand(1).getValueType()));
12188 for (unsigned i
= 0, ie
= PromOps
.size(); i
!= ie
; ++i
) {
12189 for (SDNode::use_iterator UI
= PromOps
[i
].getNode()->use_begin(),
12190 UE
= PromOps
[i
].getNode()->use_end();
12192 SDNode
*User
= *UI
;
12193 if (User
!= N
&& !Visited
.count(User
))
12196 // If we're going to promote the non-output-value operand(s) or SELECT or
12197 // SELECT_CC, record them for truncation.
12198 if (User
->getOpcode() == ISD::SELECT
) {
12199 if (User
->getOperand(0) == PromOps
[i
])
12200 SelectTruncOp
[0].insert(std::make_pair(User
,
12201 User
->getOperand(0).getValueType()));
12202 } else if (User
->getOpcode() == ISD::SELECT_CC
) {
12203 if (User
->getOperand(0) == PromOps
[i
])
12204 SelectTruncOp
[0].insert(std::make_pair(User
,
12205 User
->getOperand(0).getValueType()));
12206 if (User
->getOperand(1) == PromOps
[i
])
12207 SelectTruncOp
[1].insert(std::make_pair(User
,
12208 User
->getOperand(1).getValueType()));
12213 unsigned PromBits
= N
->getOperand(0).getValueSizeInBits();
12214 bool ReallyNeedsExt
= false;
12215 if (N
->getOpcode() != ISD::ANY_EXTEND
) {
12216 // If all of the inputs are not already sign/zero extended, then
12217 // we'll still need to do that at the end.
12218 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
12219 if (isa
<ConstantSDNode
>(Inputs
[i
]))
12223 Inputs
[i
].getOperand(0).getValueSizeInBits();
12224 assert(PromBits
< OpBits
&& "Truncation not to a smaller bit count?");
12226 if ((N
->getOpcode() == ISD::ZERO_EXTEND
&&
12227 !DAG
.MaskedValueIsZero(Inputs
[i
].getOperand(0),
12228 APInt::getHighBitsSet(OpBits
,
12229 OpBits
-PromBits
))) ||
12230 (N
->getOpcode() == ISD::SIGN_EXTEND
&&
12231 DAG
.ComputeNumSignBits(Inputs
[i
].getOperand(0)) <
12232 (OpBits
-(PromBits
-1)))) {
12233 ReallyNeedsExt
= true;
12239 // Replace all inputs, either with the truncation operand, or a
12240 // truncation or extension to the final output type.
12241 for (unsigned i
= 0, ie
= Inputs
.size(); i
!= ie
; ++i
) {
12242 // Constant inputs need to be replaced with the to-be-promoted nodes that
12243 // use them because they might have users outside of the cluster of
12245 if (isa
<ConstantSDNode
>(Inputs
[i
]))
12248 SDValue InSrc
= Inputs
[i
].getOperand(0);
12249 if (Inputs
[i
].getValueType() == N
->getValueType(0))
12250 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
], InSrc
);
12251 else if (N
->getOpcode() == ISD::SIGN_EXTEND
)
12252 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
12253 DAG
.getSExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
12254 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
12255 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
12256 DAG
.getZExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
12258 DAG
.ReplaceAllUsesOfValueWith(Inputs
[i
],
12259 DAG
.getAnyExtOrTrunc(InSrc
, dl
, N
->getValueType(0)));
12262 std::list
<HandleSDNode
> PromOpHandles
;
12263 for (auto &PromOp
: PromOps
)
12264 PromOpHandles
.emplace_back(PromOp
);
12266 // Replace all operations (these are all the same, but have a different
12267 // (promoted) return type). DAG.getNode will validate that the types of
12268 // a binary operator match, so go through the list in reverse so that
12269 // we've likely promoted both operands first.
12270 while (!PromOpHandles
.empty()) {
12271 SDValue PromOp
= PromOpHandles
.back().getValue();
12272 PromOpHandles
.pop_back();
12275 switch (PromOp
.getOpcode()) {
12276 default: C
= 0; break;
12277 case ISD::SELECT
: C
= 1; break;
12278 case ISD::SELECT_CC
: C
= 2; break;
12281 if ((!isa
<ConstantSDNode
>(PromOp
.getOperand(C
)) &&
12282 PromOp
.getOperand(C
).getValueType() != N
->getValueType(0)) ||
12283 (!isa
<ConstantSDNode
>(PromOp
.getOperand(C
+1)) &&
12284 PromOp
.getOperand(C
+1).getValueType() != N
->getValueType(0))) {
12285 // The to-be-promoted operands of this node have not yet been
12286 // promoted (this should be rare because we're going through the
12287 // list backward, but if one of the operands has several users in
12288 // this cluster of to-be-promoted nodes, it is possible).
12289 PromOpHandles
.emplace_front(PromOp
);
12293 // For SELECT and SELECT_CC nodes, we do a similar check for any
12294 // to-be-promoted comparison inputs.
12295 if (PromOp
.getOpcode() == ISD::SELECT
||
12296 PromOp
.getOpcode() == ISD::SELECT_CC
) {
12297 if ((SelectTruncOp
[0].count(PromOp
.getNode()) &&
12298 PromOp
.getOperand(0).getValueType() != N
->getValueType(0)) ||
12299 (SelectTruncOp
[1].count(PromOp
.getNode()) &&
12300 PromOp
.getOperand(1).getValueType() != N
->getValueType(0))) {
12301 PromOpHandles
.emplace_front(PromOp
);
12306 SmallVector
<SDValue
, 3> Ops(PromOp
.getNode()->op_begin(),
12307 PromOp
.getNode()->op_end());
12309 // If this node has constant inputs, then they'll need to be promoted here.
12310 for (unsigned i
= 0; i
< 2; ++i
) {
12311 if (!isa
<ConstantSDNode
>(Ops
[C
+i
]))
12313 if (Ops
[C
+i
].getValueType() == N
->getValueType(0))
12316 if (N
->getOpcode() == ISD::SIGN_EXTEND
)
12317 Ops
[C
+i
] = DAG
.getSExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
12318 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
12319 Ops
[C
+i
] = DAG
.getZExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
12321 Ops
[C
+i
] = DAG
.getAnyExtOrTrunc(Ops
[C
+i
], dl
, N
->getValueType(0));
12324 // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12325 // truncate them again to the original value type.
12326 if (PromOp
.getOpcode() == ISD::SELECT
||
12327 PromOp
.getOpcode() == ISD::SELECT_CC
) {
12328 auto SI0
= SelectTruncOp
[0].find(PromOp
.getNode());
12329 if (SI0
!= SelectTruncOp
[0].end())
12330 Ops
[0] = DAG
.getNode(ISD::TRUNCATE
, dl
, SI0
->second
, Ops
[0]);
12331 auto SI1
= SelectTruncOp
[1].find(PromOp
.getNode());
12332 if (SI1
!= SelectTruncOp
[1].end())
12333 Ops
[1] = DAG
.getNode(ISD::TRUNCATE
, dl
, SI1
->second
, Ops
[1]);
12336 DAG
.ReplaceAllUsesOfValueWith(PromOp
,
12337 DAG
.getNode(PromOp
.getOpcode(), dl
, N
->getValueType(0), Ops
));
12340 // Now we're left with the initial extension itself.
12341 if (!ReallyNeedsExt
)
12342 return N
->getOperand(0);
12344 // To zero extend, just mask off everything except for the first bit (in the
12346 if (N
->getOpcode() == ISD::ZERO_EXTEND
)
12347 return DAG
.getNode(ISD::AND
, dl
, N
->getValueType(0), N
->getOperand(0),
12348 DAG
.getConstant(APInt::getLowBitsSet(
12349 N
->getValueSizeInBits(0), PromBits
),
12350 dl
, N
->getValueType(0)));
12352 assert(N
->getOpcode() == ISD::SIGN_EXTEND
&&
12353 "Invalid extension type");
12354 EVT ShiftAmountTy
= getShiftAmountTy(N
->getValueType(0), DAG
.getDataLayout());
12356 DAG
.getConstant(N
->getValueSizeInBits(0) - PromBits
, dl
, ShiftAmountTy
);
12357 return DAG
.getNode(
12358 ISD::SRA
, dl
, N
->getValueType(0),
12359 DAG
.getNode(ISD::SHL
, dl
, N
->getValueType(0), N
->getOperand(0), ShiftCst
),
12363 SDValue
PPCTargetLowering::combineSetCC(SDNode
*N
,
12364 DAGCombinerInfo
&DCI
) const {
12365 assert(N
->getOpcode() == ISD::SETCC
&&
12366 "Should be called with a SETCC node");
12368 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
12369 if (CC
== ISD::SETNE
|| CC
== ISD::SETEQ
) {
12370 SDValue LHS
= N
->getOperand(0);
12371 SDValue RHS
= N
->getOperand(1);
12373 // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12374 if (LHS
.getOpcode() == ISD::SUB
&& isNullConstant(LHS
.getOperand(0)) &&
12376 std::swap(LHS
, RHS
);
12378 // x == 0-y --> x+y == 0
12379 // x != 0-y --> x+y != 0
12380 if (RHS
.getOpcode() == ISD::SUB
&& isNullConstant(RHS
.getOperand(0)) &&
12383 SelectionDAG
&DAG
= DCI
.DAG
;
12384 EVT VT
= N
->getValueType(0);
12385 EVT OpVT
= LHS
.getValueType();
12386 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, OpVT
, LHS
, RHS
.getOperand(1));
12387 return DAG
.getSetCC(DL
, VT
, Add
, DAG
.getConstant(0, DL
, OpVT
), CC
);
12391 return DAGCombineTruncBoolExt(N
, DCI
);
12394 // Is this an extending load from an f32 to an f64?
12395 static bool isFPExtLoad(SDValue Op
) {
12396 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode()))
12397 return LD
->getExtensionType() == ISD::EXTLOAD
&&
12398 Op
.getValueType() == MVT::f64
;
12402 /// Reduces the number of fp-to-int conversion when building a vector.
12404 /// If this vector is built out of floating to integer conversions,
12405 /// transform it to a vector built out of floating point values followed by a
12406 /// single floating to integer conversion of the vector.
12407 /// Namely (build_vector (fptosi $A), (fptosi $B), ...)
12408 /// becomes (fptosi (build_vector ($A, $B, ...)))
12409 SDValue
PPCTargetLowering::
12410 combineElementTruncationToVectorTruncation(SDNode
*N
,
12411 DAGCombinerInfo
&DCI
) const {
12412 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
12413 "Should be called with a BUILD_VECTOR node");
12415 SelectionDAG
&DAG
= DCI
.DAG
;
12418 SDValue FirstInput
= N
->getOperand(0);
12419 assert(FirstInput
.getOpcode() == PPCISD::MFVSR
&&
12420 "The input operand must be an fp-to-int conversion.");
12422 // This combine happens after legalization so the fp_to_[su]i nodes are
12423 // already converted to PPCSISD nodes.
12424 unsigned FirstConversion
= FirstInput
.getOperand(0).getOpcode();
12425 if (FirstConversion
== PPCISD::FCTIDZ
||
12426 FirstConversion
== PPCISD::FCTIDUZ
||
12427 FirstConversion
== PPCISD::FCTIWZ
||
12428 FirstConversion
== PPCISD::FCTIWUZ
) {
12429 bool IsSplat
= true;
12430 bool Is32Bit
= FirstConversion
== PPCISD::FCTIWZ
||
12431 FirstConversion
== PPCISD::FCTIWUZ
;
12432 EVT SrcVT
= FirstInput
.getOperand(0).getValueType();
12433 SmallVector
<SDValue
, 4> Ops
;
12434 EVT TargetVT
= N
->getValueType(0);
12435 for (int i
= 0, e
= N
->getNumOperands(); i
< e
; ++i
) {
12436 SDValue NextOp
= N
->getOperand(i
);
12437 if (NextOp
.getOpcode() != PPCISD::MFVSR
)
12439 unsigned NextConversion
= NextOp
.getOperand(0).getOpcode();
12440 if (NextConversion
!= FirstConversion
)
12442 // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12443 // This is not valid if the input was originally double precision. It is
12444 // also not profitable to do unless this is an extending load in which
12445 // case doing this combine will allow us to combine consecutive loads.
12446 if (Is32Bit
&& !isFPExtLoad(NextOp
.getOperand(0).getOperand(0)))
12448 if (N
->getOperand(i
) != FirstInput
)
12452 // If this is a splat, we leave it as-is since there will be only a single
12453 // fp-to-int conversion followed by a splat of the integer. This is better
12454 // for 32-bit and smaller ints and neutral for 64-bit ints.
12458 // Now that we know we have the right type of node, get its operands
12459 for (int i
= 0, e
= N
->getNumOperands(); i
< e
; ++i
) {
12460 SDValue In
= N
->getOperand(i
).getOperand(0);
12462 // For 32-bit values, we need to add an FP_ROUND node (if we made it
12463 // here, we know that all inputs are extending loads so this is safe).
12465 Ops
.push_back(DAG
.getUNDEF(SrcVT
));
12467 SDValue Trunc
= DAG
.getNode(ISD::FP_ROUND
, dl
,
12468 MVT::f32
, In
.getOperand(0),
12469 DAG
.getIntPtrConstant(1, dl
));
12470 Ops
.push_back(Trunc
);
12473 Ops
.push_back(In
.isUndef() ? DAG
.getUNDEF(SrcVT
) : In
.getOperand(0));
12477 if (FirstConversion
== PPCISD::FCTIDZ
||
12478 FirstConversion
== PPCISD::FCTIWZ
)
12479 Opcode
= ISD::FP_TO_SINT
;
12481 Opcode
= ISD::FP_TO_UINT
;
12483 EVT NewVT
= TargetVT
== MVT::v2i64
? MVT::v2f64
: MVT::v4f32
;
12484 SDValue BV
= DAG
.getBuildVector(NewVT
, dl
, Ops
);
12485 return DAG
.getNode(Opcode
, dl
, TargetVT
, BV
);
12490 /// Reduce the number of loads when building a vector.
12492 /// Building a vector out of multiple loads can be converted to a load
12493 /// of the vector type if the loads are consecutive. If the loads are
12494 /// consecutive but in descending order, a shuffle is added at the end
12495 /// to reorder the vector.
12496 static SDValue
combineBVOfConsecutiveLoads(SDNode
*N
, SelectionDAG
&DAG
) {
12497 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
12498 "Should be called with a BUILD_VECTOR node");
12502 // Return early for non byte-sized type, as they can't be consecutive.
12503 if (!N
->getValueType(0).getVectorElementType().isByteSized())
12506 bool InputsAreConsecutiveLoads
= true;
12507 bool InputsAreReverseConsecutive
= true;
12508 unsigned ElemSize
= N
->getValueType(0).getScalarType().getStoreSize();
12509 SDValue FirstInput
= N
->getOperand(0);
12510 bool IsRoundOfExtLoad
= false;
12512 if (FirstInput
.getOpcode() == ISD::FP_ROUND
&&
12513 FirstInput
.getOperand(0).getOpcode() == ISD::LOAD
) {
12514 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(FirstInput
.getOperand(0));
12515 IsRoundOfExtLoad
= LD
->getExtensionType() == ISD::EXTLOAD
;
12517 // Not a build vector of (possibly fp_rounded) loads.
12518 if ((!IsRoundOfExtLoad
&& FirstInput
.getOpcode() != ISD::LOAD
) ||
12519 N
->getNumOperands() == 1)
12522 for (int i
= 1, e
= N
->getNumOperands(); i
< e
; ++i
) {
12523 // If any inputs are fp_round(extload), they all must be.
12524 if (IsRoundOfExtLoad
&& N
->getOperand(i
).getOpcode() != ISD::FP_ROUND
)
12527 SDValue NextInput
= IsRoundOfExtLoad
? N
->getOperand(i
).getOperand(0) :
12529 if (NextInput
.getOpcode() != ISD::LOAD
)
12532 SDValue PreviousInput
=
12533 IsRoundOfExtLoad
? N
->getOperand(i
-1).getOperand(0) : N
->getOperand(i
-1);
12534 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(PreviousInput
);
12535 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(NextInput
);
12537 // If any inputs are fp_round(extload), they all must be.
12538 if (IsRoundOfExtLoad
&& LD2
->getExtensionType() != ISD::EXTLOAD
)
12541 if (!isConsecutiveLS(LD2
, LD1
, ElemSize
, 1, DAG
))
12542 InputsAreConsecutiveLoads
= false;
12543 if (!isConsecutiveLS(LD1
, LD2
, ElemSize
, 1, DAG
))
12544 InputsAreReverseConsecutive
= false;
12546 // Exit early if the loads are neither consecutive nor reverse consecutive.
12547 if (!InputsAreConsecutiveLoads
&& !InputsAreReverseConsecutive
)
12551 assert(!(InputsAreConsecutiveLoads
&& InputsAreReverseConsecutive
) &&
12552 "The loads cannot be both consecutive and reverse consecutive.");
12554 SDValue FirstLoadOp
=
12555 IsRoundOfExtLoad
? FirstInput
.getOperand(0) : FirstInput
;
12556 SDValue LastLoadOp
=
12557 IsRoundOfExtLoad
? N
->getOperand(N
->getNumOperands()-1).getOperand(0) :
12558 N
->getOperand(N
->getNumOperands()-1);
12560 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(FirstLoadOp
);
12561 LoadSDNode
*LDL
= dyn_cast
<LoadSDNode
>(LastLoadOp
);
12562 if (InputsAreConsecutiveLoads
) {
12563 assert(LD1
&& "Input needs to be a LoadSDNode.");
12564 return DAG
.getLoad(N
->getValueType(0), dl
, LD1
->getChain(),
12565 LD1
->getBasePtr(), LD1
->getPointerInfo(),
12566 LD1
->getAlignment());
12568 if (InputsAreReverseConsecutive
) {
12569 assert(LDL
&& "Input needs to be a LoadSDNode.");
12570 SDValue Load
= DAG
.getLoad(N
->getValueType(0), dl
, LDL
->getChain(),
12571 LDL
->getBasePtr(), LDL
->getPointerInfo(),
12572 LDL
->getAlignment());
12573 SmallVector
<int, 16> Ops
;
12574 for (int i
= N
->getNumOperands() - 1; i
>= 0; i
--)
12577 return DAG
.getVectorShuffle(N
->getValueType(0), dl
, Load
,
12578 DAG
.getUNDEF(N
->getValueType(0)), Ops
);
12583 // This function adds the required vector_shuffle needed to get
12584 // the elements of the vector extract in the correct position
12585 // as specified by the CorrectElems encoding.
12586 static SDValue
addShuffleForVecExtend(SDNode
*N
, SelectionDAG
&DAG
,
12587 SDValue Input
, uint64_t Elems
,
12588 uint64_t CorrectElems
) {
12591 unsigned NumElems
= Input
.getValueType().getVectorNumElements();
12592 SmallVector
<int, 16> ShuffleMask(NumElems
, -1);
12594 // Knowing the element indices being extracted from the original
12595 // vector and the order in which they're being inserted, just put
12596 // them at element indices required for the instruction.
12597 for (unsigned i
= 0; i
< N
->getNumOperands(); i
++) {
12598 if (DAG
.getDataLayout().isLittleEndian())
12599 ShuffleMask
[CorrectElems
& 0xF] = Elems
& 0xF;
12601 ShuffleMask
[(CorrectElems
& 0xF0) >> 4] = (Elems
& 0xF0) >> 4;
12602 CorrectElems
= CorrectElems
>> 8;
12603 Elems
= Elems
>> 8;
12607 DAG
.getVectorShuffle(Input
.getValueType(), dl
, Input
,
12608 DAG
.getUNDEF(Input
.getValueType()), ShuffleMask
);
12610 EVT Ty
= N
->getValueType(0);
12611 SDValue BV
= DAG
.getNode(PPCISD::SExtVElems
, dl
, Ty
, Shuffle
);
12615 // Look for build vector patterns where input operands come from sign
12616 // extended vector_extract elements of specific indices. If the correct indices
12617 // aren't used, add a vector shuffle to fix up the indices and create a new
12618 // PPCISD:SExtVElems node which selects the vector sign extend instructions
12619 // during instruction selection.
12620 static SDValue
combineBVOfVecSExt(SDNode
*N
, SelectionDAG
&DAG
) {
12621 // This array encodes the indices that the vector sign extend instructions
12622 // extract from when extending from one type to another for both BE and LE.
12623 // The right nibble of each byte corresponds to the LE incides.
12624 // and the left nibble of each byte corresponds to the BE incides.
12625 // For example: 0x3074B8FC byte->word
12626 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
12627 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
12628 // For example: 0x000070F8 byte->double word
12629 // For LE: the allowed indices are: 0x0,0x8
12630 // For BE: the allowed indices are: 0x7,0xF
12631 uint64_t TargetElems
[] = {
12632 0x3074B8FC, // b->w
12633 0x000070F8, // b->d
12634 0x10325476, // h->w
12635 0x00003074, // h->d
12636 0x00001032, // w->d
12639 uint64_t Elems
= 0;
12643 auto isSExtOfVecExtract
= [&](SDValue Op
) -> bool {
12646 if (Op
.getOpcode() != ISD::SIGN_EXTEND
&&
12647 Op
.getOpcode() != ISD::SIGN_EXTEND_INREG
)
12650 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12651 // of the right width.
12652 SDValue Extract
= Op
.getOperand(0);
12653 if (Extract
.getOpcode() == ISD::ANY_EXTEND
)
12654 Extract
= Extract
.getOperand(0);
12655 if (Extract
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
12658 ConstantSDNode
*ExtOp
= dyn_cast
<ConstantSDNode
>(Extract
.getOperand(1));
12662 Index
= ExtOp
->getZExtValue();
12663 if (Input
&& Input
!= Extract
.getOperand(0))
12667 Input
= Extract
.getOperand(0);
12669 Elems
= Elems
<< 8;
12670 Index
= DAG
.getDataLayout().isLittleEndian() ? Index
: Index
<< 4;
12676 // If the build vector operands aren't sign extended vector extracts,
12677 // of the same input vector, then return.
12678 for (unsigned i
= 0; i
< N
->getNumOperands(); i
++) {
12679 if (!isSExtOfVecExtract(N
->getOperand(i
))) {
12684 // If the vector extract indicies are not correct, add the appropriate
12686 int TgtElemArrayIdx
;
12687 int InputSize
= Input
.getValueType().getScalarSizeInBits();
12688 int OutputSize
= N
->getValueType(0).getScalarSizeInBits();
12689 if (InputSize
+ OutputSize
== 40)
12690 TgtElemArrayIdx
= 0;
12691 else if (InputSize
+ OutputSize
== 72)
12692 TgtElemArrayIdx
= 1;
12693 else if (InputSize
+ OutputSize
== 48)
12694 TgtElemArrayIdx
= 2;
12695 else if (InputSize
+ OutputSize
== 80)
12696 TgtElemArrayIdx
= 3;
12697 else if (InputSize
+ OutputSize
== 96)
12698 TgtElemArrayIdx
= 4;
12702 uint64_t CorrectElems
= TargetElems
[TgtElemArrayIdx
];
12703 CorrectElems
= DAG
.getDataLayout().isLittleEndian()
12704 ? CorrectElems
& 0x0F0F0F0F0F0F0F0F
12705 : CorrectElems
& 0xF0F0F0F0F0F0F0F0;
12706 if (Elems
!= CorrectElems
) {
12707 return addShuffleForVecExtend(N
, DAG
, Input
, Elems
, CorrectElems
);
12710 // Regular lowering will catch cases where a shuffle is not needed.
12714 SDValue
PPCTargetLowering::DAGCombineBuildVector(SDNode
*N
,
12715 DAGCombinerInfo
&DCI
) const {
12716 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
12717 "Should be called with a BUILD_VECTOR node");
12719 SelectionDAG
&DAG
= DCI
.DAG
;
12722 if (!Subtarget
.hasVSX())
12725 // The target independent DAG combiner will leave a build_vector of
12726 // float-to-int conversions intact. We can generate MUCH better code for
12727 // a float-to-int conversion of a vector of floats.
12728 SDValue FirstInput
= N
->getOperand(0);
12729 if (FirstInput
.getOpcode() == PPCISD::MFVSR
) {
12730 SDValue Reduced
= combineElementTruncationToVectorTruncation(N
, DCI
);
12735 // If we're building a vector out of consecutive loads, just load that
12737 SDValue Reduced
= combineBVOfConsecutiveLoads(N
, DAG
);
12741 // If we're building a vector out of extended elements from another vector
12742 // we have P9 vector integer extend instructions. The code assumes legal
12743 // input types (i.e. it can't handle things like v4i16) so do not run before
12745 if (Subtarget
.hasP9Altivec() && !DCI
.isBeforeLegalize()) {
12746 Reduced
= combineBVOfVecSExt(N
, DAG
);
12752 if (N
->getValueType(0) != MVT::v2f64
)
12756 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12757 if (FirstInput
.getOpcode() != ISD::SINT_TO_FP
&&
12758 FirstInput
.getOpcode() != ISD::UINT_TO_FP
)
12760 if (N
->getOperand(1).getOpcode() != ISD::SINT_TO_FP
&&
12761 N
->getOperand(1).getOpcode() != ISD::UINT_TO_FP
)
12763 if (FirstInput
.getOpcode() != N
->getOperand(1).getOpcode())
12766 SDValue Ext1
= FirstInput
.getOperand(0);
12767 SDValue Ext2
= N
->getOperand(1).getOperand(0);
12768 if(Ext1
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
12769 Ext2
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
12772 ConstantSDNode
*Ext1Op
= dyn_cast
<ConstantSDNode
>(Ext1
.getOperand(1));
12773 ConstantSDNode
*Ext2Op
= dyn_cast
<ConstantSDNode
>(Ext2
.getOperand(1));
12774 if (!Ext1Op
|| !Ext2Op
)
12776 if (Ext1
.getOperand(0).getValueType() != MVT::v4i32
||
12777 Ext1
.getOperand(0) != Ext2
.getOperand(0))
12780 int FirstElem
= Ext1Op
->getZExtValue();
12781 int SecondElem
= Ext2Op
->getZExtValue();
12783 if (FirstElem
== 0 && SecondElem
== 1)
12784 SubvecIdx
= Subtarget
.isLittleEndian() ? 1 : 0;
12785 else if (FirstElem
== 2 && SecondElem
== 3)
12786 SubvecIdx
= Subtarget
.isLittleEndian() ? 0 : 1;
12790 SDValue SrcVec
= Ext1
.getOperand(0);
12791 auto NodeType
= (N
->getOperand(1).getOpcode() == ISD::SINT_TO_FP
) ?
12792 PPCISD::SINT_VEC_TO_FP
: PPCISD::UINT_VEC_TO_FP
;
12793 return DAG
.getNode(NodeType
, dl
, MVT::v2f64
,
12794 SrcVec
, DAG
.getIntPtrConstant(SubvecIdx
, dl
));
12797 SDValue
PPCTargetLowering::combineFPToIntToFP(SDNode
*N
,
12798 DAGCombinerInfo
&DCI
) const {
12799 assert((N
->getOpcode() == ISD::SINT_TO_FP
||
12800 N
->getOpcode() == ISD::UINT_TO_FP
) &&
12801 "Need an int -> FP conversion node here");
12803 if (useSoftFloat() || !Subtarget
.has64BitSupport())
12806 SelectionDAG
&DAG
= DCI
.DAG
;
12810 // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12811 // from the hardware.
12812 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
12814 if (Op
.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1
) ||
12815 Op
.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64
))
12818 SDValue
FirstOperand(Op
.getOperand(0));
12819 bool SubWordLoad
= FirstOperand
.getOpcode() == ISD::LOAD
&&
12820 (FirstOperand
.getValueType() == MVT::i8
||
12821 FirstOperand
.getValueType() == MVT::i16
);
12822 if (Subtarget
.hasP9Vector() && Subtarget
.hasP9Altivec() && SubWordLoad
) {
12823 bool Signed
= N
->getOpcode() == ISD::SINT_TO_FP
;
12824 bool DstDouble
= Op
.getValueType() == MVT::f64
;
12825 unsigned ConvOp
= Signed
?
12826 (DstDouble
? PPCISD::FCFID
: PPCISD::FCFIDS
) :
12827 (DstDouble
? PPCISD::FCFIDU
: PPCISD::FCFIDUS
);
12828 SDValue WidthConst
=
12829 DAG
.getIntPtrConstant(FirstOperand
.getValueType() == MVT::i8
? 1 : 2,
12831 LoadSDNode
*LDN
= cast
<LoadSDNode
>(FirstOperand
.getNode());
12832 SDValue Ops
[] = { LDN
->getChain(), LDN
->getBasePtr(), WidthConst
};
12833 SDValue Ld
= DAG
.getMemIntrinsicNode(PPCISD::LXSIZX
, dl
,
12834 DAG
.getVTList(MVT::f64
, MVT::Other
),
12835 Ops
, MVT::i8
, LDN
->getMemOperand());
12837 // For signed conversion, we need to sign-extend the value in the VSR
12839 SDValue ExtOps
[] = { Ld
, WidthConst
};
12840 SDValue Ext
= DAG
.getNode(PPCISD::VEXTS
, dl
, MVT::f64
, ExtOps
);
12841 return DAG
.getNode(ConvOp
, dl
, DstDouble
? MVT::f64
: MVT::f32
, Ext
);
12843 return DAG
.getNode(ConvOp
, dl
, DstDouble
? MVT::f64
: MVT::f32
, Ld
);
12847 // For i32 intermediate values, unfortunately, the conversion functions
12848 // leave the upper 32 bits of the value are undefined. Within the set of
12849 // scalar instructions, we have no method for zero- or sign-extending the
12850 // value. Thus, we cannot handle i32 intermediate values here.
12851 if (Op
.getOperand(0).getValueType() == MVT::i32
)
12854 assert((Op
.getOpcode() == ISD::SINT_TO_FP
|| Subtarget
.hasFPCVT()) &&
12855 "UINT_TO_FP is supported only with FPCVT");
12857 // If we have FCFIDS, then use it when converting to single-precision.
12858 // Otherwise, convert to double-precision and then round.
12859 unsigned FCFOp
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
12860 ? (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDUS
12862 : (Op
.getOpcode() == ISD::UINT_TO_FP
? PPCISD::FCFIDU
12864 MVT FCFTy
= (Subtarget
.hasFPCVT() && Op
.getValueType() == MVT::f32
)
12868 // If we're converting from a float, to an int, and back to a float again,
12869 // then we don't need the store/load pair at all.
12870 if ((Op
.getOperand(0).getOpcode() == ISD::FP_TO_UINT
&&
12871 Subtarget
.hasFPCVT()) ||
12872 (Op
.getOperand(0).getOpcode() == ISD::FP_TO_SINT
)) {
12873 SDValue Src
= Op
.getOperand(0).getOperand(0);
12874 if (Src
.getValueType() == MVT::f32
) {
12875 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
12876 DCI
.AddToWorklist(Src
.getNode());
12877 } else if (Src
.getValueType() != MVT::f64
) {
12878 // Make sure that we don't pick up a ppc_fp128 source value.
12883 Op
.getOperand(0).getOpcode() == ISD::FP_TO_SINT
? PPCISD::FCTIDZ
:
12886 SDValue Tmp
= DAG
.getNode(FCTOp
, dl
, MVT::f64
, Src
);
12887 SDValue FP
= DAG
.getNode(FCFOp
, dl
, FCFTy
, Tmp
);
12889 if (Op
.getValueType() == MVT::f32
&& !Subtarget
.hasFPCVT()) {
12890 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
12891 MVT::f32
, FP
, DAG
.getIntPtrConstant(0, dl
));
12892 DCI
.AddToWorklist(FP
.getNode());
12901 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12902 // builtins) into loads with swaps.
12903 SDValue
PPCTargetLowering::expandVSXLoadForLE(SDNode
*N
,
12904 DAGCombinerInfo
&DCI
) const {
12905 SelectionDAG
&DAG
= DCI
.DAG
;
12909 MachineMemOperand
*MMO
;
12911 switch (N
->getOpcode()) {
12913 llvm_unreachable("Unexpected opcode for little endian VSX load");
12915 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
12916 Chain
= LD
->getChain();
12917 Base
= LD
->getBasePtr();
12918 MMO
= LD
->getMemOperand();
12919 // If the MMO suggests this isn't a load of a full vector, leave
12920 // things alone. For a built-in, we have to make the change for
12921 // correctness, so if there is a size problem that will be a bug.
12922 if (MMO
->getSize() < 16)
12926 case ISD::INTRINSIC_W_CHAIN
: {
12927 MemIntrinsicSDNode
*Intrin
= cast
<MemIntrinsicSDNode
>(N
);
12928 Chain
= Intrin
->getChain();
12929 // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12930 // us what we want. Get operand 2 instead.
12931 Base
= Intrin
->getOperand(2);
12932 MMO
= Intrin
->getMemOperand();
12937 MVT VecTy
= N
->getValueType(0).getSimpleVT();
12939 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12940 // aligned and the type is a vector with elements up to 4 bytes
12941 if (Subtarget
.needsSwapsForVSXMemOps() && !(MMO
->getAlignment()%16)
12942 && VecTy
.getScalarSizeInBits() <= 32 ) {
12946 SDValue LoadOps
[] = { Chain
, Base
};
12947 SDValue Load
= DAG
.getMemIntrinsicNode(PPCISD::LXVD2X
, dl
,
12948 DAG
.getVTList(MVT::v2f64
, MVT::Other
),
12949 LoadOps
, MVT::v2f64
, MMO
);
12951 DCI
.AddToWorklist(Load
.getNode());
12952 Chain
= Load
.getValue(1);
12953 SDValue Swap
= DAG
.getNode(
12954 PPCISD::XXSWAPD
, dl
, DAG
.getVTList(MVT::v2f64
, MVT::Other
), Chain
, Load
);
12955 DCI
.AddToWorklist(Swap
.getNode());
12957 // Add a bitcast if the resulting load type doesn't match v2f64.
12958 if (VecTy
!= MVT::v2f64
) {
12959 SDValue N
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, Swap
);
12960 DCI
.AddToWorklist(N
.getNode());
12961 // Package {bitcast value, swap's chain} to match Load's shape.
12962 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VecTy
, MVT::Other
),
12963 N
, Swap
.getValue(1));
12969 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12970 // builtins) into stores with swaps.
12971 SDValue
PPCTargetLowering::expandVSXStoreForLE(SDNode
*N
,
12972 DAGCombinerInfo
&DCI
) const {
12973 SelectionDAG
&DAG
= DCI
.DAG
;
12978 MachineMemOperand
*MMO
;
12980 switch (N
->getOpcode()) {
12982 llvm_unreachable("Unexpected opcode for little endian VSX store");
12984 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
12985 Chain
= ST
->getChain();
12986 Base
= ST
->getBasePtr();
12987 MMO
= ST
->getMemOperand();
12989 // If the MMO suggests this isn't a store of a full vector, leave
12990 // things alone. For a built-in, we have to make the change for
12991 // correctness, so if there is a size problem that will be a bug.
12992 if (MMO
->getSize() < 16)
12996 case ISD::INTRINSIC_VOID
: {
12997 MemIntrinsicSDNode
*Intrin
= cast
<MemIntrinsicSDNode
>(N
);
12998 Chain
= Intrin
->getChain();
12999 // Intrin->getBasePtr() oddly does not get what we want.
13000 Base
= Intrin
->getOperand(3);
13001 MMO
= Intrin
->getMemOperand();
13007 SDValue Src
= N
->getOperand(SrcOpnd
);
13008 MVT VecTy
= Src
.getValueType().getSimpleVT();
13010 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13011 // aligned and the type is a vector with elements up to 4 bytes
13012 if (Subtarget
.needsSwapsForVSXMemOps() && !(MMO
->getAlignment()%16)
13013 && VecTy
.getScalarSizeInBits() <= 32 ) {
13017 // All stores are done as v2f64 and possible bit cast.
13018 if (VecTy
!= MVT::v2f64
) {
13019 Src
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f64
, Src
);
13020 DCI
.AddToWorklist(Src
.getNode());
13023 SDValue Swap
= DAG
.getNode(PPCISD::XXSWAPD
, dl
,
13024 DAG
.getVTList(MVT::v2f64
, MVT::Other
), Chain
, Src
);
13025 DCI
.AddToWorklist(Swap
.getNode());
13026 Chain
= Swap
.getValue(1);
13027 SDValue StoreOps
[] = { Chain
, Swap
, Base
};
13028 SDValue Store
= DAG
.getMemIntrinsicNode(PPCISD::STXVD2X
, dl
,
13029 DAG
.getVTList(MVT::Other
),
13030 StoreOps
, VecTy
, MMO
);
13031 DCI
.AddToWorklist(Store
.getNode());
13035 // Handle DAG combine for STORE (FP_TO_INT F).
13036 SDValue
PPCTargetLowering::combineStoreFPToInt(SDNode
*N
,
13037 DAGCombinerInfo
&DCI
) const {
13039 SelectionDAG
&DAG
= DCI
.DAG
;
13041 unsigned Opcode
= N
->getOperand(1).getOpcode();
13043 assert((Opcode
== ISD::FP_TO_SINT
|| Opcode
== ISD::FP_TO_UINT
)
13044 && "Not a FP_TO_INT Instruction!");
13046 SDValue Val
= N
->getOperand(1).getOperand(0);
13047 EVT Op1VT
= N
->getOperand(1).getValueType();
13048 EVT ResVT
= Val
.getValueType();
13050 // Floating point types smaller than 32 bits are not legal on Power.
13051 if (ResVT
.getScalarSizeInBits() < 32)
13054 // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13055 bool ValidTypeForStoreFltAsInt
=
13056 (Op1VT
== MVT::i32
|| Op1VT
== MVT::i64
||
13057 (Subtarget
.hasP9Vector() && (Op1VT
== MVT::i16
|| Op1VT
== MVT::i8
)));
13059 if (ResVT
== MVT::ppcf128
|| !Subtarget
.hasP8Altivec() ||
13060 cast
<StoreSDNode
>(N
)->isTruncatingStore() || !ValidTypeForStoreFltAsInt
)
13063 // Extend f32 values to f64
13064 if (ResVT
.getScalarSizeInBits() == 32) {
13065 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
13066 DCI
.AddToWorklist(Val
.getNode());
13069 // Set signed or unsigned conversion opcode.
13070 unsigned ConvOpcode
= (Opcode
== ISD::FP_TO_SINT
) ?
13071 PPCISD::FP_TO_SINT_IN_VSR
:
13072 PPCISD::FP_TO_UINT_IN_VSR
;
13074 Val
= DAG
.getNode(ConvOpcode
,
13075 dl
, ResVT
== MVT::f128
? MVT::f128
: MVT::f64
, Val
);
13076 DCI
.AddToWorklist(Val
.getNode());
13078 // Set number of bytes being converted.
13079 unsigned ByteSize
= Op1VT
.getScalarSizeInBits() / 8;
13080 SDValue Ops
[] = { N
->getOperand(0), Val
, N
->getOperand(2),
13081 DAG
.getIntPtrConstant(ByteSize
, dl
, false),
13082 DAG
.getValueType(Op1VT
) };
13084 Val
= DAG
.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT
, dl
,
13085 DAG
.getVTList(MVT::Other
), Ops
,
13086 cast
<StoreSDNode
>(N
)->getMemoryVT(),
13087 cast
<StoreSDNode
>(N
)->getMemOperand());
13089 DCI
.AddToWorklist(Val
.getNode());
13093 SDValue
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
13094 DAGCombinerInfo
&DCI
) const {
13095 SelectionDAG
&DAG
= DCI
.DAG
;
13097 switch (N
->getOpcode()) {
13100 return combineADD(N
, DCI
);
13102 return combineSHL(N
, DCI
);
13104 return combineSRA(N
, DCI
);
13106 return combineSRL(N
, DCI
);
13108 return combineMUL(N
, DCI
);
13110 if (isNullConstant(N
->getOperand(0))) // 0 << V -> 0.
13111 return N
->getOperand(0);
13114 if (isNullConstant(N
->getOperand(0))) // 0 >>u V -> 0.
13115 return N
->getOperand(0);
13118 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
13119 if (C
->isNullValue() || // 0 >>s V -> 0.
13120 C
->isAllOnesValue()) // -1 >>s V -> -1.
13121 return N
->getOperand(0);
13124 case ISD::SIGN_EXTEND
:
13125 case ISD::ZERO_EXTEND
:
13126 case ISD::ANY_EXTEND
:
13127 return DAGCombineExtBoolTrunc(N
, DCI
);
13128 case ISD::TRUNCATE
:
13129 return combineTRUNCATE(N
, DCI
);
13131 if (SDValue CSCC
= combineSetCC(N
, DCI
))
13134 case ISD::SELECT_CC
:
13135 return DAGCombineTruncBoolExt(N
, DCI
);
13136 case ISD::SINT_TO_FP
:
13137 case ISD::UINT_TO_FP
:
13138 return combineFPToIntToFP(N
, DCI
);
13141 EVT Op1VT
= N
->getOperand(1).getValueType();
13142 unsigned Opcode
= N
->getOperand(1).getOpcode();
13144 if (Opcode
== ISD::FP_TO_SINT
|| Opcode
== ISD::FP_TO_UINT
) {
13145 SDValue Val
= combineStoreFPToInt(N
, DCI
);
13150 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13151 if (cast
<StoreSDNode
>(N
)->isUnindexed() && Opcode
== ISD::BSWAP
&&
13152 N
->getOperand(1).getNode()->hasOneUse() &&
13153 (Op1VT
== MVT::i32
|| Op1VT
== MVT::i16
||
13154 (Subtarget
.hasLDBRX() && Subtarget
.isPPC64() && Op1VT
== MVT::i64
))) {
13156 // STBRX can only handle simple types and it makes no sense to store less
13157 // two bytes in byte-reversed order.
13158 EVT mVT
= cast
<StoreSDNode
>(N
)->getMemoryVT();
13159 if (mVT
.isExtended() || mVT
.getSizeInBits() < 16)
13162 SDValue BSwapOp
= N
->getOperand(1).getOperand(0);
13163 // Do an any-extend to 32-bits if this is a half-word input.
13164 if (BSwapOp
.getValueType() == MVT::i16
)
13165 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, BSwapOp
);
13167 // If the type of BSWAP operand is wider than stored memory width
13168 // it need to be shifted to the right side before STBRX.
13169 if (Op1VT
.bitsGT(mVT
)) {
13170 int Shift
= Op1VT
.getSizeInBits() - mVT
.getSizeInBits();
13171 BSwapOp
= DAG
.getNode(ISD::SRL
, dl
, Op1VT
, BSwapOp
,
13172 DAG
.getConstant(Shift
, dl
, MVT::i32
));
13173 // Need to truncate if this is a bswap of i64 stored as i32/i16.
13174 if (Op1VT
== MVT::i64
)
13175 BSwapOp
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, BSwapOp
);
13179 N
->getOperand(0), BSwapOp
, N
->getOperand(2), DAG
.getValueType(mVT
)
13182 DAG
.getMemIntrinsicNode(PPCISD::STBRX
, dl
, DAG
.getVTList(MVT::Other
),
13183 Ops
, cast
<StoreSDNode
>(N
)->getMemoryVT(),
13184 cast
<StoreSDNode
>(N
)->getMemOperand());
13187 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
13188 // So it can increase the chance of CSE constant construction.
13189 if (Subtarget
.isPPC64() && !DCI
.isBeforeLegalize() &&
13190 isa
<ConstantSDNode
>(N
->getOperand(1)) && Op1VT
== MVT::i32
) {
13191 // Need to sign-extended to 64-bits to handle negative values.
13192 EVT MemVT
= cast
<StoreSDNode
>(N
)->getMemoryVT();
13193 uint64_t Val64
= SignExtend64(N
->getConstantOperandVal(1),
13194 MemVT
.getSizeInBits());
13195 SDValue Const64
= DAG
.getConstant(Val64
, dl
, MVT::i64
);
13197 // DAG.getTruncStore() can't be used here because it doesn't accept
13198 // the general (base + offset) addressing mode.
13199 // So we use UpdateNodeOperands and setTruncatingStore instead.
13200 DAG
.UpdateNodeOperands(N
, N
->getOperand(0), Const64
, N
->getOperand(2),
13202 cast
<StoreSDNode
>(N
)->setTruncatingStore(true);
13203 return SDValue(N
, 0);
13206 // For little endian, VSX stores require generating xxswapd/lxvd2x.
13207 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13208 if (Op1VT
.isSimple()) {
13209 MVT StoreVT
= Op1VT
.getSimpleVT();
13210 if (Subtarget
.needsSwapsForVSXMemOps() &&
13211 (StoreVT
== MVT::v2f64
|| StoreVT
== MVT::v2i64
||
13212 StoreVT
== MVT::v4f32
|| StoreVT
== MVT::v4i32
))
13213 return expandVSXStoreForLE(N
, DCI
);
13218 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
13219 EVT VT
= LD
->getValueType(0);
13221 // For little endian, VSX loads require generating lxvd2x/xxswapd.
13222 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13223 if (VT
.isSimple()) {
13224 MVT LoadVT
= VT
.getSimpleVT();
13225 if (Subtarget
.needsSwapsForVSXMemOps() &&
13226 (LoadVT
== MVT::v2f64
|| LoadVT
== MVT::v2i64
||
13227 LoadVT
== MVT::v4f32
|| LoadVT
== MVT::v4i32
))
13228 return expandVSXLoadForLE(N
, DCI
);
13231 // We sometimes end up with a 64-bit integer load, from which we extract
13232 // two single-precision floating-point numbers. This happens with
13233 // std::complex<float>, and other similar structures, because of the way we
13234 // canonicalize structure copies. However, if we lack direct moves,
13235 // then the final bitcasts from the extracted integer values to the
13236 // floating-point numbers turn into store/load pairs. Even with direct moves,
13237 // just loading the two floating-point numbers is likely better.
13238 auto ReplaceTwoFloatLoad
= [&]() {
13239 if (VT
!= MVT::i64
)
13242 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
||
13246 // We're looking for a sequence like this:
13247 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13248 // t16: i64 = srl t13, Constant:i32<32>
13249 // t17: i32 = truncate t16
13250 // t18: f32 = bitcast t17
13251 // t19: i32 = truncate t13
13252 // t20: f32 = bitcast t19
13254 if (!LD
->hasNUsesOfValue(2, 0))
13257 auto UI
= LD
->use_begin();
13258 while (UI
.getUse().getResNo() != 0) ++UI
;
13259 SDNode
*Trunc
= *UI
++;
13260 while (UI
.getUse().getResNo() != 0) ++UI
;
13261 SDNode
*RightShift
= *UI
;
13262 if (Trunc
->getOpcode() != ISD::TRUNCATE
)
13263 std::swap(Trunc
, RightShift
);
13265 if (Trunc
->getOpcode() != ISD::TRUNCATE
||
13266 Trunc
->getValueType(0) != MVT::i32
||
13267 !Trunc
->hasOneUse())
13269 if (RightShift
->getOpcode() != ISD::SRL
||
13270 !isa
<ConstantSDNode
>(RightShift
->getOperand(1)) ||
13271 RightShift
->getConstantOperandVal(1) != 32 ||
13272 !RightShift
->hasOneUse())
13275 SDNode
*Trunc2
= *RightShift
->use_begin();
13276 if (Trunc2
->getOpcode() != ISD::TRUNCATE
||
13277 Trunc2
->getValueType(0) != MVT::i32
||
13278 !Trunc2
->hasOneUse())
13281 SDNode
*Bitcast
= *Trunc
->use_begin();
13282 SDNode
*Bitcast2
= *Trunc2
->use_begin();
13284 if (Bitcast
->getOpcode() != ISD::BITCAST
||
13285 Bitcast
->getValueType(0) != MVT::f32
)
13287 if (Bitcast2
->getOpcode() != ISD::BITCAST
||
13288 Bitcast2
->getValueType(0) != MVT::f32
)
13291 if (Subtarget
.isLittleEndian())
13292 std::swap(Bitcast
, Bitcast2
);
13294 // Bitcast has the second float (in memory-layout order) and Bitcast2
13295 // has the first one.
13297 SDValue BasePtr
= LD
->getBasePtr();
13298 if (LD
->isIndexed()) {
13299 assert(LD
->getAddressingMode() == ISD::PRE_INC
&&
13300 "Non-pre-inc AM on PPC?");
13302 DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(), BasePtr
,
13307 LD
->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile
;
13308 SDValue FloatLoad
= DAG
.getLoad(MVT::f32
, dl
, LD
->getChain(), BasePtr
,
13309 LD
->getPointerInfo(), LD
->getAlignment(),
13310 MMOFlags
, LD
->getAAInfo());
13312 DAG
.getNode(ISD::ADD
, dl
, BasePtr
.getValueType(),
13313 BasePtr
, DAG
.getIntPtrConstant(4, dl
));
13314 SDValue FloatLoad2
= DAG
.getLoad(
13315 MVT::f32
, dl
, SDValue(FloatLoad
.getNode(), 1), AddPtr
,
13316 LD
->getPointerInfo().getWithOffset(4),
13317 MinAlign(LD
->getAlignment(), 4), MMOFlags
, LD
->getAAInfo());
13319 if (LD
->isIndexed()) {
13320 // Note that DAGCombine should re-form any pre-increment load(s) from
13321 // what is produced here if that makes sense.
13322 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), BasePtr
);
13325 DCI
.CombineTo(Bitcast2
, FloatLoad
);
13326 DCI
.CombineTo(Bitcast
, FloatLoad2
);
13328 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, LD
->isIndexed() ? 2 : 1),
13329 SDValue(FloatLoad2
.getNode(), 1));
13333 if (ReplaceTwoFloatLoad())
13334 return SDValue(N
, 0);
13336 EVT MemVT
= LD
->getMemoryVT();
13337 Type
*Ty
= MemVT
.getTypeForEVT(*DAG
.getContext());
13338 unsigned ABIAlignment
= DAG
.getDataLayout().getABITypeAlignment(Ty
);
13339 Type
*STy
= MemVT
.getScalarType().getTypeForEVT(*DAG
.getContext());
13340 unsigned ScalarABIAlignment
= DAG
.getDataLayout().getABITypeAlignment(STy
);
13341 if (LD
->isUnindexed() && VT
.isVector() &&
13342 ((Subtarget
.hasAltivec() && ISD::isNON_EXTLoad(N
) &&
13343 // P8 and later hardware should just use LOAD.
13344 !Subtarget
.hasP8Vector() && (VT
== MVT::v16i8
|| VT
== MVT::v8i16
||
13345 VT
== MVT::v4i32
|| VT
== MVT::v4f32
)) ||
13346 (Subtarget
.hasQPX() && (VT
== MVT::v4f64
|| VT
== MVT::v4f32
) &&
13347 LD
->getAlignment() >= ScalarABIAlignment
)) &&
13348 LD
->getAlignment() < ABIAlignment
) {
13349 // This is a type-legal unaligned Altivec or QPX load.
13350 SDValue Chain
= LD
->getChain();
13351 SDValue Ptr
= LD
->getBasePtr();
13352 bool isLittleEndian
= Subtarget
.isLittleEndian();
13354 // This implements the loading of unaligned vectors as described in
13355 // the venerable Apple Velocity Engine overview. Specifically:
13356 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13357 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13359 // The general idea is to expand a sequence of one or more unaligned
13360 // loads into an alignment-based permutation-control instruction (lvsl
13361 // or lvsr), a series of regular vector loads (which always truncate
13362 // their input address to an aligned address), and a series of
13363 // permutations. The results of these permutations are the requested
13364 // loaded values. The trick is that the last "extra" load is not taken
13365 // from the address you might suspect (sizeof(vector) bytes after the
13366 // last requested load), but rather sizeof(vector) - 1 bytes after the
13367 // last requested vector. The point of this is to avoid a page fault if
13368 // the base address happened to be aligned. This works because if the
13369 // base address is aligned, then adding less than a full vector length
13370 // will cause the last vector in the sequence to be (re)loaded.
13371 // Otherwise, the next vector will be fetched as you might suspect was
13374 // We might be able to reuse the permutation generation from
13375 // a different base address offset from this one by an aligned amount.
13376 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13377 // optimization later.
13378 Intrinsic::ID Intr
, IntrLD
, IntrPerm
;
13379 MVT PermCntlTy
, PermTy
, LDTy
;
13380 if (Subtarget
.hasAltivec()) {
13381 Intr
= isLittleEndian
? Intrinsic::ppc_altivec_lvsr
:
13382 Intrinsic::ppc_altivec_lvsl
;
13383 IntrLD
= Intrinsic::ppc_altivec_lvx
;
13384 IntrPerm
= Intrinsic::ppc_altivec_vperm
;
13385 PermCntlTy
= MVT::v16i8
;
13386 PermTy
= MVT::v4i32
;
13389 Intr
= MemVT
== MVT::v4f64
? Intrinsic::ppc_qpx_qvlpcld
:
13390 Intrinsic::ppc_qpx_qvlpcls
;
13391 IntrLD
= MemVT
== MVT::v4f64
? Intrinsic::ppc_qpx_qvlfd
:
13392 Intrinsic::ppc_qpx_qvlfs
;
13393 IntrPerm
= Intrinsic::ppc_qpx_qvfperm
;
13394 PermCntlTy
= MVT::v4f64
;
13395 PermTy
= MVT::v4f64
;
13396 LDTy
= MemVT
.getSimpleVT();
13399 SDValue PermCntl
= BuildIntrinsicOp(Intr
, Ptr
, DAG
, dl
, PermCntlTy
);
13401 // Create the new MMO for the new base load. It is like the original MMO,
13402 // but represents an area in memory almost twice the vector size centered
13403 // on the original address. If the address is unaligned, we might start
13404 // reading up to (sizeof(vector)-1) bytes below the address of the
13405 // original unaligned load.
13406 MachineFunction
&MF
= DAG
.getMachineFunction();
13407 MachineMemOperand
*BaseMMO
=
13408 MF
.getMachineMemOperand(LD
->getMemOperand(),
13409 -(long)MemVT
.getStoreSize()+1,
13410 2*MemVT
.getStoreSize()-1);
13412 // Create the new base load.
13414 DAG
.getTargetConstant(IntrLD
, dl
, getPointerTy(MF
.getDataLayout()));
13415 SDValue BaseLoadOps
[] = { Chain
, LDXIntID
, Ptr
};
13417 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, dl
,
13418 DAG
.getVTList(PermTy
, MVT::Other
),
13419 BaseLoadOps
, LDTy
, BaseMMO
);
13421 // Note that the value of IncOffset (which is provided to the next
13422 // load's pointer info offset value, and thus used to calculate the
13423 // alignment), and the value of IncValue (which is actually used to
13424 // increment the pointer value) are different! This is because we
13425 // require the next load to appear to be aligned, even though it
13426 // is actually offset from the base pointer by a lesser amount.
13427 int IncOffset
= VT
.getSizeInBits() / 8;
13428 int IncValue
= IncOffset
;
13430 // Walk (both up and down) the chain looking for another load at the real
13431 // (aligned) offset (the alignment of the other load does not matter in
13432 // this case). If found, then do not use the offset reduction trick, as
13433 // that will prevent the loads from being later combined (as they would
13434 // otherwise be duplicates).
13435 if (!findConsecutiveLoad(LD
, DAG
))
13438 SDValue Increment
=
13439 DAG
.getConstant(IncValue
, dl
, getPointerTy(MF
.getDataLayout()));
13440 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
, Increment
);
13442 MachineMemOperand
*ExtraMMO
=
13443 MF
.getMachineMemOperand(LD
->getMemOperand(),
13444 1, 2*MemVT
.getStoreSize()-1);
13445 SDValue ExtraLoadOps
[] = { Chain
, LDXIntID
, Ptr
};
13446 SDValue ExtraLoad
=
13447 DAG
.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN
, dl
,
13448 DAG
.getVTList(PermTy
, MVT::Other
),
13449 ExtraLoadOps
, LDTy
, ExtraMMO
);
13451 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
13452 BaseLoad
.getValue(1), ExtraLoad
.getValue(1));
13454 // Because vperm has a big-endian bias, we must reverse the order
13455 // of the input vectors and complement the permute control vector
13456 // when generating little endian code. We have already handled the
13457 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
13458 // and ExtraLoad here.
13460 if (isLittleEndian
)
13461 Perm
= BuildIntrinsicOp(IntrPerm
,
13462 ExtraLoad
, BaseLoad
, PermCntl
, DAG
, dl
);
13464 Perm
= BuildIntrinsicOp(IntrPerm
,
13465 BaseLoad
, ExtraLoad
, PermCntl
, DAG
, dl
);
13468 Perm
= Subtarget
.hasAltivec() ?
13469 DAG
.getNode(ISD::BITCAST
, dl
, VT
, Perm
) :
13470 DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Perm
, // QPX
13471 DAG
.getTargetConstant(1, dl
, MVT::i64
));
13472 // second argument is 1 because this rounding
13473 // is always exact.
13475 // The output of the permutation is our loaded result, the TokenFactor is
13477 DCI
.CombineTo(N
, Perm
, TF
);
13478 return SDValue(N
, 0);
13482 case ISD::INTRINSIC_WO_CHAIN
: {
13483 bool isLittleEndian
= Subtarget
.isLittleEndian();
13484 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
13485 Intrinsic::ID Intr
= (isLittleEndian
? Intrinsic::ppc_altivec_lvsr
13486 : Intrinsic::ppc_altivec_lvsl
);
13487 if ((IID
== Intr
||
13488 IID
== Intrinsic::ppc_qpx_qvlpcld
||
13489 IID
== Intrinsic::ppc_qpx_qvlpcls
) &&
13490 N
->getOperand(1)->getOpcode() == ISD::ADD
) {
13491 SDValue Add
= N
->getOperand(1);
13493 int Bits
= IID
== Intrinsic::ppc_qpx_qvlpcld
?
13494 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
13496 if (DAG
.MaskedValueIsZero(Add
->getOperand(1),
13497 APInt::getAllOnesValue(Bits
/* alignment */)
13498 .zext(Add
.getScalarValueSizeInBits()))) {
13499 SDNode
*BasePtr
= Add
->getOperand(0).getNode();
13500 for (SDNode::use_iterator UI
= BasePtr
->use_begin(),
13501 UE
= BasePtr
->use_end();
13503 if (UI
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
13504 cast
<ConstantSDNode
>(UI
->getOperand(0))->getZExtValue() == IID
) {
13505 // We've found another LVSL/LVSR, and this address is an aligned
13506 // multiple of that one. The results will be the same, so use the
13507 // one we've just found instead.
13509 return SDValue(*UI
, 0);
13514 if (isa
<ConstantSDNode
>(Add
->getOperand(1))) {
13515 SDNode
*BasePtr
= Add
->getOperand(0).getNode();
13516 for (SDNode::use_iterator UI
= BasePtr
->use_begin(),
13517 UE
= BasePtr
->use_end(); UI
!= UE
; ++UI
) {
13518 if (UI
->getOpcode() == ISD::ADD
&&
13519 isa
<ConstantSDNode
>(UI
->getOperand(1)) &&
13520 (cast
<ConstantSDNode
>(Add
->getOperand(1))->getZExtValue() -
13521 cast
<ConstantSDNode
>(UI
->getOperand(1))->getZExtValue()) %
13522 (1ULL << Bits
) == 0) {
13523 SDNode
*OtherAdd
= *UI
;
13524 for (SDNode::use_iterator VI
= OtherAdd
->use_begin(),
13525 VE
= OtherAdd
->use_end(); VI
!= VE
; ++VI
) {
13526 if (VI
->getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
13527 cast
<ConstantSDNode
>(VI
->getOperand(0))->getZExtValue() == IID
) {
13528 return SDValue(*VI
, 0);
13536 // Combine vmaxsw/h/b(a, a's negation) to abs(a)
13537 // Expose the vabsduw/h/b opportunity for down stream
13538 if (!DCI
.isAfterLegalizeDAG() && Subtarget
.hasP9Altivec() &&
13539 (IID
== Intrinsic::ppc_altivec_vmaxsw
||
13540 IID
== Intrinsic::ppc_altivec_vmaxsh
||
13541 IID
== Intrinsic::ppc_altivec_vmaxsb
)) {
13542 SDValue V1
= N
->getOperand(1);
13543 SDValue V2
= N
->getOperand(2);
13544 if ((V1
.getSimpleValueType() == MVT::v4i32
||
13545 V1
.getSimpleValueType() == MVT::v8i16
||
13546 V1
.getSimpleValueType() == MVT::v16i8
) &&
13547 V1
.getSimpleValueType() == V2
.getSimpleValueType()) {
13549 if (V1
.getOpcode() == ISD::SUB
&&
13550 ISD::isBuildVectorAllZeros(V1
.getOperand(0).getNode()) &&
13551 V1
.getOperand(1) == V2
) {
13552 return DAG
.getNode(ISD::ABS
, dl
, V2
.getValueType(), V2
);
13555 if (V2
.getOpcode() == ISD::SUB
&&
13556 ISD::isBuildVectorAllZeros(V2
.getOperand(0).getNode()) &&
13557 V2
.getOperand(1) == V1
) {
13558 return DAG
.getNode(ISD::ABS
, dl
, V1
.getValueType(), V1
);
13561 if (V1
.getOpcode() == ISD::SUB
&& V2
.getOpcode() == ISD::SUB
&&
13562 V1
.getOperand(0) == V2
.getOperand(1) &&
13563 V1
.getOperand(1) == V2
.getOperand(0)) {
13564 return DAG
.getNode(ISD::ABS
, dl
, V1
.getValueType(), V1
);
13571 case ISD::INTRINSIC_W_CHAIN
:
13572 // For little endian, VSX loads require generating lxvd2x/xxswapd.
13573 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13574 if (Subtarget
.needsSwapsForVSXMemOps()) {
13575 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13578 case Intrinsic::ppc_vsx_lxvw4x
:
13579 case Intrinsic::ppc_vsx_lxvd2x
:
13580 return expandVSXLoadForLE(N
, DCI
);
13584 case ISD::INTRINSIC_VOID
:
13585 // For little endian, VSX stores require generating xxswapd/stxvd2x.
13586 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13587 if (Subtarget
.needsSwapsForVSXMemOps()) {
13588 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
13591 case Intrinsic::ppc_vsx_stxvw4x
:
13592 case Intrinsic::ppc_vsx_stxvd2x
:
13593 return expandVSXStoreForLE(N
, DCI
);
13598 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
13599 if (ISD::isNON_EXTLoad(N
->getOperand(0).getNode()) &&
13600 N
->getOperand(0).hasOneUse() &&
13601 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
||
13602 (Subtarget
.hasLDBRX() && Subtarget
.isPPC64() &&
13603 N
->getValueType(0) == MVT::i64
))) {
13604 SDValue Load
= N
->getOperand(0);
13605 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
13606 // Create the byte-swapping load.
13608 LD
->getChain(), // Chain
13609 LD
->getBasePtr(), // Ptr
13610 DAG
.getValueType(N
->getValueType(0)) // VT
13613 DAG
.getMemIntrinsicNode(PPCISD::LBRX
, dl
,
13614 DAG
.getVTList(N
->getValueType(0) == MVT::i64
?
13615 MVT::i64
: MVT::i32
, MVT::Other
),
13616 Ops
, LD
->getMemoryVT(), LD
->getMemOperand());
13618 // If this is an i16 load, insert the truncate.
13619 SDValue ResVal
= BSLoad
;
13620 if (N
->getValueType(0) == MVT::i16
)
13621 ResVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
, BSLoad
);
13623 // First, combine the bswap away. This makes the value produced by the
13625 DCI
.CombineTo(N
, ResVal
);
13627 // Next, combine the load away, we give it a bogus result value but a real
13628 // chain result. The result value is dead because the bswap is dead.
13629 DCI
.CombineTo(Load
.getNode(), ResVal
, BSLoad
.getValue(1));
13631 // Return N so it doesn't get rechecked!
13632 return SDValue(N
, 0);
13636 // If a VCMPo node already exists with exactly the same operands as this
13637 // node, use its result instead of this node (VCMPo computes both a CR6 and
13638 // a normal output).
13640 if (!N
->getOperand(0).hasOneUse() &&
13641 !N
->getOperand(1).hasOneUse() &&
13642 !N
->getOperand(2).hasOneUse()) {
13644 // Scan all of the users of the LHS, looking for VCMPo's that match.
13645 SDNode
*VCMPoNode
= nullptr;
13647 SDNode
*LHSN
= N
->getOperand(0).getNode();
13648 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
13650 if (UI
->getOpcode() == PPCISD::VCMPo
&&
13651 UI
->getOperand(1) == N
->getOperand(1) &&
13652 UI
->getOperand(2) == N
->getOperand(2) &&
13653 UI
->getOperand(0) == N
->getOperand(0)) {
13658 // If there is no VCMPo node, or if the flag value has a single use, don't
13660 if (!VCMPoNode
|| VCMPoNode
->hasNUsesOfValue(0, 1))
13663 // Look at the (necessarily single) use of the flag value. If it has a
13664 // chain, this transformation is more complex. Note that multiple things
13665 // could use the value result, which we should ignore.
13666 SDNode
*FlagUser
= nullptr;
13667 for (SDNode::use_iterator UI
= VCMPoNode
->use_begin();
13668 FlagUser
== nullptr; ++UI
) {
13669 assert(UI
!= VCMPoNode
->use_end() && "Didn't find user!");
13670 SDNode
*User
= *UI
;
13671 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
13672 if (User
->getOperand(i
) == SDValue(VCMPoNode
, 1)) {
13679 // If the user is a MFOCRF instruction, we know this is safe.
13680 // Otherwise we give up for right now.
13681 if (FlagUser
->getOpcode() == PPCISD::MFOCRF
)
13682 return SDValue(VCMPoNode
, 0);
13685 case ISD::BRCOND
: {
13686 SDValue Cond
= N
->getOperand(1);
13687 SDValue Target
= N
->getOperand(2);
13689 if (Cond
.getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
13690 cast
<ConstantSDNode
>(Cond
.getOperand(1))->getZExtValue() ==
13691 Intrinsic::loop_decrement
) {
13693 // We now need to make the intrinsic dead (it cannot be instruction
13695 DAG
.ReplaceAllUsesOfValueWith(Cond
.getValue(1), Cond
.getOperand(0));
13696 assert(Cond
.getNode()->hasOneUse() &&
13697 "Counter decrement has more than one use");
13699 return DAG
.getNode(PPCISD::BDNZ
, dl
, MVT::Other
,
13700 N
->getOperand(0), Target
);
13705 // If this is a branch on an altivec predicate comparison, lower this so
13706 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
13707 // lowering is done pre-legalize, because the legalizer lowers the predicate
13708 // compare down to code that is difficult to reassemble.
13709 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
13710 SDValue LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
13712 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13713 // value. If so, pass-through the AND to get to the intrinsic.
13714 if (LHS
.getOpcode() == ISD::AND
&&
13715 LHS
.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
13716 cast
<ConstantSDNode
>(LHS
.getOperand(0).getOperand(1))->getZExtValue() ==
13717 Intrinsic::loop_decrement
&&
13718 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
13719 !isNullConstant(LHS
.getOperand(1)))
13720 LHS
= LHS
.getOperand(0);
13722 if (LHS
.getOpcode() == ISD::INTRINSIC_W_CHAIN
&&
13723 cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue() ==
13724 Intrinsic::loop_decrement
&&
13725 isa
<ConstantSDNode
>(RHS
)) {
13726 assert((CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
13727 "Counter decrement comparison is not EQ or NE");
13729 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
13730 bool isBDNZ
= (CC
== ISD::SETEQ
&& Val
) ||
13731 (CC
== ISD::SETNE
&& !Val
);
13733 // We now need to make the intrinsic dead (it cannot be instruction
13735 DAG
.ReplaceAllUsesOfValueWith(LHS
.getValue(1), LHS
.getOperand(0));
13736 assert(LHS
.getNode()->hasOneUse() &&
13737 "Counter decrement has more than one use");
13739 return DAG
.getNode(isBDNZ
? PPCISD::BDNZ
: PPCISD::BDZ
, dl
, MVT::Other
,
13740 N
->getOperand(0), N
->getOperand(4));
13746 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
13747 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
13748 getVectorCompareInfo(LHS
, CompareOpc
, isDot
, Subtarget
)) {
13749 assert(isDot
&& "Can't compare against a vector result!");
13751 // If this is a comparison against something other than 0/1, then we know
13752 // that the condition is never/always true.
13753 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
13754 if (Val
!= 0 && Val
!= 1) {
13755 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
13756 return N
->getOperand(0);
13757 // Always !=, turn it into an unconditional branch.
13758 return DAG
.getNode(ISD::BR
, dl
, MVT::Other
,
13759 N
->getOperand(0), N
->getOperand(4));
13762 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
13764 // Create the PPCISD altivec 'dot' comparison node.
13766 LHS
.getOperand(2), // LHS of compare
13767 LHS
.getOperand(3), // RHS of compare
13768 DAG
.getConstant(CompareOpc
, dl
, MVT::i32
)
13770 EVT VTs
[] = { LHS
.getOperand(2).getValueType(), MVT::Glue
};
13771 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
);
13773 // Unpack the result based on how the target uses it.
13774 PPC::Predicate CompOpc
;
13775 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue()) {
13776 default: // Can't happen, don't crash on invalid number though.
13777 case 0: // Branch on the value of the EQ bit of CR6.
13778 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
13780 case 1: // Branch on the inverted value of the EQ bit of CR6.
13781 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
13783 case 2: // Branch on the value of the LT bit of CR6.
13784 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
13786 case 3: // Branch on the inverted value of the LT bit of CR6.
13787 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
13791 return DAG
.getNode(PPCISD::COND_BRANCH
, dl
, MVT::Other
, N
->getOperand(0),
13792 DAG
.getConstant(CompOpc
, dl
, MVT::i32
),
13793 DAG
.getRegister(PPC::CR6
, MVT::i32
),
13794 N
->getOperand(4), CompNode
.getValue(1));
13798 case ISD::BUILD_VECTOR
:
13799 return DAGCombineBuildVector(N
, DCI
);
13801 return combineABS(N
, DCI
);
13803 return combineVSelect(N
, DCI
);
13810 PPCTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
13812 SmallVectorImpl
<SDNode
*> &Created
) const {
13813 // fold (sdiv X, pow2)
13814 EVT VT
= N
->getValueType(0);
13815 if (VT
== MVT::i64
&& !Subtarget
.isPPC64())
13817 if ((VT
!= MVT::i32
&& VT
!= MVT::i64
) ||
13818 !(Divisor
.isPowerOf2() || (-Divisor
).isPowerOf2()))
13822 SDValue N0
= N
->getOperand(0);
13824 bool IsNegPow2
= (-Divisor
).isPowerOf2();
13825 unsigned Lg2
= (IsNegPow2
? -Divisor
: Divisor
).countTrailingZeros();
13826 SDValue ShiftAmt
= DAG
.getConstant(Lg2
, DL
, VT
);
13828 SDValue Op
= DAG
.getNode(PPCISD::SRA_ADDZE
, DL
, VT
, N0
, ShiftAmt
);
13829 Created
.push_back(Op
.getNode());
13832 Op
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Op
);
13833 Created
.push_back(Op
.getNode());
13839 //===----------------------------------------------------------------------===//
13840 // Inline Assembly Support
13841 //===----------------------------------------------------------------------===//
13843 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
13845 const APInt
&DemandedElts
,
13846 const SelectionDAG
&DAG
,
13847 unsigned Depth
) const {
13849 switch (Op
.getOpcode()) {
13851 case PPCISD::LBRX
: {
13852 // lhbrx is known to have the top bits cleared out.
13853 if (cast
<VTSDNode
>(Op
.getOperand(2))->getVT() == MVT::i16
)
13854 Known
.Zero
= 0xFFFF0000;
13857 case ISD::INTRINSIC_WO_CHAIN
: {
13858 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue()) {
13860 case Intrinsic::ppc_altivec_vcmpbfp_p
:
13861 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
13862 case Intrinsic::ppc_altivec_vcmpequb_p
:
13863 case Intrinsic::ppc_altivec_vcmpequh_p
:
13864 case Intrinsic::ppc_altivec_vcmpequw_p
:
13865 case Intrinsic::ppc_altivec_vcmpequd_p
:
13866 case Intrinsic::ppc_altivec_vcmpgefp_p
:
13867 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
13868 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
13869 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
13870 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
13871 case Intrinsic::ppc_altivec_vcmpgtsd_p
:
13872 case Intrinsic::ppc_altivec_vcmpgtub_p
:
13873 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
13874 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
13875 case Intrinsic::ppc_altivec_vcmpgtud_p
:
13876 Known
.Zero
= ~1U; // All bits but the low one are known to be zero.
13883 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop
*ML
) const {
13884 switch (Subtarget
.getDarwinDirective()) {
13887 case PPC::DIR_PWR4
:
13888 case PPC::DIR_PWR5
:
13889 case PPC::DIR_PWR5X
:
13890 case PPC::DIR_PWR6
:
13891 case PPC::DIR_PWR6X
:
13892 case PPC::DIR_PWR7
:
13893 case PPC::DIR_PWR8
:
13894 case PPC::DIR_PWR9
: {
13898 if (!DisableInnermostLoopAlign32
) {
13899 // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
13900 // so that we can decrease cache misses and branch-prediction misses.
13901 // Actual alignment of the loop will depend on the hotness check and other
13902 // logic in alignBlocks.
13903 if (ML
->getLoopDepth() > 1 && ML
->getSubLoops().empty())
13907 const PPCInstrInfo
*TII
= Subtarget
.getInstrInfo();
13909 // For small loops (between 5 and 8 instructions), align to a 32-byte
13910 // boundary so that the entire loop fits in one instruction-cache line.
13911 uint64_t LoopSize
= 0;
13912 for (auto I
= ML
->block_begin(), IE
= ML
->block_end(); I
!= IE
; ++I
)
13913 for (auto J
= (*I
)->begin(), JE
= (*I
)->end(); J
!= JE
; ++J
) {
13914 LoopSize
+= TII
->getInstSizeInBytes(*J
);
13919 if (LoopSize
> 16 && LoopSize
<= 32)
13926 return TargetLowering::getPrefLoopAlignment(ML
);
13929 /// getConstraintType - Given a constraint, return the type of
13930 /// constraint it is for this target.
13931 PPCTargetLowering::ConstraintType
13932 PPCTargetLowering::getConstraintType(StringRef Constraint
) const {
13933 if (Constraint
.size() == 1) {
13934 switch (Constraint
[0]) {
13942 return C_RegisterClass
;
13944 // FIXME: While Z does indicate a memory constraint, it specifically
13945 // indicates an r+r address (used in conjunction with the 'y' modifier
13946 // in the replacement string). Currently, we're forcing the base
13947 // register to be r0 in the asm printer (which is interpreted as zero)
13948 // and forming the complete address in the second register. This is
13952 } else if (Constraint
== "wc") { // individual CR bits.
13953 return C_RegisterClass
;
13954 } else if (Constraint
== "wa" || Constraint
== "wd" ||
13955 Constraint
== "wf" || Constraint
== "ws" ||
13956 Constraint
== "wi" || Constraint
== "ww") {
13957 return C_RegisterClass
; // VSX registers.
13959 return TargetLowering::getConstraintType(Constraint
);
13962 /// Examine constraint type and operand type and determine a weight value.
13963 /// This object must already have been set up with the operand type
13964 /// and the current alternative constraint selected.
13965 TargetLowering::ConstraintWeight
13966 PPCTargetLowering::getSingleConstraintMatchWeight(
13967 AsmOperandInfo
&info
, const char *constraint
) const {
13968 ConstraintWeight weight
= CW_Invalid
;
13969 Value
*CallOperandVal
= info
.CallOperandVal
;
13970 // If we don't have a value, we can't do a match,
13971 // but allow it at the lowest weight.
13972 if (!CallOperandVal
)
13974 Type
*type
= CallOperandVal
->getType();
13976 // Look at the constraint type.
13977 if (StringRef(constraint
) == "wc" && type
->isIntegerTy(1))
13978 return CW_Register
; // an individual CR bit.
13979 else if ((StringRef(constraint
) == "wa" ||
13980 StringRef(constraint
) == "wd" ||
13981 StringRef(constraint
) == "wf") &&
13982 type
->isVectorTy())
13983 return CW_Register
;
13984 else if (StringRef(constraint
) == "wi" && type
->isIntegerTy(64))
13985 return CW_Register
; // just hold 64-bit integers data.
13986 else if (StringRef(constraint
) == "ws" && type
->isDoubleTy())
13987 return CW_Register
;
13988 else if (StringRef(constraint
) == "ww" && type
->isFloatTy())
13989 return CW_Register
;
13991 switch (*constraint
) {
13993 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
13996 if (type
->isIntegerTy())
13997 weight
= CW_Register
;
14000 if (type
->isFloatTy())
14001 weight
= CW_Register
;
14004 if (type
->isDoubleTy())
14005 weight
= CW_Register
;
14008 if (type
->isVectorTy())
14009 weight
= CW_Register
;
14012 weight
= CW_Register
;
14015 weight
= CW_Memory
;
14021 std::pair
<unsigned, const TargetRegisterClass
*>
14022 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
14023 StringRef Constraint
,
14025 if (Constraint
.size() == 1) {
14026 // GCC RS6000 Constraint Letters
14027 switch (Constraint
[0]) {
14028 case 'b': // R1-R31
14029 if (VT
== MVT::i64
&& Subtarget
.isPPC64())
14030 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass
);
14031 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass
);
14032 case 'r': // R0-R31
14033 if (VT
== MVT::i64
&& Subtarget
.isPPC64())
14034 return std::make_pair(0U, &PPC::G8RCRegClass
);
14035 return std::make_pair(0U, &PPC::GPRCRegClass
);
14036 // 'd' and 'f' constraints are both defined to be "the floating point
14037 // registers", where one is for 32-bit and the other for 64-bit. We don't
14038 // really care overly much here so just give them all the same reg classes.
14041 if (Subtarget
.hasSPE()) {
14042 if (VT
== MVT::f32
|| VT
== MVT::i32
)
14043 return std::make_pair(0U, &PPC::SPE4RCRegClass
);
14044 if (VT
== MVT::f64
|| VT
== MVT::i64
)
14045 return std::make_pair(0U, &PPC::SPERCRegClass
);
14047 if (VT
== MVT::f32
|| VT
== MVT::i32
)
14048 return std::make_pair(0U, &PPC::F4RCRegClass
);
14049 if (VT
== MVT::f64
|| VT
== MVT::i64
)
14050 return std::make_pair(0U, &PPC::F8RCRegClass
);
14051 if (VT
== MVT::v4f64
&& Subtarget
.hasQPX())
14052 return std::make_pair(0U, &PPC::QFRCRegClass
);
14053 if (VT
== MVT::v4f32
&& Subtarget
.hasQPX())
14054 return std::make_pair(0U, &PPC::QSRCRegClass
);
14058 if (VT
== MVT::v4f64
&& Subtarget
.hasQPX())
14059 return std::make_pair(0U, &PPC::QFRCRegClass
);
14060 if (VT
== MVT::v4f32
&& Subtarget
.hasQPX())
14061 return std::make_pair(0U, &PPC::QSRCRegClass
);
14062 if (Subtarget
.hasAltivec())
14063 return std::make_pair(0U, &PPC::VRRCRegClass
);
14066 return std::make_pair(0U, &PPC::CRRCRegClass
);
14068 } else if (Constraint
== "wc" && Subtarget
.useCRBits()) {
14069 // An individual CR bit.
14070 return std::make_pair(0U, &PPC::CRBITRCRegClass
);
14071 } else if ((Constraint
== "wa" || Constraint
== "wd" ||
14072 Constraint
== "wf" || Constraint
== "wi") &&
14073 Subtarget
.hasVSX()) {
14074 return std::make_pair(0U, &PPC::VSRCRegClass
);
14075 } else if ((Constraint
== "ws" || Constraint
== "ww") && Subtarget
.hasVSX()) {
14076 if (VT
== MVT::f32
&& Subtarget
.hasP8Vector())
14077 return std::make_pair(0U, &PPC::VSSRCRegClass
);
14079 return std::make_pair(0U, &PPC::VSFRCRegClass
);
14082 std::pair
<unsigned, const TargetRegisterClass
*> R
=
14083 TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
14085 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14086 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14087 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14089 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14090 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14091 if (R
.first
&& VT
== MVT::i64
&& Subtarget
.isPPC64() &&
14092 PPC::GPRCRegClass
.contains(R
.first
))
14093 return std::make_pair(TRI
->getMatchingSuperReg(R
.first
,
14094 PPC::sub_32
, &PPC::G8RCRegClass
),
14095 &PPC::G8RCRegClass
);
14097 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14098 if (!R
.second
&& StringRef("{cc}").equals_lower(Constraint
)) {
14099 R
.first
= PPC::CR0
;
14100 R
.second
= &PPC::CRRCRegClass
;
14106 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14107 /// vector. If it is invalid, don't add anything to Ops.
14108 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
14109 std::string
&Constraint
,
14110 std::vector
<SDValue
>&Ops
,
14111 SelectionDAG
&DAG
) const {
14114 // Only support length 1 constraints.
14115 if (Constraint
.length() > 1) return;
14117 char Letter
= Constraint
[0];
14128 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
14129 if (!CST
) return; // Must be an immediate to match.
14131 int64_t Value
= CST
->getSExtValue();
14132 EVT TCVT
= MVT::i64
; // All constants taken to be 64 bits so that negative
14133 // numbers are printed as such.
14135 default: llvm_unreachable("Unknown constraint letter!");
14136 case 'I': // "I" is a signed 16-bit constant.
14137 if (isInt
<16>(Value
))
14138 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14140 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
14141 if (isShiftedUInt
<16, 16>(Value
))
14142 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14144 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
14145 if (isShiftedInt
<16, 16>(Value
))
14146 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14148 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
14149 if (isUInt
<16>(Value
))
14150 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14152 case 'M': // "M" is a constant that is greater than 31.
14154 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14156 case 'N': // "N" is a positive constant that is an exact power of two.
14157 if (Value
> 0 && isPowerOf2_64(Value
))
14158 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14160 case 'O': // "O" is the constant zero.
14162 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14164 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
14165 if (isInt
<16>(-Value
))
14166 Result
= DAG
.getTargetConstant(Value
, dl
, TCVT
);
14173 if (Result
.getNode()) {
14174 Ops
.push_back(Result
);
14178 // Handle standard constraint letters.
14179 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
14182 // isLegalAddressingMode - Return true if the addressing mode represented
14183 // by AM is legal for this target, for a load/store of the specified type.
14184 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
14185 const AddrMode
&AM
, Type
*Ty
,
14186 unsigned AS
, Instruction
*I
) const {
14187 // PPC does not allow r+i addressing modes for vectors!
14188 if (Ty
->isVectorTy() && AM
.BaseOffs
!= 0)
14191 // PPC allows a sign-extended 16-bit immediate field.
14192 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
14195 // No global is ever allowed as a base.
14199 // PPC only support r+r,
14200 switch (AM
.Scale
) {
14201 case 0: // "r+i" or just "i", depending on HasBaseReg.
14204 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
14206 // Otherwise we have r+r or r+i.
14209 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
14211 // Allow 2*r as r+r.
14214 // No other scales are supported.
14221 SDValue
PPCTargetLowering::LowerRETURNADDR(SDValue Op
,
14222 SelectionDAG
&DAG
) const {
14223 MachineFunction
&MF
= DAG
.getMachineFunction();
14224 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
14225 MFI
.setReturnAddressIsTaken(true);
14227 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
14231 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
14233 // Make sure the function does not optimize away the store of the RA to
14235 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
14236 FuncInfo
->setLRStoreRequired();
14237 bool isPPC64
= Subtarget
.isPPC64();
14238 auto PtrVT
= getPointerTy(MF
.getDataLayout());
14241 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
14243 DAG
.getConstant(Subtarget
.getFrameLowering()->getReturnSaveOffset(), dl
,
14244 isPPC64
? MVT::i64
: MVT::i32
);
14245 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(),
14246 DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FrameAddr
, Offset
),
14247 MachinePointerInfo());
14250 // Just load the return address off the stack.
14251 SDValue RetAddrFI
= getReturnAddrFrameIndex(DAG
);
14252 return DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), RetAddrFI
,
14253 MachinePointerInfo());
14256 SDValue
PPCTargetLowering::LowerFRAMEADDR(SDValue Op
,
14257 SelectionDAG
&DAG
) const {
14259 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
14261 MachineFunction
&MF
= DAG
.getMachineFunction();
14262 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
14263 MFI
.setFrameAddressIsTaken(true);
14265 EVT PtrVT
= getPointerTy(MF
.getDataLayout());
14266 bool isPPC64
= PtrVT
== MVT::i64
;
14268 // Naked functions never have a frame pointer, and so we use r1. For all
14269 // other functions, this decision must be delayed until during PEI.
14271 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
14272 FrameReg
= isPPC64
? PPC::X1
: PPC::R1
;
14274 FrameReg
= isPPC64
? PPC::FP8
: PPC::FP
;
14276 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
,
14279 FrameAddr
= DAG
.getLoad(Op
.getValueType(), dl
, DAG
.getEntryNode(),
14280 FrameAddr
, MachinePointerInfo());
14284 // FIXME? Maybe this could be a TableGen attribute on some registers and
14285 // this table could be generated automatically from RegInfo.
14286 unsigned PPCTargetLowering::getRegisterByName(const char* RegName
, EVT VT
,
14287 SelectionDAG
&DAG
) const {
14288 bool isPPC64
= Subtarget
.isPPC64();
14289 bool isDarwinABI
= Subtarget
.isDarwinABI();
14291 if ((isPPC64
&& VT
!= MVT::i64
&& VT
!= MVT::i32
) ||
14292 (!isPPC64
&& VT
!= MVT::i32
))
14293 report_fatal_error("Invalid register global variable type");
14295 bool is64Bit
= isPPC64
&& VT
== MVT::i64
;
14296 unsigned Reg
= StringSwitch
<unsigned>(RegName
)
14297 .Case("r1", is64Bit
? PPC::X1
: PPC::R1
)
14298 .Case("r2", (isDarwinABI
|| isPPC64
) ? 0 : PPC::R2
)
14299 .Case("r13", (!isPPC64
&& isDarwinABI
) ? 0 :
14300 (is64Bit
? PPC::X13
: PPC::R13
))
14305 report_fatal_error("Invalid register name global variable");
14308 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA
) const {
14309 // 32-bit SVR4 ABI access everything as got-indirect.
14310 if (Subtarget
.isSVR4ABI() && !Subtarget
.isPPC64())
14313 CodeModel::Model CModel
= getTargetMachine().getCodeModel();
14314 // If it is small or large code model, module locals are accessed
14315 // indirectly by loading their address from .toc/.got. The difference
14316 // is that for large code model we have ADDISTocHa + LDtocL and for
14317 // small code model we simply have LDtoc.
14318 if (CModel
== CodeModel::Small
|| CModel
== CodeModel::Large
)
14321 // JumpTable and BlockAddress are accessed as got-indirect.
14322 if (isa
<JumpTableSDNode
>(GA
) || isa
<BlockAddressSDNode
>(GA
))
14325 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(GA
)) {
14326 const GlobalValue
*GV
= G
->getGlobal();
14327 unsigned char GVFlags
= Subtarget
.classifyGlobalReference(GV
);
14328 // The NLP flag indicates that a global access has to use an
14329 // extra indirection.
14330 if (GVFlags
& PPCII::MO_NLP_FLAG
)
14338 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
14339 // The PowerPC target isn't yet aware of offsets.
14343 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
14345 MachineFunction
&MF
,
14346 unsigned Intrinsic
) const {
14347 switch (Intrinsic
) {
14348 case Intrinsic::ppc_qpx_qvlfd
:
14349 case Intrinsic::ppc_qpx_qvlfs
:
14350 case Intrinsic::ppc_qpx_qvlfcd
:
14351 case Intrinsic::ppc_qpx_qvlfcs
:
14352 case Intrinsic::ppc_qpx_qvlfiwa
:
14353 case Intrinsic::ppc_qpx_qvlfiwz
:
14354 case Intrinsic::ppc_altivec_lvx
:
14355 case Intrinsic::ppc_altivec_lvxl
:
14356 case Intrinsic::ppc_altivec_lvebx
:
14357 case Intrinsic::ppc_altivec_lvehx
:
14358 case Intrinsic::ppc_altivec_lvewx
:
14359 case Intrinsic::ppc_vsx_lxvd2x
:
14360 case Intrinsic::ppc_vsx_lxvw4x
: {
14362 switch (Intrinsic
) {
14363 case Intrinsic::ppc_altivec_lvebx
:
14366 case Intrinsic::ppc_altivec_lvehx
:
14369 case Intrinsic::ppc_altivec_lvewx
:
14372 case Intrinsic::ppc_vsx_lxvd2x
:
14375 case Intrinsic::ppc_qpx_qvlfd
:
14378 case Intrinsic::ppc_qpx_qvlfs
:
14381 case Intrinsic::ppc_qpx_qvlfcd
:
14384 case Intrinsic::ppc_qpx_qvlfcs
:
14392 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
14394 Info
.ptrVal
= I
.getArgOperand(0);
14395 Info
.offset
= -VT
.getStoreSize()+1;
14396 Info
.size
= 2*VT
.getStoreSize()-1;
14398 Info
.flags
= MachineMemOperand::MOLoad
;
14401 case Intrinsic::ppc_qpx_qvlfda
:
14402 case Intrinsic::ppc_qpx_qvlfsa
:
14403 case Intrinsic::ppc_qpx_qvlfcda
:
14404 case Intrinsic::ppc_qpx_qvlfcsa
:
14405 case Intrinsic::ppc_qpx_qvlfiwaa
:
14406 case Intrinsic::ppc_qpx_qvlfiwza
: {
14408 switch (Intrinsic
) {
14409 case Intrinsic::ppc_qpx_qvlfda
:
14412 case Intrinsic::ppc_qpx_qvlfsa
:
14415 case Intrinsic::ppc_qpx_qvlfcda
:
14418 case Intrinsic::ppc_qpx_qvlfcsa
:
14426 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
14428 Info
.ptrVal
= I
.getArgOperand(0);
14430 Info
.size
= VT
.getStoreSize();
14432 Info
.flags
= MachineMemOperand::MOLoad
;
14435 case Intrinsic::ppc_qpx_qvstfd
:
14436 case Intrinsic::ppc_qpx_qvstfs
:
14437 case Intrinsic::ppc_qpx_qvstfcd
:
14438 case Intrinsic::ppc_qpx_qvstfcs
:
14439 case Intrinsic::ppc_qpx_qvstfiw
:
14440 case Intrinsic::ppc_altivec_stvx
:
14441 case Intrinsic::ppc_altivec_stvxl
:
14442 case Intrinsic::ppc_altivec_stvebx
:
14443 case Intrinsic::ppc_altivec_stvehx
:
14444 case Intrinsic::ppc_altivec_stvewx
:
14445 case Intrinsic::ppc_vsx_stxvd2x
:
14446 case Intrinsic::ppc_vsx_stxvw4x
: {
14448 switch (Intrinsic
) {
14449 case Intrinsic::ppc_altivec_stvebx
:
14452 case Intrinsic::ppc_altivec_stvehx
:
14455 case Intrinsic::ppc_altivec_stvewx
:
14458 case Intrinsic::ppc_vsx_stxvd2x
:
14461 case Intrinsic::ppc_qpx_qvstfd
:
14464 case Intrinsic::ppc_qpx_qvstfs
:
14467 case Intrinsic::ppc_qpx_qvstfcd
:
14470 case Intrinsic::ppc_qpx_qvstfcs
:
14478 Info
.opc
= ISD::INTRINSIC_VOID
;
14480 Info
.ptrVal
= I
.getArgOperand(1);
14481 Info
.offset
= -VT
.getStoreSize()+1;
14482 Info
.size
= 2*VT
.getStoreSize()-1;
14484 Info
.flags
= MachineMemOperand::MOStore
;
14487 case Intrinsic::ppc_qpx_qvstfda
:
14488 case Intrinsic::ppc_qpx_qvstfsa
:
14489 case Intrinsic::ppc_qpx_qvstfcda
:
14490 case Intrinsic::ppc_qpx_qvstfcsa
:
14491 case Intrinsic::ppc_qpx_qvstfiwa
: {
14493 switch (Intrinsic
) {
14494 case Intrinsic::ppc_qpx_qvstfda
:
14497 case Intrinsic::ppc_qpx_qvstfsa
:
14500 case Intrinsic::ppc_qpx_qvstfcda
:
14503 case Intrinsic::ppc_qpx_qvstfcsa
:
14511 Info
.opc
= ISD::INTRINSIC_VOID
;
14513 Info
.ptrVal
= I
.getArgOperand(1);
14515 Info
.size
= VT
.getStoreSize();
14517 Info
.flags
= MachineMemOperand::MOStore
;
14527 /// getOptimalMemOpType - Returns the target specific optimal type for load
14528 /// and store operations as a result of memset, memcpy, and memmove
14529 /// lowering. If DstAlign is zero that means it's safe to destination
14530 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
14531 /// means there isn't a need to check it against alignment requirement,
14532 /// probably because the source does not need to be loaded. If 'IsMemset' is
14533 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
14534 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
14535 /// source is constant so it does not need to be loaded.
14536 /// It returns EVT::Other if the type should be determined using generic
14537 /// target-independent logic.
14538 EVT
PPCTargetLowering::getOptimalMemOpType(
14539 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
14540 bool ZeroMemset
, bool MemcpyStrSrc
,
14541 const AttributeList
&FuncAttributes
) const {
14542 if (getTargetMachine().getOptLevel() != CodeGenOpt::None
) {
14543 // When expanding a memset, require at least two QPX instructions to cover
14544 // the cost of loading the value to be stored from the constant pool.
14545 if (Subtarget
.hasQPX() && Size
>= 32 && (!IsMemset
|| Size
>= 64) &&
14546 (!SrcAlign
|| SrcAlign
>= 32) && (!DstAlign
|| DstAlign
>= 32) &&
14547 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
)) {
14551 // We should use Altivec/VSX loads and stores when available. For unaligned
14552 // addresses, unaligned VSX loads are only fast starting with the P8.
14553 if (Subtarget
.hasAltivec() && Size
>= 16 &&
14554 (((!SrcAlign
|| SrcAlign
>= 16) && (!DstAlign
|| DstAlign
>= 16)) ||
14555 ((IsMemset
&& Subtarget
.hasVSX()) || Subtarget
.hasP8Vector())))
14559 if (Subtarget
.isPPC64()) {
14566 /// Returns true if it is beneficial to convert a load of a constant
14567 /// to just the constant itself.
14568 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
14570 assert(Ty
->isIntegerTy());
14572 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
14573 return !(BitSize
== 0 || BitSize
> 64);
14576 bool PPCTargetLowering::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
14577 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
14579 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
14580 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
14581 return NumBits1
== 64 && NumBits2
== 32;
14584 bool PPCTargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
14585 if (!VT1
.isInteger() || !VT2
.isInteger())
14587 unsigned NumBits1
= VT1
.getSizeInBits();
14588 unsigned NumBits2
= VT2
.getSizeInBits();
14589 return NumBits1
== 64 && NumBits2
== 32;
14592 bool PPCTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
14593 // Generally speaking, zexts are not free, but they are free when they can be
14594 // folded with other operations.
14595 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Val
)) {
14596 EVT MemVT
= LD
->getMemoryVT();
14597 if ((MemVT
== MVT::i1
|| MemVT
== MVT::i8
|| MemVT
== MVT::i16
||
14598 (Subtarget
.isPPC64() && MemVT
== MVT::i32
)) &&
14599 (LD
->getExtensionType() == ISD::NON_EXTLOAD
||
14600 LD
->getExtensionType() == ISD::ZEXTLOAD
))
14604 // FIXME: Add other cases...
14605 // - 32-bit shifts with a zext to i64
14606 // - zext after ctlz, bswap, etc.
14607 // - zext after and by a constant mask
14609 return TargetLowering::isZExtFree(Val
, VT2
);
14612 bool PPCTargetLowering::isFPExtFree(EVT DestVT
, EVT SrcVT
) const {
14613 assert(DestVT
.isFloatingPoint() && SrcVT
.isFloatingPoint() &&
14614 "invalid fpext types");
14615 // Extending to float128 is not free.
14616 if (DestVT
== MVT::f128
)
14621 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
14622 return isInt
<16>(Imm
) || isUInt
<16>(Imm
);
14625 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
14626 return isInt
<16>(Imm
) || isUInt
<16>(Imm
);
14629 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
,
14632 MachineMemOperand::Flags
,
14633 bool *Fast
) const {
14634 if (DisablePPCUnaligned
)
14637 // PowerPC supports unaligned memory access for simple non-vector types.
14638 // Although accessing unaligned addresses is not as efficient as accessing
14639 // aligned addresses, it is generally more efficient than manual expansion,
14640 // and generally only traps for software emulation when crossing page
14643 if (!VT
.isSimple())
14646 if (VT
.getSimpleVT().isVector()) {
14647 if (Subtarget
.hasVSX()) {
14648 if (VT
!= MVT::v2f64
&& VT
!= MVT::v2i64
&&
14649 VT
!= MVT::v4f32
&& VT
!= MVT::v4i32
)
14656 if (VT
== MVT::ppcf128
)
14665 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT
) const {
14666 VT
= VT
.getScalarType();
14668 if (!VT
.isSimple())
14671 switch (VT
.getSimpleVT().SimpleTy
) {
14676 return (EnableQuadPrecision
&& Subtarget
.hasP9Vector());
14685 PPCTargetLowering::getScratchRegisters(CallingConv::ID
) const {
14686 // LR is a callee-save register, but we must treat it as clobbered by any call
14687 // site. Hence we include LR in the scratch registers, which are in turn added
14688 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
14689 // to CTR, which is used by any indirect call.
14690 static const MCPhysReg ScratchRegs
[] = {
14691 PPC::X12
, PPC::LR8
, PPC::CTR8
, 0
14694 return ScratchRegs
;
14697 unsigned PPCTargetLowering::getExceptionPointerRegister(
14698 const Constant
*PersonalityFn
) const {
14699 return Subtarget
.isPPC64() ? PPC::X3
: PPC::R3
;
14702 unsigned PPCTargetLowering::getExceptionSelectorRegister(
14703 const Constant
*PersonalityFn
) const {
14704 return Subtarget
.isPPC64() ? PPC::X4
: PPC::R4
;
14708 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
14709 EVT VT
, unsigned DefinedValues
) const {
14710 if (VT
== MVT::v2i64
)
14711 return Subtarget
.hasDirectMove(); // Don't need stack ops with direct moves
14713 if (Subtarget
.hasVSX() || Subtarget
.hasQPX())
14716 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT
, DefinedValues
);
14719 Sched::Preference
PPCTargetLowering::getSchedulingPreference(SDNode
*N
) const {
14720 if (DisableILPPref
|| Subtarget
.enableMachineScheduler())
14721 return TargetLowering::getSchedulingPreference(N
);
14726 // Create a fast isel object.
14728 PPCTargetLowering::createFastISel(FunctionLoweringInfo
&FuncInfo
,
14729 const TargetLibraryInfo
*LibInfo
) const {
14730 return PPC::createFastISel(FuncInfo
, LibInfo
);
14733 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
14734 if (Subtarget
.isDarwinABI()) return;
14735 if (!Subtarget
.isPPC64()) return;
14737 // Update IsSplitCSR in PPCFunctionInfo
14738 PPCFunctionInfo
*PFI
= Entry
->getParent()->getInfo
<PPCFunctionInfo
>();
14739 PFI
->setIsSplitCSR(true);
14742 void PPCTargetLowering::insertCopiesSplitCSR(
14743 MachineBasicBlock
*Entry
,
14744 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
14745 const PPCRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
14746 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
14750 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
14751 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
14752 MachineBasicBlock::iterator MBBI
= Entry
->begin();
14753 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
14754 const TargetRegisterClass
*RC
= nullptr;
14755 if (PPC::G8RCRegClass
.contains(*I
))
14756 RC
= &PPC::G8RCRegClass
;
14757 else if (PPC::F8RCRegClass
.contains(*I
))
14758 RC
= &PPC::F8RCRegClass
;
14759 else if (PPC::CRRCRegClass
.contains(*I
))
14760 RC
= &PPC::CRRCRegClass
;
14761 else if (PPC::VRRCRegClass
.contains(*I
))
14762 RC
= &PPC::VRRCRegClass
;
14764 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14766 unsigned NewVR
= MRI
->createVirtualRegister(RC
);
14767 // Create copy from CSR to a virtual register.
14768 // FIXME: this currently does not emit CFI pseudo-instructions, it works
14769 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14770 // nounwind. If we want to generalize this later, we may need to emit
14771 // CFI pseudo-instructions.
14772 assert(Entry
->getParent()->getFunction().hasFnAttribute(
14773 Attribute::NoUnwind
) &&
14774 "Function should be nounwind in insertCopiesSplitCSR!");
14775 Entry
->addLiveIn(*I
);
14776 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
14779 // Insert the copy-back instructions right before the terminator.
14780 for (auto *Exit
: Exits
)
14781 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
14782 TII
->get(TargetOpcode::COPY
), *I
)
14787 // Override to enable LOAD_STACK_GUARD lowering on Linux.
14788 bool PPCTargetLowering::useLoadStackGuardNode() const {
14789 if (!Subtarget
.isTargetLinux())
14790 return TargetLowering::useLoadStackGuardNode();
14794 // Override to disable global variable loading on Linux.
14795 void PPCTargetLowering::insertSSPDeclarations(Module
&M
) const {
14796 if (!Subtarget
.isTargetLinux())
14797 return TargetLowering::insertSSPDeclarations(M
);
14800 bool PPCTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
14801 bool ForCodeSize
) const {
14802 if (!VT
.isSimple() || !Subtarget
.hasVSX())
14805 switch(VT
.getSimpleVT().SimpleTy
) {
14807 // For FP types that are currently not supported by PPC backend, return
14808 // false. Examples: f16, f80.
14813 return Imm
.isPosZero();
14817 // For vector shift operation op, fold
14818 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
14819 static SDValue
stripModuloOnShift(const TargetLowering
&TLI
, SDNode
*N
,
14820 SelectionDAG
&DAG
) {
14821 SDValue N0
= N
->getOperand(0);
14822 SDValue N1
= N
->getOperand(1);
14823 EVT VT
= N0
.getValueType();
14824 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
14825 unsigned Opcode
= N
->getOpcode();
14826 unsigned TargetOpcode
;
14830 llvm_unreachable("Unexpected shift operation");
14832 TargetOpcode
= PPCISD::SHL
;
14835 TargetOpcode
= PPCISD::SRL
;
14838 TargetOpcode
= PPCISD::SRA
;
14842 if (VT
.isVector() && TLI
.isOperationLegal(Opcode
, VT
) &&
14843 N1
->getOpcode() == ISD::AND
)
14844 if (ConstantSDNode
*Mask
= isConstOrConstSplat(N1
->getOperand(1)))
14845 if (Mask
->getZExtValue() == OpSizeInBits
- 1)
14846 return DAG
.getNode(TargetOpcode
, SDLoc(N
), VT
, N0
, N1
->getOperand(0));
14851 SDValue
PPCTargetLowering::combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
14852 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
14855 SDValue N0
= N
->getOperand(0);
14856 ConstantSDNode
*CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
14857 if (!Subtarget
.isISA3_0() ||
14858 N0
.getOpcode() != ISD::SIGN_EXTEND
||
14859 N0
.getOperand(0).getValueType() != MVT::i32
||
14860 CN1
== nullptr || N
->getValueType(0) != MVT::i64
)
14863 // We can't save an operation here if the value is already extended, and
14864 // the existing shift is easier to combine.
14865 SDValue ExtsSrc
= N0
.getOperand(0);
14866 if (ExtsSrc
.getOpcode() == ISD::TRUNCATE
&&
14867 ExtsSrc
.getOperand(0).getOpcode() == ISD::AssertSext
)
14871 SDValue ShiftBy
= SDValue(CN1
, 0);
14872 // We want the shift amount to be i32 on the extswli, but the shift could
14874 if (ShiftBy
.getValueType() == MVT::i64
)
14875 ShiftBy
= DCI
.DAG
.getConstant(CN1
->getZExtValue(), DL
, MVT::i32
);
14877 return DCI
.DAG
.getNode(PPCISD::EXTSWSLI
, DL
, MVT::i64
, N0
->getOperand(0),
14881 SDValue
PPCTargetLowering::combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
14882 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
14888 SDValue
PPCTargetLowering::combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
14889 if (auto Value
= stripModuloOnShift(*this, N
, DCI
.DAG
))
14895 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
14896 // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
14897 // When C is zero, the equation (addi Z, -C) can be simplified to Z
14898 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
14899 static SDValue
combineADDToADDZE(SDNode
*N
, SelectionDAG
&DAG
,
14900 const PPCSubtarget
&Subtarget
) {
14901 if (!Subtarget
.isPPC64())
14904 SDValue LHS
= N
->getOperand(0);
14905 SDValue RHS
= N
->getOperand(1);
14907 auto isZextOfCompareWithConstant
= [](SDValue Op
) {
14908 if (Op
.getOpcode() != ISD::ZERO_EXTEND
|| !Op
.hasOneUse() ||
14909 Op
.getValueType() != MVT::i64
)
14912 SDValue Cmp
= Op
.getOperand(0);
14913 if (Cmp
.getOpcode() != ISD::SETCC
|| !Cmp
.hasOneUse() ||
14914 Cmp
.getOperand(0).getValueType() != MVT::i64
)
14917 if (auto *Constant
= dyn_cast
<ConstantSDNode
>(Cmp
.getOperand(1))) {
14918 int64_t NegConstant
= 0 - Constant
->getSExtValue();
14919 // Due to the limitations of the addi instruction,
14920 // -C is required to be [-32768, 32767].
14921 return isInt
<16>(NegConstant
);
14927 bool LHSHasPattern
= isZextOfCompareWithConstant(LHS
);
14928 bool RHSHasPattern
= isZextOfCompareWithConstant(RHS
);
14930 // If there is a pattern, canonicalize a zext operand to the RHS.
14931 if (LHSHasPattern
&& !RHSHasPattern
)
14932 std::swap(LHS
, RHS
);
14933 else if (!LHSHasPattern
&& !RHSHasPattern
)
14937 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::Glue
);
14938 SDValue Cmp
= RHS
.getOperand(0);
14939 SDValue Z
= Cmp
.getOperand(0);
14940 auto *Constant
= dyn_cast
<ConstantSDNode
>(Cmp
.getOperand(1));
14942 assert(Constant
&& "Constant Should not be a null pointer.");
14943 int64_t NegConstant
= 0 - Constant
->getSExtValue();
14945 switch(cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get()) {
14949 // --> addze X, (addic Z, -1).carry
14951 // add X, (zext(setne Z, C))--
14952 // \ when -32768 <= -C <= 32767 && C != 0
14953 // --> addze X, (addic (addi Z, -C), -1).carry
14954 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Z
,
14955 DAG
.getConstant(NegConstant
, DL
, MVT::i64
));
14956 SDValue AddOrZ
= NegConstant
!= 0 ? Add
: Z
;
14957 SDValue Addc
= DAG
.getNode(ISD::ADDC
, DL
, DAG
.getVTList(MVT::i64
, MVT::Glue
),
14958 AddOrZ
, DAG
.getConstant(-1ULL, DL
, MVT::i64
));
14959 return DAG
.getNode(ISD::ADDE
, DL
, VTs
, LHS
, DAG
.getConstant(0, DL
, MVT::i64
),
14960 SDValue(Addc
.getNode(), 1));
14964 // --> addze X, (subfic Z, 0).carry
14966 // add X, (zext(sete Z, C))--
14967 // \ when -32768 <= -C <= 32767 && C != 0
14968 // --> addze X, (subfic (addi Z, -C), 0).carry
14969 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Z
,
14970 DAG
.getConstant(NegConstant
, DL
, MVT::i64
));
14971 SDValue AddOrZ
= NegConstant
!= 0 ? Add
: Z
;
14972 SDValue Subc
= DAG
.getNode(ISD::SUBC
, DL
, DAG
.getVTList(MVT::i64
, MVT::Glue
),
14973 DAG
.getConstant(0, DL
, MVT::i64
), AddOrZ
);
14974 return DAG
.getNode(ISD::ADDE
, DL
, VTs
, LHS
, DAG
.getConstant(0, DL
, MVT::i64
),
14975 SDValue(Subc
.getNode(), 1));
14982 SDValue
PPCTargetLowering::combineADD(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
14983 if (auto Value
= combineADDToADDZE(N
, DCI
.DAG
, Subtarget
))
14989 // Detect TRUNCATE operations on bitcasts of float128 values.
14990 // What we are looking for here is the situtation where we extract a subset
14991 // of bits from a 128 bit float.
14992 // This can be of two forms:
14993 // 1) BITCAST of f128 feeding TRUNCATE
14994 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
14995 // The reason this is required is because we do not have a legal i128 type
14996 // and so we want to prevent having to store the f128 and then reload part
14998 SDValue
PPCTargetLowering::combineTRUNCATE(SDNode
*N
,
14999 DAGCombinerInfo
&DCI
) const {
15000 // If we are using CRBits then try that first.
15001 if (Subtarget
.useCRBits()) {
15002 // Check if CRBits did anything and return that if it did.
15003 if (SDValue CRTruncValue
= DAGCombineTruncBoolExt(N
, DCI
))
15004 return CRTruncValue
;
15008 SDValue Op0
= N
->getOperand(0);
15010 // Looking for a truncate of i128 to i64.
15011 if (Op0
.getValueType() != MVT::i128
|| N
->getValueType(0) != MVT::i64
)
15014 int EltToExtract
= DCI
.DAG
.getDataLayout().isBigEndian() ? 1 : 0;
15016 // SRL feeding TRUNCATE.
15017 if (Op0
.getOpcode() == ISD::SRL
) {
15018 ConstantSDNode
*ConstNode
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(1));
15019 // The right shift has to be by 64 bits.
15020 if (!ConstNode
|| ConstNode
->getZExtValue() != 64)
15023 // Switch the element number to extract.
15024 EltToExtract
= EltToExtract
? 0 : 1;
15025 // Update Op0 past the SRL.
15026 Op0
= Op0
.getOperand(0);
15029 // BITCAST feeding a TRUNCATE possibly via SRL.
15030 if (Op0
.getOpcode() == ISD::BITCAST
&&
15031 Op0
.getValueType() == MVT::i128
&&
15032 Op0
.getOperand(0).getValueType() == MVT::f128
) {
15033 SDValue Bitcast
= DCI
.DAG
.getBitcast(MVT::v2i64
, Op0
.getOperand(0));
15034 return DCI
.DAG
.getNode(
15035 ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i64
, Bitcast
,
15036 DCI
.DAG
.getTargetConstant(EltToExtract
, dl
, MVT::i32
));
15041 SDValue
PPCTargetLowering::combineMUL(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
15042 SelectionDAG
&DAG
= DCI
.DAG
;
15044 ConstantSDNode
*ConstOpOrElement
= isConstOrConstSplat(N
->getOperand(1));
15045 if (!ConstOpOrElement
)
15048 // An imul is usually smaller than the alternative sequence for legal type.
15049 if (DAG
.getMachineFunction().getFunction().hasMinSize() &&
15050 isOperationLegal(ISD::MUL
, N
->getValueType(0)))
15053 auto IsProfitable
= [this](bool IsNeg
, bool IsAddOne
, EVT VT
) -> bool {
15054 switch (this->Subtarget
.getDarwinDirective()) {
15056 // TODO: enhance the condition for subtarget before pwr8
15058 case PPC::DIR_PWR8
:
15059 // type mul add shl
15063 case PPC::DIR_PWR9
:
15064 // type mul add shl
15068 // The cycle RATIO of related operations are showed as a table above.
15069 // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15070 // scalar and vector type. For 2 instrs patterns, add/sub + shl
15071 // are 4, it is always profitable; but for 3 instrs patterns
15072 // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15073 // So we should only do it for vector type.
15074 return IsAddOne
&& IsNeg
? VT
.isVector() : true;
15078 EVT VT
= N
->getValueType(0);
15081 const APInt
&MulAmt
= ConstOpOrElement
->getAPIntValue();
15082 bool IsNeg
= MulAmt
.isNegative();
15083 APInt MulAmtAbs
= MulAmt
.abs();
15085 if ((MulAmtAbs
- 1).isPowerOf2()) {
15086 // (mul x, 2^N + 1) => (add (shl x, N), x)
15087 // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15089 if (!IsProfitable(IsNeg
, true, VT
))
15092 SDValue Op0
= N
->getOperand(0);
15094 DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
15095 DAG
.getConstant((MulAmtAbs
- 1).logBase2(), DL
, VT
));
15096 SDValue Res
= DAG
.getNode(ISD::ADD
, DL
, VT
, Op0
, Op1
);
15101 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Res
);
15102 } else if ((MulAmtAbs
+ 1).isPowerOf2()) {
15103 // (mul x, 2^N - 1) => (sub (shl x, N), x)
15104 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15106 if (!IsProfitable(IsNeg
, false, VT
))
15109 SDValue Op0
= N
->getOperand(0);
15111 DAG
.getNode(ISD::SHL
, DL
, VT
, N
->getOperand(0),
15112 DAG
.getConstant((MulAmtAbs
+ 1).logBase2(), DL
, VT
));
15115 return DAG
.getNode(ISD::SUB
, DL
, VT
, Op1
, Op0
);
15117 return DAG
.getNode(ISD::SUB
, DL
, VT
, Op0
, Op1
);
15124 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
15125 // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15126 if (!Subtarget
.isSVR4ABI() || !Subtarget
.isPPC64())
15129 // If not a tail call then no need to proceed.
15130 if (!CI
->isTailCall())
15133 // If tail calls are disabled for the caller then we are done.
15134 const Function
*Caller
= CI
->getParent()->getParent();
15135 auto Attr
= Caller
->getFnAttribute("disable-tail-calls");
15136 if (Attr
.getValueAsString() == "true")
15139 // If sibling calls have been disabled and tail-calls aren't guaranteed
15140 // there is no reason to duplicate.
15141 auto &TM
= getTargetMachine();
15142 if (!TM
.Options
.GuaranteedTailCallOpt
&& DisableSCO
)
15145 // Can't tail call a function called indirectly, or if it has variadic args.
15146 const Function
*Callee
= CI
->getCalledFunction();
15147 if (!Callee
|| Callee
->isVarArg())
15150 // Make sure the callee and caller calling conventions are eligible for tco.
15151 if (!areCallingConvEligibleForTCO_64SVR4(Caller
->getCallingConv(),
15152 CI
->getCallingConv()))
15155 // If the function is local then we have a good chance at tail-calling it
15156 return getTargetMachine().shouldAssumeDSOLocal(*Caller
->getParent(), Callee
);
15159 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT
) const {
15160 if (!Subtarget
.hasVSX())
15162 if (Subtarget
.hasP9Vector() && VT
== MVT::f128
)
15164 return VT
== MVT::f32
|| VT
== MVT::f64
||
15165 VT
== MVT::v4f32
|| VT
== MVT::v2f64
;
15168 bool PPCTargetLowering::
15169 isMaskAndCmp0FoldingBeneficial(const Instruction
&AndI
) const {
15170 const Value
*Mask
= AndI
.getOperand(1);
15171 // If the mask is suitable for andi. or andis. we should sink the and.
15172 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Mask
)) {
15173 // Can't handle constants wider than 64-bits.
15174 if (CI
->getBitWidth() > 64)
15176 int64_t ConstVal
= CI
->getZExtValue();
15177 return isUInt
<16>(ConstVal
) ||
15178 (isUInt
<16>(ConstVal
>> 16) && !(ConstVal
& 0xFFFF));
15181 // For non-constant masks, we can always use the record-form and.
15185 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15186 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15187 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15188 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15189 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15190 SDValue
PPCTargetLowering::combineABS(SDNode
*N
, DAGCombinerInfo
&DCI
) const {
15191 assert((N
->getOpcode() == ISD::ABS
) && "Need ABS node here");
15192 assert(Subtarget
.hasP9Altivec() &&
15193 "Only combine this when P9 altivec supported!");
15194 EVT VT
= N
->getValueType(0);
15195 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
)
15198 SelectionDAG
&DAG
= DCI
.DAG
;
15200 if (N
->getOperand(0).getOpcode() == ISD::SUB
) {
15201 // Even for signed integers, if it's known to be positive (as signed
15202 // integer) due to zero-extended inputs.
15203 unsigned SubOpcd0
= N
->getOperand(0)->getOperand(0).getOpcode();
15204 unsigned SubOpcd1
= N
->getOperand(0)->getOperand(1).getOpcode();
15205 if ((SubOpcd0
== ISD::ZERO_EXTEND
||
15206 SubOpcd0
== ISD::ZERO_EXTEND_VECTOR_INREG
) &&
15207 (SubOpcd1
== ISD::ZERO_EXTEND
||
15208 SubOpcd1
== ISD::ZERO_EXTEND_VECTOR_INREG
)) {
15209 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(0).getValueType(),
15210 N
->getOperand(0)->getOperand(0),
15211 N
->getOperand(0)->getOperand(1),
15212 DAG
.getTargetConstant(0, dl
, MVT::i32
));
15215 // For type v4i32, it can be optimized with xvnegsp + vabsduw
15216 if (N
->getOperand(0).getValueType() == MVT::v4i32
&&
15217 N
->getOperand(0).hasOneUse()) {
15218 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(0).getValueType(),
15219 N
->getOperand(0)->getOperand(0),
15220 N
->getOperand(0)->getOperand(1),
15221 DAG
.getTargetConstant(1, dl
, MVT::i32
));
15228 // For type v4i32/v8ii16/v16i8, transform
15229 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15230 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15231 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15232 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15233 SDValue
PPCTargetLowering::combineVSelect(SDNode
*N
,
15234 DAGCombinerInfo
&DCI
) const {
15235 assert((N
->getOpcode() == ISD::VSELECT
) && "Need VSELECT node here");
15236 assert(Subtarget
.hasP9Altivec() &&
15237 "Only combine this when P9 altivec supported!");
15239 SelectionDAG
&DAG
= DCI
.DAG
;
15241 SDValue Cond
= N
->getOperand(0);
15242 SDValue TrueOpnd
= N
->getOperand(1);
15243 SDValue FalseOpnd
= N
->getOperand(2);
15244 EVT VT
= N
->getOperand(1).getValueType();
15246 if (Cond
.getOpcode() != ISD::SETCC
|| TrueOpnd
.getOpcode() != ISD::SUB
||
15247 FalseOpnd
.getOpcode() != ISD::SUB
)
15250 // ABSD only available for type v4i32/v8i16/v16i8
15251 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
)
15254 // At least to save one more dependent computation
15255 if (!(Cond
.hasOneUse() || TrueOpnd
.hasOneUse() || FalseOpnd
.hasOneUse()))
15258 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
15260 // Can only handle unsigned comparison here
15269 std::swap(TrueOpnd
, FalseOpnd
);
15273 SDValue CmpOpnd1
= Cond
.getOperand(0);
15274 SDValue CmpOpnd2
= Cond
.getOperand(1);
15276 // SETCC CmpOpnd1 CmpOpnd2 cond
15277 // TrueOpnd = CmpOpnd1 - CmpOpnd2
15278 // FalseOpnd = CmpOpnd2 - CmpOpnd1
15279 if (TrueOpnd
.getOperand(0) == CmpOpnd1
&&
15280 TrueOpnd
.getOperand(1) == CmpOpnd2
&&
15281 FalseOpnd
.getOperand(0) == CmpOpnd2
&&
15282 FalseOpnd
.getOperand(1) == CmpOpnd1
) {
15283 return DAG
.getNode(PPCISD::VABSD
, dl
, N
->getOperand(1).getValueType(),
15284 CmpOpnd1
, CmpOpnd2
,
15285 DAG
.getTargetConstant(0, dl
, MVT::i32
));