[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / WebAssembly / WebAssemblyLowerEmscriptenEHSjLj.cpp
blob960d5134f6e9a6d50a01d985b9128b39dcf21dac
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 /// __THREW__ and __threwValue will be set in invoke wrappers
54 /// in JS glue code. For what invoke wrappers are, refer to 3). These
55 /// variables are used for both exceptions and setjmp/longjmps.
56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 /// means nothing occurred, 1 means an exception occurred, and other numbers
58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 /// at link time.
65 /// The global variables in 1) will exist in wasm address space,
66 /// but their values should be set in JS code, so these functions
67 /// as interfaces to JS glue code. These functions are equivalent to the
68 /// following JS functions, which actually exist in asm.js version of JS
69 /// library.
70 ///
71 /// function setThrew(threw, value) {
72 /// if (__THREW__ == 0) {
73 /// __THREW__ = threw;
74 /// __threwValue = value;
75 /// }
76 /// }
78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 /// In exception handling, getTempRet0 indicates the type of an exception
81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
82 /// function.
83 ///
84 /// 3) Lower
85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 /// into
87 /// __THREW__ = 0;
88 /// call @__invoke_SIG(func, arg1, arg2)
89 /// %__THREW__.val = __THREW__;
90 /// __THREW__ = 0;
91 /// if (%__THREW__.val == 1)
92 /// goto %lpad
93 /// else
94 /// goto %invoke.cont
95 /// SIG is a mangled string generated based on the LLVM IR-level function
96 /// signature. After LLVM IR types are lowered to the target wasm types,
97 /// the names for these wrappers will change based on wasm types as well,
98 /// as in invoke_vi (function takes an int and returns void). The bodies of
99 /// these wrappers will be generated in JS glue code, and inside those
100 /// wrappers we use JS try-catch to generate actual exception effects. It
101 /// also calls the original callee function. An example wrapper in JS code
102 /// would look like this:
103 /// function invoke_vi(index,a1) {
104 /// try {
105 /// Module["dynCall_vi"](index,a1); // This calls original callee
106 /// } catch(e) {
107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 /// asm["setThrew"](1, 0); // setThrew is called here
109 /// }
110 /// }
111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 /// so we can jump to the right BB based on this value.
114 /// 4) Lower
115 /// %val = landingpad catch c1 catch c2 catch c3 ...
116 /// ... use %val ...
117 /// into
118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 /// %val = {%fmc, getTempRet0()}
120 /// ... use %val ...
121 /// Here N is a number calculated based on the number of clauses.
122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
124 /// 5) Lower
125 /// resume {%a, %b}
126 /// into
127 /// call @__resumeException(%a)
128 /// where __resumeException() is a function in JS glue code.
130 /// 6) Lower
131 /// call @llvm.eh.typeid.for(type) (intrinsic)
132 /// into
133 /// call @llvm_eh_typeid_for(type)
134 /// llvm_eh_typeid_for function will be generated in JS glue code.
136 /// * Setjmp / Longjmp handling
138 /// In case calls to longjmp() exists
140 /// 1) Lower
141 /// longjmp(buf, value)
142 /// into
143 /// emscripten_longjmp_jmpbuf(buf, value)
144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
146 /// In case calls to setjmp() exists
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 /// sejmpTableSize as follows:
150 /// setjmpTableSize = 4;
151 /// setjmpTable = (int *) malloc(40);
152 /// setjmpTable[0] = 0;
153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 /// code.
156 /// 3) Lower
157 /// setjmp(buf)
158 /// into
159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 /// setjmpTableSize = getTempRet0();
161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 /// is incrementally assigned from 0) and its label (a unique number that
163 /// represents each callsite of setjmp). When we need more entries in
164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 /// return the new table address, and assign the new table size in
166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 /// buf. A BB with setjmp is split into two after setjmp call in order to
168 /// make the post-setjmp BB the possible destination of longjmp BB.
171 /// 4) Lower every call that might longjmp into
172 /// __THREW__ = 0;
173 /// call @__invoke_SIG(func, arg1, arg2)
174 /// %__THREW__.val = __THREW__;
175 /// __THREW__ = 0;
176 /// if (%__THREW__.val != 0 & __threwValue != 0) {
177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 /// setjmpTableSize);
179 /// if (%label == 0)
180 /// emscripten_longjmp(%__THREW__.val, __threwValue);
181 /// setTempRet0(__threwValue);
182 /// } else {
183 /// %label = -1;
184 /// }
185 /// longjmp_result = getTempRet0();
186 /// switch label {
187 /// label 1: goto post-setjmp BB 1
188 /// label 2: goto post-setjmp BB 2
189 /// ...
190 /// default: goto splitted next BB
191 /// }
192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 /// will be the address of matching jmp_buf buffer and __threwValue be the
195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 /// each setjmp callsite. Label 0 means this longjmp buffer does not
198 /// correspond to one of the setjmp callsites in this function, so in this
199 /// case we just chain the longjmp to the caller. (Here we call
200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered
203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 /// can't translate an int value to a jmp_buf.)
205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right
206 /// post-setjmp BB based on the label.
208 ///===----------------------------------------------------------------------===//
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 using namespace llvm;
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 static cl::list<std::string>
222 EHWhitelist("emscripten-cxx-exceptions-whitelist",
223 cl::desc("The list of function names in which Emscripten-style "
224 "exception handling is enabled (see emscripten "
225 "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226 cl::CommaSeparated);
228 namespace {
229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230 static const char *ResumeFName;
231 static const char *EHTypeIDFName;
232 static const char *EmLongjmpFName;
233 static const char *EmLongjmpJmpbufFName;
234 static const char *SaveSetjmpFName;
235 static const char *TestSetjmpFName;
236 static const char *FindMatchingCatchPrefix;
237 static const char *InvokePrefix;
239 bool EnableEH; // Enable exception handling
240 bool EnableSjLj; // Enable setjmp/longjmp handling
242 GlobalVariable *ThrewGV = nullptr;
243 GlobalVariable *ThrewValueGV = nullptr;
244 Function *GetTempRet0Func = nullptr;
245 Function *SetTempRet0Func = nullptr;
246 Function *ResumeF = nullptr;
247 Function *EHTypeIDF = nullptr;
248 Function *EmLongjmpF = nullptr;
249 Function *EmLongjmpJmpbufF = nullptr;
250 Function *SaveSetjmpF = nullptr;
251 Function *TestSetjmpF = nullptr;
253 // __cxa_find_matching_catch_N functions.
254 // Indexed by the number of clauses in an original landingpad instruction.
255 DenseMap<int, Function *> FindMatchingCatches;
256 // Map of <function signature string, invoke_ wrappers>
257 StringMap<Function *> InvokeWrappers;
258 // Set of whitelisted function names for exception handling
259 std::set<std::string> EHWhitelistSet;
261 StringRef getPassName() const override {
262 return "WebAssembly Lower Emscripten Exceptions";
265 bool runEHOnFunction(Function &F);
266 bool runSjLjOnFunction(Function &F);
267 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
269 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
270 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
271 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
272 Value *&LongjmpResult, BasicBlock *&EndBB);
273 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
275 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
276 bool canLongjmp(Module &M, const Value *Callee) const;
278 void rebuildSSA(Function &F);
280 public:
281 static char ID;
283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
285 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
287 bool runOnModule(Module &M) override;
289 void getAnalysisUsage(AnalysisUsage &AU) const override {
290 AU.addRequired<DominatorTreeWrapperPass>();
293 } // End anonymous namespace
295 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
296 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
297 "llvm_eh_typeid_for";
298 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
299 "emscripten_longjmp";
300 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
301 "emscripten_longjmp_jmpbuf";
302 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
305 "__cxa_find_matching_catch_";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
308 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
309 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
310 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
311 false, false)
313 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
314 bool EnableSjLj) {
315 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
318 static bool canThrow(const Value *V) {
319 if (const auto *F = dyn_cast<const Function>(V)) {
320 // Intrinsics cannot throw
321 if (F->isIntrinsic())
322 return false;
323 StringRef Name = F->getName();
324 // leave setjmp and longjmp (mostly) alone, we process them properly later
325 if (Name == "setjmp" || Name == "longjmp")
326 return false;
327 return !F->doesNotThrow();
329 // not a function, so an indirect call - can throw, we can't tell
330 return true;
333 // Get a global variable with the given name. If it doesn't exist declare it,
334 // which will generate an import and asssumes that it will exist at link time.
335 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
336 const char *Name) {
338 auto* GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
339 if (!GV)
340 report_fatal_error(Twine("unable to create global: ") + Name);
342 return GV;
345 // Simple function name mangler.
346 // This function simply takes LLVM's string representation of parameter types
347 // and concatenate them with '_'. There are non-alphanumeric characters but llc
348 // is ok with it, and we need to postprocess these names after the lowering
349 // phase anyway.
350 static std::string getSignature(FunctionType *FTy) {
351 std::string Sig;
352 raw_string_ostream OS(Sig);
353 OS << *FTy->getReturnType();
354 for (Type *ParamTy : FTy->params())
355 OS << "_" << *ParamTy;
356 if (FTy->isVarArg())
357 OS << "_...";
358 Sig = OS.str();
359 Sig.erase(remove_if(Sig, isspace), Sig.end());
360 // When s2wasm parses .s file, a comma means the end of an argument. So a
361 // mangled function name can contain any character but a comma.
362 std::replace(Sig.begin(), Sig.end(), ',', '.');
363 return Sig;
366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367 // This is because a landingpad instruction contains two more arguments, a
368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
369 // functions are named after the number of arguments in the original landingpad
370 // instruction.
371 Function *
372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
373 unsigned NumClauses) {
374 if (FindMatchingCatches.count(NumClauses))
375 return FindMatchingCatches[NumClauses];
376 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
377 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
378 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
379 Function *F =
380 Function::Create(FTy, GlobalValue::ExternalLinkage,
381 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
382 FindMatchingCatches[NumClauses] = F;
383 return F;
386 // Generate invoke wrapper seqence with preamble and postamble
387 // Preamble:
388 // __THREW__ = 0;
389 // Postamble:
390 // %__THREW__.val = __THREW__; __THREW__ = 0;
391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
392 // whether longjmp occurred), for future use.
393 template <typename CallOrInvoke>
394 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
395 LLVMContext &C = CI->getModule()->getContext();
397 // If we are calling a function that is noreturn, we must remove that
398 // attribute. The code we insert here does expect it to return, after we
399 // catch the exception.
400 if (CI->doesNotReturn()) {
401 if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
402 F->removeFnAttr(Attribute::NoReturn);
403 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
406 IRBuilder<> IRB(C);
407 IRB.SetInsertPoint(CI);
409 // Pre-invoke
410 // __THREW__ = 0;
411 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
413 // Invoke function wrapper in JavaScript
414 SmallVector<Value *, 16> Args;
415 // Put the pointer to the callee as first argument, so it can be called
416 // within the invoke wrapper later
417 Args.push_back(CI->getCalledValue());
418 Args.append(CI->arg_begin(), CI->arg_end());
419 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
420 NewCall->takeName(CI);
421 NewCall->setCallingConv(CI->getCallingConv());
422 NewCall->setDebugLoc(CI->getDebugLoc());
424 // Because we added the pointer to the callee as first argument, all
425 // argument attribute indices have to be incremented by one.
426 SmallVector<AttributeSet, 8> ArgAttributes;
427 const AttributeList &InvokeAL = CI->getAttributes();
429 // No attributes for the callee pointer.
430 ArgAttributes.push_back(AttributeSet());
431 // Copy the argument attributes from the original
432 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
433 ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
435 // Reconstruct the AttributesList based on the vector we constructed.
436 AttributeList NewCallAL =
437 AttributeList::get(C, InvokeAL.getFnAttributes(),
438 InvokeAL.getRetAttributes(), ArgAttributes);
439 NewCall->setAttributes(NewCallAL);
441 CI->replaceAllUsesWith(NewCall);
443 // Post-invoke
444 // %__THREW__.val = __THREW__; __THREW__ = 0;
445 Value *Threw =
446 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
447 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
448 return Threw;
451 // Get matching invoke wrapper based on callee signature
452 template <typename CallOrInvoke>
453 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
454 Module *M = CI->getModule();
455 SmallVector<Type *, 16> ArgTys;
456 Value *Callee = CI->getCalledValue();
457 FunctionType *CalleeFTy;
458 if (auto *F = dyn_cast<Function>(Callee))
459 CalleeFTy = F->getFunctionType();
460 else {
461 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
462 CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
465 std::string Sig = getSignature(CalleeFTy);
466 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
467 return InvokeWrappers[Sig];
469 // Put the pointer to the callee as first argument
470 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
471 // Add argument types
472 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
474 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
475 CalleeFTy->isVarArg());
476 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
477 InvokePrefix + Sig, M);
478 InvokeWrappers[Sig] = F;
479 return F;
482 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
483 const Value *Callee) const {
484 if (auto *CalleeF = dyn_cast<Function>(Callee))
485 if (CalleeF->isIntrinsic())
486 return false;
488 // Attempting to transform inline assembly will result in something like:
489 // call void @__invoke_void(void ()* asm ...)
490 // which is invalid because inline assembly blocks do not have addresses
491 // and can't be passed by pointer. The result is a crash with illegal IR.
492 if (isa<InlineAsm>(Callee))
493 return false;
495 // The reason we include malloc/free here is to exclude the malloc/free
496 // calls generated in setjmp prep / cleanup routines.
497 Function *SetjmpF = M.getFunction("setjmp");
498 Function *MallocF = M.getFunction("malloc");
499 Function *FreeF = M.getFunction("free");
500 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
501 return false;
503 // There are functions in JS glue code
504 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
505 Callee == TestSetjmpF)
506 return false;
508 // __cxa_find_matching_catch_N functions cannot longjmp
509 if (Callee->getName().startswith(FindMatchingCatchPrefix))
510 return false;
512 // Exception-catching related functions
513 Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
514 Function *EndCatchF = M.getFunction("__cxa_end_catch");
515 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
516 Function *ThrowF = M.getFunction("__cxa_throw");
517 Function *TerminateF = M.getFunction("__clang_call_terminate");
518 if (Callee == BeginCatchF || Callee == EndCatchF ||
519 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
520 Callee == GetTempRet0Func || Callee == SetTempRet0Func)
521 return false;
523 // Otherwise we don't know
524 return true;
527 // Generate testSetjmp function call seqence with preamble and postamble.
528 // The code this generates is equivalent to the following JavaScript code:
529 // if (%__THREW__.val != 0 & threwValue != 0) {
530 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
531 // if (%label == 0)
532 // emscripten_longjmp(%__THREW__.val, threwValue);
533 // setTempRet0(threwValue);
534 // } else {
535 // %label = -1;
536 // }
537 // %longjmp_result = getTempRet0();
539 // As output parameters. returns %label, %longjmp_result, and the BB the last
540 // instruction (%longjmp_result = ...) is in.
541 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
542 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
543 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
544 BasicBlock *&EndBB) {
545 Function *F = BB->getParent();
546 LLVMContext &C = BB->getModule()->getContext();
547 IRBuilder<> IRB(C);
548 IRB.SetInsertPoint(InsertPt);
550 // if (%__THREW__.val != 0 & threwValue != 0)
551 IRB.SetInsertPoint(BB);
552 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
553 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
554 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
555 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
556 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
557 ThrewValueGV->getName() + ".val");
558 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
559 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
560 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
562 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
563 // if (%label == 0)
564 IRB.SetInsertPoint(ThenBB1);
565 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
566 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
567 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
568 Threw->getName() + ".i32p");
569 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
570 ThrewInt->getName() + ".loaded");
571 Value *ThenLabel = IRB.CreateCall(
572 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
573 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
574 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
576 // emscripten_longjmp(%__THREW__.val, threwValue);
577 IRB.SetInsertPoint(ThenBB2);
578 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
579 IRB.CreateUnreachable();
581 // setTempRet0(threwValue);
582 IRB.SetInsertPoint(EndBB2);
583 IRB.CreateCall(SetTempRet0Func, ThrewValue);
584 IRB.CreateBr(EndBB1);
586 IRB.SetInsertPoint(ElseBB1);
587 IRB.CreateBr(EndBB1);
589 // longjmp_result = getTempRet0();
590 IRB.SetInsertPoint(EndBB1);
591 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
592 LabelPHI->addIncoming(ThenLabel, EndBB2);
594 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
596 // Output parameter assignment
597 Label = LabelPHI;
598 EndBB = EndBB1;
599 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
602 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
603 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
604 DT.recalculate(F); // CFG has been changed
605 SSAUpdater SSA;
606 for (BasicBlock &BB : F) {
607 for (Instruction &I : BB) {
608 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
609 Use &U = *UI;
610 ++UI;
611 SSA.Initialize(I.getType(), I.getName());
612 SSA.AddAvailableValue(&BB, &I);
613 auto *User = cast<Instruction>(U.getUser());
614 if (User->getParent() == &BB)
615 continue;
617 if (auto *UserPN = dyn_cast<PHINode>(User))
618 if (UserPN->getIncomingBlock(U) == &BB)
619 continue;
621 if (DT.dominates(&I, User))
622 continue;
623 SSA.RewriteUseAfterInsertions(U);
629 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
630 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
632 LLVMContext &C = M.getContext();
633 IRBuilder<> IRB(C);
635 Function *SetjmpF = M.getFunction("setjmp");
636 Function *LongjmpF = M.getFunction("longjmp");
637 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
638 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
639 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
641 // Declare (or get) global variables __THREW__, __threwValue, and
642 // getTempRet0/setTempRet0 function which are used in common for both
643 // exception handling and setjmp/longjmp handling
644 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
645 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
646 GetTempRet0Func =
647 Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
648 GlobalValue::ExternalLinkage, "getTempRet0", &M);
649 SetTempRet0Func = Function::Create(
650 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
651 GlobalValue::ExternalLinkage, "setTempRet0", &M);
652 GetTempRet0Func->setDoesNotThrow();
653 SetTempRet0Func->setDoesNotThrow();
655 bool Changed = false;
657 // Exception handling
658 if (EnableEH) {
659 // Register __resumeException function
660 FunctionType *ResumeFTy =
661 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
662 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
663 ResumeFName, &M);
665 // Register llvm_eh_typeid_for function
666 FunctionType *EHTypeIDTy =
667 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
668 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
669 EHTypeIDFName, &M);
671 for (Function &F : M) {
672 if (F.isDeclaration())
673 continue;
674 Changed |= runEHOnFunction(F);
678 // Setjmp/longjmp handling
679 if (DoSjLj) {
680 Changed = true; // We have setjmp or longjmp somewhere
682 if (LongjmpF) {
683 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
684 // defined in JS code
685 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
686 GlobalValue::ExternalLinkage,
687 EmLongjmpJmpbufFName, &M);
689 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
692 if (SetjmpF) {
693 // Register saveSetjmp function
694 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
695 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
696 IRB.getInt32Ty(), Type::getInt32PtrTy(C),
697 IRB.getInt32Ty()};
698 FunctionType *FTy =
699 FunctionType::get(Type::getInt32PtrTy(C), Params, false);
700 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
701 SaveSetjmpFName, &M);
703 // Register testSetjmp function
704 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
705 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
706 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
707 TestSetjmpFName, &M);
709 FTy = FunctionType::get(IRB.getVoidTy(),
710 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
711 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
712 EmLongjmpFName, &M);
714 // Only traverse functions that uses setjmp in order not to insert
715 // unnecessary prep / cleanup code in every function
716 SmallPtrSet<Function *, 8> SetjmpUsers;
717 for (User *U : SetjmpF->users()) {
718 auto *UI = cast<Instruction>(U);
719 SetjmpUsers.insert(UI->getFunction());
721 for (Function *F : SetjmpUsers)
722 runSjLjOnFunction(*F);
726 if (!Changed) {
727 // Delete unused global variables and functions
728 if (ResumeF)
729 ResumeF->eraseFromParent();
730 if (EHTypeIDF)
731 EHTypeIDF->eraseFromParent();
732 if (EmLongjmpF)
733 EmLongjmpF->eraseFromParent();
734 if (SaveSetjmpF)
735 SaveSetjmpF->eraseFromParent();
736 if (TestSetjmpF)
737 TestSetjmpF->eraseFromParent();
738 return false;
741 return true;
744 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
745 Module &M = *F.getParent();
746 LLVMContext &C = F.getContext();
747 IRBuilder<> IRB(C);
748 bool Changed = false;
749 SmallVector<Instruction *, 64> ToErase;
750 SmallPtrSet<LandingPadInst *, 32> LandingPads;
751 bool AllowExceptions =
752 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
754 for (BasicBlock &BB : F) {
755 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
756 if (!II)
757 continue;
758 Changed = true;
759 LandingPads.insert(II->getLandingPadInst());
760 IRB.SetInsertPoint(II);
762 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
763 if (NeedInvoke) {
764 // Wrap invoke with invoke wrapper and generate preamble/postamble
765 Value *Threw = wrapInvoke(II);
766 ToErase.push_back(II);
768 // Insert a branch based on __THREW__ variable
769 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
770 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
772 } else {
773 // This can't throw, and we don't need this invoke, just replace it with a
774 // call+branch
775 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
776 CallInst *NewCall =
777 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
778 NewCall->takeName(II);
779 NewCall->setCallingConv(II->getCallingConv());
780 NewCall->setDebugLoc(II->getDebugLoc());
781 NewCall->setAttributes(II->getAttributes());
782 II->replaceAllUsesWith(NewCall);
783 ToErase.push_back(II);
785 IRB.CreateBr(II->getNormalDest());
787 // Remove any PHI node entries from the exception destination
788 II->getUnwindDest()->removePredecessor(&BB);
792 // Process resume instructions
793 for (BasicBlock &BB : F) {
794 // Scan the body of the basic block for resumes
795 for (Instruction &I : BB) {
796 auto *RI = dyn_cast<ResumeInst>(&I);
797 if (!RI)
798 continue;
800 // Split the input into legal values
801 Value *Input = RI->getValue();
802 IRB.SetInsertPoint(RI);
803 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
804 // Create a call to __resumeException function
805 IRB.CreateCall(ResumeF, {Low});
806 // Add a terminator to the block
807 IRB.CreateUnreachable();
808 ToErase.push_back(RI);
812 // Process llvm.eh.typeid.for intrinsics
813 for (BasicBlock &BB : F) {
814 for (Instruction &I : BB) {
815 auto *CI = dyn_cast<CallInst>(&I);
816 if (!CI)
817 continue;
818 const Function *Callee = CI->getCalledFunction();
819 if (!Callee)
820 continue;
821 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
822 continue;
824 IRB.SetInsertPoint(CI);
825 CallInst *NewCI =
826 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
827 CI->replaceAllUsesWith(NewCI);
828 ToErase.push_back(CI);
832 // Look for orphan landingpads, can occur in blocks with no predecessors
833 for (BasicBlock &BB : F) {
834 Instruction *I = BB.getFirstNonPHI();
835 if (auto *LPI = dyn_cast<LandingPadInst>(I))
836 LandingPads.insert(LPI);
839 // Handle all the landingpad for this function together, as multiple invokes
840 // may share a single lp
841 for (LandingPadInst *LPI : LandingPads) {
842 IRB.SetInsertPoint(LPI);
843 SmallVector<Value *, 16> FMCArgs;
844 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
845 Constant *Clause = LPI->getClause(I);
846 // As a temporary workaround for the lack of aggregate varargs support
847 // in the interface between JS and wasm, break out filter operands into
848 // their component elements.
849 if (LPI->isFilter(I)) {
850 auto *ATy = cast<ArrayType>(Clause->getType());
851 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
852 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
853 FMCArgs.push_back(EV);
855 } else
856 FMCArgs.push_back(Clause);
859 // Create a call to __cxa_find_matching_catch_N function
860 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
861 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
862 Value *Undef = UndefValue::get(LPI->getType());
863 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
864 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
865 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
867 LPI->replaceAllUsesWith(Pair1);
868 ToErase.push_back(LPI);
871 // Erase everything we no longer need in this function
872 for (Instruction *I : ToErase)
873 I->eraseFromParent();
875 return Changed;
878 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
879 Module &M = *F.getParent();
880 LLVMContext &C = F.getContext();
881 IRBuilder<> IRB(C);
882 SmallVector<Instruction *, 64> ToErase;
883 // Vector of %setjmpTable values
884 std::vector<Instruction *> SetjmpTableInsts;
885 // Vector of %setjmpTableSize values
886 std::vector<Instruction *> SetjmpTableSizeInsts;
888 // Setjmp preparation
890 // This instruction effectively means %setjmpTableSize = 4.
891 // We create this as an instruction intentionally, and we don't want to fold
892 // this instruction to a constant 4, because this value will be used in
893 // SSAUpdater.AddAvailableValue(...) later.
894 BasicBlock &EntryBB = F.getEntryBlock();
895 BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
896 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
897 &*EntryBB.getFirstInsertionPt());
898 // setjmpTable = (int *) malloc(40);
899 Instruction *SetjmpTable = CallInst::CreateMalloc(
900 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
901 nullptr, nullptr, "setjmpTable");
902 // setjmpTable[0] = 0;
903 IRB.SetInsertPoint(SetjmpTableSize);
904 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
905 SetjmpTableInsts.push_back(SetjmpTable);
906 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
908 // Setjmp transformation
909 std::vector<PHINode *> SetjmpRetPHIs;
910 Function *SetjmpF = M.getFunction("setjmp");
911 for (User *U : SetjmpF->users()) {
912 auto *CI = dyn_cast<CallInst>(U);
913 if (!CI)
914 report_fatal_error("Does not support indirect calls to setjmp");
916 BasicBlock *BB = CI->getParent();
917 if (BB->getParent() != &F) // in other function
918 continue;
920 // The tail is everything right after the call, and will be reached once
921 // when setjmp is called, and later when longjmp returns to the setjmp
922 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
923 // Add a phi to the tail, which will be the output of setjmp, which
924 // indicates if this is the first call or a longjmp back. The phi directly
925 // uses the right value based on where we arrive from
926 IRB.SetInsertPoint(Tail->getFirstNonPHI());
927 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
929 // setjmp initial call returns 0
930 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
931 // The proper output is now this, not the setjmp call itself
932 CI->replaceAllUsesWith(SetjmpRet);
933 // longjmp returns to the setjmp will add themselves to this phi
934 SetjmpRetPHIs.push_back(SetjmpRet);
936 // Fix call target
937 // Our index in the function is our place in the array + 1 to avoid index
938 // 0, because index 0 means the longjmp is not ours to handle.
939 IRB.SetInsertPoint(CI);
940 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
941 SetjmpTable, SetjmpTableSize};
942 Instruction *NewSetjmpTable =
943 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
944 Instruction *NewSetjmpTableSize =
945 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
946 SetjmpTableInsts.push_back(NewSetjmpTable);
947 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
948 ToErase.push_back(CI);
951 // Update each call that can longjmp so it can return to a setjmp where
952 // relevant.
954 // Because we are creating new BBs while processing and don't want to make
955 // all these newly created BBs candidates again for longjmp processing, we
956 // first make the vector of candidate BBs.
957 std::vector<BasicBlock *> BBs;
958 for (BasicBlock &BB : F)
959 BBs.push_back(&BB);
961 // BBs.size() will change within the loop, so we query it every time
962 for (unsigned I = 0; I < BBs.size(); I++) {
963 BasicBlock *BB = BBs[I];
964 for (Instruction &I : *BB) {
965 assert(!isa<InvokeInst>(&I));
966 auto *CI = dyn_cast<CallInst>(&I);
967 if (!CI)
968 continue;
970 const Value *Callee = CI->getCalledValue();
971 if (!canLongjmp(M, Callee))
972 continue;
974 Value *Threw = nullptr;
975 BasicBlock *Tail;
976 if (Callee->getName().startswith(InvokePrefix)) {
977 // If invoke wrapper has already been generated for this call in
978 // previous EH phase, search for the load instruction
979 // %__THREW__.val = __THREW__;
980 // in postamble after the invoke wrapper call
981 LoadInst *ThrewLI = nullptr;
982 StoreInst *ThrewResetSI = nullptr;
983 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
984 I != IE; ++I) {
985 if (auto *LI = dyn_cast<LoadInst>(I))
986 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
987 if (GV == ThrewGV) {
988 Threw = ThrewLI = LI;
989 break;
992 // Search for the store instruction after the load above
993 // __THREW__ = 0;
994 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
995 I != IE; ++I) {
996 if (auto *SI = dyn_cast<StoreInst>(I))
997 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
998 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
999 ThrewResetSI = SI;
1000 break;
1003 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1004 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1005 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1007 } else {
1008 // Wrap call with invoke wrapper and generate preamble/postamble
1009 Threw = wrapInvoke(CI);
1010 ToErase.push_back(CI);
1011 Tail = SplitBlock(BB, CI->getNextNode());
1014 // We need to replace the terminator in Tail - SplitBlock makes BB go
1015 // straight to Tail, we need to check if a longjmp occurred, and go to the
1016 // right setjmp-tail if so
1017 ToErase.push_back(BB->getTerminator());
1019 // Generate a function call to testSetjmp function and preamble/postamble
1020 // code to figure out (1) whether longjmp occurred (2) if longjmp
1021 // occurred, which setjmp it corresponds to
1022 Value *Label = nullptr;
1023 Value *LongjmpResult = nullptr;
1024 BasicBlock *EndBB = nullptr;
1025 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1026 LongjmpResult, EndBB);
1027 assert(Label && LongjmpResult && EndBB);
1029 // Create switch instruction
1030 IRB.SetInsertPoint(EndBB);
1031 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1032 // -1 means no longjmp happened, continue normally (will hit the default
1033 // switch case). 0 means a longjmp that is not ours to handle, needs a
1034 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1035 // 0).
1036 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1037 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1038 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1041 // We are splitting the block here, and must continue to find other calls
1042 // in the block - which is now split. so continue to traverse in the Tail
1043 BBs.push_back(Tail);
1047 // Erase everything we no longer need in this function
1048 for (Instruction *I : ToErase)
1049 I->eraseFromParent();
1051 // Free setjmpTable buffer before each return instruction
1052 for (BasicBlock &BB : F) {
1053 Instruction *TI = BB.getTerminator();
1054 if (isa<ReturnInst>(TI))
1055 CallInst::CreateFree(SetjmpTable, TI);
1058 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1059 // (when buffer reallocation occurs)
1060 // entry:
1061 // setjmpTableSize = 4;
1062 // setjmpTable = (int *) malloc(40);
1063 // setjmpTable[0] = 0;
1064 // ...
1065 // somebb:
1066 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1067 // setjmpTableSize = getTempRet0();
1068 // So we need to make sure the SSA for these variables is valid so that every
1069 // saveSetjmp and testSetjmp calls have the correct arguments.
1070 SSAUpdater SetjmpTableSSA;
1071 SSAUpdater SetjmpTableSizeSSA;
1072 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1073 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1074 for (Instruction *I : SetjmpTableInsts)
1075 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1076 for (Instruction *I : SetjmpTableSizeInsts)
1077 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1079 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1080 UI != UE;) {
1081 // Grab the use before incrementing the iterator.
1082 Use &U = *UI;
1083 // Increment the iterator before removing the use from the list.
1084 ++UI;
1085 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1086 if (I->getParent() != &EntryBB)
1087 SetjmpTableSSA.RewriteUse(U);
1089 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1090 UI != UE;) {
1091 Use &U = *UI;
1092 ++UI;
1093 if (auto *I = dyn_cast<Instruction>(U.getUser()))
1094 if (I->getParent() != &EntryBB)
1095 SetjmpTableSizeSSA.RewriteUse(U);
1098 // Finally, our modifications to the cfg can break dominance of SSA variables.
1099 // For example, in this code,
1100 // if (x()) { .. setjmp() .. }
1101 // if (y()) { .. longjmp() .. }
1102 // We must split the longjmp block, and it can jump into the block splitted
1103 // from setjmp one. But that means that when we split the setjmp block, it's
1104 // first part no longer dominates its second part - there is a theoretically
1105 // possible control flow path where x() is false, then y() is true and we
1106 // reach the second part of the setjmp block, without ever reaching the first
1107 // part. So, we rebuild SSA form here.
1108 rebuildSSA(F);
1109 return true;