[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / X86 / MCTargetDesc / X86BaseInfo.h
blob6bd6c6cac7df1b4f7e20cfbb0e13f01b0c32366a
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone helper functions and enum definitions for
10 // the X86 target useful for the compiler back-end and the MC libraries.
11 // As such, it deliberately does not include references to LLVM core
12 // code gen types, passes, etc..
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19 #include "X86MCTargetDesc.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/Support/DataTypes.h"
22 #include "llvm/Support/ErrorHandling.h"
24 namespace llvm {
26 namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
44 /// AVX512 static rounding constants. These need to match the values in
45 /// avx512fintrin.h.
46 enum STATIC_ROUNDING {
47 TO_NEAREST_INT = 0,
48 TO_NEG_INF = 1,
49 TO_POS_INF = 2,
50 TO_ZERO = 3,
51 CUR_DIRECTION = 4,
52 NO_EXC = 8
55 /// The constants to describe instr prefixes if there are
56 enum IPREFIXES {
57 IP_NO_PREFIX = 0,
58 IP_HAS_OP_SIZE = 1,
59 IP_HAS_AD_SIZE = 2,
60 IP_HAS_REPEAT_NE = 4,
61 IP_HAS_REPEAT = 8,
62 IP_HAS_LOCK = 16,
63 IP_HAS_NOTRACK = 32,
64 IP_USE_VEX3 = 64,
67 enum OperandType : unsigned {
68 /// AVX512 embedded rounding control. This should only have values 0-3.
69 OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70 OPERAND_COND_CODE,
73 // X86 specific condition code. These correspond to X86_*_COND in
74 // X86InstrInfo.td. They must be kept in synch.
75 enum CondCode {
76 COND_O = 0,
77 COND_NO = 1,
78 COND_B = 2,
79 COND_AE = 3,
80 COND_E = 4,
81 COND_NE = 5,
82 COND_BE = 6,
83 COND_A = 7,
84 COND_S = 8,
85 COND_NS = 9,
86 COND_P = 10,
87 COND_NP = 11,
88 COND_L = 12,
89 COND_GE = 13,
90 COND_LE = 14,
91 COND_G = 15,
92 LAST_VALID_COND = COND_G,
94 // Artificial condition codes. These are used by AnalyzeBranch
95 // to indicate a block terminated with two conditional branches that together
96 // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97 // which can't be represented on x86 with a single condition. These
98 // are never used in MachineInstrs and are inverses of one another.
99 COND_NE_OR_P,
100 COND_E_AND_NP,
102 COND_INVALID
104 } // end namespace X86;
106 /// X86II - This namespace holds all of the target specific flags that
107 /// instruction info tracks.
109 namespace X86II {
110 /// Target Operand Flag enum.
111 enum TOF {
112 //===------------------------------------------------------------------===//
113 // X86 Specific MachineOperand flags.
115 MO_NO_FLAG,
117 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
118 /// relocation of:
119 /// SYMBOL_LABEL + [. - PICBASELABEL]
120 MO_GOT_ABSOLUTE_ADDRESS,
122 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
123 /// immediate should get the value of the symbol minus the PIC base label:
124 /// SYMBOL_LABEL - PICBASELABEL
125 MO_PIC_BASE_OFFSET,
127 /// MO_GOT - On a symbol operand this indicates that the immediate is the
128 /// offset to the GOT entry for the symbol name from the base of the GOT.
130 /// See the X86-64 ELF ABI supplement for more details.
131 /// SYMBOL_LABEL @GOT
132 MO_GOT,
134 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
135 /// the offset to the location of the symbol name from the base of the GOT.
137 /// See the X86-64 ELF ABI supplement for more details.
138 /// SYMBOL_LABEL @GOTOFF
139 MO_GOTOFF,
141 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
142 /// offset to the GOT entry for the symbol name from the current code
143 /// location.
145 /// See the X86-64 ELF ABI supplement for more details.
146 /// SYMBOL_LABEL @GOTPCREL
147 MO_GOTPCREL,
149 /// MO_PLT - On a symbol operand this indicates that the immediate is
150 /// offset to the PLT entry of symbol name from the current code location.
152 /// See the X86-64 ELF ABI supplement for more details.
153 /// SYMBOL_LABEL @PLT
154 MO_PLT,
156 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
157 /// the offset of the GOT entry with the TLS index structure that contains
158 /// the module number and variable offset for the symbol. Used in the
159 /// general dynamic TLS access model.
161 /// See 'ELF Handling for Thread-Local Storage' for more details.
162 /// SYMBOL_LABEL @TLSGD
163 MO_TLSGD,
165 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
166 /// the offset of the GOT entry with the TLS index for the module that
167 /// contains the symbol. When this index is passed to a call to
168 /// __tls_get_addr, the function will return the base address of the TLS
169 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
171 /// See 'ELF Handling for Thread-Local Storage' for more details.
172 /// SYMBOL_LABEL @TLSLD
173 MO_TLSLD,
175 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
176 /// the offset of the GOT entry with the TLS index for the module that
177 /// contains the symbol. When this index is passed to a call to
178 /// ___tls_get_addr, the function will return the base address of the TLS
179 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
181 /// See 'ELF Handling for Thread-Local Storage' for more details.
182 /// SYMBOL_LABEL @TLSLDM
183 MO_TLSLDM,
185 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
186 /// the offset of the GOT entry with the thread-pointer offset for the
187 /// symbol. Used in the x86-64 initial exec TLS access model.
189 /// See 'ELF Handling for Thread-Local Storage' for more details.
190 /// SYMBOL_LABEL @GOTTPOFF
191 MO_GOTTPOFF,
193 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
194 /// the absolute address of the GOT entry with the negative thread-pointer
195 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
196 /// model.
198 /// See 'ELF Handling for Thread-Local Storage' for more details.
199 /// SYMBOL_LABEL @INDNTPOFF
200 MO_INDNTPOFF,
202 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
203 /// the thread-pointer offset for the symbol. Used in the x86-64 local
204 /// exec TLS access model.
206 /// See 'ELF Handling for Thread-Local Storage' for more details.
207 /// SYMBOL_LABEL @TPOFF
208 MO_TPOFF,
210 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
211 /// the offset of the GOT entry with the TLS offset of the symbol. Used
212 /// in the local dynamic TLS access model.
214 /// See 'ELF Handling for Thread-Local Storage' for more details.
215 /// SYMBOL_LABEL @DTPOFF
216 MO_DTPOFF,
218 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
219 /// the negative thread-pointer offset for the symbol. Used in the IA32
220 /// local exec TLS access model.
222 /// See 'ELF Handling for Thread-Local Storage' for more details.
223 /// SYMBOL_LABEL @NTPOFF
224 MO_NTPOFF,
226 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
227 /// the offset of the GOT entry with the negative thread-pointer offset for
228 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
230 /// See 'ELF Handling for Thread-Local Storage' for more details.
231 /// SYMBOL_LABEL @GOTNTPOFF
232 MO_GOTNTPOFF,
234 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
235 /// reference is actually to the "__imp_FOO" symbol. This is used for
236 /// dllimport linkage on windows.
237 MO_DLLIMPORT,
239 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
240 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
241 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
242 MO_DARWIN_NONLAZY,
244 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
245 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
246 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
247 MO_DARWIN_NONLAZY_PIC_BASE,
249 /// MO_TLVP - On a symbol operand this indicates that the immediate is
250 /// some TLS offset.
252 /// This is the TLS offset for the Darwin TLS mechanism.
253 MO_TLVP,
255 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
256 /// is some TLS offset from the picbase.
258 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
259 MO_TLVP_PIC_BASE,
261 /// MO_SECREL - On a symbol operand this indicates that the immediate is
262 /// the offset from beginning of section.
264 /// This is the TLS offset for the COFF/Windows TLS mechanism.
265 MO_SECREL,
267 /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
268 /// to be an absolute symbol in range [0,128), so we can use the @ABS8
269 /// symbol modifier.
270 MO_ABS8,
272 /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
273 /// reference is actually to the ".refptr.FOO" symbol. This is used for
274 /// stub symbols on windows.
275 MO_COFFSTUB,
278 enum : uint64_t {
279 //===------------------------------------------------------------------===//
280 // Instruction encodings. These are the standard/most common forms for X86
281 // instructions.
284 // PseudoFrm - This represents an instruction that is a pseudo instruction
285 // or one that has not been implemented yet. It is illegal to code generate
286 // it, but tolerated for intermediate implementation stages.
287 Pseudo = 0,
289 /// Raw - This form is for instructions that don't have any operands, so
290 /// they are just a fixed opcode value, like 'leave'.
291 RawFrm = 1,
293 /// AddRegFrm - This form is used for instructions like 'push r32' that have
294 /// their one register operand added to their opcode.
295 AddRegFrm = 2,
297 /// RawFrmMemOffs - This form is for instructions that store an absolute
298 /// memory offset as an immediate with a possible segment override.
299 RawFrmMemOffs = 3,
301 /// RawFrmSrc - This form is for instructions that use the source index
302 /// register SI/ESI/RSI with a possible segment override.
303 RawFrmSrc = 4,
305 /// RawFrmDst - This form is for instructions that use the destination index
306 /// register DI/EDI/RDI.
307 RawFrmDst = 5,
309 /// RawFrmDstSrc - This form is for instructions that use the source index
310 /// register SI/ESI/RSI with a possible segment override, and also the
311 /// destination index register DI/EDI/RDI.
312 RawFrmDstSrc = 6,
314 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
315 /// immediates, the first of which is a 16-bit immediate (specified by
316 /// the imm encoding) and the second is a 8-bit fixed value.
317 RawFrmImm8 = 7,
319 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
320 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
321 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
322 /// manual, this operand is described as pntr16:32 and pntr16:16
323 RawFrmImm16 = 8,
325 /// AddCCFrm - This form is used for Jcc that encode the condition code
326 /// in the lower 4 bits of the opcode.
327 AddCCFrm = 9,
329 /// MRM[0-7][rm] - These forms are used to represent instructions that use
330 /// a Mod/RM byte, and use the middle field to hold extended opcode
331 /// information. In the intel manual these are represented as /0, /1, ...
334 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
335 /// to specify a destination, which in this case is memory.
337 MRMDestMem = 32,
339 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
340 /// to specify a source, which in this case is memory.
342 MRMSrcMem = 33,
344 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
345 /// operand 3 with VEX.VVVV and load from memory.
347 MRMSrcMem4VOp3 = 34,
349 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
350 /// byte to specify the fourth source, which in this case is memory.
352 MRMSrcMemOp4 = 35,
354 /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
355 /// byte to specify the operands and also encodes a condition code.
357 MRMSrcMemCC = 36,
359 /// MRMXm - This form is used for instructions that use the Mod/RM byte
360 /// to specify a memory source, but doesn't use the middle field. And has
361 /// a condition code.
363 MRMXmCC = 38,
365 /// MRMXm - This form is used for instructions that use the Mod/RM byte
366 /// to specify a memory source, but doesn't use the middle field.
368 MRMXm = 39,
370 // Next, instructions that operate on a memory r/m operand...
371 MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
372 MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
374 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
375 /// to specify a destination, which in this case is a register.
377 MRMDestReg = 48,
379 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
380 /// to specify a source, which in this case is a register.
382 MRMSrcReg = 49,
384 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
385 /// operand 3 with VEX.VVVV and do not load from memory.
387 MRMSrcReg4VOp3 = 50,
389 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
390 /// byte to specify the fourth source, which in this case is a register.
392 MRMSrcRegOp4 = 51,
394 /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
395 /// byte to specify the operands and also encodes a condition code
397 MRMSrcRegCC = 52,
399 /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
400 /// to specify a register source, but doesn't use the middle field. And has
401 /// a condition code.
403 MRMXrCC = 54,
405 /// MRMXr - This form is used for instructions that use the Mod/RM byte
406 /// to specify a register source, but doesn't use the middle field.
408 MRMXr = 55,
410 // Instructions that operate on a register r/m operand...
411 MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
412 MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
414 /// MRM_XX - A mod/rm byte of exactly 0xXX.
415 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
416 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
417 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
418 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
419 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
420 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
421 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
422 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
423 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
424 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
425 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
426 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
427 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
428 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
429 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
430 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
432 FormMask = 127,
434 //===------------------------------------------------------------------===//
435 // Actual flags...
437 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
438 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
439 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
440 // prefix in 16-bit mode.
441 OpSizeShift = 7,
442 OpSizeMask = 0x3 << OpSizeShift,
444 OpSizeFixed = 0 << OpSizeShift,
445 OpSize16 = 1 << OpSizeShift,
446 OpSize32 = 2 << OpSizeShift,
448 // AsSize - AdSizeX implies this instruction determines its need of 0x67
449 // prefix from a normal ModRM memory operand. The other types indicate that
450 // an operand is encoded with a specific width and a prefix is needed if
451 // it differs from the current mode.
452 AdSizeShift = OpSizeShift + 2,
453 AdSizeMask = 0x3 << AdSizeShift,
455 AdSizeX = 0 << AdSizeShift,
456 AdSize16 = 1 << AdSizeShift,
457 AdSize32 = 2 << AdSizeShift,
458 AdSize64 = 3 << AdSizeShift,
460 //===------------------------------------------------------------------===//
461 // OpPrefix - There are several prefix bytes that are used as opcode
462 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
463 // no prefix.
465 OpPrefixShift = AdSizeShift + 2,
466 OpPrefixMask = 0x3 << OpPrefixShift,
468 // PD - Prefix code for packed double precision vector floating point
469 // operations performed in the SSE registers.
470 PD = 1 << OpPrefixShift,
472 // XS, XD - These prefix codes are for single and double precision scalar
473 // floating point operations performed in the SSE registers.
474 XS = 2 << OpPrefixShift, XD = 3 << OpPrefixShift,
476 //===------------------------------------------------------------------===//
477 // OpMap - This field determines which opcode map this instruction
478 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
480 OpMapShift = OpPrefixShift + 2,
481 OpMapMask = 0x7 << OpMapShift,
483 // OB - OneByte - Set if this instruction has a one byte opcode.
484 OB = 0 << OpMapShift,
486 // TB - TwoByte - Set if this instruction has a two byte opcode, which
487 // starts with a 0x0F byte before the real opcode.
488 TB = 1 << OpMapShift,
490 // T8, TA - Prefix after the 0x0F prefix.
491 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
493 // XOP8 - Prefix to include use of imm byte.
494 XOP8 = 4 << OpMapShift,
496 // XOP9 - Prefix to exclude use of imm byte.
497 XOP9 = 5 << OpMapShift,
499 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
500 XOPA = 6 << OpMapShift,
502 /// ThreeDNow - This indicates that the instruction uses the
503 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
504 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
505 /// storing a classifier in the imm8 field. To simplify our implementation,
506 /// we handle this by storeing the classifier in the opcode field and using
507 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
508 ThreeDNow = 7 << OpMapShift,
510 //===------------------------------------------------------------------===//
511 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
512 // They are used to specify GPRs and SSE registers, 64-bit operand size,
513 // etc. We only cares about REX.W and REX.R bits and only the former is
514 // statically determined.
516 REXShift = OpMapShift + 3,
517 REX_W = 1 << REXShift,
519 //===------------------------------------------------------------------===//
520 // This three-bit field describes the size of an immediate operand. Zero is
521 // unused so that we can tell if we forgot to set a value.
522 ImmShift = REXShift + 1,
523 ImmMask = 15 << ImmShift,
524 Imm8 = 1 << ImmShift,
525 Imm8PCRel = 2 << ImmShift,
526 Imm8Reg = 3 << ImmShift,
527 Imm16 = 4 << ImmShift,
528 Imm16PCRel = 5 << ImmShift,
529 Imm32 = 6 << ImmShift,
530 Imm32PCRel = 7 << ImmShift,
531 Imm32S = 8 << ImmShift,
532 Imm64 = 9 << ImmShift,
534 //===------------------------------------------------------------------===//
535 // FP Instruction Classification... Zero is non-fp instruction.
537 // FPTypeMask - Mask for all of the FP types...
538 FPTypeShift = ImmShift + 4,
539 FPTypeMask = 7 << FPTypeShift,
541 // NotFP - The default, set for instructions that do not use FP registers.
542 NotFP = 0 << FPTypeShift,
544 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
545 ZeroArgFP = 1 << FPTypeShift,
547 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
548 OneArgFP = 2 << FPTypeShift,
550 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
551 // result back to ST(0). For example, fcos, fsqrt, etc.
553 OneArgFPRW = 3 << FPTypeShift,
555 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
556 // explicit argument, storing the result to either ST(0) or the implicit
557 // argument. For example: fadd, fsub, fmul, etc...
558 TwoArgFP = 4 << FPTypeShift,
560 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
561 // explicit argument, but have no destination. Example: fucom, fucomi, ...
562 CompareFP = 5 << FPTypeShift,
564 // CondMovFP - "2 operand" floating point conditional move instructions.
565 CondMovFP = 6 << FPTypeShift,
567 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
568 SpecialFP = 7 << FPTypeShift,
570 // Lock prefix
571 LOCKShift = FPTypeShift + 3,
572 LOCK = 1 << LOCKShift,
574 // REP prefix
575 REPShift = LOCKShift + 1,
576 REP = 1 << REPShift,
578 // Execution domain for SSE instructions.
579 // 0 means normal, non-SSE instruction.
580 SSEDomainShift = REPShift + 1,
582 // Encoding
583 EncodingShift = SSEDomainShift + 2,
584 EncodingMask = 0x3 << EncodingShift,
586 // VEX - encoding using 0xC4/0xC5
587 VEX = 1 << EncodingShift,
589 /// XOP - Opcode prefix used by XOP instructions.
590 XOP = 2 << EncodingShift,
592 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
593 // syntax support up to 32 512-bit register operands and up to 7 16-bit
594 // mask operands as well as source operand data swizzling/memory operand
595 // conversion, eviction hint, and rounding mode.
596 EVEX = 3 << EncodingShift,
598 // Opcode
599 OpcodeShift = EncodingShift + 2,
601 /// VEX_W - Has a opcode specific functionality, but is used in the same
602 /// way as REX_W is for regular SSE instructions.
603 VEX_WShift = OpcodeShift + 8,
604 VEX_W = 1ULL << VEX_WShift,
606 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
607 /// address instructions in SSE are represented as 3 address ones in AVX
608 /// and the additional register is encoded in VEX_VVVV prefix.
609 VEX_4VShift = VEX_WShift + 1,
610 VEX_4V = 1ULL << VEX_4VShift,
612 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
613 /// instruction uses 256-bit wide registers. This is usually auto detected
614 /// if a VR256 register is used, but some AVX instructions also have this
615 /// field marked when using a f256 memory references.
616 VEX_LShift = VEX_4VShift + 1,
617 VEX_L = 1ULL << VEX_LShift,
619 // EVEX_K - Set if this instruction requires masking
620 EVEX_KShift = VEX_LShift + 1,
621 EVEX_K = 1ULL << EVEX_KShift,
623 // EVEX_Z - Set if this instruction has EVEX.Z field set.
624 EVEX_ZShift = EVEX_KShift + 1,
625 EVEX_Z = 1ULL << EVEX_ZShift,
627 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
628 EVEX_L2Shift = EVEX_ZShift + 1,
629 EVEX_L2 = 1ULL << EVEX_L2Shift,
631 // EVEX_B - Set if this instruction has EVEX.B field set.
632 EVEX_BShift = EVEX_L2Shift + 1,
633 EVEX_B = 1ULL << EVEX_BShift,
635 // The scaling factor for the AVX512's 8-bit compressed displacement.
636 CD8_Scale_Shift = EVEX_BShift + 1,
637 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
639 /// Explicitly specified rounding control
640 EVEX_RCShift = CD8_Scale_Shift + 7,
641 EVEX_RC = 1ULL << EVEX_RCShift,
643 // NOTRACK prefix
644 NoTrackShift = EVEX_RCShift + 1,
645 NOTRACK = 1ULL << NoTrackShift
648 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
649 // specified machine instruction.
651 inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
652 return TSFlags >> X86II::OpcodeShift;
655 inline bool hasImm(uint64_t TSFlags) {
656 return (TSFlags & X86II::ImmMask) != 0;
659 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
660 /// of the specified instruction.
661 inline unsigned getSizeOfImm(uint64_t TSFlags) {
662 switch (TSFlags & X86II::ImmMask) {
663 default: llvm_unreachable("Unknown immediate size");
664 case X86II::Imm8:
665 case X86II::Imm8PCRel:
666 case X86II::Imm8Reg: return 1;
667 case X86II::Imm16:
668 case X86II::Imm16PCRel: return 2;
669 case X86II::Imm32:
670 case X86II::Imm32S:
671 case X86II::Imm32PCRel: return 4;
672 case X86II::Imm64: return 8;
676 /// isImmPCRel - Return true if the immediate of the specified instruction's
677 /// TSFlags indicates that it is pc relative.
678 inline unsigned isImmPCRel(uint64_t TSFlags) {
679 switch (TSFlags & X86II::ImmMask) {
680 default: llvm_unreachable("Unknown immediate size");
681 case X86II::Imm8PCRel:
682 case X86II::Imm16PCRel:
683 case X86II::Imm32PCRel:
684 return true;
685 case X86II::Imm8:
686 case X86II::Imm8Reg:
687 case X86II::Imm16:
688 case X86II::Imm32:
689 case X86II::Imm32S:
690 case X86II::Imm64:
691 return false;
695 /// isImmSigned - Return true if the immediate of the specified instruction's
696 /// TSFlags indicates that it is signed.
697 inline unsigned isImmSigned(uint64_t TSFlags) {
698 switch (TSFlags & X86II::ImmMask) {
699 default: llvm_unreachable("Unknown immediate signedness");
700 case X86II::Imm32S:
701 return true;
702 case X86II::Imm8:
703 case X86II::Imm8PCRel:
704 case X86II::Imm8Reg:
705 case X86II::Imm16:
706 case X86II::Imm16PCRel:
707 case X86II::Imm32:
708 case X86II::Imm32PCRel:
709 case X86II::Imm64:
710 return false;
714 /// getOperandBias - compute whether all of the def operands are repeated
715 /// in the uses and therefore should be skipped.
716 /// This determines the start of the unique operand list. We need to determine
717 /// if all of the defs have a corresponding tied operand in the uses.
718 /// Unfortunately, the tied operand information is encoded in the uses not
719 /// the defs so we have to use some heuristics to find which operands to
720 /// query.
721 inline unsigned getOperandBias(const MCInstrDesc& Desc) {
722 unsigned NumDefs = Desc.getNumDefs();
723 unsigned NumOps = Desc.getNumOperands();
724 switch (NumDefs) {
725 default: llvm_unreachable("Unexpected number of defs");
726 case 0:
727 return 0;
728 case 1:
729 // Common two addr case.
730 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
731 return 1;
732 // Check for AVX-512 scatter which has a TIED_TO in the second to last
733 // operand.
734 if (NumOps == 8 &&
735 Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
736 return 1;
737 return 0;
738 case 2:
739 // XCHG/XADD have two destinations and two sources.
740 if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
741 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
742 return 2;
743 // Check for gather. AVX-512 has the second tied operand early. AVX2
744 // has it as the last op.
745 if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
746 (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
747 Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
748 return 2;
749 return 0;
753 /// getMemoryOperandNo - The function returns the MCInst operand # for the
754 /// first field of the memory operand. If the instruction doesn't have a
755 /// memory operand, this returns -1.
757 /// Note that this ignores tied operands. If there is a tied register which
758 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
759 /// counted as one operand.
761 inline int getMemoryOperandNo(uint64_t TSFlags) {
762 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
763 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
765 switch (TSFlags & X86II::FormMask) {
766 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
767 case X86II::Pseudo:
768 case X86II::RawFrm:
769 case X86II::AddRegFrm:
770 case X86II::RawFrmImm8:
771 case X86II::RawFrmImm16:
772 case X86II::RawFrmMemOffs:
773 case X86II::RawFrmSrc:
774 case X86II::RawFrmDst:
775 case X86II::RawFrmDstSrc:
776 case X86II::AddCCFrm:
777 return -1;
778 case X86II::MRMDestMem:
779 return 0;
780 case X86II::MRMSrcMem:
781 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
782 // mask register.
783 return 1 + HasVEX_4V + HasEVEX_K;
784 case X86II::MRMSrcMem4VOp3:
785 // Skip registers encoded in reg.
786 return 1 + HasEVEX_K;
787 case X86II::MRMSrcMemOp4:
788 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
789 return 3;
790 case X86II::MRMSrcMemCC:
791 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
792 // mask register.
793 return 1;
794 case X86II::MRMDestReg:
795 case X86II::MRMSrcReg:
796 case X86II::MRMSrcReg4VOp3:
797 case X86II::MRMSrcRegOp4:
798 case X86II::MRMSrcRegCC:
799 case X86II::MRMXrCC:
800 case X86II::MRMXr:
801 case X86II::MRM0r: case X86II::MRM1r:
802 case X86II::MRM2r: case X86II::MRM3r:
803 case X86II::MRM4r: case X86II::MRM5r:
804 case X86II::MRM6r: case X86II::MRM7r:
805 return -1;
806 case X86II::MRMXmCC:
807 case X86II::MRMXm:
808 case X86II::MRM0m: case X86II::MRM1m:
809 case X86II::MRM2m: case X86II::MRM3m:
810 case X86II::MRM4m: case X86II::MRM5m:
811 case X86II::MRM6m: case X86II::MRM7m:
812 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
813 return 0 + HasVEX_4V + HasEVEX_K;
814 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
815 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
816 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
817 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
818 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
819 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
820 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
821 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
822 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
823 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
824 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
825 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
826 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
827 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
828 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
829 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
830 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
831 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
832 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
833 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
834 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
835 case X86II::MRM_FF:
836 return -1;
840 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
841 /// higher) register? e.g. r8, xmm8, xmm13, etc.
842 inline bool isX86_64ExtendedReg(unsigned RegNo) {
843 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
844 (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
845 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
846 return true;
848 switch (RegNo) {
849 default: break;
850 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
851 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
852 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
853 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
854 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
855 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
856 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
857 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
858 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
859 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
860 case X86::DR8: case X86::DR9: case X86::DR10: case X86::DR11:
861 case X86::DR12: case X86::DR13: case X86::DR14: case X86::DR15:
862 return true;
864 return false;
867 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
868 /// registers? e.g. zmm21, etc.
869 static inline bool is32ExtendedReg(unsigned RegNo) {
870 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
871 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
872 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
876 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
877 return (reg == X86::SPL || reg == X86::BPL ||
878 reg == X86::SIL || reg == X86::DIL);
881 /// isKMasked - Is this a masked instruction.
882 inline bool isKMasked(uint64_t TSFlags) {
883 return (TSFlags & X86II::EVEX_K) != 0;
886 /// isKMergedMasked - Is this a merge masked instruction.
887 inline bool isKMergeMasked(uint64_t TSFlags) {
888 return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
892 } // end namespace llvm;
894 #endif