1 //===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the targeting of the Machinelegalizer class for X86.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
13 #include "X86LegalizerInfo.h"
14 #include "X86Subtarget.h"
15 #include "X86TargetMachine.h"
16 #include "llvm/CodeGen/TargetOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Type.h"
22 using namespace TargetOpcode
;
23 using namespace LegalizeActions
;
25 /// FIXME: The following static functions are SizeChangeStrategy functions
26 /// that are meant to temporarily mimic the behaviour of the old legalization
27 /// based on doubling/halving non-legal types as closely as possible. This is
28 /// not entirly possible as only legalizing the types that are exactly a power
29 /// of 2 times the size of the legal types would require specifying all those
31 /// In practice, not specifying those isn't a problem, and the below functions
32 /// should disappear quickly as we add support for legalizing non-power-of-2
33 /// sized types further.
35 addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec
&result
,
36 const LegalizerInfo::SizeAndActionsVec
&v
) {
37 for (unsigned i
= 0; i
< v
.size(); ++i
) {
38 result
.push_back(v
[i
]);
39 if (i
+ 1 < v
[i
].first
&& i
+ 1 < v
.size() &&
40 v
[i
+ 1].first
!= v
[i
].first
+ 1)
41 result
.push_back({v
[i
].first
+ 1, Unsupported
});
45 static LegalizerInfo::SizeAndActionsVec
46 widen_1(const LegalizerInfo::SizeAndActionsVec
&v
) {
47 assert(v
.size() >= 1);
48 assert(v
[0].first
> 1);
49 LegalizerInfo::SizeAndActionsVec result
= {{1, WidenScalar
},
51 addAndInterleaveWithUnsupported(result
, v
);
52 auto Largest
= result
.back().first
;
53 result
.push_back({Largest
+ 1, Unsupported
});
57 X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget
&STI
,
58 const X86TargetMachine
&TM
)
59 : Subtarget(STI
), TM(TM
) {
61 setLegalizerInfo32bit();
62 setLegalizerInfo64bit();
63 setLegalizerInfoSSE1();
64 setLegalizerInfoSSE2();
65 setLegalizerInfoSSE41();
66 setLegalizerInfoAVX();
67 setLegalizerInfoAVX2();
68 setLegalizerInfoAVX512();
69 setLegalizerInfoAVX512DQ();
70 setLegalizerInfoAVX512BW();
72 setLegalizeScalarToDifferentSizeStrategy(G_PHI
, 0, widen_1
);
73 for (unsigned BinOp
: {G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
74 setLegalizeScalarToDifferentSizeStrategy(BinOp
, 0, widen_1
);
75 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
76 setLegalizeScalarToDifferentSizeStrategy(MemOp
, 0,
77 narrowToSmallerAndWidenToSmallest
);
78 setLegalizeScalarToDifferentSizeStrategy(
79 G_GEP
, 1, widenToLargerTypesUnsupportedOtherwise
);
80 setLegalizeScalarToDifferentSizeStrategy(
81 G_CONSTANT
, 0, widenToLargerTypesAndNarrowToLargest
);
84 verify(*STI
.getInstrInfo());
87 void X86LegalizerInfo::setLegalizerInfo32bit() {
89 const LLT p0
= LLT::pointer(0, TM
.getPointerSizeInBits(0));
90 const LLT s1
= LLT::scalar(1);
91 const LLT s8
= LLT::scalar(8);
92 const LLT s16
= LLT::scalar(16);
93 const LLT s32
= LLT::scalar(32);
94 const LLT s64
= LLT::scalar(64);
95 const LLT s128
= LLT::scalar(128);
97 for (auto Ty
: {p0
, s1
, s8
, s16
, s32
})
98 setAction({G_IMPLICIT_DEF
, Ty
}, Legal
);
100 for (auto Ty
: {s8
, s16
, s32
, p0
})
101 setAction({G_PHI
, Ty
}, Legal
);
103 for (unsigned BinOp
: {G_ADD
, G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
104 for (auto Ty
: {s8
, s16
, s32
})
105 setAction({BinOp
, Ty
}, Legal
);
107 for (unsigned Op
: {G_UADDE
}) {
108 setAction({Op
, s32
}, Legal
);
109 setAction({Op
, 1, s1
}, Legal
);
112 for (unsigned MemOp
: {G_LOAD
, G_STORE
}) {
113 for (auto Ty
: {s8
, s16
, s32
, p0
})
114 setAction({MemOp
, Ty
}, Legal
);
116 // And everything's fine in addrspace 0.
117 setAction({MemOp
, 1, p0
}, Legal
);
121 setAction({G_FRAME_INDEX
, p0
}, Legal
);
122 setAction({G_GLOBAL_VALUE
, p0
}, Legal
);
124 setAction({G_GEP
, p0
}, Legal
);
125 setAction({G_GEP
, 1, s32
}, Legal
);
127 if (!Subtarget
.is64Bit()) {
128 getActionDefinitionsBuilder(G_PTRTOINT
)
129 .legalForCartesianProduct({s1
, s8
, s16
, s32
}, {p0
})
131 .widenScalarToNextPow2(0, /*Min*/ 8);
132 getActionDefinitionsBuilder(G_INTTOPTR
).legalFor({{p0
, s32
}});
135 getActionDefinitionsBuilder(
136 {G_SDIV
, G_SREM
, G_UDIV
, G_UREM
})
137 .legalFor({s8
, s16
, s32
})
138 .clampScalar(0, s8
, s32
);
140 getActionDefinitionsBuilder(
141 {G_SHL
, G_LSHR
, G_ASHR
})
142 .legalFor({{s8
, s8
}, {s16
, s8
}, {s32
, s8
}})
143 .clampScalar(0, s8
, s32
)
144 .clampScalar(1, s8
, s8
);
148 setAction({G_BRCOND
, s1
}, Legal
);
151 for (auto Ty
: {s8
, s16
, s32
, p0
})
152 setAction({TargetOpcode::G_CONSTANT
, Ty
}, Legal
);
155 for (auto Ty
: {s8
, s16
, s32
}) {
156 setAction({G_ZEXT
, Ty
}, Legal
);
157 setAction({G_SEXT
, Ty
}, Legal
);
158 setAction({G_ANYEXT
, Ty
}, Legal
);
160 setAction({G_ANYEXT
, s128
}, Legal
);
163 setAction({G_ICMP
, s1
}, Legal
);
165 for (auto Ty
: {s8
, s16
, s32
, p0
})
166 setAction({G_ICMP
, 1, Ty
}, Legal
);
169 for (const auto &Ty
: {s16
, s32
, s64
}) {
170 setAction({G_MERGE_VALUES
, Ty
}, Legal
);
171 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
173 for (const auto &Ty
: {s8
, s16
, s32
}) {
174 setAction({G_MERGE_VALUES
, 1, Ty
}, Legal
);
175 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
179 void X86LegalizerInfo::setLegalizerInfo64bit() {
181 if (!Subtarget
.is64Bit())
184 const LLT p0
= LLT::pointer(0, TM
.getPointerSizeInBits(0));
185 const LLT s1
= LLT::scalar(1);
186 const LLT s8
= LLT::scalar(8);
187 const LLT s16
= LLT::scalar(16);
188 const LLT s32
= LLT::scalar(32);
189 const LLT s64
= LLT::scalar(64);
190 const LLT s128
= LLT::scalar(128);
192 setAction({G_IMPLICIT_DEF
, s64
}, Legal
);
193 // Need to have that, as tryFoldImplicitDef will create this pattern:
194 // s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
195 setAction({G_IMPLICIT_DEF
, s128
}, Legal
);
197 setAction({G_PHI
, s64
}, Legal
);
199 for (unsigned BinOp
: {G_ADD
, G_SUB
, G_MUL
, G_AND
, G_OR
, G_XOR
})
200 setAction({BinOp
, s64
}, Legal
);
202 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
203 setAction({MemOp
, s64
}, Legal
);
206 setAction({G_GEP
, 1, s64
}, Legal
);
207 getActionDefinitionsBuilder(G_PTRTOINT
)
208 .legalForCartesianProduct({s1
, s8
, s16
, s32
, s64
}, {p0
})
210 .widenScalarToNextPow2(0, /*Min*/ 8);
211 getActionDefinitionsBuilder(G_INTTOPTR
).legalFor({{p0
, s64
}});
214 setAction({TargetOpcode::G_CONSTANT
, s64
}, Legal
);
217 for (unsigned extOp
: {G_ZEXT
, G_SEXT
, G_ANYEXT
}) {
218 setAction({extOp
, s64
}, Legal
);
221 getActionDefinitionsBuilder(G_SITOFP
)
222 .legalForCartesianProduct({s32
, s64
})
223 .clampScalar(1, s32
, s64
)
224 .widenScalarToNextPow2(1)
225 .clampScalar(0, s32
, s64
)
226 .widenScalarToNextPow2(0);
228 getActionDefinitionsBuilder(G_FPTOSI
)
229 .legalForCartesianProduct({s32
, s64
})
230 .clampScalar(1, s32
, s64
)
231 .widenScalarToNextPow2(0)
232 .clampScalar(0, s32
, s64
)
233 .widenScalarToNextPow2(1);
236 setAction({G_ICMP
, 1, s64
}, Legal
);
238 getActionDefinitionsBuilder(G_FCMP
)
239 .legalForCartesianProduct({s8
}, {s32
, s64
})
240 .clampScalar(0, s8
, s8
)
241 .clampScalar(1, s32
, s64
)
242 .widenScalarToNextPow2(1);
245 getActionDefinitionsBuilder(
246 {G_SDIV
, G_SREM
, G_UDIV
, G_UREM
})
247 .legalFor({s8
, s16
, s32
, s64
})
248 .clampScalar(0, s8
, s64
);
251 getActionDefinitionsBuilder(
252 {G_SHL
, G_LSHR
, G_ASHR
})
253 .legalFor({{s8
, s8
}, {s16
, s8
}, {s32
, s8
}, {s64
, s8
}})
254 .clampScalar(0, s8
, s64
)
255 .clampScalar(1, s8
, s8
);
258 setAction({G_MERGE_VALUES
, s128
}, Legal
);
259 setAction({G_UNMERGE_VALUES
, 1, s128
}, Legal
);
260 setAction({G_MERGE_VALUES
, 1, s128
}, Legal
);
261 setAction({G_UNMERGE_VALUES
, s128
}, Legal
);
264 void X86LegalizerInfo::setLegalizerInfoSSE1() {
265 if (!Subtarget
.hasSSE1())
268 const LLT s32
= LLT::scalar(32);
269 const LLT s64
= LLT::scalar(64);
270 const LLT v4s32
= LLT::vector(4, 32);
271 const LLT v2s64
= LLT::vector(2, 64);
273 for (unsigned BinOp
: {G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
})
274 for (auto Ty
: {s32
, v4s32
})
275 setAction({BinOp
, Ty
}, Legal
);
277 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
278 for (auto Ty
: {v4s32
, v2s64
})
279 setAction({MemOp
, Ty
}, Legal
);
282 setAction({TargetOpcode::G_FCONSTANT
, s32
}, Legal
);
285 for (const auto &Ty
: {v4s32
, v2s64
}) {
286 setAction({G_CONCAT_VECTORS
, Ty
}, Legal
);
287 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
289 setAction({G_MERGE_VALUES
, 1, s64
}, Legal
);
290 setAction({G_UNMERGE_VALUES
, s64
}, Legal
);
293 void X86LegalizerInfo::setLegalizerInfoSSE2() {
294 if (!Subtarget
.hasSSE2())
297 const LLT s32
= LLT::scalar(32);
298 const LLT s64
= LLT::scalar(64);
299 const LLT v16s8
= LLT::vector(16, 8);
300 const LLT v8s16
= LLT::vector(8, 16);
301 const LLT v4s32
= LLT::vector(4, 32);
302 const LLT v2s64
= LLT::vector(2, 64);
304 const LLT v32s8
= LLT::vector(32, 8);
305 const LLT v16s16
= LLT::vector(16, 16);
306 const LLT v8s32
= LLT::vector(8, 32);
307 const LLT v4s64
= LLT::vector(4, 64);
309 for (unsigned BinOp
: {G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
})
310 for (auto Ty
: {s64
, v2s64
})
311 setAction({BinOp
, Ty
}, Legal
);
313 for (unsigned BinOp
: {G_ADD
, G_SUB
})
314 for (auto Ty
: {v16s8
, v8s16
, v4s32
, v2s64
})
315 setAction({BinOp
, Ty
}, Legal
);
317 setAction({G_MUL
, v8s16
}, Legal
);
319 setAction({G_FPEXT
, s64
}, Legal
);
320 setAction({G_FPEXT
, 1, s32
}, Legal
);
322 setAction({G_FPTRUNC
, s32
}, Legal
);
323 setAction({G_FPTRUNC
, 1, s64
}, Legal
);
326 setAction({TargetOpcode::G_FCONSTANT
, s64
}, Legal
);
329 for (const auto &Ty
:
330 {v16s8
, v32s8
, v8s16
, v16s16
, v4s32
, v8s32
, v2s64
, v4s64
}) {
331 setAction({G_CONCAT_VECTORS
, Ty
}, Legal
);
332 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
334 for (const auto &Ty
: {v16s8
, v8s16
, v4s32
, v2s64
}) {
335 setAction({G_CONCAT_VECTORS
, 1, Ty
}, Legal
);
336 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
340 void X86LegalizerInfo::setLegalizerInfoSSE41() {
341 if (!Subtarget
.hasSSE41())
344 const LLT v4s32
= LLT::vector(4, 32);
346 setAction({G_MUL
, v4s32
}, Legal
);
349 void X86LegalizerInfo::setLegalizerInfoAVX() {
350 if (!Subtarget
.hasAVX())
353 const LLT v16s8
= LLT::vector(16, 8);
354 const LLT v8s16
= LLT::vector(8, 16);
355 const LLT v4s32
= LLT::vector(4, 32);
356 const LLT v2s64
= LLT::vector(2, 64);
358 const LLT v32s8
= LLT::vector(32, 8);
359 const LLT v64s8
= LLT::vector(64, 8);
360 const LLT v16s16
= LLT::vector(16, 16);
361 const LLT v32s16
= LLT::vector(32, 16);
362 const LLT v8s32
= LLT::vector(8, 32);
363 const LLT v16s32
= LLT::vector(16, 32);
364 const LLT v4s64
= LLT::vector(4, 64);
365 const LLT v8s64
= LLT::vector(8, 64);
367 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
368 for (auto Ty
: {v8s32
, v4s64
})
369 setAction({MemOp
, Ty
}, Legal
);
371 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
}) {
372 setAction({G_INSERT
, Ty
}, Legal
);
373 setAction({G_EXTRACT
, 1, Ty
}, Legal
);
375 for (auto Ty
: {v16s8
, v8s16
, v4s32
, v2s64
}) {
376 setAction({G_INSERT
, 1, Ty
}, Legal
);
377 setAction({G_EXTRACT
, Ty
}, Legal
);
380 for (const auto &Ty
:
381 {v32s8
, v64s8
, v16s16
, v32s16
, v8s32
, v16s32
, v4s64
, v8s64
}) {
382 setAction({G_CONCAT_VECTORS
, Ty
}, Legal
);
383 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
385 for (const auto &Ty
:
386 {v16s8
, v32s8
, v8s16
, v16s16
, v4s32
, v8s32
, v2s64
, v4s64
}) {
387 setAction({G_CONCAT_VECTORS
, 1, Ty
}, Legal
);
388 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
392 void X86LegalizerInfo::setLegalizerInfoAVX2() {
393 if (!Subtarget
.hasAVX2())
396 const LLT v32s8
= LLT::vector(32, 8);
397 const LLT v16s16
= LLT::vector(16, 16);
398 const LLT v8s32
= LLT::vector(8, 32);
399 const LLT v4s64
= LLT::vector(4, 64);
401 const LLT v64s8
= LLT::vector(64, 8);
402 const LLT v32s16
= LLT::vector(32, 16);
403 const LLT v16s32
= LLT::vector(16, 32);
404 const LLT v8s64
= LLT::vector(8, 64);
406 for (unsigned BinOp
: {G_ADD
, G_SUB
})
407 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
})
408 setAction({BinOp
, Ty
}, Legal
);
410 for (auto Ty
: {v16s16
, v8s32
})
411 setAction({G_MUL
, Ty
}, Legal
);
414 for (const auto &Ty
: {v64s8
, v32s16
, v16s32
, v8s64
}) {
415 setAction({G_CONCAT_VECTORS
, Ty
}, Legal
);
416 setAction({G_UNMERGE_VALUES
, 1, Ty
}, Legal
);
418 for (const auto &Ty
: {v32s8
, v16s16
, v8s32
, v4s64
}) {
419 setAction({G_CONCAT_VECTORS
, 1, Ty
}, Legal
);
420 setAction({G_UNMERGE_VALUES
, Ty
}, Legal
);
424 void X86LegalizerInfo::setLegalizerInfoAVX512() {
425 if (!Subtarget
.hasAVX512())
428 const LLT v16s8
= LLT::vector(16, 8);
429 const LLT v8s16
= LLT::vector(8, 16);
430 const LLT v4s32
= LLT::vector(4, 32);
431 const LLT v2s64
= LLT::vector(2, 64);
433 const LLT v32s8
= LLT::vector(32, 8);
434 const LLT v16s16
= LLT::vector(16, 16);
435 const LLT v8s32
= LLT::vector(8, 32);
436 const LLT v4s64
= LLT::vector(4, 64);
438 const LLT v64s8
= LLT::vector(64, 8);
439 const LLT v32s16
= LLT::vector(32, 16);
440 const LLT v16s32
= LLT::vector(16, 32);
441 const LLT v8s64
= LLT::vector(8, 64);
443 for (unsigned BinOp
: {G_ADD
, G_SUB
})
444 for (auto Ty
: {v16s32
, v8s64
})
445 setAction({BinOp
, Ty
}, Legal
);
447 setAction({G_MUL
, v16s32
}, Legal
);
449 for (unsigned MemOp
: {G_LOAD
, G_STORE
})
450 for (auto Ty
: {v16s32
, v8s64
})
451 setAction({MemOp
, Ty
}, Legal
);
453 for (auto Ty
: {v64s8
, v32s16
, v16s32
, v8s64
}) {
454 setAction({G_INSERT
, Ty
}, Legal
);
455 setAction({G_EXTRACT
, 1, Ty
}, Legal
);
457 for (auto Ty
: {v32s8
, v16s16
, v8s32
, v4s64
, v16s8
, v8s16
, v4s32
, v2s64
}) {
458 setAction({G_INSERT
, 1, Ty
}, Legal
);
459 setAction({G_EXTRACT
, Ty
}, Legal
);
462 /************ VLX *******************/
463 if (!Subtarget
.hasVLX())
466 for (auto Ty
: {v4s32
, v8s32
})
467 setAction({G_MUL
, Ty
}, Legal
);
470 void X86LegalizerInfo::setLegalizerInfoAVX512DQ() {
471 if (!(Subtarget
.hasAVX512() && Subtarget
.hasDQI()))
474 const LLT v8s64
= LLT::vector(8, 64);
476 setAction({G_MUL
, v8s64
}, Legal
);
478 /************ VLX *******************/
479 if (!Subtarget
.hasVLX())
482 const LLT v2s64
= LLT::vector(2, 64);
483 const LLT v4s64
= LLT::vector(4, 64);
485 for (auto Ty
: {v2s64
, v4s64
})
486 setAction({G_MUL
, Ty
}, Legal
);
489 void X86LegalizerInfo::setLegalizerInfoAVX512BW() {
490 if (!(Subtarget
.hasAVX512() && Subtarget
.hasBWI()))
493 const LLT v64s8
= LLT::vector(64, 8);
494 const LLT v32s16
= LLT::vector(32, 16);
496 for (unsigned BinOp
: {G_ADD
, G_SUB
})
497 for (auto Ty
: {v64s8
, v32s16
})
498 setAction({BinOp
, Ty
}, Legal
);
500 setAction({G_MUL
, v32s16
}, Legal
);
502 /************ VLX *******************/
503 if (!Subtarget
.hasVLX())
506 const LLT v8s16
= LLT::vector(8, 16);
507 const LLT v16s16
= LLT::vector(16, 16);
509 for (auto Ty
: {v8s16
, v16s16
})
510 setAction({G_MUL
, Ty
}, Legal
);