1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86InstrInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetOptions.h"
45 #define DEBUG_TYPE "x86-instr-info"
47 #define GET_INSTRINFO_CTOR_DTOR
48 #include "X86GenInstrInfo.inc"
51 NoFusing("disable-spill-fusing",
52 cl::desc("Disable fusing of spill code into instructions"),
55 PrintFailedFusing("print-failed-fuse-candidates",
56 cl::desc("Print instructions that the allocator wants to"
57 " fuse, but the X86 backend currently can't"),
60 ReMatPICStubLoad("remat-pic-stub-load",
61 cl::desc("Re-materialize load from stub in PIC mode"),
62 cl::init(false), cl::Hidden
);
63 static cl::opt
<unsigned>
64 PartialRegUpdateClearance("partial-reg-update-clearance",
65 cl::desc("Clearance between two register writes "
66 "for inserting XOR to avoid partial "
68 cl::init(64), cl::Hidden
);
69 static cl::opt
<unsigned>
70 UndefRegClearance("undef-reg-clearance",
71 cl::desc("How many idle instructions we would like before "
72 "certain undef register reads"),
73 cl::init(128), cl::Hidden
);
76 // Pin the vtable to this file.
77 void X86InstrInfo::anchor() {}
79 X86InstrInfo::X86InstrInfo(X86Subtarget
&STI
)
80 : X86GenInstrInfo((STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
81 : X86::ADJCALLSTACKDOWN32
),
82 (STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
83 : X86::ADJCALLSTACKUP32
),
85 (STI
.is64Bit() ? X86::RETQ
: X86::RETL
)),
86 Subtarget(STI
), RI(STI
.getTargetTriple()) {
90 X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
91 unsigned &SrcReg
, unsigned &DstReg
,
92 unsigned &SubIdx
) const {
93 switch (MI
.getOpcode()) {
100 if (!Subtarget
.is64Bit())
101 // It's not always legal to reference the low 8-bit of the larger
102 // register in 32-bit mode.
105 case X86::MOVSX32rr16
:
106 case X86::MOVZX32rr16
:
107 case X86::MOVSX64rr16
:
108 case X86::MOVSX64rr32
: {
109 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
112 SrcReg
= MI
.getOperand(1).getReg();
113 DstReg
= MI
.getOperand(0).getReg();
114 switch (MI
.getOpcode()) {
115 default: llvm_unreachable("Unreachable!");
116 case X86::MOVSX16rr8
:
117 case X86::MOVZX16rr8
:
118 case X86::MOVSX32rr8
:
119 case X86::MOVZX32rr8
:
120 case X86::MOVSX64rr8
:
121 SubIdx
= X86::sub_8bit
;
123 case X86::MOVSX32rr16
:
124 case X86::MOVZX32rr16
:
125 case X86::MOVSX64rr16
:
126 SubIdx
= X86::sub_16bit
;
128 case X86::MOVSX64rr32
:
129 SubIdx
= X86::sub_32bit
;
138 int X86InstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
139 const MachineFunction
*MF
= MI
.getParent()->getParent();
140 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
142 if (isFrameInstr(MI
)) {
143 unsigned StackAlign
= TFI
->getStackAlignment();
144 int SPAdj
= alignTo(getFrameSize(MI
), StackAlign
);
145 SPAdj
-= getFrameAdjustment(MI
);
146 if (!isFrameSetup(MI
))
151 // To know whether a call adjusts the stack, we need information
152 // that is bound to the following ADJCALLSTACKUP pseudo.
153 // Look for the next ADJCALLSTACKUP that follows the call.
155 const MachineBasicBlock
*MBB
= MI
.getParent();
156 auto I
= ++MachineBasicBlock::const_iterator(MI
);
157 for (auto E
= MBB
->end(); I
!= E
; ++I
) {
158 if (I
->getOpcode() == getCallFrameDestroyOpcode() ||
163 // If we could not find a frame destroy opcode, then it has already
164 // been simplified, so we don't care.
165 if (I
->getOpcode() != getCallFrameDestroyOpcode())
168 return -(I
->getOperand(1).getImm());
171 // Currently handle only PUSHes we can reasonably expect to see
173 switch (MI
.getOpcode()) {
191 /// Return true and the FrameIndex if the specified
192 /// operand and follow operands form a reference to the stack frame.
193 bool X86InstrInfo::isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
194 int &FrameIndex
) const {
195 if (MI
.getOperand(Op
+ X86::AddrBaseReg
).isFI() &&
196 MI
.getOperand(Op
+ X86::AddrScaleAmt
).isImm() &&
197 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
198 MI
.getOperand(Op
+ X86::AddrDisp
).isImm() &&
199 MI
.getOperand(Op
+ X86::AddrScaleAmt
).getImm() == 1 &&
200 MI
.getOperand(Op
+ X86::AddrIndexReg
).getReg() == 0 &&
201 MI
.getOperand(Op
+ X86::AddrDisp
).getImm() == 0) {
202 FrameIndex
= MI
.getOperand(Op
+ X86::AddrBaseReg
).getIndex();
208 static bool isFrameLoadOpcode(int Opcode
, unsigned &MemBytes
) {
222 case X86::MOVSSrm_alt
:
224 case X86::VMOVSSrm_alt
:
226 case X86::VMOVSSZrm_alt
:
233 case X86::MOVSDrm_alt
:
235 case X86::VMOVSDrm_alt
:
237 case X86::VMOVSDZrm_alt
:
238 case X86::MMX_MOVD64rm
:
239 case X86::MMX_MOVQ64rm
:
255 case X86::VMOVAPSZ128rm
:
256 case X86::VMOVUPSZ128rm
:
257 case X86::VMOVAPSZ128rm_NOVLX
:
258 case X86::VMOVUPSZ128rm_NOVLX
:
259 case X86::VMOVAPDZ128rm
:
260 case X86::VMOVUPDZ128rm
:
261 case X86::VMOVDQU8Z128rm
:
262 case X86::VMOVDQU16Z128rm
:
263 case X86::VMOVDQA32Z128rm
:
264 case X86::VMOVDQU32Z128rm
:
265 case X86::VMOVDQA64Z128rm
:
266 case X86::VMOVDQU64Z128rm
:
269 case X86::VMOVAPSYrm
:
270 case X86::VMOVUPSYrm
:
271 case X86::VMOVAPDYrm
:
272 case X86::VMOVUPDYrm
:
273 case X86::VMOVDQAYrm
:
274 case X86::VMOVDQUYrm
:
275 case X86::VMOVAPSZ256rm
:
276 case X86::VMOVUPSZ256rm
:
277 case X86::VMOVAPSZ256rm_NOVLX
:
278 case X86::VMOVUPSZ256rm_NOVLX
:
279 case X86::VMOVAPDZ256rm
:
280 case X86::VMOVUPDZ256rm
:
281 case X86::VMOVDQU8Z256rm
:
282 case X86::VMOVDQU16Z256rm
:
283 case X86::VMOVDQA32Z256rm
:
284 case X86::VMOVDQU32Z256rm
:
285 case X86::VMOVDQA64Z256rm
:
286 case X86::VMOVDQU64Z256rm
:
289 case X86::VMOVAPSZrm
:
290 case X86::VMOVUPSZrm
:
291 case X86::VMOVAPDZrm
:
292 case X86::VMOVUPDZrm
:
293 case X86::VMOVDQU8Zrm
:
294 case X86::VMOVDQU16Zrm
:
295 case X86::VMOVDQA32Zrm
:
296 case X86::VMOVDQU32Zrm
:
297 case X86::VMOVDQA64Zrm
:
298 case X86::VMOVDQU64Zrm
:
304 static bool isFrameStoreOpcode(int Opcode
, unsigned &MemBytes
) {
328 case X86::MMX_MOVD64mr
:
329 case X86::MMX_MOVQ64mr
:
330 case X86::MMX_MOVNTQmr
:
346 case X86::VMOVUPSZ128mr
:
347 case X86::VMOVAPSZ128mr
:
348 case X86::VMOVUPSZ128mr_NOVLX
:
349 case X86::VMOVAPSZ128mr_NOVLX
:
350 case X86::VMOVUPDZ128mr
:
351 case X86::VMOVAPDZ128mr
:
352 case X86::VMOVDQA32Z128mr
:
353 case X86::VMOVDQU32Z128mr
:
354 case X86::VMOVDQA64Z128mr
:
355 case X86::VMOVDQU64Z128mr
:
356 case X86::VMOVDQU8Z128mr
:
357 case X86::VMOVDQU16Z128mr
:
360 case X86::VMOVUPSYmr
:
361 case X86::VMOVAPSYmr
:
362 case X86::VMOVUPDYmr
:
363 case X86::VMOVAPDYmr
:
364 case X86::VMOVDQUYmr
:
365 case X86::VMOVDQAYmr
:
366 case X86::VMOVUPSZ256mr
:
367 case X86::VMOVAPSZ256mr
:
368 case X86::VMOVUPSZ256mr_NOVLX
:
369 case X86::VMOVAPSZ256mr_NOVLX
:
370 case X86::VMOVUPDZ256mr
:
371 case X86::VMOVAPDZ256mr
:
372 case X86::VMOVDQU8Z256mr
:
373 case X86::VMOVDQU16Z256mr
:
374 case X86::VMOVDQA32Z256mr
:
375 case X86::VMOVDQU32Z256mr
:
376 case X86::VMOVDQA64Z256mr
:
377 case X86::VMOVDQU64Z256mr
:
380 case X86::VMOVUPSZmr
:
381 case X86::VMOVAPSZmr
:
382 case X86::VMOVUPDZmr
:
383 case X86::VMOVAPDZmr
:
384 case X86::VMOVDQU8Zmr
:
385 case X86::VMOVDQU16Zmr
:
386 case X86::VMOVDQA32Zmr
:
387 case X86::VMOVDQU32Zmr
:
388 case X86::VMOVDQA64Zmr
:
389 case X86::VMOVDQU64Zmr
:
396 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
397 int &FrameIndex
) const {
399 return X86InstrInfo::isLoadFromStackSlot(MI
, FrameIndex
, Dummy
);
402 unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
404 unsigned &MemBytes
) const {
405 if (isFrameLoadOpcode(MI
.getOpcode(), MemBytes
))
406 if (MI
.getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
407 return MI
.getOperand(0).getReg();
411 unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
412 int &FrameIndex
) const {
414 if (isFrameLoadOpcode(MI
.getOpcode(), Dummy
)) {
416 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
418 // Check for post-frame index elimination operations
419 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
420 if (hasLoadFromStackSlot(MI
, Accesses
)) {
422 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
430 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
431 int &FrameIndex
) const {
433 return X86InstrInfo::isStoreToStackSlot(MI
, FrameIndex
, Dummy
);
436 unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
438 unsigned &MemBytes
) const {
439 if (isFrameStoreOpcode(MI
.getOpcode(), MemBytes
))
440 if (MI
.getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
441 isFrameOperand(MI
, 0, FrameIndex
))
442 return MI
.getOperand(X86::AddrNumOperands
).getReg();
446 unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
447 int &FrameIndex
) const {
449 if (isFrameStoreOpcode(MI
.getOpcode(), Dummy
)) {
451 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
453 // Check for post-frame index elimination operations
454 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
455 if (hasStoreToStackSlot(MI
, Accesses
)) {
457 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
465 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
466 static bool regIsPICBase(unsigned BaseReg
, const MachineRegisterInfo
&MRI
) {
467 // Don't waste compile time scanning use-def chains of physregs.
468 if (!TargetRegisterInfo::isVirtualRegister(BaseReg
))
470 bool isPICBase
= false;
471 for (MachineRegisterInfo::def_instr_iterator I
= MRI
.def_instr_begin(BaseReg
),
472 E
= MRI
.def_instr_end(); I
!= E
; ++I
) {
473 MachineInstr
*DefMI
= &*I
;
474 if (DefMI
->getOpcode() != X86::MOVPC32r
)
476 assert(!isPICBase
&& "More than one PIC base?");
482 bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
483 AliasAnalysis
*AA
) const {
484 switch (MI
.getOpcode()) {
487 case X86::MOV8rm_NOREX
:
492 case X86::MOVSSrm_alt
:
494 case X86::MOVSDrm_alt
:
502 case X86::VMOVSSrm_alt
:
504 case X86::VMOVSDrm_alt
:
511 case X86::VMOVAPSYrm
:
512 case X86::VMOVUPSYrm
:
513 case X86::VMOVAPDYrm
:
514 case X86::VMOVUPDYrm
:
515 case X86::VMOVDQAYrm
:
516 case X86::VMOVDQUYrm
:
517 case X86::MMX_MOVD64rm
:
518 case X86::MMX_MOVQ64rm
:
521 case X86::VMOVSSZrm_alt
:
523 case X86::VMOVSDZrm_alt
:
524 case X86::VMOVAPDZ128rm
:
525 case X86::VMOVAPDZ256rm
:
526 case X86::VMOVAPDZrm
:
527 case X86::VMOVAPSZ128rm
:
528 case X86::VMOVAPSZ256rm
:
529 case X86::VMOVAPSZ128rm_NOVLX
:
530 case X86::VMOVAPSZ256rm_NOVLX
:
531 case X86::VMOVAPSZrm
:
532 case X86::VMOVDQA32Z128rm
:
533 case X86::VMOVDQA32Z256rm
:
534 case X86::VMOVDQA32Zrm
:
535 case X86::VMOVDQA64Z128rm
:
536 case X86::VMOVDQA64Z256rm
:
537 case X86::VMOVDQA64Zrm
:
538 case X86::VMOVDQU16Z128rm
:
539 case X86::VMOVDQU16Z256rm
:
540 case X86::VMOVDQU16Zrm
:
541 case X86::VMOVDQU32Z128rm
:
542 case X86::VMOVDQU32Z256rm
:
543 case X86::VMOVDQU32Zrm
:
544 case X86::VMOVDQU64Z128rm
:
545 case X86::VMOVDQU64Z256rm
:
546 case X86::VMOVDQU64Zrm
:
547 case X86::VMOVDQU8Z128rm
:
548 case X86::VMOVDQU8Z256rm
:
549 case X86::VMOVDQU8Zrm
:
550 case X86::VMOVUPDZ128rm
:
551 case X86::VMOVUPDZ256rm
:
552 case X86::VMOVUPDZrm
:
553 case X86::VMOVUPSZ128rm
:
554 case X86::VMOVUPSZ256rm
:
555 case X86::VMOVUPSZ128rm_NOVLX
:
556 case X86::VMOVUPSZ256rm_NOVLX
:
557 case X86::VMOVUPSZrm
: {
558 // Loads from constant pools are trivially rematerializable.
559 if (MI
.getOperand(1 + X86::AddrBaseReg
).isReg() &&
560 MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
561 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
562 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
563 MI
.isDereferenceableInvariantLoad(AA
)) {
564 unsigned BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
565 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
567 // Allow re-materialization of PIC load.
568 if (!ReMatPICStubLoad
&& MI
.getOperand(1 + X86::AddrDisp
).isGlobal())
570 const MachineFunction
&MF
= *MI
.getParent()->getParent();
571 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
572 return regIsPICBase(BaseReg
, MRI
);
579 if (MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
580 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
581 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
582 !MI
.getOperand(1 + X86::AddrDisp
).isReg()) {
583 // lea fi#, lea GV, etc. are all rematerializable.
584 if (!MI
.getOperand(1 + X86::AddrBaseReg
).isReg())
586 unsigned BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
589 // Allow re-materialization of lea PICBase + x.
590 const MachineFunction
&MF
= *MI
.getParent()->getParent();
591 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
592 return regIsPICBase(BaseReg
, MRI
);
598 // All other instructions marked M_REMATERIALIZABLE are always trivially
603 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
604 MachineBasicBlock::iterator I
,
605 unsigned DestReg
, unsigned SubIdx
,
606 const MachineInstr
&Orig
,
607 const TargetRegisterInfo
&TRI
) const {
608 bool ClobbersEFLAGS
= Orig
.modifiesRegister(X86::EFLAGS
, &TRI
);
609 if (ClobbersEFLAGS
&& !isSafeToClobberEFLAGS(MBB
, I
)) {
610 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
613 switch (Orig
.getOpcode()) {
614 case X86::MOV32r0
: Value
= 0; break;
615 case X86::MOV32r1
: Value
= 1; break;
616 case X86::MOV32r_1
: Value
= -1; break;
618 llvm_unreachable("Unexpected instruction!");
621 const DebugLoc
&DL
= Orig
.getDebugLoc();
622 BuildMI(MBB
, I
, DL
, get(X86::MOV32ri
))
623 .add(Orig
.getOperand(0))
626 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
630 MachineInstr
&NewMI
= *std::prev(I
);
631 NewMI
.substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
634 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
635 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr
&MI
) const {
636 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
637 MachineOperand
&MO
= MI
.getOperand(i
);
638 if (MO
.isReg() && MO
.isDef() &&
639 MO
.getReg() == X86::EFLAGS
&& !MO
.isDead()) {
646 /// Check whether the shift count for a machine operand is non-zero.
647 inline static unsigned getTruncatedShiftCount(const MachineInstr
&MI
,
648 unsigned ShiftAmtOperandIdx
) {
649 // The shift count is six bits with the REX.W prefix and five bits without.
650 unsigned ShiftCountMask
= (MI
.getDesc().TSFlags
& X86II::REX_W
) ? 63 : 31;
651 unsigned Imm
= MI
.getOperand(ShiftAmtOperandIdx
).getImm();
652 return Imm
& ShiftCountMask
;
655 /// Check whether the given shift count is appropriate
656 /// can be represented by a LEA instruction.
657 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt
) {
658 // Left shift instructions can be transformed into load-effective-address
659 // instructions if we can encode them appropriately.
660 // A LEA instruction utilizes a SIB byte to encode its scale factor.
661 // The SIB.scale field is two bits wide which means that we can encode any
662 // shift amount less than 4.
663 return ShAmt
< 4 && ShAmt
> 0;
666 bool X86InstrInfo::classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
667 unsigned Opc
, bool AllowSP
, unsigned &NewSrc
,
668 bool &isKill
, MachineOperand
&ImplicitOp
,
669 LiveVariables
*LV
) const {
670 MachineFunction
&MF
= *MI
.getParent()->getParent();
671 const TargetRegisterClass
*RC
;
673 RC
= Opc
!= X86::LEA32r
? &X86::GR64RegClass
: &X86::GR32RegClass
;
675 RC
= Opc
!= X86::LEA32r
?
676 &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
;
678 unsigned SrcReg
= Src
.getReg();
680 // For both LEA64 and LEA32 the register already has essentially the right
681 // type (32-bit or 64-bit) we may just need to forbid SP.
682 if (Opc
!= X86::LEA64_32r
) {
684 isKill
= Src
.isKill();
685 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
687 if (TargetRegisterInfo::isVirtualRegister(NewSrc
) &&
688 !MF
.getRegInfo().constrainRegClass(NewSrc
, RC
))
694 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
695 // another we need to add 64-bit registers to the final MI.
696 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
)) {
698 ImplicitOp
.setImplicit();
700 NewSrc
= getX86SubSuperRegister(Src
.getReg(), 64);
701 isKill
= Src
.isKill();
702 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
704 // Virtual register of the wrong class, we have to create a temporary 64-bit
705 // vreg to feed into the LEA.
706 NewSrc
= MF
.getRegInfo().createVirtualRegister(RC
);
708 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
709 .addReg(NewSrc
, RegState::Define
| RegState::Undef
, X86::sub_32bit
)
712 // Which is obviously going to be dead after we're done with it.
716 LV
->replaceKillInstruction(SrcReg
, MI
, *Copy
);
719 // We've set all the parameters without issue.
723 MachineInstr
*X86InstrInfo::convertToThreeAddressWithLEA(
724 unsigned MIOpc
, MachineFunction::iterator
&MFI
, MachineInstr
&MI
,
725 LiveVariables
*LV
, bool Is8BitOp
) const {
726 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
727 MachineRegisterInfo
&RegInfo
= MFI
->getParent()->getRegInfo();
728 assert((Is8BitOp
|| RegInfo
.getTargetRegisterInfo()->getRegSizeInBits(
729 *RegInfo
.getRegClass(MI
.getOperand(0).getReg())) == 16) &&
730 "Unexpected type for LEA transform");
732 // TODO: For a 32-bit target, we need to adjust the LEA variables with
733 // something like this:
734 // Opcode = X86::LEA32r;
735 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
737 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
738 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
739 if (!Subtarget
.is64Bit())
742 unsigned Opcode
= X86::LEA64_32r
;
743 unsigned InRegLEA
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
744 unsigned OutRegLEA
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
746 // Build and insert into an implicit UNDEF value. This is OK because
747 // we will be shifting and then extracting the lower 8/16-bits.
748 // This has the potential to cause partial register stall. e.g.
749 // movw (%rbp,%rcx,2), %dx
750 // leal -65(%rdx), %esi
751 // But testing has shown this *does* help performance in 64-bit mode (at
752 // least on modern x86 machines).
753 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
754 unsigned Dest
= MI
.getOperand(0).getReg();
755 unsigned Src
= MI
.getOperand(1).getReg();
756 bool IsDead
= MI
.getOperand(0).isDead();
757 bool IsKill
= MI
.getOperand(1).isKill();
758 unsigned SubReg
= Is8BitOp
? X86::sub_8bit
: X86::sub_16bit
;
759 assert(!MI
.getOperand(1).isUndef() && "Undef op doesn't need optimization");
760 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA
);
761 MachineInstr
*InsMI
=
762 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
763 .addReg(InRegLEA
, RegState::Define
, SubReg
)
764 .addReg(Src
, getKillRegState(IsKill
));
766 MachineInstrBuilder MIB
=
767 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(Opcode
), OutRegLEA
);
769 default: llvm_unreachable("Unreachable!");
772 unsigned ShAmt
= MI
.getOperand(2).getImm();
773 MIB
.addReg(0).addImm(1ULL << ShAmt
)
774 .addReg(InRegLEA
, RegState::Kill
).addImm(0).addReg(0);
779 addRegOffset(MIB
, InRegLEA
, true, 1);
783 addRegOffset(MIB
, InRegLEA
, true, -1);
789 case X86::ADD16ri_DB
:
790 case X86::ADD16ri8_DB
:
791 addRegOffset(MIB
, InRegLEA
, true, MI
.getOperand(2).getImm());
796 case X86::ADD16rr_DB
: {
797 unsigned Src2
= MI
.getOperand(2).getReg();
798 bool IsKill2
= MI
.getOperand(2).isKill();
799 assert(!MI
.getOperand(2).isUndef() && "Undef op doesn't need optimization");
800 unsigned InRegLEA2
= 0;
801 MachineInstr
*InsMI2
= nullptr;
803 // ADD8rr/ADD16rr killed %reg1028, %reg1028
804 // just a single insert_subreg.
805 addRegReg(MIB
, InRegLEA
, true, InRegLEA
, false);
807 if (Subtarget
.is64Bit())
808 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
810 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
811 // Build and insert into an implicit UNDEF value. This is OK because
812 // we will be shifting and then extracting the lower 8/16-bits.
813 BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA2
);
814 InsMI2
= BuildMI(*MFI
, &*MIB
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
815 .addReg(InRegLEA2
, RegState::Define
, SubReg
)
816 .addReg(Src2
, getKillRegState(IsKill2
));
817 addRegReg(MIB
, InRegLEA
, true, InRegLEA2
, true);
819 if (LV
&& IsKill2
&& InsMI2
)
820 LV
->replaceKillInstruction(Src2
, MI
, *InsMI2
);
825 MachineInstr
*NewMI
= MIB
;
826 MachineInstr
*ExtMI
=
827 BuildMI(*MFI
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
828 .addReg(Dest
, RegState::Define
| getDeadRegState(IsDead
))
829 .addReg(OutRegLEA
, RegState::Kill
, SubReg
);
832 // Update live variables.
833 LV
->getVarInfo(InRegLEA
).Kills
.push_back(NewMI
);
834 LV
->getVarInfo(OutRegLEA
).Kills
.push_back(ExtMI
);
836 LV
->replaceKillInstruction(Src
, MI
, *InsMI
);
838 LV
->replaceKillInstruction(Dest
, MI
, *ExtMI
);
844 /// This method must be implemented by targets that
845 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
846 /// may be able to convert a two-address instruction into a true
847 /// three-address instruction on demand. This allows the X86 target (for
848 /// example) to convert ADD and SHL instructions into LEA instructions if they
849 /// would require register copies due to two-addressness.
851 /// This method returns a null pointer if the transformation cannot be
852 /// performed, otherwise it returns the new instruction.
855 X86InstrInfo::convertToThreeAddress(MachineFunction::iterator
&MFI
,
856 MachineInstr
&MI
, LiveVariables
*LV
) const {
857 // The following opcodes also sets the condition code register(s). Only
858 // convert them to equivalent lea if the condition code register def's
860 if (hasLiveCondCodeDef(MI
))
863 MachineFunction
&MF
= *MI
.getParent()->getParent();
864 // All instructions input are two-addr instructions. Get the known operands.
865 const MachineOperand
&Dest
= MI
.getOperand(0);
866 const MachineOperand
&Src
= MI
.getOperand(1);
868 // Ideally, operations with undef should be folded before we get here, but we
869 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
870 // Without this, we have to forward undef state to new register operands to
871 // avoid machine verifier errors.
874 if (MI
.getNumOperands() > 2)
875 if (MI
.getOperand(2).isReg() && MI
.getOperand(2).isUndef())
878 MachineInstr
*NewMI
= nullptr;
879 bool Is64Bit
= Subtarget
.is64Bit();
881 bool Is8BitOp
= false;
882 unsigned MIOpc
= MI
.getOpcode();
884 default: llvm_unreachable("Unreachable!");
886 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
887 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
888 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
890 // LEA can't handle RSP.
891 if (TargetRegisterInfo::isVirtualRegister(Src
.getReg()) &&
892 !MF
.getRegInfo().constrainRegClass(Src
.getReg(),
893 &X86::GR64_NOSPRegClass
))
896 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
))
899 .addImm(1ULL << ShAmt
)
906 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
907 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
908 if (!isTruncatedShiftCountForLEA(ShAmt
)) return nullptr;
910 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
912 // LEA can't handle ESP.
915 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
916 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false,
917 SrcReg
, isKill
, ImplicitOp
, LV
))
920 MachineInstrBuilder MIB
=
921 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
924 .addImm(1ULL << ShAmt
)
925 .addReg(SrcReg
, getKillRegState(isKill
))
928 if (ImplicitOp
.getReg() != 0)
938 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
939 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
940 if (!isTruncatedShiftCountForLEA(ShAmt
))
942 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
946 assert(MI
.getNumOperands() >= 2 && "Unknown inc instruction!");
947 unsigned Opc
= MIOpc
== X86::INC64r
? X86::LEA64r
:
948 (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
951 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
952 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
956 MachineInstrBuilder MIB
=
957 BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
959 .addReg(SrcReg
, getKillRegState(isKill
));
960 if (ImplicitOp
.getReg() != 0)
963 NewMI
= addOffset(MIB
, 1);
968 assert(MI
.getNumOperands() >= 2 && "Unknown dec instruction!");
969 unsigned Opc
= MIOpc
== X86::DEC64r
? X86::LEA64r
970 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
974 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
975 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ false, SrcReg
, isKill
,
979 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
981 .addReg(SrcReg
, getKillRegState(isKill
));
982 if (ImplicitOp
.getReg() != 0)
985 NewMI
= addOffset(MIB
, -1);
995 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
997 case X86::ADD64rr_DB
:
999 case X86::ADD32rr_DB
: {
1000 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1002 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
)
1005 Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1009 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1010 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1011 SrcReg
, isKill
, ImplicitOp
, LV
))
1014 const MachineOperand
&Src2
= MI
.getOperand(2);
1017 MachineOperand ImplicitOp2
= MachineOperand::CreateReg(0, false);
1018 if (!classifyLEAReg(MI
, Src2
, Opc
, /*AllowSP=*/ false,
1019 SrcReg2
, isKill2
, ImplicitOp2
, LV
))
1022 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
)).add(Dest
);
1023 if (ImplicitOp
.getReg() != 0)
1024 MIB
.add(ImplicitOp
);
1025 if (ImplicitOp2
.getReg() != 0)
1026 MIB
.add(ImplicitOp2
);
1028 NewMI
= addRegReg(MIB
, SrcReg
, isKill
, SrcReg2
, isKill2
);
1029 if (LV
&& Src2
.isKill())
1030 LV
->replaceKillInstruction(SrcReg2
, MI
, *NewMI
);
1034 case X86::ADD8rr_DB
:
1038 case X86::ADD16rr_DB
:
1039 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1040 case X86::ADD64ri32
:
1042 case X86::ADD64ri32_DB
:
1043 case X86::ADD64ri8_DB
:
1044 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1046 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
),
1051 case X86::ADD32ri_DB
:
1052 case X86::ADD32ri8_DB
: {
1053 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1054 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1058 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1059 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/ true,
1060 SrcReg
, isKill
, ImplicitOp
, LV
))
1063 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1065 .addReg(SrcReg
, getKillRegState(isKill
));
1066 if (ImplicitOp
.getReg() != 0)
1067 MIB
.add(ImplicitOp
);
1069 NewMI
= addOffset(MIB
, MI
.getOperand(2));
1073 case X86::ADD8ri_DB
:
1078 case X86::ADD16ri_DB
:
1079 case X86::ADD16ri8_DB
:
1080 return convertToThreeAddressWithLEA(MIOpc
, MFI
, MI
, LV
, Is8BitOp
);
1081 case X86::VMOVDQU8Z128rmk
:
1082 case X86::VMOVDQU8Z256rmk
:
1083 case X86::VMOVDQU8Zrmk
:
1084 case X86::VMOVDQU16Z128rmk
:
1085 case X86::VMOVDQU16Z256rmk
:
1086 case X86::VMOVDQU16Zrmk
:
1087 case X86::VMOVDQU32Z128rmk
: case X86::VMOVDQA32Z128rmk
:
1088 case X86::VMOVDQU32Z256rmk
: case X86::VMOVDQA32Z256rmk
:
1089 case X86::VMOVDQU32Zrmk
: case X86::VMOVDQA32Zrmk
:
1090 case X86::VMOVDQU64Z128rmk
: case X86::VMOVDQA64Z128rmk
:
1091 case X86::VMOVDQU64Z256rmk
: case X86::VMOVDQA64Z256rmk
:
1092 case X86::VMOVDQU64Zrmk
: case X86::VMOVDQA64Zrmk
:
1093 case X86::VMOVUPDZ128rmk
: case X86::VMOVAPDZ128rmk
:
1094 case X86::VMOVUPDZ256rmk
: case X86::VMOVAPDZ256rmk
:
1095 case X86::VMOVUPDZrmk
: case X86::VMOVAPDZrmk
:
1096 case X86::VMOVUPSZ128rmk
: case X86::VMOVAPSZ128rmk
:
1097 case X86::VMOVUPSZ256rmk
: case X86::VMOVAPSZ256rmk
:
1098 case X86::VMOVUPSZrmk
: case X86::VMOVAPSZrmk
: {
1101 default: llvm_unreachable("Unreachable!");
1102 case X86::VMOVDQU8Z128rmk
: Opc
= X86::VPBLENDMBZ128rmk
; break;
1103 case X86::VMOVDQU8Z256rmk
: Opc
= X86::VPBLENDMBZ256rmk
; break;
1104 case X86::VMOVDQU8Zrmk
: Opc
= X86::VPBLENDMBZrmk
; break;
1105 case X86::VMOVDQU16Z128rmk
: Opc
= X86::VPBLENDMWZ128rmk
; break;
1106 case X86::VMOVDQU16Z256rmk
: Opc
= X86::VPBLENDMWZ256rmk
; break;
1107 case X86::VMOVDQU16Zrmk
: Opc
= X86::VPBLENDMWZrmk
; break;
1108 case X86::VMOVDQU32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1109 case X86::VMOVDQU32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1110 case X86::VMOVDQU32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1111 case X86::VMOVDQU64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1112 case X86::VMOVDQU64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1113 case X86::VMOVDQU64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1114 case X86::VMOVUPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1115 case X86::VMOVUPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1116 case X86::VMOVUPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1117 case X86::VMOVUPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1118 case X86::VMOVUPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1119 case X86::VMOVUPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1120 case X86::VMOVDQA32Z128rmk
: Opc
= X86::VPBLENDMDZ128rmk
; break;
1121 case X86::VMOVDQA32Z256rmk
: Opc
= X86::VPBLENDMDZ256rmk
; break;
1122 case X86::VMOVDQA32Zrmk
: Opc
= X86::VPBLENDMDZrmk
; break;
1123 case X86::VMOVDQA64Z128rmk
: Opc
= X86::VPBLENDMQZ128rmk
; break;
1124 case X86::VMOVDQA64Z256rmk
: Opc
= X86::VPBLENDMQZ256rmk
; break;
1125 case X86::VMOVDQA64Zrmk
: Opc
= X86::VPBLENDMQZrmk
; break;
1126 case X86::VMOVAPDZ128rmk
: Opc
= X86::VBLENDMPDZ128rmk
; break;
1127 case X86::VMOVAPDZ256rmk
: Opc
= X86::VBLENDMPDZ256rmk
; break;
1128 case X86::VMOVAPDZrmk
: Opc
= X86::VBLENDMPDZrmk
; break;
1129 case X86::VMOVAPSZ128rmk
: Opc
= X86::VBLENDMPSZ128rmk
; break;
1130 case X86::VMOVAPSZ256rmk
: Opc
= X86::VBLENDMPSZ256rmk
; break;
1131 case X86::VMOVAPSZrmk
: Opc
= X86::VBLENDMPSZrmk
; break;
1134 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1136 .add(MI
.getOperand(2))
1138 .add(MI
.getOperand(3))
1139 .add(MI
.getOperand(4))
1140 .add(MI
.getOperand(5))
1141 .add(MI
.getOperand(6))
1142 .add(MI
.getOperand(7));
1145 case X86::VMOVDQU8Z128rrk
:
1146 case X86::VMOVDQU8Z256rrk
:
1147 case X86::VMOVDQU8Zrrk
:
1148 case X86::VMOVDQU16Z128rrk
:
1149 case X86::VMOVDQU16Z256rrk
:
1150 case X86::VMOVDQU16Zrrk
:
1151 case X86::VMOVDQU32Z128rrk
: case X86::VMOVDQA32Z128rrk
:
1152 case X86::VMOVDQU32Z256rrk
: case X86::VMOVDQA32Z256rrk
:
1153 case X86::VMOVDQU32Zrrk
: case X86::VMOVDQA32Zrrk
:
1154 case X86::VMOVDQU64Z128rrk
: case X86::VMOVDQA64Z128rrk
:
1155 case X86::VMOVDQU64Z256rrk
: case X86::VMOVDQA64Z256rrk
:
1156 case X86::VMOVDQU64Zrrk
: case X86::VMOVDQA64Zrrk
:
1157 case X86::VMOVUPDZ128rrk
: case X86::VMOVAPDZ128rrk
:
1158 case X86::VMOVUPDZ256rrk
: case X86::VMOVAPDZ256rrk
:
1159 case X86::VMOVUPDZrrk
: case X86::VMOVAPDZrrk
:
1160 case X86::VMOVUPSZ128rrk
: case X86::VMOVAPSZ128rrk
:
1161 case X86::VMOVUPSZ256rrk
: case X86::VMOVAPSZ256rrk
:
1162 case X86::VMOVUPSZrrk
: case X86::VMOVAPSZrrk
: {
1165 default: llvm_unreachable("Unreachable!");
1166 case X86::VMOVDQU8Z128rrk
: Opc
= X86::VPBLENDMBZ128rrk
; break;
1167 case X86::VMOVDQU8Z256rrk
: Opc
= X86::VPBLENDMBZ256rrk
; break;
1168 case X86::VMOVDQU8Zrrk
: Opc
= X86::VPBLENDMBZrrk
; break;
1169 case X86::VMOVDQU16Z128rrk
: Opc
= X86::VPBLENDMWZ128rrk
; break;
1170 case X86::VMOVDQU16Z256rrk
: Opc
= X86::VPBLENDMWZ256rrk
; break;
1171 case X86::VMOVDQU16Zrrk
: Opc
= X86::VPBLENDMWZrrk
; break;
1172 case X86::VMOVDQU32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1173 case X86::VMOVDQU32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1174 case X86::VMOVDQU32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1175 case X86::VMOVDQU64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1176 case X86::VMOVDQU64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1177 case X86::VMOVDQU64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1178 case X86::VMOVUPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1179 case X86::VMOVUPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1180 case X86::VMOVUPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1181 case X86::VMOVUPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1182 case X86::VMOVUPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1183 case X86::VMOVUPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1184 case X86::VMOVDQA32Z128rrk
: Opc
= X86::VPBLENDMDZ128rrk
; break;
1185 case X86::VMOVDQA32Z256rrk
: Opc
= X86::VPBLENDMDZ256rrk
; break;
1186 case X86::VMOVDQA32Zrrk
: Opc
= X86::VPBLENDMDZrrk
; break;
1187 case X86::VMOVDQA64Z128rrk
: Opc
= X86::VPBLENDMQZ128rrk
; break;
1188 case X86::VMOVDQA64Z256rrk
: Opc
= X86::VPBLENDMQZ256rrk
; break;
1189 case X86::VMOVDQA64Zrrk
: Opc
= X86::VPBLENDMQZrrk
; break;
1190 case X86::VMOVAPDZ128rrk
: Opc
= X86::VBLENDMPDZ128rrk
; break;
1191 case X86::VMOVAPDZ256rrk
: Opc
= X86::VBLENDMPDZ256rrk
; break;
1192 case X86::VMOVAPDZrrk
: Opc
= X86::VBLENDMPDZrrk
; break;
1193 case X86::VMOVAPSZ128rrk
: Opc
= X86::VBLENDMPSZ128rrk
; break;
1194 case X86::VMOVAPSZ256rrk
: Opc
= X86::VBLENDMPSZ256rrk
; break;
1195 case X86::VMOVAPSZrrk
: Opc
= X86::VBLENDMPSZrrk
; break;
1198 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1200 .add(MI
.getOperand(2))
1202 .add(MI
.getOperand(3));
1207 if (!NewMI
) return nullptr;
1209 if (LV
) { // Update live variables
1211 LV
->replaceKillInstruction(Src
.getReg(), MI
, *NewMI
);
1213 LV
->replaceKillInstruction(Dest
.getReg(), MI
, *NewMI
);
1216 MFI
->insert(MI
.getIterator(), NewMI
); // Insert the new inst
1220 /// This determines which of three possible cases of a three source commute
1221 /// the source indexes correspond to taking into account any mask operands.
1222 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
1224 /// Case 0 - Possible to commute the first and second operands.
1225 /// Case 1 - Possible to commute the first and third operands.
1226 /// Case 2 - Possible to commute the second and third operands.
1227 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags
, unsigned SrcOpIdx1
,
1228 unsigned SrcOpIdx2
) {
1229 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
1230 if (SrcOpIdx1
> SrcOpIdx2
)
1231 std::swap(SrcOpIdx1
, SrcOpIdx2
);
1233 unsigned Op1
= 1, Op2
= 2, Op3
= 3;
1234 if (X86II::isKMasked(TSFlags
)) {
1239 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op2
)
1241 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op3
)
1243 if (SrcOpIdx1
== Op2
&& SrcOpIdx2
== Op3
)
1245 llvm_unreachable("Unknown three src commute case.");
1248 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
1249 const MachineInstr
&MI
, unsigned SrcOpIdx1
, unsigned SrcOpIdx2
,
1250 const X86InstrFMA3Group
&FMA3Group
) const {
1252 unsigned Opc
= MI
.getOpcode();
1254 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
1255 // analysis. The commute optimization is legal only if all users of FMA*_Int
1256 // use only the lowest element of the FMA*_Int instruction. Such analysis are
1257 // not implemented yet. So, just return 0 in that case.
1258 // When such analysis are available this place will be the right place for
1260 assert(!(FMA3Group
.isIntrinsic() && (SrcOpIdx1
== 1 || SrcOpIdx2
== 1)) &&
1261 "Intrinsic instructions can't commute operand 1");
1263 // Determine which case this commute is or if it can't be done.
1264 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1266 assert(Case
< 3 && "Unexpected case number!");
1268 // Define the FMA forms mapping array that helps to map input FMA form
1269 // to output FMA form to preserve the operation semantics after
1270 // commuting the operands.
1271 const unsigned Form132Index
= 0;
1272 const unsigned Form213Index
= 1;
1273 const unsigned Form231Index
= 2;
1274 static const unsigned FormMapping
[][3] = {
1275 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
1276 // FMA132 A, C, b; ==> FMA231 C, A, b;
1277 // FMA213 B, A, c; ==> FMA213 A, B, c;
1278 // FMA231 C, A, b; ==> FMA132 A, C, b;
1279 { Form231Index
, Form213Index
, Form132Index
},
1280 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
1281 // FMA132 A, c, B; ==> FMA132 B, c, A;
1282 // FMA213 B, a, C; ==> FMA231 C, a, B;
1283 // FMA231 C, a, B; ==> FMA213 B, a, C;
1284 { Form132Index
, Form231Index
, Form213Index
},
1285 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
1286 // FMA132 a, C, B; ==> FMA213 a, B, C;
1287 // FMA213 b, A, C; ==> FMA132 b, C, A;
1288 // FMA231 c, A, B; ==> FMA231 c, B, A;
1289 { Form213Index
, Form132Index
, Form231Index
}
1292 unsigned FMAForms
[3];
1293 FMAForms
[0] = FMA3Group
.get132Opcode();
1294 FMAForms
[1] = FMA3Group
.get213Opcode();
1295 FMAForms
[2] = FMA3Group
.get231Opcode();
1297 for (FormIndex
= 0; FormIndex
< 3; FormIndex
++)
1298 if (Opc
== FMAForms
[FormIndex
])
1301 // Everything is ready, just adjust the FMA opcode and return it.
1302 FormIndex
= FormMapping
[Case
][FormIndex
];
1303 return FMAForms
[FormIndex
];
1306 static void commuteVPTERNLOG(MachineInstr
&MI
, unsigned SrcOpIdx1
,
1307 unsigned SrcOpIdx2
) {
1308 // Determine which case this commute is or if it can't be done.
1309 unsigned Case
= getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
,
1311 assert(Case
< 3 && "Unexpected case value!");
1313 // For each case we need to swap two pairs of bits in the final immediate.
1314 static const uint8_t SwapMasks
[3][4] = {
1315 { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5.
1316 { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6.
1317 { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6.
1320 uint8_t Imm
= MI
.getOperand(MI
.getNumOperands()-1).getImm();
1321 // Clear out the bits we are swapping.
1322 uint8_t NewImm
= Imm
& ~(SwapMasks
[Case
][0] | SwapMasks
[Case
][1] |
1323 SwapMasks
[Case
][2] | SwapMasks
[Case
][3]);
1324 // If the immediate had a bit of the pair set, then set the opposite bit.
1325 if (Imm
& SwapMasks
[Case
][0]) NewImm
|= SwapMasks
[Case
][1];
1326 if (Imm
& SwapMasks
[Case
][1]) NewImm
|= SwapMasks
[Case
][0];
1327 if (Imm
& SwapMasks
[Case
][2]) NewImm
|= SwapMasks
[Case
][3];
1328 if (Imm
& SwapMasks
[Case
][3]) NewImm
|= SwapMasks
[Case
][2];
1329 MI
.getOperand(MI
.getNumOperands()-1).setImm(NewImm
);
1332 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
1334 static bool isCommutableVPERMV3Instruction(unsigned Opcode
) {
1335 #define VPERM_CASES(Suffix) \
1336 case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \
1337 case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \
1338 case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \
1339 case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \
1340 case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \
1341 case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \
1342 case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \
1343 case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \
1344 case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \
1345 case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \
1346 case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \
1347 case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz:
1349 #define VPERM_CASES_BROADCAST(Suffix) \
1350 VPERM_CASES(Suffix) \
1351 case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \
1352 case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \
1353 case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \
1354 case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \
1355 case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \
1356 case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz:
1359 default: return false;
1361 VPERM_CASES_BROADCAST(D
)
1362 VPERM_CASES_BROADCAST(PD
)
1363 VPERM_CASES_BROADCAST(PS
)
1364 VPERM_CASES_BROADCAST(Q
)
1368 #undef VPERM_CASES_BROADCAST
1372 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
1373 // from the I opcode to the T opcode and vice versa.
1374 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode
) {
1375 #define VPERM_CASES(Orig, New) \
1376 case X86::Orig##128rr: return X86::New##128rr; \
1377 case X86::Orig##128rrkz: return X86::New##128rrkz; \
1378 case X86::Orig##128rm: return X86::New##128rm; \
1379 case X86::Orig##128rmkz: return X86::New##128rmkz; \
1380 case X86::Orig##256rr: return X86::New##256rr; \
1381 case X86::Orig##256rrkz: return X86::New##256rrkz; \
1382 case X86::Orig##256rm: return X86::New##256rm; \
1383 case X86::Orig##256rmkz: return X86::New##256rmkz; \
1384 case X86::Orig##rr: return X86::New##rr; \
1385 case X86::Orig##rrkz: return X86::New##rrkz; \
1386 case X86::Orig##rm: return X86::New##rm; \
1387 case X86::Orig##rmkz: return X86::New##rmkz;
1389 #define VPERM_CASES_BROADCAST(Orig, New) \
1390 VPERM_CASES(Orig, New) \
1391 case X86::Orig##128rmb: return X86::New##128rmb; \
1392 case X86::Orig##128rmbkz: return X86::New##128rmbkz; \
1393 case X86::Orig##256rmb: return X86::New##256rmb; \
1394 case X86::Orig##256rmbkz: return X86::New##256rmbkz; \
1395 case X86::Orig##rmb: return X86::New##rmb; \
1396 case X86::Orig##rmbkz: return X86::New##rmbkz;
1399 VPERM_CASES(VPERMI2B
, VPERMT2B
)
1400 VPERM_CASES_BROADCAST(VPERMI2D
, VPERMT2D
)
1401 VPERM_CASES_BROADCAST(VPERMI2PD
, VPERMT2PD
)
1402 VPERM_CASES_BROADCAST(VPERMI2PS
, VPERMT2PS
)
1403 VPERM_CASES_BROADCAST(VPERMI2Q
, VPERMT2Q
)
1404 VPERM_CASES(VPERMI2W
, VPERMT2W
)
1405 VPERM_CASES(VPERMT2B
, VPERMI2B
)
1406 VPERM_CASES_BROADCAST(VPERMT2D
, VPERMI2D
)
1407 VPERM_CASES_BROADCAST(VPERMT2PD
, VPERMI2PD
)
1408 VPERM_CASES_BROADCAST(VPERMT2PS
, VPERMI2PS
)
1409 VPERM_CASES_BROADCAST(VPERMT2Q
, VPERMI2Q
)
1410 VPERM_CASES(VPERMT2W
, VPERMI2W
)
1413 llvm_unreachable("Unreachable!");
1414 #undef VPERM_CASES_BROADCAST
1418 MachineInstr
*X86InstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
1420 unsigned OpIdx2
) const {
1421 auto cloneIfNew
= [NewMI
](MachineInstr
&MI
) -> MachineInstr
& {
1423 return *MI
.getParent()->getParent()->CloneMachineInstr(&MI
);
1427 switch (MI
.getOpcode()) {
1428 case X86::SHRD16rri8
: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1429 case X86::SHLD16rri8
: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1430 case X86::SHRD32rri8
: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
1431 case X86::SHLD32rri8
: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1432 case X86::SHRD64rri8
: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1433 case X86::SHLD64rri8
:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
1436 switch (MI
.getOpcode()) {
1437 default: llvm_unreachable("Unreachable!");
1438 case X86::SHRD16rri8
: Size
= 16; Opc
= X86::SHLD16rri8
; break;
1439 case X86::SHLD16rri8
: Size
= 16; Opc
= X86::SHRD16rri8
; break;
1440 case X86::SHRD32rri8
: Size
= 32; Opc
= X86::SHLD32rri8
; break;
1441 case X86::SHLD32rri8
: Size
= 32; Opc
= X86::SHRD32rri8
; break;
1442 case X86::SHRD64rri8
: Size
= 64; Opc
= X86::SHLD64rri8
; break;
1443 case X86::SHLD64rri8
: Size
= 64; Opc
= X86::SHRD64rri8
; break;
1445 unsigned Amt
= MI
.getOperand(3).getImm();
1446 auto &WorkingMI
= cloneIfNew(MI
);
1447 WorkingMI
.setDesc(get(Opc
));
1448 WorkingMI
.getOperand(3).setImm(Size
- Amt
);
1449 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1453 case X86::PFSUBRrr
: {
1454 // PFSUB x, y: x = x - y
1455 // PFSUBR x, y: x = y - x
1457 (X86::PFSUBRrr
== MI
.getOpcode() ? X86::PFSUBrr
: X86::PFSUBRrr
);
1458 auto &WorkingMI
= cloneIfNew(MI
);
1459 WorkingMI
.setDesc(get(Opc
));
1460 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1463 case X86::BLENDPDrri
:
1464 case X86::BLENDPSrri
:
1465 case X86::VBLENDPDrri
:
1466 case X86::VBLENDPSrri
:
1467 // If we're optimizing for size, try to use MOVSD/MOVSS.
1468 if (MI
.getParent()->getParent()->getFunction().hasOptSize()) {
1470 switch (MI
.getOpcode()) {
1471 default: llvm_unreachable("Unreachable!");
1472 case X86::BLENDPDrri
: Opc
= X86::MOVSDrr
; Mask
= 0x03; break;
1473 case X86::BLENDPSrri
: Opc
= X86::MOVSSrr
; Mask
= 0x0F; break;
1474 case X86::VBLENDPDrri
: Opc
= X86::VMOVSDrr
; Mask
= 0x03; break;
1475 case X86::VBLENDPSrri
: Opc
= X86::VMOVSSrr
; Mask
= 0x0F; break;
1477 if ((MI
.getOperand(3).getImm() ^ Mask
) == 1) {
1478 auto &WorkingMI
= cloneIfNew(MI
);
1479 WorkingMI
.setDesc(get(Opc
));
1480 WorkingMI
.RemoveOperand(3);
1481 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
,
1487 case X86::PBLENDWrri
:
1488 case X86::VBLENDPDYrri
:
1489 case X86::VBLENDPSYrri
:
1490 case X86::VPBLENDDrri
:
1491 case X86::VPBLENDWrri
:
1492 case X86::VPBLENDDYrri
:
1493 case X86::VPBLENDWYrri
:{
1495 switch (MI
.getOpcode()) {
1496 default: llvm_unreachable("Unreachable!");
1497 case X86::BLENDPDrri
: Mask
= (int8_t)0x03; break;
1498 case X86::BLENDPSrri
: Mask
= (int8_t)0x0F; break;
1499 case X86::PBLENDWrri
: Mask
= (int8_t)0xFF; break;
1500 case X86::VBLENDPDrri
: Mask
= (int8_t)0x03; break;
1501 case X86::VBLENDPSrri
: Mask
= (int8_t)0x0F; break;
1502 case X86::VBLENDPDYrri
: Mask
= (int8_t)0x0F; break;
1503 case X86::VBLENDPSYrri
: Mask
= (int8_t)0xFF; break;
1504 case X86::VPBLENDDrri
: Mask
= (int8_t)0x0F; break;
1505 case X86::VPBLENDWrri
: Mask
= (int8_t)0xFF; break;
1506 case X86::VPBLENDDYrri
: Mask
= (int8_t)0xFF; break;
1507 case X86::VPBLENDWYrri
: Mask
= (int8_t)0xFF; break;
1509 // Only the least significant bits of Imm are used.
1510 // Using int8_t to ensure it will be sign extended to the int64_t that
1511 // setImm takes in order to match isel behavior.
1512 int8_t Imm
= MI
.getOperand(3).getImm() & Mask
;
1513 auto &WorkingMI
= cloneIfNew(MI
);
1514 WorkingMI
.getOperand(3).setImm(Mask
^ Imm
);
1515 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1518 case X86::INSERTPSrr
:
1519 case X86::VINSERTPSrr
:
1520 case X86::VINSERTPSZrr
: {
1521 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
1522 unsigned ZMask
= Imm
& 15;
1523 unsigned DstIdx
= (Imm
>> 4) & 3;
1524 unsigned SrcIdx
= (Imm
>> 6) & 3;
1526 // We can commute insertps if we zero 2 of the elements, the insertion is
1527 // "inline" and we don't override the insertion with a zero.
1528 if (DstIdx
== SrcIdx
&& (ZMask
& (1 << DstIdx
)) == 0 &&
1529 countPopulation(ZMask
) == 2) {
1530 unsigned AltIdx
= findFirstSet((ZMask
| (1 << DstIdx
)) ^ 15);
1531 assert(AltIdx
< 4 && "Illegal insertion index");
1532 unsigned AltImm
= (AltIdx
<< 6) | (AltIdx
<< 4) | ZMask
;
1533 auto &WorkingMI
= cloneIfNew(MI
);
1534 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(AltImm
);
1535 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1543 case X86::VMOVSSrr
:{
1544 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
1545 if (Subtarget
.hasSSE41()) {
1547 switch (MI
.getOpcode()) {
1548 default: llvm_unreachable("Unreachable!");
1549 case X86::MOVSDrr
: Opc
= X86::BLENDPDrri
; Mask
= 0x02; break;
1550 case X86::MOVSSrr
: Opc
= X86::BLENDPSrri
; Mask
= 0x0E; break;
1551 case X86::VMOVSDrr
: Opc
= X86::VBLENDPDrri
; Mask
= 0x02; break;
1552 case X86::VMOVSSrr
: Opc
= X86::VBLENDPSrri
; Mask
= 0x0E; break;
1555 auto &WorkingMI
= cloneIfNew(MI
);
1556 WorkingMI
.setDesc(get(Opc
));
1557 WorkingMI
.addOperand(MachineOperand::CreateImm(Mask
));
1558 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1562 // Convert to SHUFPD.
1563 assert(MI
.getOpcode() == X86::MOVSDrr
&&
1564 "Can only commute MOVSDrr without SSE4.1");
1566 auto &WorkingMI
= cloneIfNew(MI
);
1567 WorkingMI
.setDesc(get(X86::SHUFPDrri
));
1568 WorkingMI
.addOperand(MachineOperand::CreateImm(0x02));
1569 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1572 case X86::SHUFPDrri
: {
1573 // Commute to MOVSD.
1574 assert(MI
.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
1575 auto &WorkingMI
= cloneIfNew(MI
);
1576 WorkingMI
.setDesc(get(X86::MOVSDrr
));
1577 WorkingMI
.RemoveOperand(3);
1578 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1581 case X86::PCLMULQDQrr
:
1582 case X86::VPCLMULQDQrr
:
1583 case X86::VPCLMULQDQYrr
:
1584 case X86::VPCLMULQDQZrr
:
1585 case X86::VPCLMULQDQZ128rr
:
1586 case X86::VPCLMULQDQZ256rr
: {
1587 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
1588 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
1589 unsigned Imm
= MI
.getOperand(3).getImm();
1590 unsigned Src1Hi
= Imm
& 0x01;
1591 unsigned Src2Hi
= Imm
& 0x10;
1592 auto &WorkingMI
= cloneIfNew(MI
);
1593 WorkingMI
.getOperand(3).setImm((Src1Hi
<< 4) | (Src2Hi
>> 4));
1594 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1597 case X86::VPCMPBZ128rri
: case X86::VPCMPUBZ128rri
:
1598 case X86::VPCMPBZ256rri
: case X86::VPCMPUBZ256rri
:
1599 case X86::VPCMPBZrri
: case X86::VPCMPUBZrri
:
1600 case X86::VPCMPDZ128rri
: case X86::VPCMPUDZ128rri
:
1601 case X86::VPCMPDZ256rri
: case X86::VPCMPUDZ256rri
:
1602 case X86::VPCMPDZrri
: case X86::VPCMPUDZrri
:
1603 case X86::VPCMPQZ128rri
: case X86::VPCMPUQZ128rri
:
1604 case X86::VPCMPQZ256rri
: case X86::VPCMPUQZ256rri
:
1605 case X86::VPCMPQZrri
: case X86::VPCMPUQZrri
:
1606 case X86::VPCMPWZ128rri
: case X86::VPCMPUWZ128rri
:
1607 case X86::VPCMPWZ256rri
: case X86::VPCMPUWZ256rri
:
1608 case X86::VPCMPWZrri
: case X86::VPCMPUWZrri
:
1609 case X86::VPCMPBZ128rrik
: case X86::VPCMPUBZ128rrik
:
1610 case X86::VPCMPBZ256rrik
: case X86::VPCMPUBZ256rrik
:
1611 case X86::VPCMPBZrrik
: case X86::VPCMPUBZrrik
:
1612 case X86::VPCMPDZ128rrik
: case X86::VPCMPUDZ128rrik
:
1613 case X86::VPCMPDZ256rrik
: case X86::VPCMPUDZ256rrik
:
1614 case X86::VPCMPDZrrik
: case X86::VPCMPUDZrrik
:
1615 case X86::VPCMPQZ128rrik
: case X86::VPCMPUQZ128rrik
:
1616 case X86::VPCMPQZ256rrik
: case X86::VPCMPUQZ256rrik
:
1617 case X86::VPCMPQZrrik
: case X86::VPCMPUQZrrik
:
1618 case X86::VPCMPWZ128rrik
: case X86::VPCMPUWZ128rrik
:
1619 case X86::VPCMPWZ256rrik
: case X86::VPCMPUWZ256rrik
:
1620 case X86::VPCMPWZrrik
: case X86::VPCMPUWZrrik
: {
1621 // Flip comparison mode immediate (if necessary).
1622 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x7;
1623 Imm
= X86::getSwappedVPCMPImm(Imm
);
1624 auto &WorkingMI
= cloneIfNew(MI
);
1625 WorkingMI
.getOperand(MI
.getNumOperands() - 1).setImm(Imm
);
1626 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1629 case X86::VPCOMBri
: case X86::VPCOMUBri
:
1630 case X86::VPCOMDri
: case X86::VPCOMUDri
:
1631 case X86::VPCOMQri
: case X86::VPCOMUQri
:
1632 case X86::VPCOMWri
: case X86::VPCOMUWri
: {
1633 // Flip comparison mode immediate (if necessary).
1634 unsigned Imm
= MI
.getOperand(3).getImm() & 0x7;
1635 Imm
= X86::getSwappedVPCOMImm(Imm
);
1636 auto &WorkingMI
= cloneIfNew(MI
);
1637 WorkingMI
.getOperand(3).setImm(Imm
);
1638 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1641 case X86::VPERM2F128rr
:
1642 case X86::VPERM2I128rr
: {
1643 // Flip permute source immediate.
1644 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
1645 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
1646 int8_t Imm
= MI
.getOperand(3).getImm() & 0xFF;
1647 auto &WorkingMI
= cloneIfNew(MI
);
1648 WorkingMI
.getOperand(3).setImm(Imm
^ 0x22);
1649 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1652 case X86::MOVHLPSrr
:
1653 case X86::UNPCKHPDrr
:
1654 case X86::VMOVHLPSrr
:
1655 case X86::VUNPCKHPDrr
:
1656 case X86::VMOVHLPSZrr
:
1657 case X86::VUNPCKHPDZ128rr
: {
1658 assert(Subtarget
.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
1660 unsigned Opc
= MI
.getOpcode();
1662 default: llvm_unreachable("Unreachable!");
1663 case X86::MOVHLPSrr
: Opc
= X86::UNPCKHPDrr
; break;
1664 case X86::UNPCKHPDrr
: Opc
= X86::MOVHLPSrr
; break;
1665 case X86::VMOVHLPSrr
: Opc
= X86::VUNPCKHPDrr
; break;
1666 case X86::VUNPCKHPDrr
: Opc
= X86::VMOVHLPSrr
; break;
1667 case X86::VMOVHLPSZrr
: Opc
= X86::VUNPCKHPDZ128rr
; break;
1668 case X86::VUNPCKHPDZ128rr
: Opc
= X86::VMOVHLPSZrr
; break;
1670 auto &WorkingMI
= cloneIfNew(MI
);
1671 WorkingMI
.setDesc(get(Opc
));
1672 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1675 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
: {
1676 auto &WorkingMI
= cloneIfNew(MI
);
1677 unsigned OpNo
= MI
.getDesc().getNumOperands() - 1;
1678 X86::CondCode CC
= static_cast<X86::CondCode
>(MI
.getOperand(OpNo
).getImm());
1679 WorkingMI
.getOperand(OpNo
).setImm(X86::GetOppositeBranchCondition(CC
));
1680 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1683 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
1684 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
1685 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
1686 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
1687 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
1688 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
1689 case X86::VPTERNLOGDZrrik
:
1690 case X86::VPTERNLOGDZ128rrik
:
1691 case X86::VPTERNLOGDZ256rrik
:
1692 case X86::VPTERNLOGQZrrik
:
1693 case X86::VPTERNLOGQZ128rrik
:
1694 case X86::VPTERNLOGQZ256rrik
:
1695 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
1696 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
1697 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
1698 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
1699 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
1700 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
1701 case X86::VPTERNLOGDZ128rmbi
:
1702 case X86::VPTERNLOGDZ256rmbi
:
1703 case X86::VPTERNLOGDZrmbi
:
1704 case X86::VPTERNLOGQZ128rmbi
:
1705 case X86::VPTERNLOGQZ256rmbi
:
1706 case X86::VPTERNLOGQZrmbi
:
1707 case X86::VPTERNLOGDZ128rmbikz
:
1708 case X86::VPTERNLOGDZ256rmbikz
:
1709 case X86::VPTERNLOGDZrmbikz
:
1710 case X86::VPTERNLOGQZ128rmbikz
:
1711 case X86::VPTERNLOGQZ256rmbikz
:
1712 case X86::VPTERNLOGQZrmbikz
: {
1713 auto &WorkingMI
= cloneIfNew(MI
);
1714 commuteVPTERNLOG(WorkingMI
, OpIdx1
, OpIdx2
);
1715 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1719 if (isCommutableVPERMV3Instruction(MI
.getOpcode())) {
1720 unsigned Opc
= getCommutedVPERMV3Opcode(MI
.getOpcode());
1721 auto &WorkingMI
= cloneIfNew(MI
);
1722 WorkingMI
.setDesc(get(Opc
));
1723 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1727 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
1728 MI
.getDesc().TSFlags
);
1731 getFMA3OpcodeToCommuteOperands(MI
, OpIdx1
, OpIdx2
, *FMA3Group
);
1732 auto &WorkingMI
= cloneIfNew(MI
);
1733 WorkingMI
.setDesc(get(Opc
));
1734 return TargetInstrInfo::commuteInstructionImpl(WorkingMI
, /*NewMI=*/false,
1738 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
1744 X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
1745 unsigned &SrcOpIdx1
,
1746 unsigned &SrcOpIdx2
,
1747 bool IsIntrinsic
) const {
1748 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
1750 unsigned FirstCommutableVecOp
= 1;
1751 unsigned LastCommutableVecOp
= 3;
1752 unsigned KMaskOp
= -1U;
1753 if (X86II::isKMasked(TSFlags
)) {
1754 // For k-zero-masked operations it is Ok to commute the first vector
1756 // For regular k-masked operations a conservative choice is done as the
1757 // elements of the first vector operand, for which the corresponding bit
1758 // in the k-mask operand is set to 0, are copied to the result of the
1760 // TODO/FIXME: The commute still may be legal if it is known that the
1761 // k-mask operand is set to either all ones or all zeroes.
1762 // It is also Ok to commute the 1st operand if all users of MI use only
1763 // the elements enabled by the k-mask operand. For example,
1764 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
1766 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
1767 // // Ok, to commute v1 in FMADD213PSZrk.
1769 // The k-mask operand has index = 2 for masked and zero-masked operations.
1772 // The operand with index = 1 is used as a source for those elements for
1773 // which the corresponding bit in the k-mask is set to 0.
1774 if (X86II::isKMergeMasked(TSFlags
))
1775 FirstCommutableVecOp
= 3;
1777 LastCommutableVecOp
++;
1778 } else if (IsIntrinsic
) {
1779 // Commuting the first operand of an intrinsic instruction isn't possible
1780 // unless we can prove that only the lowest element of the result is used.
1781 FirstCommutableVecOp
= 2;
1784 if (isMem(MI
, LastCommutableVecOp
))
1785 LastCommutableVecOp
--;
1787 // Only the first RegOpsNum operands are commutable.
1788 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
1789 // that the operand is not specified/fixed.
1790 if (SrcOpIdx1
!= CommuteAnyOperandIndex
&&
1791 (SrcOpIdx1
< FirstCommutableVecOp
|| SrcOpIdx1
> LastCommutableVecOp
||
1792 SrcOpIdx1
== KMaskOp
))
1794 if (SrcOpIdx2
!= CommuteAnyOperandIndex
&&
1795 (SrcOpIdx2
< FirstCommutableVecOp
|| SrcOpIdx2
> LastCommutableVecOp
||
1796 SrcOpIdx2
== KMaskOp
))
1799 // Look for two different register operands assumed to be commutable
1800 // regardless of the FMA opcode. The FMA opcode is adjusted later.
1801 if (SrcOpIdx1
== CommuteAnyOperandIndex
||
1802 SrcOpIdx2
== CommuteAnyOperandIndex
) {
1803 unsigned CommutableOpIdx2
= SrcOpIdx2
;
1805 // At least one of operands to be commuted is not specified and
1806 // this method is free to choose appropriate commutable operands.
1807 if (SrcOpIdx1
== SrcOpIdx2
)
1808 // Both of operands are not fixed. By default set one of commutable
1809 // operands to the last register operand of the instruction.
1810 CommutableOpIdx2
= LastCommutableVecOp
;
1811 else if (SrcOpIdx2
== CommuteAnyOperandIndex
)
1812 // Only one of operands is not fixed.
1813 CommutableOpIdx2
= SrcOpIdx1
;
1815 // CommutableOpIdx2 is well defined now. Let's choose another commutable
1816 // operand and assign its index to CommutableOpIdx1.
1817 unsigned Op2Reg
= MI
.getOperand(CommutableOpIdx2
).getReg();
1819 unsigned CommutableOpIdx1
;
1820 for (CommutableOpIdx1
= LastCommutableVecOp
;
1821 CommutableOpIdx1
>= FirstCommutableVecOp
; CommutableOpIdx1
--) {
1822 // Just ignore and skip the k-mask operand.
1823 if (CommutableOpIdx1
== KMaskOp
)
1826 // The commuted operands must have different registers.
1827 // Otherwise, the commute transformation does not change anything and
1829 if (Op2Reg
!= MI
.getOperand(CommutableOpIdx1
).getReg())
1833 // No appropriate commutable operands were found.
1834 if (CommutableOpIdx1
< FirstCommutableVecOp
)
1837 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
1838 // to return those values.
1839 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
1840 CommutableOpIdx1
, CommutableOpIdx2
))
1847 bool X86InstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
1848 unsigned &SrcOpIdx2
) const {
1849 const MCInstrDesc
&Desc
= MI
.getDesc();
1850 if (!Desc
.isCommutable())
1853 switch (MI
.getOpcode()) {
1860 case X86::VCMPPDrri
:
1861 case X86::VCMPPSrri
:
1862 case X86::VCMPPDYrri
:
1863 case X86::VCMPPSYrri
:
1864 case X86::VCMPSDZrr
:
1865 case X86::VCMPSSZrr
:
1866 case X86::VCMPPDZrri
:
1867 case X86::VCMPPSZrri
:
1868 case X86::VCMPPDZ128rri
:
1869 case X86::VCMPPSZ128rri
:
1870 case X86::VCMPPDZ256rri
:
1871 case X86::VCMPPSZ256rri
:
1872 case X86::VCMPPDZrrik
:
1873 case X86::VCMPPSZrrik
:
1874 case X86::VCMPPDZ128rrik
:
1875 case X86::VCMPPSZ128rrik
:
1876 case X86::VCMPPDZ256rrik
:
1877 case X86::VCMPPSZ256rrik
: {
1878 unsigned OpOffset
= X86II::isKMasked(Desc
.TSFlags
) ? 1 : 0;
1880 // Float comparison can be safely commuted for
1881 // Ordered/Unordered/Equal/NotEqual tests
1882 unsigned Imm
= MI
.getOperand(3 + OpOffset
).getImm() & 0x7;
1885 case 0x03: // UNORDERED
1886 case 0x04: // NOT EQUAL
1887 case 0x07: // ORDERED
1888 // The indices of the commutable operands are 1 and 2 (or 2 and 3
1890 // Assign them to the returned operand indices here.
1891 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 1 + OpOffset
,
1897 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
1898 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
1899 // AVX implies sse4.1.
1900 if (Subtarget
.hasSSE41())
1901 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1903 case X86::SHUFPDrri
:
1904 // We can commute this to MOVSD.
1905 if (MI
.getOperand(3).getImm() == 0x02)
1906 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1908 case X86::MOVHLPSrr
:
1909 case X86::UNPCKHPDrr
:
1910 case X86::VMOVHLPSrr
:
1911 case X86::VUNPCKHPDrr
:
1912 case X86::VMOVHLPSZrr
:
1913 case X86::VUNPCKHPDZ128rr
:
1914 if (Subtarget
.hasSSE2())
1915 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1917 case X86::VPTERNLOGDZrri
: case X86::VPTERNLOGDZrmi
:
1918 case X86::VPTERNLOGDZ128rri
: case X86::VPTERNLOGDZ128rmi
:
1919 case X86::VPTERNLOGDZ256rri
: case X86::VPTERNLOGDZ256rmi
:
1920 case X86::VPTERNLOGQZrri
: case X86::VPTERNLOGQZrmi
:
1921 case X86::VPTERNLOGQZ128rri
: case X86::VPTERNLOGQZ128rmi
:
1922 case X86::VPTERNLOGQZ256rri
: case X86::VPTERNLOGQZ256rmi
:
1923 case X86::VPTERNLOGDZrrik
:
1924 case X86::VPTERNLOGDZ128rrik
:
1925 case X86::VPTERNLOGDZ256rrik
:
1926 case X86::VPTERNLOGQZrrik
:
1927 case X86::VPTERNLOGQZ128rrik
:
1928 case X86::VPTERNLOGQZ256rrik
:
1929 case X86::VPTERNLOGDZrrikz
: case X86::VPTERNLOGDZrmikz
:
1930 case X86::VPTERNLOGDZ128rrikz
: case X86::VPTERNLOGDZ128rmikz
:
1931 case X86::VPTERNLOGDZ256rrikz
: case X86::VPTERNLOGDZ256rmikz
:
1932 case X86::VPTERNLOGQZrrikz
: case X86::VPTERNLOGQZrmikz
:
1933 case X86::VPTERNLOGQZ128rrikz
: case X86::VPTERNLOGQZ128rmikz
:
1934 case X86::VPTERNLOGQZ256rrikz
: case X86::VPTERNLOGQZ256rmikz
:
1935 case X86::VPTERNLOGDZ128rmbi
:
1936 case X86::VPTERNLOGDZ256rmbi
:
1937 case X86::VPTERNLOGDZrmbi
:
1938 case X86::VPTERNLOGQZ128rmbi
:
1939 case X86::VPTERNLOGQZ256rmbi
:
1940 case X86::VPTERNLOGQZrmbi
:
1941 case X86::VPTERNLOGDZ128rmbikz
:
1942 case X86::VPTERNLOGDZ256rmbikz
:
1943 case X86::VPTERNLOGDZrmbikz
:
1944 case X86::VPTERNLOGQZ128rmbikz
:
1945 case X86::VPTERNLOGQZ256rmbikz
:
1946 case X86::VPTERNLOGQZrmbikz
:
1947 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
1948 case X86::VPMADD52HUQZ128r
:
1949 case X86::VPMADD52HUQZ128rk
:
1950 case X86::VPMADD52HUQZ128rkz
:
1951 case X86::VPMADD52HUQZ256r
:
1952 case X86::VPMADD52HUQZ256rk
:
1953 case X86::VPMADD52HUQZ256rkz
:
1954 case X86::VPMADD52HUQZr
:
1955 case X86::VPMADD52HUQZrk
:
1956 case X86::VPMADD52HUQZrkz
:
1957 case X86::VPMADD52LUQZ128r
:
1958 case X86::VPMADD52LUQZ128rk
:
1959 case X86::VPMADD52LUQZ128rkz
:
1960 case X86::VPMADD52LUQZ256r
:
1961 case X86::VPMADD52LUQZ256rk
:
1962 case X86::VPMADD52LUQZ256rkz
:
1963 case X86::VPMADD52LUQZr
:
1964 case X86::VPMADD52LUQZrk
:
1965 case X86::VPMADD52LUQZrkz
: {
1966 unsigned CommutableOpIdx1
= 2;
1967 unsigned CommutableOpIdx2
= 3;
1968 if (X86II::isKMasked(Desc
.TSFlags
)) {
1969 // Skip the mask register.
1973 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
1974 CommutableOpIdx1
, CommutableOpIdx2
))
1976 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
1977 !MI
.getOperand(SrcOpIdx2
).isReg())
1984 const X86InstrFMA3Group
*FMA3Group
= getFMA3Group(MI
.getOpcode(),
1985 MI
.getDesc().TSFlags
);
1987 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
,
1988 FMA3Group
->isIntrinsic());
1990 // Handled masked instructions since we need to skip over the mask input
1991 // and the preserved input.
1992 if (X86II::isKMasked(Desc
.TSFlags
)) {
1993 // First assume that the first input is the mask operand and skip past it.
1994 unsigned CommutableOpIdx1
= Desc
.getNumDefs() + 1;
1995 unsigned CommutableOpIdx2
= Desc
.getNumDefs() + 2;
1996 // Check if the first input is tied. If there isn't one then we only
1997 // need to skip the mask operand which we did above.
1998 if ((MI
.getDesc().getOperandConstraint(Desc
.getNumDefs(),
1999 MCOI::TIED_TO
) != -1)) {
2000 // If this is zero masking instruction with a tied operand, we need to
2001 // move the first index back to the first input since this must
2002 // be a 3 input instruction and we want the first two non-mask inputs.
2003 // Otherwise this is a 2 input instruction with a preserved input and
2004 // mask, so we need to move the indices to skip one more input.
2005 if (X86II::isKMergeMasked(Desc
.TSFlags
)) {
2013 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
2014 CommutableOpIdx1
, CommutableOpIdx2
))
2017 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
2018 !MI
.getOperand(SrcOpIdx2
).isReg())
2024 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2029 X86::CondCode
X86::getCondFromBranch(const MachineInstr
&MI
) {
2030 switch (MI
.getOpcode()) {
2031 default: return X86::COND_INVALID
;
2033 return static_cast<X86::CondCode
>(
2034 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2038 /// Return condition code of a SETCC opcode.
2039 X86::CondCode
X86::getCondFromSETCC(const MachineInstr
&MI
) {
2040 switch (MI
.getOpcode()) {
2041 default: return X86::COND_INVALID
;
2042 case X86::SETCCr
: case X86::SETCCm
:
2043 return static_cast<X86::CondCode
>(
2044 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2048 /// Return condition code of a CMov opcode.
2049 X86::CondCode
X86::getCondFromCMov(const MachineInstr
&MI
) {
2050 switch (MI
.getOpcode()) {
2051 default: return X86::COND_INVALID
;
2052 case X86::CMOV16rr
: case X86::CMOV32rr
: case X86::CMOV64rr
:
2053 case X86::CMOV16rm
: case X86::CMOV32rm
: case X86::CMOV64rm
:
2054 return static_cast<X86::CondCode
>(
2055 MI
.getOperand(MI
.getDesc().getNumOperands() - 1).getImm());
2059 /// Return the inverse of the specified condition,
2060 /// e.g. turning COND_E to COND_NE.
2061 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
2063 default: llvm_unreachable("Illegal condition code!");
2064 case X86::COND_E
: return X86::COND_NE
;
2065 case X86::COND_NE
: return X86::COND_E
;
2066 case X86::COND_L
: return X86::COND_GE
;
2067 case X86::COND_LE
: return X86::COND_G
;
2068 case X86::COND_G
: return X86::COND_LE
;
2069 case X86::COND_GE
: return X86::COND_L
;
2070 case X86::COND_B
: return X86::COND_AE
;
2071 case X86::COND_BE
: return X86::COND_A
;
2072 case X86::COND_A
: return X86::COND_BE
;
2073 case X86::COND_AE
: return X86::COND_B
;
2074 case X86::COND_S
: return X86::COND_NS
;
2075 case X86::COND_NS
: return X86::COND_S
;
2076 case X86::COND_P
: return X86::COND_NP
;
2077 case X86::COND_NP
: return X86::COND_P
;
2078 case X86::COND_O
: return X86::COND_NO
;
2079 case X86::COND_NO
: return X86::COND_O
;
2080 case X86::COND_NE_OR_P
: return X86::COND_E_AND_NP
;
2081 case X86::COND_E_AND_NP
: return X86::COND_NE_OR_P
;
2085 /// Assuming the flags are set by MI(a,b), return the condition code if we
2086 /// modify the instructions such that flags are set by MI(b,a).
2087 static X86::CondCode
getSwappedCondition(X86::CondCode CC
) {
2089 default: return X86::COND_INVALID
;
2090 case X86::COND_E
: return X86::COND_E
;
2091 case X86::COND_NE
: return X86::COND_NE
;
2092 case X86::COND_L
: return X86::COND_G
;
2093 case X86::COND_LE
: return X86::COND_GE
;
2094 case X86::COND_G
: return X86::COND_L
;
2095 case X86::COND_GE
: return X86::COND_LE
;
2096 case X86::COND_B
: return X86::COND_A
;
2097 case X86::COND_BE
: return X86::COND_AE
;
2098 case X86::COND_A
: return X86::COND_B
;
2099 case X86::COND_AE
: return X86::COND_BE
;
2103 std::pair
<X86::CondCode
, bool>
2104 X86::getX86ConditionCode(CmpInst::Predicate Predicate
) {
2105 X86::CondCode CC
= X86::COND_INVALID
;
2106 bool NeedSwap
= false;
2107 switch (Predicate
) {
2109 // Floating-point Predicates
2110 case CmpInst::FCMP_UEQ
: CC
= X86::COND_E
; break;
2111 case CmpInst::FCMP_OLT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2112 case CmpInst::FCMP_OGT
: CC
= X86::COND_A
; break;
2113 case CmpInst::FCMP_OLE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2114 case CmpInst::FCMP_OGE
: CC
= X86::COND_AE
; break;
2115 case CmpInst::FCMP_UGT
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2116 case CmpInst::FCMP_ULT
: CC
= X86::COND_B
; break;
2117 case CmpInst::FCMP_UGE
: NeedSwap
= true; LLVM_FALLTHROUGH
;
2118 case CmpInst::FCMP_ULE
: CC
= X86::COND_BE
; break;
2119 case CmpInst::FCMP_ONE
: CC
= X86::COND_NE
; break;
2120 case CmpInst::FCMP_UNO
: CC
= X86::COND_P
; break;
2121 case CmpInst::FCMP_ORD
: CC
= X86::COND_NP
; break;
2122 case CmpInst::FCMP_OEQ
: LLVM_FALLTHROUGH
;
2123 case CmpInst::FCMP_UNE
: CC
= X86::COND_INVALID
; break;
2125 // Integer Predicates
2126 case CmpInst::ICMP_EQ
: CC
= X86::COND_E
; break;
2127 case CmpInst::ICMP_NE
: CC
= X86::COND_NE
; break;
2128 case CmpInst::ICMP_UGT
: CC
= X86::COND_A
; break;
2129 case CmpInst::ICMP_UGE
: CC
= X86::COND_AE
; break;
2130 case CmpInst::ICMP_ULT
: CC
= X86::COND_B
; break;
2131 case CmpInst::ICMP_ULE
: CC
= X86::COND_BE
; break;
2132 case CmpInst::ICMP_SGT
: CC
= X86::COND_G
; break;
2133 case CmpInst::ICMP_SGE
: CC
= X86::COND_GE
; break;
2134 case CmpInst::ICMP_SLT
: CC
= X86::COND_L
; break;
2135 case CmpInst::ICMP_SLE
: CC
= X86::COND_LE
; break;
2138 return std::make_pair(CC
, NeedSwap
);
2141 /// Return a setcc opcode based on whether it has memory operand.
2142 unsigned X86::getSETOpc(bool HasMemoryOperand
) {
2143 return HasMemoryOperand
? X86::SETCCr
: X86::SETCCm
;
2146 /// Return a cmov opcode for the given register size in bytes, and operand type.
2147 unsigned X86::getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
) {
2149 default: llvm_unreachable("Illegal register size!");
2150 case 2: return HasMemoryOperand
? X86::CMOV16rm
: X86::CMOV16rr
;
2151 case 4: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV32rr
;
2152 case 8: return HasMemoryOperand
? X86::CMOV32rm
: X86::CMOV64rr
;
2156 /// Get the VPCMP immediate for the given condition.
2157 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC
) {
2159 default: llvm_unreachable("Unexpected SETCC condition");
2160 case ISD::SETNE
: return 4;
2161 case ISD::SETEQ
: return 0;
2163 case ISD::SETLT
: return 1;
2165 case ISD::SETGT
: return 6;
2167 case ISD::SETGE
: return 5;
2169 case ISD::SETLE
: return 2;
2173 /// Get the VPCMP immediate if the opcodes are swapped.
2174 unsigned X86::getSwappedVPCMPImm(unsigned Imm
) {
2176 default: llvm_unreachable("Unreachable!");
2177 case 0x01: Imm
= 0x06; break; // LT -> NLE
2178 case 0x02: Imm
= 0x05; break; // LE -> NLT
2179 case 0x05: Imm
= 0x02; break; // NLT -> LE
2180 case 0x06: Imm
= 0x01; break; // NLE -> LT
2191 /// Get the VPCOM immediate if the opcodes are swapped.
2192 unsigned X86::getSwappedVPCOMImm(unsigned Imm
) {
2194 default: llvm_unreachable("Unreachable!");
2195 case 0x00: Imm
= 0x02; break; // LT -> GT
2196 case 0x01: Imm
= 0x03; break; // LE -> GE
2197 case 0x02: Imm
= 0x00; break; // GT -> LT
2198 case 0x03: Imm
= 0x01; break; // GE -> LE
2209 bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
2210 if (!MI
.isTerminator()) return false;
2212 // Conditional branch is a special case.
2213 if (MI
.isBranch() && !MI
.isBarrier())
2215 if (!MI
.isPredicable())
2217 return !isPredicated(MI
);
2220 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr
&MI
) const {
2221 switch (MI
.getOpcode()) {
2222 case X86::TCRETURNdi
:
2223 case X86::TCRETURNri
:
2224 case X86::TCRETURNmi
:
2225 case X86::TCRETURNdi64
:
2226 case X86::TCRETURNri64
:
2227 case X86::TCRETURNmi64
:
2234 bool X86InstrInfo::canMakeTailCallConditional(
2235 SmallVectorImpl
<MachineOperand
> &BranchCond
,
2236 const MachineInstr
&TailCall
) const {
2237 if (TailCall
.getOpcode() != X86::TCRETURNdi
&&
2238 TailCall
.getOpcode() != X86::TCRETURNdi64
) {
2239 // Only direct calls can be done with a conditional branch.
2243 const MachineFunction
*MF
= TailCall
.getParent()->getParent();
2244 if (Subtarget
.isTargetWin64() && MF
->hasWinCFI()) {
2245 // Conditional tail calls confuse the Win64 unwinder.
2249 assert(BranchCond
.size() == 1);
2250 if (BranchCond
[0].getImm() > X86::LAST_VALID_COND
) {
2251 // Can't make a conditional tail call with this condition.
2255 const X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
2256 if (X86FI
->getTCReturnAddrDelta() != 0 ||
2257 TailCall
.getOperand(1).getImm() != 0) {
2258 // A conditional tail call cannot do any stack adjustment.
2265 void X86InstrInfo::replaceBranchWithTailCall(
2266 MachineBasicBlock
&MBB
, SmallVectorImpl
<MachineOperand
> &BranchCond
,
2267 const MachineInstr
&TailCall
) const {
2268 assert(canMakeTailCallConditional(BranchCond
, TailCall
));
2270 MachineBasicBlock::iterator I
= MBB
.end();
2271 while (I
!= MBB
.begin()) {
2273 if (I
->isDebugInstr())
2276 assert(0 && "Can't find the branch to replace!");
2278 X86::CondCode CC
= X86::getCondFromBranch(*I
);
2279 assert(BranchCond
.size() == 1);
2280 if (CC
!= BranchCond
[0].getImm())
2286 unsigned Opc
= TailCall
.getOpcode() == X86::TCRETURNdi
? X86::TCRETURNdicc
2287 : X86::TCRETURNdi64cc
;
2289 auto MIB
= BuildMI(MBB
, I
, MBB
.findDebugLoc(I
), get(Opc
));
2290 MIB
->addOperand(TailCall
.getOperand(0)); // Destination.
2291 MIB
.addImm(0); // Stack offset (not used).
2292 MIB
->addOperand(BranchCond
[0]); // Condition.
2293 MIB
.copyImplicitOps(TailCall
); // Regmask and (imp-used) parameters.
2295 // Add implicit uses and defs of all live regs potentially clobbered by the
2296 // call. This way they still appear live across the call.
2297 LivePhysRegs
LiveRegs(getRegisterInfo());
2298 LiveRegs
.addLiveOuts(MBB
);
2299 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 8> Clobbers
;
2300 LiveRegs
.stepForward(*MIB
, Clobbers
);
2301 for (const auto &C
: Clobbers
) {
2302 MIB
.addReg(C
.first
, RegState::Implicit
);
2303 MIB
.addReg(C
.first
, RegState::Implicit
| RegState::Define
);
2306 I
->eraseFromParent();
2309 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
2310 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
2311 // fallthrough MBB cannot be identified.
2312 static MachineBasicBlock
*getFallThroughMBB(MachineBasicBlock
*MBB
,
2313 MachineBasicBlock
*TBB
) {
2314 // Look for non-EHPad successors other than TBB. If we find exactly one, it
2315 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
2316 // and fallthrough MBB. If we find more than one, we cannot identify the
2317 // fallthrough MBB and should return nullptr.
2318 MachineBasicBlock
*FallthroughBB
= nullptr;
2319 for (auto SI
= MBB
->succ_begin(), SE
= MBB
->succ_end(); SI
!= SE
; ++SI
) {
2320 if ((*SI
)->isEHPad() || (*SI
== TBB
&& FallthroughBB
))
2322 // Return a nullptr if we found more than one fallthrough successor.
2323 if (FallthroughBB
&& FallthroughBB
!= TBB
)
2325 FallthroughBB
= *SI
;
2327 return FallthroughBB
;
2330 bool X86InstrInfo::AnalyzeBranchImpl(
2331 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
2332 SmallVectorImpl
<MachineOperand
> &Cond
,
2333 SmallVectorImpl
<MachineInstr
*> &CondBranches
, bool AllowModify
) const {
2335 // Start from the bottom of the block and work up, examining the
2336 // terminator instructions.
2337 MachineBasicBlock::iterator I
= MBB
.end();
2338 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
2339 while (I
!= MBB
.begin()) {
2341 if (I
->isDebugInstr())
2344 // Working from the bottom, when we see a non-terminator instruction, we're
2346 if (!isUnpredicatedTerminator(*I
))
2349 // A terminator that isn't a branch can't easily be handled by this
2354 // Handle unconditional branches.
2355 if (I
->getOpcode() == X86::JMP_1
) {
2359 TBB
= I
->getOperand(0).getMBB();
2363 // If the block has any instructions after a JMP, delete them.
2364 while (std::next(I
) != MBB
.end())
2365 std::next(I
)->eraseFromParent();
2370 // Delete the JMP if it's equivalent to a fall-through.
2371 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
2373 I
->eraseFromParent();
2375 UnCondBrIter
= MBB
.end();
2379 // TBB is used to indicate the unconditional destination.
2380 TBB
= I
->getOperand(0).getMBB();
2384 // Handle conditional branches.
2385 X86::CondCode BranchCode
= X86::getCondFromBranch(*I
);
2386 if (BranchCode
== X86::COND_INVALID
)
2387 return true; // Can't handle indirect branch.
2389 // In practice we should never have an undef eflags operand, if we do
2390 // abort here as we are not prepared to preserve the flag.
2391 if (I
->findRegisterUseOperand(X86::EFLAGS
)->isUndef())
2394 // Working from the bottom, handle the first conditional branch.
2396 MachineBasicBlock
*TargetBB
= I
->getOperand(0).getMBB();
2397 if (AllowModify
&& UnCondBrIter
!= MBB
.end() &&
2398 MBB
.isLayoutSuccessor(TargetBB
)) {
2399 // If we can modify the code and it ends in something like:
2407 // Then we can change this to:
2414 // Which is a bit more efficient.
2415 // We conditionally jump to the fall-through block.
2416 BranchCode
= GetOppositeBranchCondition(BranchCode
);
2417 MachineBasicBlock::iterator OldInst
= I
;
2419 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JCC_1
))
2420 .addMBB(UnCondBrIter
->getOperand(0).getMBB())
2421 .addImm(BranchCode
);
2422 BuildMI(MBB
, UnCondBrIter
, MBB
.findDebugLoc(I
), get(X86::JMP_1
))
2425 OldInst
->eraseFromParent();
2426 UnCondBrIter
->eraseFromParent();
2428 // Restart the analysis.
2429 UnCondBrIter
= MBB
.end();
2435 TBB
= I
->getOperand(0).getMBB();
2436 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
2437 CondBranches
.push_back(&*I
);
2441 // Handle subsequent conditional branches. Only handle the case where all
2442 // conditional branches branch to the same destination and their condition
2443 // opcodes fit one of the special multi-branch idioms.
2444 assert(Cond
.size() == 1);
2447 // If the conditions are the same, we can leave them alone.
2448 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
2449 auto NewTBB
= I
->getOperand(0).getMBB();
2450 if (OldBranchCode
== BranchCode
&& TBB
== NewTBB
)
2453 // If they differ, see if they fit one of the known patterns. Theoretically,
2454 // we could handle more patterns here, but we shouldn't expect to see them
2455 // if instruction selection has done a reasonable job.
2456 if (TBB
== NewTBB
&&
2457 ((OldBranchCode
== X86::COND_P
&& BranchCode
== X86::COND_NE
) ||
2458 (OldBranchCode
== X86::COND_NE
&& BranchCode
== X86::COND_P
))) {
2459 BranchCode
= X86::COND_NE_OR_P
;
2460 } else if ((OldBranchCode
== X86::COND_NP
&& BranchCode
== X86::COND_NE
) ||
2461 (OldBranchCode
== X86::COND_E
&& BranchCode
== X86::COND_P
)) {
2462 if (NewTBB
!= (FBB
? FBB
: getFallThroughMBB(&MBB
, TBB
)))
2465 // X86::COND_E_AND_NP usually has two different branch destinations.
2473 // Here this condition branches to B2 only if NP && E. It has another
2482 // Similarly it branches to B2 only if E && NP. That is why this condition
2483 // is named with COND_E_AND_NP.
2484 BranchCode
= X86::COND_E_AND_NP
;
2488 // Update the MachineOperand.
2489 Cond
[0].setImm(BranchCode
);
2490 CondBranches
.push_back(&*I
);
2496 bool X86InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
2497 MachineBasicBlock
*&TBB
,
2498 MachineBasicBlock
*&FBB
,
2499 SmallVectorImpl
<MachineOperand
> &Cond
,
2500 bool AllowModify
) const {
2501 SmallVector
<MachineInstr
*, 4> CondBranches
;
2502 return AnalyzeBranchImpl(MBB
, TBB
, FBB
, Cond
, CondBranches
, AllowModify
);
2505 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock
&MBB
,
2506 MachineBranchPredicate
&MBP
,
2507 bool AllowModify
) const {
2508 using namespace std::placeholders
;
2510 SmallVector
<MachineOperand
, 4> Cond
;
2511 SmallVector
<MachineInstr
*, 4> CondBranches
;
2512 if (AnalyzeBranchImpl(MBB
, MBP
.TrueDest
, MBP
.FalseDest
, Cond
, CondBranches
,
2516 if (Cond
.size() != 1)
2519 assert(MBP
.TrueDest
&& "expected!");
2522 MBP
.FalseDest
= MBB
.getNextNode();
2524 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2526 MachineInstr
*ConditionDef
= nullptr;
2527 bool SingleUseCondition
= true;
2529 for (auto I
= std::next(MBB
.rbegin()), E
= MBB
.rend(); I
!= E
; ++I
) {
2530 if (I
->modifiesRegister(X86::EFLAGS
, TRI
)) {
2535 if (I
->readsRegister(X86::EFLAGS
, TRI
))
2536 SingleUseCondition
= false;
2542 if (SingleUseCondition
) {
2543 for (auto *Succ
: MBB
.successors())
2544 if (Succ
->isLiveIn(X86::EFLAGS
))
2545 SingleUseCondition
= false;
2548 MBP
.ConditionDef
= ConditionDef
;
2549 MBP
.SingleUseCondition
= SingleUseCondition
;
2551 // Currently we only recognize the simple pattern:
2556 const unsigned TestOpcode
=
2557 Subtarget
.is64Bit() ? X86::TEST64rr
: X86::TEST32rr
;
2559 if (ConditionDef
->getOpcode() == TestOpcode
&&
2560 ConditionDef
->getNumOperands() == 3 &&
2561 ConditionDef
->getOperand(0).isIdenticalTo(ConditionDef
->getOperand(1)) &&
2562 (Cond
[0].getImm() == X86::COND_NE
|| Cond
[0].getImm() == X86::COND_E
)) {
2563 MBP
.LHS
= ConditionDef
->getOperand(0);
2564 MBP
.RHS
= MachineOperand::CreateImm(0);
2565 MBP
.Predicate
= Cond
[0].getImm() == X86::COND_NE
2566 ? MachineBranchPredicate::PRED_NE
2567 : MachineBranchPredicate::PRED_EQ
;
2574 unsigned X86InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
2575 int *BytesRemoved
) const {
2576 assert(!BytesRemoved
&& "code size not handled");
2578 MachineBasicBlock::iterator I
= MBB
.end();
2581 while (I
!= MBB
.begin()) {
2583 if (I
->isDebugInstr())
2585 if (I
->getOpcode() != X86::JMP_1
&&
2586 X86::getCondFromBranch(*I
) == X86::COND_INVALID
)
2588 // Remove the branch.
2589 I
->eraseFromParent();
2597 unsigned X86InstrInfo::insertBranch(MachineBasicBlock
&MBB
,
2598 MachineBasicBlock
*TBB
,
2599 MachineBasicBlock
*FBB
,
2600 ArrayRef
<MachineOperand
> Cond
,
2602 int *BytesAdded
) const {
2603 // Shouldn't be a fall through.
2604 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
2605 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
2606 "X86 branch conditions have one component!");
2607 assert(!BytesAdded
&& "code size not handled");
2610 // Unconditional branch?
2611 assert(!FBB
&& "Unconditional branch with multiple successors!");
2612 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(TBB
);
2616 // If FBB is null, it is implied to be a fall-through block.
2617 bool FallThru
= FBB
== nullptr;
2619 // Conditional branch.
2621 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
2623 case X86::COND_NE_OR_P
:
2624 // Synthesize NE_OR_P with two branches.
2625 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NE
);
2627 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_P
);
2630 case X86::COND_E_AND_NP
:
2631 // Use the next block of MBB as FBB if it is null.
2632 if (FBB
== nullptr) {
2633 FBB
= getFallThroughMBB(&MBB
, TBB
);
2634 assert(FBB
&& "MBB cannot be the last block in function when the false "
2635 "body is a fall-through.");
2637 // Synthesize COND_E_AND_NP with two branches.
2638 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(FBB
).addImm(X86::COND_NE
);
2640 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NP
);
2644 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(CC
);
2649 // Two-way Conditional branch. Insert the second branch.
2650 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(FBB
);
2657 canInsertSelect(const MachineBasicBlock
&MBB
,
2658 ArrayRef
<MachineOperand
> Cond
,
2659 unsigned TrueReg
, unsigned FalseReg
,
2660 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
2661 // Not all subtargets have cmov instructions.
2662 if (!Subtarget
.hasCMov())
2664 if (Cond
.size() != 1)
2666 // We cannot do the composite conditions, at least not in SSA form.
2667 if ((X86::CondCode
)Cond
[0].getImm() > X86::LAST_VALID_COND
)
2670 // Check register classes.
2671 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2672 const TargetRegisterClass
*RC
=
2673 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
2677 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
2678 if (X86::GR16RegClass
.hasSubClassEq(RC
) ||
2679 X86::GR32RegClass
.hasSubClassEq(RC
) ||
2680 X86::GR64RegClass
.hasSubClassEq(RC
)) {
2681 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
2682 // Bridge. Probably Ivy Bridge as well.
2689 // Can't do vectors.
2693 void X86InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
2694 MachineBasicBlock::iterator I
,
2695 const DebugLoc
&DL
, unsigned DstReg
,
2696 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
2697 unsigned FalseReg
) const {
2698 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
2699 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
2700 const TargetRegisterClass
&RC
= *MRI
.getRegClass(DstReg
);
2701 assert(Cond
.size() == 1 && "Invalid Cond array");
2702 unsigned Opc
= X86::getCMovOpcode(TRI
.getRegSizeInBits(RC
) / 8,
2703 false /*HasMemoryOperand*/);
2704 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
2707 .addImm(Cond
[0].getImm());
2710 /// Test if the given register is a physical h register.
2711 static bool isHReg(unsigned Reg
) {
2712 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
2715 // Try and copy between VR128/VR64 and GR64 registers.
2716 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
,
2717 const X86Subtarget
&Subtarget
) {
2718 bool HasAVX
= Subtarget
.hasAVX();
2719 bool HasAVX512
= Subtarget
.hasAVX512();
2721 // SrcReg(MaskReg) -> DestReg(GR64)
2722 // SrcReg(MaskReg) -> DestReg(GR32)
2724 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2725 if (X86::VK16RegClass
.contains(SrcReg
)) {
2726 if (X86::GR64RegClass
.contains(DestReg
)) {
2727 assert(Subtarget
.hasBWI());
2728 return X86::KMOVQrk
;
2730 if (X86::GR32RegClass
.contains(DestReg
))
2731 return Subtarget
.hasBWI() ? X86::KMOVDrk
: X86::KMOVWrk
;
2734 // SrcReg(GR64) -> DestReg(MaskReg)
2735 // SrcReg(GR32) -> DestReg(MaskReg)
2737 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2738 if (X86::VK16RegClass
.contains(DestReg
)) {
2739 if (X86::GR64RegClass
.contains(SrcReg
)) {
2740 assert(Subtarget
.hasBWI());
2741 return X86::KMOVQkr
;
2743 if (X86::GR32RegClass
.contains(SrcReg
))
2744 return Subtarget
.hasBWI() ? X86::KMOVDkr
: X86::KMOVWkr
;
2748 // SrcReg(VR128) -> DestReg(GR64)
2749 // SrcReg(VR64) -> DestReg(GR64)
2750 // SrcReg(GR64) -> DestReg(VR128)
2751 // SrcReg(GR64) -> DestReg(VR64)
2753 if (X86::GR64RegClass
.contains(DestReg
)) {
2754 if (X86::VR128XRegClass
.contains(SrcReg
))
2755 // Copy from a VR128 register to a GR64 register.
2756 return HasAVX512
? X86::VMOVPQIto64Zrr
:
2757 HasAVX
? X86::VMOVPQIto64rr
:
2759 if (X86::VR64RegClass
.contains(SrcReg
))
2760 // Copy from a VR64 register to a GR64 register.
2761 return X86::MMX_MOVD64from64rr
;
2762 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
2763 // Copy from a GR64 register to a VR128 register.
2764 if (X86::VR128XRegClass
.contains(DestReg
))
2765 return HasAVX512
? X86::VMOV64toPQIZrr
:
2766 HasAVX
? X86::VMOV64toPQIrr
:
2768 // Copy from a GR64 register to a VR64 register.
2769 if (X86::VR64RegClass
.contains(DestReg
))
2770 return X86::MMX_MOVD64to64rr
;
2773 // SrcReg(VR128) -> DestReg(GR32)
2774 // SrcReg(GR32) -> DestReg(VR128)
2776 if (X86::GR32RegClass
.contains(DestReg
) &&
2777 X86::VR128XRegClass
.contains(SrcReg
))
2778 // Copy from a VR128 register to a GR32 register.
2779 return HasAVX512
? X86::VMOVPDI2DIZrr
:
2780 HasAVX
? X86::VMOVPDI2DIrr
:
2783 if (X86::VR128XRegClass
.contains(DestReg
) &&
2784 X86::GR32RegClass
.contains(SrcReg
))
2785 // Copy from a VR128 register to a VR128 register.
2786 return HasAVX512
? X86::VMOVDI2PDIZrr
:
2787 HasAVX
? X86::VMOVDI2PDIrr
:
2792 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
2793 MachineBasicBlock::iterator MI
,
2794 const DebugLoc
&DL
, unsigned DestReg
,
2795 unsigned SrcReg
, bool KillSrc
) const {
2796 // First deal with the normal symmetric copies.
2797 bool HasAVX
= Subtarget
.hasAVX();
2798 bool HasVLX
= Subtarget
.hasVLX();
2800 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
2802 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
2804 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
2806 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
2807 // Copying to or from a physical H register on x86-64 requires a NOREX
2808 // move. Otherwise use a normal move.
2809 if ((isHReg(DestReg
) || isHReg(SrcReg
)) &&
2810 Subtarget
.is64Bit()) {
2811 Opc
= X86::MOV8rr_NOREX
;
2812 // Both operands must be encodable without an REX prefix.
2813 assert(X86::GR8_NOREXRegClass
.contains(SrcReg
, DestReg
) &&
2814 "8-bit H register can not be copied outside GR8_NOREX");
2818 else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
2819 Opc
= X86::MMX_MOVQ64rr
;
2820 else if (X86::VR128XRegClass
.contains(DestReg
, SrcReg
)) {
2822 Opc
= X86::VMOVAPSZ128rr
;
2823 else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
2824 Opc
= HasAVX
? X86::VMOVAPSrr
: X86::MOVAPSrr
;
2826 // If this an extended register and we don't have VLX we need to use a
2828 Opc
= X86::VMOVAPSZrr
;
2829 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2830 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_xmm
,
2831 &X86::VR512RegClass
);
2832 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
,
2833 &X86::VR512RegClass
);
2835 } else if (X86::VR256XRegClass
.contains(DestReg
, SrcReg
)) {
2837 Opc
= X86::VMOVAPSZ256rr
;
2838 else if (X86::VR256RegClass
.contains(DestReg
, SrcReg
))
2839 Opc
= X86::VMOVAPSYrr
;
2841 // If this an extended register and we don't have VLX we need to use a
2843 Opc
= X86::VMOVAPSZrr
;
2844 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2845 DestReg
= TRI
->getMatchingSuperReg(DestReg
, X86::sub_ymm
,
2846 &X86::VR512RegClass
);
2847 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
,
2848 &X86::VR512RegClass
);
2850 } else if (X86::VR512RegClass
.contains(DestReg
, SrcReg
))
2851 Opc
= X86::VMOVAPSZrr
;
2852 // All KMASK RegClasses hold the same k registers, can be tested against anyone.
2853 else if (X86::VK16RegClass
.contains(DestReg
, SrcReg
))
2854 Opc
= Subtarget
.hasBWI() ? X86::KMOVQkk
: X86::KMOVWkk
;
2856 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
, Subtarget
);
2859 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
2860 .addReg(SrcReg
, getKillRegState(KillSrc
));
2864 if (SrcReg
== X86::EFLAGS
|| DestReg
== X86::EFLAGS
) {
2865 // FIXME: We use a fatal error here because historically LLVM has tried
2866 // lower some of these physreg copies and we want to ensure we get
2867 // reasonable bug reports if someone encounters a case no other testing
2868 // found. This path should be removed after the LLVM 7 release.
2869 report_fatal_error("Unable to copy EFLAGS physical register!");
2872 LLVM_DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
) << " to "
2873 << RI
.getName(DestReg
) << '\n');
2874 report_fatal_error("Cannot emit physreg copy instruction");
2877 bool X86InstrInfo::isCopyInstrImpl(const MachineInstr
&MI
,
2878 const MachineOperand
*&Src
,
2879 const MachineOperand
*&Dest
) const {
2880 if (MI
.isMoveReg()) {
2881 Dest
= &MI
.getOperand(0);
2882 Src
= &MI
.getOperand(1);
2888 static unsigned getLoadStoreRegOpcode(unsigned Reg
,
2889 const TargetRegisterClass
*RC
,
2890 bool isStackAligned
,
2891 const X86Subtarget
&STI
,
2893 bool HasAVX
= STI
.hasAVX();
2894 bool HasAVX512
= STI
.hasAVX512();
2895 bool HasVLX
= STI
.hasVLX();
2897 switch (STI
.getRegisterInfo()->getSpillSize(*RC
)) {
2899 llvm_unreachable("Unknown spill size");
2901 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
2903 // Copying to or from a physical H register on x86-64 requires a NOREX
2904 // move. Otherwise use a normal move.
2905 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
2906 return load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
2907 return load
? X86::MOV8rm
: X86::MOV8mr
;
2909 if (X86::VK16RegClass
.hasSubClassEq(RC
))
2910 return load
? X86::KMOVWkm
: X86::KMOVWmk
;
2911 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
2912 return load
? X86::MOV16rm
: X86::MOV16mr
;
2914 if (X86::GR32RegClass
.hasSubClassEq(RC
))
2915 return load
? X86::MOV32rm
: X86::MOV32mr
;
2916 if (X86::FR32XRegClass
.hasSubClassEq(RC
))
2918 (HasAVX512
? X86::VMOVSSZrm_alt
:
2919 HasAVX
? X86::VMOVSSrm_alt
:
2921 (HasAVX512
? X86::VMOVSSZmr
:
2922 HasAVX
? X86::VMOVSSmr
:
2924 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
2925 return load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
2926 if (X86::VK32RegClass
.hasSubClassEq(RC
)) {
2927 assert(STI
.hasBWI() && "KMOVD requires BWI");
2928 return load
? X86::KMOVDkm
: X86::KMOVDmk
;
2930 // All of these mask pair classes have the same spill size, the same kind
2931 // of kmov instructions can be used with all of them.
2932 if (X86::VK1PAIRRegClass
.hasSubClassEq(RC
) ||
2933 X86::VK2PAIRRegClass
.hasSubClassEq(RC
) ||
2934 X86::VK4PAIRRegClass
.hasSubClassEq(RC
) ||
2935 X86::VK8PAIRRegClass
.hasSubClassEq(RC
) ||
2936 X86::VK16PAIRRegClass
.hasSubClassEq(RC
))
2937 return load
? X86::MASKPAIR16LOAD
: X86::MASKPAIR16STORE
;
2938 llvm_unreachable("Unknown 4-byte regclass");
2940 if (X86::GR64RegClass
.hasSubClassEq(RC
))
2941 return load
? X86::MOV64rm
: X86::MOV64mr
;
2942 if (X86::FR64XRegClass
.hasSubClassEq(RC
))
2944 (HasAVX512
? X86::VMOVSDZrm_alt
:
2945 HasAVX
? X86::VMOVSDrm_alt
:
2947 (HasAVX512
? X86::VMOVSDZmr
:
2948 HasAVX
? X86::VMOVSDmr
:
2950 if (X86::VR64RegClass
.hasSubClassEq(RC
))
2951 return load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
2952 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
2953 return load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
2954 if (X86::VK64RegClass
.hasSubClassEq(RC
)) {
2955 assert(STI
.hasBWI() && "KMOVQ requires BWI");
2956 return load
? X86::KMOVQkm
: X86::KMOVQmk
;
2958 llvm_unreachable("Unknown 8-byte regclass");
2960 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
2961 return load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
2963 if (X86::VR128XRegClass
.hasSubClassEq(RC
)) {
2964 // If stack is realigned we can use aligned stores.
2967 (HasVLX
? X86::VMOVAPSZ128rm
:
2968 HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
:
2969 HasAVX
? X86::VMOVAPSrm
:
2971 (HasVLX
? X86::VMOVAPSZ128mr
:
2972 HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
:
2973 HasAVX
? X86::VMOVAPSmr
:
2977 (HasVLX
? X86::VMOVUPSZ128rm
:
2978 HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
:
2979 HasAVX
? X86::VMOVUPSrm
:
2981 (HasVLX
? X86::VMOVUPSZ128mr
:
2982 HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
:
2983 HasAVX
? X86::VMOVUPSmr
:
2986 if (X86::BNDRRegClass
.hasSubClassEq(RC
)) {
2988 return load
? X86::BNDMOV64rm
: X86::BNDMOV64mr
;
2990 return load
? X86::BNDMOV32rm
: X86::BNDMOV32mr
;
2992 llvm_unreachable("Unknown 16-byte regclass");
2995 assert(X86::VR256XRegClass
.hasSubClassEq(RC
) && "Unknown 32-byte regclass");
2996 // If stack is realigned we can use aligned stores.
2999 (HasVLX
? X86::VMOVAPSZ256rm
:
3000 HasAVX512
? X86::VMOVAPSZ256rm_NOVLX
:
3002 (HasVLX
? X86::VMOVAPSZ256mr
:
3003 HasAVX512
? X86::VMOVAPSZ256mr_NOVLX
:
3007 (HasVLX
? X86::VMOVUPSZ256rm
:
3008 HasAVX512
? X86::VMOVUPSZ256rm_NOVLX
:
3010 (HasVLX
? X86::VMOVUPSZ256mr
:
3011 HasAVX512
? X86::VMOVUPSZ256mr_NOVLX
:
3014 assert(X86::VR512RegClass
.hasSubClassEq(RC
) && "Unknown 64-byte regclass");
3015 assert(STI
.hasAVX512() && "Using 512-bit register requires AVX512");
3017 return load
? X86::VMOVAPSZrm
: X86::VMOVAPSZmr
;
3019 return load
? X86::VMOVUPSZrm
: X86::VMOVUPSZmr
;
3023 bool X86InstrInfo::getMemOperandWithOffset(
3024 const MachineInstr
&MemOp
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
3025 const TargetRegisterInfo
*TRI
) const {
3026 const MCInstrDesc
&Desc
= MemOp
.getDesc();
3027 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3028 if (MemRefBegin
< 0)
3031 MemRefBegin
+= X86II::getOperandBias(Desc
);
3033 BaseOp
= &MemOp
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
3034 if (!BaseOp
->isReg()) // Can be an MO_FrameIndex
3037 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm() != 1)
3040 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg() !=
3044 const MachineOperand
&DispMO
= MemOp
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3046 // Displacement can be symbolic
3047 if (!DispMO
.isImm())
3050 Offset
= DispMO
.getImm();
3052 assert(BaseOp
->isReg() && "getMemOperandWithOffset only supports base "
3053 "operands of type register.");
3057 static unsigned getStoreRegOpcode(unsigned SrcReg
,
3058 const TargetRegisterClass
*RC
,
3059 bool isStackAligned
,
3060 const X86Subtarget
&STI
) {
3061 return getLoadStoreRegOpcode(SrcReg
, RC
, isStackAligned
, STI
, false);
3065 static unsigned getLoadRegOpcode(unsigned DestReg
,
3066 const TargetRegisterClass
*RC
,
3067 bool isStackAligned
,
3068 const X86Subtarget
&STI
) {
3069 return getLoadStoreRegOpcode(DestReg
, RC
, isStackAligned
, STI
, true);
3072 void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
3073 MachineBasicBlock::iterator MI
,
3074 unsigned SrcReg
, bool isKill
, int FrameIdx
,
3075 const TargetRegisterClass
*RC
,
3076 const TargetRegisterInfo
*TRI
) const {
3077 const MachineFunction
&MF
= *MBB
.getParent();
3078 assert(MF
.getFrameInfo().getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
3079 "Stack slot too small for store");
3080 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3082 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3083 RI
.canRealignStack(MF
);
3084 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3085 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
3086 .addReg(SrcReg
, getKillRegState(isKill
));
3089 void X86InstrInfo::storeRegToAddr(
3090 MachineFunction
&MF
, unsigned SrcReg
, bool isKill
,
3091 SmallVectorImpl
<MachineOperand
> &Addr
, const TargetRegisterClass
*RC
,
3092 ArrayRef
<MachineMemOperand
*> MMOs
,
3093 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
3094 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3095 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
3096 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
3097 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
3099 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
3100 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
3102 MIB
.addReg(SrcReg
, getKillRegState(isKill
));
3103 MIB
.setMemRefs(MMOs
);
3104 NewMIs
.push_back(MIB
);
3108 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
3109 MachineBasicBlock::iterator MI
,
3110 unsigned DestReg
, int FrameIdx
,
3111 const TargetRegisterClass
*RC
,
3112 const TargetRegisterInfo
*TRI
) const {
3113 const MachineFunction
&MF
= *MBB
.getParent();
3114 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
3116 (Subtarget
.getFrameLowering()->getStackAlignment() >= Alignment
) ||
3117 RI
.canRealignStack(MF
);
3118 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3119 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
), FrameIdx
);
3122 void X86InstrInfo::loadRegFromAddr(
3123 MachineFunction
&MF
, unsigned DestReg
,
3124 SmallVectorImpl
<MachineOperand
> &Addr
, const TargetRegisterClass
*RC
,
3125 ArrayRef
<MachineMemOperand
*> MMOs
,
3126 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
3127 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
3128 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
3129 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
3130 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
3132 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), DestReg
);
3133 for (unsigned i
= 0, e
= Addr
.size(); i
!= e
; ++i
)
3135 MIB
.setMemRefs(MMOs
);
3136 NewMIs
.push_back(MIB
);
3139 bool X86InstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
3140 unsigned &SrcReg2
, int &CmpMask
,
3141 int &CmpValue
) const {
3142 switch (MI
.getOpcode()) {
3144 case X86::CMP64ri32
:
3151 SrcReg
= MI
.getOperand(0).getReg();
3153 if (MI
.getOperand(1).isImm()) {
3155 CmpValue
= MI
.getOperand(1).getImm();
3157 CmpMask
= CmpValue
= 0;
3160 // A SUB can be used to perform comparison.
3165 SrcReg
= MI
.getOperand(1).getReg();
3174 SrcReg
= MI
.getOperand(1).getReg();
3175 SrcReg2
= MI
.getOperand(2).getReg();
3179 case X86::SUB64ri32
:
3186 SrcReg
= MI
.getOperand(1).getReg();
3188 if (MI
.getOperand(2).isImm()) {
3190 CmpValue
= MI
.getOperand(2).getImm();
3192 CmpMask
= CmpValue
= 0;
3199 SrcReg
= MI
.getOperand(0).getReg();
3200 SrcReg2
= MI
.getOperand(1).getReg();
3208 SrcReg
= MI
.getOperand(0).getReg();
3209 if (MI
.getOperand(1).getReg() != SrcReg
)
3211 // Compare against zero.
3220 /// Check whether the first instruction, whose only
3221 /// purpose is to update flags, can be made redundant.
3222 /// CMPrr can be made redundant by SUBrr if the operands are the same.
3223 /// This function can be extended later on.
3224 /// SrcReg, SrcRegs: register operands for FlagI.
3225 /// ImmValue: immediate for FlagI if it takes an immediate.
3226 inline static bool isRedundantFlagInstr(const MachineInstr
&FlagI
,
3227 unsigned SrcReg
, unsigned SrcReg2
,
3228 int ImmMask
, int ImmValue
,
3229 const MachineInstr
&OI
) {
3230 if (((FlagI
.getOpcode() == X86::CMP64rr
&& OI
.getOpcode() == X86::SUB64rr
) ||
3231 (FlagI
.getOpcode() == X86::CMP32rr
&& OI
.getOpcode() == X86::SUB32rr
) ||
3232 (FlagI
.getOpcode() == X86::CMP16rr
&& OI
.getOpcode() == X86::SUB16rr
) ||
3233 (FlagI
.getOpcode() == X86::CMP8rr
&& OI
.getOpcode() == X86::SUB8rr
)) &&
3234 ((OI
.getOperand(1).getReg() == SrcReg
&&
3235 OI
.getOperand(2).getReg() == SrcReg2
) ||
3236 (OI
.getOperand(1).getReg() == SrcReg2
&&
3237 OI
.getOperand(2).getReg() == SrcReg
)))
3241 ((FlagI
.getOpcode() == X86::CMP64ri32
&&
3242 OI
.getOpcode() == X86::SUB64ri32
) ||
3243 (FlagI
.getOpcode() == X86::CMP64ri8
&&
3244 OI
.getOpcode() == X86::SUB64ri8
) ||
3245 (FlagI
.getOpcode() == X86::CMP32ri
&& OI
.getOpcode() == X86::SUB32ri
) ||
3246 (FlagI
.getOpcode() == X86::CMP32ri8
&&
3247 OI
.getOpcode() == X86::SUB32ri8
) ||
3248 (FlagI
.getOpcode() == X86::CMP16ri
&& OI
.getOpcode() == X86::SUB16ri
) ||
3249 (FlagI
.getOpcode() == X86::CMP16ri8
&&
3250 OI
.getOpcode() == X86::SUB16ri8
) ||
3251 (FlagI
.getOpcode() == X86::CMP8ri
&& OI
.getOpcode() == X86::SUB8ri
)) &&
3252 OI
.getOperand(1).getReg() == SrcReg
&&
3253 OI
.getOperand(2).getImm() == ImmValue
)
3258 /// Check whether the definition can be converted
3259 /// to remove a comparison against zero.
3260 inline static bool isDefConvertible(const MachineInstr
&MI
, bool &NoSignFlag
) {
3263 switch (MI
.getOpcode()) {
3264 default: return false;
3266 // The shift instructions only modify ZF if their shift count is non-zero.
3267 // N.B.: The processor truncates the shift count depending on the encoding.
3268 case X86::SAR8ri
: case X86::SAR16ri
: case X86::SAR32ri
:case X86::SAR64ri
:
3269 case X86::SHR8ri
: case X86::SHR16ri
: case X86::SHR32ri
:case X86::SHR64ri
:
3270 return getTruncatedShiftCount(MI
, 2) != 0;
3272 // Some left shift instructions can be turned into LEA instructions but only
3273 // if their flags aren't used. Avoid transforming such instructions.
3274 case X86::SHL8ri
: case X86::SHL16ri
: case X86::SHL32ri
:case X86::SHL64ri
:{
3275 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
3276 if (isTruncatedShiftCountForLEA(ShAmt
)) return false;
3280 case X86::SHRD16rri8
:case X86::SHRD32rri8
:case X86::SHRD64rri8
:
3281 case X86::SHLD16rri8
:case X86::SHLD32rri8
:case X86::SHLD64rri8
:
3282 return getTruncatedShiftCount(MI
, 3) != 0;
3284 case X86::SUB64ri32
: case X86::SUB64ri8
: case X86::SUB32ri
:
3285 case X86::SUB32ri8
: case X86::SUB16ri
: case X86::SUB16ri8
:
3286 case X86::SUB8ri
: case X86::SUB64rr
: case X86::SUB32rr
:
3287 case X86::SUB16rr
: case X86::SUB8rr
: case X86::SUB64rm
:
3288 case X86::SUB32rm
: case X86::SUB16rm
: case X86::SUB8rm
:
3289 case X86::DEC64r
: case X86::DEC32r
: case X86::DEC16r
: case X86::DEC8r
:
3290 case X86::ADD64ri32
: case X86::ADD64ri8
: case X86::ADD32ri
:
3291 case X86::ADD32ri8
: case X86::ADD16ri
: case X86::ADD16ri8
:
3292 case X86::ADD8ri
: case X86::ADD64rr
: case X86::ADD32rr
:
3293 case X86::ADD16rr
: case X86::ADD8rr
: case X86::ADD64rm
:
3294 case X86::ADD32rm
: case X86::ADD16rm
: case X86::ADD8rm
:
3295 case X86::INC64r
: case X86::INC32r
: case X86::INC16r
: case X86::INC8r
:
3296 case X86::AND64ri32
: case X86::AND64ri8
: case X86::AND32ri
:
3297 case X86::AND32ri8
: case X86::AND16ri
: case X86::AND16ri8
:
3298 case X86::AND8ri
: case X86::AND64rr
: case X86::AND32rr
:
3299 case X86::AND16rr
: case X86::AND8rr
: case X86::AND64rm
:
3300 case X86::AND32rm
: case X86::AND16rm
: case X86::AND8rm
:
3301 case X86::XOR64ri32
: case X86::XOR64ri8
: case X86::XOR32ri
:
3302 case X86::XOR32ri8
: case X86::XOR16ri
: case X86::XOR16ri8
:
3303 case X86::XOR8ri
: case X86::XOR64rr
: case X86::XOR32rr
:
3304 case X86::XOR16rr
: case X86::XOR8rr
: case X86::XOR64rm
:
3305 case X86::XOR32rm
: case X86::XOR16rm
: case X86::XOR8rm
:
3306 case X86::OR64ri32
: case X86::OR64ri8
: case X86::OR32ri
:
3307 case X86::OR32ri8
: case X86::OR16ri
: case X86::OR16ri8
:
3308 case X86::OR8ri
: case X86::OR64rr
: case X86::OR32rr
:
3309 case X86::OR16rr
: case X86::OR8rr
: case X86::OR64rm
:
3310 case X86::OR32rm
: case X86::OR16rm
: case X86::OR8rm
:
3311 case X86::ADC64ri32
: case X86::ADC64ri8
: case X86::ADC32ri
:
3312 case X86::ADC32ri8
: case X86::ADC16ri
: case X86::ADC16ri8
:
3313 case X86::ADC8ri
: case X86::ADC64rr
: case X86::ADC32rr
:
3314 case X86::ADC16rr
: case X86::ADC8rr
: case X86::ADC64rm
:
3315 case X86::ADC32rm
: case X86::ADC16rm
: case X86::ADC8rm
:
3316 case X86::SBB64ri32
: case X86::SBB64ri8
: case X86::SBB32ri
:
3317 case X86::SBB32ri8
: case X86::SBB16ri
: case X86::SBB16ri8
:
3318 case X86::SBB8ri
: case X86::SBB64rr
: case X86::SBB32rr
:
3319 case X86::SBB16rr
: case X86::SBB8rr
: case X86::SBB64rm
:
3320 case X86::SBB32rm
: case X86::SBB16rm
: case X86::SBB8rm
:
3321 case X86::NEG8r
: case X86::NEG16r
: case X86::NEG32r
: case X86::NEG64r
:
3322 case X86::SAR8r1
: case X86::SAR16r1
: case X86::SAR32r1
:case X86::SAR64r1
:
3323 case X86::SHR8r1
: case X86::SHR16r1
: case X86::SHR32r1
:case X86::SHR64r1
:
3324 case X86::SHL8r1
: case X86::SHL16r1
: case X86::SHL32r1
:case X86::SHL64r1
:
3325 case X86::ANDN32rr
: case X86::ANDN32rm
:
3326 case X86::ANDN64rr
: case X86::ANDN64rm
:
3327 case X86::BLSI32rr
: case X86::BLSI32rm
:
3328 case X86::BLSI64rr
: case X86::BLSI64rm
:
3329 case X86::BLSMSK32rr
:case X86::BLSMSK32rm
:
3330 case X86::BLSMSK64rr
:case X86::BLSMSK64rm
:
3331 case X86::BLSR32rr
: case X86::BLSR32rm
:
3332 case X86::BLSR64rr
: case X86::BLSR64rm
:
3333 case X86::BZHI32rr
: case X86::BZHI32rm
:
3334 case X86::BZHI64rr
: case X86::BZHI64rm
:
3335 case X86::LZCNT16rr
: case X86::LZCNT16rm
:
3336 case X86::LZCNT32rr
: case X86::LZCNT32rm
:
3337 case X86::LZCNT64rr
: case X86::LZCNT64rm
:
3338 case X86::POPCNT16rr
:case X86::POPCNT16rm
:
3339 case X86::POPCNT32rr
:case X86::POPCNT32rm
:
3340 case X86::POPCNT64rr
:case X86::POPCNT64rm
:
3341 case X86::TZCNT16rr
: case X86::TZCNT16rm
:
3342 case X86::TZCNT32rr
: case X86::TZCNT32rm
:
3343 case X86::TZCNT64rr
: case X86::TZCNT64rm
:
3344 case X86::BLCFILL32rr
: case X86::BLCFILL32rm
:
3345 case X86::BLCFILL64rr
: case X86::BLCFILL64rm
:
3346 case X86::BLCI32rr
: case X86::BLCI32rm
:
3347 case X86::BLCI64rr
: case X86::BLCI64rm
:
3348 case X86::BLCIC32rr
: case X86::BLCIC32rm
:
3349 case X86::BLCIC64rr
: case X86::BLCIC64rm
:
3350 case X86::BLCMSK32rr
: case X86::BLCMSK32rm
:
3351 case X86::BLCMSK64rr
: case X86::BLCMSK64rm
:
3352 case X86::BLCS32rr
: case X86::BLCS32rm
:
3353 case X86::BLCS64rr
: case X86::BLCS64rm
:
3354 case X86::BLSFILL32rr
: case X86::BLSFILL32rm
:
3355 case X86::BLSFILL64rr
: case X86::BLSFILL64rm
:
3356 case X86::BLSIC32rr
: case X86::BLSIC32rm
:
3357 case X86::BLSIC64rr
: case X86::BLSIC64rm
:
3358 case X86::T1MSKC32rr
: case X86::T1MSKC32rm
:
3359 case X86::T1MSKC64rr
: case X86::T1MSKC64rm
:
3360 case X86::TZMSK32rr
: case X86::TZMSK32rm
:
3361 case X86::TZMSK64rr
: case X86::TZMSK64rm
:
3363 case X86::BEXTR32rr
: case X86::BEXTR64rr
:
3364 case X86::BEXTR32rm
: case X86::BEXTR64rm
:
3365 case X86::BEXTRI32ri
: case X86::BEXTRI32mi
:
3366 case X86::BEXTRI64ri
: case X86::BEXTRI64mi
:
3367 // BEXTR doesn't update the sign flag so we can't use it.
3373 /// Check whether the use can be converted to remove a comparison against zero.
3374 static X86::CondCode
isUseDefConvertible(const MachineInstr
&MI
) {
3375 switch (MI
.getOpcode()) {
3376 default: return X86::COND_INVALID
;
3381 return X86::COND_AE
;
3382 case X86::LZCNT16rr
:
3383 case X86::LZCNT32rr
:
3384 case X86::LZCNT64rr
:
3386 case X86::POPCNT16rr
:
3387 case X86::POPCNT32rr
:
3388 case X86::POPCNT64rr
:
3390 case X86::TZCNT16rr
:
3391 case X86::TZCNT32rr
:
3392 case X86::TZCNT64rr
:
3403 return X86::COND_AE
;
3406 case X86::BLSMSK32rr
:
3407 case X86::BLSMSK64rr
:
3409 // TODO: TBM instructions.
3413 /// Check if there exists an earlier instruction that
3414 /// operates on the same source operands and sets flags in the same way as
3415 /// Compare; remove Compare if possible.
3416 bool X86InstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
3417 unsigned SrcReg2
, int CmpMask
,
3419 const MachineRegisterInfo
*MRI
) const {
3420 // Check whether we can replace SUB with CMP.
3421 switch (CmpInstr
.getOpcode()) {
3423 case X86::SUB64ri32
:
3438 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
3440 // There is no use of the destination register, we can replace SUB with CMP.
3441 unsigned NewOpcode
= 0;
3442 switch (CmpInstr
.getOpcode()) {
3443 default: llvm_unreachable("Unreachable!");
3444 case X86::SUB64rm
: NewOpcode
= X86::CMP64rm
; break;
3445 case X86::SUB32rm
: NewOpcode
= X86::CMP32rm
; break;
3446 case X86::SUB16rm
: NewOpcode
= X86::CMP16rm
; break;
3447 case X86::SUB8rm
: NewOpcode
= X86::CMP8rm
; break;
3448 case X86::SUB64rr
: NewOpcode
= X86::CMP64rr
; break;
3449 case X86::SUB32rr
: NewOpcode
= X86::CMP32rr
; break;
3450 case X86::SUB16rr
: NewOpcode
= X86::CMP16rr
; break;
3451 case X86::SUB8rr
: NewOpcode
= X86::CMP8rr
; break;
3452 case X86::SUB64ri32
: NewOpcode
= X86::CMP64ri32
; break;
3453 case X86::SUB64ri8
: NewOpcode
= X86::CMP64ri8
; break;
3454 case X86::SUB32ri
: NewOpcode
= X86::CMP32ri
; break;
3455 case X86::SUB32ri8
: NewOpcode
= X86::CMP32ri8
; break;
3456 case X86::SUB16ri
: NewOpcode
= X86::CMP16ri
; break;
3457 case X86::SUB16ri8
: NewOpcode
= X86::CMP16ri8
; break;
3458 case X86::SUB8ri
: NewOpcode
= X86::CMP8ri
; break;
3460 CmpInstr
.setDesc(get(NewOpcode
));
3461 CmpInstr
.RemoveOperand(0);
3462 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
3463 if (NewOpcode
== X86::CMP64rm
|| NewOpcode
== X86::CMP32rm
||
3464 NewOpcode
== X86::CMP16rm
|| NewOpcode
== X86::CMP8rm
)
3469 // Get the unique definition of SrcReg.
3470 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
3471 if (!MI
) return false;
3473 // CmpInstr is the first instruction of the BB.
3474 MachineBasicBlock::iterator I
= CmpInstr
, Def
= MI
;
3476 // If we are comparing against zero, check whether we can use MI to update
3477 // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
3478 bool IsCmpZero
= (CmpMask
!= 0 && CmpValue
== 0);
3479 if (IsCmpZero
&& MI
->getParent() != CmpInstr
.getParent())
3482 // If we have a use of the source register between the def and our compare
3483 // instruction we can eliminate the compare iff the use sets EFLAGS in the
3485 bool ShouldUpdateCC
= false;
3486 bool NoSignFlag
= false;
3487 X86::CondCode NewCC
= X86::COND_INVALID
;
3488 if (IsCmpZero
&& !isDefConvertible(*MI
, NoSignFlag
)) {
3489 // Scan forward from the use until we hit the use we're looking for or the
3490 // compare instruction.
3491 for (MachineBasicBlock::iterator J
= MI
;; ++J
) {
3492 // Do we have a convertible instruction?
3493 NewCC
= isUseDefConvertible(*J
);
3494 if (NewCC
!= X86::COND_INVALID
&& J
->getOperand(1).isReg() &&
3495 J
->getOperand(1).getReg() == SrcReg
) {
3496 assert(J
->definesRegister(X86::EFLAGS
) && "Must be an EFLAGS def!");
3497 ShouldUpdateCC
= true; // Update CC later on.
3498 // This is not a def of SrcReg, but still a def of EFLAGS. Keep going
3499 // with the new def.
3510 // We are searching for an earlier instruction that can make CmpInstr
3511 // redundant and that instruction will be saved in Sub.
3512 MachineInstr
*Sub
= nullptr;
3513 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3515 // We iterate backward, starting from the instruction before CmpInstr and
3516 // stop when reaching the definition of a source register or done with the BB.
3517 // RI points to the instruction before CmpInstr.
3518 // If the definition is in this basic block, RE points to the definition;
3519 // otherwise, RE is the rend of the basic block.
3520 MachineBasicBlock::reverse_iterator
3521 RI
= ++I
.getReverse(),
3522 RE
= CmpInstr
.getParent() == MI
->getParent()
3523 ? Def
.getReverse() /* points to MI */
3524 : CmpInstr
.getParent()->rend();
3525 MachineInstr
*Movr0Inst
= nullptr;
3526 for (; RI
!= RE
; ++RI
) {
3527 MachineInstr
&Instr
= *RI
;
3528 // Check whether CmpInstr can be made redundant by the current instruction.
3529 if (!IsCmpZero
&& isRedundantFlagInstr(CmpInstr
, SrcReg
, SrcReg2
, CmpMask
,
3535 if (Instr
.modifiesRegister(X86::EFLAGS
, TRI
) ||
3536 Instr
.readsRegister(X86::EFLAGS
, TRI
)) {
3537 // This instruction modifies or uses EFLAGS.
3539 // MOV32r0 etc. are implemented with xor which clobbers condition code.
3540 // They are safe to move up, if the definition to EFLAGS is dead and
3541 // earlier instructions do not read or write EFLAGS.
3542 if (!Movr0Inst
&& Instr
.getOpcode() == X86::MOV32r0
&&
3543 Instr
.registerDefIsDead(X86::EFLAGS
, TRI
)) {
3548 // We can't remove CmpInstr.
3553 // Return false if no candidates exist.
3554 if (!IsCmpZero
&& !Sub
)
3557 bool IsSwapped
= (SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
3558 Sub
->getOperand(2).getReg() == SrcReg
);
3560 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
3561 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
3562 // If we are done with the basic block, we need to check whether EFLAGS is
3564 bool IsSafe
= false;
3565 SmallVector
<std::pair
<MachineInstr
*, X86::CondCode
>, 4> OpsToUpdate
;
3566 MachineBasicBlock::iterator E
= CmpInstr
.getParent()->end();
3567 for (++I
; I
!= E
; ++I
) {
3568 const MachineInstr
&Instr
= *I
;
3569 bool ModifyEFLAGS
= Instr
.modifiesRegister(X86::EFLAGS
, TRI
);
3570 bool UseEFLAGS
= Instr
.readsRegister(X86::EFLAGS
, TRI
);
3571 // We should check the usage if this instruction uses and updates EFLAGS.
3572 if (!UseEFLAGS
&& ModifyEFLAGS
) {
3573 // It is safe to remove CmpInstr if EFLAGS is updated again.
3577 if (!UseEFLAGS
&& !ModifyEFLAGS
)
3580 // EFLAGS is used by this instruction.
3581 X86::CondCode OldCC
= X86::COND_INVALID
;
3582 if (IsCmpZero
|| IsSwapped
) {
3583 // We decode the condition code from opcode.
3584 if (Instr
.isBranch())
3585 OldCC
= X86::getCondFromBranch(Instr
);
3587 OldCC
= X86::getCondFromSETCC(Instr
);
3588 if (OldCC
== X86::COND_INVALID
)
3589 OldCC
= X86::getCondFromCMov(Instr
);
3591 if (OldCC
== X86::COND_INVALID
) return false;
3593 X86::CondCode ReplacementCC
= X86::COND_INVALID
;
3597 case X86::COND_A
: case X86::COND_AE
:
3598 case X86::COND_B
: case X86::COND_BE
:
3599 case X86::COND_G
: case X86::COND_GE
:
3600 case X86::COND_L
: case X86::COND_LE
:
3601 case X86::COND_O
: case X86::COND_NO
:
3602 // CF and OF are used, we can't perform this optimization.
3604 case X86::COND_S
: case X86::COND_NS
:
3605 // If SF is used, but the instruction doesn't update the SF, then we
3606 // can't do the optimization.
3612 // If we're updating the condition code check if we have to reverse the
3619 ReplacementCC
= NewCC
;
3622 ReplacementCC
= GetOppositeBranchCondition(NewCC
);
3625 } else if (IsSwapped
) {
3626 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
3627 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3628 // We swap the condition code and synthesize the new opcode.
3629 ReplacementCC
= getSwappedCondition(OldCC
);
3630 if (ReplacementCC
== X86::COND_INVALID
) return false;
3633 if ((ShouldUpdateCC
|| IsSwapped
) && ReplacementCC
!= OldCC
) {
3634 // Push the MachineInstr to OpsToUpdate.
3635 // If it is safe to remove CmpInstr, the condition code of these
3636 // instructions will be modified.
3637 OpsToUpdate
.push_back(std::make_pair(&*I
, ReplacementCC
));
3639 if (ModifyEFLAGS
|| Instr
.killsRegister(X86::EFLAGS
, TRI
)) {
3640 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
3646 // If EFLAGS is not killed nor re-defined, we should check whether it is
3647 // live-out. If it is live-out, do not optimize.
3648 if ((IsCmpZero
|| IsSwapped
) && !IsSafe
) {
3649 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
3650 for (MachineBasicBlock
*Successor
: MBB
->successors())
3651 if (Successor
->isLiveIn(X86::EFLAGS
))
3655 // The instruction to be updated is either Sub or MI.
3656 Sub
= IsCmpZero
? MI
: Sub
;
3657 // Move Movr0Inst to the appropriate place before Sub.
3659 // Look backwards until we find a def that doesn't use the current EFLAGS.
3661 MachineBasicBlock::reverse_iterator InsertI
= Def
.getReverse(),
3662 InsertE
= Sub
->getParent()->rend();
3663 for (; InsertI
!= InsertE
; ++InsertI
) {
3664 MachineInstr
*Instr
= &*InsertI
;
3665 if (!Instr
->readsRegister(X86::EFLAGS
, TRI
) &&
3666 Instr
->modifiesRegister(X86::EFLAGS
, TRI
)) {
3667 Sub
->getParent()->remove(Movr0Inst
);
3668 Instr
->getParent()->insert(MachineBasicBlock::iterator(Instr
),
3673 if (InsertI
== InsertE
)
3677 // Make sure Sub instruction defines EFLAGS and mark the def live.
3678 MachineOperand
*FlagDef
= Sub
->findRegisterDefOperand(X86::EFLAGS
);
3679 assert(FlagDef
&& "Unable to locate a def EFLAGS operand");
3680 FlagDef
->setIsDead(false);
3682 CmpInstr
.eraseFromParent();
3684 // Modify the condition code of instructions in OpsToUpdate.
3685 for (auto &Op
: OpsToUpdate
) {
3686 Op
.first
->getOperand(Op
.first
->getDesc().getNumOperands() - 1)
3692 /// Try to remove the load by folding it to a register
3693 /// operand at the use. We fold the load instructions if load defines a virtual
3694 /// register, the virtual register is used once in the same BB, and the
3695 /// instructions in-between do not load or store, and have no side effects.
3696 MachineInstr
*X86InstrInfo::optimizeLoadInstr(MachineInstr
&MI
,
3697 const MachineRegisterInfo
*MRI
,
3698 unsigned &FoldAsLoadDefReg
,
3699 MachineInstr
*&DefMI
) const {
3700 // Check whether we can move DefMI here.
3701 DefMI
= MRI
->getVRegDef(FoldAsLoadDefReg
);
3703 bool SawStore
= false;
3704 if (!DefMI
->isSafeToMove(nullptr, SawStore
))
3707 // Collect information about virtual register operands of MI.
3708 SmallVector
<unsigned, 1> SrcOperandIds
;
3709 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
3710 MachineOperand
&MO
= MI
.getOperand(i
);
3713 unsigned Reg
= MO
.getReg();
3714 if (Reg
!= FoldAsLoadDefReg
)
3716 // Do not fold if we have a subreg use or a def.
3717 if (MO
.getSubReg() || MO
.isDef())
3719 SrcOperandIds
.push_back(i
);
3721 if (SrcOperandIds
.empty())
3724 // Check whether we can fold the def into SrcOperandId.
3725 if (MachineInstr
*FoldMI
= foldMemoryOperand(MI
, SrcOperandIds
, *DefMI
)) {
3726 FoldAsLoadDefReg
= 0;
3733 /// Expand a single-def pseudo instruction to a two-addr
3734 /// instruction with two undef reads of the register being defined.
3735 /// This is used for mapping:
3738 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
3740 static bool Expand2AddrUndef(MachineInstrBuilder
&MIB
,
3741 const MCInstrDesc
&Desc
) {
3742 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3743 unsigned Reg
= MIB
->getOperand(0).getReg();
3746 // MachineInstr::addOperand() will insert explicit operands before any
3747 // implicit operands.
3748 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3749 // But we don't trust that.
3750 assert(MIB
->getOperand(1).getReg() == Reg
&&
3751 MIB
->getOperand(2).getReg() == Reg
&& "Misplaced operand");
3755 /// Expand a single-def pseudo instruction to a two-addr
3756 /// instruction with two %k0 reads.
3757 /// This is used for mapping:
3760 /// %k4 = KXNORrr %k0, %k0
3761 static bool Expand2AddrKreg(MachineInstrBuilder
&MIB
,
3762 const MCInstrDesc
&Desc
, unsigned Reg
) {
3763 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
3765 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
3769 static bool expandMOV32r1(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
,
3771 MachineBasicBlock
&MBB
= *MIB
->getParent();
3772 DebugLoc DL
= MIB
->getDebugLoc();
3773 unsigned Reg
= MIB
->getOperand(0).getReg();
3776 BuildMI(MBB
, MIB
.getInstr(), DL
, TII
.get(X86::XOR32rr
), Reg
)
3777 .addReg(Reg
, RegState::Undef
)
3778 .addReg(Reg
, RegState::Undef
);
3780 // Turn the pseudo into an INC or DEC.
3781 MIB
->setDesc(TII
.get(MinusOne
? X86::DEC32r
: X86::INC32r
));
3787 static bool ExpandMOVImmSExti8(MachineInstrBuilder
&MIB
,
3788 const TargetInstrInfo
&TII
,
3789 const X86Subtarget
&Subtarget
) {
3790 MachineBasicBlock
&MBB
= *MIB
->getParent();
3791 DebugLoc DL
= MIB
->getDebugLoc();
3792 int64_t Imm
= MIB
->getOperand(1).getImm();
3793 assert(Imm
!= 0 && "Using push/pop for 0 is not efficient.");
3794 MachineBasicBlock::iterator I
= MIB
.getInstr();
3796 int StackAdjustment
;
3798 if (Subtarget
.is64Bit()) {
3799 assert(MIB
->getOpcode() == X86::MOV64ImmSExti8
||
3800 MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3802 // Can't use push/pop lowering if the function might write to the red zone.
3803 X86MachineFunctionInfo
*X86FI
=
3804 MBB
.getParent()->getInfo
<X86MachineFunctionInfo
>();
3805 if (X86FI
->getUsesRedZone()) {
3806 MIB
->setDesc(TII
.get(MIB
->getOpcode() ==
3807 X86::MOV32ImmSExti8
? X86::MOV32ri
: X86::MOV64ri
));
3811 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
3812 // widen the register if necessary.
3813 StackAdjustment
= 8;
3814 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH64i8
)).addImm(Imm
);
3815 MIB
->setDesc(TII
.get(X86::POP64r
));
3817 .setReg(getX86SubSuperRegister(MIB
->getOperand(0).getReg(), 64));
3819 assert(MIB
->getOpcode() == X86::MOV32ImmSExti8
);
3820 StackAdjustment
= 4;
3821 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH32i8
)).addImm(Imm
);
3822 MIB
->setDesc(TII
.get(X86::POP32r
));
3825 // Build CFI if necessary.
3826 MachineFunction
&MF
= *MBB
.getParent();
3827 const X86FrameLowering
*TFL
= Subtarget
.getFrameLowering();
3828 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
3829 bool NeedsDwarfCFI
=
3831 (MF
.getMMI().hasDebugInfo() || MF
.getFunction().needsUnwindTableEntry());
3832 bool EmitCFI
= !TFL
->hasFP(MF
) && NeedsDwarfCFI
;
3834 TFL
->BuildCFI(MBB
, I
, DL
,
3835 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment
));
3836 TFL
->BuildCFI(MBB
, std::next(I
), DL
,
3837 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment
));
3843 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
3844 // code sequence is needed for other targets.
3845 static void expandLoadStackGuard(MachineInstrBuilder
&MIB
,
3846 const TargetInstrInfo
&TII
) {
3847 MachineBasicBlock
&MBB
= *MIB
->getParent();
3848 DebugLoc DL
= MIB
->getDebugLoc();
3849 unsigned Reg
= MIB
->getOperand(0).getReg();
3850 const GlobalValue
*GV
=
3851 cast
<GlobalValue
>((*MIB
->memoperands_begin())->getValue());
3852 auto Flags
= MachineMemOperand::MOLoad
|
3853 MachineMemOperand::MODereferenceable
|
3854 MachineMemOperand::MOInvariant
;
3855 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
3856 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 8, 8);
3857 MachineBasicBlock::iterator I
= MIB
.getInstr();
3859 BuildMI(MBB
, I
, DL
, TII
.get(X86::MOV64rm
), Reg
).addReg(X86::RIP
).addImm(1)
3860 .addReg(0).addGlobalAddress(GV
, 0, X86II::MO_GOTPCREL
).addReg(0)
3861 .addMemOperand(MMO
);
3862 MIB
->setDebugLoc(DL
);
3863 MIB
->setDesc(TII
.get(X86::MOV64rm
));
3864 MIB
.addReg(Reg
, RegState::Kill
).addImm(1).addReg(0).addImm(0).addReg(0);
3867 static bool expandXorFP(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
) {
3868 MachineBasicBlock
&MBB
= *MIB
->getParent();
3869 MachineFunction
&MF
= *MBB
.getParent();
3870 const X86Subtarget
&Subtarget
= MF
.getSubtarget
<X86Subtarget
>();
3871 const X86RegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3873 MIB
->getOpcode() == X86::XOR64_FP
? X86::XOR64rr
: X86::XOR32rr
;
3874 MIB
->setDesc(TII
.get(XorOp
));
3875 MIB
.addReg(TRI
->getFrameRegister(MF
), RegState::Undef
);
3879 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3880 // but not VLX. If it uses an extended register we need to use an instruction
3881 // that loads the lower 128/256-bit, but is available with only AVX512F.
3882 static bool expandNOVLXLoad(MachineInstrBuilder
&MIB
,
3883 const TargetRegisterInfo
*TRI
,
3884 const MCInstrDesc
&LoadDesc
,
3885 const MCInstrDesc
&BroadcastDesc
,
3887 unsigned DestReg
= MIB
->getOperand(0).getReg();
3888 // Check if DestReg is XMM16-31 or YMM16-31.
3889 if (TRI
->getEncodingValue(DestReg
) < 16) {
3890 // We can use a normal VEX encoded load.
3891 MIB
->setDesc(LoadDesc
);
3893 // Use a 128/256-bit VBROADCAST instruction.
3894 MIB
->setDesc(BroadcastDesc
);
3895 // Change the destination to a 512-bit register.
3896 DestReg
= TRI
->getMatchingSuperReg(DestReg
, SubIdx
, &X86::VR512RegClass
);
3897 MIB
->getOperand(0).setReg(DestReg
);
3902 // This is used to handle spills for 128/256-bit registers when we have AVX512,
3903 // but not VLX. If it uses an extended register we need to use an instruction
3904 // that stores the lower 128/256-bit, but is available with only AVX512F.
3905 static bool expandNOVLXStore(MachineInstrBuilder
&MIB
,
3906 const TargetRegisterInfo
*TRI
,
3907 const MCInstrDesc
&StoreDesc
,
3908 const MCInstrDesc
&ExtractDesc
,
3910 unsigned SrcReg
= MIB
->getOperand(X86::AddrNumOperands
).getReg();
3911 // Check if DestReg is XMM16-31 or YMM16-31.
3912 if (TRI
->getEncodingValue(SrcReg
) < 16) {
3913 // We can use a normal VEX encoded store.
3914 MIB
->setDesc(StoreDesc
);
3916 // Use a VEXTRACTF instruction.
3917 MIB
->setDesc(ExtractDesc
);
3918 // Change the destination to a 512-bit register.
3919 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, SubIdx
, &X86::VR512RegClass
);
3920 MIB
->getOperand(X86::AddrNumOperands
).setReg(SrcReg
);
3921 MIB
.addImm(0x0); // Append immediate to extract from the lower bits.
3927 static bool expandSHXDROT(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
) {
3929 int64_t ShiftAmt
= MIB
->getOperand(2).getImm();
3930 // Temporarily remove the immediate so we can add another source register.
3931 MIB
->RemoveOperand(2);
3932 // Add the register. Don't copy the kill flag if there is one.
3933 MIB
.addReg(MIB
->getOperand(1).getReg(),
3934 getUndefRegState(MIB
->getOperand(1).isUndef()));
3935 // Add back the immediate.
3936 MIB
.addImm(ShiftAmt
);
3940 bool X86InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
3941 bool HasAVX
= Subtarget
.hasAVX();
3942 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
3943 switch (MI
.getOpcode()) {
3945 return Expand2AddrUndef(MIB
, get(X86::XOR32rr
));
3947 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ false);
3949 return expandMOV32r1(MIB
, *this, /*MinusOne=*/ true);
3950 case X86::MOV32ImmSExti8
:
3951 case X86::MOV64ImmSExti8
:
3952 return ExpandMOVImmSExti8(MIB
, *this, Subtarget
);
3954 return Expand2AddrUndef(MIB
, get(X86::SBB8rr
));
3955 case X86::SETB_C16r
:
3956 return Expand2AddrUndef(MIB
, get(X86::SBB16rr
));
3957 case X86::SETB_C32r
:
3958 return Expand2AddrUndef(MIB
, get(X86::SBB32rr
));
3959 case X86::SETB_C64r
:
3960 return Expand2AddrUndef(MIB
, get(X86::SBB64rr
));
3962 return Expand2AddrUndef(MIB
, get(X86::MMX_PXORirr
));
3966 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VXORPSrr
: X86::XORPSrr
));
3967 case X86::AVX_SET0
: {
3968 assert(HasAVX
&& "AVX not supported");
3969 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3970 unsigned SrcReg
= MIB
->getOperand(0).getReg();
3971 unsigned XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
3972 MIB
->getOperand(0).setReg(XReg
);
3973 Expand2AddrUndef(MIB
, get(X86::VXORPSrr
));
3974 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
3977 case X86::AVX512_128_SET0
:
3978 case X86::AVX512_FsFLD0SS
:
3979 case X86::AVX512_FsFLD0SD
: {
3980 bool HasVLX
= Subtarget
.hasVLX();
3981 unsigned SrcReg
= MIB
->getOperand(0).getReg();
3982 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3983 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16)
3984 return Expand2AddrUndef(MIB
,
3985 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
3986 // Extended register without VLX. Use a larger XOR.
3988 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
3989 MIB
->getOperand(0).setReg(SrcReg
);
3990 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
3992 case X86::AVX512_256_SET0
:
3993 case X86::AVX512_512_SET0
: {
3994 bool HasVLX
= Subtarget
.hasVLX();
3995 unsigned SrcReg
= MIB
->getOperand(0).getReg();
3996 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
3997 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16) {
3998 unsigned XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
3999 MIB
->getOperand(0).setReg(XReg
);
4000 Expand2AddrUndef(MIB
,
4001 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
4002 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
4005 if (MI
.getOpcode() == X86::AVX512_256_SET0
) {
4006 // No VLX so we must reference a zmm.
4008 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4009 MIB
->getOperand(0).setReg(ZReg
);
4011 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
4013 case X86::V_SETALLONES
:
4014 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VPCMPEQDrr
: X86::PCMPEQDrr
));
4015 case X86::AVX2_SETALLONES
:
4016 return Expand2AddrUndef(MIB
, get(X86::VPCMPEQDYrr
));
4017 case X86::AVX1_SETALLONES
: {
4018 unsigned Reg
= MIB
->getOperand(0).getReg();
4019 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
4020 MIB
->setDesc(get(X86::VCMPPSYrri
));
4021 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xf);
4024 case X86::AVX512_512_SETALLONES
: {
4025 unsigned Reg
= MIB
->getOperand(0).getReg();
4026 MIB
->setDesc(get(X86::VPTERNLOGDZrri
));
4027 // VPTERNLOGD needs 3 register inputs and an immediate.
4028 // 0xff will return 1s for any input.
4029 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
)
4030 .addReg(Reg
, RegState::Undef
).addImm(0xff);
4033 case X86::AVX512_512_SEXT_MASK_32
:
4034 case X86::AVX512_512_SEXT_MASK_64
: {
4035 unsigned Reg
= MIB
->getOperand(0).getReg();
4036 unsigned MaskReg
= MIB
->getOperand(1).getReg();
4037 unsigned MaskState
= getRegState(MIB
->getOperand(1));
4038 unsigned Opc
= (MI
.getOpcode() == X86::AVX512_512_SEXT_MASK_64
) ?
4039 X86::VPTERNLOGQZrrikz
: X86::VPTERNLOGDZrrikz
;
4040 MI
.RemoveOperand(1);
4041 MIB
->setDesc(get(Opc
));
4042 // VPTERNLOG needs 3 register inputs and an immediate.
4043 // 0xff will return 1s for any input.
4044 MIB
.addReg(Reg
, RegState::Undef
).addReg(MaskReg
, MaskState
)
4045 .addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xff);
4048 case X86::VMOVAPSZ128rm_NOVLX
:
4049 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSrm
),
4050 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4051 case X86::VMOVUPSZ128rm_NOVLX
:
4052 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSrm
),
4053 get(X86::VBROADCASTF32X4rm
), X86::sub_xmm
);
4054 case X86::VMOVAPSZ256rm_NOVLX
:
4055 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYrm
),
4056 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4057 case X86::VMOVUPSZ256rm_NOVLX
:
4058 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYrm
),
4059 get(X86::VBROADCASTF64X4rm
), X86::sub_ymm
);
4060 case X86::VMOVAPSZ128mr_NOVLX
:
4061 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSmr
),
4062 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4063 case X86::VMOVUPSZ128mr_NOVLX
:
4064 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSmr
),
4065 get(X86::VEXTRACTF32x4Zmr
), X86::sub_xmm
);
4066 case X86::VMOVAPSZ256mr_NOVLX
:
4067 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYmr
),
4068 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4069 case X86::VMOVUPSZ256mr_NOVLX
:
4070 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYmr
),
4071 get(X86::VEXTRACTF64x4Zmr
), X86::sub_ymm
);
4072 case X86::MOV32ri64
: {
4073 unsigned Reg
= MIB
->getOperand(0).getReg();
4074 unsigned Reg32
= RI
.getSubReg(Reg
, X86::sub_32bit
);
4075 MI
.setDesc(get(X86::MOV32ri
));
4076 MIB
->getOperand(0).setReg(Reg32
);
4077 MIB
.addReg(Reg
, RegState::ImplicitDefine
);
4081 // KNL does not recognize dependency-breaking idioms for mask registers,
4082 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
4083 // Using %k0 as the undef input register is a performance heuristic based
4084 // on the assumption that %k0 is used less frequently than the other mask
4085 // registers, since it is not usable as a write mask.
4086 // FIXME: A more advanced approach would be to choose the best input mask
4087 // register based on context.
4088 case X86::KSET0W
: return Expand2AddrKreg(MIB
, get(X86::KXORWrr
), X86::K0
);
4089 case X86::KSET0D
: return Expand2AddrKreg(MIB
, get(X86::KXORDrr
), X86::K0
);
4090 case X86::KSET0Q
: return Expand2AddrKreg(MIB
, get(X86::KXORQrr
), X86::K0
);
4091 case X86::KSET1W
: return Expand2AddrKreg(MIB
, get(X86::KXNORWrr
), X86::K0
);
4092 case X86::KSET1D
: return Expand2AddrKreg(MIB
, get(X86::KXNORDrr
), X86::K0
);
4093 case X86::KSET1Q
: return Expand2AddrKreg(MIB
, get(X86::KXNORQrr
), X86::K0
);
4094 case TargetOpcode::LOAD_STACK_GUARD
:
4095 expandLoadStackGuard(MIB
, *this);
4099 return expandXorFP(MIB
, *this);
4100 case X86::SHLDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHLD32rri8
));
4101 case X86::SHLDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHLD64rri8
));
4102 case X86::SHRDROT32ri
: return expandSHXDROT(MIB
, get(X86::SHRD32rri8
));
4103 case X86::SHRDROT64ri
: return expandSHXDROT(MIB
, get(X86::SHRD64rri8
));
4104 case X86::ADD8rr_DB
: MIB
->setDesc(get(X86::OR8rr
)); break;
4105 case X86::ADD16rr_DB
: MIB
->setDesc(get(X86::OR16rr
)); break;
4106 case X86::ADD32rr_DB
: MIB
->setDesc(get(X86::OR32rr
)); break;
4107 case X86::ADD64rr_DB
: MIB
->setDesc(get(X86::OR64rr
)); break;
4108 case X86::ADD8ri_DB
: MIB
->setDesc(get(X86::OR8ri
)); break;
4109 case X86::ADD16ri_DB
: MIB
->setDesc(get(X86::OR16ri
)); break;
4110 case X86::ADD32ri_DB
: MIB
->setDesc(get(X86::OR32ri
)); break;
4111 case X86::ADD64ri32_DB
: MIB
->setDesc(get(X86::OR64ri32
)); break;
4112 case X86::ADD16ri8_DB
: MIB
->setDesc(get(X86::OR16ri8
)); break;
4113 case X86::ADD32ri8_DB
: MIB
->setDesc(get(X86::OR32ri8
)); break;
4114 case X86::ADD64ri8_DB
: MIB
->setDesc(get(X86::OR64ri8
)); break;
4119 /// Return true for all instructions that only update
4120 /// the first 32 or 64-bits of the destination register and leave the rest
4121 /// unmodified. This can be used to avoid folding loads if the instructions
4122 /// only update part of the destination register, and the non-updated part is
4123 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
4124 /// instructions breaks the partial register dependency and it can improve
4125 /// performance. e.g.:
4127 /// movss (%rdi), %xmm0
4128 /// cvtss2sd %xmm0, %xmm0
4131 /// cvtss2sd (%rdi), %xmm0
4133 /// FIXME: This should be turned into a TSFlags.
4135 static bool hasPartialRegUpdate(unsigned Opcode
,
4136 const X86Subtarget
&Subtarget
,
4137 bool ForLoadFold
= false) {
4139 case X86::CVTSI2SSrr
:
4140 case X86::CVTSI2SSrm
:
4141 case X86::CVTSI642SSrr
:
4142 case X86::CVTSI642SSrm
:
4143 case X86::CVTSI2SDrr
:
4144 case X86::CVTSI2SDrm
:
4145 case X86::CVTSI642SDrr
:
4146 case X86::CVTSI642SDrm
:
4147 // Load folding won't effect the undef register update since the input is
4149 return !ForLoadFold
;
4150 case X86::CVTSD2SSrr
:
4151 case X86::CVTSD2SSrm
:
4152 case X86::CVTSS2SDrr
:
4153 case X86::CVTSS2SDrm
:
4160 case X86::RCPSSr_Int
:
4161 case X86::RCPSSm_Int
:
4168 case X86::RSQRTSSr_Int
:
4169 case X86::RSQRTSSm_Int
:
4172 case X86::SQRTSSr_Int
:
4173 case X86::SQRTSSm_Int
:
4176 case X86::SQRTSDr_Int
:
4177 case X86::SQRTSDm_Int
:
4180 case X86::POPCNT32rm
:
4181 case X86::POPCNT32rr
:
4182 case X86::POPCNT64rm
:
4183 case X86::POPCNT64rr
:
4184 return Subtarget
.hasPOPCNTFalseDeps();
4185 case X86::LZCNT32rm
:
4186 case X86::LZCNT32rr
:
4187 case X86::LZCNT64rm
:
4188 case X86::LZCNT64rr
:
4189 case X86::TZCNT32rm
:
4190 case X86::TZCNT32rr
:
4191 case X86::TZCNT64rm
:
4192 case X86::TZCNT64rr
:
4193 return Subtarget
.hasLZCNTFalseDeps();
4199 /// Inform the BreakFalseDeps pass how many idle
4200 /// instructions we would like before a partial register update.
4201 unsigned X86InstrInfo::getPartialRegUpdateClearance(
4202 const MachineInstr
&MI
, unsigned OpNum
,
4203 const TargetRegisterInfo
*TRI
) const {
4204 if (OpNum
!= 0 || !hasPartialRegUpdate(MI
.getOpcode(), Subtarget
))
4207 // If MI is marked as reading Reg, the partial register update is wanted.
4208 const MachineOperand
&MO
= MI
.getOperand(0);
4209 unsigned Reg
= MO
.getReg();
4210 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
4211 if (MO
.readsReg() || MI
.readsVirtualRegister(Reg
))
4214 if (MI
.readsRegister(Reg
, TRI
))
4218 // If any instructions in the clearance range are reading Reg, insert a
4219 // dependency breaking instruction, which is inexpensive and is likely to
4220 // be hidden in other instruction's cycles.
4221 return PartialRegUpdateClearance
;
4224 // Return true for any instruction the copies the high bits of the first source
4225 // operand into the unused high bits of the destination operand.
4226 static bool hasUndefRegUpdate(unsigned Opcode
, bool ForLoadFold
= false) {
4228 case X86::VCVTSI2SSrr
:
4229 case X86::VCVTSI2SSrm
:
4230 case X86::VCVTSI2SSrr_Int
:
4231 case X86::VCVTSI2SSrm_Int
:
4232 case X86::VCVTSI642SSrr
:
4233 case X86::VCVTSI642SSrm
:
4234 case X86::VCVTSI642SSrr_Int
:
4235 case X86::VCVTSI642SSrm_Int
:
4236 case X86::VCVTSI2SDrr
:
4237 case X86::VCVTSI2SDrm
:
4238 case X86::VCVTSI2SDrr_Int
:
4239 case X86::VCVTSI2SDrm_Int
:
4240 case X86::VCVTSI642SDrr
:
4241 case X86::VCVTSI642SDrm
:
4242 case X86::VCVTSI642SDrr_Int
:
4243 case X86::VCVTSI642SDrm_Int
:
4245 case X86::VCVTSI2SSZrr
:
4246 case X86::VCVTSI2SSZrm
:
4247 case X86::VCVTSI2SSZrr_Int
:
4248 case X86::VCVTSI2SSZrrb_Int
:
4249 case X86::VCVTSI2SSZrm_Int
:
4250 case X86::VCVTSI642SSZrr
:
4251 case X86::VCVTSI642SSZrm
:
4252 case X86::VCVTSI642SSZrr_Int
:
4253 case X86::VCVTSI642SSZrrb_Int
:
4254 case X86::VCVTSI642SSZrm_Int
:
4255 case X86::VCVTSI2SDZrr
:
4256 case X86::VCVTSI2SDZrm
:
4257 case X86::VCVTSI2SDZrr_Int
:
4258 case X86::VCVTSI2SDZrm_Int
:
4259 case X86::VCVTSI642SDZrr
:
4260 case X86::VCVTSI642SDZrm
:
4261 case X86::VCVTSI642SDZrr_Int
:
4262 case X86::VCVTSI642SDZrrb_Int
:
4263 case X86::VCVTSI642SDZrm_Int
:
4264 case X86::VCVTUSI2SSZrr
:
4265 case X86::VCVTUSI2SSZrm
:
4266 case X86::VCVTUSI2SSZrr_Int
:
4267 case X86::VCVTUSI2SSZrrb_Int
:
4268 case X86::VCVTUSI2SSZrm_Int
:
4269 case X86::VCVTUSI642SSZrr
:
4270 case X86::VCVTUSI642SSZrm
:
4271 case X86::VCVTUSI642SSZrr_Int
:
4272 case X86::VCVTUSI642SSZrrb_Int
:
4273 case X86::VCVTUSI642SSZrm_Int
:
4274 case X86::VCVTUSI2SDZrr
:
4275 case X86::VCVTUSI2SDZrm
:
4276 case X86::VCVTUSI2SDZrr_Int
:
4277 case X86::VCVTUSI2SDZrm_Int
:
4278 case X86::VCVTUSI642SDZrr
:
4279 case X86::VCVTUSI642SDZrm
:
4280 case X86::VCVTUSI642SDZrr_Int
:
4281 case X86::VCVTUSI642SDZrrb_Int
:
4282 case X86::VCVTUSI642SDZrm_Int
:
4283 // Load folding won't effect the undef register update since the input is
4285 return !ForLoadFold
;
4286 case X86::VCVTSD2SSrr
:
4287 case X86::VCVTSD2SSrm
:
4288 case X86::VCVTSD2SSrr_Int
:
4289 case X86::VCVTSD2SSrm_Int
:
4290 case X86::VCVTSS2SDrr
:
4291 case X86::VCVTSS2SDrm
:
4292 case X86::VCVTSS2SDrr_Int
:
4293 case X86::VCVTSS2SDrm_Int
:
4295 case X86::VRCPSSr_Int
:
4297 case X86::VRCPSSm_Int
:
4298 case X86::VROUNDSDr
:
4299 case X86::VROUNDSDm
:
4300 case X86::VROUNDSDr_Int
:
4301 case X86::VROUNDSDm_Int
:
4302 case X86::VROUNDSSr
:
4303 case X86::VROUNDSSm
:
4304 case X86::VROUNDSSr_Int
:
4305 case X86::VROUNDSSm_Int
:
4306 case X86::VRSQRTSSr
:
4307 case X86::VRSQRTSSr_Int
:
4308 case X86::VRSQRTSSm
:
4309 case X86::VRSQRTSSm_Int
:
4311 case X86::VSQRTSSr_Int
:
4313 case X86::VSQRTSSm_Int
:
4315 case X86::VSQRTSDr_Int
:
4317 case X86::VSQRTSDm_Int
:
4319 case X86::VCVTSD2SSZrr
:
4320 case X86::VCVTSD2SSZrr_Int
:
4321 case X86::VCVTSD2SSZrrb_Int
:
4322 case X86::VCVTSD2SSZrm
:
4323 case X86::VCVTSD2SSZrm_Int
:
4324 case X86::VCVTSS2SDZrr
:
4325 case X86::VCVTSS2SDZrr_Int
:
4326 case X86::VCVTSS2SDZrrb_Int
:
4327 case X86::VCVTSS2SDZrm
:
4328 case X86::VCVTSS2SDZrm_Int
:
4329 case X86::VGETEXPSDZr
:
4330 case X86::VGETEXPSDZrb
:
4331 case X86::VGETEXPSDZm
:
4332 case X86::VGETEXPSSZr
:
4333 case X86::VGETEXPSSZrb
:
4334 case X86::VGETEXPSSZm
:
4335 case X86::VGETMANTSDZrri
:
4336 case X86::VGETMANTSDZrrib
:
4337 case X86::VGETMANTSDZrmi
:
4338 case X86::VGETMANTSSZrri
:
4339 case X86::VGETMANTSSZrrib
:
4340 case X86::VGETMANTSSZrmi
:
4341 case X86::VRNDSCALESDZr
:
4342 case X86::VRNDSCALESDZr_Int
:
4343 case X86::VRNDSCALESDZrb_Int
:
4344 case X86::VRNDSCALESDZm
:
4345 case X86::VRNDSCALESDZm_Int
:
4346 case X86::VRNDSCALESSZr
:
4347 case X86::VRNDSCALESSZr_Int
:
4348 case X86::VRNDSCALESSZrb_Int
:
4349 case X86::VRNDSCALESSZm
:
4350 case X86::VRNDSCALESSZm_Int
:
4351 case X86::VRCP14SDZrr
:
4352 case X86::VRCP14SDZrm
:
4353 case X86::VRCP14SSZrr
:
4354 case X86::VRCP14SSZrm
:
4355 case X86::VRCP28SDZr
:
4356 case X86::VRCP28SDZrb
:
4357 case X86::VRCP28SDZm
:
4358 case X86::VRCP28SSZr
:
4359 case X86::VRCP28SSZrb
:
4360 case X86::VRCP28SSZm
:
4361 case X86::VREDUCESSZrmi
:
4362 case X86::VREDUCESSZrri
:
4363 case X86::VREDUCESSZrrib
:
4364 case X86::VRSQRT14SDZrr
:
4365 case X86::VRSQRT14SDZrm
:
4366 case X86::VRSQRT14SSZrr
:
4367 case X86::VRSQRT14SSZrm
:
4368 case X86::VRSQRT28SDZr
:
4369 case X86::VRSQRT28SDZrb
:
4370 case X86::VRSQRT28SDZm
:
4371 case X86::VRSQRT28SSZr
:
4372 case X86::VRSQRT28SSZrb
:
4373 case X86::VRSQRT28SSZm
:
4374 case X86::VSQRTSSZr
:
4375 case X86::VSQRTSSZr_Int
:
4376 case X86::VSQRTSSZrb_Int
:
4377 case X86::VSQRTSSZm
:
4378 case X86::VSQRTSSZm_Int
:
4379 case X86::VSQRTSDZr
:
4380 case X86::VSQRTSDZr_Int
:
4381 case X86::VSQRTSDZrb_Int
:
4382 case X86::VSQRTSDZm
:
4383 case X86::VSQRTSDZm_Int
:
4390 /// Inform the BreakFalseDeps pass how many idle instructions we would like
4391 /// before certain undef register reads.
4393 /// This catches the VCVTSI2SD family of instructions:
4395 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
4397 /// We should to be careful *not* to catch VXOR idioms which are presumably
4398 /// handled specially in the pipeline:
4400 /// vxorps undef %xmm1, undef %xmm1, %xmm1
4402 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
4403 /// high bits that are passed-through are not live.
4405 X86InstrInfo::getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
4406 const TargetRegisterInfo
*TRI
) const {
4407 if (!hasUndefRegUpdate(MI
.getOpcode()))
4410 // Set the OpNum parameter to the first source operand.
4413 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
4414 if (MO
.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO
.getReg())) {
4415 return UndefRegClearance
;
4420 void X86InstrInfo::breakPartialRegDependency(
4421 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
4422 unsigned Reg
= MI
.getOperand(OpNum
).getReg();
4423 // If MI kills this register, the false dependence is already broken.
4424 if (MI
.killsRegister(Reg
, TRI
))
4427 if (X86::VR128RegClass
.contains(Reg
)) {
4428 // These instructions are all floating point domain, so xorps is the best
4430 unsigned Opc
= Subtarget
.hasAVX() ? X86::VXORPSrr
: X86::XORPSrr
;
4431 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(Opc
), Reg
)
4432 .addReg(Reg
, RegState::Undef
)
4433 .addReg(Reg
, RegState::Undef
);
4434 MI
.addRegisterKilled(Reg
, TRI
, true);
4435 } else if (X86::VR256RegClass
.contains(Reg
)) {
4436 // Use vxorps to clear the full ymm register.
4437 // It wants to read and write the xmm sub-register.
4438 unsigned XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
4439 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VXORPSrr
), XReg
)
4440 .addReg(XReg
, RegState::Undef
)
4441 .addReg(XReg
, RegState::Undef
)
4442 .addReg(Reg
, RegState::ImplicitDefine
);
4443 MI
.addRegisterKilled(Reg
, TRI
, true);
4444 } else if (X86::GR64RegClass
.contains(Reg
)) {
4445 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
4447 unsigned XReg
= TRI
->getSubReg(Reg
, X86::sub_32bit
);
4448 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), XReg
)
4449 .addReg(XReg
, RegState::Undef
)
4450 .addReg(XReg
, RegState::Undef
)
4451 .addReg(Reg
, RegState::ImplicitDefine
);
4452 MI
.addRegisterKilled(Reg
, TRI
, true);
4453 } else if (X86::GR32RegClass
.contains(Reg
)) {
4454 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), Reg
)
4455 .addReg(Reg
, RegState::Undef
)
4456 .addReg(Reg
, RegState::Undef
);
4457 MI
.addRegisterKilled(Reg
, TRI
, true);
4461 static void addOperands(MachineInstrBuilder
&MIB
, ArrayRef
<MachineOperand
> MOs
,
4462 int PtrOffset
= 0) {
4463 unsigned NumAddrOps
= MOs
.size();
4465 if (NumAddrOps
< 4) {
4466 // FrameIndex only - add an immediate offset (whether its zero or not).
4467 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
4469 addOffset(MIB
, PtrOffset
);
4471 // General Memory Addressing - we need to add any offset to an existing
4473 assert(MOs
.size() == 5 && "Unexpected memory operand list length");
4474 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
) {
4475 const MachineOperand
&MO
= MOs
[i
];
4476 if (i
== 3 && PtrOffset
!= 0) {
4477 MIB
.addDisp(MO
, PtrOffset
);
4485 static void updateOperandRegConstraints(MachineFunction
&MF
,
4486 MachineInstr
&NewMI
,
4487 const TargetInstrInfo
&TII
) {
4488 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
4489 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
4491 for (int Idx
: llvm::seq
<int>(0, NewMI
.getNumOperands())) {
4492 MachineOperand
&MO
= NewMI
.getOperand(Idx
);
4493 // We only need to update constraints on virtual register operands.
4496 unsigned Reg
= MO
.getReg();
4497 if (!TRI
.isVirtualRegister(Reg
))
4500 auto *NewRC
= MRI
.constrainRegClass(
4501 Reg
, TII
.getRegClass(NewMI
.getDesc(), Idx
, &TRI
, MF
));
4504 dbgs() << "WARNING: Unable to update register constraint for operand "
4505 << Idx
<< " of instruction:\n";
4506 NewMI
.dump(); dbgs() << "\n");
4511 static MachineInstr
*FuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
4512 ArrayRef
<MachineOperand
> MOs
,
4513 MachineBasicBlock::iterator InsertPt
,
4515 const TargetInstrInfo
&TII
) {
4516 // Create the base instruction with the memory operand as the first part.
4517 // Omit the implicit operands, something BuildMI can't do.
4518 MachineInstr
*NewMI
=
4519 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4520 MachineInstrBuilder
MIB(MF
, NewMI
);
4521 addOperands(MIB
, MOs
);
4523 // Loop over the rest of the ri operands, converting them over.
4524 unsigned NumOps
= MI
.getDesc().getNumOperands() - 2;
4525 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4526 MachineOperand
&MO
= MI
.getOperand(i
+ 2);
4529 for (unsigned i
= NumOps
+ 2, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4530 MachineOperand
&MO
= MI
.getOperand(i
);
4534 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4536 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4537 MBB
->insert(InsertPt
, NewMI
);
4542 static MachineInstr
*FuseInst(MachineFunction
&MF
, unsigned Opcode
,
4543 unsigned OpNo
, ArrayRef
<MachineOperand
> MOs
,
4544 MachineBasicBlock::iterator InsertPt
,
4545 MachineInstr
&MI
, const TargetInstrInfo
&TII
,
4546 int PtrOffset
= 0) {
4547 // Omit the implicit operands, something BuildMI can't do.
4548 MachineInstr
*NewMI
=
4549 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
4550 MachineInstrBuilder
MIB(MF
, NewMI
);
4552 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
4553 MachineOperand
&MO
= MI
.getOperand(i
);
4555 assert(MO
.isReg() && "Expected to fold into reg operand!");
4556 addOperands(MIB
, MOs
, PtrOffset
);
4562 updateOperandRegConstraints(MF
, *NewMI
, TII
);
4564 MachineBasicBlock
*MBB
= InsertPt
->getParent();
4565 MBB
->insert(InsertPt
, NewMI
);
4570 static MachineInstr
*MakeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
4571 ArrayRef
<MachineOperand
> MOs
,
4572 MachineBasicBlock::iterator InsertPt
,
4574 MachineInstrBuilder MIB
= BuildMI(*InsertPt
->getParent(), InsertPt
,
4575 MI
.getDebugLoc(), TII
.get(Opcode
));
4576 addOperands(MIB
, MOs
);
4577 return MIB
.addImm(0);
4580 MachineInstr
*X86InstrInfo::foldMemoryOperandCustom(
4581 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4582 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4583 unsigned Size
, unsigned Align
) const {
4584 switch (MI
.getOpcode()) {
4585 case X86::INSERTPSrr
:
4586 case X86::VINSERTPSrr
:
4587 case X86::VINSERTPSZrr
:
4588 // Attempt to convert the load of inserted vector into a fold load
4589 // of a single float.
4591 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
4592 unsigned ZMask
= Imm
& 15;
4593 unsigned DstIdx
= (Imm
>> 4) & 3;
4594 unsigned SrcIdx
= (Imm
>> 6) & 3;
4596 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4597 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4598 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4599 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 4 <= Align
) {
4600 int PtrOffset
= SrcIdx
* 4;
4601 unsigned NewImm
= (DstIdx
<< 4) | ZMask
;
4602 unsigned NewOpCode
=
4603 (MI
.getOpcode() == X86::VINSERTPSZrr
) ? X86::VINSERTPSZrm
:
4604 (MI
.getOpcode() == X86::VINSERTPSrr
) ? X86::VINSERTPSrm
:
4606 MachineInstr
*NewMI
=
4607 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, PtrOffset
);
4608 NewMI
->getOperand(NewMI
->getNumOperands() - 1).setImm(NewImm
);
4613 case X86::MOVHLPSrr
:
4614 case X86::VMOVHLPSrr
:
4615 case X86::VMOVHLPSZrr
:
4616 // Move the upper 64-bits of the second operand to the lower 64-bits.
4617 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
4618 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
4620 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4621 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4622 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4623 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && 8 <= Align
) {
4624 unsigned NewOpCode
=
4625 (MI
.getOpcode() == X86::VMOVHLPSZrr
) ? X86::VMOVLPSZ128rm
:
4626 (MI
.getOpcode() == X86::VMOVHLPSrr
) ? X86::VMOVLPSrm
:
4628 MachineInstr
*NewMI
=
4629 FuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
4634 case X86::UNPCKLPDrr
:
4635 // If we won't be able to fold this to the memory form of UNPCKL, use
4636 // MOVHPD instead. Done as custom because we can't have this in the load
4639 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4640 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
4641 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4642 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Align
< 16) {
4643 MachineInstr
*NewMI
=
4644 FuseInst(MF
, X86::MOVHPDrm
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
4654 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction
&MF
,
4656 if (!hasUndefRegUpdate(MI
.getOpcode(), /*ForLoadFold*/true) ||
4657 !MI
.getOperand(1).isReg())
4660 // The are two cases we need to handle depending on where in the pipeline
4661 // the folding attempt is being made.
4662 // -Register has the undef flag set.
4663 // -Register is produced by the IMPLICIT_DEF instruction.
4665 if (MI
.getOperand(1).isUndef())
4668 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
4669 MachineInstr
*VRegDef
= RegInfo
.getUniqueVRegDef(MI
.getOperand(1).getReg());
4670 return VRegDef
&& VRegDef
->isImplicitDef();
4674 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
4675 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
4676 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
4677 unsigned Size
, unsigned Align
, bool AllowCommute
) const {
4678 bool isSlowTwoMemOps
= Subtarget
.slowTwoMemOps();
4679 bool isTwoAddrFold
= false;
4681 // For CPUs that favor the register form of a call or push,
4682 // do not fold loads into calls or pushes, unless optimizing for size
4684 if (isSlowTwoMemOps
&& !MF
.getFunction().hasMinSize() &&
4685 (MI
.getOpcode() == X86::CALL32r
|| MI
.getOpcode() == X86::CALL64r
||
4686 MI
.getOpcode() == X86::PUSH16r
|| MI
.getOpcode() == X86::PUSH32r
||
4687 MI
.getOpcode() == X86::PUSH64r
))
4690 // Avoid partial and undef register update stalls unless optimizing for size.
4691 if (!MF
.getFunction().hasOptSize() &&
4692 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
4693 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
4696 unsigned NumOps
= MI
.getDesc().getNumOperands();
4698 NumOps
> 1 && MI
.getDesc().getOperandConstraint(1, MCOI::TIED_TO
) != -1;
4700 // FIXME: AsmPrinter doesn't know how to handle
4701 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
4702 if (MI
.getOpcode() == X86::ADD32ri
&&
4703 MI
.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
4706 // GOTTPOFF relocation loads can only be folded into add instructions.
4707 // FIXME: Need to exclude other relocations that only support specific
4709 if (MOs
.size() == X86::AddrNumOperands
&&
4710 MOs
[X86::AddrDisp
].getTargetFlags() == X86II::MO_GOTTPOFF
&&
4711 MI
.getOpcode() != X86::ADD64rr
)
4714 MachineInstr
*NewMI
= nullptr;
4716 // Attempt to fold any custom cases we have.
4717 if (MachineInstr
*CustomMI
=
4718 foldMemoryOperandCustom(MF
, MI
, OpNum
, MOs
, InsertPt
, Size
, Align
))
4721 const X86MemoryFoldTableEntry
*I
= nullptr;
4723 // Folding a memory location into the two-address part of a two-address
4724 // instruction is different than folding it other places. It requires
4725 // replacing the *two* registers with the memory location.
4726 if (isTwoAddr
&& NumOps
>= 2 && OpNum
< 2 && MI
.getOperand(0).isReg() &&
4727 MI
.getOperand(1).isReg() &&
4728 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
4729 I
= lookupTwoAddrFoldTable(MI
.getOpcode());
4730 isTwoAddrFold
= true;
4733 if (MI
.getOpcode() == X86::MOV32r0
) {
4734 NewMI
= MakeM0Inst(*this, X86::MOV32mi
, MOs
, InsertPt
, MI
);
4740 I
= lookupFoldTable(MI
.getOpcode(), OpNum
);
4744 unsigned Opcode
= I
->DstOp
;
4745 unsigned MinAlign
= (I
->Flags
& TB_ALIGN_MASK
) >> TB_ALIGN_SHIFT
;
4746 if (Align
< MinAlign
)
4748 bool NarrowToMOV32rm
= false;
4750 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4751 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
,
4753 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
4754 if (Size
< RCSize
) {
4755 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
4756 // Check if it's safe to fold the load. If the size of the object is
4757 // narrower than the load width, then it's not.
4758 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
4760 // If this is a 64-bit load, but the spill slot is 32, then we can do
4761 // a 32-bit load which is implicitly zero-extended. This likely is
4762 // due to live interval analysis remat'ing a load from stack slot.
4763 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
4765 Opcode
= X86::MOV32rm
;
4766 NarrowToMOV32rm
= true;
4771 NewMI
= FuseTwoAddrInst(MF
, Opcode
, MOs
, InsertPt
, MI
, *this);
4773 NewMI
= FuseInst(MF
, Opcode
, OpNum
, MOs
, InsertPt
, MI
, *this);
4775 if (NarrowToMOV32rm
) {
4776 // If this is the special case where we use a MOV32rm to load a 32-bit
4777 // value and zero-extend the top bits. Change the destination register
4779 unsigned DstReg
= NewMI
->getOperand(0).getReg();
4780 if (TargetRegisterInfo::isPhysicalRegister(DstReg
))
4781 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
, X86::sub_32bit
));
4783 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
4788 // If the instruction and target operand are commutable, commute the
4789 // instruction and try again.
4791 unsigned CommuteOpIdx1
= OpNum
, CommuteOpIdx2
= CommuteAnyOperandIndex
;
4792 if (findCommutedOpIndices(MI
, CommuteOpIdx1
, CommuteOpIdx2
)) {
4793 bool HasDef
= MI
.getDesc().getNumDefs();
4794 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
4795 Register Reg1
= MI
.getOperand(CommuteOpIdx1
).getReg();
4796 Register Reg2
= MI
.getOperand(CommuteOpIdx2
).getReg();
4798 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx1
, MCOI::TIED_TO
);
4800 0 == MI
.getDesc().getOperandConstraint(CommuteOpIdx2
, MCOI::TIED_TO
);
4802 // If either of the commutable operands are tied to the destination
4803 // then we can not commute + fold.
4804 if ((HasDef
&& Reg0
== Reg1
&& Tied1
) ||
4805 (HasDef
&& Reg0
== Reg2
&& Tied2
))
4808 MachineInstr
*CommutedMI
=
4809 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4811 // Unable to commute.
4814 if (CommutedMI
!= &MI
) {
4815 // New instruction. We can't fold from this.
4816 CommutedMI
->eraseFromParent();
4820 // Attempt to fold with the commuted version of the instruction.
4821 NewMI
= foldMemoryOperandImpl(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
,
4822 Size
, Align
, /*AllowCommute=*/false);
4826 // Folding failed again - undo the commute before returning.
4827 MachineInstr
*UncommutedMI
=
4828 commuteInstruction(MI
, false, CommuteOpIdx1
, CommuteOpIdx2
);
4829 if (!UncommutedMI
) {
4830 // Unable to commute.
4833 if (UncommutedMI
!= &MI
) {
4834 // New instruction. It doesn't need to be kept.
4835 UncommutedMI
->eraseFromParent();
4839 // Return here to prevent duplicate fuse failure report.
4845 if (PrintFailedFusing
&& !MI
.isCopy())
4846 dbgs() << "We failed to fuse operand " << OpNum
<< " in " << MI
;
4851 X86InstrInfo::foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
4852 ArrayRef
<unsigned> Ops
,
4853 MachineBasicBlock::iterator InsertPt
,
4854 int FrameIndex
, LiveIntervals
*LIS
,
4855 VirtRegMap
*VRM
) const {
4856 // Check switch flag
4860 // Avoid partial and undef register update stalls unless optimizing for size.
4861 if (!MF
.getFunction().hasOptSize() &&
4862 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
4863 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
4866 // Don't fold subreg spills, or reloads that use a high subreg.
4867 for (auto Op
: Ops
) {
4868 MachineOperand
&MO
= MI
.getOperand(Op
);
4869 auto SubReg
= MO
.getSubReg();
4870 if (SubReg
&& (MO
.isDef() || SubReg
== X86::sub_8bit_hi
))
4874 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4875 unsigned Size
= MFI
.getObjectSize(FrameIndex
);
4876 unsigned Alignment
= MFI
.getObjectAlignment(FrameIndex
);
4877 // If the function stack isn't realigned we don't want to fold instructions
4878 // that need increased alignment.
4879 if (!RI
.needsStackRealignment(MF
))
4881 std::min(Alignment
, Subtarget
.getFrameLowering()->getStackAlignment());
4882 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
4883 unsigned NewOpc
= 0;
4884 unsigned RCSize
= 0;
4885 switch (MI
.getOpcode()) {
4886 default: return nullptr;
4887 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; RCSize
= 1; break;
4888 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; RCSize
= 2; break;
4889 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; RCSize
= 4; break;
4890 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; RCSize
= 8; break;
4892 // Check if it's safe to fold the load. If the size of the object is
4893 // narrower than the load width, then it's not.
4896 // Change to CMPXXri r, 0 first.
4897 MI
.setDesc(get(NewOpc
));
4898 MI
.getOperand(1).ChangeToImmediate(0);
4899 } else if (Ops
.size() != 1)
4902 return foldMemoryOperandImpl(MF
, MI
, Ops
[0],
4903 MachineOperand::CreateFI(FrameIndex
), InsertPt
,
4904 Size
, Alignment
, /*AllowCommute=*/true);
4907 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
4908 /// because the latter uses contents that wouldn't be defined in the folded
4909 /// version. For instance, this transformation isn't legal:
4910 /// movss (%rdi), %xmm0
4911 /// addps %xmm0, %xmm0
4913 /// addps (%rdi), %xmm0
4915 /// But this one is:
4916 /// movss (%rdi), %xmm0
4917 /// addss %xmm0, %xmm0
4919 /// addss (%rdi), %xmm0
4921 static bool isNonFoldablePartialRegisterLoad(const MachineInstr
&LoadMI
,
4922 const MachineInstr
&UserMI
,
4923 const MachineFunction
&MF
) {
4924 unsigned Opc
= LoadMI
.getOpcode();
4925 unsigned UserOpc
= UserMI
.getOpcode();
4926 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
4927 const TargetRegisterClass
*RC
=
4928 MF
.getRegInfo().getRegClass(LoadMI
.getOperand(0).getReg());
4929 unsigned RegSize
= TRI
.getRegSizeInBits(*RC
);
4931 if ((Opc
== X86::MOVSSrm
|| Opc
== X86::VMOVSSrm
|| Opc
== X86::VMOVSSZrm
||
4932 Opc
== X86::MOVSSrm_alt
|| Opc
== X86::VMOVSSrm_alt
||
4933 Opc
== X86::VMOVSSZrm_alt
) &&
4935 // These instructions only load 32 bits, we can't fold them if the
4936 // destination register is wider than 32 bits (4 bytes), and its user
4937 // instruction isn't scalar (SS).
4939 case X86::ADDSSrr_Int
: case X86::VADDSSrr_Int
: case X86::VADDSSZrr_Int
:
4940 case X86::CMPSSrr_Int
: case X86::VCMPSSrr_Int
: case X86::VCMPSSZrr_Int
:
4941 case X86::DIVSSrr_Int
: case X86::VDIVSSrr_Int
: case X86::VDIVSSZrr_Int
:
4942 case X86::MAXSSrr_Int
: case X86::VMAXSSrr_Int
: case X86::VMAXSSZrr_Int
:
4943 case X86::MINSSrr_Int
: case X86::VMINSSrr_Int
: case X86::VMINSSZrr_Int
:
4944 case X86::MULSSrr_Int
: case X86::VMULSSrr_Int
: case X86::VMULSSZrr_Int
:
4945 case X86::SUBSSrr_Int
: case X86::VSUBSSrr_Int
: case X86::VSUBSSZrr_Int
:
4946 case X86::VADDSSZrr_Intk
: case X86::VADDSSZrr_Intkz
:
4947 case X86::VCMPSSZrr_Intk
:
4948 case X86::VDIVSSZrr_Intk
: case X86::VDIVSSZrr_Intkz
:
4949 case X86::VMAXSSZrr_Intk
: case X86::VMAXSSZrr_Intkz
:
4950 case X86::VMINSSZrr_Intk
: case X86::VMINSSZrr_Intkz
:
4951 case X86::VMULSSZrr_Intk
: case X86::VMULSSZrr_Intkz
:
4952 case X86::VSUBSSZrr_Intk
: case X86::VSUBSSZrr_Intkz
:
4953 case X86::VFMADDSS4rr_Int
: case X86::VFNMADDSS4rr_Int
:
4954 case X86::VFMSUBSS4rr_Int
: case X86::VFNMSUBSS4rr_Int
:
4955 case X86::VFMADD132SSr_Int
: case X86::VFNMADD132SSr_Int
:
4956 case X86::VFMADD213SSr_Int
: case X86::VFNMADD213SSr_Int
:
4957 case X86::VFMADD231SSr_Int
: case X86::VFNMADD231SSr_Int
:
4958 case X86::VFMSUB132SSr_Int
: case X86::VFNMSUB132SSr_Int
:
4959 case X86::VFMSUB213SSr_Int
: case X86::VFNMSUB213SSr_Int
:
4960 case X86::VFMSUB231SSr_Int
: case X86::VFNMSUB231SSr_Int
:
4961 case X86::VFMADD132SSZr_Int
: case X86::VFNMADD132SSZr_Int
:
4962 case X86::VFMADD213SSZr_Int
: case X86::VFNMADD213SSZr_Int
:
4963 case X86::VFMADD231SSZr_Int
: case X86::VFNMADD231SSZr_Int
:
4964 case X86::VFMSUB132SSZr_Int
: case X86::VFNMSUB132SSZr_Int
:
4965 case X86::VFMSUB213SSZr_Int
: case X86::VFNMSUB213SSZr_Int
:
4966 case X86::VFMSUB231SSZr_Int
: case X86::VFNMSUB231SSZr_Int
:
4967 case X86::VFMADD132SSZr_Intk
: case X86::VFNMADD132SSZr_Intk
:
4968 case X86::VFMADD213SSZr_Intk
: case X86::VFNMADD213SSZr_Intk
:
4969 case X86::VFMADD231SSZr_Intk
: case X86::VFNMADD231SSZr_Intk
:
4970 case X86::VFMSUB132SSZr_Intk
: case X86::VFNMSUB132SSZr_Intk
:
4971 case X86::VFMSUB213SSZr_Intk
: case X86::VFNMSUB213SSZr_Intk
:
4972 case X86::VFMSUB231SSZr_Intk
: case X86::VFNMSUB231SSZr_Intk
:
4973 case X86::VFMADD132SSZr_Intkz
: case X86::VFNMADD132SSZr_Intkz
:
4974 case X86::VFMADD213SSZr_Intkz
: case X86::VFNMADD213SSZr_Intkz
:
4975 case X86::VFMADD231SSZr_Intkz
: case X86::VFNMADD231SSZr_Intkz
:
4976 case X86::VFMSUB132SSZr_Intkz
: case X86::VFNMSUB132SSZr_Intkz
:
4977 case X86::VFMSUB213SSZr_Intkz
: case X86::VFNMSUB213SSZr_Intkz
:
4978 case X86::VFMSUB231SSZr_Intkz
: case X86::VFNMSUB231SSZr_Intkz
:
4985 if ((Opc
== X86::MOVSDrm
|| Opc
== X86::VMOVSDrm
|| Opc
== X86::VMOVSDZrm
||
4986 Opc
== X86::MOVSDrm_alt
|| Opc
== X86::VMOVSDrm_alt
||
4987 Opc
== X86::VMOVSDZrm_alt
) &&
4989 // These instructions only load 64 bits, we can't fold them if the
4990 // destination register is wider than 64 bits (8 bytes), and its user
4991 // instruction isn't scalar (SD).
4993 case X86::ADDSDrr_Int
: case X86::VADDSDrr_Int
: case X86::VADDSDZrr_Int
:
4994 case X86::CMPSDrr_Int
: case X86::VCMPSDrr_Int
: case X86::VCMPSDZrr_Int
:
4995 case X86::DIVSDrr_Int
: case X86::VDIVSDrr_Int
: case X86::VDIVSDZrr_Int
:
4996 case X86::MAXSDrr_Int
: case X86::VMAXSDrr_Int
: case X86::VMAXSDZrr_Int
:
4997 case X86::MINSDrr_Int
: case X86::VMINSDrr_Int
: case X86::VMINSDZrr_Int
:
4998 case X86::MULSDrr_Int
: case X86::VMULSDrr_Int
: case X86::VMULSDZrr_Int
:
4999 case X86::SUBSDrr_Int
: case X86::VSUBSDrr_Int
: case X86::VSUBSDZrr_Int
:
5000 case X86::VADDSDZrr_Intk
: case X86::VADDSDZrr_Intkz
:
5001 case X86::VCMPSDZrr_Intk
:
5002 case X86::VDIVSDZrr_Intk
: case X86::VDIVSDZrr_Intkz
:
5003 case X86::VMAXSDZrr_Intk
: case X86::VMAXSDZrr_Intkz
:
5004 case X86::VMINSDZrr_Intk
: case X86::VMINSDZrr_Intkz
:
5005 case X86::VMULSDZrr_Intk
: case X86::VMULSDZrr_Intkz
:
5006 case X86::VSUBSDZrr_Intk
: case X86::VSUBSDZrr_Intkz
:
5007 case X86::VFMADDSD4rr_Int
: case X86::VFNMADDSD4rr_Int
:
5008 case X86::VFMSUBSD4rr_Int
: case X86::VFNMSUBSD4rr_Int
:
5009 case X86::VFMADD132SDr_Int
: case X86::VFNMADD132SDr_Int
:
5010 case X86::VFMADD213SDr_Int
: case X86::VFNMADD213SDr_Int
:
5011 case X86::VFMADD231SDr_Int
: case X86::VFNMADD231SDr_Int
:
5012 case X86::VFMSUB132SDr_Int
: case X86::VFNMSUB132SDr_Int
:
5013 case X86::VFMSUB213SDr_Int
: case X86::VFNMSUB213SDr_Int
:
5014 case X86::VFMSUB231SDr_Int
: case X86::VFNMSUB231SDr_Int
:
5015 case X86::VFMADD132SDZr_Int
: case X86::VFNMADD132SDZr_Int
:
5016 case X86::VFMADD213SDZr_Int
: case X86::VFNMADD213SDZr_Int
:
5017 case X86::VFMADD231SDZr_Int
: case X86::VFNMADD231SDZr_Int
:
5018 case X86::VFMSUB132SDZr_Int
: case X86::VFNMSUB132SDZr_Int
:
5019 case X86::VFMSUB213SDZr_Int
: case X86::VFNMSUB213SDZr_Int
:
5020 case X86::VFMSUB231SDZr_Int
: case X86::VFNMSUB231SDZr_Int
:
5021 case X86::VFMADD132SDZr_Intk
: case X86::VFNMADD132SDZr_Intk
:
5022 case X86::VFMADD213SDZr_Intk
: case X86::VFNMADD213SDZr_Intk
:
5023 case X86::VFMADD231SDZr_Intk
: case X86::VFNMADD231SDZr_Intk
:
5024 case X86::VFMSUB132SDZr_Intk
: case X86::VFNMSUB132SDZr_Intk
:
5025 case X86::VFMSUB213SDZr_Intk
: case X86::VFNMSUB213SDZr_Intk
:
5026 case X86::VFMSUB231SDZr_Intk
: case X86::VFNMSUB231SDZr_Intk
:
5027 case X86::VFMADD132SDZr_Intkz
: case X86::VFNMADD132SDZr_Intkz
:
5028 case X86::VFMADD213SDZr_Intkz
: case X86::VFNMADD213SDZr_Intkz
:
5029 case X86::VFMADD231SDZr_Intkz
: case X86::VFNMADD231SDZr_Intkz
:
5030 case X86::VFMSUB132SDZr_Intkz
: case X86::VFNMSUB132SDZr_Intkz
:
5031 case X86::VFMSUB213SDZr_Intkz
: case X86::VFNMSUB213SDZr_Intkz
:
5032 case X86::VFMSUB231SDZr_Intkz
: case X86::VFNMSUB231SDZr_Intkz
:
5042 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
5043 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
5044 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
5045 LiveIntervals
*LIS
) const {
5047 // TODO: Support the case where LoadMI loads a wide register, but MI
5048 // only uses a subreg.
5049 for (auto Op
: Ops
) {
5050 if (MI
.getOperand(Op
).getSubReg())
5054 // If loading from a FrameIndex, fold directly from the FrameIndex.
5055 unsigned NumOps
= LoadMI
.getDesc().getNumOperands();
5057 if (isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
5058 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5060 return foldMemoryOperandImpl(MF
, MI
, Ops
, InsertPt
, FrameIndex
, LIS
);
5063 // Check switch flag
5064 if (NoFusing
) return nullptr;
5066 // Avoid partial and undef register update stalls unless optimizing for size.
5067 if (!MF
.getFunction().hasOptSize() &&
5068 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/true) ||
5069 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
5072 // Determine the alignment of the load.
5073 unsigned Alignment
= 0;
5074 if (LoadMI
.hasOneMemOperand())
5075 Alignment
= (*LoadMI
.memoperands_begin())->getAlignment();
5077 switch (LoadMI
.getOpcode()) {
5078 case X86::AVX512_512_SET0
:
5079 case X86::AVX512_512_SETALLONES
:
5082 case X86::AVX2_SETALLONES
:
5083 case X86::AVX1_SETALLONES
:
5085 case X86::AVX512_256_SET0
:
5089 case X86::V_SETALLONES
:
5090 case X86::AVX512_128_SET0
:
5095 case X86::AVX512_FsFLD0SD
:
5099 case X86::AVX512_FsFLD0SS
:
5105 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
5106 unsigned NewOpc
= 0;
5107 switch (MI
.getOpcode()) {
5108 default: return nullptr;
5109 case X86::TEST8rr
: NewOpc
= X86::CMP8ri
; break;
5110 case X86::TEST16rr
: NewOpc
= X86::CMP16ri8
; break;
5111 case X86::TEST32rr
: NewOpc
= X86::CMP32ri8
; break;
5112 case X86::TEST64rr
: NewOpc
= X86::CMP64ri8
; break;
5114 // Change to CMPXXri r, 0 first.
5115 MI
.setDesc(get(NewOpc
));
5116 MI
.getOperand(1).ChangeToImmediate(0);
5117 } else if (Ops
.size() != 1)
5120 // Make sure the subregisters match.
5121 // Otherwise we risk changing the size of the load.
5122 if (LoadMI
.getOperand(0).getSubReg() != MI
.getOperand(Ops
[0]).getSubReg())
5125 SmallVector
<MachineOperand
,X86::AddrNumOperands
> MOs
;
5126 switch (LoadMI
.getOpcode()) {
5129 case X86::V_SETALLONES
:
5130 case X86::AVX2_SETALLONES
:
5131 case X86::AVX1_SETALLONES
:
5133 case X86::AVX512_128_SET0
:
5134 case X86::AVX512_256_SET0
:
5135 case X86::AVX512_512_SET0
:
5136 case X86::AVX512_512_SETALLONES
:
5138 case X86::AVX512_FsFLD0SD
:
5140 case X86::AVX512_FsFLD0SS
: {
5141 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
5142 // Create a constant-pool entry and operands to load from it.
5144 // Medium and large mode can't fold loads this way.
5145 if (MF
.getTarget().getCodeModel() != CodeModel::Small
&&
5146 MF
.getTarget().getCodeModel() != CodeModel::Kernel
)
5149 // x86-32 PIC requires a PIC base register for constant pools.
5150 unsigned PICBase
= 0;
5151 if (MF
.getTarget().isPositionIndependent()) {
5152 if (Subtarget
.is64Bit())
5155 // FIXME: PICBase = getGlobalBaseReg(&MF);
5156 // This doesn't work for several reasons.
5157 // 1. GlobalBaseReg may have been spilled.
5158 // 2. It may not be live at MI.
5162 // Create a constant-pool entry.
5163 MachineConstantPool
&MCP
= *MF
.getConstantPool();
5165 unsigned Opc
= LoadMI
.getOpcode();
5166 if (Opc
== X86::FsFLD0SS
|| Opc
== X86::AVX512_FsFLD0SS
)
5167 Ty
= Type::getFloatTy(MF
.getFunction().getContext());
5168 else if (Opc
== X86::FsFLD0SD
|| Opc
== X86::AVX512_FsFLD0SD
)
5169 Ty
= Type::getDoubleTy(MF
.getFunction().getContext());
5170 else if (Opc
== X86::AVX512_512_SET0
|| Opc
== X86::AVX512_512_SETALLONES
)
5171 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),16);
5172 else if (Opc
== X86::AVX2_SETALLONES
|| Opc
== X86::AVX_SET0
||
5173 Opc
== X86::AVX512_256_SET0
|| Opc
== X86::AVX1_SETALLONES
)
5174 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 8);
5175 else if (Opc
== X86::MMX_SET0
)
5176 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 2);
5178 Ty
= VectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()), 4);
5180 bool IsAllOnes
= (Opc
== X86::V_SETALLONES
|| Opc
== X86::AVX2_SETALLONES
||
5181 Opc
== X86::AVX512_512_SETALLONES
||
5182 Opc
== X86::AVX1_SETALLONES
);
5183 const Constant
*C
= IsAllOnes
? Constant::getAllOnesValue(Ty
) :
5184 Constant::getNullValue(Ty
);
5185 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
5187 // Create operands to load from the constant pool entry.
5188 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
5189 MOs
.push_back(MachineOperand::CreateImm(1));
5190 MOs
.push_back(MachineOperand::CreateReg(0, false));
5191 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
5192 MOs
.push_back(MachineOperand::CreateReg(0, false));
5196 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
5199 // Folding a normal load. Just copy the load's address operands.
5200 MOs
.append(LoadMI
.operands_begin() + NumOps
- X86::AddrNumOperands
,
5201 LoadMI
.operands_begin() + NumOps
);
5205 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, InsertPt
,
5206 /*Size=*/0, Alignment
, /*AllowCommute=*/true);
5209 static SmallVector
<MachineMemOperand
*, 2>
5210 extractLoadMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5211 SmallVector
<MachineMemOperand
*, 2> LoadMMOs
;
5213 for (MachineMemOperand
*MMO
: MMOs
) {
5217 if (!MMO
->isStore()) {
5219 LoadMMOs
.push_back(MMO
);
5221 // Clone the MMO and unset the store flag.
5222 LoadMMOs
.push_back(MF
.getMachineMemOperand(
5223 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOStore
));
5230 static SmallVector
<MachineMemOperand
*, 2>
5231 extractStoreMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
5232 SmallVector
<MachineMemOperand
*, 2> StoreMMOs
;
5234 for (MachineMemOperand
*MMO
: MMOs
) {
5235 if (!MMO
->isStore())
5238 if (!MMO
->isLoad()) {
5240 StoreMMOs
.push_back(MMO
);
5242 // Clone the MMO and unset the load flag.
5243 StoreMMOs
.push_back(MF
.getMachineMemOperand(
5244 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOLoad
));
5251 bool X86InstrInfo::unfoldMemoryOperand(
5252 MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
, bool UnfoldLoad
,
5253 bool UnfoldStore
, SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
5254 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(MI
.getOpcode());
5257 unsigned Opc
= I
->DstOp
;
5258 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5259 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5260 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5261 if (UnfoldLoad
&& !FoldedLoad
)
5263 UnfoldLoad
&= FoldedLoad
;
5264 if (UnfoldStore
&& !FoldedStore
)
5266 UnfoldStore
&= FoldedStore
;
5268 const MCInstrDesc
&MCID
= get(Opc
);
5269 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5270 // TODO: Check if 32-byte or greater accesses are slow too?
5271 if (!MI
.hasOneMemOperand() && RC
== &X86::VR128RegClass
&&
5272 Subtarget
.isUnalignedMem16Slow())
5273 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
5274 // conservatively assume the address is unaligned. That's bad for
5277 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
5278 SmallVector
<MachineOperand
,2> BeforeOps
;
5279 SmallVector
<MachineOperand
,2> AfterOps
;
5280 SmallVector
<MachineOperand
,4> ImpOps
;
5281 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5282 MachineOperand
&Op
= MI
.getOperand(i
);
5283 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
5284 AddrOps
.push_back(Op
);
5285 else if (Op
.isReg() && Op
.isImplicit())
5286 ImpOps
.push_back(Op
);
5288 BeforeOps
.push_back(Op
);
5290 AfterOps
.push_back(Op
);
5293 // Emit the load instruction.
5295 auto MMOs
= extractLoadMMOs(MI
.memoperands(), MF
);
5296 loadRegFromAddr(MF
, Reg
, AddrOps
, RC
, MMOs
, NewMIs
);
5298 // Address operands cannot be marked isKill.
5299 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
5300 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
5302 MO
.setIsKill(false);
5307 // Emit the data processing instruction.
5308 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
.getDebugLoc(), true);
5309 MachineInstrBuilder
MIB(MF
, DataMI
);
5312 MIB
.addReg(Reg
, RegState::Define
);
5313 for (MachineOperand
&BeforeOp
: BeforeOps
)
5317 for (MachineOperand
&AfterOp
: AfterOps
)
5319 for (MachineOperand
&ImpOp
: ImpOps
) {
5320 MIB
.addReg(ImpOp
.getReg(),
5321 getDefRegState(ImpOp
.isDef()) |
5322 RegState::Implicit
|
5323 getKillRegState(ImpOp
.isKill()) |
5324 getDeadRegState(ImpOp
.isDead()) |
5325 getUndefRegState(ImpOp
.isUndef()));
5327 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5328 switch (DataMI
->getOpcode()) {
5330 case X86::CMP64ri32
:
5337 MachineOperand
&MO0
= DataMI
->getOperand(0);
5338 MachineOperand
&MO1
= DataMI
->getOperand(1);
5339 if (MO1
.getImm() == 0) {
5341 switch (DataMI
->getOpcode()) {
5342 default: llvm_unreachable("Unreachable!");
5344 case X86::CMP64ri32
: NewOpc
= X86::TEST64rr
; break;
5346 case X86::CMP32ri
: NewOpc
= X86::TEST32rr
; break;
5348 case X86::CMP16ri
: NewOpc
= X86::TEST16rr
; break;
5349 case X86::CMP8ri
: NewOpc
= X86::TEST8rr
; break;
5351 DataMI
->setDesc(get(NewOpc
));
5352 MO1
.ChangeToRegister(MO0
.getReg(), false);
5356 NewMIs
.push_back(DataMI
);
5358 // Emit the store instruction.
5360 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5361 auto MMOs
= extractStoreMMOs(MI
.memoperands(), MF
);
5362 storeRegToAddr(MF
, Reg
, true, AddrOps
, DstRC
, MMOs
, NewMIs
);
5369 X86InstrInfo::unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
5370 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
5371 if (!N
->isMachineOpcode())
5374 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(N
->getMachineOpcode());
5377 unsigned Opc
= I
->DstOp
;
5378 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
5379 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5380 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5381 const MCInstrDesc
&MCID
= get(Opc
);
5382 MachineFunction
&MF
= DAG
.getMachineFunction();
5383 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
5384 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
5385 unsigned NumDefs
= MCID
.NumDefs
;
5386 std::vector
<SDValue
> AddrOps
;
5387 std::vector
<SDValue
> BeforeOps
;
5388 std::vector
<SDValue
> AfterOps
;
5390 unsigned NumOps
= N
->getNumOperands();
5391 for (unsigned i
= 0; i
!= NumOps
-1; ++i
) {
5392 SDValue Op
= N
->getOperand(i
);
5393 if (i
>= Index
-NumDefs
&& i
< Index
-NumDefs
+ X86::AddrNumOperands
)
5394 AddrOps
.push_back(Op
);
5395 else if (i
< Index
-NumDefs
)
5396 BeforeOps
.push_back(Op
);
5397 else if (i
> Index
-NumDefs
)
5398 AfterOps
.push_back(Op
);
5400 SDValue Chain
= N
->getOperand(NumOps
-1);
5401 AddrOps
.push_back(Chain
);
5403 // Emit the load instruction.
5404 SDNode
*Load
= nullptr;
5406 EVT VT
= *TRI
.legalclasstypes_begin(*RC
);
5407 auto MMOs
= extractLoadMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5408 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5409 Subtarget
.isUnalignedMem16Slow())
5410 // Do not introduce a slow unaligned load.
5412 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5413 // memory access is slow above.
5414 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5415 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5416 Load
= DAG
.getMachineNode(getLoadRegOpcode(0, RC
, isAligned
, Subtarget
), dl
,
5417 VT
, MVT::Other
, AddrOps
);
5418 NewNodes
.push_back(Load
);
5420 // Preserve memory reference information.
5421 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Load
), MMOs
);
5424 // Emit the data processing instruction.
5425 std::vector
<EVT
> VTs
;
5426 const TargetRegisterClass
*DstRC
= nullptr;
5427 if (MCID
.getNumDefs() > 0) {
5428 DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
5429 VTs
.push_back(*TRI
.legalclasstypes_begin(*DstRC
));
5431 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
5432 EVT VT
= N
->getValueType(i
);
5433 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
5437 BeforeOps
.push_back(SDValue(Load
, 0));
5438 BeforeOps
.insert(BeforeOps
.end(), AfterOps
.begin(), AfterOps
.end());
5439 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
5442 case X86::CMP64ri32
:
5449 if (isNullConstant(BeforeOps
[1])) {
5451 default: llvm_unreachable("Unreachable!");
5453 case X86::CMP64ri32
: Opc
= X86::TEST64rr
; break;
5455 case X86::CMP32ri
: Opc
= X86::TEST32rr
; break;
5457 case X86::CMP16ri
: Opc
= X86::TEST16rr
; break;
5458 case X86::CMP8ri
: Opc
= X86::TEST8rr
; break;
5460 BeforeOps
[1] = BeforeOps
[0];
5463 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, BeforeOps
);
5464 NewNodes
.push_back(NewNode
);
5466 // Emit the store instruction.
5469 AddrOps
.push_back(SDValue(NewNode
, 0));
5470 AddrOps
.push_back(Chain
);
5471 auto MMOs
= extractStoreMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
5472 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
5473 Subtarget
.isUnalignedMem16Slow())
5474 // Do not introduce a slow unaligned store.
5476 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
5477 // memory access is slow above.
5478 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
5479 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlignment() >= Alignment
;
5481 DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
, isAligned
, Subtarget
),
5482 dl
, MVT::Other
, AddrOps
);
5483 NewNodes
.push_back(Store
);
5485 // Preserve memory reference information.
5486 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Store
), MMOs
);
5492 unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
,
5493 bool UnfoldLoad
, bool UnfoldStore
,
5494 unsigned *LoadRegIndex
) const {
5495 const X86MemoryFoldTableEntry
*I
= lookupUnfoldTable(Opc
);
5498 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
5499 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
5500 if (UnfoldLoad
&& !FoldedLoad
)
5502 if (UnfoldStore
&& !FoldedStore
)
5505 *LoadRegIndex
= I
->Flags
& TB_INDEX_MASK
;
5510 X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
5511 int64_t &Offset1
, int64_t &Offset2
) const {
5512 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
5514 unsigned Opc1
= Load1
->getMachineOpcode();
5515 unsigned Opc2
= Load2
->getMachineOpcode();
5517 default: return false;
5526 case X86::MOVSSrm_alt
:
5528 case X86::MOVSDrm_alt
:
5529 case X86::MMX_MOVD64rm
:
5530 case X86::MMX_MOVQ64rm
:
5537 // AVX load instructions
5539 case X86::VMOVSSrm_alt
:
5541 case X86::VMOVSDrm_alt
:
5542 case X86::VMOVAPSrm
:
5543 case X86::VMOVUPSrm
:
5544 case X86::VMOVAPDrm
:
5545 case X86::VMOVUPDrm
:
5546 case X86::VMOVDQArm
:
5547 case X86::VMOVDQUrm
:
5548 case X86::VMOVAPSYrm
:
5549 case X86::VMOVUPSYrm
:
5550 case X86::VMOVAPDYrm
:
5551 case X86::VMOVUPDYrm
:
5552 case X86::VMOVDQAYrm
:
5553 case X86::VMOVDQUYrm
:
5554 // AVX512 load instructions
5555 case X86::VMOVSSZrm
:
5556 case X86::VMOVSSZrm_alt
:
5557 case X86::VMOVSDZrm
:
5558 case X86::VMOVSDZrm_alt
:
5559 case X86::VMOVAPSZ128rm
:
5560 case X86::VMOVUPSZ128rm
:
5561 case X86::VMOVAPSZ128rm_NOVLX
:
5562 case X86::VMOVUPSZ128rm_NOVLX
:
5563 case X86::VMOVAPDZ128rm
:
5564 case X86::VMOVUPDZ128rm
:
5565 case X86::VMOVDQU8Z128rm
:
5566 case X86::VMOVDQU16Z128rm
:
5567 case X86::VMOVDQA32Z128rm
:
5568 case X86::VMOVDQU32Z128rm
:
5569 case X86::VMOVDQA64Z128rm
:
5570 case X86::VMOVDQU64Z128rm
:
5571 case X86::VMOVAPSZ256rm
:
5572 case X86::VMOVUPSZ256rm
:
5573 case X86::VMOVAPSZ256rm_NOVLX
:
5574 case X86::VMOVUPSZ256rm_NOVLX
:
5575 case X86::VMOVAPDZ256rm
:
5576 case X86::VMOVUPDZ256rm
:
5577 case X86::VMOVDQU8Z256rm
:
5578 case X86::VMOVDQU16Z256rm
:
5579 case X86::VMOVDQA32Z256rm
:
5580 case X86::VMOVDQU32Z256rm
:
5581 case X86::VMOVDQA64Z256rm
:
5582 case X86::VMOVDQU64Z256rm
:
5583 case X86::VMOVAPSZrm
:
5584 case X86::VMOVUPSZrm
:
5585 case X86::VMOVAPDZrm
:
5586 case X86::VMOVUPDZrm
:
5587 case X86::VMOVDQU8Zrm
:
5588 case X86::VMOVDQU16Zrm
:
5589 case X86::VMOVDQA32Zrm
:
5590 case X86::VMOVDQU32Zrm
:
5591 case X86::VMOVDQA64Zrm
:
5592 case X86::VMOVDQU64Zrm
:
5600 default: return false;
5609 case X86::MOVSSrm_alt
:
5611 case X86::MOVSDrm_alt
:
5612 case X86::MMX_MOVD64rm
:
5613 case X86::MMX_MOVQ64rm
:
5620 // AVX load instructions
5622 case X86::VMOVSSrm_alt
:
5624 case X86::VMOVSDrm_alt
:
5625 case X86::VMOVAPSrm
:
5626 case X86::VMOVUPSrm
:
5627 case X86::VMOVAPDrm
:
5628 case X86::VMOVUPDrm
:
5629 case X86::VMOVDQArm
:
5630 case X86::VMOVDQUrm
:
5631 case X86::VMOVAPSYrm
:
5632 case X86::VMOVUPSYrm
:
5633 case X86::VMOVAPDYrm
:
5634 case X86::VMOVUPDYrm
:
5635 case X86::VMOVDQAYrm
:
5636 case X86::VMOVDQUYrm
:
5637 // AVX512 load instructions
5638 case X86::VMOVSSZrm
:
5639 case X86::VMOVSSZrm_alt
:
5640 case X86::VMOVSDZrm
:
5641 case X86::VMOVSDZrm_alt
:
5642 case X86::VMOVAPSZ128rm
:
5643 case X86::VMOVUPSZ128rm
:
5644 case X86::VMOVAPSZ128rm_NOVLX
:
5645 case X86::VMOVUPSZ128rm_NOVLX
:
5646 case X86::VMOVAPDZ128rm
:
5647 case X86::VMOVUPDZ128rm
:
5648 case X86::VMOVDQU8Z128rm
:
5649 case X86::VMOVDQU16Z128rm
:
5650 case X86::VMOVDQA32Z128rm
:
5651 case X86::VMOVDQU32Z128rm
:
5652 case X86::VMOVDQA64Z128rm
:
5653 case X86::VMOVDQU64Z128rm
:
5654 case X86::VMOVAPSZ256rm
:
5655 case X86::VMOVUPSZ256rm
:
5656 case X86::VMOVAPSZ256rm_NOVLX
:
5657 case X86::VMOVUPSZ256rm_NOVLX
:
5658 case X86::VMOVAPDZ256rm
:
5659 case X86::VMOVUPDZ256rm
:
5660 case X86::VMOVDQU8Z256rm
:
5661 case X86::VMOVDQU16Z256rm
:
5662 case X86::VMOVDQA32Z256rm
:
5663 case X86::VMOVDQU32Z256rm
:
5664 case X86::VMOVDQA64Z256rm
:
5665 case X86::VMOVDQU64Z256rm
:
5666 case X86::VMOVAPSZrm
:
5667 case X86::VMOVUPSZrm
:
5668 case X86::VMOVAPDZrm
:
5669 case X86::VMOVUPDZrm
:
5670 case X86::VMOVDQU8Zrm
:
5671 case X86::VMOVDQU16Zrm
:
5672 case X86::VMOVDQA32Zrm
:
5673 case X86::VMOVDQU32Zrm
:
5674 case X86::VMOVDQA64Zrm
:
5675 case X86::VMOVDQU64Zrm
:
5683 // Lambda to check if both the loads have the same value for an operand index.
5684 auto HasSameOp
= [&](int I
) {
5685 return Load1
->getOperand(I
) == Load2
->getOperand(I
);
5688 // All operands except the displacement should match.
5689 if (!HasSameOp(X86::AddrBaseReg
) || !HasSameOp(X86::AddrScaleAmt
) ||
5690 !HasSameOp(X86::AddrIndexReg
) || !HasSameOp(X86::AddrSegmentReg
))
5693 // Chain Operand must be the same.
5697 // Now let's examine if the displacements are constants.
5698 auto Disp1
= dyn_cast
<ConstantSDNode
>(Load1
->getOperand(X86::AddrDisp
));
5699 auto Disp2
= dyn_cast
<ConstantSDNode
>(Load2
->getOperand(X86::AddrDisp
));
5700 if (!Disp1
|| !Disp2
)
5703 Offset1
= Disp1
->getSExtValue();
5704 Offset2
= Disp2
->getSExtValue();
5708 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
5709 int64_t Offset1
, int64_t Offset2
,
5710 unsigned NumLoads
) const {
5711 assert(Offset2
> Offset1
);
5712 if ((Offset2
- Offset1
) / 8 > 64)
5715 unsigned Opc1
= Load1
->getMachineOpcode();
5716 unsigned Opc2
= Load2
->getMachineOpcode();
5718 return false; // FIXME: overly conservative?
5725 case X86::MMX_MOVD64rm
:
5726 case X86::MMX_MOVQ64rm
:
5730 EVT VT
= Load1
->getValueType(0);
5731 switch (VT
.getSimpleVT().SimpleTy
) {
5733 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
5734 // have 16 of them to play with.
5735 if (Subtarget
.is64Bit()) {
5738 } else if (NumLoads
) {
5757 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
5758 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
5759 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
5760 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
5765 isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
5766 // FIXME: Return false for x87 stack register classes for now. We can't
5767 // allow any loads of these registers before FpGet_ST0_80.
5768 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::DFCCRRegClass
||
5769 RC
== &X86::RFP32RegClass
|| RC
== &X86::RFP64RegClass
||
5770 RC
== &X86::RFP80RegClass
);
5773 /// Return a virtual register initialized with the
5774 /// the global base register value. Output instructions required to
5775 /// initialize the register in the function entry block, if necessary.
5777 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
5779 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
5780 assert((!Subtarget
.is64Bit() ||
5781 MF
->getTarget().getCodeModel() == CodeModel::Medium
||
5782 MF
->getTarget().getCodeModel() == CodeModel::Large
) &&
5783 "X86-64 PIC uses RIP relative addressing");
5785 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
5786 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
5787 if (GlobalBaseReg
!= 0)
5788 return GlobalBaseReg
;
5790 // Create the register. The code to initialize it is inserted
5791 // later, by the CGBR pass (below).
5792 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
5793 GlobalBaseReg
= RegInfo
.createVirtualRegister(
5794 Subtarget
.is64Bit() ? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
);
5795 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
5796 return GlobalBaseReg
;
5799 // These are the replaceable SSE instructions. Some of these have Int variants
5800 // that we don't include here. We don't want to replace instructions selected
5802 static const uint16_t ReplaceableInstrs
[][3] = {
5803 //PackedSingle PackedDouble PackedInt
5804 { X86::MOVAPSmr
, X86::MOVAPDmr
, X86::MOVDQAmr
},
5805 { X86::MOVAPSrm
, X86::MOVAPDrm
, X86::MOVDQArm
},
5806 { X86::MOVAPSrr
, X86::MOVAPDrr
, X86::MOVDQArr
},
5807 { X86::MOVUPSmr
, X86::MOVUPDmr
, X86::MOVDQUmr
},
5808 { X86::MOVUPSrm
, X86::MOVUPDrm
, X86::MOVDQUrm
},
5809 { X86::MOVLPSmr
, X86::MOVLPDmr
, X86::MOVPQI2QImr
},
5810 { X86::MOVSDmr
, X86::MOVSDmr
, X86::MOVPQI2QImr
},
5811 { X86::MOVSSmr
, X86::MOVSSmr
, X86::MOVPDI2DImr
},
5812 { X86::MOVSDrm
, X86::MOVSDrm
, X86::MOVQI2PQIrm
},
5813 { X86::MOVSDrm_alt
,X86::MOVSDrm_alt
,X86::MOVQI2PQIrm
},
5814 { X86::MOVSSrm
, X86::MOVSSrm
, X86::MOVDI2PDIrm
},
5815 { X86::MOVSSrm_alt
,X86::MOVSSrm_alt
,X86::MOVDI2PDIrm
},
5816 { X86::MOVNTPSmr
, X86::MOVNTPDmr
, X86::MOVNTDQmr
},
5817 { X86::ANDNPSrm
, X86::ANDNPDrm
, X86::PANDNrm
},
5818 { X86::ANDNPSrr
, X86::ANDNPDrr
, X86::PANDNrr
},
5819 { X86::ANDPSrm
, X86::ANDPDrm
, X86::PANDrm
},
5820 { X86::ANDPSrr
, X86::ANDPDrr
, X86::PANDrr
},
5821 { X86::ORPSrm
, X86::ORPDrm
, X86::PORrm
},
5822 { X86::ORPSrr
, X86::ORPDrr
, X86::PORrr
},
5823 { X86::XORPSrm
, X86::XORPDrm
, X86::PXORrm
},
5824 { X86::XORPSrr
, X86::XORPDrr
, X86::PXORrr
},
5825 { X86::UNPCKLPDrm
, X86::UNPCKLPDrm
, X86::PUNPCKLQDQrm
},
5826 { X86::MOVLHPSrr
, X86::UNPCKLPDrr
, X86::PUNPCKLQDQrr
},
5827 { X86::UNPCKHPDrm
, X86::UNPCKHPDrm
, X86::PUNPCKHQDQrm
},
5828 { X86::UNPCKHPDrr
, X86::UNPCKHPDrr
, X86::PUNPCKHQDQrr
},
5829 { X86::UNPCKLPSrm
, X86::UNPCKLPSrm
, X86::PUNPCKLDQrm
},
5830 { X86::UNPCKLPSrr
, X86::UNPCKLPSrr
, X86::PUNPCKLDQrr
},
5831 { X86::UNPCKHPSrm
, X86::UNPCKHPSrm
, X86::PUNPCKHDQrm
},
5832 { X86::UNPCKHPSrr
, X86::UNPCKHPSrr
, X86::PUNPCKHDQrr
},
5833 { X86::EXTRACTPSmr
, X86::EXTRACTPSmr
, X86::PEXTRDmr
},
5834 { X86::EXTRACTPSrr
, X86::EXTRACTPSrr
, X86::PEXTRDrr
},
5835 // AVX 128-bit support
5836 { X86::VMOVAPSmr
, X86::VMOVAPDmr
, X86::VMOVDQAmr
},
5837 { X86::VMOVAPSrm
, X86::VMOVAPDrm
, X86::VMOVDQArm
},
5838 { X86::VMOVAPSrr
, X86::VMOVAPDrr
, X86::VMOVDQArr
},
5839 { X86::VMOVUPSmr
, X86::VMOVUPDmr
, X86::VMOVDQUmr
},
5840 { X86::VMOVUPSrm
, X86::VMOVUPDrm
, X86::VMOVDQUrm
},
5841 { X86::VMOVLPSmr
, X86::VMOVLPDmr
, X86::VMOVPQI2QImr
},
5842 { X86::VMOVSDmr
, X86::VMOVSDmr
, X86::VMOVPQI2QImr
},
5843 { X86::VMOVSSmr
, X86::VMOVSSmr
, X86::VMOVPDI2DImr
},
5844 { X86::VMOVSDrm
, X86::VMOVSDrm
, X86::VMOVQI2PQIrm
},
5845 { X86::VMOVSDrm_alt
,X86::VMOVSDrm_alt
,X86::VMOVQI2PQIrm
},
5846 { X86::VMOVSSrm
, X86::VMOVSSrm
, X86::VMOVDI2PDIrm
},
5847 { X86::VMOVSSrm_alt
,X86::VMOVSSrm_alt
,X86::VMOVDI2PDIrm
},
5848 { X86::VMOVNTPSmr
, X86::VMOVNTPDmr
, X86::VMOVNTDQmr
},
5849 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNrm
},
5850 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNrr
},
5851 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDrm
},
5852 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDrr
},
5853 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORrm
},
5854 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORrr
},
5855 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORrm
},
5856 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORrr
},
5857 { X86::VUNPCKLPDrm
, X86::VUNPCKLPDrm
, X86::VPUNPCKLQDQrm
},
5858 { X86::VMOVLHPSrr
, X86::VUNPCKLPDrr
, X86::VPUNPCKLQDQrr
},
5859 { X86::VUNPCKHPDrm
, X86::VUNPCKHPDrm
, X86::VPUNPCKHQDQrm
},
5860 { X86::VUNPCKHPDrr
, X86::VUNPCKHPDrr
, X86::VPUNPCKHQDQrr
},
5861 { X86::VUNPCKLPSrm
, X86::VUNPCKLPSrm
, X86::VPUNPCKLDQrm
},
5862 { X86::VUNPCKLPSrr
, X86::VUNPCKLPSrr
, X86::VPUNPCKLDQrr
},
5863 { X86::VUNPCKHPSrm
, X86::VUNPCKHPSrm
, X86::VPUNPCKHDQrm
},
5864 { X86::VUNPCKHPSrr
, X86::VUNPCKHPSrr
, X86::VPUNPCKHDQrr
},
5865 { X86::VEXTRACTPSmr
, X86::VEXTRACTPSmr
, X86::VPEXTRDmr
},
5866 { X86::VEXTRACTPSrr
, X86::VEXTRACTPSrr
, X86::VPEXTRDrr
},
5867 // AVX 256-bit support
5868 { X86::VMOVAPSYmr
, X86::VMOVAPDYmr
, X86::VMOVDQAYmr
},
5869 { X86::VMOVAPSYrm
, X86::VMOVAPDYrm
, X86::VMOVDQAYrm
},
5870 { X86::VMOVAPSYrr
, X86::VMOVAPDYrr
, X86::VMOVDQAYrr
},
5871 { X86::VMOVUPSYmr
, X86::VMOVUPDYmr
, X86::VMOVDQUYmr
},
5872 { X86::VMOVUPSYrm
, X86::VMOVUPDYrm
, X86::VMOVDQUYrm
},
5873 { X86::VMOVNTPSYmr
, X86::VMOVNTPDYmr
, X86::VMOVNTDQYmr
},
5874 { X86::VPERMPSYrm
, X86::VPERMPSYrm
, X86::VPERMDYrm
},
5875 { X86::VPERMPSYrr
, X86::VPERMPSYrr
, X86::VPERMDYrr
},
5876 { X86::VPERMPDYmi
, X86::VPERMPDYmi
, X86::VPERMQYmi
},
5877 { X86::VPERMPDYri
, X86::VPERMPDYri
, X86::VPERMQYri
},
5879 { X86::VMOVLPSZ128mr
, X86::VMOVLPDZ128mr
, X86::VMOVPQI2QIZmr
},
5880 { X86::VMOVNTPSZ128mr
, X86::VMOVNTPDZ128mr
, X86::VMOVNTDQZ128mr
},
5881 { X86::VMOVNTPSZ256mr
, X86::VMOVNTPDZ256mr
, X86::VMOVNTDQZ256mr
},
5882 { X86::VMOVNTPSZmr
, X86::VMOVNTPDZmr
, X86::VMOVNTDQZmr
},
5883 { X86::VMOVSDZmr
, X86::VMOVSDZmr
, X86::VMOVPQI2QIZmr
},
5884 { X86::VMOVSSZmr
, X86::VMOVSSZmr
, X86::VMOVPDI2DIZmr
},
5885 { X86::VMOVSDZrm
, X86::VMOVSDZrm
, X86::VMOVQI2PQIZrm
},
5886 { X86::VMOVSDZrm_alt
, X86::VMOVSDZrm_alt
, X86::VMOVQI2PQIZrm
},
5887 { X86::VMOVSSZrm
, X86::VMOVSSZrm
, X86::VMOVDI2PDIZrm
},
5888 { X86::VMOVSSZrm_alt
, X86::VMOVSSZrm_alt
, X86::VMOVDI2PDIZrm
},
5889 { X86::VBROADCASTSSZ128r
, X86::VBROADCASTSSZ128r
, X86::VPBROADCASTDZ128r
},
5890 { X86::VBROADCASTSSZ128m
, X86::VBROADCASTSSZ128m
, X86::VPBROADCASTDZ128m
},
5891 { X86::VBROADCASTSSZ256r
, X86::VBROADCASTSSZ256r
, X86::VPBROADCASTDZ256r
},
5892 { X86::VBROADCASTSSZ256m
, X86::VBROADCASTSSZ256m
, X86::VPBROADCASTDZ256m
},
5893 { X86::VBROADCASTSSZr
, X86::VBROADCASTSSZr
, X86::VPBROADCASTDZr
},
5894 { X86::VBROADCASTSSZm
, X86::VBROADCASTSSZm
, X86::VPBROADCASTDZm
},
5895 { X86::VMOVDDUPZ128rr
, X86::VMOVDDUPZ128rr
, X86::VPBROADCASTQZ128r
},
5896 { X86::VMOVDDUPZ128rm
, X86::VMOVDDUPZ128rm
, X86::VPBROADCASTQZ128m
},
5897 { X86::VBROADCASTSDZ256r
, X86::VBROADCASTSDZ256r
, X86::VPBROADCASTQZ256r
},
5898 { X86::VBROADCASTSDZ256m
, X86::VBROADCASTSDZ256m
, X86::VPBROADCASTQZ256m
},
5899 { X86::VBROADCASTSDZr
, X86::VBROADCASTSDZr
, X86::VPBROADCASTQZr
},
5900 { X86::VBROADCASTSDZm
, X86::VBROADCASTSDZm
, X86::VPBROADCASTQZm
},
5901 { X86::VINSERTF32x4Zrr
, X86::VINSERTF32x4Zrr
, X86::VINSERTI32x4Zrr
},
5902 { X86::VINSERTF32x4Zrm
, X86::VINSERTF32x4Zrm
, X86::VINSERTI32x4Zrm
},
5903 { X86::VINSERTF32x8Zrr
, X86::VINSERTF32x8Zrr
, X86::VINSERTI32x8Zrr
},
5904 { X86::VINSERTF32x8Zrm
, X86::VINSERTF32x8Zrm
, X86::VINSERTI32x8Zrm
},
5905 { X86::VINSERTF64x2Zrr
, X86::VINSERTF64x2Zrr
, X86::VINSERTI64x2Zrr
},
5906 { X86::VINSERTF64x2Zrm
, X86::VINSERTF64x2Zrm
, X86::VINSERTI64x2Zrm
},
5907 { X86::VINSERTF64x4Zrr
, X86::VINSERTF64x4Zrr
, X86::VINSERTI64x4Zrr
},
5908 { X86::VINSERTF64x4Zrm
, X86::VINSERTF64x4Zrm
, X86::VINSERTI64x4Zrm
},
5909 { X86::VINSERTF32x4Z256rr
,X86::VINSERTF32x4Z256rr
,X86::VINSERTI32x4Z256rr
},
5910 { X86::VINSERTF32x4Z256rm
,X86::VINSERTF32x4Z256rm
,X86::VINSERTI32x4Z256rm
},
5911 { X86::VINSERTF64x2Z256rr
,X86::VINSERTF64x2Z256rr
,X86::VINSERTI64x2Z256rr
},
5912 { X86::VINSERTF64x2Z256rm
,X86::VINSERTF64x2Z256rm
,X86::VINSERTI64x2Z256rm
},
5913 { X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTF32x4Zrr
, X86::VEXTRACTI32x4Zrr
},
5914 { X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTF32x4Zmr
, X86::VEXTRACTI32x4Zmr
},
5915 { X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTF32x8Zrr
, X86::VEXTRACTI32x8Zrr
},
5916 { X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTF32x8Zmr
, X86::VEXTRACTI32x8Zmr
},
5917 { X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTF64x2Zrr
, X86::VEXTRACTI64x2Zrr
},
5918 { X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTF64x2Zmr
, X86::VEXTRACTI64x2Zmr
},
5919 { X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTF64x4Zrr
, X86::VEXTRACTI64x4Zrr
},
5920 { X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTF64x4Zmr
, X86::VEXTRACTI64x4Zmr
},
5921 { X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTF32x4Z256rr
,X86::VEXTRACTI32x4Z256rr
},
5922 { X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTF32x4Z256mr
,X86::VEXTRACTI32x4Z256mr
},
5923 { X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTF64x2Z256rr
,X86::VEXTRACTI64x2Z256rr
},
5924 { X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTF64x2Z256mr
,X86::VEXTRACTI64x2Z256mr
},
5925 { X86::VPERMILPSmi
, X86::VPERMILPSmi
, X86::VPSHUFDmi
},
5926 { X86::VPERMILPSri
, X86::VPERMILPSri
, X86::VPSHUFDri
},
5927 { X86::VPERMILPSZ128mi
, X86::VPERMILPSZ128mi
, X86::VPSHUFDZ128mi
},
5928 { X86::VPERMILPSZ128ri
, X86::VPERMILPSZ128ri
, X86::VPSHUFDZ128ri
},
5929 { X86::VPERMILPSZ256mi
, X86::VPERMILPSZ256mi
, X86::VPSHUFDZ256mi
},
5930 { X86::VPERMILPSZ256ri
, X86::VPERMILPSZ256ri
, X86::VPSHUFDZ256ri
},
5931 { X86::VPERMILPSZmi
, X86::VPERMILPSZmi
, X86::VPSHUFDZmi
},
5932 { X86::VPERMILPSZri
, X86::VPERMILPSZri
, X86::VPSHUFDZri
},
5933 { X86::VPERMPSZ256rm
, X86::VPERMPSZ256rm
, X86::VPERMDZ256rm
},
5934 { X86::VPERMPSZ256rr
, X86::VPERMPSZ256rr
, X86::VPERMDZ256rr
},
5935 { X86::VPERMPDZ256mi
, X86::VPERMPDZ256mi
, X86::VPERMQZ256mi
},
5936 { X86::VPERMPDZ256ri
, X86::VPERMPDZ256ri
, X86::VPERMQZ256ri
},
5937 { X86::VPERMPDZ256rm
, X86::VPERMPDZ256rm
, X86::VPERMQZ256rm
},
5938 { X86::VPERMPDZ256rr
, X86::VPERMPDZ256rr
, X86::VPERMQZ256rr
},
5939 { X86::VPERMPSZrm
, X86::VPERMPSZrm
, X86::VPERMDZrm
},
5940 { X86::VPERMPSZrr
, X86::VPERMPSZrr
, X86::VPERMDZrr
},
5941 { X86::VPERMPDZmi
, X86::VPERMPDZmi
, X86::VPERMQZmi
},
5942 { X86::VPERMPDZri
, X86::VPERMPDZri
, X86::VPERMQZri
},
5943 { X86::VPERMPDZrm
, X86::VPERMPDZrm
, X86::VPERMQZrm
},
5944 { X86::VPERMPDZrr
, X86::VPERMPDZrr
, X86::VPERMQZrr
},
5945 { X86::VUNPCKLPDZ256rm
, X86::VUNPCKLPDZ256rm
, X86::VPUNPCKLQDQZ256rm
},
5946 { X86::VUNPCKLPDZ256rr
, X86::VUNPCKLPDZ256rr
, X86::VPUNPCKLQDQZ256rr
},
5947 { X86::VUNPCKHPDZ256rm
, X86::VUNPCKHPDZ256rm
, X86::VPUNPCKHQDQZ256rm
},
5948 { X86::VUNPCKHPDZ256rr
, X86::VUNPCKHPDZ256rr
, X86::VPUNPCKHQDQZ256rr
},
5949 { X86::VUNPCKLPSZ256rm
, X86::VUNPCKLPSZ256rm
, X86::VPUNPCKLDQZ256rm
},
5950 { X86::VUNPCKLPSZ256rr
, X86::VUNPCKLPSZ256rr
, X86::VPUNPCKLDQZ256rr
},
5951 { X86::VUNPCKHPSZ256rm
, X86::VUNPCKHPSZ256rm
, X86::VPUNPCKHDQZ256rm
},
5952 { X86::VUNPCKHPSZ256rr
, X86::VUNPCKHPSZ256rr
, X86::VPUNPCKHDQZ256rr
},
5953 { X86::VUNPCKLPDZ128rm
, X86::VUNPCKLPDZ128rm
, X86::VPUNPCKLQDQZ128rm
},
5954 { X86::VMOVLHPSZrr
, X86::VUNPCKLPDZ128rr
, X86::VPUNPCKLQDQZ128rr
},
5955 { X86::VUNPCKHPDZ128rm
, X86::VUNPCKHPDZ128rm
, X86::VPUNPCKHQDQZ128rm
},
5956 { X86::VUNPCKHPDZ128rr
, X86::VUNPCKHPDZ128rr
, X86::VPUNPCKHQDQZ128rr
},
5957 { X86::VUNPCKLPSZ128rm
, X86::VUNPCKLPSZ128rm
, X86::VPUNPCKLDQZ128rm
},
5958 { X86::VUNPCKLPSZ128rr
, X86::VUNPCKLPSZ128rr
, X86::VPUNPCKLDQZ128rr
},
5959 { X86::VUNPCKHPSZ128rm
, X86::VUNPCKHPSZ128rm
, X86::VPUNPCKHDQZ128rm
},
5960 { X86::VUNPCKHPSZ128rr
, X86::VUNPCKHPSZ128rr
, X86::VPUNPCKHDQZ128rr
},
5961 { X86::VUNPCKLPDZrm
, X86::VUNPCKLPDZrm
, X86::VPUNPCKLQDQZrm
},
5962 { X86::VUNPCKLPDZrr
, X86::VUNPCKLPDZrr
, X86::VPUNPCKLQDQZrr
},
5963 { X86::VUNPCKHPDZrm
, X86::VUNPCKHPDZrm
, X86::VPUNPCKHQDQZrm
},
5964 { X86::VUNPCKHPDZrr
, X86::VUNPCKHPDZrr
, X86::VPUNPCKHQDQZrr
},
5965 { X86::VUNPCKLPSZrm
, X86::VUNPCKLPSZrm
, X86::VPUNPCKLDQZrm
},
5966 { X86::VUNPCKLPSZrr
, X86::VUNPCKLPSZrr
, X86::VPUNPCKLDQZrr
},
5967 { X86::VUNPCKHPSZrm
, X86::VUNPCKHPSZrm
, X86::VPUNPCKHDQZrm
},
5968 { X86::VUNPCKHPSZrr
, X86::VUNPCKHPSZrr
, X86::VPUNPCKHDQZrr
},
5969 { X86::VEXTRACTPSZmr
, X86::VEXTRACTPSZmr
, X86::VPEXTRDZmr
},
5970 { X86::VEXTRACTPSZrr
, X86::VEXTRACTPSZrr
, X86::VPEXTRDZrr
},
5973 static const uint16_t ReplaceableInstrsAVX2
[][3] = {
5974 //PackedSingle PackedDouble PackedInt
5975 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNYrm
},
5976 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNYrr
},
5977 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDYrm
},
5978 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDYrr
},
5979 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORYrm
},
5980 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORYrr
},
5981 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORYrm
},
5982 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORYrr
},
5983 { X86::VPERM2F128rm
, X86::VPERM2F128rm
, X86::VPERM2I128rm
},
5984 { X86::VPERM2F128rr
, X86::VPERM2F128rr
, X86::VPERM2I128rr
},
5985 { X86::VBROADCASTSSrm
, X86::VBROADCASTSSrm
, X86::VPBROADCASTDrm
},
5986 { X86::VBROADCASTSSrr
, X86::VBROADCASTSSrr
, X86::VPBROADCASTDrr
},
5987 { X86::VMOVDDUPrm
, X86::VMOVDDUPrm
, X86::VPBROADCASTQrm
},
5988 { X86::VMOVDDUPrr
, X86::VMOVDDUPrr
, X86::VPBROADCASTQrr
},
5989 { X86::VBROADCASTSSYrr
, X86::VBROADCASTSSYrr
, X86::VPBROADCASTDYrr
},
5990 { X86::VBROADCASTSSYrm
, X86::VBROADCASTSSYrm
, X86::VPBROADCASTDYrm
},
5991 { X86::VBROADCASTSDYrr
, X86::VBROADCASTSDYrr
, X86::VPBROADCASTQYrr
},
5992 { X86::VBROADCASTSDYrm
, X86::VBROADCASTSDYrm
, X86::VPBROADCASTQYrm
},
5993 { X86::VBROADCASTF128
, X86::VBROADCASTF128
, X86::VBROADCASTI128
},
5994 { X86::VBLENDPSYrri
, X86::VBLENDPSYrri
, X86::VPBLENDDYrri
},
5995 { X86::VBLENDPSYrmi
, X86::VBLENDPSYrmi
, X86::VPBLENDDYrmi
},
5996 { X86::VPERMILPSYmi
, X86::VPERMILPSYmi
, X86::VPSHUFDYmi
},
5997 { X86::VPERMILPSYri
, X86::VPERMILPSYri
, X86::VPSHUFDYri
},
5998 { X86::VUNPCKLPDYrm
, X86::VUNPCKLPDYrm
, X86::VPUNPCKLQDQYrm
},
5999 { X86::VUNPCKLPDYrr
, X86::VUNPCKLPDYrr
, X86::VPUNPCKLQDQYrr
},
6000 { X86::VUNPCKHPDYrm
, X86::VUNPCKHPDYrm
, X86::VPUNPCKHQDQYrm
},
6001 { X86::VUNPCKHPDYrr
, X86::VUNPCKHPDYrr
, X86::VPUNPCKHQDQYrr
},
6002 { X86::VUNPCKLPSYrm
, X86::VUNPCKLPSYrm
, X86::VPUNPCKLDQYrm
},
6003 { X86::VUNPCKLPSYrr
, X86::VUNPCKLPSYrr
, X86::VPUNPCKLDQYrr
},
6004 { X86::VUNPCKHPSYrm
, X86::VUNPCKHPSYrm
, X86::VPUNPCKHDQYrm
},
6005 { X86::VUNPCKHPSYrr
, X86::VUNPCKHPSYrr
, X86::VPUNPCKHDQYrr
},
6008 static const uint16_t ReplaceableInstrsFP
[][3] = {
6009 //PackedSingle PackedDouble
6010 { X86::MOVLPSrm
, X86::MOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6011 { X86::MOVHPSrm
, X86::MOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6012 { X86::MOVHPSmr
, X86::MOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6013 { X86::VMOVLPSrm
, X86::VMOVLPDrm
, X86::INSTRUCTION_LIST_END
},
6014 { X86::VMOVHPSrm
, X86::VMOVHPDrm
, X86::INSTRUCTION_LIST_END
},
6015 { X86::VMOVHPSmr
, X86::VMOVHPDmr
, X86::INSTRUCTION_LIST_END
},
6016 { X86::VMOVLPSZ128rm
, X86::VMOVLPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6017 { X86::VMOVHPSZ128rm
, X86::VMOVHPDZ128rm
, X86::INSTRUCTION_LIST_END
},
6018 { X86::VMOVHPSZ128mr
, X86::VMOVHPDZ128mr
, X86::INSTRUCTION_LIST_END
},
6021 static const uint16_t ReplaceableInstrsAVX2InsertExtract
[][3] = {
6022 //PackedSingle PackedDouble PackedInt
6023 { X86::VEXTRACTF128mr
, X86::VEXTRACTF128mr
, X86::VEXTRACTI128mr
},
6024 { X86::VEXTRACTF128rr
, X86::VEXTRACTF128rr
, X86::VEXTRACTI128rr
},
6025 { X86::VINSERTF128rm
, X86::VINSERTF128rm
, X86::VINSERTI128rm
},
6026 { X86::VINSERTF128rr
, X86::VINSERTF128rr
, X86::VINSERTI128rr
},
6029 static const uint16_t ReplaceableInstrsAVX512
[][4] = {
6030 // Two integer columns for 64-bit and 32-bit elements.
6031 //PackedSingle PackedDouble PackedInt PackedInt
6032 { X86::VMOVAPSZ128mr
, X86::VMOVAPDZ128mr
, X86::VMOVDQA64Z128mr
, X86::VMOVDQA32Z128mr
},
6033 { X86::VMOVAPSZ128rm
, X86::VMOVAPDZ128rm
, X86::VMOVDQA64Z128rm
, X86::VMOVDQA32Z128rm
},
6034 { X86::VMOVAPSZ128rr
, X86::VMOVAPDZ128rr
, X86::VMOVDQA64Z128rr
, X86::VMOVDQA32Z128rr
},
6035 { X86::VMOVUPSZ128mr
, X86::VMOVUPDZ128mr
, X86::VMOVDQU64Z128mr
, X86::VMOVDQU32Z128mr
},
6036 { X86::VMOVUPSZ128rm
, X86::VMOVUPDZ128rm
, X86::VMOVDQU64Z128rm
, X86::VMOVDQU32Z128rm
},
6037 { X86::VMOVAPSZ256mr
, X86::VMOVAPDZ256mr
, X86::VMOVDQA64Z256mr
, X86::VMOVDQA32Z256mr
},
6038 { X86::VMOVAPSZ256rm
, X86::VMOVAPDZ256rm
, X86::VMOVDQA64Z256rm
, X86::VMOVDQA32Z256rm
},
6039 { X86::VMOVAPSZ256rr
, X86::VMOVAPDZ256rr
, X86::VMOVDQA64Z256rr
, X86::VMOVDQA32Z256rr
},
6040 { X86::VMOVUPSZ256mr
, X86::VMOVUPDZ256mr
, X86::VMOVDQU64Z256mr
, X86::VMOVDQU32Z256mr
},
6041 { X86::VMOVUPSZ256rm
, X86::VMOVUPDZ256rm
, X86::VMOVDQU64Z256rm
, X86::VMOVDQU32Z256rm
},
6042 { X86::VMOVAPSZmr
, X86::VMOVAPDZmr
, X86::VMOVDQA64Zmr
, X86::VMOVDQA32Zmr
},
6043 { X86::VMOVAPSZrm
, X86::VMOVAPDZrm
, X86::VMOVDQA64Zrm
, X86::VMOVDQA32Zrm
},
6044 { X86::VMOVAPSZrr
, X86::VMOVAPDZrr
, X86::VMOVDQA64Zrr
, X86::VMOVDQA32Zrr
},
6045 { X86::VMOVUPSZmr
, X86::VMOVUPDZmr
, X86::VMOVDQU64Zmr
, X86::VMOVDQU32Zmr
},
6046 { X86::VMOVUPSZrm
, X86::VMOVUPDZrm
, X86::VMOVDQU64Zrm
, X86::VMOVDQU32Zrm
},
6049 static const uint16_t ReplaceableInstrsAVX512DQ
[][4] = {
6050 // Two integer columns for 64-bit and 32-bit elements.
6051 //PackedSingle PackedDouble PackedInt PackedInt
6052 { X86::VANDNPSZ128rm
, X86::VANDNPDZ128rm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6053 { X86::VANDNPSZ128rr
, X86::VANDNPDZ128rr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6054 { X86::VANDPSZ128rm
, X86::VANDPDZ128rm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6055 { X86::VANDPSZ128rr
, X86::VANDPDZ128rr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6056 { X86::VORPSZ128rm
, X86::VORPDZ128rm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6057 { X86::VORPSZ128rr
, X86::VORPDZ128rr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6058 { X86::VXORPSZ128rm
, X86::VXORPDZ128rm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6059 { X86::VXORPSZ128rr
, X86::VXORPDZ128rr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6060 { X86::VANDNPSZ256rm
, X86::VANDNPDZ256rm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6061 { X86::VANDNPSZ256rr
, X86::VANDNPDZ256rr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6062 { X86::VANDPSZ256rm
, X86::VANDPDZ256rm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6063 { X86::VANDPSZ256rr
, X86::VANDPDZ256rr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6064 { X86::VORPSZ256rm
, X86::VORPDZ256rm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6065 { X86::VORPSZ256rr
, X86::VORPDZ256rr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6066 { X86::VXORPSZ256rm
, X86::VXORPDZ256rm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6067 { X86::VXORPSZ256rr
, X86::VXORPDZ256rr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6068 { X86::VANDNPSZrm
, X86::VANDNPDZrm
, X86::VPANDNQZrm
, X86::VPANDNDZrm
},
6069 { X86::VANDNPSZrr
, X86::VANDNPDZrr
, X86::VPANDNQZrr
, X86::VPANDNDZrr
},
6070 { X86::VANDPSZrm
, X86::VANDPDZrm
, X86::VPANDQZrm
, X86::VPANDDZrm
},
6071 { X86::VANDPSZrr
, X86::VANDPDZrr
, X86::VPANDQZrr
, X86::VPANDDZrr
},
6072 { X86::VORPSZrm
, X86::VORPDZrm
, X86::VPORQZrm
, X86::VPORDZrm
},
6073 { X86::VORPSZrr
, X86::VORPDZrr
, X86::VPORQZrr
, X86::VPORDZrr
},
6074 { X86::VXORPSZrm
, X86::VXORPDZrm
, X86::VPXORQZrm
, X86::VPXORDZrm
},
6075 { X86::VXORPSZrr
, X86::VXORPDZrr
, X86::VPXORQZrr
, X86::VPXORDZrr
},
6078 static const uint16_t ReplaceableInstrsAVX512DQMasked
[][4] = {
6079 // Two integer columns for 64-bit and 32-bit elements.
6080 //PackedSingle PackedDouble
6081 //PackedInt PackedInt
6082 { X86::VANDNPSZ128rmk
, X86::VANDNPDZ128rmk
,
6083 X86::VPANDNQZ128rmk
, X86::VPANDNDZ128rmk
},
6084 { X86::VANDNPSZ128rmkz
, X86::VANDNPDZ128rmkz
,
6085 X86::VPANDNQZ128rmkz
, X86::VPANDNDZ128rmkz
},
6086 { X86::VANDNPSZ128rrk
, X86::VANDNPDZ128rrk
,
6087 X86::VPANDNQZ128rrk
, X86::VPANDNDZ128rrk
},
6088 { X86::VANDNPSZ128rrkz
, X86::VANDNPDZ128rrkz
,
6089 X86::VPANDNQZ128rrkz
, X86::VPANDNDZ128rrkz
},
6090 { X86::VANDPSZ128rmk
, X86::VANDPDZ128rmk
,
6091 X86::VPANDQZ128rmk
, X86::VPANDDZ128rmk
},
6092 { X86::VANDPSZ128rmkz
, X86::VANDPDZ128rmkz
,
6093 X86::VPANDQZ128rmkz
, X86::VPANDDZ128rmkz
},
6094 { X86::VANDPSZ128rrk
, X86::VANDPDZ128rrk
,
6095 X86::VPANDQZ128rrk
, X86::VPANDDZ128rrk
},
6096 { X86::VANDPSZ128rrkz
, X86::VANDPDZ128rrkz
,
6097 X86::VPANDQZ128rrkz
, X86::VPANDDZ128rrkz
},
6098 { X86::VORPSZ128rmk
, X86::VORPDZ128rmk
,
6099 X86::VPORQZ128rmk
, X86::VPORDZ128rmk
},
6100 { X86::VORPSZ128rmkz
, X86::VORPDZ128rmkz
,
6101 X86::VPORQZ128rmkz
, X86::VPORDZ128rmkz
},
6102 { X86::VORPSZ128rrk
, X86::VORPDZ128rrk
,
6103 X86::VPORQZ128rrk
, X86::VPORDZ128rrk
},
6104 { X86::VORPSZ128rrkz
, X86::VORPDZ128rrkz
,
6105 X86::VPORQZ128rrkz
, X86::VPORDZ128rrkz
},
6106 { X86::VXORPSZ128rmk
, X86::VXORPDZ128rmk
,
6107 X86::VPXORQZ128rmk
, X86::VPXORDZ128rmk
},
6108 { X86::VXORPSZ128rmkz
, X86::VXORPDZ128rmkz
,
6109 X86::VPXORQZ128rmkz
, X86::VPXORDZ128rmkz
},
6110 { X86::VXORPSZ128rrk
, X86::VXORPDZ128rrk
,
6111 X86::VPXORQZ128rrk
, X86::VPXORDZ128rrk
},
6112 { X86::VXORPSZ128rrkz
, X86::VXORPDZ128rrkz
,
6113 X86::VPXORQZ128rrkz
, X86::VPXORDZ128rrkz
},
6114 { X86::VANDNPSZ256rmk
, X86::VANDNPDZ256rmk
,
6115 X86::VPANDNQZ256rmk
, X86::VPANDNDZ256rmk
},
6116 { X86::VANDNPSZ256rmkz
, X86::VANDNPDZ256rmkz
,
6117 X86::VPANDNQZ256rmkz
, X86::VPANDNDZ256rmkz
},
6118 { X86::VANDNPSZ256rrk
, X86::VANDNPDZ256rrk
,
6119 X86::VPANDNQZ256rrk
, X86::VPANDNDZ256rrk
},
6120 { X86::VANDNPSZ256rrkz
, X86::VANDNPDZ256rrkz
,
6121 X86::VPANDNQZ256rrkz
, X86::VPANDNDZ256rrkz
},
6122 { X86::VANDPSZ256rmk
, X86::VANDPDZ256rmk
,
6123 X86::VPANDQZ256rmk
, X86::VPANDDZ256rmk
},
6124 { X86::VANDPSZ256rmkz
, X86::VANDPDZ256rmkz
,
6125 X86::VPANDQZ256rmkz
, X86::VPANDDZ256rmkz
},
6126 { X86::VANDPSZ256rrk
, X86::VANDPDZ256rrk
,
6127 X86::VPANDQZ256rrk
, X86::VPANDDZ256rrk
},
6128 { X86::VANDPSZ256rrkz
, X86::VANDPDZ256rrkz
,
6129 X86::VPANDQZ256rrkz
, X86::VPANDDZ256rrkz
},
6130 { X86::VORPSZ256rmk
, X86::VORPDZ256rmk
,
6131 X86::VPORQZ256rmk
, X86::VPORDZ256rmk
},
6132 { X86::VORPSZ256rmkz
, X86::VORPDZ256rmkz
,
6133 X86::VPORQZ256rmkz
, X86::VPORDZ256rmkz
},
6134 { X86::VORPSZ256rrk
, X86::VORPDZ256rrk
,
6135 X86::VPORQZ256rrk
, X86::VPORDZ256rrk
},
6136 { X86::VORPSZ256rrkz
, X86::VORPDZ256rrkz
,
6137 X86::VPORQZ256rrkz
, X86::VPORDZ256rrkz
},
6138 { X86::VXORPSZ256rmk
, X86::VXORPDZ256rmk
,
6139 X86::VPXORQZ256rmk
, X86::VPXORDZ256rmk
},
6140 { X86::VXORPSZ256rmkz
, X86::VXORPDZ256rmkz
,
6141 X86::VPXORQZ256rmkz
, X86::VPXORDZ256rmkz
},
6142 { X86::VXORPSZ256rrk
, X86::VXORPDZ256rrk
,
6143 X86::VPXORQZ256rrk
, X86::VPXORDZ256rrk
},
6144 { X86::VXORPSZ256rrkz
, X86::VXORPDZ256rrkz
,
6145 X86::VPXORQZ256rrkz
, X86::VPXORDZ256rrkz
},
6146 { X86::VANDNPSZrmk
, X86::VANDNPDZrmk
,
6147 X86::VPANDNQZrmk
, X86::VPANDNDZrmk
},
6148 { X86::VANDNPSZrmkz
, X86::VANDNPDZrmkz
,
6149 X86::VPANDNQZrmkz
, X86::VPANDNDZrmkz
},
6150 { X86::VANDNPSZrrk
, X86::VANDNPDZrrk
,
6151 X86::VPANDNQZrrk
, X86::VPANDNDZrrk
},
6152 { X86::VANDNPSZrrkz
, X86::VANDNPDZrrkz
,
6153 X86::VPANDNQZrrkz
, X86::VPANDNDZrrkz
},
6154 { X86::VANDPSZrmk
, X86::VANDPDZrmk
,
6155 X86::VPANDQZrmk
, X86::VPANDDZrmk
},
6156 { X86::VANDPSZrmkz
, X86::VANDPDZrmkz
,
6157 X86::VPANDQZrmkz
, X86::VPANDDZrmkz
},
6158 { X86::VANDPSZrrk
, X86::VANDPDZrrk
,
6159 X86::VPANDQZrrk
, X86::VPANDDZrrk
},
6160 { X86::VANDPSZrrkz
, X86::VANDPDZrrkz
,
6161 X86::VPANDQZrrkz
, X86::VPANDDZrrkz
},
6162 { X86::VORPSZrmk
, X86::VORPDZrmk
,
6163 X86::VPORQZrmk
, X86::VPORDZrmk
},
6164 { X86::VORPSZrmkz
, X86::VORPDZrmkz
,
6165 X86::VPORQZrmkz
, X86::VPORDZrmkz
},
6166 { X86::VORPSZrrk
, X86::VORPDZrrk
,
6167 X86::VPORQZrrk
, X86::VPORDZrrk
},
6168 { X86::VORPSZrrkz
, X86::VORPDZrrkz
,
6169 X86::VPORQZrrkz
, X86::VPORDZrrkz
},
6170 { X86::VXORPSZrmk
, X86::VXORPDZrmk
,
6171 X86::VPXORQZrmk
, X86::VPXORDZrmk
},
6172 { X86::VXORPSZrmkz
, X86::VXORPDZrmkz
,
6173 X86::VPXORQZrmkz
, X86::VPXORDZrmkz
},
6174 { X86::VXORPSZrrk
, X86::VXORPDZrrk
,
6175 X86::VPXORQZrrk
, X86::VPXORDZrrk
},
6176 { X86::VXORPSZrrkz
, X86::VXORPDZrrkz
,
6177 X86::VPXORQZrrkz
, X86::VPXORDZrrkz
},
6178 // Broadcast loads can be handled the same as masked operations to avoid
6179 // changing element size.
6180 { X86::VANDNPSZ128rmb
, X86::VANDNPDZ128rmb
,
6181 X86::VPANDNQZ128rmb
, X86::VPANDNDZ128rmb
},
6182 { X86::VANDPSZ128rmb
, X86::VANDPDZ128rmb
,
6183 X86::VPANDQZ128rmb
, X86::VPANDDZ128rmb
},
6184 { X86::VORPSZ128rmb
, X86::VORPDZ128rmb
,
6185 X86::VPORQZ128rmb
, X86::VPORDZ128rmb
},
6186 { X86::VXORPSZ128rmb
, X86::VXORPDZ128rmb
,
6187 X86::VPXORQZ128rmb
, X86::VPXORDZ128rmb
},
6188 { X86::VANDNPSZ256rmb
, X86::VANDNPDZ256rmb
,
6189 X86::VPANDNQZ256rmb
, X86::VPANDNDZ256rmb
},
6190 { X86::VANDPSZ256rmb
, X86::VANDPDZ256rmb
,
6191 X86::VPANDQZ256rmb
, X86::VPANDDZ256rmb
},
6192 { X86::VORPSZ256rmb
, X86::VORPDZ256rmb
,
6193 X86::VPORQZ256rmb
, X86::VPORDZ256rmb
},
6194 { X86::VXORPSZ256rmb
, X86::VXORPDZ256rmb
,
6195 X86::VPXORQZ256rmb
, X86::VPXORDZ256rmb
},
6196 { X86::VANDNPSZrmb
, X86::VANDNPDZrmb
,
6197 X86::VPANDNQZrmb
, X86::VPANDNDZrmb
},
6198 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6199 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6200 { X86::VANDPSZrmb
, X86::VANDPDZrmb
,
6201 X86::VPANDQZrmb
, X86::VPANDDZrmb
},
6202 { X86::VORPSZrmb
, X86::VORPDZrmb
,
6203 X86::VPORQZrmb
, X86::VPORDZrmb
},
6204 { X86::VXORPSZrmb
, X86::VXORPDZrmb
,
6205 X86::VPXORQZrmb
, X86::VPXORDZrmb
},
6206 { X86::VANDNPSZ128rmbk
, X86::VANDNPDZ128rmbk
,
6207 X86::VPANDNQZ128rmbk
, X86::VPANDNDZ128rmbk
},
6208 { X86::VANDPSZ128rmbk
, X86::VANDPDZ128rmbk
,
6209 X86::VPANDQZ128rmbk
, X86::VPANDDZ128rmbk
},
6210 { X86::VORPSZ128rmbk
, X86::VORPDZ128rmbk
,
6211 X86::VPORQZ128rmbk
, X86::VPORDZ128rmbk
},
6212 { X86::VXORPSZ128rmbk
, X86::VXORPDZ128rmbk
,
6213 X86::VPXORQZ128rmbk
, X86::VPXORDZ128rmbk
},
6214 { X86::VANDNPSZ256rmbk
, X86::VANDNPDZ256rmbk
,
6215 X86::VPANDNQZ256rmbk
, X86::VPANDNDZ256rmbk
},
6216 { X86::VANDPSZ256rmbk
, X86::VANDPDZ256rmbk
,
6217 X86::VPANDQZ256rmbk
, X86::VPANDDZ256rmbk
},
6218 { X86::VORPSZ256rmbk
, X86::VORPDZ256rmbk
,
6219 X86::VPORQZ256rmbk
, X86::VPORDZ256rmbk
},
6220 { X86::VXORPSZ256rmbk
, X86::VXORPDZ256rmbk
,
6221 X86::VPXORQZ256rmbk
, X86::VPXORDZ256rmbk
},
6222 { X86::VANDNPSZrmbk
, X86::VANDNPDZrmbk
,
6223 X86::VPANDNQZrmbk
, X86::VPANDNDZrmbk
},
6224 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6225 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6226 { X86::VANDPSZrmbk
, X86::VANDPDZrmbk
,
6227 X86::VPANDQZrmbk
, X86::VPANDDZrmbk
},
6228 { X86::VORPSZrmbk
, X86::VORPDZrmbk
,
6229 X86::VPORQZrmbk
, X86::VPORDZrmbk
},
6230 { X86::VXORPSZrmbk
, X86::VXORPDZrmbk
,
6231 X86::VPXORQZrmbk
, X86::VPXORDZrmbk
},
6232 { X86::VANDNPSZ128rmbkz
,X86::VANDNPDZ128rmbkz
,
6233 X86::VPANDNQZ128rmbkz
,X86::VPANDNDZ128rmbkz
},
6234 { X86::VANDPSZ128rmbkz
, X86::VANDPDZ128rmbkz
,
6235 X86::VPANDQZ128rmbkz
, X86::VPANDDZ128rmbkz
},
6236 { X86::VORPSZ128rmbkz
, X86::VORPDZ128rmbkz
,
6237 X86::VPORQZ128rmbkz
, X86::VPORDZ128rmbkz
},
6238 { X86::VXORPSZ128rmbkz
, X86::VXORPDZ128rmbkz
,
6239 X86::VPXORQZ128rmbkz
, X86::VPXORDZ128rmbkz
},
6240 { X86::VANDNPSZ256rmbkz
,X86::VANDNPDZ256rmbkz
,
6241 X86::VPANDNQZ256rmbkz
,X86::VPANDNDZ256rmbkz
},
6242 { X86::VANDPSZ256rmbkz
, X86::VANDPDZ256rmbkz
,
6243 X86::VPANDQZ256rmbkz
, X86::VPANDDZ256rmbkz
},
6244 { X86::VORPSZ256rmbkz
, X86::VORPDZ256rmbkz
,
6245 X86::VPORQZ256rmbkz
, X86::VPORDZ256rmbkz
},
6246 { X86::VXORPSZ256rmbkz
, X86::VXORPDZ256rmbkz
,
6247 X86::VPXORQZ256rmbkz
, X86::VPXORDZ256rmbkz
},
6248 { X86::VANDNPSZrmbkz
, X86::VANDNPDZrmbkz
,
6249 X86::VPANDNQZrmbkz
, X86::VPANDNDZrmbkz
},
6250 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6251 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6252 { X86::VANDPSZrmbkz
, X86::VANDPDZrmbkz
,
6253 X86::VPANDQZrmbkz
, X86::VPANDDZrmbkz
},
6254 { X86::VORPSZrmbkz
, X86::VORPDZrmbkz
,
6255 X86::VPORQZrmbkz
, X86::VPORDZrmbkz
},
6256 { X86::VXORPSZrmbkz
, X86::VXORPDZrmbkz
,
6257 X86::VPXORQZrmbkz
, X86::VPXORDZrmbkz
},
6260 // NOTE: These should only be used by the custom domain methods.
6261 static const uint16_t ReplaceableBlendInstrs
[][3] = {
6262 //PackedSingle PackedDouble PackedInt
6263 { X86::BLENDPSrmi
, X86::BLENDPDrmi
, X86::PBLENDWrmi
},
6264 { X86::BLENDPSrri
, X86::BLENDPDrri
, X86::PBLENDWrri
},
6265 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDWrmi
},
6266 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDWrri
},
6267 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDWYrmi
},
6268 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDWYrri
},
6270 static const uint16_t ReplaceableBlendAVX2Instrs
[][3] = {
6271 //PackedSingle PackedDouble PackedInt
6272 { X86::VBLENDPSrmi
, X86::VBLENDPDrmi
, X86::VPBLENDDrmi
},
6273 { X86::VBLENDPSrri
, X86::VBLENDPDrri
, X86::VPBLENDDrri
},
6274 { X86::VBLENDPSYrmi
, X86::VBLENDPDYrmi
, X86::VPBLENDDYrmi
},
6275 { X86::VBLENDPSYrri
, X86::VBLENDPDYrri
, X86::VPBLENDDYrri
},
6278 // Special table for changing EVEX logic instructions to VEX.
6279 // TODO: Should we run EVEX->VEX earlier?
6280 static const uint16_t ReplaceableCustomAVX512LogicInstrs
[][4] = {
6281 // Two integer columns for 64-bit and 32-bit elements.
6282 //PackedSingle PackedDouble PackedInt PackedInt
6283 { X86::VANDNPSrm
, X86::VANDNPDrm
, X86::VPANDNQZ128rm
, X86::VPANDNDZ128rm
},
6284 { X86::VANDNPSrr
, X86::VANDNPDrr
, X86::VPANDNQZ128rr
, X86::VPANDNDZ128rr
},
6285 { X86::VANDPSrm
, X86::VANDPDrm
, X86::VPANDQZ128rm
, X86::VPANDDZ128rm
},
6286 { X86::VANDPSrr
, X86::VANDPDrr
, X86::VPANDQZ128rr
, X86::VPANDDZ128rr
},
6287 { X86::VORPSrm
, X86::VORPDrm
, X86::VPORQZ128rm
, X86::VPORDZ128rm
},
6288 { X86::VORPSrr
, X86::VORPDrr
, X86::VPORQZ128rr
, X86::VPORDZ128rr
},
6289 { X86::VXORPSrm
, X86::VXORPDrm
, X86::VPXORQZ128rm
, X86::VPXORDZ128rm
},
6290 { X86::VXORPSrr
, X86::VXORPDrr
, X86::VPXORQZ128rr
, X86::VPXORDZ128rr
},
6291 { X86::VANDNPSYrm
, X86::VANDNPDYrm
, X86::VPANDNQZ256rm
, X86::VPANDNDZ256rm
},
6292 { X86::VANDNPSYrr
, X86::VANDNPDYrr
, X86::VPANDNQZ256rr
, X86::VPANDNDZ256rr
},
6293 { X86::VANDPSYrm
, X86::VANDPDYrm
, X86::VPANDQZ256rm
, X86::VPANDDZ256rm
},
6294 { X86::VANDPSYrr
, X86::VANDPDYrr
, X86::VPANDQZ256rr
, X86::VPANDDZ256rr
},
6295 { X86::VORPSYrm
, X86::VORPDYrm
, X86::VPORQZ256rm
, X86::VPORDZ256rm
},
6296 { X86::VORPSYrr
, X86::VORPDYrr
, X86::VPORQZ256rr
, X86::VPORDZ256rr
},
6297 { X86::VXORPSYrm
, X86::VXORPDYrm
, X86::VPXORQZ256rm
, X86::VPXORDZ256rm
},
6298 { X86::VXORPSYrr
, X86::VXORPDYrr
, X86::VPXORQZ256rr
, X86::VPXORDZ256rr
},
6301 // FIXME: Some shuffle and unpack instructions have equivalents in different
6302 // domains, but they require a bit more work than just switching opcodes.
6304 static const uint16_t *lookup(unsigned opcode
, unsigned domain
,
6305 ArrayRef
<uint16_t[3]> Table
) {
6306 for (const uint16_t (&Row
)[3] : Table
)
6307 if (Row
[domain
-1] == opcode
)
6312 static const uint16_t *lookupAVX512(unsigned opcode
, unsigned domain
,
6313 ArrayRef
<uint16_t[4]> Table
) {
6314 // If this is the integer domain make sure to check both integer columns.
6315 for (const uint16_t (&Row
)[4] : Table
)
6316 if (Row
[domain
-1] == opcode
|| (domain
== 3 && Row
[3] == opcode
))
6321 // Helper to attempt to widen/narrow blend masks.
6322 static bool AdjustBlendMask(unsigned OldMask
, unsigned OldWidth
,
6323 unsigned NewWidth
, unsigned *pNewMask
= nullptr) {
6324 assert(((OldWidth
% NewWidth
) == 0 || (NewWidth
% OldWidth
) == 0) &&
6325 "Illegal blend mask scale");
6326 unsigned NewMask
= 0;
6328 if ((OldWidth
% NewWidth
) == 0) {
6329 unsigned Scale
= OldWidth
/ NewWidth
;
6330 unsigned SubMask
= (1u << Scale
) - 1;
6331 for (unsigned i
= 0; i
!= NewWidth
; ++i
) {
6332 unsigned Sub
= (OldMask
>> (i
* Scale
)) & SubMask
;
6334 NewMask
|= (1u << i
);
6335 else if (Sub
!= 0x0)
6339 unsigned Scale
= NewWidth
/ OldWidth
;
6340 unsigned SubMask
= (1u << Scale
) - 1;
6341 for (unsigned i
= 0; i
!= OldWidth
; ++i
) {
6342 if (OldMask
& (1 << i
)) {
6343 NewMask
|= (SubMask
<< (i
* Scale
));
6349 *pNewMask
= NewMask
;
6353 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr
&MI
) const {
6354 unsigned Opcode
= MI
.getOpcode();
6355 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6357 auto GetBlendDomains
= [&](unsigned ImmWidth
, bool Is256
) {
6358 uint16_t validDomains
= 0;
6359 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6360 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm();
6361 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4))
6362 validDomains
|= 0x2; // PackedSingle
6363 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2))
6364 validDomains
|= 0x4; // PackedDouble
6365 if (!Is256
|| Subtarget
.hasAVX2())
6366 validDomains
|= 0x8; // PackedInt
6368 return validDomains
;
6372 case X86::BLENDPDrmi
:
6373 case X86::BLENDPDrri
:
6374 case X86::VBLENDPDrmi
:
6375 case X86::VBLENDPDrri
:
6376 return GetBlendDomains(2, false);
6377 case X86::VBLENDPDYrmi
:
6378 case X86::VBLENDPDYrri
:
6379 return GetBlendDomains(4, true);
6380 case X86::BLENDPSrmi
:
6381 case X86::BLENDPSrri
:
6382 case X86::VBLENDPSrmi
:
6383 case X86::VBLENDPSrri
:
6384 case X86::VPBLENDDrmi
:
6385 case X86::VPBLENDDrri
:
6386 return GetBlendDomains(4, false);
6387 case X86::VBLENDPSYrmi
:
6388 case X86::VBLENDPSYrri
:
6389 case X86::VPBLENDDYrmi
:
6390 case X86::VPBLENDDYrri
:
6391 return GetBlendDomains(8, true);
6392 case X86::PBLENDWrmi
:
6393 case X86::PBLENDWrri
:
6394 case X86::VPBLENDWrmi
:
6395 case X86::VPBLENDWrri
:
6396 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
6397 case X86::VPBLENDWYrmi
:
6398 case X86::VPBLENDWYrri
:
6399 return GetBlendDomains(8, false);
6400 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6401 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6402 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6403 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6404 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6405 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6406 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6407 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6408 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6409 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6410 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6411 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6412 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6413 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6414 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6415 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
:
6416 // If we don't have DQI see if we can still switch from an EVEX integer
6417 // instruction to a VEX floating point instruction.
6418 if (Subtarget
.hasDQI())
6421 if (RI
.getEncodingValue(MI
.getOperand(0).getReg()) >= 16)
6423 if (RI
.getEncodingValue(MI
.getOperand(1).getReg()) >= 16)
6425 // Register forms will have 3 operands. Memory form will have more.
6426 if (NumOperands
== 3 &&
6427 RI
.getEncodingValue(MI
.getOperand(2).getReg()) >= 16)
6430 // All domains are valid.
6432 case X86::MOVHLPSrr
:
6433 // We can swap domains when both inputs are the same register.
6434 // FIXME: This doesn't catch all the cases we would like. If the input
6435 // register isn't KILLed by the instruction, the two address instruction
6436 // pass puts a COPY on one input. The other input uses the original
6437 // register. This prevents the same physical register from being used by
6439 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6440 MI
.getOperand(0).getSubReg() == 0 &&
6441 MI
.getOperand(1).getSubReg() == 0 &&
6442 MI
.getOperand(2).getSubReg() == 0)
6445 case X86::SHUFPDrri
:
6451 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr
&MI
,
6452 unsigned Domain
) const {
6453 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
6454 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6455 assert(dom
&& "Not an SSE instruction");
6457 unsigned Opcode
= MI
.getOpcode();
6458 unsigned NumOperands
= MI
.getDesc().getNumOperands();
6460 auto SetBlendDomain
= [&](unsigned ImmWidth
, bool Is256
) {
6461 if (MI
.getOperand(NumOperands
- 1).isImm()) {
6462 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm() & 255;
6463 Imm
= (ImmWidth
== 16 ? ((Imm
<< 8) | Imm
) : Imm
);
6464 unsigned NewImm
= Imm
;
6466 const uint16_t *table
= lookup(Opcode
, dom
, ReplaceableBlendInstrs
);
6468 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6470 if (Domain
== 1) { // PackedSingle
6471 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6472 } else if (Domain
== 2) { // PackedDouble
6473 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2, &NewImm
);
6474 } else if (Domain
== 3) { // PackedInt
6475 if (Subtarget
.hasAVX2()) {
6476 // If we are already VPBLENDW use that, else use VPBLENDD.
6477 if ((ImmWidth
/ (Is256
? 2 : 1)) != 8) {
6478 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
6479 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
6482 assert(!Is256
&& "128-bit vector expected");
6483 AdjustBlendMask(Imm
, ImmWidth
, 8, &NewImm
);
6487 assert(table
&& table
[Domain
- 1] && "Unknown domain op");
6488 MI
.setDesc(get(table
[Domain
- 1]));
6489 MI
.getOperand(NumOperands
- 1).setImm(NewImm
& 255);
6495 case X86::BLENDPDrmi
:
6496 case X86::BLENDPDrri
:
6497 case X86::VBLENDPDrmi
:
6498 case X86::VBLENDPDrri
:
6499 return SetBlendDomain(2, false);
6500 case X86::VBLENDPDYrmi
:
6501 case X86::VBLENDPDYrri
:
6502 return SetBlendDomain(4, true);
6503 case X86::BLENDPSrmi
:
6504 case X86::BLENDPSrri
:
6505 case X86::VBLENDPSrmi
:
6506 case X86::VBLENDPSrri
:
6507 case X86::VPBLENDDrmi
:
6508 case X86::VPBLENDDrri
:
6509 return SetBlendDomain(4, false);
6510 case X86::VBLENDPSYrmi
:
6511 case X86::VBLENDPSYrri
:
6512 case X86::VPBLENDDYrmi
:
6513 case X86::VPBLENDDYrri
:
6514 return SetBlendDomain(8, true);
6515 case X86::PBLENDWrmi
:
6516 case X86::PBLENDWrri
:
6517 case X86::VPBLENDWrmi
:
6518 case X86::VPBLENDWrri
:
6519 return SetBlendDomain(8, false);
6520 case X86::VPBLENDWYrmi
:
6521 case X86::VPBLENDWYrri
:
6522 return SetBlendDomain(16, true);
6523 case X86::VPANDDZ128rr
: case X86::VPANDDZ128rm
:
6524 case X86::VPANDDZ256rr
: case X86::VPANDDZ256rm
:
6525 case X86::VPANDQZ128rr
: case X86::VPANDQZ128rm
:
6526 case X86::VPANDQZ256rr
: case X86::VPANDQZ256rm
:
6527 case X86::VPANDNDZ128rr
: case X86::VPANDNDZ128rm
:
6528 case X86::VPANDNDZ256rr
: case X86::VPANDNDZ256rm
:
6529 case X86::VPANDNQZ128rr
: case X86::VPANDNQZ128rm
:
6530 case X86::VPANDNQZ256rr
: case X86::VPANDNQZ256rm
:
6531 case X86::VPORDZ128rr
: case X86::VPORDZ128rm
:
6532 case X86::VPORDZ256rr
: case X86::VPORDZ256rm
:
6533 case X86::VPORQZ128rr
: case X86::VPORQZ128rm
:
6534 case X86::VPORQZ256rr
: case X86::VPORQZ256rm
:
6535 case X86::VPXORDZ128rr
: case X86::VPXORDZ128rm
:
6536 case X86::VPXORDZ256rr
: case X86::VPXORDZ256rm
:
6537 case X86::VPXORQZ128rr
: case X86::VPXORQZ128rm
:
6538 case X86::VPXORQZ256rr
: case X86::VPXORQZ256rm
: {
6539 // Without DQI, convert EVEX instructions to VEX instructions.
6540 if (Subtarget
.hasDQI())
6543 const uint16_t *table
= lookupAVX512(MI
.getOpcode(), dom
,
6544 ReplaceableCustomAVX512LogicInstrs
);
6545 assert(table
&& "Instruction not found in table?");
6546 // Don't change integer Q instructions to D instructions and
6547 // use D intructions if we started with a PS instruction.
6548 if (Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6550 MI
.setDesc(get(table
[Domain
- 1]));
6553 case X86::UNPCKHPDrr
:
6554 case X86::MOVHLPSrr
:
6555 // We just need to commute the instruction which will switch the domains.
6556 if (Domain
!= dom
&& Domain
!= 3 &&
6557 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
6558 MI
.getOperand(0).getSubReg() == 0 &&
6559 MI
.getOperand(1).getSubReg() == 0 &&
6560 MI
.getOperand(2).getSubReg() == 0) {
6561 commuteInstruction(MI
, false);
6564 // We must always return true for MOVHLPSrr.
6565 if (Opcode
== X86::MOVHLPSrr
)
6568 case X86::SHUFPDrri
: {
6570 unsigned Imm
= MI
.getOperand(3).getImm();
6571 unsigned NewImm
= 0x44;
6572 if (Imm
& 1) NewImm
|= 0x0a;
6573 if (Imm
& 2) NewImm
|= 0xa0;
6574 MI
.getOperand(3).setImm(NewImm
);
6575 MI
.setDesc(get(X86::SHUFPSrri
));
6583 std::pair
<uint16_t, uint16_t>
6584 X86InstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
6585 uint16_t domain
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6586 unsigned opcode
= MI
.getOpcode();
6587 uint16_t validDomains
= 0;
6589 // Attempt to match for custom instructions.
6590 validDomains
= getExecutionDomainCustom(MI
);
6592 return std::make_pair(domain
, validDomains
);
6594 if (lookup(opcode
, domain
, ReplaceableInstrs
)) {
6596 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2
)) {
6597 validDomains
= Subtarget
.hasAVX2() ? 0xe : 0x6;
6598 } else if (lookup(opcode
, domain
, ReplaceableInstrsFP
)) {
6600 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2InsertExtract
)) {
6601 // Insert/extract instructions should only effect domain if AVX2
6603 if (!Subtarget
.hasAVX2())
6604 return std::make_pair(0, 0);
6606 } else if (lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512
)) {
6608 } else if (Subtarget
.hasDQI() && lookupAVX512(opcode
, domain
,
6609 ReplaceableInstrsAVX512DQ
)) {
6611 } else if (Subtarget
.hasDQI()) {
6612 if (const uint16_t *table
= lookupAVX512(opcode
, domain
,
6613 ReplaceableInstrsAVX512DQMasked
)) {
6614 if (domain
== 1 || (domain
== 3 && table
[3] == opcode
))
6621 return std::make_pair(domain
, validDomains
);
6624 void X86InstrInfo::setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {
6625 assert(Domain
>0 && Domain
<4 && "Invalid execution domain");
6626 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
6627 assert(dom
&& "Not an SSE instruction");
6629 // Attempt to match for custom instructions.
6630 if (setExecutionDomainCustom(MI
, Domain
))
6633 const uint16_t *table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrs
);
6634 if (!table
) { // try the other table
6635 assert((Subtarget
.hasAVX2() || Domain
< 3) &&
6636 "256-bit vector operations only available in AVX2");
6637 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2
);
6639 if (!table
) { // try the FP table
6640 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsFP
);
6641 assert((!table
|| Domain
< 3) &&
6642 "Can only select PackedSingle or PackedDouble");
6644 if (!table
) { // try the other table
6645 assert(Subtarget
.hasAVX2() &&
6646 "256-bit insert/extract only available in AVX2");
6647 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2InsertExtract
);
6649 if (!table
) { // try the AVX512 table
6650 assert(Subtarget
.hasAVX512() && "Requires AVX-512");
6651 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512
);
6652 // Don't change integer Q instructions to D instructions.
6653 if (table
&& Domain
== 3 && table
[3] == MI
.getOpcode())
6656 if (!table
) { // try the AVX512DQ table
6657 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6658 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQ
);
6659 // Don't change integer Q instructions to D instructions and
6660 // use D intructions if we started with a PS instruction.
6661 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6664 if (!table
) { // try the AVX512DQMasked table
6665 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
6666 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQMasked
);
6667 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
6670 assert(table
&& "Cannot change domain");
6671 MI
.setDesc(get(table
[Domain
- 1]));
6674 /// Return the noop instruction to use for a noop.
6675 void X86InstrInfo::getNoop(MCInst
&NopInst
) const {
6676 NopInst
.setOpcode(X86::NOOP
);
6679 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
6681 default: return false;
6687 case X86::DIVSDrm_Int
:
6689 case X86::DIVSDrr_Int
:
6691 case X86::DIVSSrm_Int
:
6693 case X86::DIVSSrr_Int
:
6699 case X86::SQRTSDm_Int
:
6701 case X86::SQRTSDr_Int
:
6703 case X86::SQRTSSm_Int
:
6705 case X86::SQRTSSr_Int
:
6706 // AVX instructions with high latency
6709 case X86::VDIVPDYrm
:
6710 case X86::VDIVPDYrr
:
6713 case X86::VDIVPSYrm
:
6714 case X86::VDIVPSYrr
:
6716 case X86::VDIVSDrm_Int
:
6718 case X86::VDIVSDrr_Int
:
6720 case X86::VDIVSSrm_Int
:
6722 case X86::VDIVSSrr_Int
:
6725 case X86::VSQRTPDYm
:
6726 case X86::VSQRTPDYr
:
6729 case X86::VSQRTPSYm
:
6730 case X86::VSQRTPSYr
:
6732 case X86::VSQRTSDm_Int
:
6734 case X86::VSQRTSDr_Int
:
6736 case X86::VSQRTSSm_Int
:
6738 case X86::VSQRTSSr_Int
:
6739 // AVX512 instructions with high latency
6740 case X86::VDIVPDZ128rm
:
6741 case X86::VDIVPDZ128rmb
:
6742 case X86::VDIVPDZ128rmbk
:
6743 case X86::VDIVPDZ128rmbkz
:
6744 case X86::VDIVPDZ128rmk
:
6745 case X86::VDIVPDZ128rmkz
:
6746 case X86::VDIVPDZ128rr
:
6747 case X86::VDIVPDZ128rrk
:
6748 case X86::VDIVPDZ128rrkz
:
6749 case X86::VDIVPDZ256rm
:
6750 case X86::VDIVPDZ256rmb
:
6751 case X86::VDIVPDZ256rmbk
:
6752 case X86::VDIVPDZ256rmbkz
:
6753 case X86::VDIVPDZ256rmk
:
6754 case X86::VDIVPDZ256rmkz
:
6755 case X86::VDIVPDZ256rr
:
6756 case X86::VDIVPDZ256rrk
:
6757 case X86::VDIVPDZ256rrkz
:
6758 case X86::VDIVPDZrrb
:
6759 case X86::VDIVPDZrrbk
:
6760 case X86::VDIVPDZrrbkz
:
6761 case X86::VDIVPDZrm
:
6762 case X86::VDIVPDZrmb
:
6763 case X86::VDIVPDZrmbk
:
6764 case X86::VDIVPDZrmbkz
:
6765 case X86::VDIVPDZrmk
:
6766 case X86::VDIVPDZrmkz
:
6767 case X86::VDIVPDZrr
:
6768 case X86::VDIVPDZrrk
:
6769 case X86::VDIVPDZrrkz
:
6770 case X86::VDIVPSZ128rm
:
6771 case X86::VDIVPSZ128rmb
:
6772 case X86::VDIVPSZ128rmbk
:
6773 case X86::VDIVPSZ128rmbkz
:
6774 case X86::VDIVPSZ128rmk
:
6775 case X86::VDIVPSZ128rmkz
:
6776 case X86::VDIVPSZ128rr
:
6777 case X86::VDIVPSZ128rrk
:
6778 case X86::VDIVPSZ128rrkz
:
6779 case X86::VDIVPSZ256rm
:
6780 case X86::VDIVPSZ256rmb
:
6781 case X86::VDIVPSZ256rmbk
:
6782 case X86::VDIVPSZ256rmbkz
:
6783 case X86::VDIVPSZ256rmk
:
6784 case X86::VDIVPSZ256rmkz
:
6785 case X86::VDIVPSZ256rr
:
6786 case X86::VDIVPSZ256rrk
:
6787 case X86::VDIVPSZ256rrkz
:
6788 case X86::VDIVPSZrrb
:
6789 case X86::VDIVPSZrrbk
:
6790 case X86::VDIVPSZrrbkz
:
6791 case X86::VDIVPSZrm
:
6792 case X86::VDIVPSZrmb
:
6793 case X86::VDIVPSZrmbk
:
6794 case X86::VDIVPSZrmbkz
:
6795 case X86::VDIVPSZrmk
:
6796 case X86::VDIVPSZrmkz
:
6797 case X86::VDIVPSZrr
:
6798 case X86::VDIVPSZrrk
:
6799 case X86::VDIVPSZrrkz
:
6800 case X86::VDIVSDZrm
:
6801 case X86::VDIVSDZrr
:
6802 case X86::VDIVSDZrm_Int
:
6803 case X86::VDIVSDZrm_Intk
:
6804 case X86::VDIVSDZrm_Intkz
:
6805 case X86::VDIVSDZrr_Int
:
6806 case X86::VDIVSDZrr_Intk
:
6807 case X86::VDIVSDZrr_Intkz
:
6808 case X86::VDIVSDZrrb_Int
:
6809 case X86::VDIVSDZrrb_Intk
:
6810 case X86::VDIVSDZrrb_Intkz
:
6811 case X86::VDIVSSZrm
:
6812 case X86::VDIVSSZrr
:
6813 case X86::VDIVSSZrm_Int
:
6814 case X86::VDIVSSZrm_Intk
:
6815 case X86::VDIVSSZrm_Intkz
:
6816 case X86::VDIVSSZrr_Int
:
6817 case X86::VDIVSSZrr_Intk
:
6818 case X86::VDIVSSZrr_Intkz
:
6819 case X86::VDIVSSZrrb_Int
:
6820 case X86::VDIVSSZrrb_Intk
:
6821 case X86::VDIVSSZrrb_Intkz
:
6822 case X86::VSQRTPDZ128m
:
6823 case X86::VSQRTPDZ128mb
:
6824 case X86::VSQRTPDZ128mbk
:
6825 case X86::VSQRTPDZ128mbkz
:
6826 case X86::VSQRTPDZ128mk
:
6827 case X86::VSQRTPDZ128mkz
:
6828 case X86::VSQRTPDZ128r
:
6829 case X86::VSQRTPDZ128rk
:
6830 case X86::VSQRTPDZ128rkz
:
6831 case X86::VSQRTPDZ256m
:
6832 case X86::VSQRTPDZ256mb
:
6833 case X86::VSQRTPDZ256mbk
:
6834 case X86::VSQRTPDZ256mbkz
:
6835 case X86::VSQRTPDZ256mk
:
6836 case X86::VSQRTPDZ256mkz
:
6837 case X86::VSQRTPDZ256r
:
6838 case X86::VSQRTPDZ256rk
:
6839 case X86::VSQRTPDZ256rkz
:
6840 case X86::VSQRTPDZm
:
6841 case X86::VSQRTPDZmb
:
6842 case X86::VSQRTPDZmbk
:
6843 case X86::VSQRTPDZmbkz
:
6844 case X86::VSQRTPDZmk
:
6845 case X86::VSQRTPDZmkz
:
6846 case X86::VSQRTPDZr
:
6847 case X86::VSQRTPDZrb
:
6848 case X86::VSQRTPDZrbk
:
6849 case X86::VSQRTPDZrbkz
:
6850 case X86::VSQRTPDZrk
:
6851 case X86::VSQRTPDZrkz
:
6852 case X86::VSQRTPSZ128m
:
6853 case X86::VSQRTPSZ128mb
:
6854 case X86::VSQRTPSZ128mbk
:
6855 case X86::VSQRTPSZ128mbkz
:
6856 case X86::VSQRTPSZ128mk
:
6857 case X86::VSQRTPSZ128mkz
:
6858 case X86::VSQRTPSZ128r
:
6859 case X86::VSQRTPSZ128rk
:
6860 case X86::VSQRTPSZ128rkz
:
6861 case X86::VSQRTPSZ256m
:
6862 case X86::VSQRTPSZ256mb
:
6863 case X86::VSQRTPSZ256mbk
:
6864 case X86::VSQRTPSZ256mbkz
:
6865 case X86::VSQRTPSZ256mk
:
6866 case X86::VSQRTPSZ256mkz
:
6867 case X86::VSQRTPSZ256r
:
6868 case X86::VSQRTPSZ256rk
:
6869 case X86::VSQRTPSZ256rkz
:
6870 case X86::VSQRTPSZm
:
6871 case X86::VSQRTPSZmb
:
6872 case X86::VSQRTPSZmbk
:
6873 case X86::VSQRTPSZmbkz
:
6874 case X86::VSQRTPSZmk
:
6875 case X86::VSQRTPSZmkz
:
6876 case X86::VSQRTPSZr
:
6877 case X86::VSQRTPSZrb
:
6878 case X86::VSQRTPSZrbk
:
6879 case X86::VSQRTPSZrbkz
:
6880 case X86::VSQRTPSZrk
:
6881 case X86::VSQRTPSZrkz
:
6882 case X86::VSQRTSDZm
:
6883 case X86::VSQRTSDZm_Int
:
6884 case X86::VSQRTSDZm_Intk
:
6885 case X86::VSQRTSDZm_Intkz
:
6886 case X86::VSQRTSDZr
:
6887 case X86::VSQRTSDZr_Int
:
6888 case X86::VSQRTSDZr_Intk
:
6889 case X86::VSQRTSDZr_Intkz
:
6890 case X86::VSQRTSDZrb_Int
:
6891 case X86::VSQRTSDZrb_Intk
:
6892 case X86::VSQRTSDZrb_Intkz
:
6893 case X86::VSQRTSSZm
:
6894 case X86::VSQRTSSZm_Int
:
6895 case X86::VSQRTSSZm_Intk
:
6896 case X86::VSQRTSSZm_Intkz
:
6897 case X86::VSQRTSSZr
:
6898 case X86::VSQRTSSZr_Int
:
6899 case X86::VSQRTSSZr_Intk
:
6900 case X86::VSQRTSSZr_Intkz
:
6901 case X86::VSQRTSSZrb_Int
:
6902 case X86::VSQRTSSZrb_Intk
:
6903 case X86::VSQRTSSZrb_Intkz
:
6905 case X86::VGATHERDPDYrm
:
6906 case X86::VGATHERDPDZ128rm
:
6907 case X86::VGATHERDPDZ256rm
:
6908 case X86::VGATHERDPDZrm
:
6909 case X86::VGATHERDPDrm
:
6910 case X86::VGATHERDPSYrm
:
6911 case X86::VGATHERDPSZ128rm
:
6912 case X86::VGATHERDPSZ256rm
:
6913 case X86::VGATHERDPSZrm
:
6914 case X86::VGATHERDPSrm
:
6915 case X86::VGATHERPF0DPDm
:
6916 case X86::VGATHERPF0DPSm
:
6917 case X86::VGATHERPF0QPDm
:
6918 case X86::VGATHERPF0QPSm
:
6919 case X86::VGATHERPF1DPDm
:
6920 case X86::VGATHERPF1DPSm
:
6921 case X86::VGATHERPF1QPDm
:
6922 case X86::VGATHERPF1QPSm
:
6923 case X86::VGATHERQPDYrm
:
6924 case X86::VGATHERQPDZ128rm
:
6925 case X86::VGATHERQPDZ256rm
:
6926 case X86::VGATHERQPDZrm
:
6927 case X86::VGATHERQPDrm
:
6928 case X86::VGATHERQPSYrm
:
6929 case X86::VGATHERQPSZ128rm
:
6930 case X86::VGATHERQPSZ256rm
:
6931 case X86::VGATHERQPSZrm
:
6932 case X86::VGATHERQPSrm
:
6933 case X86::VPGATHERDDYrm
:
6934 case X86::VPGATHERDDZ128rm
:
6935 case X86::VPGATHERDDZ256rm
:
6936 case X86::VPGATHERDDZrm
:
6937 case X86::VPGATHERDDrm
:
6938 case X86::VPGATHERDQYrm
:
6939 case X86::VPGATHERDQZ128rm
:
6940 case X86::VPGATHERDQZ256rm
:
6941 case X86::VPGATHERDQZrm
:
6942 case X86::VPGATHERDQrm
:
6943 case X86::VPGATHERQDYrm
:
6944 case X86::VPGATHERQDZ128rm
:
6945 case X86::VPGATHERQDZ256rm
:
6946 case X86::VPGATHERQDZrm
:
6947 case X86::VPGATHERQDrm
:
6948 case X86::VPGATHERQQYrm
:
6949 case X86::VPGATHERQQZ128rm
:
6950 case X86::VPGATHERQQZ256rm
:
6951 case X86::VPGATHERQQZrm
:
6952 case X86::VPGATHERQQrm
:
6953 case X86::VSCATTERDPDZ128mr
:
6954 case X86::VSCATTERDPDZ256mr
:
6955 case X86::VSCATTERDPDZmr
:
6956 case X86::VSCATTERDPSZ128mr
:
6957 case X86::VSCATTERDPSZ256mr
:
6958 case X86::VSCATTERDPSZmr
:
6959 case X86::VSCATTERPF0DPDm
:
6960 case X86::VSCATTERPF0DPSm
:
6961 case X86::VSCATTERPF0QPDm
:
6962 case X86::VSCATTERPF0QPSm
:
6963 case X86::VSCATTERPF1DPDm
:
6964 case X86::VSCATTERPF1DPSm
:
6965 case X86::VSCATTERPF1QPDm
:
6966 case X86::VSCATTERPF1QPSm
:
6967 case X86::VSCATTERQPDZ128mr
:
6968 case X86::VSCATTERQPDZ256mr
:
6969 case X86::VSCATTERQPDZmr
:
6970 case X86::VSCATTERQPSZ128mr
:
6971 case X86::VSCATTERQPSZ256mr
:
6972 case X86::VSCATTERQPSZmr
:
6973 case X86::VPSCATTERDDZ128mr
:
6974 case X86::VPSCATTERDDZ256mr
:
6975 case X86::VPSCATTERDDZmr
:
6976 case X86::VPSCATTERDQZ128mr
:
6977 case X86::VPSCATTERDQZ256mr
:
6978 case X86::VPSCATTERDQZmr
:
6979 case X86::VPSCATTERQDZ128mr
:
6980 case X86::VPSCATTERQDZ256mr
:
6981 case X86::VPSCATTERQDZmr
:
6982 case X86::VPSCATTERQQZ128mr
:
6983 case X86::VPSCATTERQQZ256mr
:
6984 case X86::VPSCATTERQQZmr
:
6989 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
6990 const MachineRegisterInfo
*MRI
,
6991 const MachineInstr
&DefMI
,
6993 const MachineInstr
&UseMI
,
6994 unsigned UseIdx
) const {
6995 return isHighLatencyDef(DefMI
.getOpcode());
6998 bool X86InstrInfo::hasReassociableOperands(const MachineInstr
&Inst
,
6999 const MachineBasicBlock
*MBB
) const {
7000 assert((Inst
.getNumOperands() == 3 || Inst
.getNumOperands() == 4) &&
7001 "Reassociation needs binary operators");
7003 // Integer binary math/logic instructions have a third source operand:
7004 // the EFLAGS register. That operand must be both defined here and never
7005 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
7006 // not change anything because rearranging the operands could affect other
7007 // instructions that depend on the exact status flags (zero, sign, etc.)
7008 // that are set by using these particular operands with this operation.
7009 if (Inst
.getNumOperands() == 4) {
7010 assert(Inst
.getOperand(3).isReg() &&
7011 Inst
.getOperand(3).getReg() == X86::EFLAGS
&&
7012 "Unexpected operand in reassociable instruction");
7013 if (!Inst
.getOperand(3).isDead())
7017 return TargetInstrInfo::hasReassociableOperands(Inst
, MBB
);
7020 // TODO: There are many more machine instruction opcodes to match:
7021 // 1. Other data types (integer, vectors)
7022 // 2. Other math / logic operations (xor, or)
7023 // 3. Other forms of the same operation (intrinsics and other variants)
7024 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
7025 switch (Inst
.getOpcode()) {
7070 case X86::VPANDDZ128rr
:
7071 case X86::VPANDDZ256rr
:
7072 case X86::VPANDDZrr
:
7073 case X86::VPANDQZ128rr
:
7074 case X86::VPANDQZ256rr
:
7075 case X86::VPANDQZrr
:
7078 case X86::VPORDZ128rr
:
7079 case X86::VPORDZ256rr
:
7081 case X86::VPORQZ128rr
:
7082 case X86::VPORQZ256rr
:
7086 case X86::VPXORDZ128rr
:
7087 case X86::VPXORDZ256rr
:
7088 case X86::VPXORDZrr
:
7089 case X86::VPXORQZ128rr
:
7090 case X86::VPXORQZ256rr
:
7091 case X86::VPXORQZrr
:
7094 case X86::VANDPDYrr
:
7095 case X86::VANDPSYrr
:
7096 case X86::VANDPDZ128rr
:
7097 case X86::VANDPSZ128rr
:
7098 case X86::VANDPDZ256rr
:
7099 case X86::VANDPSZ256rr
:
7100 case X86::VANDPDZrr
:
7101 case X86::VANDPSZrr
:
7106 case X86::VORPDZ128rr
:
7107 case X86::VORPSZ128rr
:
7108 case X86::VORPDZ256rr
:
7109 case X86::VORPSZ256rr
:
7114 case X86::VXORPDYrr
:
7115 case X86::VXORPSYrr
:
7116 case X86::VXORPDZ128rr
:
7117 case X86::VXORPSZ128rr
:
7118 case X86::VXORPDZ256rr
:
7119 case X86::VXORPSZ256rr
:
7120 case X86::VXORPDZrr
:
7121 case X86::VXORPSZrr
:
7142 case X86::VPADDBYrr
:
7143 case X86::VPADDWYrr
:
7144 case X86::VPADDDYrr
:
7145 case X86::VPADDQYrr
:
7146 case X86::VPADDBZ128rr
:
7147 case X86::VPADDWZ128rr
:
7148 case X86::VPADDDZ128rr
:
7149 case X86::VPADDQZ128rr
:
7150 case X86::VPADDBZ256rr
:
7151 case X86::VPADDWZ256rr
:
7152 case X86::VPADDDZ256rr
:
7153 case X86::VPADDQZ256rr
:
7154 case X86::VPADDBZrr
:
7155 case X86::VPADDWZrr
:
7156 case X86::VPADDDZrr
:
7157 case X86::VPADDQZrr
:
7158 case X86::VPMULLWrr
:
7159 case X86::VPMULLWYrr
:
7160 case X86::VPMULLWZ128rr
:
7161 case X86::VPMULLWZ256rr
:
7162 case X86::VPMULLWZrr
:
7163 case X86::VPMULLDrr
:
7164 case X86::VPMULLDYrr
:
7165 case X86::VPMULLDZ128rr
:
7166 case X86::VPMULLDZ256rr
:
7167 case X86::VPMULLDZrr
:
7168 case X86::VPMULLQZ128rr
:
7169 case X86::VPMULLQZ256rr
:
7170 case X86::VPMULLQZrr
:
7171 case X86::VPMAXSBrr
:
7172 case X86::VPMAXSBYrr
:
7173 case X86::VPMAXSBZ128rr
:
7174 case X86::VPMAXSBZ256rr
:
7175 case X86::VPMAXSBZrr
:
7176 case X86::VPMAXSDrr
:
7177 case X86::VPMAXSDYrr
:
7178 case X86::VPMAXSDZ128rr
:
7179 case X86::VPMAXSDZ256rr
:
7180 case X86::VPMAXSDZrr
:
7181 case X86::VPMAXSQZ128rr
:
7182 case X86::VPMAXSQZ256rr
:
7183 case X86::VPMAXSQZrr
:
7184 case X86::VPMAXSWrr
:
7185 case X86::VPMAXSWYrr
:
7186 case X86::VPMAXSWZ128rr
:
7187 case X86::VPMAXSWZ256rr
:
7188 case X86::VPMAXSWZrr
:
7189 case X86::VPMAXUBrr
:
7190 case X86::VPMAXUBYrr
:
7191 case X86::VPMAXUBZ128rr
:
7192 case X86::VPMAXUBZ256rr
:
7193 case X86::VPMAXUBZrr
:
7194 case X86::VPMAXUDrr
:
7195 case X86::VPMAXUDYrr
:
7196 case X86::VPMAXUDZ128rr
:
7197 case X86::VPMAXUDZ256rr
:
7198 case X86::VPMAXUDZrr
:
7199 case X86::VPMAXUQZ128rr
:
7200 case X86::VPMAXUQZ256rr
:
7201 case X86::VPMAXUQZrr
:
7202 case X86::VPMAXUWrr
:
7203 case X86::VPMAXUWYrr
:
7204 case X86::VPMAXUWZ128rr
:
7205 case X86::VPMAXUWZ256rr
:
7206 case X86::VPMAXUWZrr
:
7207 case X86::VPMINSBrr
:
7208 case X86::VPMINSBYrr
:
7209 case X86::VPMINSBZ128rr
:
7210 case X86::VPMINSBZ256rr
:
7211 case X86::VPMINSBZrr
:
7212 case X86::VPMINSDrr
:
7213 case X86::VPMINSDYrr
:
7214 case X86::VPMINSDZ128rr
:
7215 case X86::VPMINSDZ256rr
:
7216 case X86::VPMINSDZrr
:
7217 case X86::VPMINSQZ128rr
:
7218 case X86::VPMINSQZ256rr
:
7219 case X86::VPMINSQZrr
:
7220 case X86::VPMINSWrr
:
7221 case X86::VPMINSWYrr
:
7222 case X86::VPMINSWZ128rr
:
7223 case X86::VPMINSWZ256rr
:
7224 case X86::VPMINSWZrr
:
7225 case X86::VPMINUBrr
:
7226 case X86::VPMINUBYrr
:
7227 case X86::VPMINUBZ128rr
:
7228 case X86::VPMINUBZ256rr
:
7229 case X86::VPMINUBZrr
:
7230 case X86::VPMINUDrr
:
7231 case X86::VPMINUDYrr
:
7232 case X86::VPMINUDZ128rr
:
7233 case X86::VPMINUDZ256rr
:
7234 case X86::VPMINUDZrr
:
7235 case X86::VPMINUQZ128rr
:
7236 case X86::VPMINUQZ256rr
:
7237 case X86::VPMINUQZrr
:
7238 case X86::VPMINUWrr
:
7239 case X86::VPMINUWYrr
:
7240 case X86::VPMINUWZ128rr
:
7241 case X86::VPMINUWZ256rr
:
7242 case X86::VPMINUWZrr
:
7243 // Normal min/max instructions are not commutative because of NaN and signed
7244 // zero semantics, but these are. Thus, there's no need to check for global
7245 // relaxed math; the instructions themselves have the properties we need.
7254 case X86::VMAXCPDrr
:
7255 case X86::VMAXCPSrr
:
7256 case X86::VMAXCPDYrr
:
7257 case X86::VMAXCPSYrr
:
7258 case X86::VMAXCPDZ128rr
:
7259 case X86::VMAXCPSZ128rr
:
7260 case X86::VMAXCPDZ256rr
:
7261 case X86::VMAXCPSZ256rr
:
7262 case X86::VMAXCPDZrr
:
7263 case X86::VMAXCPSZrr
:
7264 case X86::VMAXCSDrr
:
7265 case X86::VMAXCSSrr
:
7266 case X86::VMAXCSDZrr
:
7267 case X86::VMAXCSSZrr
:
7268 case X86::VMINCPDrr
:
7269 case X86::VMINCPSrr
:
7270 case X86::VMINCPDYrr
:
7271 case X86::VMINCPSYrr
:
7272 case X86::VMINCPDZ128rr
:
7273 case X86::VMINCPSZ128rr
:
7274 case X86::VMINCPDZ256rr
:
7275 case X86::VMINCPSZ256rr
:
7276 case X86::VMINCPDZrr
:
7277 case X86::VMINCPSZrr
:
7278 case X86::VMINCSDrr
:
7279 case X86::VMINCSSrr
:
7280 case X86::VMINCSDZrr
:
7281 case X86::VMINCSSZrr
:
7293 case X86::VADDPDYrr
:
7294 case X86::VADDPSYrr
:
7295 case X86::VADDPDZ128rr
:
7296 case X86::VADDPSZ128rr
:
7297 case X86::VADDPDZ256rr
:
7298 case X86::VADDPSZ256rr
:
7299 case X86::VADDPDZrr
:
7300 case X86::VADDPSZrr
:
7303 case X86::VADDSDZrr
:
7304 case X86::VADDSSZrr
:
7307 case X86::VMULPDYrr
:
7308 case X86::VMULPSYrr
:
7309 case X86::VMULPDZ128rr
:
7310 case X86::VMULPSZ128rr
:
7311 case X86::VMULPDZ256rr
:
7312 case X86::VMULPSZ256rr
:
7313 case X86::VMULPDZrr
:
7314 case X86::VMULPSZrr
:
7317 case X86::VMULSDZrr
:
7318 case X86::VMULSSZrr
:
7319 return Inst
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
;
7325 /// This is an architecture-specific helper function of reassociateOps.
7326 /// Set special operand attributes for new instructions after reassociation.
7327 void X86InstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
7328 MachineInstr
&OldMI2
,
7329 MachineInstr
&NewMI1
,
7330 MachineInstr
&NewMI2
) const {
7331 // Integer instructions define an implicit EFLAGS source register operand as
7332 // the third source (fourth total) operand.
7333 if (OldMI1
.getNumOperands() != 4 || OldMI2
.getNumOperands() != 4)
7336 assert(NewMI1
.getNumOperands() == 4 && NewMI2
.getNumOperands() == 4 &&
7337 "Unexpected instruction type for reassociation");
7339 MachineOperand
&OldOp1
= OldMI1
.getOperand(3);
7340 MachineOperand
&OldOp2
= OldMI2
.getOperand(3);
7341 MachineOperand
&NewOp1
= NewMI1
.getOperand(3);
7342 MachineOperand
&NewOp2
= NewMI2
.getOperand(3);
7344 assert(OldOp1
.isReg() && OldOp1
.getReg() == X86::EFLAGS
&& OldOp1
.isDead() &&
7345 "Must have dead EFLAGS operand in reassociable instruction");
7346 assert(OldOp2
.isReg() && OldOp2
.getReg() == X86::EFLAGS
&& OldOp2
.isDead() &&
7347 "Must have dead EFLAGS operand in reassociable instruction");
7352 assert(NewOp1
.isReg() && NewOp1
.getReg() == X86::EFLAGS
&&
7353 "Unexpected operand in reassociable instruction");
7354 assert(NewOp2
.isReg() && NewOp2
.getReg() == X86::EFLAGS
&&
7355 "Unexpected operand in reassociable instruction");
7357 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
7358 // of this pass or other passes. The EFLAGS operands must be dead in these new
7359 // instructions because the EFLAGS operands in the original instructions must
7360 // be dead in order for reassociation to occur.
7365 std::pair
<unsigned, unsigned>
7366 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
7367 return std::make_pair(TF
, 0u);
7370 ArrayRef
<std::pair
<unsigned, const char *>>
7371 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
7372 using namespace X86II
;
7373 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
7374 {MO_GOT_ABSOLUTE_ADDRESS
, "x86-got-absolute-address"},
7375 {MO_PIC_BASE_OFFSET
, "x86-pic-base-offset"},
7376 {MO_GOT
, "x86-got"},
7377 {MO_GOTOFF
, "x86-gotoff"},
7378 {MO_GOTPCREL
, "x86-gotpcrel"},
7379 {MO_PLT
, "x86-plt"},
7380 {MO_TLSGD
, "x86-tlsgd"},
7381 {MO_TLSLD
, "x86-tlsld"},
7382 {MO_TLSLDM
, "x86-tlsldm"},
7383 {MO_GOTTPOFF
, "x86-gottpoff"},
7384 {MO_INDNTPOFF
, "x86-indntpoff"},
7385 {MO_TPOFF
, "x86-tpoff"},
7386 {MO_DTPOFF
, "x86-dtpoff"},
7387 {MO_NTPOFF
, "x86-ntpoff"},
7388 {MO_GOTNTPOFF
, "x86-gotntpoff"},
7389 {MO_DLLIMPORT
, "x86-dllimport"},
7390 {MO_DARWIN_NONLAZY
, "x86-darwin-nonlazy"},
7391 {MO_DARWIN_NONLAZY_PIC_BASE
, "x86-darwin-nonlazy-pic-base"},
7392 {MO_TLVP
, "x86-tlvp"},
7393 {MO_TLVP_PIC_BASE
, "x86-tlvp-pic-base"},
7394 {MO_SECREL
, "x86-secrel"},
7395 {MO_COFFSTUB
, "x86-coffstub"}};
7396 return makeArrayRef(TargetFlags
);
7400 /// Create Global Base Reg pass. This initializes the PIC
7401 /// global base register for x86-32.
7402 struct CGBR
: public MachineFunctionPass
{
7404 CGBR() : MachineFunctionPass(ID
) {}
7406 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7407 const X86TargetMachine
*TM
=
7408 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
7409 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
7411 // Don't do anything in the 64-bit small and kernel code models. They use
7412 // RIP-relative addressing for everything.
7413 if (STI
.is64Bit() && (TM
->getCodeModel() == CodeModel::Small
||
7414 TM
->getCodeModel() == CodeModel::Kernel
))
7417 // Only emit a global base reg in PIC mode.
7418 if (!TM
->isPositionIndependent())
7421 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7422 unsigned GlobalBaseReg
= X86FI
->getGlobalBaseReg();
7424 // If we didn't need a GlobalBaseReg, don't insert code.
7425 if (GlobalBaseReg
== 0)
7428 // Insert the set of GlobalBaseReg into the first MBB of the function
7429 MachineBasicBlock
&FirstMBB
= MF
.front();
7430 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
7431 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
7432 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7433 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7436 if (STI
.isPICStyleGOT())
7437 PC
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
7441 if (STI
.is64Bit()) {
7442 if (TM
->getCodeModel() == CodeModel::Medium
) {
7443 // In the medium code model, use a RIP-relative LEA to materialize the
7445 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PC
)
7449 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
7451 } else if (TM
->getCodeModel() == CodeModel::Large
) {
7452 // In the large code model, we are aiming for this code, though the
7453 // register allocation may vary:
7454 // leaq .LN$pb(%rip), %rax
7455 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
7457 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
7458 unsigned PBReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7460 RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
7461 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PBReg
)
7465 .addSym(MF
.getPICBaseSymbol())
7467 std::prev(MBBI
)->setPreInstrSymbol(MF
, MF
.getPICBaseSymbol());
7468 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOV64ri
), GOTReg
)
7469 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7470 X86II::MO_PIC_BASE_OFFSET
);
7471 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD64rr
), PC
)
7472 .addReg(PBReg
, RegState::Kill
)
7473 .addReg(GOTReg
, RegState::Kill
);
7475 llvm_unreachable("unexpected code model");
7478 // Operand of MovePCtoStack is completely ignored by asm printer. It's
7479 // only used in JIT code emission as displacement to pc.
7480 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
7482 // If we're using vanilla 'GOT' PIC style, we should use relative
7483 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
7484 if (STI
.isPICStyleGOT()) {
7485 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
7487 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
7489 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
7490 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
7497 StringRef
getPassName() const override
{
7498 return "X86 PIC Global Base Reg Initialization";
7501 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7502 AU
.setPreservesCFG();
7503 MachineFunctionPass::getAnalysisUsage(AU
);
7510 llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
7513 struct LDTLSCleanup
: public MachineFunctionPass
{
7515 LDTLSCleanup() : MachineFunctionPass(ID
) {}
7517 bool runOnMachineFunction(MachineFunction
&MF
) override
{
7518 if (skipFunction(MF
.getFunction()))
7521 X86MachineFunctionInfo
*MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7522 if (MFI
->getNumLocalDynamicTLSAccesses() < 2) {
7523 // No point folding accesses if there isn't at least two.
7527 MachineDominatorTree
*DT
= &getAnalysis
<MachineDominatorTree
>();
7528 return VisitNode(DT
->getRootNode(), 0);
7531 // Visit the dominator subtree rooted at Node in pre-order.
7532 // If TLSBaseAddrReg is non-null, then use that to replace any
7533 // TLS_base_addr instructions. Otherwise, create the register
7534 // when the first such instruction is seen, and then use it
7535 // as we encounter more instructions.
7536 bool VisitNode(MachineDomTreeNode
*Node
, unsigned TLSBaseAddrReg
) {
7537 MachineBasicBlock
*BB
= Node
->getBlock();
7538 bool Changed
= false;
7540 // Traverse the current block.
7541 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
7543 switch (I
->getOpcode()) {
7544 case X86::TLS_base_addr32
:
7545 case X86::TLS_base_addr64
:
7547 I
= ReplaceTLSBaseAddrCall(*I
, TLSBaseAddrReg
);
7549 I
= SetRegister(*I
, &TLSBaseAddrReg
);
7557 // Visit the children of this block in the dominator tree.
7558 for (MachineDomTreeNode::iterator I
= Node
->begin(), E
= Node
->end();
7560 Changed
|= VisitNode(*I
, TLSBaseAddrReg
);
7566 // Replace the TLS_base_addr instruction I with a copy from
7567 // TLSBaseAddrReg, returning the new instruction.
7568 MachineInstr
*ReplaceTLSBaseAddrCall(MachineInstr
&I
,
7569 unsigned TLSBaseAddrReg
) {
7570 MachineFunction
*MF
= I
.getParent()->getParent();
7571 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7572 const bool is64Bit
= STI
.is64Bit();
7573 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7575 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
7576 MachineInstr
*Copy
=
7577 BuildMI(*I
.getParent(), I
, I
.getDebugLoc(),
7578 TII
->get(TargetOpcode::COPY
), is64Bit
? X86::RAX
: X86::EAX
)
7579 .addReg(TLSBaseAddrReg
);
7581 // Erase the TLS_base_addr instruction.
7582 I
.eraseFromParent();
7587 // Create a virtual register in *TLSBaseAddrReg, and populate it by
7588 // inserting a copy instruction after I. Returns the new instruction.
7589 MachineInstr
*SetRegister(MachineInstr
&I
, unsigned *TLSBaseAddrReg
) {
7590 MachineFunction
*MF
= I
.getParent()->getParent();
7591 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
7592 const bool is64Bit
= STI
.is64Bit();
7593 const X86InstrInfo
*TII
= STI
.getInstrInfo();
7595 // Create a virtual register for the TLS base address.
7596 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
7597 *TLSBaseAddrReg
= RegInfo
.createVirtualRegister(is64Bit
7598 ? &X86::GR64RegClass
7599 : &X86::GR32RegClass
);
7601 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
7602 MachineInstr
*Next
= I
.getNextNode();
7603 MachineInstr
*Copy
=
7604 BuildMI(*I
.getParent(), Next
, I
.getDebugLoc(),
7605 TII
->get(TargetOpcode::COPY
), *TLSBaseAddrReg
)
7606 .addReg(is64Bit
? X86::RAX
: X86::EAX
);
7611 StringRef
getPassName() const override
{
7612 return "Local Dynamic TLS Access Clean-up";
7615 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
7616 AU
.setPreservesCFG();
7617 AU
.addRequired
<MachineDominatorTree
>();
7618 MachineFunctionPass::getAnalysisUsage(AU
);
7623 char LDTLSCleanup::ID
= 0;
7625 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
7627 /// Constants defining how certain sequences should be outlined.
7629 /// \p MachineOutlinerDefault implies that the function is called with a call
7630 /// instruction, and a return must be emitted for the outlined function frame.
7634 /// I1 OUTLINED_FUNCTION:
7635 /// I2 --> call OUTLINED_FUNCTION I1
7640 /// * Call construction overhead: 1 (call instruction)
7641 /// * Frame construction overhead: 1 (return instruction)
7643 /// \p MachineOutlinerTailCall implies that the function is being tail called.
7644 /// A jump is emitted instead of a call, and the return is already present in
7645 /// the outlined sequence. That is,
7647 /// I1 OUTLINED_FUNCTION:
7648 /// I2 --> jmp OUTLINED_FUNCTION I1
7652 /// * Call construction overhead: 1 (jump instruction)
7653 /// * Frame construction overhead: 0 (don't need to return)
7655 enum MachineOutlinerClass
{
7656 MachineOutlinerDefault
,
7657 MachineOutlinerTailCall
7660 outliner::OutlinedFunction
X86InstrInfo::getOutliningCandidateInfo(
7661 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
7662 unsigned SequenceSize
=
7663 std::accumulate(RepeatedSequenceLocs
[0].front(),
7664 std::next(RepeatedSequenceLocs
[0].back()), 0,
7665 [](unsigned Sum
, const MachineInstr
&MI
) {
7666 // FIXME: x86 doesn't implement getInstSizeInBytes, so
7667 // we can't tell the cost. Just assume each instruction
7669 if (MI
.isDebugInstr() || MI
.isKill())
7674 // FIXME: Use real size in bytes for call and ret instructions.
7675 if (RepeatedSequenceLocs
[0].back()->isTerminator()) {
7676 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
7677 C
.setCallInfo(MachineOutlinerTailCall
, 1);
7679 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
,
7680 0, // Number of bytes to emit frame.
7681 MachineOutlinerTailCall
// Type of frame.
7685 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
7686 C
.setCallInfo(MachineOutlinerDefault
, 1);
7688 return outliner::OutlinedFunction(RepeatedSequenceLocs
, SequenceSize
, 1,
7689 MachineOutlinerDefault
);
7692 bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
7693 bool OutlineFromLinkOnceODRs
) const {
7694 const Function
&F
= MF
.getFunction();
7696 // Does the function use a red zone? If it does, then we can't risk messing
7698 if (Subtarget
.getFrameLowering()->has128ByteRedZone(MF
)) {
7699 // It could have a red zone. If it does, then we don't want to touch it.
7700 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
7701 if (!X86FI
|| X86FI
->getUsesRedZone())
7705 // If we *don't* want to outline from things that could potentially be deduped
7706 // then return false.
7707 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
7710 // This function is viable for outlining, so return true.
7715 X86InstrInfo::getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
7716 MachineInstr
&MI
= *MIT
;
7717 // Don't allow debug values to impact outlining type.
7718 if (MI
.isDebugInstr() || MI
.isIndirectDebugValue())
7719 return outliner::InstrType::Invisible
;
7721 // At this point, KILL instructions don't really tell us much so we can go
7722 // ahead and skip over them.
7724 return outliner::InstrType::Invisible
;
7726 // Is this a tail call? If yes, we can outline as a tail call.
7728 return outliner::InstrType::Legal
;
7730 // Is this the terminator of a basic block?
7731 if (MI
.isTerminator() || MI
.isReturn()) {
7733 // Does its parent have any successors in its MachineFunction?
7734 if (MI
.getParent()->succ_empty())
7735 return outliner::InstrType::Legal
;
7737 // It does, so we can't tail call it.
7738 return outliner::InstrType::Illegal
;
7741 // Don't outline anything that modifies or reads from the stack pointer.
7743 // FIXME: There are instructions which are being manually built without
7744 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
7745 // able to remove the extra checks once those are fixed up. For example,
7746 // sometimes we might get something like %rax = POP64r 1. This won't be
7747 // caught by modifiesRegister or readsRegister even though the instruction
7748 // really ought to be formed so that modifiesRegister/readsRegister would
7750 if (MI
.modifiesRegister(X86::RSP
, &RI
) || MI
.readsRegister(X86::RSP
, &RI
) ||
7751 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RSP
) ||
7752 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RSP
))
7753 return outliner::InstrType::Illegal
;
7755 // Outlined calls change the instruction pointer, so don't read from it.
7756 if (MI
.readsRegister(X86::RIP
, &RI
) ||
7757 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RIP
) ||
7758 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RIP
))
7759 return outliner::InstrType::Illegal
;
7761 // Positions can't safely be outlined.
7762 if (MI
.isPosition())
7763 return outliner::InstrType::Illegal
;
7765 // Make sure none of the operands of this instruction do anything tricky.
7766 for (const MachineOperand
&MOP
: MI
.operands())
7767 if (MOP
.isCPI() || MOP
.isJTI() || MOP
.isCFIIndex() || MOP
.isFI() ||
7768 MOP
.isTargetIndex())
7769 return outliner::InstrType::Illegal
;
7771 return outliner::InstrType::Legal
;
7774 void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock
&MBB
,
7775 MachineFunction
&MF
,
7776 const outliner::OutlinedFunction
&OF
)
7778 // If we're a tail call, we already have a return, so don't do anything.
7779 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
)
7782 // We're a normal call, so our sequence doesn't have a return instruction.
7784 MachineInstr
*retq
= BuildMI(MF
, DebugLoc(), get(X86::RETQ
));
7785 MBB
.insert(MBB
.end(), retq
);
7788 MachineBasicBlock::iterator
7789 X86InstrInfo::insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
7790 MachineBasicBlock::iterator
&It
,
7791 MachineFunction
&MF
,
7792 const outliner::Candidate
&C
) const {
7793 // Is it a tail call?
7794 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
7795 // Yes, just insert a JMP.
7797 BuildMI(MF
, DebugLoc(), get(X86::TAILJMPd64
))
7798 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
7800 // No, insert a call.
7802 BuildMI(MF
, DebugLoc(), get(X86::CALL64pcrel32
))
7803 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
7809 #define GET_INSTRINFO_HELPERS
7810 #include "X86GenInstrInfo.inc"