1 //===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the RISC-V instructions in TableGen format.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // RISC-V specific DAG Nodes.
15 //===----------------------------------------------------------------------===//
17 // Target-independent type requirements, but with target-specific formats.
18 def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
20 def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
23 // Target-dependent type requirements.
24 def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
25 def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
29 // Target-independent nodes, but with target-specific formats.
30 def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
31 [SDNPHasChain, SDNPOutGlue]>;
32 def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
33 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
35 // Target-dependent nodes.
36 def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
37 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
39 def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone,
40 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
41 def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone,
42 [SDNPHasChain, SDNPOptInGlue]>;
43 def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
44 [SDNPHasChain, SDNPOptInGlue]>;
45 def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
46 [SDNPHasChain, SDNPOptInGlue]>;
47 def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC,
49 def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
50 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
52 def riscv_sllw : SDNode<"RISCVISD::SLLW", SDTIntShiftOp>;
53 def riscv_sraw : SDNode<"RISCVISD::SRAW", SDTIntShiftOp>;
54 def riscv_srlw : SDNode<"RISCVISD::SRLW", SDTIntShiftOp>;
56 //===----------------------------------------------------------------------===//
57 // Operand and SDNode transformation definitions.
58 //===----------------------------------------------------------------------===//
60 class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
61 let Name = prefix # "ImmXLen" # suffix;
62 let RenderMethod = "addImmOperands";
63 let DiagnosticType = !strconcat("Invalid", Name);
66 class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
67 let Name = prefix # "Imm" # width # suffix;
68 let RenderMethod = "addImmOperands";
69 let DiagnosticType = !strconcat("Invalid", Name);
72 class SImmAsmOperand<int width, string suffix = "">
73 : ImmAsmOperand<"S", width, suffix> {
76 class UImmAsmOperand<int width, string suffix = "">
77 : ImmAsmOperand<"U", width, suffix> {
80 def FenceArg : AsmOperandClass {
81 let Name = "FenceArg";
82 let RenderMethod = "addFenceArgOperands";
83 let DiagnosticType = "InvalidFenceArg";
86 def fencearg : Operand<XLenVT> {
87 let ParserMatchClass = FenceArg;
88 let PrintMethod = "printFenceArg";
89 let DecoderMethod = "decodeUImmOperand<4>";
92 def UImmLog2XLenAsmOperand : AsmOperandClass {
93 let Name = "UImmLog2XLen";
94 let RenderMethod = "addImmOperands";
95 let DiagnosticType = "InvalidUImmLog2XLen";
98 def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
99 if (Subtarget->is64Bit())
100 return isUInt<6>(Imm);
101 return isUInt<5>(Imm);
103 let ParserMatchClass = UImmLog2XLenAsmOperand;
104 // TODO: should ensure invalid shamt is rejected when decoding.
105 let DecoderMethod = "decodeUImmOperand<6>";
106 let MCOperandPredicate = [{
108 if (!MCOp.evaluateAsConstantImm(Imm))
110 if (STI.getTargetTriple().isArch64Bit())
111 return isUInt<6>(Imm);
112 return isUInt<5>(Imm);
116 def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
117 let ParserMatchClass = UImmAsmOperand<5>;
118 let DecoderMethod = "decodeUImmOperand<5>";
121 def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
122 let ParserMatchClass = SImmAsmOperand<12>;
123 let EncoderMethod = "getImmOpValue";
124 let DecoderMethod = "decodeSImmOperand<12>";
125 let MCOperandPredicate = [{
127 if (MCOp.evaluateAsConstantImm(Imm))
128 return isInt<12>(Imm);
129 return MCOp.isBareSymbolRef();
133 // A 13-bit signed immediate where the least significant bit is zero.
134 def simm13_lsb0 : Operand<OtherVT> {
135 let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
136 let EncoderMethod = "getImmOpValueAsr1";
137 let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
138 let MCOperandPredicate = [{
140 if (MCOp.evaluateAsConstantImm(Imm))
141 return isShiftedInt<12, 1>(Imm);
142 return MCOp.isBareSymbolRef();
146 class UImm20Operand : Operand<XLenVT> {
147 let EncoderMethod = "getImmOpValue";
148 let DecoderMethod = "decodeUImmOperand<20>";
149 let MCOperandPredicate = [{
151 if (MCOp.evaluateAsConstantImm(Imm))
152 return isUInt<20>(Imm);
153 return MCOp.isBareSymbolRef();
157 def uimm20_lui : UImm20Operand {
158 let ParserMatchClass = UImmAsmOperand<20, "LUI">;
160 def uimm20_auipc : UImm20Operand {
161 let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
164 def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
165 let ParserMethod = "parseJALOffset";
168 // A 21-bit signed immediate where the least significant bit is zero.
169 def simm21_lsb0_jal : Operand<OtherVT> {
170 let ParserMatchClass = Simm21Lsb0JALAsmOperand;
171 let EncoderMethod = "getImmOpValueAsr1";
172 let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
173 let MCOperandPredicate = [{
175 if (MCOp.evaluateAsConstantImm(Imm))
176 return isShiftedInt<20, 1>(Imm);
177 return MCOp.isBareSymbolRef();
181 def BareSymbol : AsmOperandClass {
182 let Name = "BareSymbol";
183 let RenderMethod = "addImmOperands";
184 let DiagnosticType = "InvalidBareSymbol";
185 let ParserMethod = "parseBareSymbol";
189 def bare_symbol : Operand<XLenVT> {
190 let ParserMatchClass = BareSymbol;
193 def CallSymbol : AsmOperandClass {
194 let Name = "CallSymbol";
195 let RenderMethod = "addImmOperands";
196 let DiagnosticType = "InvalidCallSymbol";
197 let ParserMethod = "parseCallSymbol";
200 // A bare symbol used in call/tail only.
201 def call_symbol : Operand<XLenVT> {
202 let ParserMatchClass = CallSymbol;
205 def TPRelAddSymbol : AsmOperandClass {
206 let Name = "TPRelAddSymbol";
207 let RenderMethod = "addImmOperands";
208 let DiagnosticType = "InvalidTPRelAddSymbol";
209 let ParserMethod = "parseOperandWithModifier";
212 // A bare symbol with the %tprel_add variant.
213 def tprel_add_symbol : Operand<XLenVT> {
214 let ParserMatchClass = TPRelAddSymbol;
217 def CSRSystemRegister : AsmOperandClass {
218 let Name = "CSRSystemRegister";
219 let ParserMethod = "parseCSRSystemRegister";
220 let DiagnosticType = "InvalidCSRSystemRegister";
223 def csr_sysreg : Operand<XLenVT> {
224 let ParserMatchClass = CSRSystemRegister;
225 let PrintMethod = "printCSRSystemRegister";
226 let DecoderMethod = "decodeUImmOperand<12>";
229 // A parameterized register class alternative to i32imm/i64imm from Target.td.
230 def ixlenimm : Operand<XLenVT>;
232 def ixlenimm_li : Operand<XLenVT> {
233 let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
236 // Standalone (codegen-only) immleaf patterns.
237 def simm32 : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>;
238 def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>;
239 // A mask value that won't affect significant shift bits.
240 def immbottomxlenset : ImmLeaf<XLenVT, [{
241 if (Subtarget->is64Bit())
242 return countTrailingOnes<uint64_t>(Imm) >= 6;
243 return countTrailingOnes<uint64_t>(Imm) >= 5;
247 // Necessary because a frameindex can't be matched directly in a pattern.
248 def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;
250 // Extract least significant 12 bits from an immediate value and sign extend
252 def LO12Sext : SDNodeXForm<imm, [{
253 return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()),
254 SDLoc(N), N->getValueType(0));
257 // Extract the most significant 20 bits from an immediate value. Add 1 if bit
258 // 11 is 1, to compensate for the low 12 bits in the matching immediate addi
259 // or ld/st being negative.
260 def HI20 : SDNodeXForm<imm, [{
261 return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff,
262 SDLoc(N), N->getValueType(0));
265 //===----------------------------------------------------------------------===//
266 // Instruction Formats
267 //===----------------------------------------------------------------------===//
269 include "RISCVInstrFormats.td"
271 //===----------------------------------------------------------------------===//
272 // Instruction Class Templates
273 //===----------------------------------------------------------------------===//
275 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
276 class BranchCC_rri<bits<3> funct3, string opcodestr>
277 : RVInstB<funct3, OPC_BRANCH, (outs),
278 (ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
279 opcodestr, "$rs1, $rs2, $imm12"> {
281 let isTerminator = 1;
284 let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
285 class Load_ri<bits<3> funct3, string opcodestr>
286 : RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
287 opcodestr, "$rd, ${imm12}(${rs1})">;
289 // Operands for stores are in the order srcreg, base, offset rather than
290 // reflecting the order these fields are specified in the instruction
292 let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
293 class Store_rri<bits<3> funct3, string opcodestr>
294 : RVInstS<funct3, OPC_STORE, (outs),
295 (ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
296 opcodestr, "$rs2, ${imm12}(${rs1})">;
298 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
299 class ALU_ri<bits<3> funct3, string opcodestr>
300 : RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
301 opcodestr, "$rd, $rs1, $imm12">;
303 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
304 class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr>
305 : RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd),
306 (ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
307 "$rd, $rs1, $shamt">;
309 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
310 class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
311 : RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
312 opcodestr, "$rd, $rs1, $rs2">;
314 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
315 class CSR_ir<bits<3> funct3, string opcodestr>
316 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
317 opcodestr, "$rd, $imm12, $rs1">;
319 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
320 class CSR_ii<bits<3> funct3, string opcodestr>
321 : RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
322 (ins csr_sysreg:$imm12, uimm5:$rs1),
323 opcodestr, "$rd, $imm12, $rs1">;
325 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
326 class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr>
327 : RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
328 (ins GPR:$rs1, uimm5:$shamt), opcodestr,
329 "$rd, $rs1, $shamt">;
331 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
332 class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
333 : RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
334 (ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;
336 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
337 class Priv<string opcodestr, bits<7> funct7>
338 : RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
341 //===----------------------------------------------------------------------===//
343 //===----------------------------------------------------------------------===//
345 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
346 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
347 def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
348 "lui", "$rd, $imm20">;
350 def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
351 "auipc", "$rd, $imm20">;
354 def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
355 "jal", "$rd, $imm20">;
358 def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
359 (ins GPR:$rs1, simm12:$imm12),
360 "jalr", "$rd, $rs1, $imm12">;
361 } // hasSideEffects = 0, mayLoad = 0, mayStore = 0
363 def BEQ : BranchCC_rri<0b000, "beq">;
364 def BNE : BranchCC_rri<0b001, "bne">;
365 def BLT : BranchCC_rri<0b100, "blt">;
366 def BGE : BranchCC_rri<0b101, "bge">;
367 def BLTU : BranchCC_rri<0b110, "bltu">;
368 def BGEU : BranchCC_rri<0b111, "bgeu">;
370 def LB : Load_ri<0b000, "lb">;
371 def LH : Load_ri<0b001, "lh">;
372 def LW : Load_ri<0b010, "lw">;
373 def LBU : Load_ri<0b100, "lbu">;
374 def LHU : Load_ri<0b101, "lhu">;
376 def SB : Store_rri<0b000, "sb">;
377 def SH : Store_rri<0b001, "sh">;
378 def SW : Store_rri<0b010, "sw">;
380 // ADDI isn't always rematerializable, but isReMaterializable will be used as
381 // a hint which is verified in isReallyTriviallyReMaterializable.
382 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
383 def ADDI : ALU_ri<0b000, "addi">;
385 def SLTI : ALU_ri<0b010, "slti">;
386 def SLTIU : ALU_ri<0b011, "sltiu">;
388 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
389 def XORI : ALU_ri<0b100, "xori">;
390 def ORI : ALU_ri<0b110, "ori">;
393 def ANDI : ALU_ri<0b111, "andi">;
395 def SLLI : Shift_ri<0, 0b001, "slli">;
396 def SRLI : Shift_ri<0, 0b101, "srli">;
397 def SRAI : Shift_ri<1, 0b101, "srai">;
399 def ADD : ALU_rr<0b0000000, 0b000, "add">;
400 def SUB : ALU_rr<0b0100000, 0b000, "sub">;
401 def SLL : ALU_rr<0b0000000, 0b001, "sll">;
402 def SLT : ALU_rr<0b0000000, 0b010, "slt">;
403 def SLTU : ALU_rr<0b0000000, 0b011, "sltu">;
404 def XOR : ALU_rr<0b0000000, 0b100, "xor">;
405 def SRL : ALU_rr<0b0000000, 0b101, "srl">;
406 def SRA : ALU_rr<0b0100000, 0b101, "sra">;
407 def OR : ALU_rr<0b0000000, 0b110, "or">;
408 def AND : ALU_rr<0b0000000, 0b111, "and">;
410 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
411 def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
412 (ins fencearg:$pred, fencearg:$succ),
413 "fence", "$pred, $succ"> {
419 let imm12 = {0b0000,pred,succ};
422 def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", ""> {
425 let imm12 = {0b1000,0b0011,0b0011};
428 def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", ""> {
434 def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", ""> {
440 def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", ""> {
446 // This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
447 // instruction (i.e., it should always trap, if your implementation has invalid
448 // instruction traps).
449 def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", ""> {
452 let imm12 = 0b110000000000;
454 } // hasSideEffects = 1, mayLoad = 0, mayStore = 0
456 def CSRRW : CSR_ir<0b001, "csrrw">;
457 def CSRRS : CSR_ir<0b010, "csrrs">;
458 def CSRRC : CSR_ir<0b011, "csrrc">;
460 def CSRRWI : CSR_ii<0b101, "csrrwi">;
461 def CSRRSI : CSR_ii<0b110, "csrrsi">;
462 def CSRRCI : CSR_ii<0b111, "csrrci">;
464 /// RV64I instructions
466 let Predicates = [IsRV64] in {
467 def LWU : Load_ri<0b110, "lwu">;
468 def LD : Load_ri<0b011, "ld">;
469 def SD : Store_rri<0b011, "sd">;
471 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
472 def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
473 (ins GPR:$rs1, simm12:$imm12),
474 "addiw", "$rd, $rs1, $imm12">;
476 def SLLIW : ShiftW_ri<0, 0b001, "slliw">;
477 def SRLIW : ShiftW_ri<0, 0b101, "srliw">;
478 def SRAIW : ShiftW_ri<1, 0b101, "sraiw">;
480 def ADDW : ALUW_rr<0b0000000, 0b000, "addw">;
481 def SUBW : ALUW_rr<0b0100000, 0b000, "subw">;
482 def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">;
483 def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">;
484 def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">;
485 } // Predicates = [IsRV64]
487 //===----------------------------------------------------------------------===//
488 // Privileged instructions
489 //===----------------------------------------------------------------------===//
491 let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
492 def URET : Priv<"uret", 0b0000000> {
498 def SRET : Priv<"sret", 0b0001000> {
504 def MRET : Priv<"mret", 0b0011000> {
509 } // isBarrier = 1, isReturn = 1, isTerminator = 1
511 def WFI : Priv<"wfi", 0b0001000> {
517 let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
518 def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
519 (ins GPR:$rs1, GPR:$rs2),
520 "sfence.vma", "$rs1, $rs2"> {
524 //===----------------------------------------------------------------------===//
525 // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
526 //===----------------------------------------------------------------------===//
528 def : InstAlias<"nop", (ADDI X0, X0, 0)>;
530 // Note that the size is 32 because up to 8 32-bit instructions are needed to
531 // generate an arbitrary 64-bit immediate. However, the size does not really
532 // matter since PseudoLI is currently only used in the AsmParser where it gets
533 // expanded to real instructions immediately.
534 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
535 isCodeGenOnly = 0, isAsmParserOnly = 1 in
536 def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
539 def PseudoLB : PseudoLoad<"lb">;
540 def PseudoLBU : PseudoLoad<"lbu">;
541 def PseudoLH : PseudoLoad<"lh">;
542 def PseudoLHU : PseudoLoad<"lhu">;
543 def PseudoLW : PseudoLoad<"lw">;
545 def PseudoSB : PseudoStore<"sb">;
546 def PseudoSH : PseudoStore<"sh">;
547 def PseudoSW : PseudoStore<"sw">;
549 let Predicates = [IsRV64] in {
550 def PseudoLWU : PseudoLoad<"lwu">;
551 def PseudoLD : PseudoLoad<"ld">;
552 def PseudoSD : PseudoStore<"sd">;
553 } // Predicates = [IsRV64]
555 def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>;
556 def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>;
557 def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>;
559 let Predicates = [IsRV64] in {
560 def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>;
561 def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>;
562 } // Predicates = [IsRV64]
564 def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>;
565 def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>;
566 def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>;
567 def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>;
569 // sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
570 // form will always be printed. Therefore, set a zero weight.
571 def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
572 def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
574 def : InstAlias<"beqz $rs, $offset",
575 (BEQ GPR:$rs, X0, simm13_lsb0:$offset)>;
576 def : InstAlias<"bnez $rs, $offset",
577 (BNE GPR:$rs, X0, simm13_lsb0:$offset)>;
578 def : InstAlias<"blez $rs, $offset",
579 (BGE X0, GPR:$rs, simm13_lsb0:$offset)>;
580 def : InstAlias<"bgez $rs, $offset",
581 (BGE GPR:$rs, X0, simm13_lsb0:$offset)>;
582 def : InstAlias<"bltz $rs, $offset",
583 (BLT GPR:$rs, X0, simm13_lsb0:$offset)>;
584 def : InstAlias<"bgtz $rs, $offset",
585 (BLT X0, GPR:$rs, simm13_lsb0:$offset)>;
587 // Always output the canonical mnemonic for the pseudo branch instructions.
588 // The GNU tools emit the canonical mnemonic for the branch pseudo instructions
589 // as well (e.g. "bgt" will be recognised by the assembler but never printed by
590 // objdump). Match this behaviour by setting a zero weight.
591 def : InstAlias<"bgt $rs, $rt, $offset",
592 (BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
593 def : InstAlias<"ble $rs, $rt, $offset",
594 (BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
595 def : InstAlias<"bgtu $rs, $rt, $offset",
596 (BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
597 def : InstAlias<"bleu $rs, $rt, $offset",
598 (BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
600 // "ret" has more weight since "ret" and "jr" alias the same "jalr" instruction.
601 def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>;
602 def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
603 def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0)>;
604 def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0)>;
605 def : InstAlias<"ret", (JALR X0, X1, 0), 2>;
609 def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
611 def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
612 def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
613 def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>;
615 let Predicates = [IsRV32] in {
616 def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
617 def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
618 def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
619 } // Predicates = [IsRV32]
621 def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>;
622 def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>;
623 def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>;
624 def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>;
626 def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
627 def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
628 def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
630 let EmitPriority = 0 in {
631 def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
632 def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
633 def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
635 def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
636 def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
637 def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
640 def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>;
641 def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
643 let EmitPriority = 0 in {
644 def : InstAlias<"lb $rd, (${rs1})",
645 (LB GPR:$rd, GPR:$rs1, 0)>;
646 def : InstAlias<"lh $rd, (${rs1})",
647 (LH GPR:$rd, GPR:$rs1, 0)>;
648 def : InstAlias<"lw $rd, (${rs1})",
649 (LW GPR:$rd, GPR:$rs1, 0)>;
650 def : InstAlias<"lbu $rd, (${rs1})",
651 (LBU GPR:$rd, GPR:$rs1, 0)>;
652 def : InstAlias<"lhu $rd, (${rs1})",
653 (LHU GPR:$rd, GPR:$rs1, 0)>;
655 def : InstAlias<"sb $rs2, (${rs1})",
656 (SB GPR:$rs2, GPR:$rs1, 0)>;
657 def : InstAlias<"sh $rs2, (${rs1})",
658 (SH GPR:$rs2, GPR:$rs1, 0)>;
659 def : InstAlias<"sw $rs2, (${rs1})",
660 (SW GPR:$rs2, GPR:$rs1, 0)>;
662 def : InstAlias<"add $rd, $rs1, $imm12",
663 (ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
664 def : InstAlias<"and $rd, $rs1, $imm12",
665 (ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
666 def : InstAlias<"xor $rd, $rs1, $imm12",
667 (XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
668 def : InstAlias<"or $rd, $rs1, $imm12",
669 (ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
670 def : InstAlias<"sll $rd, $rs1, $shamt",
671 (SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
672 def : InstAlias<"srl $rd, $rs1, $shamt",
673 (SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
674 def : InstAlias<"sra $rd, $rs1, $shamt",
675 (SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
676 let Predicates = [IsRV64] in {
677 def : InstAlias<"lwu $rd, (${rs1})",
678 (LWU GPR:$rd, GPR:$rs1, 0)>;
679 def : InstAlias<"ld $rd, (${rs1})",
680 (LD GPR:$rd, GPR:$rs1, 0)>;
681 def : InstAlias<"sd $rs2, (${rs1})",
682 (SD GPR:$rs2, GPR:$rs1, 0)>;
684 def : InstAlias<"addw $rd, $rs1, $imm12",
685 (ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>;
686 def : InstAlias<"sllw $rd, $rs1, $shamt",
687 (SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
688 def : InstAlias<"srlw $rd, $rs1, $shamt",
689 (SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
690 def : InstAlias<"sraw $rd, $rs1, $shamt",
691 (SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
692 } // Predicates = [IsRV64]
693 def : InstAlias<"slt $rd, $rs1, $imm12",
694 (SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
695 def : InstAlias<"sltu $rd, $rs1, $imm12",
696 (SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>;
699 def : MnemonicAlias<"move", "mv">;
701 // The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
702 // version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
703 // the old name for backwards compatibility.
704 def : MnemonicAlias<"scall", "ecall">;
705 def : MnemonicAlias<"sbreak", "ebreak">;
707 //===----------------------------------------------------------------------===//
708 // Pseudo-instructions and codegen patterns
710 // Naming convention: For 'generic' pattern classes, we use the naming
711 // convention PatTy1Ty2. For pattern classes which offer a more complex
712 // expension, prefix the class name, e.g. BccPat.
713 //===----------------------------------------------------------------------===//
715 /// Generic pattern classes
717 class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
718 : Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
719 class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
720 : Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>;
721 class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
722 : Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt),
723 (Inst GPR:$rs1, uimmlog2xlen:$shamt)>;
727 def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
728 return isOrEquivalentToAdd(N);
730 def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
731 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
733 def sexti32 : PatFrags<(ops node:$src),
734 [(sext_inreg node:$src, i32),
735 (assertsexti32 node:$src)]>;
736 def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
737 return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
739 def zexti32 : PatFrags<(ops node:$src),
740 [(and node:$src, 0xffffffff),
741 (assertzexti32 node:$src)]>;
745 def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>;
746 def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>;
747 def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>,
750 /// Simple arithmetic operations
752 def : PatGprGpr<add, ADD>;
753 def : PatGprSimm12<add, ADDI>;
754 def : PatGprGpr<sub, SUB>;
755 def : PatGprGpr<or, OR>;
756 def : PatGprSimm12<or, ORI>;
757 def : PatGprGpr<and, AND>;
758 def : PatGprSimm12<and, ANDI>;
759 def : PatGprGpr<xor, XOR>;
760 def : PatGprSimm12<xor, XORI>;
761 def : PatGprUimmLog2XLen<shl, SLLI>;
762 def : PatGprUimmLog2XLen<srl, SRLI>;
763 def : PatGprUimmLog2XLen<sra, SRAI>;
765 // Match both a plain shift and one where the shift amount is masked (this is
766 // typically introduced when the legalizer promotes the shift amount and
767 // zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
768 // ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
769 class shiftop<SDPatternOperator operator>
770 : PatFrags<(ops node:$val, node:$count),
771 [(operator node:$val, node:$count),
772 (operator node:$val, (and node:$count, immbottomxlenset))]>;
774 def : PatGprGpr<shiftop<shl>, SLL>;
775 def : PatGprGpr<shiftop<srl>, SRL>;
776 def : PatGprGpr<shiftop<sra>, SRA>;
778 // This is a special case of the ADD instruction used to facilitate the use of a
779 // fourth operand to emit a relocation on a symbol relating to this instruction.
780 // The relocation does not affect any bits of the instruction itself but is used
781 // as a hint to the linker.
782 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
783 def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
784 (ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
785 "add", "$rd, $rs1, $rs2, $src">;
787 /// FrameIndex calculations
789 def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12),
790 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
791 def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12),
792 (ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
796 def : PatGprGpr<setlt, SLT>;
797 def : PatGprSimm12<setlt, SLTI>;
798 def : PatGprGpr<setult, SLTU>;
799 def : PatGprSimm12<setult, SLTIU>;
801 // Define pattern expansions for setcc operations that aren't directly
802 // handled by a RISC-V instruction.
803 def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
804 def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
805 def : Pat<(seteq GPR:$rs1, simm12:$imm12),
806 (SLTIU (XORI GPR:$rs1, simm12:$imm12), 1)>;
807 def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
808 def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
809 def : Pat<(setne GPR:$rs1, simm12:$imm12),
810 (SLTU X0, (XORI GPR:$rs1, simm12:$imm12))>;
811 def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
812 def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
813 def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
814 def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
815 def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
816 def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;
818 let usesCustomInserter = 1 in
819 class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
820 : Pseudo<(outs valty:$dst),
821 (ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
822 valty:$truev, valty:$falsev),
823 [(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs,
824 (XLenVT imm:$imm), valty:$truev, valty:$falsev))]>;
826 def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;
828 /// Branches and jumps
830 // Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch
832 class BccPat<PatFrag CondOp, RVInstB Inst>
833 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
834 (Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
836 def : BccPat<seteq, BEQ>;
837 def : BccPat<setne, BNE>;
838 def : BccPat<setlt, BLT>;
839 def : BccPat<setge, BGE>;
840 def : BccPat<setult, BLTU>;
841 def : BccPat<setuge, BGEU>;
843 class BccSwapPat<PatFrag CondOp, RVInst InstBcc>
844 : Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
845 (InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>;
847 // Condition codes that don't have matching RISC-V branch instructions, but
848 // are trivially supported by swapping the two input operands
849 def : BccSwapPat<setgt, BLT>;
850 def : BccSwapPat<setle, BGE>;
851 def : BccSwapPat<setugt, BLTU>;
852 def : BccSwapPat<setule, BGEU>;
854 // An extra pattern is needed for a brcond without a setcc (i.e. where the
855 // condition was calculated elsewhere).
856 def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>;
858 let isBarrier = 1, isBranch = 1, isTerminator = 1 in
859 def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
860 PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
862 let isCall = 1, Defs=[X1] in
863 let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
864 def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
865 PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
867 def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
868 def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
869 (PseudoBRIND GPR:$rs1, simm12:$imm12)>;
871 // PsuedoCALLReg is a generic pseudo instruction for calls which will eventually
872 // expand to auipc and jalr while encoding, with any given register used as the
874 // Define AsmString to print "call" when compile with -S flag.
875 // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
876 let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0,
877 mayStore = 0, mayLoad = 0 in
878 def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> {
879 let AsmString = "call\t$rd, $func";
882 // PseudoCALL is a pseudo instruction which will eventually expand to auipc
883 // and jalr while encoding. This is desirable, as an auipc+jalr pair with
884 // R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
885 // if the offset fits in a signed 21-bit immediate.
886 // Define AsmString to print "call" when compile with -S flag.
887 // Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
888 let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
889 def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func),
890 [(riscv_call tglobaladdr:$func)]> {
891 let AsmString = "call\t$func";
894 def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
896 def : Pat<(riscv_uret_flag), (URET X0, X0)>;
897 def : Pat<(riscv_sret_flag), (SRET X0, X0)>;
898 def : Pat<(riscv_mret_flag), (MRET X0, X0)>;
900 let isCall = 1, Defs = [X1] in
901 def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1),
902 [(riscv_call GPR:$rs1)]>,
903 PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
905 let isBarrier = 1, isReturn = 1, isTerminator = 1 in
906 def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>,
907 PseudoInstExpansion<(JALR X0, X1, 0)>;
909 // PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
910 // expand to auipc and jalr while encoding.
911 // Define AsmString to print "tail" when compile with -S flag.
912 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
914 def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> {
915 let AsmString = "tail\t$dst";
918 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
919 def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
920 [(riscv_tail GPRTC:$rs1)]>,
921 PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
923 def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
924 (PseudoTAIL texternalsym:$dst)>;
925 def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
926 (PseudoTAIL texternalsym:$dst)>;
928 let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
929 isAsmParserOnly = 1 in
930 def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
931 "lla", "$dst, $src">;
933 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
934 isAsmParserOnly = 1 in
935 def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
938 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
939 isAsmParserOnly = 1 in
940 def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
941 "la.tls.ie", "$dst, $src">;
943 let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
944 isAsmParserOnly = 1 in
945 def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
946 "la.tls.gd", "$dst, $src">;
950 multiclass LdPat<PatFrag LoadOp, RVInst Inst> {
951 def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>;
952 def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>;
953 def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)),
954 (Inst GPR:$rs1, simm12:$imm12)>;
955 def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)),
956 (Inst AddrFI:$rs1, simm12:$imm12)>;
957 def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
958 (Inst AddrFI:$rs1, simm12:$imm12)>;
961 defm : LdPat<sextloadi8, LB>;
962 defm : LdPat<extloadi8, LB>;
963 defm : LdPat<sextloadi16, LH>;
964 defm : LdPat<extloadi16, LH>;
965 defm : LdPat<load, LW>, Requires<[IsRV32]>;
966 defm : LdPat<zextloadi8, LBU>;
967 defm : LdPat<zextloadi16, LHU>;
971 multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> {
972 def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>;
973 def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>;
974 def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)),
975 (Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
976 def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)),
977 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
978 def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
979 (Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
982 defm : StPat<truncstorei8, SB, GPR>;
983 defm : StPat<truncstorei16, SH, GPR>;
984 defm : StPat<store, SW, GPR>, Requires<[IsRV32]>;
988 // Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
991 // fence acquire -> fence r, rw
992 def : Pat<(atomic_fence (XLenVT 4), (imm)), (FENCE 0b10, 0b11)>;
993 // fence release -> fence rw, w
994 def : Pat<(atomic_fence (XLenVT 5), (imm)), (FENCE 0b11, 0b1)>;
995 // fence acq_rel -> fence.tso
996 def : Pat<(atomic_fence (XLenVT 6), (imm)), (FENCE_TSO)>;
997 // fence seq_cst -> fence rw, rw
998 def : Pat<(atomic_fence (XLenVT 7), (imm)), (FENCE 0b11, 0b11)>;
1000 // Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
1001 // Although these are lowered to fence+load/store instructions defined in the
1002 // base RV32I/RV64I ISA, this lowering is only used when the A extension is
1003 // present. This is necessary as it isn't valid to mix __atomic_* libcalls
1004 // with inline atomic operations for the same object.
1006 /// Other pseudo-instructions
1008 // Pessimistically assume the stack pointer will be clobbered
1009 let Defs = [X2], Uses = [X2] in {
1010 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1011 [(callseq_start timm:$amt1, timm:$amt2)]>;
1012 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
1013 [(callseq_end timm:$amt1, timm:$amt2)]>;
1014 } // Defs = [X2], Uses = [X2]
1018 let Predicates = [IsRV64] in {
1022 def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
1023 def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>;
1027 def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
1028 (ADDW GPR:$rs1, GPR:$rs2)>;
1029 def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
1030 (ADDIW GPR:$rs1, simm12:$imm12)>;
1031 def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
1032 (SUBW GPR:$rs1, GPR:$rs2)>;
1033 def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
1034 (SLLIW GPR:$rs1, uimm5:$shamt)>;
1035 // (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the
1036 // need to undo manipulation of the mask value performed by DAGCombine.
1037 def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
1038 (SRAIW GPR:$rs1, uimm5:$shamt)>;
1040 def : PatGprGpr<riscv_sllw, SLLW>;
1041 def : PatGprGpr<riscv_srlw, SRLW>;
1042 def : PatGprGpr<riscv_sraw, SRAW>;
1046 defm : LdPat<sextloadi32, LW>;
1047 defm : LdPat<extloadi32, LW>;
1048 defm : LdPat<zextloadi32, LWU>;
1049 defm : LdPat<load, LD>;
1053 defm : StPat<truncstorei32, SW, GPR>;
1054 defm : StPat<store, SD, GPR>;
1055 } // Predicates = [IsRV64]
1057 /// readcyclecounter
1058 // On RV64, we can directly read the 64-bit "cycle" CSR.
1059 let Predicates = [IsRV64] in
1060 def : Pat<(readcyclecounter), (CSRRS CYCLE.Encoding, X0)>;
1061 // On RV32, ReadCycleWide will be expanded to the suggested loop reading both
1062 // halves of the 64-bit "cycle" CSR.
1063 let Predicates = [IsRV32], usesCustomInserter = 1, hasSideEffects = 0,
1064 mayLoad = 0, mayStore = 0, hasNoSchedulingInfo = 1 in
1065 def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins), [], "", "">;
1067 //===----------------------------------------------------------------------===//
1068 // Standard extensions
1069 //===----------------------------------------------------------------------===//
1071 include "RISCVInstrInfoM.td"
1072 include "RISCVInstrInfoA.td"
1073 include "RISCVInstrInfoF.td"
1074 include "RISCVInstrInfoD.td"
1075 include "RISCVInstrInfoC.td"