1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Provide a pass which mitigates speculative execution attacks which operate
11 /// by speculating incorrectly past some predicate (a type check, bounds check,
12 /// or other condition) to reach a load with invalid inputs and leak the data
13 /// accessed by that load using a side channel out of the speculative domain.
15 /// For details on the attacks, see the first variant in both the Project Zero
16 /// writeup and the Spectre paper:
17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
18 /// https://spectreattack.com/spectre.pdf
20 //===----------------------------------------------------------------------===//
23 #include "X86InstrBuilder.h"
24 #include "X86InstrInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/Optional.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/MachineSSAUpdater.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/TargetSchedule.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/MC/MCSchedule.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
63 #define PASS_KEY "x86-slh"
64 #define DEBUG_TYPE PASS_KEY
66 STATISTIC(NumCondBranchesTraced
, "Number of conditional branches traced");
67 STATISTIC(NumBranchesUntraced
, "Number of branches unable to trace");
68 STATISTIC(NumAddrRegsHardened
,
69 "Number of address mode used registers hardaned");
70 STATISTIC(NumPostLoadRegsHardened
,
71 "Number of post-load register values hardened");
72 STATISTIC(NumCallsOrJumpsHardened
,
73 "Number of calls or jumps requiring extra hardening");
74 STATISTIC(NumInstsInserted
, "Number of instructions inserted");
75 STATISTIC(NumLFENCEsInserted
, "Number of lfence instructions inserted");
77 static cl::opt
<bool> EnableSpeculativeLoadHardening(
78 "x86-speculative-load-hardening",
79 cl::desc("Force enable speculative load hardening"), cl::init(false),
82 static cl::opt
<bool> HardenEdgesWithLFENCE(
85 "Use LFENCE along each conditional edge to harden against speculative "
86 "loads rather than conditional movs and poisoned pointers."),
87 cl::init(false), cl::Hidden
);
89 static cl::opt
<bool> EnablePostLoadHardening(
90 PASS_KEY
"-post-load",
91 cl::desc("Harden the value loaded *after* it is loaded by "
92 "flushing the loaded bits to 1. This is hard to do "
93 "in general but can be done easily for GPRs."),
94 cl::init(true), cl::Hidden
);
96 static cl::opt
<bool> FenceCallAndRet(
97 PASS_KEY
"-fence-call-and-ret",
98 cl::desc("Use a full speculation fence to harden both call and ret edges "
99 "rather than a lighter weight mitigation."),
100 cl::init(false), cl::Hidden
);
102 static cl::opt
<bool> HardenInterprocedurally(
104 cl::desc("Harden interprocedurally by passing our state in and out of "
105 "functions in the high bits of the stack pointer."),
106 cl::init(true), cl::Hidden
);
109 HardenLoads(PASS_KEY
"-loads",
110 cl::desc("Sanitize loads from memory. When disable, no "
111 "significant security is provided."),
112 cl::init(true), cl::Hidden
);
114 static cl::opt
<bool> HardenIndirectCallsAndJumps(
115 PASS_KEY
"-indirect",
116 cl::desc("Harden indirect calls and jumps against using speculatively "
117 "stored attacker controlled addresses. This is designed to "
118 "mitigate Spectre v1.2 style attacks."),
119 cl::init(true), cl::Hidden
);
123 class X86SpeculativeLoadHardeningPass
: public MachineFunctionPass
{
125 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID
) { }
127 StringRef
getPassName() const override
{
128 return "X86 speculative load hardening";
130 bool runOnMachineFunction(MachineFunction
&MF
) override
;
131 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
133 /// Pass identification, replacement for typeid.
137 /// The information about a block's conditional terminators needed to trace
138 /// our predicate state through the exiting edges.
139 struct BlockCondInfo
{
140 MachineBasicBlock
*MBB
;
142 // We mostly have one conditional branch, and in extremely rare cases have
143 // two. Three and more are so rare as to be unimportant for compile time.
144 SmallVector
<MachineInstr
*, 2> CondBrs
;
146 MachineInstr
*UncondBr
;
149 /// Manages the predicate state traced through the program.
154 const TargetRegisterClass
*RC
;
155 MachineSSAUpdater SSA
;
157 PredState(MachineFunction
&MF
, const TargetRegisterClass
*RC
)
161 const X86Subtarget
*Subtarget
;
162 MachineRegisterInfo
*MRI
;
163 const X86InstrInfo
*TII
;
164 const TargetRegisterInfo
*TRI
;
166 Optional
<PredState
> PS
;
168 void hardenEdgesWithLFENCE(MachineFunction
&MF
);
170 SmallVector
<BlockCondInfo
, 16> collectBlockCondInfo(MachineFunction
&MF
);
172 SmallVector
<MachineInstr
*, 16>
173 tracePredStateThroughCFG(MachineFunction
&MF
, ArrayRef
<BlockCondInfo
> Infos
);
175 void unfoldCallAndJumpLoads(MachineFunction
&MF
);
177 SmallVector
<MachineInstr
*, 16>
178 tracePredStateThroughIndirectBranches(MachineFunction
&MF
);
180 void tracePredStateThroughBlocksAndHarden(MachineFunction
&MF
);
182 unsigned saveEFLAGS(MachineBasicBlock
&MBB
,
183 MachineBasicBlock::iterator InsertPt
, DebugLoc Loc
);
184 void restoreEFLAGS(MachineBasicBlock
&MBB
,
185 MachineBasicBlock::iterator InsertPt
, DebugLoc Loc
,
188 void mergePredStateIntoSP(MachineBasicBlock
&MBB
,
189 MachineBasicBlock::iterator InsertPt
, DebugLoc Loc
,
190 unsigned PredStateReg
);
191 unsigned extractPredStateFromSP(MachineBasicBlock
&MBB
,
192 MachineBasicBlock::iterator InsertPt
,
196 hardenLoadAddr(MachineInstr
&MI
, MachineOperand
&BaseMO
,
197 MachineOperand
&IndexMO
,
198 SmallDenseMap
<unsigned, unsigned, 32> &AddrRegToHardenedReg
);
200 sinkPostLoadHardenedInst(MachineInstr
&MI
,
201 SmallPtrSetImpl
<MachineInstr
*> &HardenedInstrs
);
202 bool canHardenRegister(unsigned Reg
);
203 unsigned hardenValueInRegister(unsigned Reg
, MachineBasicBlock
&MBB
,
204 MachineBasicBlock::iterator InsertPt
,
206 unsigned hardenPostLoad(MachineInstr
&MI
);
207 void hardenReturnInstr(MachineInstr
&MI
);
208 void tracePredStateThroughCall(MachineInstr
&MI
);
209 void hardenIndirectCallOrJumpInstr(
211 SmallDenseMap
<unsigned, unsigned, 32> &AddrRegToHardenedReg
);
214 } // end anonymous namespace
216 char X86SpeculativeLoadHardeningPass::ID
= 0;
218 void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
219 AnalysisUsage
&AU
) const {
220 MachineFunctionPass::getAnalysisUsage(AU
);
223 static MachineBasicBlock
&splitEdge(MachineBasicBlock
&MBB
,
224 MachineBasicBlock
&Succ
, int SuccCount
,
225 MachineInstr
*Br
, MachineInstr
*&UncondBr
,
226 const X86InstrInfo
&TII
) {
227 assert(!Succ
.isEHPad() && "Shouldn't get edges to EH pads!");
229 MachineFunction
&MF
= *MBB
.getParent();
231 MachineBasicBlock
&NewMBB
= *MF
.CreateMachineBasicBlock();
233 // We have to insert the new block immediately after the current one as we
234 // don't know what layout-successor relationships the successor has and we
235 // may not be able to (and generally don't want to) try to fix those up.
236 MF
.insert(std::next(MachineFunction::iterator(&MBB
)), &NewMBB
);
238 // Update the branch instruction if necessary.
240 assert(Br
->getOperand(0).getMBB() == &Succ
&&
241 "Didn't start with the right target!");
242 Br
->getOperand(0).setMBB(&NewMBB
);
244 // If this successor was reached through a branch rather than fallthrough,
245 // we might have *broken* fallthrough and so need to inject a new
246 // unconditional branch.
248 MachineBasicBlock
&OldLayoutSucc
=
249 *std::next(MachineFunction::iterator(&NewMBB
));
250 assert(MBB
.isSuccessor(&OldLayoutSucc
) &&
251 "Without an unconditional branch, the old layout successor should "
252 "be an actual successor!");
254 BuildMI(&MBB
, DebugLoc(), TII
.get(X86::JMP_1
)).addMBB(&OldLayoutSucc
);
255 // Update the unconditional branch now that we've added one.
256 UncondBr
= &*BrBuilder
;
259 // Insert unconditional "jump Succ" instruction in the new block if
261 if (!NewMBB
.isLayoutSuccessor(&Succ
)) {
262 SmallVector
<MachineOperand
, 4> Cond
;
263 TII
.insertBranch(NewMBB
, &Succ
, nullptr, Cond
, Br
->getDebugLoc());
267 "Cannot have a branchless successor and an unconditional branch!");
268 assert(NewMBB
.isLayoutSuccessor(&Succ
) &&
269 "A non-branch successor must have been a layout successor before "
270 "and now is a layout successor of the new block.");
273 // If this is the only edge to the successor, we can just replace it in the
274 // CFG. Otherwise we need to add a new entry in the CFG for the new
276 if (SuccCount
== 1) {
277 MBB
.replaceSuccessor(&Succ
, &NewMBB
);
279 MBB
.splitSuccessor(&Succ
, &NewMBB
);
282 // Hook up the edge from the new basic block to the old successor in the CFG.
283 NewMBB
.addSuccessor(&Succ
);
285 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
286 for (MachineInstr
&MI
: Succ
) {
289 for (int OpIdx
= 1, NumOps
= MI
.getNumOperands(); OpIdx
< NumOps
;
291 MachineOperand
&OpV
= MI
.getOperand(OpIdx
);
292 MachineOperand
&OpMBB
= MI
.getOperand(OpIdx
+ 1);
293 assert(OpMBB
.isMBB() && "Block operand to a PHI is not a block!");
294 if (OpMBB
.getMBB() != &MBB
)
297 // If this is the last edge to the succesor, just replace MBB in the PHI
298 if (SuccCount
== 1) {
299 OpMBB
.setMBB(&NewMBB
);
303 // Otherwise, append a new pair of operands for the new incoming edge.
304 MI
.addOperand(MF
, OpV
);
305 MI
.addOperand(MF
, MachineOperand::CreateMBB(&NewMBB
));
310 // Inherit live-ins from the successor
311 for (auto &LI
: Succ
.liveins())
312 NewMBB
.addLiveIn(LI
);
314 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB
.getName() << "' to '"
315 << Succ
.getName() << "'.\n");
319 /// Removing duplicate PHI operands to leave the PHI in a canonical and
320 /// predictable form.
322 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
323 /// isn't what you might expect. We may have multiple entries in PHI nodes for
324 /// a single predecessor. This makes CFG-updating extremely complex, so here we
325 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
326 /// one entry per predecessor, regardless of how many edges there are.
327 static void canonicalizePHIOperands(MachineFunction
&MF
) {
328 SmallPtrSet
<MachineBasicBlock
*, 4> Preds
;
329 SmallVector
<int, 4> DupIndices
;
331 for (auto &MI
: MBB
) {
335 // First we scan the operands of the PHI looking for duplicate entries
336 // a particular predecessor. We retain the operand index of each duplicate
338 for (int OpIdx
= 1, NumOps
= MI
.getNumOperands(); OpIdx
< NumOps
;
340 if (!Preds
.insert(MI
.getOperand(OpIdx
+ 1).getMBB()).second
)
341 DupIndices
.push_back(OpIdx
);
343 // Now walk the duplicate indices, removing both the block and value. Note
344 // that these are stored as a vector making this element-wise removal
346 // potentially quadratic.
348 // FIXME: It is really frustrating that we have to use a quadratic
349 // removal algorithm here. There should be a better way, but the use-def
350 // updates required make that impossible using the public API.
352 // Note that we have to process these backwards so that we don't
353 // invalidate other indices with each removal.
354 while (!DupIndices
.empty()) {
355 int OpIdx
= DupIndices
.pop_back_val();
356 // Remove both the block and value operand, again in reverse order to
358 MI
.RemoveOperand(OpIdx
+ 1);
359 MI
.RemoveOperand(OpIdx
);
366 /// Helper to scan a function for loads vulnerable to misspeculation that we
369 /// We use this to avoid making changes to functions where there is nothing we
370 /// need to do to harden against misspeculation.
371 static bool hasVulnerableLoad(MachineFunction
&MF
) {
372 for (MachineBasicBlock
&MBB
: MF
) {
373 for (MachineInstr
&MI
: MBB
) {
374 // Loads within this basic block after an LFENCE are not at risk of
375 // speculatively executing with invalid predicates from prior control
376 // flow. So break out of this block but continue scanning the function.
377 if (MI
.getOpcode() == X86::LFENCE
)
380 // Looking for loads only.
384 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
385 if (MI
.getOpcode() == X86::MFENCE
)
397 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
398 MachineFunction
&MF
) {
399 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF
.getName()
402 // Only run if this pass is forced enabled or we detect the relevant function
403 // attribute requesting SLH.
404 if (!EnableSpeculativeLoadHardening
&&
405 !MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
408 Subtarget
= &MF
.getSubtarget
<X86Subtarget
>();
409 MRI
= &MF
.getRegInfo();
410 TII
= Subtarget
->getInstrInfo();
411 TRI
= Subtarget
->getRegisterInfo();
413 // FIXME: Support for 32-bit.
414 PS
.emplace(MF
, &X86::GR64_NOSPRegClass
);
416 if (MF
.begin() == MF
.end())
417 // Nothing to do for a degenerate empty function...
420 // We support an alternative hardening technique based on a debug flag.
421 if (HardenEdgesWithLFENCE
) {
422 hardenEdgesWithLFENCE(MF
);
426 // Create a dummy debug loc to use for all the generated code here.
429 MachineBasicBlock
&Entry
= *MF
.begin();
430 auto EntryInsertPt
= Entry
.SkipPHIsLabelsAndDebug(Entry
.begin());
432 // Do a quick scan to see if we have any checkable loads.
433 bool HasVulnerableLoad
= hasVulnerableLoad(MF
);
435 // See if we have any conditional branching blocks that we will need to trace
436 // predicate state through.
437 SmallVector
<BlockCondInfo
, 16> Infos
= collectBlockCondInfo(MF
);
439 // If we have no interesting conditions or loads, nothing to do here.
440 if (!HasVulnerableLoad
&& Infos
.empty())
443 // The poison value is required to be an all-ones value for many aspects of
445 const int PoisonVal
= -1;
446 PS
->PoisonReg
= MRI
->createVirtualRegister(PS
->RC
);
447 BuildMI(Entry
, EntryInsertPt
, Loc
, TII
->get(X86::MOV64ri32
), PS
->PoisonReg
)
451 // If we have loads being hardened and we've asked for call and ret edges to
452 // get a full fence-based mitigation, inject that fence.
453 if (HasVulnerableLoad
&& FenceCallAndRet
) {
454 // We need to insert an LFENCE at the start of the function to suspend any
455 // incoming misspeculation from the caller. This helps two-fold: the caller
456 // may not have been protected as this code has been, and this code gets to
457 // not take any specific action to protect across calls.
458 // FIXME: We could skip this for functions which unconditionally return
460 BuildMI(Entry
, EntryInsertPt
, Loc
, TII
->get(X86::LFENCE
));
462 ++NumLFENCEsInserted
;
465 // If we guarded the entry with an LFENCE and have no conditionals to protect
466 // in blocks, then we're done.
467 if (FenceCallAndRet
&& Infos
.empty())
468 // We may have changed the function's code at this point to insert fences.
471 // For every basic block in the function which can b
472 if (HardenInterprocedurally
&& !FenceCallAndRet
) {
473 // Set up the predicate state by extracting it from the incoming stack
474 // pointer so we pick up any misspeculation in our caller.
475 PS
->InitialReg
= extractPredStateFromSP(Entry
, EntryInsertPt
, Loc
);
477 // Otherwise, just build the predicate state itself by zeroing a register
478 // as we don't need any initial state.
479 PS
->InitialReg
= MRI
->createVirtualRegister(PS
->RC
);
480 unsigned PredStateSubReg
= MRI
->createVirtualRegister(&X86::GR32RegClass
);
481 auto ZeroI
= BuildMI(Entry
, EntryInsertPt
, Loc
, TII
->get(X86::MOV32r0
),
484 MachineOperand
*ZeroEFLAGSDefOp
=
485 ZeroI
->findRegisterDefOperand(X86::EFLAGS
);
486 assert(ZeroEFLAGSDefOp
&& ZeroEFLAGSDefOp
->isImplicit() &&
487 "Must have an implicit def of EFLAGS!");
488 ZeroEFLAGSDefOp
->setIsDead(true);
489 BuildMI(Entry
, EntryInsertPt
, Loc
, TII
->get(X86::SUBREG_TO_REG
),
492 .addReg(PredStateSubReg
)
493 .addImm(X86::sub_32bit
);
496 // We're going to need to trace predicate state throughout the function's
497 // CFG. Prepare for this by setting up our initial state of PHIs with unique
498 // predecessor entries and all the initial predicate state.
499 canonicalizePHIOperands(MF
);
501 // Track the updated values in an SSA updater to rewrite into SSA form at the
503 PS
->SSA
.Initialize(PS
->InitialReg
);
504 PS
->SSA
.AddAvailableValue(&Entry
, PS
->InitialReg
);
506 // Trace through the CFG.
507 auto CMovs
= tracePredStateThroughCFG(MF
, Infos
);
509 // We may also enter basic blocks in this function via exception handling
510 // control flow. Here, if we are hardening interprocedurally, we need to
511 // re-capture the predicate state from the throwing code. In the Itanium ABI,
512 // the throw will always look like a call to __cxa_throw and will have the
513 // predicate state in the stack pointer, so extract fresh predicate state from
514 // the stack pointer and make it available in SSA.
515 // FIXME: Handle non-itanium ABI EH models.
516 if (HardenInterprocedurally
) {
517 for (MachineBasicBlock
&MBB
: MF
) {
518 assert(!MBB
.isEHScopeEntry() && "Only Itanium ABI EH supported!");
519 assert(!MBB
.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
520 assert(!MBB
.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
523 PS
->SSA
.AddAvailableValue(
525 extractPredStateFromSP(MBB
, MBB
.SkipPHIsAndLabels(MBB
.begin()), Loc
));
529 if (HardenIndirectCallsAndJumps
) {
530 // If we are going to harden calls and jumps we need to unfold their memory
532 unfoldCallAndJumpLoads(MF
);
534 // Then we trace predicate state through the indirect branches.
535 auto IndirectBrCMovs
= tracePredStateThroughIndirectBranches(MF
);
536 CMovs
.append(IndirectBrCMovs
.begin(), IndirectBrCMovs
.end());
539 // Now that we have the predicate state available at the start of each block
540 // in the CFG, trace it through each block, hardening vulnerable instructions
542 tracePredStateThroughBlocksAndHarden(MF
);
544 // Now rewrite all the uses of the pred state using the SSA updater to insert
545 // PHIs connecting the state between blocks along the CFG edges.
546 for (MachineInstr
*CMovI
: CMovs
)
547 for (MachineOperand
&Op
: CMovI
->operands()) {
548 if (!Op
.isReg() || Op
.getReg() != PS
->InitialReg
)
551 PS
->SSA
.RewriteUse(Op
);
554 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF
.dump();
555 dbgs() << "\n"; MF
.verify(this));
559 /// Implements the naive hardening approach of putting an LFENCE after every
560 /// potentially mis-predicted control flow construct.
562 /// We include this as an alternative mostly for the purpose of comparison. The
563 /// performance impact of this is expected to be extremely severe and not
564 /// practical for any real-world users.
565 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
566 MachineFunction
&MF
) {
567 // First, we scan the function looking for blocks that are reached along edges
568 // that we might want to harden.
569 SmallSetVector
<MachineBasicBlock
*, 8> Blocks
;
570 for (MachineBasicBlock
&MBB
: MF
) {
571 // If there are no or only one successor, nothing to do here.
572 if (MBB
.succ_size() <= 1)
575 // Skip blocks unless their terminators start with a branch. Other
576 // terminators don't seem interesting for guarding against misspeculation.
577 auto TermIt
= MBB
.getFirstTerminator();
578 if (TermIt
== MBB
.end() || !TermIt
->isBranch())
581 // Add all the non-EH-pad succossors to the blocks we want to harden. We
582 // skip EH pads because there isn't really a condition of interest on
584 for (MachineBasicBlock
*SuccMBB
: MBB
.successors())
585 if (!SuccMBB
->isEHPad())
586 Blocks
.insert(SuccMBB
);
589 for (MachineBasicBlock
*MBB
: Blocks
) {
590 auto InsertPt
= MBB
->SkipPHIsAndLabels(MBB
->begin());
591 BuildMI(*MBB
, InsertPt
, DebugLoc(), TII
->get(X86::LFENCE
));
593 ++NumLFENCEsInserted
;
597 SmallVector
<X86SpeculativeLoadHardeningPass::BlockCondInfo
, 16>
598 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction
&MF
) {
599 SmallVector
<BlockCondInfo
, 16> Infos
;
601 // Walk the function and build up a summary for each block's conditions that
602 // we need to trace through.
603 for (MachineBasicBlock
&MBB
: MF
) {
604 // If there are no or only one successor, nothing to do here.
605 if (MBB
.succ_size() <= 1)
608 // We want to reliably handle any conditional branch terminators in the
609 // MBB, so we manually analyze the branch. We can handle all of the
610 // permutations here, including ones that analyze branch cannot.
612 // The approach is to walk backwards across the terminators, resetting at
613 // any unconditional non-indirect branch, and track all conditional edges
614 // to basic blocks as well as the fallthrough or unconditional successor
615 // edge. For each conditional edge, we track the target and the opposite
616 // condition code in order to inject a "no-op" cmov into that successor
617 // that will harden the predicate. For the fallthrough/unconditional
618 // edge, we inject a separate cmov for each conditional branch with
619 // matching condition codes. This effectively implements an "and" of the
620 // condition flags, even if there isn't a single condition flag that would
621 // directly implement that. We don't bother trying to optimize either of
622 // these cases because if such an optimization is possible, LLVM should
623 // have optimized the conditional *branches* in that way already to reduce
624 // instruction count. This late, we simply assume the minimal number of
625 // branch instructions is being emitted and use that to guide our cmov
628 BlockCondInfo Info
= {&MBB
, {}, nullptr};
630 // Now walk backwards through the terminators and build up successors they
631 // reach and the conditions.
632 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
633 // Once we've handled all the terminators, we're done.
634 if (!MI
.isTerminator())
637 // If we see a non-branch terminator, we can't handle anything so bail.
638 if (!MI
.isBranch()) {
639 Info
.CondBrs
.clear();
643 // If we see an unconditional branch, reset our state, clear any
644 // fallthrough, and set this is the "else" successor.
645 if (MI
.getOpcode() == X86::JMP_1
) {
646 Info
.CondBrs
.clear();
651 // If we get an invalid condition, we have an indirect branch or some
652 // other unanalyzable "fallthrough" case. We model this as a nullptr for
653 // the destination so we can still guard any conditional successors.
654 // Consider code sequences like:
659 // We still want to harden the edge to `L1`.
660 if (X86::getCondFromBranch(MI
) == X86::COND_INVALID
) {
661 Info
.CondBrs
.clear();
666 // We have a vanilla conditional branch, add it to our list.
667 Info
.CondBrs
.push_back(&MI
);
669 if (Info
.CondBrs
.empty()) {
670 ++NumBranchesUntraced
;
671 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
676 Infos
.push_back(Info
);
682 /// Trace the predicate state through the CFG, instrumenting each conditional
683 /// branch such that misspeculation through an edge will poison the predicate
686 /// Returns the list of inserted CMov instructions so that they can have their
687 /// uses of the predicate state rewritten into proper SSA form once it is
689 SmallVector
<MachineInstr
*, 16>
690 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
691 MachineFunction
&MF
, ArrayRef
<BlockCondInfo
> Infos
) {
692 // Collect the inserted cmov instructions so we can rewrite their uses of the
693 // predicate state into SSA form.
694 SmallVector
<MachineInstr
*, 16> CMovs
;
696 // Now walk all of the basic blocks looking for ones that end in conditional
697 // jumps where we need to update this register along each edge.
698 for (const BlockCondInfo
&Info
: Infos
) {
699 MachineBasicBlock
&MBB
= *Info
.MBB
;
700 const SmallVectorImpl
<MachineInstr
*> &CondBrs
= Info
.CondBrs
;
701 MachineInstr
*UncondBr
= Info
.UncondBr
;
703 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB
.getName()
705 ++NumCondBranchesTraced
;
707 // Compute the non-conditional successor as either the target of any
708 // unconditional branch or the layout successor.
709 MachineBasicBlock
*UncondSucc
=
710 UncondBr
? (UncondBr
->getOpcode() == X86::JMP_1
711 ? UncondBr
->getOperand(0).getMBB()
713 : &*std::next(MachineFunction::iterator(&MBB
));
715 // Count how many edges there are to any given successor.
716 SmallDenseMap
<MachineBasicBlock
*, int> SuccCounts
;
718 ++SuccCounts
[UncondSucc
];
719 for (auto *CondBr
: CondBrs
)
720 ++SuccCounts
[CondBr
->getOperand(0).getMBB()];
722 // A lambda to insert cmov instructions into a block checking all of the
723 // condition codes in a sequence.
724 auto BuildCheckingBlockForSuccAndConds
=
725 [&](MachineBasicBlock
&MBB
, MachineBasicBlock
&Succ
, int SuccCount
,
726 MachineInstr
*Br
, MachineInstr
*&UncondBr
,
727 ArrayRef
<X86::CondCode
> Conds
) {
728 // First, we split the edge to insert the checking block into a safe
731 (SuccCount
== 1 && Succ
.pred_size() == 1)
733 : splitEdge(MBB
, Succ
, SuccCount
, Br
, UncondBr
, *TII
);
735 bool LiveEFLAGS
= Succ
.isLiveIn(X86::EFLAGS
);
737 CheckingMBB
.addLiveIn(X86::EFLAGS
);
739 // Now insert the cmovs to implement the checks.
740 auto InsertPt
= CheckingMBB
.begin();
741 assert((InsertPt
== CheckingMBB
.end() || !InsertPt
->isPHI()) &&
742 "Should never have a PHI in the initial checking block as it "
743 "always has a single predecessor!");
745 // We will wire each cmov to each other, but need to start with the
746 // incoming pred state.
747 unsigned CurStateReg
= PS
->InitialReg
;
749 for (X86::CondCode Cond
: Conds
) {
750 int PredStateSizeInBytes
= TRI
->getRegSizeInBits(*PS
->RC
) / 8;
751 auto CMovOp
= X86::getCMovOpcode(PredStateSizeInBytes
);
753 unsigned UpdatedStateReg
= MRI
->createVirtualRegister(PS
->RC
);
754 // Note that we intentionally use an empty debug location so that
755 // this picks up the preceding location.
756 auto CMovI
= BuildMI(CheckingMBB
, InsertPt
, DebugLoc(),
757 TII
->get(CMovOp
), UpdatedStateReg
)
759 .addReg(PS
->PoisonReg
)
761 // If this is the last cmov and the EFLAGS weren't originally
762 // live-in, mark them as killed.
763 if (!LiveEFLAGS
&& Cond
== Conds
.back())
764 CMovI
->findRegisterUseOperand(X86::EFLAGS
)->setIsKill(true);
767 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI
->dump();
770 // The first one of the cmovs will be using the top level
771 // `PredStateReg` and need to get rewritten into SSA form.
772 if (CurStateReg
== PS
->InitialReg
)
773 CMovs
.push_back(&*CMovI
);
775 // The next cmov should start from this one's def.
776 CurStateReg
= UpdatedStateReg
;
779 // And put the last one into the available values for SSA form of our
781 PS
->SSA
.AddAvailableValue(&CheckingMBB
, CurStateReg
);
784 std::vector
<X86::CondCode
> UncondCodeSeq
;
785 for (auto *CondBr
: CondBrs
) {
786 MachineBasicBlock
&Succ
= *CondBr
->getOperand(0).getMBB();
787 int &SuccCount
= SuccCounts
[&Succ
];
789 X86::CondCode Cond
= X86::getCondFromBranch(*CondBr
);
790 X86::CondCode InvCond
= X86::GetOppositeBranchCondition(Cond
);
791 UncondCodeSeq
.push_back(Cond
);
793 BuildCheckingBlockForSuccAndConds(MBB
, Succ
, SuccCount
, CondBr
, UncondBr
,
796 // Decrement the successor count now that we've split one of the edges.
797 // We need to keep the count of edges to the successor accurate in order
798 // to know above when to *replace* the successor in the CFG vs. just
799 // adding the new successor.
803 // Since we may have split edges and changed the number of successors,
804 // normalize the probabilities. This avoids doing it each time we split an
806 MBB
.normalizeSuccProbs();
808 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
809 // need to intersect the other condition codes. We can do this by just
810 // doing a cmov for each one.
812 // If we have no fallthrough to protect (perhaps it is an indirect jump?)
813 // just skip this and continue.
816 assert(SuccCounts
[UncondSucc
] == 1 &&
817 "We should never have more than one edge to the unconditional "
818 "successor at this point because every other edge must have been "
821 // Sort and unique the codes to minimize them.
822 llvm::sort(UncondCodeSeq
);
823 UncondCodeSeq
.erase(std::unique(UncondCodeSeq
.begin(), UncondCodeSeq
.end()),
824 UncondCodeSeq
.end());
826 // Build a checking version of the successor.
827 BuildCheckingBlockForSuccAndConds(MBB
, *UncondSucc
, /*SuccCount*/ 1,
828 UncondBr
, UncondBr
, UncondCodeSeq
);
834 /// Compute the register class for the unfolded load.
836 /// FIXME: This should probably live in X86InstrInfo, potentially by adding
837 /// a way to unfold into a newly created vreg rather than requiring a register
839 static const TargetRegisterClass
*
840 getRegClassForUnfoldedLoad(MachineFunction
&MF
, const X86InstrInfo
&TII
,
843 unsigned UnfoldedOpc
= TII
.getOpcodeAfterMemoryUnfold(
844 Opcode
, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index
);
845 const MCInstrDesc
&MCID
= TII
.get(UnfoldedOpc
);
846 return TII
.getRegClass(MCID
, Index
, &TII
.getRegisterInfo(), MF
);
849 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
850 MachineFunction
&MF
) {
851 for (MachineBasicBlock
&MBB
: MF
)
852 for (auto MII
= MBB
.instr_begin(), MIE
= MBB
.instr_end(); MII
!= MIE
;) {
853 // Grab a reference and increment the iterator so we can remove this
854 // instruction if needed without disturbing the iteration.
855 MachineInstr
&MI
= *MII
++;
857 // Must either be a call or a branch.
858 if (!MI
.isCall() && !MI
.isBranch())
860 // We only care about loading variants of these instructions.
864 switch (MI
.getOpcode()) {
867 dbgs() << "ERROR: Found an unexpected loading branch or call "
869 MI
.dump(); dbgs() << "\n");
870 report_fatal_error("Unexpected loading branch or call!");
873 case X86::FARCALL16m
:
874 case X86::FARCALL32m
:
879 // We cannot mitigate far jumps or calls, but we also don't expect them
880 // to be vulnerable to Spectre v1.2 style attacks.
884 case X86::CALL16m_NT
:
886 case X86::CALL32m_NT
:
888 case X86::CALL64m_NT
:
895 case X86::TAILJMPm64
:
896 case X86::TAILJMPm64_REX
:
898 case X86::TCRETURNmi64
:
899 case X86::TCRETURNmi
: {
900 // Use the generic unfold logic now that we know we're dealing with
901 // expected instructions.
902 // FIXME: We don't have test coverage for all of these!
903 auto *UnfoldedRC
= getRegClassForUnfoldedLoad(MF
, *TII
, MI
.getOpcode());
906 << "ERROR: Unable to unfold load from instruction:\n";
907 MI
.dump(); dbgs() << "\n");
908 report_fatal_error("Unable to unfold load!");
910 unsigned Reg
= MRI
->createVirtualRegister(UnfoldedRC
);
911 SmallVector
<MachineInstr
*, 2> NewMIs
;
912 // If we were able to compute an unfolded reg class, any failure here
913 // is just a programming error so just assert.
915 TII
->unfoldMemoryOperand(MF
, MI
, Reg
, /*UnfoldLoad*/ true,
916 /*UnfoldStore*/ false, NewMIs
);
919 "Computed unfolded register class but failed to unfold");
920 // Now stitch the new instructions into place and erase the old one.
921 for (auto *NewMI
: NewMIs
)
922 MBB
.insert(MI
.getIterator(), NewMI
);
923 MI
.eraseFromParent();
925 dbgs() << "Unfolded load successfully into:\n";
926 for (auto *NewMI
: NewMIs
) {
934 llvm_unreachable("Escaped switch with default!");
938 /// Trace the predicate state through indirect branches, instrumenting them to
939 /// poison the state if a target is reached that does not match the expected
942 /// This is designed to mitigate Spectre variant 1 attacks where an indirect
943 /// branch is trained to predict a particular target and then mispredicts that
944 /// target in a way that can leak data. Despite using an indirect branch, this
945 /// is really a variant 1 style attack: it does not steer execution to an
946 /// arbitrary or attacker controlled address, and it does not require any
947 /// special code executing next to the victim. This attack can also be mitigated
948 /// through retpolines, but those require either replacing indirect branches
949 /// with conditional direct branches or lowering them through a device that
950 /// blocks speculation. This mitigation can replace these retpoline-style
951 /// mitigations for jump tables and other indirect branches within a function
952 /// when variant 2 isn't a risk while allowing limited speculation. Indirect
953 /// calls, however, cannot be mitigated through this technique without changing
954 /// the ABI in a fundamental way.
955 SmallVector
<MachineInstr
*, 16>
956 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
957 MachineFunction
&MF
) {
958 // We use the SSAUpdater to insert PHI nodes for the target addresses of
959 // indirect branches. We don't actually need the full power of the SSA updater
960 // in this particular case as we always have immediately available values, but
961 // this avoids us having to re-implement the PHI construction logic.
962 MachineSSAUpdater
TargetAddrSSA(MF
);
963 TargetAddrSSA
.Initialize(MRI
->createVirtualRegister(&X86::GR64RegClass
));
965 // Track which blocks were terminated with an indirect branch.
966 SmallPtrSet
<MachineBasicBlock
*, 4> IndirectTerminatedMBBs
;
968 // We need to know what blocks end up reached via indirect branches. We
969 // expect this to be a subset of those whose address is taken and so track it
970 // directly via the CFG.
971 SmallPtrSet
<MachineBasicBlock
*, 4> IndirectTargetMBBs
;
973 // Walk all the blocks which end in an indirect branch and make the
974 // target address available.
975 for (MachineBasicBlock
&MBB
: MF
) {
976 // Find the last terminator.
977 auto MII
= MBB
.instr_rbegin();
978 while (MII
!= MBB
.instr_rend() && MII
->isDebugInstr())
980 if (MII
== MBB
.instr_rend())
982 MachineInstr
&TI
= *MII
;
983 if (!TI
.isTerminator() || !TI
.isBranch())
984 // No terminator or non-branch terminator.
989 switch (TI
.getOpcode()) {
991 // Direct branch or conditional branch (leading to fallthrough).
997 // We cannot mitigate far jumps or calls, but we also don't expect them
998 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
1002 case X86::JMP16m_NT
:
1004 case X86::JMP32m_NT
:
1006 case X86::JMP64m_NT
:
1007 // Mostly as documentation.
1008 report_fatal_error("Memory operand jumps should have been unfolded!");
1012 "Support for 16-bit indirect branches is not implemented.");
1015 "Support for 32-bit indirect branches is not implemented.");
1018 TargetReg
= TI
.getOperand(0).getReg();
1021 // We have definitely found an indirect branch. Verify that there are no
1022 // preceding conditional branches as we don't yet support that.
1023 if (llvm::any_of(MBB
.terminators(), [&](MachineInstr
&OtherTI
) {
1024 return !OtherTI
.isDebugInstr() && &OtherTI
!= &TI
;
1027 dbgs() << "ERROR: Found other terminators in a block with an indirect "
1028 "branch! This is not yet supported! Terminator sequence:\n";
1029 for (MachineInstr
&MI
: MBB
.terminators()) {
1034 report_fatal_error("Unimplemented terminator sequence!");
1037 // Make the target register an available value for this block.
1038 TargetAddrSSA
.AddAvailableValue(&MBB
, TargetReg
);
1039 IndirectTerminatedMBBs
.insert(&MBB
);
1041 // Add all the successors to our target candidates.
1042 for (MachineBasicBlock
*Succ
: MBB
.successors())
1043 IndirectTargetMBBs
.insert(Succ
);
1046 // Keep track of the cmov instructions we insert so we can return them.
1047 SmallVector
<MachineInstr
*, 16> CMovs
;
1049 // If we didn't find any indirect branches with targets, nothing to do here.
1050 if (IndirectTargetMBBs
.empty())
1053 // We found indirect branches and targets that need to be instrumented to
1054 // harden loads within them. Walk the blocks of the function (to get a stable
1055 // ordering) and instrument each target of an indirect branch.
1056 for (MachineBasicBlock
&MBB
: MF
) {
1057 // Skip the blocks that aren't candidate targets.
1058 if (!IndirectTargetMBBs
.count(&MBB
))
1061 // We don't expect EH pads to ever be reached via an indirect branch. If
1062 // this is desired for some reason, we could simply skip them here rather
1064 assert(!MBB
.isEHPad() &&
1065 "Unexpected EH pad as target of an indirect branch!");
1067 // We should never end up threading EFLAGS into a block to harden
1068 // conditional jumps as there would be an additional successor via the
1069 // indirect branch. As a consequence, all such edges would be split before
1070 // reaching here, and the inserted block will handle the EFLAGS-based
1072 assert(!MBB
.isLiveIn(X86::EFLAGS
) &&
1073 "Cannot check within a block that already has live-in EFLAGS!");
1075 // We can't handle having non-indirect edges into this block unless this is
1076 // the only successor and we can synthesize the necessary target address.
1077 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1078 // If we've already handled this by extracting the target directly,
1080 if (IndirectTerminatedMBBs
.count(Pred
))
1083 // Otherwise, we have to be the only successor. We generally expect this
1084 // to be true as conditional branches should have had a critical edge
1085 // split already. We don't however need to worry about EH pad successors
1086 // as they'll happily ignore the target and their hardening strategy is
1087 // resilient to all ways in which they could be reached speculatively.
1088 if (!llvm::all_of(Pred
->successors(), [&](MachineBasicBlock
*Succ
) {
1089 return Succ
->isEHPad() || Succ
== &MBB
;
1092 dbgs() << "ERROR: Found conditional entry to target of indirect "
1097 report_fatal_error("Cannot harden a conditional entry to a target of "
1098 "an indirect branch!");
1101 // Now we need to compute the address of this block and install it as a
1102 // synthetic target in the predecessor. We do this at the bottom of the
1104 auto InsertPt
= Pred
->getFirstTerminator();
1105 unsigned TargetReg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
1106 if (MF
.getTarget().getCodeModel() == CodeModel::Small
&&
1107 !Subtarget
->isPositionIndependent()) {
1108 // Directly materialize it into an immediate.
1109 auto AddrI
= BuildMI(*Pred
, InsertPt
, DebugLoc(),
1110 TII
->get(X86::MOV64ri32
), TargetReg
)
1114 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI
->dump();
1117 auto AddrI
= BuildMI(*Pred
, InsertPt
, DebugLoc(), TII
->get(X86::LEA64r
),
1119 .addReg(/*Base*/ X86::RIP
)
1120 .addImm(/*Scale*/ 1)
1121 .addReg(/*Index*/ 0)
1123 .addReg(/*Segment*/ 0);
1126 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI
->dump();
1129 // And make this available.
1130 TargetAddrSSA
.AddAvailableValue(Pred
, TargetReg
);
1133 // Materialize the needed SSA value of the target. Note that we need the
1134 // middle of the block as this block might at the bottom have an indirect
1135 // branch back to itself. We can do this here because at this point, every
1136 // predecessor of this block has an available value. This is basically just
1137 // automating the construction of a PHI node for this target.
1138 unsigned TargetReg
= TargetAddrSSA
.GetValueInMiddleOfBlock(&MBB
);
1140 // Insert a comparison of the incoming target register with this block's
1141 // address. This also requires us to mark the block as having its address
1142 // taken explicitly.
1143 MBB
.setHasAddressTaken();
1144 auto InsertPt
= MBB
.SkipPHIsLabelsAndDebug(MBB
.begin());
1145 if (MF
.getTarget().getCodeModel() == CodeModel::Small
&&
1146 !Subtarget
->isPositionIndependent()) {
1147 // Check directly against a relocated immediate when we can.
1148 auto CheckI
= BuildMI(MBB
, InsertPt
, DebugLoc(), TII
->get(X86::CMP64ri32
))
1149 .addReg(TargetReg
, RegState::Kill
)
1153 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI
->dump(); dbgs() << "\n");
1155 // Otherwise compute the address into a register first.
1156 unsigned AddrReg
= MRI
->createVirtualRegister(&X86::GR64RegClass
);
1158 BuildMI(MBB
, InsertPt
, DebugLoc(), TII
->get(X86::LEA64r
), AddrReg
)
1159 .addReg(/*Base*/ X86::RIP
)
1160 .addImm(/*Scale*/ 1)
1161 .addReg(/*Index*/ 0)
1163 .addReg(/*Segment*/ 0);
1166 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI
->dump(); dbgs() << "\n");
1167 auto CheckI
= BuildMI(MBB
, InsertPt
, DebugLoc(), TII
->get(X86::CMP64rr
))
1168 .addReg(TargetReg
, RegState::Kill
)
1169 .addReg(AddrReg
, RegState::Kill
);
1172 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI
->dump(); dbgs() << "\n");
1175 // Now cmov over the predicate if the comparison wasn't equal.
1176 int PredStateSizeInBytes
= TRI
->getRegSizeInBits(*PS
->RC
) / 8;
1177 auto CMovOp
= X86::getCMovOpcode(PredStateSizeInBytes
);
1178 unsigned UpdatedStateReg
= MRI
->createVirtualRegister(PS
->RC
);
1180 BuildMI(MBB
, InsertPt
, DebugLoc(), TII
->get(CMovOp
), UpdatedStateReg
)
1181 .addReg(PS
->InitialReg
)
1182 .addReg(PS
->PoisonReg
)
1183 .addImm(X86::COND_NE
);
1184 CMovI
->findRegisterUseOperand(X86::EFLAGS
)->setIsKill(true);
1186 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI
->dump(); dbgs() << "\n");
1187 CMovs
.push_back(&*CMovI
);
1189 // And put the new value into the available values for SSA form of our
1191 PS
->SSA
.AddAvailableValue(&MBB
, UpdatedStateReg
);
1194 // Return all the newly inserted cmov instructions of the predicate state.
1198 /// Returns true if the instruction has no behavior (specified or otherwise)
1199 /// that is based on the value of any of its register operands
1201 /// A classical example of something that is inherently not data invariant is an
1202 /// indirect jump -- the destination is loaded into icache based on the bits set
1203 /// in the jump destination register.
1205 /// FIXME: This should become part of our instruction tables.
1206 static bool isDataInvariant(MachineInstr
&MI
) {
1207 switch (MI
.getOpcode()) {
1209 // By default, assume that the instruction is not data invariant.
1212 // Some target-independent operations that trivially lower to data-invariant
1214 case TargetOpcode::COPY
:
1215 case TargetOpcode::INSERT_SUBREG
:
1216 case TargetOpcode::SUBREG_TO_REG
:
1219 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1220 // However, they set flags and are perhaps the most surprisingly constant
1221 // time operations so we call them out here separately.
1223 case X86::IMUL16rri8
:
1224 case X86::IMUL16rri
:
1226 case X86::IMUL32rri8
:
1227 case X86::IMUL32rri
:
1229 case X86::IMUL64rri32
:
1230 case X86::IMUL64rri8
:
1232 // Bit scanning and counting instructions that are somewhat surprisingly
1233 // constant time as they scan across bits and do other fairly complex
1234 // operations like popcnt, but are believed to be constant time on x86.
1235 // However, these set flags.
1242 case X86::LZCNT16rr
:
1243 case X86::LZCNT32rr
:
1244 case X86::LZCNT64rr
:
1245 case X86::POPCNT16rr
:
1246 case X86::POPCNT32rr
:
1247 case X86::POPCNT64rr
:
1248 case X86::TZCNT16rr
:
1249 case X86::TZCNT32rr
:
1250 case X86::TZCNT64rr
:
1252 // Bit manipulation instructions are effectively combinations of basic
1253 // arithmetic ops, and should still execute in constant time. These also
1255 case X86::BLCFILL32rr
:
1256 case X86::BLCFILL64rr
:
1259 case X86::BLCIC32rr
:
1260 case X86::BLCIC64rr
:
1261 case X86::BLCMSK32rr
:
1262 case X86::BLCMSK64rr
:
1265 case X86::BLSFILL32rr
:
1266 case X86::BLSFILL64rr
:
1269 case X86::BLSIC32rr
:
1270 case X86::BLSIC64rr
:
1271 case X86::BLSMSK32rr
:
1272 case X86::BLSMSK64rr
:
1275 case X86::TZMSK32rr
:
1276 case X86::TZMSK64rr
:
1278 // Bit extracting and clearing instructions should execute in constant time,
1280 case X86::BEXTR32rr
:
1281 case X86::BEXTR64rr
:
1282 case X86::BEXTRI32ri
:
1283 case X86::BEXTRI64ri
:
1287 // Shift and rotate.
1288 case X86::ROL8r1
: case X86::ROL16r1
: case X86::ROL32r1
: case X86::ROL64r1
:
1289 case X86::ROL8rCL
: case X86::ROL16rCL
: case X86::ROL32rCL
: case X86::ROL64rCL
:
1290 case X86::ROL8ri
: case X86::ROL16ri
: case X86::ROL32ri
: case X86::ROL64ri
:
1291 case X86::ROR8r1
: case X86::ROR16r1
: case X86::ROR32r1
: case X86::ROR64r1
:
1292 case X86::ROR8rCL
: case X86::ROR16rCL
: case X86::ROR32rCL
: case X86::ROR64rCL
:
1293 case X86::ROR8ri
: case X86::ROR16ri
: case X86::ROR32ri
: case X86::ROR64ri
:
1294 case X86::SAR8r1
: case X86::SAR16r1
: case X86::SAR32r1
: case X86::SAR64r1
:
1295 case X86::SAR8rCL
: case X86::SAR16rCL
: case X86::SAR32rCL
: case X86::SAR64rCL
:
1296 case X86::SAR8ri
: case X86::SAR16ri
: case X86::SAR32ri
: case X86::SAR64ri
:
1297 case X86::SHL8r1
: case X86::SHL16r1
: case X86::SHL32r1
: case X86::SHL64r1
:
1298 case X86::SHL8rCL
: case X86::SHL16rCL
: case X86::SHL32rCL
: case X86::SHL64rCL
:
1299 case X86::SHL8ri
: case X86::SHL16ri
: case X86::SHL32ri
: case X86::SHL64ri
:
1300 case X86::SHR8r1
: case X86::SHR16r1
: case X86::SHR32r1
: case X86::SHR64r1
:
1301 case X86::SHR8rCL
: case X86::SHR16rCL
: case X86::SHR32rCL
: case X86::SHR64rCL
:
1302 case X86::SHR8ri
: case X86::SHR16ri
: case X86::SHR32ri
: case X86::SHR64ri
:
1303 case X86::SHLD16rrCL
: case X86::SHLD32rrCL
: case X86::SHLD64rrCL
:
1304 case X86::SHLD16rri8
: case X86::SHLD32rri8
: case X86::SHLD64rri8
:
1305 case X86::SHRD16rrCL
: case X86::SHRD32rrCL
: case X86::SHRD64rrCL
:
1306 case X86::SHRD16rri8
: case X86::SHRD32rri8
: case X86::SHRD64rri8
:
1308 // Basic arithmetic is constant time on the input but does set flags.
1309 case X86::ADC8rr
: case X86::ADC8ri
:
1310 case X86::ADC16rr
: case X86::ADC16ri
: case X86::ADC16ri8
:
1311 case X86::ADC32rr
: case X86::ADC32ri
: case X86::ADC32ri8
:
1312 case X86::ADC64rr
: case X86::ADC64ri8
: case X86::ADC64ri32
:
1313 case X86::ADD8rr
: case X86::ADD8ri
:
1314 case X86::ADD16rr
: case X86::ADD16ri
: case X86::ADD16ri8
:
1315 case X86::ADD32rr
: case X86::ADD32ri
: case X86::ADD32ri8
:
1316 case X86::ADD64rr
: case X86::ADD64ri8
: case X86::ADD64ri32
:
1317 case X86::AND8rr
: case X86::AND8ri
:
1318 case X86::AND16rr
: case X86::AND16ri
: case X86::AND16ri8
:
1319 case X86::AND32rr
: case X86::AND32ri
: case X86::AND32ri8
:
1320 case X86::AND64rr
: case X86::AND64ri8
: case X86::AND64ri32
:
1321 case X86::OR8rr
: case X86::OR8ri
:
1322 case X86::OR16rr
: case X86::OR16ri
: case X86::OR16ri8
:
1323 case X86::OR32rr
: case X86::OR32ri
: case X86::OR32ri8
:
1324 case X86::OR64rr
: case X86::OR64ri8
: case X86::OR64ri32
:
1325 case X86::SBB8rr
: case X86::SBB8ri
:
1326 case X86::SBB16rr
: case X86::SBB16ri
: case X86::SBB16ri8
:
1327 case X86::SBB32rr
: case X86::SBB32ri
: case X86::SBB32ri8
:
1328 case X86::SBB64rr
: case X86::SBB64ri8
: case X86::SBB64ri32
:
1329 case X86::SUB8rr
: case X86::SUB8ri
:
1330 case X86::SUB16rr
: case X86::SUB16ri
: case X86::SUB16ri8
:
1331 case X86::SUB32rr
: case X86::SUB32ri
: case X86::SUB32ri8
:
1332 case X86::SUB64rr
: case X86::SUB64ri8
: case X86::SUB64ri32
:
1333 case X86::XOR8rr
: case X86::XOR8ri
:
1334 case X86::XOR16rr
: case X86::XOR16ri
: case X86::XOR16ri8
:
1335 case X86::XOR32rr
: case X86::XOR32ri
: case X86::XOR32ri8
:
1336 case X86::XOR64rr
: case X86::XOR64ri8
: case X86::XOR64ri32
:
1337 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
1338 case X86::ADCX32rr
: case X86::ADCX64rr
:
1339 case X86::ADOX32rr
: case X86::ADOX64rr
:
1340 case X86::ANDN32rr
: case X86::ANDN64rr
:
1341 // Unary arithmetic operations.
1342 case X86::DEC8r
: case X86::DEC16r
: case X86::DEC32r
: case X86::DEC64r
:
1343 case X86::INC8r
: case X86::INC16r
: case X86::INC32r
: case X86::INC64r
:
1344 case X86::NEG8r
: case X86::NEG16r
: case X86::NEG32r
: case X86::NEG64r
:
1345 // Check whether the EFLAGS implicit-def is dead. We assume that this will
1346 // always find the implicit-def because this code should only be reached
1347 // for instructions that do in fact implicitly def this.
1348 if (!MI
.findRegisterDefOperand(X86::EFLAGS
)->isDead()) {
1349 // If we would clobber EFLAGS that are used, just bail for now.
1350 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: ";
1351 MI
.dump(); dbgs() << "\n");
1355 // Otherwise, fallthrough to handle these the same as instructions that
1356 // don't set EFLAGS.
1359 // Unlike other arithmetic, NOT doesn't set EFLAGS.
1360 case X86::NOT8r
: case X86::NOT16r
: case X86::NOT32r
: case X86::NOT64r
:
1362 // Various move instructions used to zero or sign extend things. Note that we
1363 // intentionally don't support the _NOREX variants as we can't handle that
1364 // register constraint anyways.
1365 case X86::MOVSX16rr8
:
1366 case X86::MOVSX32rr8
: case X86::MOVSX32rr16
:
1367 case X86::MOVSX64rr8
: case X86::MOVSX64rr16
: case X86::MOVSX64rr32
:
1368 case X86::MOVZX16rr8
:
1369 case X86::MOVZX32rr8
: case X86::MOVZX32rr16
:
1370 case X86::MOVZX64rr8
: case X86::MOVZX64rr16
:
1373 // Arithmetic instructions that are both constant time and don't set flags.
1383 // LEA doesn't actually access memory, and its arithmetic is constant time.
1386 case X86::LEA64_32r
:
1392 /// Returns true if the instruction has no behavior (specified or otherwise)
1393 /// that is based on the value loaded from memory or the value of any
1394 /// non-address register operands.
1396 /// For example, if the latency of the instruction is dependent on the
1397 /// particular bits set in any of the registers *or* any of the bits loaded from
1400 /// A classical example of something that is inherently not data invariant is an
1401 /// indirect jump -- the destination is loaded into icache based on the bits set
1402 /// in the jump destination register.
1404 /// FIXME: This should become part of our instruction tables.
1405 static bool isDataInvariantLoad(MachineInstr
&MI
) {
1406 switch (MI
.getOpcode()) {
1408 // By default, assume that the load will immediately leak.
1411 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
1412 // However, they set flags and are perhaps the most surprisingly constant
1413 // time operations so we call them out here separately.
1415 case X86::IMUL16rmi8
:
1416 case X86::IMUL16rmi
:
1418 case X86::IMUL32rmi8
:
1419 case X86::IMUL32rmi
:
1421 case X86::IMUL64rmi32
:
1422 case X86::IMUL64rmi8
:
1424 // Bit scanning and counting instructions that are somewhat surprisingly
1425 // constant time as they scan across bits and do other fairly complex
1426 // operations like popcnt, but are believed to be constant time on x86.
1427 // However, these set flags.
1434 case X86::LZCNT16rm
:
1435 case X86::LZCNT32rm
:
1436 case X86::LZCNT64rm
:
1437 case X86::POPCNT16rm
:
1438 case X86::POPCNT32rm
:
1439 case X86::POPCNT64rm
:
1440 case X86::TZCNT16rm
:
1441 case X86::TZCNT32rm
:
1442 case X86::TZCNT64rm
:
1444 // Bit manipulation instructions are effectively combinations of basic
1445 // arithmetic ops, and should still execute in constant time. These also
1447 case X86::BLCFILL32rm
:
1448 case X86::BLCFILL64rm
:
1451 case X86::BLCIC32rm
:
1452 case X86::BLCIC64rm
:
1453 case X86::BLCMSK32rm
:
1454 case X86::BLCMSK64rm
:
1457 case X86::BLSFILL32rm
:
1458 case X86::BLSFILL64rm
:
1461 case X86::BLSIC32rm
:
1462 case X86::BLSIC64rm
:
1463 case X86::BLSMSK32rm
:
1464 case X86::BLSMSK64rm
:
1467 case X86::TZMSK32rm
:
1468 case X86::TZMSK64rm
:
1470 // Bit extracting and clearing instructions should execute in constant time,
1472 case X86::BEXTR32rm
:
1473 case X86::BEXTR64rm
:
1474 case X86::BEXTRI32mi
:
1475 case X86::BEXTRI64mi
:
1479 // Basic arithmetic is constant time on the input but does set flags.
1514 // Check whether the EFLAGS implicit-def is dead. We assume that this will
1515 // always find the implicit-def because this code should only be reached
1516 // for instructions that do in fact implicitly def this.
1517 if (!MI
.findRegisterDefOperand(X86::EFLAGS
)->isDead()) {
1518 // If we would clobber EFLAGS that are used, just bail for now.
1519 LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: ";
1520 MI
.dump(); dbgs() << "\n");
1524 // Otherwise, fallthrough to handle these the same as instructions that
1525 // don't set EFLAGS.
1528 // Integer multiply w/o affecting flags is still believed to be constant
1529 // time on x86. Called out separately as this is among the most surprising
1530 // instructions to exhibit that behavior.
1534 // Arithmetic instructions that are both constant time and don't set flags.
1544 // Conversions are believed to be constant time and don't set flags.
1545 case X86::CVTTSD2SI64rm
: case X86::VCVTTSD2SI64rm
: case X86::VCVTTSD2SI64Zrm
:
1546 case X86::CVTTSD2SIrm
: case X86::VCVTTSD2SIrm
: case X86::VCVTTSD2SIZrm
:
1547 case X86::CVTTSS2SI64rm
: case X86::VCVTTSS2SI64rm
: case X86::VCVTTSS2SI64Zrm
:
1548 case X86::CVTTSS2SIrm
: case X86::VCVTTSS2SIrm
: case X86::VCVTTSS2SIZrm
:
1549 case X86::CVTSI2SDrm
: case X86::VCVTSI2SDrm
: case X86::VCVTSI2SDZrm
:
1550 case X86::CVTSI2SSrm
: case X86::VCVTSI2SSrm
: case X86::VCVTSI2SSZrm
:
1551 case X86::CVTSI642SDrm
: case X86::VCVTSI642SDrm
: case X86::VCVTSI642SDZrm
:
1552 case X86::CVTSI642SSrm
: case X86::VCVTSI642SSrm
: case X86::VCVTSI642SSZrm
:
1553 case X86::CVTSS2SDrm
: case X86::VCVTSS2SDrm
: case X86::VCVTSS2SDZrm
:
1554 case X86::CVTSD2SSrm
: case X86::VCVTSD2SSrm
: case X86::VCVTSD2SSZrm
:
1555 // AVX512 added unsigned integer conversions.
1556 case X86::VCVTTSD2USI64Zrm
:
1557 case X86::VCVTTSD2USIZrm
:
1558 case X86::VCVTTSS2USI64Zrm
:
1559 case X86::VCVTTSS2USIZrm
:
1560 case X86::VCVTUSI2SDZrm
:
1561 case X86::VCVTUSI642SDZrm
:
1562 case X86::VCVTUSI2SSZrm
:
1563 case X86::VCVTUSI642SSZrm
:
1565 // Loads to register don't set flags.
1567 case X86::MOV8rm_NOREX
:
1571 case X86::MOVSX16rm8
:
1572 case X86::MOVSX32rm16
:
1573 case X86::MOVSX32rm8
:
1574 case X86::MOVSX32rm8_NOREX
:
1575 case X86::MOVSX64rm16
:
1576 case X86::MOVSX64rm32
:
1577 case X86::MOVSX64rm8
:
1578 case X86::MOVZX16rm8
:
1579 case X86::MOVZX32rm16
:
1580 case X86::MOVZX32rm8
:
1581 case X86::MOVZX32rm8_NOREX
:
1582 case X86::MOVZX64rm16
:
1583 case X86::MOVZX64rm8
:
1588 static bool isEFLAGSLive(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
1589 const TargetRegisterInfo
&TRI
) {
1590 // Check if EFLAGS are alive by seeing if there is a def of them or they
1591 // live-in, and then seeing if that def is in turn used.
1592 for (MachineInstr
&MI
: llvm::reverse(llvm::make_range(MBB
.begin(), I
))) {
1593 if (MachineOperand
*DefOp
= MI
.findRegisterDefOperand(X86::EFLAGS
)) {
1594 // If the def is dead, then EFLAGS is not live.
1595 if (DefOp
->isDead())
1598 // Otherwise we've def'ed it, and it is live.
1601 // While at this instruction, also check if we use and kill EFLAGS
1602 // which means it isn't live.
1603 if (MI
.killsRegister(X86::EFLAGS
, &TRI
))
1607 // If we didn't find anything conclusive (neither definitely alive or
1608 // definitely dead) return whether it lives into the block.
1609 return MBB
.isLiveIn(X86::EFLAGS
);
1612 /// Trace the predicate state through each of the blocks in the function,
1613 /// hardening everything necessary along the way.
1615 /// We call this routine once the initial predicate state has been established
1616 /// for each basic block in the function in the SSA updater. This routine traces
1617 /// it through the instructions within each basic block, and for non-returning
1618 /// blocks informs the SSA updater about the final state that lives out of the
1619 /// block. Along the way, it hardens any vulnerable instruction using the
1620 /// currently valid predicate state. We have to do these two things together
1621 /// because the SSA updater only works across blocks. Within a block, we track
1622 /// the current predicate state directly and update it as it changes.
1624 /// This operates in two passes over each block. First, we analyze the loads in
1625 /// the block to determine which strategy will be used to harden them: hardening
1626 /// the address or hardening the loaded value when loaded into a register
1627 /// amenable to hardening. We have to process these first because the two
1628 /// strategies may interact -- later hardening may change what strategy we wish
1629 /// to use. We also will analyze data dependencies between loads and avoid
1630 /// hardening those loads that are data dependent on a load with a hardened
1631 /// address. We also skip hardening loads already behind an LFENCE as that is
1632 /// sufficient to harden them against misspeculation.
1634 /// Second, we actively trace the predicate state through the block, applying
1635 /// the hardening steps we determined necessary in the first pass as we go.
1637 /// These two passes are applied to each basic block. We operate one block at a
1638 /// time to simplify reasoning about reachability and sequencing.
1639 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
1640 MachineFunction
&MF
) {
1641 SmallPtrSet
<MachineInstr
*, 16> HardenPostLoad
;
1642 SmallPtrSet
<MachineInstr
*, 16> HardenLoadAddr
;
1644 SmallSet
<unsigned, 16> HardenedAddrRegs
;
1646 SmallDenseMap
<unsigned, unsigned, 32> AddrRegToHardenedReg
;
1648 // Track the set of load-dependent registers through the basic block. Because
1649 // the values of these registers have an existing data dependency on a loaded
1650 // value which we would have checked, we can omit any checks on them.
1651 SparseBitVector
<> LoadDepRegs
;
1653 for (MachineBasicBlock
&MBB
: MF
) {
1654 // The first pass over the block: collect all the loads which can have their
1655 // loaded value hardened and all the loads that instead need their address
1656 // hardened. During this walk we propagate load dependence for address
1657 // hardened loads and also look for LFENCE to stop hardening wherever
1658 // possible. When deciding whether or not to harden the loaded value or not,
1659 // we check to see if any registers used in the address will have been
1660 // hardened at this point and if so, harden any remaining address registers
1661 // as that often successfully re-uses hardened addresses and minimizes
1664 // FIXME: We should consider an aggressive mode where we continue to keep as
1665 // many loads value hardened even when some address register hardening would
1666 // be free (due to reuse).
1668 // Note that we only need this pass if we are actually hardening loads.
1670 for (MachineInstr
&MI
: MBB
) {
1671 // We naively assume that all def'ed registers of an instruction have
1672 // a data dependency on all of their operands.
1673 // FIXME: Do a more careful analysis of x86 to build a conservative
1675 if (llvm::any_of(MI
.uses(), [&](MachineOperand
&Op
) {
1676 return Op
.isReg() && LoadDepRegs
.test(Op
.getReg());
1678 for (MachineOperand
&Def
: MI
.defs())
1680 LoadDepRegs
.set(Def
.getReg());
1682 // Both Intel and AMD are guiding that they will change the semantics of
1683 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
1684 // no more need to guard things in this block.
1685 if (MI
.getOpcode() == X86::LFENCE
)
1688 // If this instruction cannot load, nothing to do.
1692 // Some instructions which "load" are trivially safe or unimportant.
1693 if (MI
.getOpcode() == X86::MFENCE
)
1696 // Extract the memory operand information about this instruction.
1697 // FIXME: This doesn't handle loading pseudo instructions which we often
1698 // could handle with similarly generic logic. We probably need to add an
1699 // MI-layer routine similar to the MC-layer one we use here which maps
1700 // pseudos much like this maps real instructions.
1701 const MCInstrDesc
&Desc
= MI
.getDesc();
1702 int MemRefBeginIdx
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
1703 if (MemRefBeginIdx
< 0) {
1705 << "WARNING: unable to harden loading instruction: ";
1710 MemRefBeginIdx
+= X86II::getOperandBias(Desc
);
1712 MachineOperand
&BaseMO
=
1713 MI
.getOperand(MemRefBeginIdx
+ X86::AddrBaseReg
);
1714 MachineOperand
&IndexMO
=
1715 MI
.getOperand(MemRefBeginIdx
+ X86::AddrIndexReg
);
1717 // If we have at least one (non-frame-index, non-RIP) register operand,
1718 // and neither operand is load-dependent, we need to check the load.
1719 unsigned BaseReg
= 0, IndexReg
= 0;
1720 if (!BaseMO
.isFI() && BaseMO
.getReg() != X86::RIP
&&
1721 BaseMO
.getReg() != X86::NoRegister
)
1722 BaseReg
= BaseMO
.getReg();
1723 if (IndexMO
.getReg() != X86::NoRegister
)
1724 IndexReg
= IndexMO
.getReg();
1726 if (!BaseReg
&& !IndexReg
)
1727 // No register operands!
1730 // If any register operand is dependent, this load is dependent and we
1731 // needn't check it.
1732 // FIXME: Is this true in the case where we are hardening loads after
1733 // they complete? Unclear, need to investigate.
1734 if ((BaseReg
&& LoadDepRegs
.test(BaseReg
)) ||
1735 (IndexReg
&& LoadDepRegs
.test(IndexReg
)))
1738 // If post-load hardening is enabled, this load is compatible with
1739 // post-load hardening, and we aren't already going to harden one of the
1740 // address registers, queue it up to be hardened post-load. Notably,
1741 // even once hardened this won't introduce a useful dependency that
1742 // could prune out subsequent loads.
1743 if (EnablePostLoadHardening
&& isDataInvariantLoad(MI
) &&
1744 MI
.getDesc().getNumDefs() == 1 && MI
.getOperand(0).isReg() &&
1745 canHardenRegister(MI
.getOperand(0).getReg()) &&
1746 !HardenedAddrRegs
.count(BaseReg
) &&
1747 !HardenedAddrRegs
.count(IndexReg
)) {
1748 HardenPostLoad
.insert(&MI
);
1749 HardenedAddrRegs
.insert(MI
.getOperand(0).getReg());
1753 // Record this instruction for address hardening and record its register
1754 // operands as being address-hardened.
1755 HardenLoadAddr
.insert(&MI
);
1757 HardenedAddrRegs
.insert(BaseReg
);
1759 HardenedAddrRegs
.insert(IndexReg
);
1761 for (MachineOperand
&Def
: MI
.defs())
1763 LoadDepRegs
.set(Def
.getReg());
1766 // Now re-walk the instructions in the basic block, and apply whichever
1767 // hardening strategy we have elected. Note that we do this in a second
1768 // pass specifically so that we have the complete set of instructions for
1769 // which we will do post-load hardening and can defer it in certain
1771 for (MachineInstr
&MI
: MBB
) {
1773 // We cannot both require hardening the def of a load and its address.
1774 assert(!(HardenLoadAddr
.count(&MI
) && HardenPostLoad
.count(&MI
)) &&
1775 "Requested to harden both the address and def of a load!");
1777 // Check if this is a load whose address needs to be hardened.
1778 if (HardenLoadAddr
.erase(&MI
)) {
1779 const MCInstrDesc
&Desc
= MI
.getDesc();
1780 int MemRefBeginIdx
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
1781 assert(MemRefBeginIdx
>= 0 && "Cannot have an invalid index here!");
1783 MemRefBeginIdx
+= X86II::getOperandBias(Desc
);
1785 MachineOperand
&BaseMO
=
1786 MI
.getOperand(MemRefBeginIdx
+ X86::AddrBaseReg
);
1787 MachineOperand
&IndexMO
=
1788 MI
.getOperand(MemRefBeginIdx
+ X86::AddrIndexReg
);
1789 hardenLoadAddr(MI
, BaseMO
, IndexMO
, AddrRegToHardenedReg
);
1793 // Test if this instruction is one of our post load instructions (and
1794 // remove it from the set if so).
1795 if (HardenPostLoad
.erase(&MI
)) {
1796 assert(!MI
.isCall() && "Must not try to post-load harden a call!");
1798 // If this is a data-invariant load, we want to try and sink any
1799 // hardening as far as possible.
1800 if (isDataInvariantLoad(MI
)) {
1801 // Sink the instruction we'll need to harden as far as we can down
1803 MachineInstr
*SunkMI
= sinkPostLoadHardenedInst(MI
, HardenPostLoad
);
1805 // If we managed to sink this instruction, update everything so we
1806 // harden that instruction when we reach it in the instruction
1808 if (SunkMI
!= &MI
) {
1809 // If in sinking there was no instruction needing to be hardened,
1814 // Otherwise, add this to the set of defs we harden.
1815 HardenPostLoad
.insert(SunkMI
);
1820 unsigned HardenedReg
= hardenPostLoad(MI
);
1822 // Mark the resulting hardened register as such so we don't re-harden.
1823 AddrRegToHardenedReg
[HardenedReg
] = HardenedReg
;
1828 // Check for an indirect call or branch that may need its input hardened
1829 // even if we couldn't find the specific load used, or were able to
1830 // avoid hardening it for some reason. Note that here we cannot break
1831 // out afterward as we may still need to handle any call aspect of this
1833 if ((MI
.isCall() || MI
.isBranch()) && HardenIndirectCallsAndJumps
)
1834 hardenIndirectCallOrJumpInstr(MI
, AddrRegToHardenedReg
);
1837 // After we finish hardening loads we handle interprocedural hardening if
1838 // enabled and relevant for this instruction.
1839 if (!HardenInterprocedurally
)
1841 if (!MI
.isCall() && !MI
.isReturn())
1844 // If this is a direct return (IE, not a tail call) just directly harden
1846 if (MI
.isReturn() && !MI
.isCall()) {
1847 hardenReturnInstr(MI
);
1851 // Otherwise we have a call. We need to handle transferring the predicate
1852 // state into a call and recovering it after the call returns (unless this
1854 assert(MI
.isCall() && "Should only reach here for calls!");
1855 tracePredStateThroughCall(MI
);
1858 HardenPostLoad
.clear();
1859 HardenLoadAddr
.clear();
1860 HardenedAddrRegs
.clear();
1861 AddrRegToHardenedReg
.clear();
1863 // Currently, we only track data-dependent loads within a basic block.
1864 // FIXME: We should see if this is necessary or if we could be more
1865 // aggressive here without opening up attack avenues.
1866 LoadDepRegs
.clear();
1870 /// Save EFLAGS into the returned GPR. This can in turn be restored with
1871 /// `restoreEFLAGS`.
1873 /// Note that LLVM can only lower very simple patterns of saved and restored
1874 /// EFLAGS registers. The restore should always be within the same basic block
1875 /// as the save so that no PHI nodes are inserted.
1876 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
1877 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertPt
,
1879 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
1880 // what instruction selection does.
1881 unsigned Reg
= MRI
->createVirtualRegister(&X86::GR32RegClass
);
1882 // We directly copy the FLAGS register and rely on later lowering to clean
1883 // this up into the appropriate setCC instructions.
1884 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::COPY
), Reg
).addReg(X86::EFLAGS
);
1889 /// Restore EFLAGS from the provided GPR. This should be produced by
1892 /// This must be done within the same basic block as the save in order to
1894 void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
1895 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertPt
, DebugLoc Loc
,
1897 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::COPY
), X86::EFLAGS
).addReg(Reg
);
1901 /// Takes the current predicate state (in a register) and merges it into the
1902 /// stack pointer. The state is essentially a single bit, but we merge this in
1903 /// a way that won't form non-canonical pointers and also will be preserved
1904 /// across normal stack adjustments.
1905 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
1906 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertPt
, DebugLoc Loc
,
1907 unsigned PredStateReg
) {
1908 unsigned TmpReg
= MRI
->createVirtualRegister(PS
->RC
);
1909 // FIXME: This hard codes a shift distance based on the number of bits needed
1910 // to stay canonical on 64-bit. We should compute this somehow and support
1911 // 32-bit as part of that.
1912 auto ShiftI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::SHL64ri
), TmpReg
)
1913 .addReg(PredStateReg
, RegState::Kill
)
1915 ShiftI
->addRegisterDead(X86::EFLAGS
, TRI
);
1917 auto OrI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::OR64rr
), X86::RSP
)
1919 .addReg(TmpReg
, RegState::Kill
);
1920 OrI
->addRegisterDead(X86::EFLAGS
, TRI
);
1924 /// Extracts the predicate state stored in the high bits of the stack pointer.
1925 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
1926 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertPt
,
1928 unsigned PredStateReg
= MRI
->createVirtualRegister(PS
->RC
);
1929 unsigned TmpReg
= MRI
->createVirtualRegister(PS
->RC
);
1931 // We know that the stack pointer will have any preserved predicate state in
1932 // its high bit. We just want to smear this across the other bits. Turns out,
1933 // this is exactly what an arithmetic right shift does.
1934 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(TargetOpcode::COPY
), TmpReg
)
1937 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::SAR64ri
), PredStateReg
)
1938 .addReg(TmpReg
, RegState::Kill
)
1939 .addImm(TRI
->getRegSizeInBits(*PS
->RC
) - 1);
1940 ShiftI
->addRegisterDead(X86::EFLAGS
, TRI
);
1943 return PredStateReg
;
1946 void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
1947 MachineInstr
&MI
, MachineOperand
&BaseMO
, MachineOperand
&IndexMO
,
1948 SmallDenseMap
<unsigned, unsigned, 32> &AddrRegToHardenedReg
) {
1949 MachineBasicBlock
&MBB
= *MI
.getParent();
1950 DebugLoc Loc
= MI
.getDebugLoc();
1952 // Check if EFLAGS are alive by seeing if there is a def of them or they
1953 // live-in, and then seeing if that def is in turn used.
1954 bool EFLAGSLive
= isEFLAGSLive(MBB
, MI
.getIterator(), *TRI
);
1956 SmallVector
<MachineOperand
*, 2> HardenOpRegs
;
1958 if (BaseMO
.isFI()) {
1959 // A frame index is never a dynamically controllable load, so only
1960 // harden it if we're covering fixed address loads as well.
1962 dbgs() << " Skipping hardening base of explicit stack frame load: ";
1963 MI
.dump(); dbgs() << "\n");
1964 } else if (BaseMO
.getReg() == X86::RSP
) {
1965 // Some idempotent atomic operations are lowered directly to a locked
1966 // OR with 0 to the top of stack(or slightly offset from top) which uses an
1967 // explicit RSP register as the base.
1968 assert(IndexMO
.getReg() == X86::NoRegister
&&
1969 "Explicit RSP access with dynamic index!");
1971 dbgs() << " Cannot harden base of explicit RSP offset in a load!");
1972 } else if (BaseMO
.getReg() == X86::RIP
||
1973 BaseMO
.getReg() == X86::NoRegister
) {
1974 // For both RIP-relative addressed loads or absolute loads, we cannot
1975 // meaningfully harden them because the address being loaded has no
1976 // dynamic component.
1978 // FIXME: When using a segment base (like TLS does) we end up with the
1979 // dynamic address being the base plus -1 because we can't mutate the
1980 // segment register here. This allows the signed 32-bit offset to point at
1981 // valid segment-relative addresses and load them successfully.
1983 dbgs() << " Cannot harden base of "
1984 << (BaseMO
.getReg() == X86::RIP
? "RIP-relative" : "no-base")
1985 << " address in a load!");
1987 assert(BaseMO
.isReg() &&
1988 "Only allowed to have a frame index or register base.");
1989 HardenOpRegs
.push_back(&BaseMO
);
1992 if (IndexMO
.getReg() != X86::NoRegister
&&
1993 (HardenOpRegs
.empty() ||
1994 HardenOpRegs
.front()->getReg() != IndexMO
.getReg()))
1995 HardenOpRegs
.push_back(&IndexMO
);
1997 assert((HardenOpRegs
.size() == 1 || HardenOpRegs
.size() == 2) &&
1998 "Should have exactly one or two registers to harden!");
1999 assert((HardenOpRegs
.size() == 1 ||
2000 HardenOpRegs
[0]->getReg() != HardenOpRegs
[1]->getReg()) &&
2001 "Should not have two of the same registers!");
2003 // Remove any registers that have alreaded been checked.
2004 llvm::erase_if(HardenOpRegs
, [&](MachineOperand
*Op
) {
2005 // See if this operand's register has already been checked.
2006 auto It
= AddrRegToHardenedReg
.find(Op
->getReg());
2007 if (It
== AddrRegToHardenedReg
.end())
2008 // Not checked, so retain this one.
2011 // Otherwise, we can directly update this operand and remove it.
2012 Op
->setReg(It
->second
);
2015 // If there are none left, we're done.
2016 if (HardenOpRegs
.empty())
2019 // Compute the current predicate state.
2020 unsigned StateReg
= PS
->SSA
.GetValueAtEndOfBlock(&MBB
);
2022 auto InsertPt
= MI
.getIterator();
2024 // If EFLAGS are live and we don't have access to instructions that avoid
2025 // clobbering EFLAGS we need to save and restore them. This in turn makes
2026 // the EFLAGS no longer live.
2027 unsigned FlagsReg
= 0;
2028 if (EFLAGSLive
&& !Subtarget
->hasBMI2()) {
2030 FlagsReg
= saveEFLAGS(MBB
, InsertPt
, Loc
);
2033 for (MachineOperand
*Op
: HardenOpRegs
) {
2034 unsigned OpReg
= Op
->getReg();
2035 auto *OpRC
= MRI
->getRegClass(OpReg
);
2036 unsigned TmpReg
= MRI
->createVirtualRegister(OpRC
);
2038 // If this is a vector register, we'll need somewhat custom logic to handle
2040 if (!Subtarget
->hasVLX() && (OpRC
->hasSuperClassEq(&X86::VR128RegClass
) ||
2041 OpRC
->hasSuperClassEq(&X86::VR256RegClass
))) {
2042 assert(Subtarget
->hasAVX2() && "AVX2-specific register classes!");
2043 bool Is128Bit
= OpRC
->hasSuperClassEq(&X86::VR128RegClass
);
2045 // Move our state into a vector register.
2046 // FIXME: We could skip this at the cost of longer encodings with AVX-512
2047 // but that doesn't seem likely worth it.
2048 unsigned VStateReg
= MRI
->createVirtualRegister(&X86::VR128RegClass
);
2050 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::VMOV64toPQIrr
), VStateReg
)
2054 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI
->dump(); dbgs() << "\n");
2056 // Broadcast it across the vector register.
2057 unsigned VBStateReg
= MRI
->createVirtualRegister(OpRC
);
2058 auto BroadcastI
= BuildMI(MBB
, InsertPt
, Loc
,
2059 TII
->get(Is128Bit
? X86::VPBROADCASTQrr
2060 : X86::VPBROADCASTQYrr
),
2065 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI
->dump();
2068 // Merge our potential poison state into the value with a vector or.
2070 BuildMI(MBB
, InsertPt
, Loc
,
2071 TII
->get(Is128Bit
? X86::VPORrr
: X86::VPORYrr
), TmpReg
)
2076 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI
->dump(); dbgs() << "\n");
2077 } else if (OpRC
->hasSuperClassEq(&X86::VR128XRegClass
) ||
2078 OpRC
->hasSuperClassEq(&X86::VR256XRegClass
) ||
2079 OpRC
->hasSuperClassEq(&X86::VR512RegClass
)) {
2080 assert(Subtarget
->hasAVX512() && "AVX512-specific register classes!");
2081 bool Is128Bit
= OpRC
->hasSuperClassEq(&X86::VR128XRegClass
);
2082 bool Is256Bit
= OpRC
->hasSuperClassEq(&X86::VR256XRegClass
);
2083 if (Is128Bit
|| Is256Bit
)
2084 assert(Subtarget
->hasVLX() && "AVX512VL-specific register classes!");
2086 // Broadcast our state into a vector register.
2087 unsigned VStateReg
= MRI
->createVirtualRegister(OpRC
);
2088 unsigned BroadcastOp
=
2089 Is128Bit
? X86::VPBROADCASTQrZ128r
2090 : Is256Bit
? X86::VPBROADCASTQrZ256r
: X86::VPBROADCASTQrZr
;
2092 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(BroadcastOp
), VStateReg
)
2096 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI
->dump();
2099 // Merge our potential poison state into the value with a vector or.
2100 unsigned OrOp
= Is128Bit
? X86::VPORQZ128rr
2101 : Is256Bit
? X86::VPORQZ256rr
: X86::VPORQZrr
;
2102 auto OrI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(OrOp
), TmpReg
)
2107 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI
->dump(); dbgs() << "\n");
2109 // FIXME: Need to support GR32 here for 32-bit code.
2110 assert(OpRC
->hasSuperClassEq(&X86::GR64RegClass
) &&
2111 "Not a supported register class for address hardening!");
2114 // Merge our potential poison state into the value with an or.
2115 auto OrI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::OR64rr
), TmpReg
)
2118 OrI
->addRegisterDead(X86::EFLAGS
, TRI
);
2120 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI
->dump(); dbgs() << "\n");
2122 // We need to avoid touching EFLAGS so shift out all but the least
2123 // significant bit using the instruction that doesn't update flags.
2125 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::SHRX64rr
), TmpReg
)
2130 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI
->dump();
2135 // Record this register as checked and update the operand.
2136 assert(!AddrRegToHardenedReg
.count(Op
->getReg()) &&
2137 "Should not have checked this register yet!");
2138 AddrRegToHardenedReg
[Op
->getReg()] = TmpReg
;
2140 ++NumAddrRegsHardened
;
2143 // And restore the flags if needed.
2145 restoreEFLAGS(MBB
, InsertPt
, Loc
, FlagsReg
);
2148 MachineInstr
*X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
2149 MachineInstr
&InitialMI
, SmallPtrSetImpl
<MachineInstr
*> &HardenedInstrs
) {
2150 assert(isDataInvariantLoad(InitialMI
) &&
2151 "Cannot get here with a non-invariant load!");
2153 // See if we can sink hardening the loaded value.
2154 auto SinkCheckToSingleUse
=
2155 [&](MachineInstr
&MI
) -> Optional
<MachineInstr
*> {
2156 unsigned DefReg
= MI
.getOperand(0).getReg();
2158 // We need to find a single use which we can sink the check. We can
2159 // primarily do this because many uses may already end up checked on their
2161 MachineInstr
*SingleUseMI
= nullptr;
2162 for (MachineInstr
&UseMI
: MRI
->use_instructions(DefReg
)) {
2163 // If we're already going to harden this use, it is data invariant and
2164 // within our block.
2165 if (HardenedInstrs
.count(&UseMI
)) {
2166 if (!isDataInvariantLoad(UseMI
)) {
2167 // If we've already decided to harden a non-load, we must have sunk
2168 // some other post-load hardened instruction to it and it must itself
2169 // be data-invariant.
2170 assert(isDataInvariant(UseMI
) &&
2171 "Data variant instruction being hardened!");
2175 // Otherwise, this is a load and the load component can't be data
2176 // invariant so check how this register is being used.
2177 const MCInstrDesc
&Desc
= UseMI
.getDesc();
2178 int MemRefBeginIdx
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
2179 assert(MemRefBeginIdx
>= 0 &&
2180 "Should always have mem references here!");
2181 MemRefBeginIdx
+= X86II::getOperandBias(Desc
);
2183 MachineOperand
&BaseMO
=
2184 UseMI
.getOperand(MemRefBeginIdx
+ X86::AddrBaseReg
);
2185 MachineOperand
&IndexMO
=
2186 UseMI
.getOperand(MemRefBeginIdx
+ X86::AddrIndexReg
);
2187 if ((BaseMO
.isReg() && BaseMO
.getReg() == DefReg
) ||
2188 (IndexMO
.isReg() && IndexMO
.getReg() == DefReg
))
2189 // The load uses the register as part of its address making it not
2197 // We already have a single use, this would make two. Bail.
2200 // If this single use isn't data invariant, isn't in this block, or has
2201 // interfering EFLAGS, we can't sink the hardening to it.
2202 if (!isDataInvariant(UseMI
) || UseMI
.getParent() != MI
.getParent())
2205 // If this instruction defines multiple registers bail as we won't harden
2207 if (UseMI
.getDesc().getNumDefs() > 1)
2210 // If this register isn't a virtual register we can't walk uses of sanely,
2211 // just bail. Also check that its register class is one of the ones we
2213 unsigned UseDefReg
= UseMI
.getOperand(0).getReg();
2214 if (!TRI
->isVirtualRegister(UseDefReg
) ||
2215 !canHardenRegister(UseDefReg
))
2218 SingleUseMI
= &UseMI
;
2221 // If SingleUseMI is still null, there is no use that needs its own
2222 // checking. Otherwise, it is the single use that needs checking.
2223 return {SingleUseMI
};
2226 MachineInstr
*MI
= &InitialMI
;
2227 while (Optional
<MachineInstr
*> SingleUse
= SinkCheckToSingleUse(*MI
)) {
2228 // Update which MI we're checking now.
2237 bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg
) {
2238 auto *RC
= MRI
->getRegClass(Reg
);
2239 int RegBytes
= TRI
->getRegSizeInBits(*RC
) / 8;
2241 // We don't support post-load hardening of vectors.
2244 // If this register class is explicitly constrained to a class that doesn't
2245 // require REX prefix, we may not be able to satisfy that constraint when
2246 // emitting the hardening instructions, so bail out here.
2247 // FIXME: This seems like a pretty lame hack. The way this comes up is when we
2248 // end up both with a NOREX and REX-only register as operands to the hardening
2249 // instructions. It would be better to fix that code to handle this situation
2250 // rather than hack around it in this way.
2251 const TargetRegisterClass
*NOREXRegClasses
[] = {
2252 &X86::GR8_NOREXRegClass
, &X86::GR16_NOREXRegClass
,
2253 &X86::GR32_NOREXRegClass
, &X86::GR64_NOREXRegClass
};
2254 if (RC
== NOREXRegClasses
[Log2_32(RegBytes
)])
2257 const TargetRegisterClass
*GPRRegClasses
[] = {
2258 &X86::GR8RegClass
, &X86::GR16RegClass
, &X86::GR32RegClass
,
2259 &X86::GR64RegClass
};
2260 return RC
->hasSuperClassEq(GPRRegClasses
[Log2_32(RegBytes
)]);
2263 /// Harden a value in a register.
2265 /// This is the low-level logic to fully harden a value sitting in a register
2266 /// against leaking during speculative execution.
2268 /// Unlike hardening an address that is used by a load, this routine is required
2269 /// to hide *all* incoming bits in the register.
2271 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
2272 /// larger than the predicate state register. FIXME: We should support vector
2273 /// registers here by broadcasting the predicate state.
2275 /// The new, hardened virtual register is returned. It will have the same
2276 /// register class as `Reg`.
2277 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
2278 unsigned Reg
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator InsertPt
,
2280 assert(canHardenRegister(Reg
) && "Cannot harden this register!");
2281 assert(TRI
->isVirtualRegister(Reg
) && "Cannot harden a physical register!");
2283 auto *RC
= MRI
->getRegClass(Reg
);
2284 int Bytes
= TRI
->getRegSizeInBits(*RC
) / 8;
2286 unsigned StateReg
= PS
->SSA
.GetValueAtEndOfBlock(&MBB
);
2288 // FIXME: Need to teach this about 32-bit mode.
2290 unsigned SubRegImms
[] = {X86::sub_8bit
, X86::sub_16bit
, X86::sub_32bit
};
2291 unsigned SubRegImm
= SubRegImms
[Log2_32(Bytes
)];
2292 unsigned NarrowStateReg
= MRI
->createVirtualRegister(RC
);
2293 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(TargetOpcode::COPY
), NarrowStateReg
)
2294 .addReg(StateReg
, 0, SubRegImm
);
2295 StateReg
= NarrowStateReg
;
2298 unsigned FlagsReg
= 0;
2299 if (isEFLAGSLive(MBB
, InsertPt
, *TRI
))
2300 FlagsReg
= saveEFLAGS(MBB
, InsertPt
, Loc
);
2302 unsigned NewReg
= MRI
->createVirtualRegister(RC
);
2303 unsigned OrOpCodes
[] = {X86::OR8rr
, X86::OR16rr
, X86::OR32rr
, X86::OR64rr
};
2304 unsigned OrOpCode
= OrOpCodes
[Log2_32(Bytes
)];
2305 auto OrI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(OrOpCode
), NewReg
)
2308 OrI
->addRegisterDead(X86::EFLAGS
, TRI
);
2310 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI
->dump(); dbgs() << "\n");
2313 restoreEFLAGS(MBB
, InsertPt
, Loc
, FlagsReg
);
2318 /// Harden a load by hardening the loaded value in the defined register.
2320 /// We can harden a non-leaking load into a register without touching the
2321 /// address by just hiding all of the loaded bits during misspeculation. We use
2322 /// an `or` instruction to do this because we set up our poison value as all
2323 /// ones. And the goal is just for the loaded bits to not be exposed to
2324 /// execution and coercing them to one is sufficient.
2326 /// Returns the newly hardened register.
2327 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr
&MI
) {
2328 MachineBasicBlock
&MBB
= *MI
.getParent();
2329 DebugLoc Loc
= MI
.getDebugLoc();
2331 auto &DefOp
= MI
.getOperand(0);
2332 unsigned OldDefReg
= DefOp
.getReg();
2333 auto *DefRC
= MRI
->getRegClass(OldDefReg
);
2335 // Because we want to completely replace the uses of this def'ed value with
2336 // the hardened value, create a dedicated new register that will only be used
2337 // to communicate the unhardened value to the hardening.
2338 unsigned UnhardenedReg
= MRI
->createVirtualRegister(DefRC
);
2339 DefOp
.setReg(UnhardenedReg
);
2341 // Now harden this register's value, getting a hardened reg that is safe to
2342 // use. Note that we insert the instructions to compute this *after* the
2343 // defining instruction, not before it.
2344 unsigned HardenedReg
= hardenValueInRegister(
2345 UnhardenedReg
, MBB
, std::next(MI
.getIterator()), Loc
);
2347 // Finally, replace the old register (which now only has the uses of the
2348 // original def) with the hardened register.
2349 MRI
->replaceRegWith(/*FromReg*/ OldDefReg
, /*ToReg*/ HardenedReg
);
2351 ++NumPostLoadRegsHardened
;
2355 /// Harden a return instruction.
2357 /// Returns implicitly perform a load which we need to harden. Without hardening
2358 /// this load, an attacker my speculatively write over the return address to
2359 /// steer speculation of the return to an attacker controlled address. This is
2360 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
2362 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2364 /// We can harden this by introducing an LFENCE that will delay any load of the
2365 /// return address until prior instructions have retired (and thus are not being
2366 /// speculated), or we can harden the address used by the implicit load: the
2369 /// If we are not using an LFENCE, hardening the stack pointer has an additional
2370 /// benefit: it allows us to pass the predicate state accumulated in this
2371 /// function back to the caller. In the absence of a BCBS attack on the return,
2372 /// the caller will typically be resumed and speculatively executed due to the
2373 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
2374 /// priority. It is possible that some code from the caller will be executed
2375 /// speculatively even during a BCBS-attacked return until the steering takes
2376 /// effect. Whenever this happens, the caller can recover the (poisoned)
2377 /// predicate state from the stack pointer and continue to harden loads.
2378 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr
&MI
) {
2379 MachineBasicBlock
&MBB
= *MI
.getParent();
2380 DebugLoc Loc
= MI
.getDebugLoc();
2381 auto InsertPt
= MI
.getIterator();
2383 if (FenceCallAndRet
)
2384 // No need to fence here as we'll fence at the return site itself. That
2385 // handles more cases than we can handle here.
2388 // Take our predicate state, shift it to the high 17 bits (so that we keep
2389 // pointers canonical) and merge it into RSP. This will allow the caller to
2390 // extract it when we return (speculatively).
2391 mergePredStateIntoSP(MBB
, InsertPt
, Loc
, PS
->SSA
.GetValueAtEndOfBlock(&MBB
));
2394 /// Trace the predicate state through a call.
2396 /// There are several layers of this needed to handle the full complexity of
2399 /// First, we need to send the predicate state into the called function. We do
2400 /// this by merging it into the high bits of the stack pointer.
2402 /// For tail calls, this is all we need to do.
2404 /// For calls where we might return and resume the control flow, we need to
2405 /// extract the predicate state from the high bits of the stack pointer after
2406 /// control returns from the called function.
2408 /// We also need to verify that we intended to return to this location in the
2409 /// code. An attacker might arrange for the processor to mispredict the return
2410 /// to this valid but incorrect return address in the program rather than the
2411 /// correct one. See the paper on this attack, called "ret2spec" by the
2412 /// researchers, here:
2413 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
2415 /// The way we verify that we returned to the correct location is by preserving
2416 /// the expected return address across the call. One technique involves taking
2417 /// advantage of the red-zone to load the return address from `8(%rsp)` where it
2418 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
2419 /// directly save the address into a register that will be preserved across the
2420 /// call. We compare this intended return address against the address
2421 /// immediately following the call (the observed return address). If these
2422 /// mismatch, we have detected misspeculation and can poison our predicate
2424 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
2426 MachineBasicBlock
&MBB
= *MI
.getParent();
2427 MachineFunction
&MF
= *MBB
.getParent();
2428 auto InsertPt
= MI
.getIterator();
2429 DebugLoc Loc
= MI
.getDebugLoc();
2431 if (FenceCallAndRet
) {
2433 // Tail call, we don't return to this function.
2434 // FIXME: We should also handle noreturn calls.
2437 // We don't need to fence before the call because the function should fence
2438 // in its entry. However, we do need to fence after the call returns.
2439 // Fencing before the return doesn't correctly handle cases where the return
2440 // itself is mispredicted.
2441 BuildMI(MBB
, std::next(InsertPt
), Loc
, TII
->get(X86::LFENCE
));
2443 ++NumLFENCEsInserted
;
2447 // First, we transfer the predicate state into the called function by merging
2448 // it into the stack pointer. This will kill the current def of the state.
2449 unsigned StateReg
= PS
->SSA
.GetValueAtEndOfBlock(&MBB
);
2450 mergePredStateIntoSP(MBB
, InsertPt
, Loc
, StateReg
);
2452 // If this call is also a return, it is a tail call and we don't need anything
2453 // else to handle it so just return. Also, if there are no further
2454 // instructions and no successors, this call does not return so we can also
2456 if (MI
.isReturn() || (std::next(InsertPt
) == MBB
.end() && MBB
.succ_empty()))
2459 // Create a symbol to track the return address and attach it to the call
2460 // machine instruction. We will lower extra symbols attached to call
2461 // instructions as label immediately following the call.
2462 MCSymbol
*RetSymbol
=
2463 MF
.getContext().createTempSymbol("slh_ret_addr",
2464 /*AlwaysAddSuffix*/ true);
2465 MI
.setPostInstrSymbol(MF
, RetSymbol
);
2467 const TargetRegisterClass
*AddrRC
= &X86::GR64RegClass
;
2468 unsigned ExpectedRetAddrReg
= 0;
2470 // If we have no red zones or if the function returns twice (possibly without
2471 // using the `ret` instruction) like setjmp, we need to save the expected
2472 // return address prior to the call.
2473 if (!Subtarget
->getFrameLowering()->has128ByteRedZone(MF
) ||
2474 MF
.exposesReturnsTwice()) {
2475 // If we don't have red zones, we need to compute the expected return
2476 // address prior to the call and store it in a register that lives across
2479 // In some ways, this is doubly satisfying as a mitigation because it will
2480 // also successfully detect stack smashing bugs in some cases (typically,
2481 // when a callee-saved register is used and the callee doesn't push it onto
2482 // the stack). But that isn't our primary goal, so we only use it as
2485 // FIXME: It isn't clear that this is reliable in the face of
2486 // rematerialization in the register allocator. We somehow need to force
2487 // that to not occur for this particular instruction, and instead to spill
2488 // or otherwise preserve the value computed *prior* to the call.
2490 // FIXME: It is even less clear why MachineCSE can't just fold this when we
2491 // end up having to use identical instructions both before and after the
2492 // call to feed the comparison.
2493 ExpectedRetAddrReg
= MRI
->createVirtualRegister(AddrRC
);
2494 if (MF
.getTarget().getCodeModel() == CodeModel::Small
&&
2495 !Subtarget
->isPositionIndependent()) {
2496 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::MOV64ri32
), ExpectedRetAddrReg
)
2499 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::LEA64r
), ExpectedRetAddrReg
)
2500 .addReg(/*Base*/ X86::RIP
)
2501 .addImm(/*Scale*/ 1)
2502 .addReg(/*Index*/ 0)
2504 .addReg(/*Segment*/ 0);
2508 // Step past the call to handle when it returns.
2511 // If we didn't pre-compute the expected return address into a register, then
2512 // red zones are enabled and the return address is still available on the
2513 // stack immediately after the call. As the very first instruction, we load it
2515 if (!ExpectedRetAddrReg
) {
2516 ExpectedRetAddrReg
= MRI
->createVirtualRegister(AddrRC
);
2517 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::MOV64rm
), ExpectedRetAddrReg
)
2518 .addReg(/*Base*/ X86::RSP
)
2519 .addImm(/*Scale*/ 1)
2520 .addReg(/*Index*/ 0)
2521 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
2522 // the return address is 8-bytes past it.
2523 .addReg(/*Segment*/ 0);
2526 // Now we extract the callee's predicate state from the stack pointer.
2527 unsigned NewStateReg
= extractPredStateFromSP(MBB
, InsertPt
, Loc
);
2529 // Test the expected return address against our actual address. If we can
2530 // form this basic block's address as an immediate, this is easy. Otherwise
2532 if (MF
.getTarget().getCodeModel() == CodeModel::Small
&&
2533 !Subtarget
->isPositionIndependent()) {
2534 // FIXME: Could we fold this with the load? It would require careful EFLAGS
2536 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::CMP64ri32
))
2537 .addReg(ExpectedRetAddrReg
, RegState::Kill
)
2540 unsigned ActualRetAddrReg
= MRI
->createVirtualRegister(AddrRC
);
2541 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::LEA64r
), ActualRetAddrReg
)
2542 .addReg(/*Base*/ X86::RIP
)
2543 .addImm(/*Scale*/ 1)
2544 .addReg(/*Index*/ 0)
2546 .addReg(/*Segment*/ 0);
2547 BuildMI(MBB
, InsertPt
, Loc
, TII
->get(X86::CMP64rr
))
2548 .addReg(ExpectedRetAddrReg
, RegState::Kill
)
2549 .addReg(ActualRetAddrReg
, RegState::Kill
);
2552 // Now conditionally update the predicate state we just extracted if we ended
2553 // up at a different return address than expected.
2554 int PredStateSizeInBytes
= TRI
->getRegSizeInBits(*PS
->RC
) / 8;
2555 auto CMovOp
= X86::getCMovOpcode(PredStateSizeInBytes
);
2557 unsigned UpdatedStateReg
= MRI
->createVirtualRegister(PS
->RC
);
2558 auto CMovI
= BuildMI(MBB
, InsertPt
, Loc
, TII
->get(CMovOp
), UpdatedStateReg
)
2559 .addReg(NewStateReg
, RegState::Kill
)
2560 .addReg(PS
->PoisonReg
)
2561 .addImm(X86::COND_NE
);
2562 CMovI
->findRegisterUseOperand(X86::EFLAGS
)->setIsKill(true);
2564 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI
->dump(); dbgs() << "\n");
2566 PS
->SSA
.AddAvailableValue(&MBB
, UpdatedStateReg
);
2569 /// An attacker may speculatively store over a value that is then speculatively
2570 /// loaded and used as the target of an indirect call or jump instruction. This
2571 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
2573 /// https://people.csail.mit.edu/vlk/spectre11.pdf
2575 /// When this happens, the speculative execution of the call or jump will end up
2576 /// being steered to this attacker controlled address. While most such loads
2577 /// will be adequately hardened already, we want to ensure that they are
2578 /// definitively treated as needing post-load hardening. While address hardening
2579 /// is sufficient to prevent secret data from leaking to the attacker, it may
2580 /// not be sufficient to prevent an attacker from steering speculative
2581 /// execution. We forcibly unfolded all relevant loads above and so will always
2582 /// have an opportunity to post-load harden here, we just need to scan for cases
2583 /// not already flagged and add them.
2584 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
2586 SmallDenseMap
<unsigned, unsigned, 32> &AddrRegToHardenedReg
) {
2587 switch (MI
.getOpcode()) {
2588 case X86::FARCALL16m
:
2589 case X86::FARCALL32m
:
2590 case X86::FARCALL64
:
2591 case X86::FARJMP16m
:
2592 case X86::FARJMP32m
:
2594 // We don't need to harden either far calls or far jumps as they are
2595 // safe from Spectre.
2602 // We should never see a loading instruction at this point, as those should
2603 // have been unfolded.
2604 assert(!MI
.mayLoad() && "Found a lingering loading instruction!");
2606 // If the first operand isn't a register, this is a branch or call
2607 // instruction with an immediate operand which doesn't need to be hardened.
2608 if (!MI
.getOperand(0).isReg())
2611 // For all of these, the target register is the first operand of the
2613 auto &TargetOp
= MI
.getOperand(0);
2614 unsigned OldTargetReg
= TargetOp
.getReg();
2616 // Try to lookup a hardened version of this register. We retain a reference
2617 // here as we want to update the map to track any newly computed hardened
2619 unsigned &HardenedTargetReg
= AddrRegToHardenedReg
[OldTargetReg
];
2621 // If we don't have a hardened register yet, compute one. Otherwise, just use
2622 // the already hardened register.
2624 // FIXME: It is a little suspect that we use partially hardened registers that
2625 // only feed addresses. The complexity of partial hardening with SHRX
2626 // continues to pile up. Should definitively measure its value and consider
2628 if (!HardenedTargetReg
)
2629 HardenedTargetReg
= hardenValueInRegister(
2630 OldTargetReg
, *MI
.getParent(), MI
.getIterator(), MI
.getDebugLoc());
2632 // Set the target operand to the hardened register.
2633 TargetOp
.setReg(HardenedTargetReg
);
2635 ++NumCallsOrJumpsHardened
;
2638 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass
, PASS_KEY
,
2639 "X86 speculative load hardener", false, false)
2640 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass
, PASS_KEY
,
2641 "X86 speculative load hardener", false, false)
2643 FunctionPass
*llvm::createX86SpeculativeLoadHardeningPass() {
2644 return new X86SpeculativeLoadHardeningPass();