[ARM] MVE integer min and max
[llvm-complete.git] / lib / Target / X86 / X86FrameLowering.cpp
blobf50e91fdabe9d6b37e75345e89c2673d545989f3
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
35 using namespace llvm;
37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38 unsigned StackAlignOverride)
39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
40 STI.is64Bit() ? -8 : -4),
41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42 // Cache a bunch of frame-related predicates for this subtarget.
43 SlotSize = TRI->getSlotSize();
44 Is64Bit = STI.is64Bit();
45 IsLP64 = STI.isTarget64BitLP64();
46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48 StackPtr = TRI->getStackRegister();
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52 return !MF.getFrameInfo().hasVarSizedObjects() &&
53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified. Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62 return hasReservedCallFrame(MF) ||
63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64 TRI->hasBasePointer(MF);
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76 return MF.getFrameInfo().hasStackObjects() ||
77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register. This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84 const MachineFrameInfo &MFI = MF.getFrameInfo();
85 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86 TRI->needsStackRealignment(MF) ||
87 MFI.hasVarSizedObjects() ||
88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91 MFI.hasStackMap() || MFI.hasPatchPoint() ||
92 MFI.hasCopyImplyingStackAdjustment());
95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
96 if (IsLP64) {
97 if (isInt<8>(Imm))
98 return X86::SUB64ri8;
99 return X86::SUB64ri32;
100 } else {
101 if (isInt<8>(Imm))
102 return X86::SUB32ri8;
103 return X86::SUB32ri;
107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::ADD64ri8;
111 return X86::ADD64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::ADD32ri8;
115 return X86::ADD32ri;
119 static unsigned getSUBrrOpcode(unsigned isLP64) {
120 return isLP64 ? X86::SUB64rr : X86::SUB32rr;
123 static unsigned getADDrrOpcode(unsigned isLP64) {
124 return isLP64 ? X86::ADD64rr : X86::ADD32rr;
127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128 if (IsLP64) {
129 if (isInt<8>(Imm))
130 return X86::AND64ri8;
131 return X86::AND64ri32;
133 if (isInt<8>(Imm))
134 return X86::AND32ri8;
135 return X86::AND32ri;
138 static unsigned getLEArOpcode(unsigned IsLP64) {
139 return IsLP64 ? X86::LEA64r : X86::LEA32r;
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146 MachineBasicBlock::iterator &MBBI,
147 const X86RegisterInfo *TRI,
148 bool Is64Bit) {
149 const MachineFunction *MF = MBB.getParent();
150 if (MF->callsEHReturn())
151 return 0;
153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
155 if (MBBI == MBB.end())
156 return 0;
158 switch (MBBI->getOpcode()) {
159 default: return 0;
160 case TargetOpcode::PATCHABLE_RET:
161 case X86::RET:
162 case X86::RETL:
163 case X86::RETQ:
164 case X86::RETIL:
165 case X86::RETIQ:
166 case X86::TCRETURNdi:
167 case X86::TCRETURNri:
168 case X86::TCRETURNmi:
169 case X86::TCRETURNdi64:
170 case X86::TCRETURNri64:
171 case X86::TCRETURNmi64:
172 case X86::EH_RETURN:
173 case X86::EH_RETURN64: {
174 SmallSet<uint16_t, 8> Uses;
175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176 MachineOperand &MO = MBBI->getOperand(i);
177 if (!MO.isReg() || MO.isDef())
178 continue;
179 unsigned Reg = MO.getReg();
180 if (!Reg)
181 continue;
182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183 Uses.insert(*AI);
186 for (auto CS : AvailableRegs)
187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188 CS != X86::ESP)
189 return CS;
193 return 0;
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198 unsigned Reg = RegMask.PhysReg;
200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201 Reg == X86::AH || Reg == X86::AL)
202 return true;
205 return false;
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214 for (const MachineInstr &MI : MBB.terminators()) {
215 bool BreakNext = false;
216 for (const MachineOperand &MO : MI.operands()) {
217 if (!MO.isReg())
218 continue;
219 unsigned Reg = MO.getReg();
220 if (Reg != X86::EFLAGS)
221 continue;
223 // This terminator needs an eflags that is not defined
224 // by a previous another terminator:
225 // EFLAGS is live-in of the region composed by the terminators.
226 if (!MO.isDef())
227 return true;
228 // This terminator defines the eflags, i.e., we don't need to preserve it.
229 // However, we still need to check this specific terminator does not
230 // read a live-in value.
231 BreakNext = true;
233 // We found a definition of the eflags, no need to preserve them.
234 if (BreakNext)
235 return false;
238 // None of the terminators use or define the eflags.
239 // Check if they are live-out, that would imply we need to preserve them.
240 for (const MachineBasicBlock *Succ : MBB.successors())
241 if (Succ->isLiveIn(X86::EFLAGS))
242 return true;
244 return false;
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250 MachineBasicBlock::iterator &MBBI,
251 const DebugLoc &DL,
252 int64_t NumBytes, bool InEpilogue) const {
253 bool isSub = NumBytes < 0;
254 uint64_t Offset = isSub ? -NumBytes : NumBytes;
255 MachineInstr::MIFlag Flag =
256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
258 uint64_t Chunk = (1LL << 31) - 1;
260 if (Offset > Chunk) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
263 unsigned Reg = 0;
264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
266 if (isSub && !isEAXLiveIn(MBB))
267 Reg = Rax;
268 else
269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272 unsigned AddSubRROpc =
273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274 if (Reg) {
275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276 .addImm(Offset)
277 .setMIFlag(Flag);
278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279 .addReg(StackPtr)
280 .addReg(Reg);
281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282 return;
283 } else if (Offset > 8 * Chunk) {
284 // If we would need more than 8 add or sub instructions (a >16GB stack
285 // frame), it's worth spilling RAX to materialize this immediate.
286 // pushq %rax
287 // movabsq +-$Offset+-SlotSize, %rax
288 // addq %rsp, %rax
289 // xchg %rax, (%rsp)
290 // movq (%rsp), %rsp
291 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293 .addReg(Rax, RegState::Kill)
294 .setMIFlag(Flag);
295 // Subtract is not commutative, so negate the offset and always use add.
296 // Subtract 8 less and add 8 more to account for the PUSH we just did.
297 if (isSub)
298 Offset = -(Offset - SlotSize);
299 else
300 Offset = Offset + SlotSize;
301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302 .addImm(Offset)
303 .setMIFlag(Flag);
304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305 .addReg(Rax)
306 .addReg(StackPtr);
307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308 // Exchange the new SP in RAX with the top of the stack.
309 addRegOffset(
310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311 StackPtr, false, 0);
312 // Load new SP from the top of the stack into RSP.
313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314 StackPtr, false, 0);
315 return;
319 while (Offset) {
320 uint64_t ThisVal = std::min(Offset, Chunk);
321 if (ThisVal == SlotSize) {
322 // Use push / pop for slot sized adjustments as a size optimization. We
323 // need to find a dead register when using pop.
324 unsigned Reg = isSub
325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327 if (Reg) {
328 unsigned Opc = isSub
329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330 : (Is64Bit ? X86::POP64r : X86::POP32r);
331 BuildMI(MBB, MBBI, DL, TII.get(Opc))
332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333 .setMIFlag(Flag);
334 Offset -= ThisVal;
335 continue;
339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340 .setMIFlag(Flag);
342 Offset -= ThisVal;
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349 assert(Offset != 0 && "zero offset stack adjustment requested");
351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352 // is tricky.
353 bool UseLEA;
354 if (!InEpilogue) {
355 // Check if inserting the prologue at the beginning
356 // of MBB would require to use LEA operations.
357 // We need to use LEA operations if EFLAGS is live in, because
358 // it means an instruction will read it before it gets defined.
359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360 } else {
361 // If we can use LEA for SP but we shouldn't, check that none
362 // of the terminators uses the eflags. Otherwise we will insert
363 // a ADD that will redefine the eflags and break the condition.
364 // Alternatively, we could move the ADD, but this may not be possible
365 // and is an optimization anyway.
366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367 if (UseLEA && !STI.useLeaForSP())
368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369 // If that assert breaks, that means we do not do the right thing
370 // in canUseAsEpilogue.
371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372 "We shouldn't have allowed this insertion point");
375 MachineInstrBuilder MI;
376 if (UseLEA) {
377 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378 TII.get(getLEArOpcode(Uses64BitFramePtr)),
379 StackPtr),
380 StackPtr, false, Offset);
381 } else {
382 bool IsSub = Offset < 0;
383 uint64_t AbsOffset = IsSub ? -Offset : Offset;
384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387 .addReg(StackPtr)
388 .addImm(AbsOffset);
389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
391 return MI;
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395 MachineBasicBlock::iterator &MBBI,
396 bool doMergeWithPrevious) const {
397 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398 (!doMergeWithPrevious && MBBI == MBB.end()))
399 return 0;
401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
403 PI = skipDebugInstructionsBackward(PI, MBB.begin());
404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405 // instruction, and that there are no DBG_VALUE or other instructions between
406 // ADD/SUB/LEA and its corresponding CFI instruction.
407 /* TODO: Add support for the case where there are multiple CFI instructions
408 below the ADD/SUB/LEA, e.g.:
411 cfi_def_cfa_offset
412 cfi_offset
415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416 PI = std::prev(PI);
418 unsigned Opc = PI->getOpcode();
419 int Offset = 0;
421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423 PI->getOperand(0).getReg() == StackPtr){
424 assert(PI->getOperand(1).getReg() == StackPtr);
425 Offset = PI->getOperand(2).getImm();
426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427 PI->getOperand(0).getReg() == StackPtr &&
428 PI->getOperand(1).getReg() == StackPtr &&
429 PI->getOperand(2).getImm() == 1 &&
430 PI->getOperand(3).getReg() == X86::NoRegister &&
431 PI->getOperand(5).getReg() == X86::NoRegister) {
432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433 Offset = PI->getOperand(4).getImm();
434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436 PI->getOperand(0).getReg() == StackPtr) {
437 assert(PI->getOperand(1).getReg() == StackPtr);
438 Offset = -PI->getOperand(2).getImm();
439 } else
440 return 0;
442 PI = MBB.erase(PI);
443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444 if (!doMergeWithPrevious)
445 MBBI = skipDebugInstructionsForward(PI, MBB.end());
447 return Offset;
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451 MachineBasicBlock::iterator MBBI,
452 const DebugLoc &DL,
453 const MCCFIInstruction &CFIInst) const {
454 MachineFunction &MF = *MBB.getParent();
455 unsigned CFIIndex = MF.addFrameInst(CFIInst);
456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457 .addCFIIndex(CFIIndex);
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462 const DebugLoc &DL) const {
463 MachineFunction &MF = *MBB.getParent();
464 MachineFrameInfo &MFI = MF.getFrameInfo();
465 MachineModuleInfo &MMI = MF.getMMI();
466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
468 // Add callee saved registers to move list.
469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470 if (CSI.empty()) return;
472 // Calculate offsets.
473 for (std::vector<CalleeSavedInfo>::const_iterator
474 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476 unsigned Reg = I->getReg();
478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479 BuildCFI(MBB, MBBI, DL,
480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485 MachineBasicBlock &MBB,
486 MachineBasicBlock::iterator MBBI,
487 const DebugLoc &DL, bool InProlog) const {
488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489 if (STI.isTargetWindowsCoreCLR()) {
490 if (InProlog) {
491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492 } else {
493 emitStackProbeInline(MF, MBB, MBBI, DL, false);
495 } else {
496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501 MachineBasicBlock &PrologMBB) const {
502 const StringRef ChkStkStubSymbol = "__chkstk_stub";
503 MachineInstr *ChkStkStub = nullptr;
505 for (MachineInstr &MI : PrologMBB) {
506 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508 ChkStkStub = &MI;
509 break;
513 if (ChkStkStub != nullptr) {
514 assert(!ChkStkStub->isBundled() &&
515 "Not expecting bundled instructions here");
516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517 assert(std::prev(MBBI) == ChkStkStub &&
518 "MBBI expected after __chkstk_stub.");
519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521 ChkStkStub->eraseFromParent();
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526 MachineBasicBlock &MBB,
527 MachineBasicBlock::iterator MBBI,
528 const DebugLoc &DL,
529 bool InProlog) const {
530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531 assert(STI.is64Bit() && "different expansion needed for 32 bit");
532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533 const TargetInstrInfo &TII = *STI.getInstrInfo();
534 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
536 // RAX contains the number of bytes of desired stack adjustment.
537 // The handling here assumes this value has already been updated so as to
538 // maintain stack alignment.
540 // We need to exit with RSP modified by this amount and execute suitable
541 // page touches to notify the OS that we're growing the stack responsibly.
542 // All stack probing must be done without modifying RSP.
544 // MBB:
545 // SizeReg = RAX;
546 // ZeroReg = 0
547 // CopyReg = RSP
548 // Flags, TestReg = CopyReg - SizeReg
549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550 // LimitReg = gs magic thread env access
551 // if FinalReg >= LimitReg goto ContinueMBB
552 // RoundBB:
553 // RoundReg = page address of FinalReg
554 // LoopMBB:
555 // LoopReg = PHI(LimitReg,ProbeReg)
556 // ProbeReg = LoopReg - PageSize
557 // [ProbeReg] = 0
558 // if (ProbeReg > RoundReg) goto LoopMBB
559 // ContinueMBB:
560 // RSP = RSP - RAX
561 // [rest of original MBB]
563 // Set up the new basic blocks
564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569 MF.insert(MBBIter, RoundMBB);
570 MF.insert(MBBIter, LoopMBB);
571 MF.insert(MBBIter, ContinueMBB);
573 // Split MBB and move the tail portion down to ContinueMBB.
574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
578 // Some useful constants
579 const int64_t ThreadEnvironmentStackLimit = 0x10;
580 const int64_t PageSize = 0x1000;
581 const int64_t PageMask = ~(PageSize - 1);
583 // Registers we need. For the normal case we use virtual
584 // registers. For the prolog expansion we use RAX, RCX and RDX.
585 MachineRegisterInfo &MRI = MF.getRegInfo();
586 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587 const Register SizeReg = InProlog ? X86::RAX
588 : MRI.createVirtualRegister(RegClass),
589 ZeroReg = InProlog ? X86::RCX
590 : MRI.createVirtualRegister(RegClass),
591 CopyReg = InProlog ? X86::RDX
592 : MRI.createVirtualRegister(RegClass),
593 TestReg = InProlog ? X86::RDX
594 : MRI.createVirtualRegister(RegClass),
595 FinalReg = InProlog ? X86::RDX
596 : MRI.createVirtualRegister(RegClass),
597 RoundedReg = InProlog ? X86::RDX
598 : MRI.createVirtualRegister(RegClass),
599 LimitReg = InProlog ? X86::RCX
600 : MRI.createVirtualRegister(RegClass),
601 JoinReg = InProlog ? X86::RCX
602 : MRI.createVirtualRegister(RegClass),
603 ProbeReg = InProlog ? X86::RCX
604 : MRI.createVirtualRegister(RegClass);
606 // SP-relative offsets where we can save RCX and RDX.
607 int64_t RCXShadowSlot = 0;
608 int64_t RDXShadowSlot = 0;
610 // If inlining in the prolog, save RCX and RDX.
611 if (InProlog) {
612 // Compute the offsets. We need to account for things already
613 // pushed onto the stack at this point: return address, frame
614 // pointer (if used), and callee saves.
615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617 const bool HasFP = hasFP(MF);
619 // Check if we need to spill RCX and/or RDX.
620 // Here we assume that no earlier prologue instruction changes RCX and/or
621 // RDX, so checking the block live-ins is enough.
622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625 // Assign the initial slot to both registers, then change RDX's slot if both
626 // need to be spilled.
627 if (IsRCXLiveIn)
628 RCXShadowSlot = InitSlot;
629 if (IsRDXLiveIn)
630 RDXShadowSlot = InitSlot;
631 if (IsRDXLiveIn && IsRCXLiveIn)
632 RDXShadowSlot += 8;
633 // Emit the saves if needed.
634 if (IsRCXLiveIn)
635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636 RCXShadowSlot)
637 .addReg(X86::RCX);
638 if (IsRDXLiveIn)
639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640 RDXShadowSlot)
641 .addReg(X86::RDX);
642 } else {
643 // Not in the prolog. Copy RAX to a virtual reg.
644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
647 // Add code to MBB to check for overflow and set the new target stack pointer
648 // to zero if so.
649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650 .addReg(ZeroReg, RegState::Undef)
651 .addReg(ZeroReg, RegState::Undef);
652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654 .addReg(CopyReg)
655 .addReg(SizeReg);
656 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657 .addReg(TestReg)
658 .addReg(ZeroReg)
659 .addImm(X86::COND_B);
661 // FinalReg now holds final stack pointer value, or zero if
662 // allocation would overflow. Compare against the current stack
663 // limit from the thread environment block. Note this limit is the
664 // lowest touched page on the stack, not the point at which the OS
665 // will cause an overflow exception, so this is just an optimization
666 // to avoid unnecessarily touching pages that are below the current
667 // SP but already committed to the stack by the OS.
668 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669 .addReg(0)
670 .addImm(1)
671 .addReg(0)
672 .addImm(ThreadEnvironmentStackLimit)
673 .addReg(X86::GS);
674 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675 // Jump if the desired stack pointer is at or above the stack limit.
676 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
678 // Add code to roundMBB to round the final stack pointer to a page boundary.
679 RoundMBB->addLiveIn(FinalReg);
680 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681 .addReg(FinalReg)
682 .addImm(PageMask);
683 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
685 // LimitReg now holds the current stack limit, RoundedReg page-rounded
686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687 // and probe until we reach RoundedReg.
688 if (!InProlog) {
689 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690 .addReg(LimitReg)
691 .addMBB(RoundMBB)
692 .addReg(ProbeReg)
693 .addMBB(LoopMBB);
696 LoopMBB->addLiveIn(JoinReg);
697 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698 false, -PageSize);
700 // Probe by storing a byte onto the stack.
701 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702 .addReg(ProbeReg)
703 .addImm(1)
704 .addReg(0)
705 .addImm(0)
706 .addReg(0)
707 .addImm(0);
709 LoopMBB->addLiveIn(RoundedReg);
710 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711 .addReg(RoundedReg)
712 .addReg(ProbeReg);
713 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
715 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
717 // If in prolog, restore RDX and RCX.
718 if (InProlog) {
719 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721 TII.get(X86::MOV64rm), X86::RCX),
722 X86::RSP, false, RCXShadowSlot);
723 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725 TII.get(X86::MOV64rm), X86::RDX),
726 X86::RSP, false, RDXShadowSlot);
729 // Now that the probing is done, add code to continueMBB to update
730 // the stack pointer for real.
731 ContinueMBB->addLiveIn(SizeReg);
732 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733 .addReg(X86::RSP)
734 .addReg(SizeReg);
736 // Add the control flow edges we need.
737 MBB.addSuccessor(ContinueMBB);
738 MBB.addSuccessor(RoundMBB);
739 RoundMBB->addSuccessor(LoopMBB);
740 LoopMBB->addSuccessor(ContinueMBB);
741 LoopMBB->addSuccessor(LoopMBB);
743 // Mark all the instructions added to the prolog as frame setup.
744 if (InProlog) {
745 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
748 for (MachineInstr &MI : *RoundMBB) {
749 MI.setFlag(MachineInstr::FrameSetup);
751 for (MachineInstr &MI : *LoopMBB) {
752 MI.setFlag(MachineInstr::FrameSetup);
754 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755 CMBBI != ContinueMBBI; ++CMBBI) {
756 CMBBI->setFlag(MachineInstr::FrameSetup);
761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762 MachineBasicBlock &MBB,
763 MachineBasicBlock::iterator MBBI,
764 const DebugLoc &DL,
765 bool InProlog) const {
766 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
768 // FIXME: Add retpoline support and remove this.
769 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771 "code model and retpoline not yet implemented.");
773 unsigned CallOp;
774 if (Is64Bit)
775 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776 else
777 CallOp = X86::CALLpcrel32;
779 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
781 MachineInstrBuilder CI;
782 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
784 // All current stack probes take AX and SP as input, clobber flags, and
785 // preserve all registers. x86_64 probes leave RSP unmodified.
786 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787 // For the large code model, we have to call through a register. Use R11,
788 // as it is scratch in all supported calling conventions.
789 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792 } else {
793 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
797 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799 CI.addReg(AX, RegState::Implicit)
800 .addReg(SP, RegState::Implicit)
801 .addReg(AX, RegState::Define | RegState::Implicit)
802 .addReg(SP, RegState::Define | RegState::Implicit)
803 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
805 if (STI.isTargetWin64() || !STI.isOSWindows()) {
806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808 // themselves. They also does not clobber %rax so we can reuse it when
809 // adjusting %rsp.
810 // All other platforms do not specify a particular ABI for the stack probe
811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813 .addReg(SP)
814 .addReg(AX);
817 if (InProlog) {
818 // Apply the frame setup flag to all inserted instrs.
819 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
824 void X86FrameLowering::emitStackProbeInlineStub(
825 MachineFunction &MF, MachineBasicBlock &MBB,
826 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
828 assert(InProlog && "ChkStkStub called outside prolog!");
830 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831 .addExternalSymbol("__chkstk_stub");
834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836 // and might require smaller successive adjustments.
837 const uint64_t Win64MaxSEHOffset = 128;
838 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840 return SEHFrameOffset & -16;
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out. Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848 const MachineFrameInfo &MFI = MF.getFrameInfo();
849 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850 unsigned StackAlign = getStackAlignment();
851 if (MF.getFunction().hasFnAttribute("stackrealign")) {
852 if (MFI.hasCalls())
853 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854 else if (MaxAlign < SlotSize)
855 MaxAlign = SlotSize;
857 return MaxAlign;
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861 MachineBasicBlock::iterator MBBI,
862 const DebugLoc &DL, unsigned Reg,
863 uint64_t MaxAlign) const {
864 uint64_t Val = -MaxAlign;
865 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867 .addReg(Reg)
868 .addImm(Val)
869 .setMIFlag(MachineInstr::FrameSetup);
871 // The EFLAGS implicit def is dead.
872 MI->getOperand(3).setIsDead();
875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877 // clobbered by any interrupt handler.
878 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879 "MF used frame lowering for wrong subtarget");
880 const Function &Fn = MF.getFunction();
881 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
892 Here's a gist of what gets emitted:
894 ; Establish frame pointer, if needed
895 [if needs FP]
896 push %rbp
897 .cfi_def_cfa_offset 16
898 .cfi_offset %rbp, -16
899 .seh_pushreg %rpb
900 mov %rsp, %rbp
901 .cfi_def_cfa_register %rbp
903 ; Spill general-purpose registers
904 [for all callee-saved GPRs]
905 pushq %<reg>
906 [if not needs FP]
907 .cfi_def_cfa_offset (offset from RETADDR)
908 .seh_pushreg %<reg>
910 ; If the required stack alignment > default stack alignment
911 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
912 ; of unknown size in the stack frame.
913 [if stack needs re-alignment]
914 and $MASK, %rsp
916 ; Allocate space for locals
917 [if target is Windows and allocated space > 4096 bytes]
918 ; Windows needs special care for allocations larger
919 ; than one page.
920 mov $NNN, %rax
921 call ___chkstk_ms/___chkstk
922 sub %rax, %rsp
923 [else]
924 sub $NNN, %rsp
926 [if needs FP]
927 .seh_stackalloc (size of XMM spill slots)
928 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929 [else]
930 .seh_stackalloc NNN
932 ; Spill XMMs
933 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934 ; they may get spilled on any platform, if the current function
935 ; calls @llvm.eh.unwind.init
936 [if needs FP]
937 [for all callee-saved XMM registers]
938 movaps %<xmm reg>, -MMM(%rbp)
939 [for all callee-saved XMM registers]
940 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
942 [else]
943 [for all callee-saved XMM registers]
944 movaps %<xmm reg>, KKK(%rsp)
945 [for all callee-saved XMM registers]
946 .seh_savexmm %<xmm reg>, KKK
948 .seh_endprologue
950 [if needs base pointer]
951 mov %rsp, %rbx
952 [if needs to restore base pointer]
953 mov %rsp, -MMM(%rbp)
955 ; Emit CFI info
956 [if needs FP]
957 [for all callee-saved registers]
958 .cfi_offset %<reg>, (offset from %rbp)
959 [else]
960 .cfi_def_cfa_offset (offset from RETADDR)
961 [for all callee-saved registers]
962 .cfi_offset %<reg>, (offset from %rsp)
964 Notes:
965 - .seh directives are emitted only for Windows 64 ABI
966 - .cv_fpo directives are emitted on win32 when emitting CodeView
967 - .cfi directives are emitted for all other ABIs
968 - for 32-bit code, substitute %e?? registers for %r??
971 void X86FrameLowering::emitPrologue(MachineFunction &MF,
972 MachineBasicBlock &MBB) const {
973 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
974 "MF used frame lowering for wrong subtarget");
975 MachineBasicBlock::iterator MBBI = MBB.begin();
976 MachineFrameInfo &MFI = MF.getFrameInfo();
977 const Function &Fn = MF.getFunction();
978 MachineModuleInfo &MMI = MF.getMMI();
979 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
980 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
981 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
982 bool IsFunclet = MBB.isEHFuncletEntry();
983 EHPersonality Personality = EHPersonality::Unknown;
984 if (Fn.hasPersonalityFn())
985 Personality = classifyEHPersonality(Fn.getPersonalityFn());
986 bool FnHasClrFunclet =
987 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
988 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
989 bool HasFP = hasFP(MF);
990 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
991 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
992 // FIXME: Emit FPO data for EH funclets.
993 bool NeedsWinFPO =
994 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
995 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
996 bool NeedsDwarfCFI =
997 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
998 unsigned FramePtr = TRI->getFrameRegister(MF);
999 const unsigned MachineFramePtr =
1000 STI.isTarget64BitILP32()
1001 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1002 unsigned BasePtr = TRI->getBaseRegister();
1003 bool HasWinCFI = false;
1005 // Debug location must be unknown since the first debug location is used
1006 // to determine the end of the prologue.
1007 DebugLoc DL;
1009 // Add RETADDR move area to callee saved frame size.
1010 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1011 if (TailCallReturnAddrDelta && IsWin64Prologue)
1012 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1014 if (TailCallReturnAddrDelta < 0)
1015 X86FI->setCalleeSavedFrameSize(
1016 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1018 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1020 // The default stack probe size is 4096 if the function has no stackprobesize
1021 // attribute.
1022 unsigned StackProbeSize = 4096;
1023 if (Fn.hasFnAttribute("stack-probe-size"))
1024 Fn.getFnAttribute("stack-probe-size")
1025 .getValueAsString()
1026 .getAsInteger(0, StackProbeSize);
1028 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1029 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1030 // stack alignment.
1031 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1032 Fn.arg_size() == 2) {
1033 StackSize += 8;
1034 MFI.setStackSize(StackSize);
1035 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1038 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1039 // function, and use up to 128 bytes of stack space, don't have a frame
1040 // pointer, calls, or dynamic alloca then we do not need to adjust the
1041 // stack pointer (we fit in the Red Zone). We also check that we don't
1042 // push and pop from the stack.
1043 if (has128ByteRedZone(MF) &&
1044 !TRI->needsStackRealignment(MF) &&
1045 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1046 !MFI.adjustsStack() && // No calls.
1047 !UseStackProbe && // No stack probes.
1048 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1049 !MF.shouldSplitStack()) { // Regular stack
1050 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1051 if (HasFP) MinSize += SlotSize;
1052 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1053 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1054 MFI.setStackSize(StackSize);
1057 // Insert stack pointer adjustment for later moving of return addr. Only
1058 // applies to tail call optimized functions where the callee argument stack
1059 // size is bigger than the callers.
1060 if (TailCallReturnAddrDelta < 0) {
1061 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1062 /*InEpilogue=*/false)
1063 .setMIFlag(MachineInstr::FrameSetup);
1066 // Mapping for machine moves:
1068 // DST: VirtualFP AND
1069 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1070 // ELSE => DW_CFA_def_cfa
1072 // SRC: VirtualFP AND
1073 // DST: Register => DW_CFA_def_cfa_register
1075 // ELSE
1076 // OFFSET < 0 => DW_CFA_offset_extended_sf
1077 // REG < 64 => DW_CFA_offset + Reg
1078 // ELSE => DW_CFA_offset_extended
1080 uint64_t NumBytes = 0;
1081 int stackGrowth = -SlotSize;
1083 // Find the funclet establisher parameter
1084 unsigned Establisher = X86::NoRegister;
1085 if (IsClrFunclet)
1086 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1087 else if (IsFunclet)
1088 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1090 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1091 // Immediately spill establisher into the home slot.
1092 // The runtime cares about this.
1093 // MOV64mr %rdx, 16(%rsp)
1094 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1095 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1096 .addReg(Establisher)
1097 .setMIFlag(MachineInstr::FrameSetup);
1098 MBB.addLiveIn(Establisher);
1101 if (HasFP) {
1102 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1104 // Calculate required stack adjustment.
1105 uint64_t FrameSize = StackSize - SlotSize;
1106 // If required, include space for extra hidden slot for stashing base pointer.
1107 if (X86FI->getRestoreBasePointer())
1108 FrameSize += SlotSize;
1110 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1112 // Callee-saved registers are pushed on stack before the stack is realigned.
1113 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1114 NumBytes = alignTo(NumBytes, MaxAlign);
1116 // Save EBP/RBP into the appropriate stack slot.
1117 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1118 .addReg(MachineFramePtr, RegState::Kill)
1119 .setMIFlag(MachineInstr::FrameSetup);
1121 if (NeedsDwarfCFI) {
1122 // Mark the place where EBP/RBP was saved.
1123 // Define the current CFA rule to use the provided offset.
1124 assert(StackSize);
1125 BuildCFI(MBB, MBBI, DL,
1126 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1128 // Change the rule for the FramePtr to be an "offset" rule.
1129 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1130 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1131 nullptr, DwarfFramePtr, 2 * stackGrowth));
1134 if (NeedsWinCFI) {
1135 HasWinCFI = true;
1136 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1137 .addImm(FramePtr)
1138 .setMIFlag(MachineInstr::FrameSetup);
1141 if (!IsWin64Prologue && !IsFunclet) {
1142 // Update EBP with the new base value.
1143 BuildMI(MBB, MBBI, DL,
1144 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1145 FramePtr)
1146 .addReg(StackPtr)
1147 .setMIFlag(MachineInstr::FrameSetup);
1149 if (NeedsDwarfCFI) {
1150 // Mark effective beginning of when frame pointer becomes valid.
1151 // Define the current CFA to use the EBP/RBP register.
1152 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1153 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1154 nullptr, DwarfFramePtr));
1157 if (NeedsWinFPO) {
1158 // .cv_fpo_setframe $FramePtr
1159 HasWinCFI = true;
1160 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1161 .addImm(FramePtr)
1162 .addImm(0)
1163 .setMIFlag(MachineInstr::FrameSetup);
1166 } else {
1167 assert(!IsFunclet && "funclets without FPs not yet implemented");
1168 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1171 // Update the offset adjustment, which is mainly used by codeview to translate
1172 // from ESP to VFRAME relative local variable offsets.
1173 if (!IsFunclet) {
1174 if (HasFP && TRI->needsStackRealignment(MF))
1175 MFI.setOffsetAdjustment(-NumBytes);
1176 else
1177 MFI.setOffsetAdjustment(-StackSize);
1180 // For EH funclets, only allocate enough space for outgoing calls. Save the
1181 // NumBytes value that we would've used for the parent frame.
1182 unsigned ParentFrameNumBytes = NumBytes;
1183 if (IsFunclet)
1184 NumBytes = getWinEHFuncletFrameSize(MF);
1186 // Skip the callee-saved push instructions.
1187 bool PushedRegs = false;
1188 int StackOffset = 2 * stackGrowth;
1190 while (MBBI != MBB.end() &&
1191 MBBI->getFlag(MachineInstr::FrameSetup) &&
1192 (MBBI->getOpcode() == X86::PUSH32r ||
1193 MBBI->getOpcode() == X86::PUSH64r)) {
1194 PushedRegs = true;
1195 unsigned Reg = MBBI->getOperand(0).getReg();
1196 ++MBBI;
1198 if (!HasFP && NeedsDwarfCFI) {
1199 // Mark callee-saved push instruction.
1200 // Define the current CFA rule to use the provided offset.
1201 assert(StackSize);
1202 BuildCFI(MBB, MBBI, DL,
1203 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1204 StackOffset += stackGrowth;
1207 if (NeedsWinCFI) {
1208 HasWinCFI = true;
1209 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1210 .addImm(Reg)
1211 .setMIFlag(MachineInstr::FrameSetup);
1215 // Realign stack after we pushed callee-saved registers (so that we'll be
1216 // able to calculate their offsets from the frame pointer).
1217 // Don't do this for Win64, it needs to realign the stack after the prologue.
1218 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1219 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1220 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1222 if (NeedsWinCFI) {
1223 HasWinCFI = true;
1224 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1225 .addImm(MaxAlign)
1226 .setMIFlag(MachineInstr::FrameSetup);
1230 // If there is an SUB32ri of ESP immediately before this instruction, merge
1231 // the two. This can be the case when tail call elimination is enabled and
1232 // the callee has more arguments then the caller.
1233 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1235 // Adjust stack pointer: ESP -= numbytes.
1237 // Windows and cygwin/mingw require a prologue helper routine when allocating
1238 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1239 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1240 // stack and adjust the stack pointer in one go. The 64-bit version of
1241 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1242 // responsible for adjusting the stack pointer. Touching the stack at 4K
1243 // increments is necessary to ensure that the guard pages used by the OS
1244 // virtual memory manager are allocated in correct sequence.
1245 uint64_t AlignedNumBytes = NumBytes;
1246 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1247 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1248 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1249 assert(!X86FI->getUsesRedZone() &&
1250 "The Red Zone is not accounted for in stack probes");
1252 // Check whether EAX is livein for this block.
1253 bool isEAXAlive = isEAXLiveIn(MBB);
1255 if (isEAXAlive) {
1256 if (Is64Bit) {
1257 // Save RAX
1258 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1259 .addReg(X86::RAX, RegState::Kill)
1260 .setMIFlag(MachineInstr::FrameSetup);
1261 } else {
1262 // Save EAX
1263 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1264 .addReg(X86::EAX, RegState::Kill)
1265 .setMIFlag(MachineInstr::FrameSetup);
1269 if (Is64Bit) {
1270 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1271 // Function prologue is responsible for adjusting the stack pointer.
1272 int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1273 if (isUInt<32>(Alloc)) {
1274 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1275 .addImm(Alloc)
1276 .setMIFlag(MachineInstr::FrameSetup);
1277 } else if (isInt<32>(Alloc)) {
1278 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1279 .addImm(Alloc)
1280 .setMIFlag(MachineInstr::FrameSetup);
1281 } else {
1282 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1283 .addImm(Alloc)
1284 .setMIFlag(MachineInstr::FrameSetup);
1286 } else {
1287 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1288 // We'll also use 4 already allocated bytes for EAX.
1289 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1290 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1291 .setMIFlag(MachineInstr::FrameSetup);
1294 // Call __chkstk, __chkstk_ms, or __alloca.
1295 emitStackProbe(MF, MBB, MBBI, DL, true);
1297 if (isEAXAlive) {
1298 // Restore RAX/EAX
1299 MachineInstr *MI;
1300 if (Is64Bit)
1301 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1302 StackPtr, false, NumBytes - 8);
1303 else
1304 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1305 StackPtr, false, NumBytes - 4);
1306 MI->setFlag(MachineInstr::FrameSetup);
1307 MBB.insert(MBBI, MI);
1309 } else if (NumBytes) {
1310 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1313 if (NeedsWinCFI && NumBytes) {
1314 HasWinCFI = true;
1315 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1316 .addImm(NumBytes)
1317 .setMIFlag(MachineInstr::FrameSetup);
1320 int SEHFrameOffset = 0;
1321 unsigned SPOrEstablisher;
1322 if (IsFunclet) {
1323 if (IsClrFunclet) {
1324 // The establisher parameter passed to a CLR funclet is actually a pointer
1325 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1326 // to find the root function establisher frame by loading the PSPSym from
1327 // the intermediate frame.
1328 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1329 MachinePointerInfo NoInfo;
1330 MBB.addLiveIn(Establisher);
1331 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1332 Establisher, false, PSPSlotOffset)
1333 .addMemOperand(MF.getMachineMemOperand(
1334 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1336 // Save the root establisher back into the current funclet's (mostly
1337 // empty) frame, in case a sub-funclet or the GC needs it.
1338 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1339 false, PSPSlotOffset)
1340 .addReg(Establisher)
1341 .addMemOperand(
1342 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1343 MachineMemOperand::MOVolatile,
1344 SlotSize, SlotSize));
1346 SPOrEstablisher = Establisher;
1347 } else {
1348 SPOrEstablisher = StackPtr;
1351 if (IsWin64Prologue && HasFP) {
1352 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1353 // this calculation on the incoming establisher, which holds the value of
1354 // RSP from the parent frame at the end of the prologue.
1355 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1356 if (SEHFrameOffset)
1357 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1358 SPOrEstablisher, false, SEHFrameOffset);
1359 else
1360 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1361 .addReg(SPOrEstablisher);
1363 // If this is not a funclet, emit the CFI describing our frame pointer.
1364 if (NeedsWinCFI && !IsFunclet) {
1365 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1366 HasWinCFI = true;
1367 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1368 .addImm(FramePtr)
1369 .addImm(SEHFrameOffset)
1370 .setMIFlag(MachineInstr::FrameSetup);
1371 if (isAsynchronousEHPersonality(Personality))
1372 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1374 } else if (IsFunclet && STI.is32Bit()) {
1375 // Reset EBP / ESI to something good for funclets.
1376 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1377 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1378 // into the registration node so that the runtime will restore it for us.
1379 if (!MBB.isCleanupFuncletEntry()) {
1380 assert(Personality == EHPersonality::MSVC_CXX);
1381 unsigned FrameReg;
1382 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1383 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1384 // ESP is the first field, so no extra displacement is needed.
1385 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1386 false, EHRegOffset)
1387 .addReg(X86::ESP);
1391 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1392 const MachineInstr &FrameInstr = *MBBI;
1393 ++MBBI;
1395 if (NeedsWinCFI) {
1396 int FI;
1397 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1398 if (X86::FR64RegClass.contains(Reg)) {
1399 unsigned IgnoredFrameReg;
1400 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1401 Offset += SEHFrameOffset;
1403 HasWinCFI = true;
1404 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1405 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1406 .addImm(Reg)
1407 .addImm(Offset)
1408 .setMIFlag(MachineInstr::FrameSetup);
1414 if (NeedsWinCFI && HasWinCFI)
1415 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1416 .setMIFlag(MachineInstr::FrameSetup);
1418 if (FnHasClrFunclet && !IsFunclet) {
1419 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1420 // immediately after the prolog) into the PSPSlot so that funclets
1421 // and the GC can recover it.
1422 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1423 auto PSPInfo = MachinePointerInfo::getFixedStack(
1424 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1425 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1426 PSPSlotOffset)
1427 .addReg(StackPtr)
1428 .addMemOperand(MF.getMachineMemOperand(
1429 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1430 SlotSize, SlotSize));
1433 // Realign stack after we spilled callee-saved registers (so that we'll be
1434 // able to calculate their offsets from the frame pointer).
1435 // Win64 requires aligning the stack after the prologue.
1436 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1437 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1438 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1441 // We already dealt with stack realignment and funclets above.
1442 if (IsFunclet && STI.is32Bit())
1443 return;
1445 // If we need a base pointer, set it up here. It's whatever the value
1446 // of the stack pointer is at this point. Any variable size objects
1447 // will be allocated after this, so we can still use the base pointer
1448 // to reference locals.
1449 if (TRI->hasBasePointer(MF)) {
1450 // Update the base pointer with the current stack pointer.
1451 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1452 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1453 .addReg(SPOrEstablisher)
1454 .setMIFlag(MachineInstr::FrameSetup);
1455 if (X86FI->getRestoreBasePointer()) {
1456 // Stash value of base pointer. Saving RSP instead of EBP shortens
1457 // dependence chain. Used by SjLj EH.
1458 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1459 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1460 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1461 .addReg(SPOrEstablisher)
1462 .setMIFlag(MachineInstr::FrameSetup);
1465 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1466 // Stash the value of the frame pointer relative to the base pointer for
1467 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1468 // it recovers the frame pointer from the base pointer rather than the
1469 // other way around.
1470 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1471 unsigned UsedReg;
1472 int Offset =
1473 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1474 assert(UsedReg == BasePtr);
1475 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1476 .addReg(FramePtr)
1477 .setMIFlag(MachineInstr::FrameSetup);
1481 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1482 // Mark end of stack pointer adjustment.
1483 if (!HasFP && NumBytes) {
1484 // Define the current CFA rule to use the provided offset.
1485 assert(StackSize);
1486 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1487 nullptr, -StackSize + stackGrowth));
1490 // Emit DWARF info specifying the offsets of the callee-saved registers.
1491 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1494 // X86 Interrupt handling function cannot assume anything about the direction
1495 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1496 // in each prologue of interrupt handler function.
1498 // FIXME: Create "cld" instruction only in these cases:
1499 // 1. The interrupt handling function uses any of the "rep" instructions.
1500 // 2. Interrupt handling function calls another function.
1502 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1503 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1504 .setMIFlag(MachineInstr::FrameSetup);
1506 // At this point we know if the function has WinCFI or not.
1507 MF.setHasWinCFI(HasWinCFI);
1510 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1511 const MachineFunction &MF) const {
1512 // We can't use LEA instructions for adjusting the stack pointer if we don't
1513 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1514 // to deallocate the stack.
1515 // This means that we can use LEA for SP in two situations:
1516 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1517 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1518 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1521 static bool isFuncletReturnInstr(MachineInstr &MI) {
1522 switch (MI.getOpcode()) {
1523 case X86::CATCHRET:
1524 case X86::CLEANUPRET:
1525 return true;
1526 default:
1527 return false;
1529 llvm_unreachable("impossible");
1532 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1533 // stack. It holds a pointer to the bottom of the root function frame. The
1534 // establisher frame pointer passed to a nested funclet may point to the
1535 // (mostly empty) frame of its parent funclet, but it will need to find
1536 // the frame of the root function to access locals. To facilitate this,
1537 // every funclet copies the pointer to the bottom of the root function
1538 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1539 // same offset for the PSPSym in the root function frame that's used in the
1540 // funclets' frames allows each funclet to dynamically accept any ancestor
1541 // frame as its establisher argument (the runtime doesn't guarantee the
1542 // immediate parent for some reason lost to history), and also allows the GC,
1543 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1544 // frame with only a single offset reported for the entire method.
1545 unsigned
1546 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1547 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1548 unsigned SPReg;
1549 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1550 /*IgnoreSPUpdates*/ true);
1551 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1552 return static_cast<unsigned>(Offset);
1555 unsigned
1556 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1557 // This is the size of the pushed CSRs.
1558 unsigned CSSize =
1559 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1560 // This is the amount of stack a funclet needs to allocate.
1561 unsigned UsedSize;
1562 EHPersonality Personality =
1563 classifyEHPersonality(MF.getFunction().getPersonalityFn());
1564 if (Personality == EHPersonality::CoreCLR) {
1565 // CLR funclets need to hold enough space to include the PSPSym, at the
1566 // same offset from the stack pointer (immediately after the prolog) as it
1567 // resides at in the main function.
1568 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1569 } else {
1570 // Other funclets just need enough stack for outgoing call arguments.
1571 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1573 // RBP is not included in the callee saved register block. After pushing RBP,
1574 // everything is 16 byte aligned. Everything we allocate before an outgoing
1575 // call must also be 16 byte aligned.
1576 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1577 // Subtract out the size of the callee saved registers. This is how much stack
1578 // each funclet will allocate.
1579 return FrameSizeMinusRBP - CSSize;
1582 static bool isTailCallOpcode(unsigned Opc) {
1583 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1584 Opc == X86::TCRETURNmi ||
1585 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1586 Opc == X86::TCRETURNmi64;
1589 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1590 MachineBasicBlock &MBB) const {
1591 const MachineFrameInfo &MFI = MF.getFrameInfo();
1592 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1593 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1594 MachineBasicBlock::iterator MBBI = Terminator;
1595 DebugLoc DL;
1596 if (MBBI != MBB.end())
1597 DL = MBBI->getDebugLoc();
1598 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1599 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1600 unsigned FramePtr = TRI->getFrameRegister(MF);
1601 unsigned MachineFramePtr =
1602 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1604 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1605 bool NeedsWin64CFI =
1606 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1607 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1609 // Get the number of bytes to allocate from the FrameInfo.
1610 uint64_t StackSize = MFI.getStackSize();
1611 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1612 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1613 bool HasFP = hasFP(MF);
1614 uint64_t NumBytes = 0;
1616 bool NeedsDwarfCFI =
1617 (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1618 !MF.getTarget().getTargetTriple().isOSWindows()) &&
1619 (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1621 if (IsFunclet) {
1622 assert(HasFP && "EH funclets without FP not yet implemented");
1623 NumBytes = getWinEHFuncletFrameSize(MF);
1624 } else if (HasFP) {
1625 // Calculate required stack adjustment.
1626 uint64_t FrameSize = StackSize - SlotSize;
1627 NumBytes = FrameSize - CSSize;
1629 // Callee-saved registers were pushed on stack before the stack was
1630 // realigned.
1631 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1632 NumBytes = alignTo(FrameSize, MaxAlign);
1633 } else {
1634 NumBytes = StackSize - CSSize;
1636 uint64_t SEHStackAllocAmt = NumBytes;
1638 if (HasFP) {
1639 // Pop EBP.
1640 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1641 MachineFramePtr)
1642 .setMIFlag(MachineInstr::FrameDestroy);
1643 if (NeedsDwarfCFI) {
1644 unsigned DwarfStackPtr =
1645 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1646 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1647 nullptr, DwarfStackPtr, -SlotSize));
1648 --MBBI;
1652 MachineBasicBlock::iterator FirstCSPop = MBBI;
1653 // Skip the callee-saved pop instructions.
1654 while (MBBI != MBB.begin()) {
1655 MachineBasicBlock::iterator PI = std::prev(MBBI);
1656 unsigned Opc = PI->getOpcode();
1658 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1659 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1660 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1661 break;
1662 FirstCSPop = PI;
1665 --MBBI;
1667 MBBI = FirstCSPop;
1669 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1670 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1672 if (MBBI != MBB.end())
1673 DL = MBBI->getDebugLoc();
1675 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1676 // instruction, merge the two instructions.
1677 if (NumBytes || MFI.hasVarSizedObjects())
1678 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1680 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1681 // slot before popping them off! Same applies for the case, when stack was
1682 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1683 // will not do realignment or dynamic stack allocation.
1684 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1685 !IsFunclet) {
1686 if (TRI->needsStackRealignment(MF))
1687 MBBI = FirstCSPop;
1688 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1689 uint64_t LEAAmount =
1690 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1692 // There are only two legal forms of epilogue:
1693 // - add SEHAllocationSize, %rsp
1694 // - lea SEHAllocationSize(%FramePtr), %rsp
1696 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1697 // However, we may use this sequence if we have a frame pointer because the
1698 // effects of the prologue can safely be undone.
1699 if (LEAAmount != 0) {
1700 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1701 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1702 FramePtr, false, LEAAmount);
1703 --MBBI;
1704 } else {
1705 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1706 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1707 .addReg(FramePtr);
1708 --MBBI;
1710 } else if (NumBytes) {
1711 // Adjust stack pointer back: ESP += numbytes.
1712 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1713 if (!hasFP(MF) && NeedsDwarfCFI) {
1714 // Define the current CFA rule to use the provided offset.
1715 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1716 nullptr, -CSSize - SlotSize));
1718 --MBBI;
1721 // Windows unwinder will not invoke function's exception handler if IP is
1722 // either in prologue or in epilogue. This behavior causes a problem when a
1723 // call immediately precedes an epilogue, because the return address points
1724 // into the epilogue. To cope with that, we insert an epilogue marker here,
1725 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1726 // final emitted code.
1727 if (NeedsWin64CFI && MF.hasWinCFI())
1728 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1730 if (!hasFP(MF) && NeedsDwarfCFI) {
1731 MBBI = FirstCSPop;
1732 int64_t Offset = -CSSize - SlotSize;
1733 // Mark callee-saved pop instruction.
1734 // Define the current CFA rule to use the provided offset.
1735 while (MBBI != MBB.end()) {
1736 MachineBasicBlock::iterator PI = MBBI;
1737 unsigned Opc = PI->getOpcode();
1738 ++MBBI;
1739 if (Opc == X86::POP32r || Opc == X86::POP64r) {
1740 Offset += SlotSize;
1741 BuildCFI(MBB, MBBI, DL,
1742 MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1747 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1748 // Add the return addr area delta back since we are not tail calling.
1749 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1750 assert(Offset >= 0 && "TCDelta should never be positive");
1751 if (Offset) {
1752 // Check for possible merge with preceding ADD instruction.
1753 Offset += mergeSPUpdates(MBB, Terminator, true);
1754 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1759 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1760 unsigned &FrameReg) const {
1761 const MachineFrameInfo &MFI = MF.getFrameInfo();
1763 bool IsFixed = MFI.isFixedObjectIndex(FI);
1764 // We can't calculate offset from frame pointer if the stack is realigned,
1765 // so enforce usage of stack/base pointer. The base pointer is used when we
1766 // have dynamic allocas in addition to dynamic realignment.
1767 if (TRI->hasBasePointer(MF))
1768 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1769 else if (TRI->needsStackRealignment(MF))
1770 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1771 else
1772 FrameReg = TRI->getFrameRegister(MF);
1774 // Offset will hold the offset from the stack pointer at function entry to the
1775 // object.
1776 // We need to factor in additional offsets applied during the prologue to the
1777 // frame, base, and stack pointer depending on which is used.
1778 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1779 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1780 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1781 uint64_t StackSize = MFI.getStackSize();
1782 bool HasFP = hasFP(MF);
1783 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1784 int64_t FPDelta = 0;
1786 // In an x86 interrupt, remove the offset we added to account for the return
1787 // address from any stack object allocated in the caller's frame. Interrupts
1788 // do not have a standard return address. Fixed objects in the current frame,
1789 // such as SSE register spills, should not get this treatment.
1790 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1791 Offset >= 0) {
1792 Offset += getOffsetOfLocalArea();
1795 if (IsWin64Prologue) {
1796 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1798 // Calculate required stack adjustment.
1799 uint64_t FrameSize = StackSize - SlotSize;
1800 // If required, include space for extra hidden slot for stashing base pointer.
1801 if (X86FI->getRestoreBasePointer())
1802 FrameSize += SlotSize;
1803 uint64_t NumBytes = FrameSize - CSSize;
1805 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1806 if (FI && FI == X86FI->getFAIndex())
1807 return -SEHFrameOffset;
1809 // FPDelta is the offset from the "traditional" FP location of the old base
1810 // pointer followed by return address and the location required by the
1811 // restricted Win64 prologue.
1812 // Add FPDelta to all offsets below that go through the frame pointer.
1813 FPDelta = FrameSize - SEHFrameOffset;
1814 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1815 "FPDelta isn't aligned per the Win64 ABI!");
1819 if (TRI->hasBasePointer(MF)) {
1820 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1821 if (FI < 0) {
1822 // Skip the saved EBP.
1823 return Offset + SlotSize + FPDelta;
1824 } else {
1825 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1826 return Offset + StackSize;
1828 } else if (TRI->needsStackRealignment(MF)) {
1829 if (FI < 0) {
1830 // Skip the saved EBP.
1831 return Offset + SlotSize + FPDelta;
1832 } else {
1833 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1834 return Offset + StackSize;
1836 // FIXME: Support tail calls
1837 } else {
1838 if (!HasFP)
1839 return Offset + StackSize;
1841 // Skip the saved EBP.
1842 Offset += SlotSize;
1844 // Skip the RETADDR move area
1845 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1846 if (TailCallReturnAddrDelta < 0)
1847 Offset -= TailCallReturnAddrDelta;
1850 return Offset + FPDelta;
1853 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1854 int FI, unsigned &FrameReg,
1855 int Adjustment) const {
1856 const MachineFrameInfo &MFI = MF.getFrameInfo();
1857 FrameReg = TRI->getStackRegister();
1858 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1862 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1863 int FI, unsigned &FrameReg,
1864 bool IgnoreSPUpdates) const {
1866 const MachineFrameInfo &MFI = MF.getFrameInfo();
1867 // Does not include any dynamic realign.
1868 const uint64_t StackSize = MFI.getStackSize();
1869 // LLVM arranges the stack as follows:
1870 // ...
1871 // ARG2
1872 // ARG1
1873 // RETADDR
1874 // PUSH RBP <-- RBP points here
1875 // PUSH CSRs
1876 // ~~~~~~~ <-- possible stack realignment (non-win64)
1877 // ...
1878 // STACK OBJECTS
1879 // ... <-- RSP after prologue points here
1880 // ~~~~~~~ <-- possible stack realignment (win64)
1882 // if (hasVarSizedObjects()):
1883 // ... <-- "base pointer" (ESI/RBX) points here
1884 // DYNAMIC ALLOCAS
1885 // ... <-- RSP points here
1887 // Case 1: In the simple case of no stack realignment and no dynamic
1888 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1889 // with fixed offsets from RSP.
1891 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1892 // stack objects are addressed with RBP and regular stack objects with RSP.
1894 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1895 // to address stack arguments for outgoing calls and nothing else. The "base
1896 // pointer" points to local variables, and RBP points to fixed objects.
1898 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1899 // answer we give is relative to the SP after the prologue, and not the
1900 // SP in the middle of the function.
1902 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1903 !STI.isTargetWin64())
1904 return getFrameIndexReference(MF, FI, FrameReg);
1906 // If !hasReservedCallFrame the function might have SP adjustement in the
1907 // body. So, even though the offset is statically known, it depends on where
1908 // we are in the function.
1909 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1910 return getFrameIndexReference(MF, FI, FrameReg);
1912 // We don't handle tail calls, and shouldn't be seeing them either.
1913 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1914 "we don't handle this case!");
1916 // This is how the math works out:
1918 // %rsp grows (i.e. gets lower) left to right. Each box below is
1919 // one word (eight bytes). Obj0 is the stack slot we're trying to
1920 // get to.
1922 // ----------------------------------
1923 // | BP | Obj0 | Obj1 | ... | ObjN |
1924 // ----------------------------------
1925 // ^ ^ ^ ^
1926 // A B C E
1928 // A is the incoming stack pointer.
1929 // (B - A) is the local area offset (-8 for x86-64) [1]
1930 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1932 // |(E - B)| is the StackSize (absolute value, positive). For a
1933 // stack that grown down, this works out to be (B - E). [3]
1935 // E is also the value of %rsp after stack has been set up, and we
1936 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1937 // (C - E) == (C - A) - (B - A) + (B - E)
1938 // { Using [1], [2] and [3] above }
1939 // == getObjectOffset - LocalAreaOffset + StackSize
1941 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1944 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1945 MachineFunction &MF, const TargetRegisterInfo *TRI,
1946 std::vector<CalleeSavedInfo> &CSI) const {
1947 MachineFrameInfo &MFI = MF.getFrameInfo();
1948 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1950 unsigned CalleeSavedFrameSize = 0;
1951 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1953 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1955 if (TailCallReturnAddrDelta < 0) {
1956 // create RETURNADDR area
1957 // arg
1958 // arg
1959 // RETADDR
1960 // { ...
1961 // RETADDR area
1962 // ...
1963 // }
1964 // [EBP]
1965 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1966 TailCallReturnAddrDelta - SlotSize, true);
1969 // Spill the BasePtr if it's used.
1970 if (this->TRI->hasBasePointer(MF)) {
1971 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1972 if (MF.hasEHFunclets()) {
1973 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1974 X86FI->setHasSEHFramePtrSave(true);
1975 X86FI->setSEHFramePtrSaveIndex(FI);
1979 if (hasFP(MF)) {
1980 // emitPrologue always spills frame register the first thing.
1981 SpillSlotOffset -= SlotSize;
1982 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1984 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1985 // the frame register, we can delete it from CSI list and not have to worry
1986 // about avoiding it later.
1987 unsigned FPReg = TRI->getFrameRegister(MF);
1988 for (unsigned i = 0; i < CSI.size(); ++i) {
1989 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1990 CSI.erase(CSI.begin() + i);
1991 break;
1996 // Assign slots for GPRs. It increases frame size.
1997 for (unsigned i = CSI.size(); i != 0; --i) {
1998 unsigned Reg = CSI[i - 1].getReg();
2000 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2001 continue;
2003 SpillSlotOffset -= SlotSize;
2004 CalleeSavedFrameSize += SlotSize;
2006 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2007 CSI[i - 1].setFrameIdx(SlotIndex);
2010 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2011 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2013 // Assign slots for XMMs.
2014 for (unsigned i = CSI.size(); i != 0; --i) {
2015 unsigned Reg = CSI[i - 1].getReg();
2016 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2017 continue;
2019 // If this is k-register make sure we lookup via the largest legal type.
2020 MVT VT = MVT::Other;
2021 if (X86::VK16RegClass.contains(Reg))
2022 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2024 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2025 unsigned Size = TRI->getSpillSize(*RC);
2026 unsigned Align = TRI->getSpillAlignment(*RC);
2027 // ensure alignment
2028 SpillSlotOffset -= std::abs(SpillSlotOffset) % Align;
2029 // spill into slot
2030 SpillSlotOffset -= Size;
2031 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2032 CSI[i - 1].setFrameIdx(SlotIndex);
2033 MFI.ensureMaxAlignment(Align);
2036 return true;
2039 bool X86FrameLowering::spillCalleeSavedRegisters(
2040 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2041 const std::vector<CalleeSavedInfo> &CSI,
2042 const TargetRegisterInfo *TRI) const {
2043 DebugLoc DL = MBB.findDebugLoc(MI);
2045 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2046 // for us, and there are no XMM CSRs on Win32.
2047 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2048 return true;
2050 // Push GPRs. It increases frame size.
2051 const MachineFunction &MF = *MBB.getParent();
2052 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2053 for (unsigned i = CSI.size(); i != 0; --i) {
2054 unsigned Reg = CSI[i - 1].getReg();
2056 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2057 continue;
2059 const MachineRegisterInfo &MRI = MF.getRegInfo();
2060 bool isLiveIn = MRI.isLiveIn(Reg);
2061 if (!isLiveIn)
2062 MBB.addLiveIn(Reg);
2064 // Decide whether we can add a kill flag to the use.
2065 bool CanKill = !isLiveIn;
2066 // Check if any subregister is live-in
2067 if (CanKill) {
2068 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2069 if (MRI.isLiveIn(*AReg)) {
2070 CanKill = false;
2071 break;
2076 // Do not set a kill flag on values that are also marked as live-in. This
2077 // happens with the @llvm-returnaddress intrinsic and with arguments
2078 // passed in callee saved registers.
2079 // Omitting the kill flags is conservatively correct even if the live-in
2080 // is not used after all.
2081 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2082 .setMIFlag(MachineInstr::FrameSetup);
2085 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2086 // It can be done by spilling XMMs to stack frame.
2087 for (unsigned i = CSI.size(); i != 0; --i) {
2088 unsigned Reg = CSI[i-1].getReg();
2089 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2090 continue;
2092 // If this is k-register make sure we lookup via the largest legal type.
2093 MVT VT = MVT::Other;
2094 if (X86::VK16RegClass.contains(Reg))
2095 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2097 // Add the callee-saved register as live-in. It's killed at the spill.
2098 MBB.addLiveIn(Reg);
2099 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2101 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2102 TRI);
2103 --MI;
2104 MI->setFlag(MachineInstr::FrameSetup);
2105 ++MI;
2108 return true;
2111 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2112 MachineBasicBlock::iterator MBBI,
2113 MachineInstr *CatchRet) const {
2114 // SEH shouldn't use catchret.
2115 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2116 MBB.getParent()->getFunction().getPersonalityFn())) &&
2117 "SEH should not use CATCHRET");
2118 DebugLoc DL = CatchRet->getDebugLoc();
2119 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2121 // Fill EAX/RAX with the address of the target block.
2122 if (STI.is64Bit()) {
2123 // LEA64r CatchRetTarget(%rip), %rax
2124 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2125 .addReg(X86::RIP)
2126 .addImm(0)
2127 .addReg(0)
2128 .addMBB(CatchRetTarget)
2129 .addReg(0);
2130 } else {
2131 // MOV32ri $CatchRetTarget, %eax
2132 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2133 .addMBB(CatchRetTarget);
2136 // Record that we've taken the address of CatchRetTarget and no longer just
2137 // reference it in a terminator.
2138 CatchRetTarget->setHasAddressTaken();
2141 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2142 MachineBasicBlock::iterator MI,
2143 std::vector<CalleeSavedInfo> &CSI,
2144 const TargetRegisterInfo *TRI) const {
2145 if (CSI.empty())
2146 return false;
2148 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2149 // Don't restore CSRs in 32-bit EH funclets. Matches
2150 // spillCalleeSavedRegisters.
2151 if (STI.is32Bit())
2152 return true;
2153 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2154 // funclets. emitEpilogue transforms these to normal jumps.
2155 if (MI->getOpcode() == X86::CATCHRET) {
2156 const Function &F = MBB.getParent()->getFunction();
2157 bool IsSEH = isAsynchronousEHPersonality(
2158 classifyEHPersonality(F.getPersonalityFn()));
2159 if (IsSEH)
2160 return true;
2164 DebugLoc DL = MBB.findDebugLoc(MI);
2166 // Reload XMMs from stack frame.
2167 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2168 unsigned Reg = CSI[i].getReg();
2169 if (X86::GR64RegClass.contains(Reg) ||
2170 X86::GR32RegClass.contains(Reg))
2171 continue;
2173 // If this is k-register make sure we lookup via the largest legal type.
2174 MVT VT = MVT::Other;
2175 if (X86::VK16RegClass.contains(Reg))
2176 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2178 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2179 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2182 // POP GPRs.
2183 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2184 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2185 unsigned Reg = CSI[i].getReg();
2186 if (!X86::GR64RegClass.contains(Reg) &&
2187 !X86::GR32RegClass.contains(Reg))
2188 continue;
2190 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2191 .setMIFlag(MachineInstr::FrameDestroy);
2193 return true;
2196 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2197 BitVector &SavedRegs,
2198 RegScavenger *RS) const {
2199 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2201 // Spill the BasePtr if it's used.
2202 if (TRI->hasBasePointer(MF)){
2203 unsigned BasePtr = TRI->getBaseRegister();
2204 if (STI.isTarget64BitILP32())
2205 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2206 SavedRegs.set(BasePtr);
2210 static bool
2211 HasNestArgument(const MachineFunction *MF) {
2212 const Function &F = MF->getFunction();
2213 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2214 I != E; I++) {
2215 if (I->hasNestAttr())
2216 return true;
2218 return false;
2221 /// GetScratchRegister - Get a temp register for performing work in the
2222 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2223 /// and the properties of the function either one or two registers will be
2224 /// needed. Set primary to true for the first register, false for the second.
2225 static unsigned
2226 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2227 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2229 // Erlang stuff.
2230 if (CallingConvention == CallingConv::HiPE) {
2231 if (Is64Bit)
2232 return Primary ? X86::R14 : X86::R13;
2233 else
2234 return Primary ? X86::EBX : X86::EDI;
2237 if (Is64Bit) {
2238 if (IsLP64)
2239 return Primary ? X86::R11 : X86::R12;
2240 else
2241 return Primary ? X86::R11D : X86::R12D;
2244 bool IsNested = HasNestArgument(&MF);
2246 if (CallingConvention == CallingConv::X86_FastCall ||
2247 CallingConvention == CallingConv::Fast) {
2248 if (IsNested)
2249 report_fatal_error("Segmented stacks does not support fastcall with "
2250 "nested function.");
2251 return Primary ? X86::EAX : X86::ECX;
2253 if (IsNested)
2254 return Primary ? X86::EDX : X86::EAX;
2255 return Primary ? X86::ECX : X86::EAX;
2258 // The stack limit in the TCB is set to this many bytes above the actual stack
2259 // limit.
2260 static const uint64_t kSplitStackAvailable = 256;
2262 void X86FrameLowering::adjustForSegmentedStacks(
2263 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2264 MachineFrameInfo &MFI = MF.getFrameInfo();
2265 uint64_t StackSize;
2266 unsigned TlsReg, TlsOffset;
2267 DebugLoc DL;
2269 // To support shrink-wrapping we would need to insert the new blocks
2270 // at the right place and update the branches to PrologueMBB.
2271 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2273 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2274 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2275 "Scratch register is live-in");
2277 if (MF.getFunction().isVarArg())
2278 report_fatal_error("Segmented stacks do not support vararg functions.");
2279 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2280 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2281 !STI.isTargetDragonFly())
2282 report_fatal_error("Segmented stacks not supported on this platform.");
2284 // Eventually StackSize will be calculated by a link-time pass; which will
2285 // also decide whether checking code needs to be injected into this particular
2286 // prologue.
2287 StackSize = MFI.getStackSize();
2289 // Do not generate a prologue for leaf functions with a stack of size zero.
2290 // For non-leaf functions we have to allow for the possibility that the
2291 // callis to a non-split function, as in PR37807. This function could also
2292 // take the address of a non-split function. When the linker tries to adjust
2293 // its non-existent prologue, it would fail with an error. Mark the object
2294 // file so that such failures are not errors. See this Go language bug-report
2295 // https://go-review.googlesource.com/c/go/+/148819/
2296 if (StackSize == 0 && !MFI.hasTailCall()) {
2297 MF.getMMI().setHasNosplitStack(true);
2298 return;
2301 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2302 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2303 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2304 bool IsNested = false;
2306 // We need to know if the function has a nest argument only in 64 bit mode.
2307 if (Is64Bit)
2308 IsNested = HasNestArgument(&MF);
2310 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2311 // allocMBB needs to be last (terminating) instruction.
2313 for (const auto &LI : PrologueMBB.liveins()) {
2314 allocMBB->addLiveIn(LI);
2315 checkMBB->addLiveIn(LI);
2318 if (IsNested)
2319 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2321 MF.push_front(allocMBB);
2322 MF.push_front(checkMBB);
2324 // When the frame size is less than 256 we just compare the stack
2325 // boundary directly to the value of the stack pointer, per gcc.
2326 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2328 // Read the limit off the current stacklet off the stack_guard location.
2329 if (Is64Bit) {
2330 if (STI.isTargetLinux()) {
2331 TlsReg = X86::FS;
2332 TlsOffset = IsLP64 ? 0x70 : 0x40;
2333 } else if (STI.isTargetDarwin()) {
2334 TlsReg = X86::GS;
2335 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2336 } else if (STI.isTargetWin64()) {
2337 TlsReg = X86::GS;
2338 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2339 } else if (STI.isTargetFreeBSD()) {
2340 TlsReg = X86::FS;
2341 TlsOffset = 0x18;
2342 } else if (STI.isTargetDragonFly()) {
2343 TlsReg = X86::FS;
2344 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2345 } else {
2346 report_fatal_error("Segmented stacks not supported on this platform.");
2349 if (CompareStackPointer)
2350 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2351 else
2352 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2353 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2355 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2356 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2357 } else {
2358 if (STI.isTargetLinux()) {
2359 TlsReg = X86::GS;
2360 TlsOffset = 0x30;
2361 } else if (STI.isTargetDarwin()) {
2362 TlsReg = X86::GS;
2363 TlsOffset = 0x48 + 90*4;
2364 } else if (STI.isTargetWin32()) {
2365 TlsReg = X86::FS;
2366 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2367 } else if (STI.isTargetDragonFly()) {
2368 TlsReg = X86::FS;
2369 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2370 } else if (STI.isTargetFreeBSD()) {
2371 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2372 } else {
2373 report_fatal_error("Segmented stacks not supported on this platform.");
2376 if (CompareStackPointer)
2377 ScratchReg = X86::ESP;
2378 else
2379 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2380 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2382 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2383 STI.isTargetDragonFly()) {
2384 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2385 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2386 } else if (STI.isTargetDarwin()) {
2388 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2389 unsigned ScratchReg2;
2390 bool SaveScratch2;
2391 if (CompareStackPointer) {
2392 // The primary scratch register is available for holding the TLS offset.
2393 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2394 SaveScratch2 = false;
2395 } else {
2396 // Need to use a second register to hold the TLS offset
2397 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2399 // Unfortunately, with fastcc the second scratch register may hold an
2400 // argument.
2401 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2404 // If Scratch2 is live-in then it needs to be saved.
2405 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2406 "Scratch register is live-in and not saved");
2408 if (SaveScratch2)
2409 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2410 .addReg(ScratchReg2, RegState::Kill);
2412 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2413 .addImm(TlsOffset);
2414 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2415 .addReg(ScratchReg)
2416 .addReg(ScratchReg2).addImm(1).addReg(0)
2417 .addImm(0)
2418 .addReg(TlsReg);
2420 if (SaveScratch2)
2421 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2425 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2426 // It jumps to normal execution of the function body.
2427 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2429 // On 32 bit we first push the arguments size and then the frame size. On 64
2430 // bit, we pass the stack frame size in r10 and the argument size in r11.
2431 if (Is64Bit) {
2432 // Functions with nested arguments use R10, so it needs to be saved across
2433 // the call to _morestack
2435 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2436 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2437 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2438 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2439 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2441 if (IsNested)
2442 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2444 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2445 .addImm(StackSize);
2446 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2447 .addImm(X86FI->getArgumentStackSize());
2448 } else {
2449 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2450 .addImm(X86FI->getArgumentStackSize());
2451 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2452 .addImm(StackSize);
2455 // __morestack is in libgcc
2456 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2457 // Under the large code model, we cannot assume that __morestack lives
2458 // within 2^31 bytes of the call site, so we cannot use pc-relative
2459 // addressing. We cannot perform the call via a temporary register,
2460 // as the rax register may be used to store the static chain, and all
2461 // other suitable registers may be either callee-save or used for
2462 // parameter passing. We cannot use the stack at this point either
2463 // because __morestack manipulates the stack directly.
2465 // To avoid these issues, perform an indirect call via a read-only memory
2466 // location containing the address.
2468 // This solution is not perfect, as it assumes that the .rodata section
2469 // is laid out within 2^31 bytes of each function body, but this seems
2470 // to be sufficient for JIT.
2471 // FIXME: Add retpoline support and remove the error here..
2472 if (STI.useRetpolineIndirectCalls())
2473 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2474 "code model and retpoline not yet implemented.");
2475 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2476 .addReg(X86::RIP)
2477 .addImm(0)
2478 .addReg(0)
2479 .addExternalSymbol("__morestack_addr")
2480 .addReg(0);
2481 MF.getMMI().setUsesMorestackAddr(true);
2482 } else {
2483 if (Is64Bit)
2484 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2485 .addExternalSymbol("__morestack");
2486 else
2487 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2488 .addExternalSymbol("__morestack");
2491 if (IsNested)
2492 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2493 else
2494 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2496 allocMBB->addSuccessor(&PrologueMBB);
2498 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2499 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2501 #ifdef EXPENSIVE_CHECKS
2502 MF.verify();
2503 #endif
2506 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2507 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2508 /// to fields it needs, through a named metadata node "hipe.literals" containing
2509 /// name-value pairs.
2510 static unsigned getHiPELiteral(
2511 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2512 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2513 MDNode *Node = HiPELiteralsMD->getOperand(i);
2514 if (Node->getNumOperands() != 2) continue;
2515 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2516 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2517 if (!NodeName || !NodeVal) continue;
2518 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2519 if (ValConst && NodeName->getString() == LiteralName) {
2520 return ValConst->getZExtValue();
2524 report_fatal_error("HiPE literal " + LiteralName
2525 + " required but not provided");
2528 /// Erlang programs may need a special prologue to handle the stack size they
2529 /// might need at runtime. That is because Erlang/OTP does not implement a C
2530 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2531 /// (for more information see Eric Stenman's Ph.D. thesis:
2532 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2534 /// CheckStack:
2535 /// temp0 = sp - MaxStack
2536 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2537 /// OldStart:
2538 /// ...
2539 /// IncStack:
2540 /// call inc_stack # doubles the stack space
2541 /// temp0 = sp - MaxStack
2542 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2543 void X86FrameLowering::adjustForHiPEPrologue(
2544 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2545 MachineFrameInfo &MFI = MF.getFrameInfo();
2546 DebugLoc DL;
2548 // To support shrink-wrapping we would need to insert the new blocks
2549 // at the right place and update the branches to PrologueMBB.
2550 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2552 // HiPE-specific values
2553 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2554 ->getNamedMetadata("hipe.literals");
2555 if (!HiPELiteralsMD)
2556 report_fatal_error(
2557 "Can't generate HiPE prologue without runtime parameters");
2558 const unsigned HipeLeafWords
2559 = getHiPELiteral(HiPELiteralsMD,
2560 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2561 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2562 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2563 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2564 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2565 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2567 assert(STI.isTargetLinux() &&
2568 "HiPE prologue is only supported on Linux operating systems.");
2570 // Compute the largest caller's frame that is needed to fit the callees'
2571 // frames. This 'MaxStack' is computed from:
2573 // a) the fixed frame size, which is the space needed for all spilled temps,
2574 // b) outgoing on-stack parameter areas, and
2575 // c) the minimum stack space this function needs to make available for the
2576 // functions it calls (a tunable ABI property).
2577 if (MFI.hasCalls()) {
2578 unsigned MoreStackForCalls = 0;
2580 for (auto &MBB : MF) {
2581 for (auto &MI : MBB) {
2582 if (!MI.isCall())
2583 continue;
2585 // Get callee operand.
2586 const MachineOperand &MO = MI.getOperand(0);
2588 // Only take account of global function calls (no closures etc.).
2589 if (!MO.isGlobal())
2590 continue;
2592 const Function *F = dyn_cast<Function>(MO.getGlobal());
2593 if (!F)
2594 continue;
2596 // Do not update 'MaxStack' for primitive and built-in functions
2597 // (encoded with names either starting with "erlang."/"bif_" or not
2598 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2599 // "_", such as the BIF "suspend_0") as they are executed on another
2600 // stack.
2601 if (F->getName().find("erlang.") != StringRef::npos ||
2602 F->getName().find("bif_") != StringRef::npos ||
2603 F->getName().find_first_of("._") == StringRef::npos)
2604 continue;
2606 unsigned CalleeStkArity =
2607 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2608 if (HipeLeafWords - 1 > CalleeStkArity)
2609 MoreStackForCalls = std::max(MoreStackForCalls,
2610 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2613 MaxStack += MoreStackForCalls;
2616 // If the stack frame needed is larger than the guaranteed then runtime checks
2617 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2618 if (MaxStack > Guaranteed) {
2619 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2620 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2622 for (const auto &LI : PrologueMBB.liveins()) {
2623 stackCheckMBB->addLiveIn(LI);
2624 incStackMBB->addLiveIn(LI);
2627 MF.push_front(incStackMBB);
2628 MF.push_front(stackCheckMBB);
2630 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2631 unsigned LEAop, CMPop, CALLop;
2632 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2633 if (Is64Bit) {
2634 SPReg = X86::RSP;
2635 PReg = X86::RBP;
2636 LEAop = X86::LEA64r;
2637 CMPop = X86::CMP64rm;
2638 CALLop = X86::CALL64pcrel32;
2639 } else {
2640 SPReg = X86::ESP;
2641 PReg = X86::EBP;
2642 LEAop = X86::LEA32r;
2643 CMPop = X86::CMP32rm;
2644 CALLop = X86::CALLpcrel32;
2647 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2648 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2649 "HiPE prologue scratch register is live-in");
2651 // Create new MBB for StackCheck:
2652 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2653 SPReg, false, -MaxStack);
2654 // SPLimitOffset is in a fixed heap location (pointed by BP).
2655 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2656 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2657 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2659 // Create new MBB for IncStack:
2660 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2661 addExternalSymbol("inc_stack_0");
2662 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2663 SPReg, false, -MaxStack);
2664 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2665 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2666 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2668 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2669 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2670 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2671 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2673 #ifdef EXPENSIVE_CHECKS
2674 MF.verify();
2675 #endif
2678 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2679 MachineBasicBlock::iterator MBBI,
2680 const DebugLoc &DL,
2681 int Offset) const {
2683 if (Offset <= 0)
2684 return false;
2686 if (Offset % SlotSize)
2687 return false;
2689 int NumPops = Offset / SlotSize;
2690 // This is only worth it if we have at most 2 pops.
2691 if (NumPops != 1 && NumPops != 2)
2692 return false;
2694 // Handle only the trivial case where the adjustment directly follows
2695 // a call. This is the most common one, anyway.
2696 if (MBBI == MBB.begin())
2697 return false;
2698 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2699 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2700 return false;
2702 unsigned Regs[2];
2703 unsigned FoundRegs = 0;
2705 auto &MRI = MBB.getParent()->getRegInfo();
2706 auto RegMask = Prev->getOperand(1);
2708 auto &RegClass =
2709 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2710 // Try to find up to NumPops free registers.
2711 for (auto Candidate : RegClass) {
2713 // Poor man's liveness:
2714 // Since we're immediately after a call, any register that is clobbered
2715 // by the call and not defined by it can be considered dead.
2716 if (!RegMask.clobbersPhysReg(Candidate))
2717 continue;
2719 // Don't clobber reserved registers
2720 if (MRI.isReserved(Candidate))
2721 continue;
2723 bool IsDef = false;
2724 for (const MachineOperand &MO : Prev->implicit_operands()) {
2725 if (MO.isReg() && MO.isDef() &&
2726 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2727 IsDef = true;
2728 break;
2732 if (IsDef)
2733 continue;
2735 Regs[FoundRegs++] = Candidate;
2736 if (FoundRegs == (unsigned)NumPops)
2737 break;
2740 if (FoundRegs == 0)
2741 return false;
2743 // If we found only one free register, but need two, reuse the same one twice.
2744 while (FoundRegs < (unsigned)NumPops)
2745 Regs[FoundRegs++] = Regs[0];
2747 for (int i = 0; i < NumPops; ++i)
2748 BuildMI(MBB, MBBI, DL,
2749 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2751 return true;
2754 MachineBasicBlock::iterator X86FrameLowering::
2755 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2756 MachineBasicBlock::iterator I) const {
2757 bool reserveCallFrame = hasReservedCallFrame(MF);
2758 unsigned Opcode = I->getOpcode();
2759 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2760 DebugLoc DL = I->getDebugLoc();
2761 uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2762 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2763 I = MBB.erase(I);
2764 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2766 if (!reserveCallFrame) {
2767 // If the stack pointer can be changed after prologue, turn the
2768 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2769 // adjcallstackdown instruction into 'add ESP, <amt>'
2771 // We need to keep the stack aligned properly. To do this, we round the
2772 // amount of space needed for the outgoing arguments up to the next
2773 // alignment boundary.
2774 unsigned StackAlign = getStackAlignment();
2775 Amount = alignTo(Amount, StackAlign);
2777 MachineModuleInfo &MMI = MF.getMMI();
2778 const Function &F = MF.getFunction();
2779 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2780 bool DwarfCFI = !WindowsCFI &&
2781 (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2783 // If we have any exception handlers in this function, and we adjust
2784 // the SP before calls, we may need to indicate this to the unwinder
2785 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2786 // Amount == 0, because the preceding function may have set a non-0
2787 // GNU_ARGS_SIZE.
2788 // TODO: We don't need to reset this between subsequent functions,
2789 // if it didn't change.
2790 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2792 if (HasDwarfEHHandlers && !isDestroy &&
2793 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2794 BuildCFI(MBB, InsertPos, DL,
2795 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2797 if (Amount == 0)
2798 return I;
2800 // Factor out the amount that gets handled inside the sequence
2801 // (Pushes of argument for frame setup, callee pops for frame destroy)
2802 Amount -= InternalAmt;
2804 // TODO: This is needed only if we require precise CFA.
2805 // If this is a callee-pop calling convention, emit a CFA adjust for
2806 // the amount the callee popped.
2807 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2808 BuildCFI(MBB, InsertPos, DL,
2809 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2811 // Add Amount to SP to destroy a frame, or subtract to setup.
2812 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2814 if (StackAdjustment) {
2815 // Merge with any previous or following adjustment instruction. Note: the
2816 // instructions merged with here do not have CFI, so their stack
2817 // adjustments do not feed into CfaAdjustment.
2818 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2819 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2821 if (StackAdjustment) {
2822 if (!(F.hasMinSize() &&
2823 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2824 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2825 /*InEpilogue=*/false);
2829 if (DwarfCFI && !hasFP(MF)) {
2830 // If we don't have FP, but need to generate unwind information,
2831 // we need to set the correct CFA offset after the stack adjustment.
2832 // How much we adjust the CFA offset depends on whether we're emitting
2833 // CFI only for EH purposes or for debugging. EH only requires the CFA
2834 // offset to be correct at each call site, while for debugging we want
2835 // it to be more precise.
2837 int64_t CfaAdjustment = -StackAdjustment;
2838 // TODO: When not using precise CFA, we also need to adjust for the
2839 // InternalAmt here.
2840 if (CfaAdjustment) {
2841 BuildCFI(MBB, InsertPos, DL,
2842 MCCFIInstruction::createAdjustCfaOffset(nullptr,
2843 CfaAdjustment));
2847 return I;
2850 if (isDestroy && InternalAmt) {
2851 // If we are performing frame pointer elimination and if the callee pops
2852 // something off the stack pointer, add it back. We do this until we have
2853 // more advanced stack pointer tracking ability.
2854 // We are not tracking the stack pointer adjustment by the callee, so make
2855 // sure we restore the stack pointer immediately after the call, there may
2856 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2857 MachineBasicBlock::iterator CI = I;
2858 MachineBasicBlock::iterator B = MBB.begin();
2859 while (CI != B && !std::prev(CI)->isCall())
2860 --CI;
2861 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2864 return I;
2867 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2868 assert(MBB.getParent() && "Block is not attached to a function!");
2869 const MachineFunction &MF = *MBB.getParent();
2870 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2873 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2874 assert(MBB.getParent() && "Block is not attached to a function!");
2876 // Win64 has strict requirements in terms of epilogue and we are
2877 // not taking a chance at messing with them.
2878 // I.e., unless this block is already an exit block, we can't use
2879 // it as an epilogue.
2880 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2881 return false;
2883 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2884 return true;
2886 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2887 // clobbers the EFLAGS. Check that we do not need to preserve it,
2888 // otherwise, conservatively assume this is not
2889 // safe to insert the epilogue here.
2890 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2893 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2894 // If we may need to emit frameless compact unwind information, give
2895 // up as this is currently broken: PR25614.
2896 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2897 // The lowering of segmented stack and HiPE only support entry blocks
2898 // as prologue blocks: PR26107.
2899 // This limitation may be lifted if we fix:
2900 // - adjustForSegmentedStacks
2901 // - adjustForHiPEPrologue
2902 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2903 !MF.shouldSplitStack();
2906 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2907 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2908 const DebugLoc &DL, bool RestoreSP) const {
2909 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2910 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2911 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2912 "restoring EBP/ESI on non-32-bit target");
2914 MachineFunction &MF = *MBB.getParent();
2915 unsigned FramePtr = TRI->getFrameRegister(MF);
2916 unsigned BasePtr = TRI->getBaseRegister();
2917 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2918 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2919 MachineFrameInfo &MFI = MF.getFrameInfo();
2921 // FIXME: Don't set FrameSetup flag in catchret case.
2923 int FI = FuncInfo.EHRegNodeFrameIndex;
2924 int EHRegSize = MFI.getObjectSize(FI);
2926 if (RestoreSP) {
2927 // MOV32rm -EHRegSize(%ebp), %esp
2928 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2929 X86::EBP, true, -EHRegSize)
2930 .setMIFlag(MachineInstr::FrameSetup);
2933 unsigned UsedReg;
2934 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2935 int EndOffset = -EHRegOffset - EHRegSize;
2936 FuncInfo.EHRegNodeEndOffset = EndOffset;
2938 if (UsedReg == FramePtr) {
2939 // ADD $offset, %ebp
2940 unsigned ADDri = getADDriOpcode(false, EndOffset);
2941 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2942 .addReg(FramePtr)
2943 .addImm(EndOffset)
2944 .setMIFlag(MachineInstr::FrameSetup)
2945 ->getOperand(3)
2946 .setIsDead();
2947 assert(EndOffset >= 0 &&
2948 "end of registration object above normal EBP position!");
2949 } else if (UsedReg == BasePtr) {
2950 // LEA offset(%ebp), %esi
2951 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2952 FramePtr, false, EndOffset)
2953 .setMIFlag(MachineInstr::FrameSetup);
2954 // MOV32rm SavedEBPOffset(%esi), %ebp
2955 assert(X86FI->getHasSEHFramePtrSave());
2956 int Offset =
2957 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2958 assert(UsedReg == BasePtr);
2959 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2960 UsedReg, true, Offset)
2961 .setMIFlag(MachineInstr::FrameSetup);
2962 } else {
2963 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2965 return MBBI;
2968 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
2969 return TRI->getSlotSize();
2972 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
2973 const {
2974 return TRI->getDwarfRegNum(StackPtr, true);
2977 namespace {
2978 // Struct used by orderFrameObjects to help sort the stack objects.
2979 struct X86FrameSortingObject {
2980 bool IsValid = false; // true if we care about this Object.
2981 unsigned ObjectIndex = 0; // Index of Object into MFI list.
2982 unsigned ObjectSize = 0; // Size of Object in bytes.
2983 unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2984 unsigned ObjectNumUses = 0; // Object static number of uses.
2987 // The comparison function we use for std::sort to order our local
2988 // stack symbols. The current algorithm is to use an estimated
2989 // "density". This takes into consideration the size and number of
2990 // uses each object has in order to roughly minimize code size.
2991 // So, for example, an object of size 16B that is referenced 5 times
2992 // will get higher priority than 4 4B objects referenced 1 time each.
2993 // It's not perfect and we may be able to squeeze a few more bytes out of
2994 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2995 // fringe end can have special consideration, given their size is less
2996 // important, etc.), but the algorithmic complexity grows too much to be
2997 // worth the extra gains we get. This gets us pretty close.
2998 // The final order leaves us with objects with highest priority going
2999 // at the end of our list.
3000 struct X86FrameSortingComparator {
3001 inline bool operator()(const X86FrameSortingObject &A,
3002 const X86FrameSortingObject &B) {
3003 uint64_t DensityAScaled, DensityBScaled;
3005 // For consistency in our comparison, all invalid objects are placed
3006 // at the end. This also allows us to stop walking when we hit the
3007 // first invalid item after it's all sorted.
3008 if (!A.IsValid)
3009 return false;
3010 if (!B.IsValid)
3011 return true;
3013 // The density is calculated by doing :
3014 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3015 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3016 // Since this approach may cause inconsistencies in
3017 // the floating point <, >, == comparisons, depending on the floating
3018 // point model with which the compiler was built, we're going
3019 // to scale both sides by multiplying with
3020 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3021 // the division and, with it, the need for any floating point
3022 // arithmetic.
3023 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3024 static_cast<uint64_t>(B.ObjectSize);
3025 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3026 static_cast<uint64_t>(A.ObjectSize);
3028 // If the two densities are equal, prioritize highest alignment
3029 // objects. This allows for similar alignment objects
3030 // to be packed together (given the same density).
3031 // There's room for improvement here, also, since we can pack
3032 // similar alignment (different density) objects next to each
3033 // other to save padding. This will also require further
3034 // complexity/iterations, and the overall gain isn't worth it,
3035 // in general. Something to keep in mind, though.
3036 if (DensityAScaled == DensityBScaled)
3037 return A.ObjectAlignment < B.ObjectAlignment;
3039 return DensityAScaled < DensityBScaled;
3042 } // namespace
3044 // Order the symbols in the local stack.
3045 // We want to place the local stack objects in some sort of sensible order.
3046 // The heuristic we use is to try and pack them according to static number
3047 // of uses and size of object in order to minimize code size.
3048 void X86FrameLowering::orderFrameObjects(
3049 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3050 const MachineFrameInfo &MFI = MF.getFrameInfo();
3052 // Don't waste time if there's nothing to do.
3053 if (ObjectsToAllocate.empty())
3054 return;
3056 // Create an array of all MFI objects. We won't need all of these
3057 // objects, but we're going to create a full array of them to make
3058 // it easier to index into when we're counting "uses" down below.
3059 // We want to be able to easily/cheaply access an object by simply
3060 // indexing into it, instead of having to search for it every time.
3061 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3063 // Walk the objects we care about and mark them as such in our working
3064 // struct.
3065 for (auto &Obj : ObjectsToAllocate) {
3066 SortingObjects[Obj].IsValid = true;
3067 SortingObjects[Obj].ObjectIndex = Obj;
3068 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3069 // Set the size.
3070 int ObjectSize = MFI.getObjectSize(Obj);
3071 if (ObjectSize == 0)
3072 // Variable size. Just use 4.
3073 SortingObjects[Obj].ObjectSize = 4;
3074 else
3075 SortingObjects[Obj].ObjectSize = ObjectSize;
3078 // Count the number of uses for each object.
3079 for (auto &MBB : MF) {
3080 for (auto &MI : MBB) {
3081 if (MI.isDebugInstr())
3082 continue;
3083 for (const MachineOperand &MO : MI.operands()) {
3084 // Check to see if it's a local stack symbol.
3085 if (!MO.isFI())
3086 continue;
3087 int Index = MO.getIndex();
3088 // Check to see if it falls within our range, and is tagged
3089 // to require ordering.
3090 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3091 SortingObjects[Index].IsValid)
3092 SortingObjects[Index].ObjectNumUses++;
3097 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3098 // info).
3099 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3101 // Now modify the original list to represent the final order that
3102 // we want. The order will depend on whether we're going to access them
3103 // from the stack pointer or the frame pointer. For SP, the list should
3104 // end up with the END containing objects that we want with smaller offsets.
3105 // For FP, it should be flipped.
3106 int i = 0;
3107 for (auto &Obj : SortingObjects) {
3108 // All invalid items are sorted at the end, so it's safe to stop.
3109 if (!Obj.IsValid)
3110 break;
3111 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3114 // Flip it if we're accessing off of the FP.
3115 if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3116 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3120 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3121 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3122 unsigned Offset = 16;
3123 // RBP is immediately pushed.
3124 Offset += SlotSize;
3125 // All callee-saved registers are then pushed.
3126 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3127 // Every funclet allocates enough stack space for the largest outgoing call.
3128 Offset += getWinEHFuncletFrameSize(MF);
3129 return Offset;
3132 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3133 MachineFunction &MF, RegScavenger *RS) const {
3134 // Mark the function as not having WinCFI. We will set it back to true in
3135 // emitPrologue if it gets called and emits CFI.
3136 MF.setHasWinCFI(false);
3138 // If this function isn't doing Win64-style C++ EH, we don't need to do
3139 // anything.
3140 const Function &F = MF.getFunction();
3141 if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3142 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3143 return;
3145 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3146 // relative to RSP after the prologue. Find the offset of the last fixed
3147 // object, so that we can allocate a slot immediately following it. If there
3148 // were no fixed objects, use offset -SlotSize, which is immediately after the
3149 // return address. Fixed objects have negative frame indices.
3150 MachineFrameInfo &MFI = MF.getFrameInfo();
3151 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3152 int64_t MinFixedObjOffset = -SlotSize;
3153 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3154 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3156 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3157 for (WinEHHandlerType &H : TBME.HandlerArray) {
3158 int FrameIndex = H.CatchObj.FrameIndex;
3159 if (FrameIndex != INT_MAX) {
3160 // Ensure alignment.
3161 unsigned Align = MFI.getObjectAlignment(FrameIndex);
3162 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3163 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3164 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3169 // Ensure alignment.
3170 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3171 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3172 int UnwindHelpFI =
3173 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
3174 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3176 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3177 // other frame setup instructions.
3178 MachineBasicBlock &MBB = MF.front();
3179 auto MBBI = MBB.begin();
3180 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3181 ++MBBI;
3183 DebugLoc DL = MBB.findDebugLoc(MBBI);
3184 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3185 UnwindHelpFI)
3186 .addImm(-2);