1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
50 /// In detail, this pass does following things:
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 /// __THREW__ and __threwValue will be set in invoke wrappers
54 /// in JS glue code. For what invoke wrappers are, refer to 3). These
55 /// variables are used for both exceptions and setjmp/longjmps.
56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 /// means nothing occurred, 1 means an exception occurred, and other numbers
58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
61 /// * Exception handling
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
65 /// The global variables in 1) will exist in wasm address space,
66 /// but their values should be set in JS code, so these functions
67 /// as interfaces to JS glue code. These functions are equivalent to the
68 /// following JS functions, which actually exist in asm.js version of JS
71 /// function setThrew(threw, value) {
72 /// if (__THREW__ == 0) {
73 /// __THREW__ = threw;
74 /// __threwValue = value;
78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
80 /// In exception handling, getTempRet0 indicates the type of an exception
81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
88 /// call @__invoke_SIG(func, arg1, arg2)
89 /// %__THREW__.val = __THREW__;
91 /// if (%__THREW__.val == 1)
95 /// SIG is a mangled string generated based on the LLVM IR-level function
96 /// signature. After LLVM IR types are lowered to the target wasm types,
97 /// the names for these wrappers will change based on wasm types as well,
98 /// as in invoke_vi (function takes an int and returns void). The bodies of
99 /// these wrappers will be generated in JS glue code, and inside those
100 /// wrappers we use JS try-catch to generate actual exception effects. It
101 /// also calls the original callee function. An example wrapper in JS code
102 /// would look like this:
103 /// function invoke_vi(index,a1) {
105 /// Module["dynCall_vi"](index,a1); // This calls original callee
107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 /// asm["setThrew"](1, 0); // setThrew is called here
111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 /// so we can jump to the right BB based on this value.
115 /// %val = landingpad catch c1 catch c2 catch c3 ...
118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 /// %val = {%fmc, getTempRet0()}
121 /// Here N is a number calculated based on the number of clauses.
122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
127 /// call @__resumeException(%a)
128 /// where __resumeException() is a function in JS glue code.
131 /// call @llvm.eh.typeid.for(type) (intrinsic)
133 /// call @llvm_eh_typeid_for(type)
134 /// llvm_eh_typeid_for function will be generated in JS glue code.
136 /// * Setjmp / Longjmp handling
138 /// In case calls to longjmp() exists
141 /// longjmp(buf, value)
143 /// emscripten_longjmp_jmpbuf(buf, value)
144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
146 /// In case calls to setjmp() exists
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 /// sejmpTableSize as follows:
150 /// setjmpTableSize = 4;
151 /// setjmpTable = (int *) malloc(40);
152 /// setjmpTable[0] = 0;
153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 /// setjmpTableSize = getTempRet0();
161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 /// is incrementally assigned from 0) and its label (a unique number that
163 /// represents each callsite of setjmp). When we need more entries in
164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 /// return the new table address, and assign the new table size in
166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 /// buf. A BB with setjmp is split into two after setjmp call in order to
168 /// make the post-setjmp BB the possible destination of longjmp BB.
171 /// 4) Lower every call that might longjmp into
173 /// call @__invoke_SIG(func, arg1, arg2)
174 /// %__THREW__.val = __THREW__;
176 /// if (%__THREW__.val != 0 & __threwValue != 0) {
177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 /// setjmpTableSize);
180 /// emscripten_longjmp(%__THREW__.val, __threwValue);
181 /// setTempRet0(__threwValue);
185 /// longjmp_result = getTempRet0();
187 /// label 1: goto post-setjmp BB 1
188 /// label 2: goto post-setjmp BB 2
190 /// default: goto splitted next BB
192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 /// will be the address of matching jmp_buf buffer and __threwValue be the
195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 /// each setjmp callsite. Label 0 means this longjmp buffer does not
198 /// correspond to one of the setjmp callsites in this function, so in this
199 /// case we just chain the longjmp to the caller. (Here we call
200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered
203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 /// can't translate an int value to a jmp_buf.)
205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right
206 /// post-setjmp BB based on the label.
208 ///===----------------------------------------------------------------------===//
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 using namespace llvm
;
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 static cl::list
<std::string
>
222 EHWhitelist("emscripten-cxx-exceptions-whitelist",
223 cl::desc("The list of function names in which Emscripten-style "
224 "exception handling is enabled (see emscripten "
225 "EMSCRIPTEN_CATCHING_WHITELIST options)"),
229 class WebAssemblyLowerEmscriptenEHSjLj final
: public ModulePass
{
230 static const char *ResumeFName
;
231 static const char *EHTypeIDFName
;
232 static const char *EmLongjmpFName
;
233 static const char *EmLongjmpJmpbufFName
;
234 static const char *SaveSetjmpFName
;
235 static const char *TestSetjmpFName
;
236 static const char *FindMatchingCatchPrefix
;
237 static const char *InvokePrefix
;
239 bool EnableEH
; // Enable exception handling
240 bool EnableSjLj
; // Enable setjmp/longjmp handling
242 GlobalVariable
*ThrewGV
= nullptr;
243 GlobalVariable
*ThrewValueGV
= nullptr;
244 Function
*GetTempRet0Func
= nullptr;
245 Function
*SetTempRet0Func
= nullptr;
246 Function
*ResumeF
= nullptr;
247 Function
*EHTypeIDF
= nullptr;
248 Function
*EmLongjmpF
= nullptr;
249 Function
*EmLongjmpJmpbufF
= nullptr;
250 Function
*SaveSetjmpF
= nullptr;
251 Function
*TestSetjmpF
= nullptr;
253 // __cxa_find_matching_catch_N functions.
254 // Indexed by the number of clauses in an original landingpad instruction.
255 DenseMap
<int, Function
*> FindMatchingCatches
;
256 // Map of <function signature string, invoke_ wrappers>
257 StringMap
<Function
*> InvokeWrappers
;
258 // Set of whitelisted function names for exception handling
259 std::set
<std::string
> EHWhitelistSet
;
261 StringRef
getPassName() const override
{
262 return "WebAssembly Lower Emscripten Exceptions";
265 bool runEHOnFunction(Function
&F
);
266 bool runSjLjOnFunction(Function
&F
);
267 Function
*getFindMatchingCatch(Module
&M
, unsigned NumClauses
);
269 template <typename CallOrInvoke
> Value
*wrapInvoke(CallOrInvoke
*CI
);
270 void wrapTestSetjmp(BasicBlock
*BB
, Instruction
*InsertPt
, Value
*Threw
,
271 Value
*SetjmpTable
, Value
*SetjmpTableSize
, Value
*&Label
,
272 Value
*&LongjmpResult
, BasicBlock
*&EndBB
);
273 template <typename CallOrInvoke
> Function
*getInvokeWrapper(CallOrInvoke
*CI
);
275 bool areAllExceptionsAllowed() const { return EHWhitelistSet
.empty(); }
276 bool canLongjmp(Module
&M
, const Value
*Callee
) const;
278 void rebuildSSA(Function
&F
);
283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH
= true, bool EnableSjLj
= true)
284 : ModulePass(ID
), EnableEH(EnableEH
), EnableSjLj(EnableSjLj
) {
285 EHWhitelistSet
.insert(EHWhitelist
.begin(), EHWhitelist
.end());
287 bool runOnModule(Module
&M
) override
;
289 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
290 AU
.addRequired
<DominatorTreeWrapperPass
>();
293 } // End anonymous namespace
295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName
= "__resumeException";
296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName
=
297 "llvm_eh_typeid_for";
298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName
=
299 "emscripten_longjmp";
300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName
=
301 "emscripten_longjmp_jmpbuf";
302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName
= "saveSetjmp";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName
= "testSetjmp";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix
=
305 "__cxa_find_matching_catch_";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix
= "__invoke_";
308 char WebAssemblyLowerEmscriptenEHSjLj::ID
= 0;
309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj
, DEBUG_TYPE
,
310 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
313 ModulePass
*llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH
,
315 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH
, EnableSjLj
);
318 static bool canThrow(const Value
*V
) {
319 if (const auto *F
= dyn_cast
<const Function
>(V
)) {
320 // Intrinsics cannot throw
321 if (F
->isIntrinsic())
323 StringRef Name
= F
->getName();
324 // leave setjmp and longjmp (mostly) alone, we process them properly later
325 if (Name
== "setjmp" || Name
== "longjmp")
327 return !F
->doesNotThrow();
329 // not a function, so an indirect call - can throw, we can't tell
333 // Get a global variable with the given name. If it doesn't exist declare it,
334 // which will generate an import and asssumes that it will exist at link time.
335 static GlobalVariable
*getGlobalVariableI32(Module
&M
, IRBuilder
<> &IRB
,
338 auto* GV
= dyn_cast
<GlobalVariable
>(M
.getOrInsertGlobal(Name
, IRB
.getInt32Ty()));
340 report_fatal_error(Twine("unable to create global: ") + Name
);
345 // Simple function name mangler.
346 // This function simply takes LLVM's string representation of parameter types
347 // and concatenate them with '_'. There are non-alphanumeric characters but llc
348 // is ok with it, and we need to postprocess these names after the lowering
350 static std::string
getSignature(FunctionType
*FTy
) {
352 raw_string_ostream
OS(Sig
);
353 OS
<< *FTy
->getReturnType();
354 for (Type
*ParamTy
: FTy
->params())
355 OS
<< "_" << *ParamTy
;
359 Sig
.erase(remove_if(Sig
, isspace
), Sig
.end());
360 // When s2wasm parses .s file, a comma means the end of an argument. So a
361 // mangled function name can contain any character but a comma.
362 std::replace(Sig
.begin(), Sig
.end(), ',', '.');
366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367 // This is because a landingpad instruction contains two more arguments, a
368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
369 // functions are named after the number of arguments in the original landingpad
372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module
&M
,
373 unsigned NumClauses
) {
374 if (FindMatchingCatches
.count(NumClauses
))
375 return FindMatchingCatches
[NumClauses
];
376 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(M
.getContext());
377 SmallVector
<Type
*, 16> Args(NumClauses
, Int8PtrTy
);
378 FunctionType
*FTy
= FunctionType::get(Int8PtrTy
, Args
, false);
380 Function::Create(FTy
, GlobalValue::ExternalLinkage
,
381 FindMatchingCatchPrefix
+ Twine(NumClauses
+ 2), &M
);
382 FindMatchingCatches
[NumClauses
] = F
;
386 // Generate invoke wrapper seqence with preamble and postamble
390 // %__THREW__.val = __THREW__; __THREW__ = 0;
391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
392 // whether longjmp occurred), for future use.
393 template <typename CallOrInvoke
>
394 Value
*WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke
*CI
) {
395 LLVMContext
&C
= CI
->getModule()->getContext();
397 // If we are calling a function that is noreturn, we must remove that
398 // attribute. The code we insert here does expect it to return, after we
399 // catch the exception.
400 if (CI
->doesNotReturn()) {
401 if (auto *F
= dyn_cast
<Function
>(CI
->getCalledValue()))
402 F
->removeFnAttr(Attribute::NoReturn
);
403 CI
->removeAttribute(AttributeList::FunctionIndex
, Attribute::NoReturn
);
407 IRB
.SetInsertPoint(CI
);
411 IRB
.CreateStore(IRB
.getInt32(0), ThrewGV
);
413 // Invoke function wrapper in JavaScript
414 SmallVector
<Value
*, 16> Args
;
415 // Put the pointer to the callee as first argument, so it can be called
416 // within the invoke wrapper later
417 Args
.push_back(CI
->getCalledValue());
418 Args
.append(CI
->arg_begin(), CI
->arg_end());
419 CallInst
*NewCall
= IRB
.CreateCall(getInvokeWrapper(CI
), Args
);
420 NewCall
->takeName(CI
);
421 NewCall
->setCallingConv(CI
->getCallingConv());
422 NewCall
->setDebugLoc(CI
->getDebugLoc());
424 // Because we added the pointer to the callee as first argument, all
425 // argument attribute indices have to be incremented by one.
426 SmallVector
<AttributeSet
, 8> ArgAttributes
;
427 const AttributeList
&InvokeAL
= CI
->getAttributes();
429 // No attributes for the callee pointer.
430 ArgAttributes
.push_back(AttributeSet());
431 // Copy the argument attributes from the original
432 for (unsigned I
= 0, E
= CI
->getNumArgOperands(); I
< E
; ++I
)
433 ArgAttributes
.push_back(InvokeAL
.getParamAttributes(I
));
435 // Reconstruct the AttributesList based on the vector we constructed.
436 AttributeList NewCallAL
=
437 AttributeList::get(C
, InvokeAL
.getFnAttributes(),
438 InvokeAL
.getRetAttributes(), ArgAttributes
);
439 NewCall
->setAttributes(NewCallAL
);
441 CI
->replaceAllUsesWith(NewCall
);
444 // %__THREW__.val = __THREW__; __THREW__ = 0;
446 IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewGV
, ThrewGV
->getName() + ".val");
447 IRB
.CreateStore(IRB
.getInt32(0), ThrewGV
);
451 // Get matching invoke wrapper based on callee signature
452 template <typename CallOrInvoke
>
453 Function
*WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke
*CI
) {
454 Module
*M
= CI
->getModule();
455 SmallVector
<Type
*, 16> ArgTys
;
456 Value
*Callee
= CI
->getCalledValue();
457 FunctionType
*CalleeFTy
;
458 if (auto *F
= dyn_cast
<Function
>(Callee
))
459 CalleeFTy
= F
->getFunctionType();
461 auto *CalleeTy
= cast
<PointerType
>(Callee
->getType())->getElementType();
462 CalleeFTy
= dyn_cast
<FunctionType
>(CalleeTy
);
465 std::string Sig
= getSignature(CalleeFTy
);
466 if (InvokeWrappers
.find(Sig
) != InvokeWrappers
.end())
467 return InvokeWrappers
[Sig
];
469 // Put the pointer to the callee as first argument
470 ArgTys
.push_back(PointerType::getUnqual(CalleeFTy
));
471 // Add argument types
472 ArgTys
.append(CalleeFTy
->param_begin(), CalleeFTy
->param_end());
474 FunctionType
*FTy
= FunctionType::get(CalleeFTy
->getReturnType(), ArgTys
,
475 CalleeFTy
->isVarArg());
476 Function
*F
= Function::Create(FTy
, GlobalValue::ExternalLinkage
,
477 InvokePrefix
+ Sig
, M
);
478 InvokeWrappers
[Sig
] = F
;
482 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module
&M
,
483 const Value
*Callee
) const {
484 if (auto *CalleeF
= dyn_cast
<Function
>(Callee
))
485 if (CalleeF
->isIntrinsic())
488 // Attempting to transform inline assembly will result in something like:
489 // call void @__invoke_void(void ()* asm ...)
490 // which is invalid because inline assembly blocks do not have addresses
491 // and can't be passed by pointer. The result is a crash with illegal IR.
492 if (isa
<InlineAsm
>(Callee
))
495 // The reason we include malloc/free here is to exclude the malloc/free
496 // calls generated in setjmp prep / cleanup routines.
497 Function
*SetjmpF
= M
.getFunction("setjmp");
498 Function
*MallocF
= M
.getFunction("malloc");
499 Function
*FreeF
= M
.getFunction("free");
500 if (Callee
== SetjmpF
|| Callee
== MallocF
|| Callee
== FreeF
)
503 // There are functions in JS glue code
504 if (Callee
== ResumeF
|| Callee
== EHTypeIDF
|| Callee
== SaveSetjmpF
||
505 Callee
== TestSetjmpF
)
508 // __cxa_find_matching_catch_N functions cannot longjmp
509 if (Callee
->getName().startswith(FindMatchingCatchPrefix
))
512 // Exception-catching related functions
513 Function
*BeginCatchF
= M
.getFunction("__cxa_begin_catch");
514 Function
*EndCatchF
= M
.getFunction("__cxa_end_catch");
515 Function
*AllocExceptionF
= M
.getFunction("__cxa_allocate_exception");
516 Function
*ThrowF
= M
.getFunction("__cxa_throw");
517 Function
*TerminateF
= M
.getFunction("__clang_call_terminate");
518 if (Callee
== BeginCatchF
|| Callee
== EndCatchF
||
519 Callee
== AllocExceptionF
|| Callee
== ThrowF
|| Callee
== TerminateF
||
520 Callee
== GetTempRet0Func
|| Callee
== SetTempRet0Func
)
523 // Otherwise we don't know
527 // Generate testSetjmp function call seqence with preamble and postamble.
528 // The code this generates is equivalent to the following JavaScript code:
529 // if (%__THREW__.val != 0 & threwValue != 0) {
530 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
532 // emscripten_longjmp(%__THREW__.val, threwValue);
533 // setTempRet0(threwValue);
537 // %longjmp_result = getTempRet0();
539 // As output parameters. returns %label, %longjmp_result, and the BB the last
540 // instruction (%longjmp_result = ...) is in.
541 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
542 BasicBlock
*BB
, Instruction
*InsertPt
, Value
*Threw
, Value
*SetjmpTable
,
543 Value
*SetjmpTableSize
, Value
*&Label
, Value
*&LongjmpResult
,
544 BasicBlock
*&EndBB
) {
545 Function
*F
= BB
->getParent();
546 LLVMContext
&C
= BB
->getModule()->getContext();
548 IRB
.SetInsertPoint(InsertPt
);
550 // if (%__THREW__.val != 0 & threwValue != 0)
551 IRB
.SetInsertPoint(BB
);
552 BasicBlock
*ThenBB1
= BasicBlock::Create(C
, "if.then1", F
);
553 BasicBlock
*ElseBB1
= BasicBlock::Create(C
, "if.else1", F
);
554 BasicBlock
*EndBB1
= BasicBlock::Create(C
, "if.end", F
);
555 Value
*ThrewCmp
= IRB
.CreateICmpNE(Threw
, IRB
.getInt32(0));
556 Value
*ThrewValue
= IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewValueGV
,
557 ThrewValueGV
->getName() + ".val");
558 Value
*ThrewValueCmp
= IRB
.CreateICmpNE(ThrewValue
, IRB
.getInt32(0));
559 Value
*Cmp1
= IRB
.CreateAnd(ThrewCmp
, ThrewValueCmp
, "cmp1");
560 IRB
.CreateCondBr(Cmp1
, ThenBB1
, ElseBB1
);
562 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
564 IRB
.SetInsertPoint(ThenBB1
);
565 BasicBlock
*ThenBB2
= BasicBlock::Create(C
, "if.then2", F
);
566 BasicBlock
*EndBB2
= BasicBlock::Create(C
, "if.end2", F
);
567 Value
*ThrewInt
= IRB
.CreateIntToPtr(Threw
, Type::getInt32PtrTy(C
),
568 Threw
->getName() + ".i32p");
569 Value
*LoadedThrew
= IRB
.CreateLoad(IRB
.getInt32Ty(), ThrewInt
,
570 ThrewInt
->getName() + ".loaded");
571 Value
*ThenLabel
= IRB
.CreateCall(
572 TestSetjmpF
, {LoadedThrew
, SetjmpTable
, SetjmpTableSize
}, "label");
573 Value
*Cmp2
= IRB
.CreateICmpEQ(ThenLabel
, IRB
.getInt32(0));
574 IRB
.CreateCondBr(Cmp2
, ThenBB2
, EndBB2
);
576 // emscripten_longjmp(%__THREW__.val, threwValue);
577 IRB
.SetInsertPoint(ThenBB2
);
578 IRB
.CreateCall(EmLongjmpF
, {Threw
, ThrewValue
});
579 IRB
.CreateUnreachable();
581 // setTempRet0(threwValue);
582 IRB
.SetInsertPoint(EndBB2
);
583 IRB
.CreateCall(SetTempRet0Func
, ThrewValue
);
584 IRB
.CreateBr(EndBB1
);
586 IRB
.SetInsertPoint(ElseBB1
);
587 IRB
.CreateBr(EndBB1
);
589 // longjmp_result = getTempRet0();
590 IRB
.SetInsertPoint(EndBB1
);
591 PHINode
*LabelPHI
= IRB
.CreatePHI(IRB
.getInt32Ty(), 2, "label");
592 LabelPHI
->addIncoming(ThenLabel
, EndBB2
);
594 LabelPHI
->addIncoming(IRB
.getInt32(-1), ElseBB1
);
596 // Output parameter assignment
599 LongjmpResult
= IRB
.CreateCall(GetTempRet0Func
, None
, "longjmp_result");
602 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function
&F
) {
603 DominatorTree
&DT
= getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
604 DT
.recalculate(F
); // CFG has been changed
606 for (BasicBlock
&BB
: F
) {
607 for (Instruction
&I
: BB
) {
608 for (auto UI
= I
.use_begin(), UE
= I
.use_end(); UI
!= UE
;) {
611 SSA
.Initialize(I
.getType(), I
.getName());
612 SSA
.AddAvailableValue(&BB
, &I
);
613 auto *User
= cast
<Instruction
>(U
.getUser());
614 if (User
->getParent() == &BB
)
617 if (auto *UserPN
= dyn_cast
<PHINode
>(User
))
618 if (UserPN
->getIncomingBlock(U
) == &BB
)
621 if (DT
.dominates(&I
, User
))
623 SSA
.RewriteUseAfterInsertions(U
);
629 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module
&M
) {
630 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
632 LLVMContext
&C
= M
.getContext();
635 Function
*SetjmpF
= M
.getFunction("setjmp");
636 Function
*LongjmpF
= M
.getFunction("longjmp");
637 bool SetjmpUsed
= SetjmpF
&& !SetjmpF
->use_empty();
638 bool LongjmpUsed
= LongjmpF
&& !LongjmpF
->use_empty();
639 bool DoSjLj
= EnableSjLj
&& (SetjmpUsed
|| LongjmpUsed
);
641 // Declare (or get) global variables __THREW__, __threwValue, and
642 // getTempRet0/setTempRet0 function which are used in common for both
643 // exception handling and setjmp/longjmp handling
644 ThrewGV
= getGlobalVariableI32(M
, IRB
, "__THREW__");
645 ThrewValueGV
= getGlobalVariableI32(M
, IRB
, "__threwValue");
647 Function::Create(FunctionType::get(IRB
.getInt32Ty(), false),
648 GlobalValue::ExternalLinkage
, "getTempRet0", &M
);
649 SetTempRet0Func
= Function::Create(
650 FunctionType::get(IRB
.getVoidTy(), IRB
.getInt32Ty(), false),
651 GlobalValue::ExternalLinkage
, "setTempRet0", &M
);
652 GetTempRet0Func
->setDoesNotThrow();
653 SetTempRet0Func
->setDoesNotThrow();
655 bool Changed
= false;
657 // Exception handling
659 // Register __resumeException function
660 FunctionType
*ResumeFTy
=
661 FunctionType::get(IRB
.getVoidTy(), IRB
.getInt8PtrTy(), false);
662 ResumeF
= Function::Create(ResumeFTy
, GlobalValue::ExternalLinkage
,
665 // Register llvm_eh_typeid_for function
666 FunctionType
*EHTypeIDTy
=
667 FunctionType::get(IRB
.getInt32Ty(), IRB
.getInt8PtrTy(), false);
668 EHTypeIDF
= Function::Create(EHTypeIDTy
, GlobalValue::ExternalLinkage
,
671 for (Function
&F
: M
) {
672 if (F
.isDeclaration())
674 Changed
|= runEHOnFunction(F
);
678 // Setjmp/longjmp handling
680 Changed
= true; // We have setjmp or longjmp somewhere
683 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
684 // defined in JS code
685 EmLongjmpJmpbufF
= Function::Create(LongjmpF
->getFunctionType(),
686 GlobalValue::ExternalLinkage
,
687 EmLongjmpJmpbufFName
, &M
);
689 LongjmpF
->replaceAllUsesWith(EmLongjmpJmpbufF
);
693 // Register saveSetjmp function
694 FunctionType
*SetjmpFTy
= SetjmpF
->getFunctionType();
695 SmallVector
<Type
*, 4> Params
= {SetjmpFTy
->getParamType(0),
696 IRB
.getInt32Ty(), Type::getInt32PtrTy(C
),
699 FunctionType::get(Type::getInt32PtrTy(C
), Params
, false);
700 SaveSetjmpF
= Function::Create(FTy
, GlobalValue::ExternalLinkage
,
701 SaveSetjmpFName
, &M
);
703 // Register testSetjmp function
704 Params
= {IRB
.getInt32Ty(), Type::getInt32PtrTy(C
), IRB
.getInt32Ty()};
705 FTy
= FunctionType::get(IRB
.getInt32Ty(), Params
, false);
706 TestSetjmpF
= Function::Create(FTy
, GlobalValue::ExternalLinkage
,
707 TestSetjmpFName
, &M
);
709 FTy
= FunctionType::get(IRB
.getVoidTy(),
710 {IRB
.getInt32Ty(), IRB
.getInt32Ty()}, false);
711 EmLongjmpF
= Function::Create(FTy
, GlobalValue::ExternalLinkage
,
714 // Only traverse functions that uses setjmp in order not to insert
715 // unnecessary prep / cleanup code in every function
716 SmallPtrSet
<Function
*, 8> SetjmpUsers
;
717 for (User
*U
: SetjmpF
->users()) {
718 auto *UI
= cast
<Instruction
>(U
);
719 SetjmpUsers
.insert(UI
->getFunction());
721 for (Function
*F
: SetjmpUsers
)
722 runSjLjOnFunction(*F
);
727 // Delete unused global variables and functions
729 ResumeF
->eraseFromParent();
731 EHTypeIDF
->eraseFromParent();
733 EmLongjmpF
->eraseFromParent();
735 SaveSetjmpF
->eraseFromParent();
737 TestSetjmpF
->eraseFromParent();
744 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function
&F
) {
745 Module
&M
= *F
.getParent();
746 LLVMContext
&C
= F
.getContext();
748 bool Changed
= false;
749 SmallVector
<Instruction
*, 64> ToErase
;
750 SmallPtrSet
<LandingPadInst
*, 32> LandingPads
;
751 bool AllowExceptions
=
752 areAllExceptionsAllowed() || EHWhitelistSet
.count(F
.getName());
754 for (BasicBlock
&BB
: F
) {
755 auto *II
= dyn_cast
<InvokeInst
>(BB
.getTerminator());
759 LandingPads
.insert(II
->getLandingPadInst());
760 IRB
.SetInsertPoint(II
);
762 bool NeedInvoke
= AllowExceptions
&& canThrow(II
->getCalledValue());
764 // Wrap invoke with invoke wrapper and generate preamble/postamble
765 Value
*Threw
= wrapInvoke(II
);
766 ToErase
.push_back(II
);
768 // Insert a branch based on __THREW__ variable
769 Value
*Cmp
= IRB
.CreateICmpEQ(Threw
, IRB
.getInt32(1), "cmp");
770 IRB
.CreateCondBr(Cmp
, II
->getUnwindDest(), II
->getNormalDest());
773 // This can't throw, and we don't need this invoke, just replace it with a
775 SmallVector
<Value
*, 16> Args(II
->arg_begin(), II
->arg_end());
777 IRB
.CreateCall(II
->getFunctionType(), II
->getCalledValue(), Args
);
778 NewCall
->takeName(II
);
779 NewCall
->setCallingConv(II
->getCallingConv());
780 NewCall
->setDebugLoc(II
->getDebugLoc());
781 NewCall
->setAttributes(II
->getAttributes());
782 II
->replaceAllUsesWith(NewCall
);
783 ToErase
.push_back(II
);
785 IRB
.CreateBr(II
->getNormalDest());
787 // Remove any PHI node entries from the exception destination
788 II
->getUnwindDest()->removePredecessor(&BB
);
792 // Process resume instructions
793 for (BasicBlock
&BB
: F
) {
794 // Scan the body of the basic block for resumes
795 for (Instruction
&I
: BB
) {
796 auto *RI
= dyn_cast
<ResumeInst
>(&I
);
800 // Split the input into legal values
801 Value
*Input
= RI
->getValue();
802 IRB
.SetInsertPoint(RI
);
803 Value
*Low
= IRB
.CreateExtractValue(Input
, 0, "low");
804 // Create a call to __resumeException function
805 IRB
.CreateCall(ResumeF
, {Low
});
806 // Add a terminator to the block
807 IRB
.CreateUnreachable();
808 ToErase
.push_back(RI
);
812 // Process llvm.eh.typeid.for intrinsics
813 for (BasicBlock
&BB
: F
) {
814 for (Instruction
&I
: BB
) {
815 auto *CI
= dyn_cast
<CallInst
>(&I
);
818 const Function
*Callee
= CI
->getCalledFunction();
821 if (Callee
->getIntrinsicID() != Intrinsic::eh_typeid_for
)
824 IRB
.SetInsertPoint(CI
);
826 IRB
.CreateCall(EHTypeIDF
, CI
->getArgOperand(0), "typeid");
827 CI
->replaceAllUsesWith(NewCI
);
828 ToErase
.push_back(CI
);
832 // Look for orphan landingpads, can occur in blocks with no predecessors
833 for (BasicBlock
&BB
: F
) {
834 Instruction
*I
= BB
.getFirstNonPHI();
835 if (auto *LPI
= dyn_cast
<LandingPadInst
>(I
))
836 LandingPads
.insert(LPI
);
839 // Handle all the landingpad for this function together, as multiple invokes
840 // may share a single lp
841 for (LandingPadInst
*LPI
: LandingPads
) {
842 IRB
.SetInsertPoint(LPI
);
843 SmallVector
<Value
*, 16> FMCArgs
;
844 for (unsigned I
= 0, E
= LPI
->getNumClauses(); I
< E
; ++I
) {
845 Constant
*Clause
= LPI
->getClause(I
);
846 // As a temporary workaround for the lack of aggregate varargs support
847 // in the interface between JS and wasm, break out filter operands into
848 // their component elements.
849 if (LPI
->isFilter(I
)) {
850 auto *ATy
= cast
<ArrayType
>(Clause
->getType());
851 for (unsigned J
= 0, E
= ATy
->getNumElements(); J
< E
; ++J
) {
852 Value
*EV
= IRB
.CreateExtractValue(Clause
, makeArrayRef(J
), "filter");
853 FMCArgs
.push_back(EV
);
856 FMCArgs
.push_back(Clause
);
859 // Create a call to __cxa_find_matching_catch_N function
860 Function
*FMCF
= getFindMatchingCatch(M
, FMCArgs
.size());
861 CallInst
*FMCI
= IRB
.CreateCall(FMCF
, FMCArgs
, "fmc");
862 Value
*Undef
= UndefValue::get(LPI
->getType());
863 Value
*Pair0
= IRB
.CreateInsertValue(Undef
, FMCI
, 0, "pair0");
864 Value
*TempRet0
= IRB
.CreateCall(GetTempRet0Func
, None
, "tempret0");
865 Value
*Pair1
= IRB
.CreateInsertValue(Pair0
, TempRet0
, 1, "pair1");
867 LPI
->replaceAllUsesWith(Pair1
);
868 ToErase
.push_back(LPI
);
871 // Erase everything we no longer need in this function
872 for (Instruction
*I
: ToErase
)
873 I
->eraseFromParent();
878 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function
&F
) {
879 Module
&M
= *F
.getParent();
880 LLVMContext
&C
= F
.getContext();
882 SmallVector
<Instruction
*, 64> ToErase
;
883 // Vector of %setjmpTable values
884 std::vector
<Instruction
*> SetjmpTableInsts
;
885 // Vector of %setjmpTableSize values
886 std::vector
<Instruction
*> SetjmpTableSizeInsts
;
888 // Setjmp preparation
890 // This instruction effectively means %setjmpTableSize = 4.
891 // We create this as an instruction intentionally, and we don't want to fold
892 // this instruction to a constant 4, because this value will be used in
893 // SSAUpdater.AddAvailableValue(...) later.
894 BasicBlock
&EntryBB
= F
.getEntryBlock();
895 BinaryOperator
*SetjmpTableSize
= BinaryOperator::Create(
896 Instruction::Add
, IRB
.getInt32(4), IRB
.getInt32(0), "setjmpTableSize",
897 &*EntryBB
.getFirstInsertionPt());
898 // setjmpTable = (int *) malloc(40);
899 Instruction
*SetjmpTable
= CallInst::CreateMalloc(
900 SetjmpTableSize
, IRB
.getInt32Ty(), IRB
.getInt32Ty(), IRB
.getInt32(40),
901 nullptr, nullptr, "setjmpTable");
902 // setjmpTable[0] = 0;
903 IRB
.SetInsertPoint(SetjmpTableSize
);
904 IRB
.CreateStore(IRB
.getInt32(0), SetjmpTable
);
905 SetjmpTableInsts
.push_back(SetjmpTable
);
906 SetjmpTableSizeInsts
.push_back(SetjmpTableSize
);
908 // Setjmp transformation
909 std::vector
<PHINode
*> SetjmpRetPHIs
;
910 Function
*SetjmpF
= M
.getFunction("setjmp");
911 for (User
*U
: SetjmpF
->users()) {
912 auto *CI
= dyn_cast
<CallInst
>(U
);
914 report_fatal_error("Does not support indirect calls to setjmp");
916 BasicBlock
*BB
= CI
->getParent();
917 if (BB
->getParent() != &F
) // in other function
920 // The tail is everything right after the call, and will be reached once
921 // when setjmp is called, and later when longjmp returns to the setjmp
922 BasicBlock
*Tail
= SplitBlock(BB
, CI
->getNextNode());
923 // Add a phi to the tail, which will be the output of setjmp, which
924 // indicates if this is the first call or a longjmp back. The phi directly
925 // uses the right value based on where we arrive from
926 IRB
.SetInsertPoint(Tail
->getFirstNonPHI());
927 PHINode
*SetjmpRet
= IRB
.CreatePHI(IRB
.getInt32Ty(), 2, "setjmp.ret");
929 // setjmp initial call returns 0
930 SetjmpRet
->addIncoming(IRB
.getInt32(0), BB
);
931 // The proper output is now this, not the setjmp call itself
932 CI
->replaceAllUsesWith(SetjmpRet
);
933 // longjmp returns to the setjmp will add themselves to this phi
934 SetjmpRetPHIs
.push_back(SetjmpRet
);
937 // Our index in the function is our place in the array + 1 to avoid index
938 // 0, because index 0 means the longjmp is not ours to handle.
939 IRB
.SetInsertPoint(CI
);
940 Value
*Args
[] = {CI
->getArgOperand(0), IRB
.getInt32(SetjmpRetPHIs
.size()),
941 SetjmpTable
, SetjmpTableSize
};
942 Instruction
*NewSetjmpTable
=
943 IRB
.CreateCall(SaveSetjmpF
, Args
, "setjmpTable");
944 Instruction
*NewSetjmpTableSize
=
945 IRB
.CreateCall(GetTempRet0Func
, None
, "setjmpTableSize");
946 SetjmpTableInsts
.push_back(NewSetjmpTable
);
947 SetjmpTableSizeInsts
.push_back(NewSetjmpTableSize
);
948 ToErase
.push_back(CI
);
951 // Update each call that can longjmp so it can return to a setjmp where
954 // Because we are creating new BBs while processing and don't want to make
955 // all these newly created BBs candidates again for longjmp processing, we
956 // first make the vector of candidate BBs.
957 std::vector
<BasicBlock
*> BBs
;
958 for (BasicBlock
&BB
: F
)
961 // BBs.size() will change within the loop, so we query it every time
962 for (unsigned I
= 0; I
< BBs
.size(); I
++) {
963 BasicBlock
*BB
= BBs
[I
];
964 for (Instruction
&I
: *BB
) {
965 assert(!isa
<InvokeInst
>(&I
));
966 auto *CI
= dyn_cast
<CallInst
>(&I
);
970 const Value
*Callee
= CI
->getCalledValue();
971 if (!canLongjmp(M
, Callee
))
974 Value
*Threw
= nullptr;
976 if (Callee
->getName().startswith(InvokePrefix
)) {
977 // If invoke wrapper has already been generated for this call in
978 // previous EH phase, search for the load instruction
979 // %__THREW__.val = __THREW__;
980 // in postamble after the invoke wrapper call
981 LoadInst
*ThrewLI
= nullptr;
982 StoreInst
*ThrewResetSI
= nullptr;
983 for (auto I
= std::next(BasicBlock::iterator(CI
)), IE
= BB
->end();
985 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
986 if (auto *GV
= dyn_cast
<GlobalVariable
>(LI
->getPointerOperand()))
988 Threw
= ThrewLI
= LI
;
992 // Search for the store instruction after the load above
994 for (auto I
= std::next(BasicBlock::iterator(ThrewLI
)), IE
= BB
->end();
996 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
997 if (auto *GV
= dyn_cast
<GlobalVariable
>(SI
->getPointerOperand()))
998 if (GV
== ThrewGV
&& SI
->getValueOperand() == IRB
.getInt32(0)) {
1003 assert(Threw
&& ThrewLI
&& "Cannot find __THREW__ load after invoke");
1004 assert(ThrewResetSI
&& "Cannot find __THREW__ store after invoke");
1005 Tail
= SplitBlock(BB
, ThrewResetSI
->getNextNode());
1008 // Wrap call with invoke wrapper and generate preamble/postamble
1009 Threw
= wrapInvoke(CI
);
1010 ToErase
.push_back(CI
);
1011 Tail
= SplitBlock(BB
, CI
->getNextNode());
1014 // We need to replace the terminator in Tail - SplitBlock makes BB go
1015 // straight to Tail, we need to check if a longjmp occurred, and go to the
1016 // right setjmp-tail if so
1017 ToErase
.push_back(BB
->getTerminator());
1019 // Generate a function call to testSetjmp function and preamble/postamble
1020 // code to figure out (1) whether longjmp occurred (2) if longjmp
1021 // occurred, which setjmp it corresponds to
1022 Value
*Label
= nullptr;
1023 Value
*LongjmpResult
= nullptr;
1024 BasicBlock
*EndBB
= nullptr;
1025 wrapTestSetjmp(BB
, CI
, Threw
, SetjmpTable
, SetjmpTableSize
, Label
,
1026 LongjmpResult
, EndBB
);
1027 assert(Label
&& LongjmpResult
&& EndBB
);
1029 // Create switch instruction
1030 IRB
.SetInsertPoint(EndBB
);
1031 SwitchInst
*SI
= IRB
.CreateSwitch(Label
, Tail
, SetjmpRetPHIs
.size());
1032 // -1 means no longjmp happened, continue normally (will hit the default
1033 // switch case). 0 means a longjmp that is not ours to handle, needs a
1034 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1036 for (unsigned I
= 0; I
< SetjmpRetPHIs
.size(); I
++) {
1037 SI
->addCase(IRB
.getInt32(I
+ 1), SetjmpRetPHIs
[I
]->getParent());
1038 SetjmpRetPHIs
[I
]->addIncoming(LongjmpResult
, EndBB
);
1041 // We are splitting the block here, and must continue to find other calls
1042 // in the block - which is now split. so continue to traverse in the Tail
1043 BBs
.push_back(Tail
);
1047 // Erase everything we no longer need in this function
1048 for (Instruction
*I
: ToErase
)
1049 I
->eraseFromParent();
1051 // Free setjmpTable buffer before each return instruction
1052 for (BasicBlock
&BB
: F
) {
1053 Instruction
*TI
= BB
.getTerminator();
1054 if (isa
<ReturnInst
>(TI
))
1055 CallInst::CreateFree(SetjmpTable
, TI
);
1058 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1059 // (when buffer reallocation occurs)
1061 // setjmpTableSize = 4;
1062 // setjmpTable = (int *) malloc(40);
1063 // setjmpTable[0] = 0;
1066 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1067 // setjmpTableSize = getTempRet0();
1068 // So we need to make sure the SSA for these variables is valid so that every
1069 // saveSetjmp and testSetjmp calls have the correct arguments.
1070 SSAUpdater SetjmpTableSSA
;
1071 SSAUpdater SetjmpTableSizeSSA
;
1072 SetjmpTableSSA
.Initialize(Type::getInt32PtrTy(C
), "setjmpTable");
1073 SetjmpTableSizeSSA
.Initialize(Type::getInt32Ty(C
), "setjmpTableSize");
1074 for (Instruction
*I
: SetjmpTableInsts
)
1075 SetjmpTableSSA
.AddAvailableValue(I
->getParent(), I
);
1076 for (Instruction
*I
: SetjmpTableSizeInsts
)
1077 SetjmpTableSizeSSA
.AddAvailableValue(I
->getParent(), I
);
1079 for (auto UI
= SetjmpTable
->use_begin(), UE
= SetjmpTable
->use_end();
1081 // Grab the use before incrementing the iterator.
1083 // Increment the iterator before removing the use from the list.
1085 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser()))
1086 if (I
->getParent() != &EntryBB
)
1087 SetjmpTableSSA
.RewriteUse(U
);
1089 for (auto UI
= SetjmpTableSize
->use_begin(), UE
= SetjmpTableSize
->use_end();
1093 if (auto *I
= dyn_cast
<Instruction
>(U
.getUser()))
1094 if (I
->getParent() != &EntryBB
)
1095 SetjmpTableSizeSSA
.RewriteUse(U
);
1098 // Finally, our modifications to the cfg can break dominance of SSA variables.
1099 // For example, in this code,
1100 // if (x()) { .. setjmp() .. }
1101 // if (y()) { .. longjmp() .. }
1102 // We must split the longjmp block, and it can jump into the block splitted
1103 // from setjmp one. But that means that when we split the setjmp block, it's
1104 // first part no longer dominates its second part - there is a theoretically
1105 // possible control flow path where x() is false, then y() is true and we
1106 // reach the second part of the setjmp block, without ever reaching the first
1107 // part. So, we rebuild SSA form here.