[ARM] Prevent generating NEON stack accesses under MVE.
[llvm-complete.git] / utils / TableGen / IntrinsicEmitter.cpp
blob3779dc7178468c54f39a4ccf08ba2cc502f4e5bc
1 //===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits information about intrinsic functions.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenIntrinsics.h"
14 #include "CodeGenTarget.h"
15 #include "SequenceToOffsetTable.h"
16 #include "TableGenBackends.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/TableGen/Error.h"
19 #include "llvm/TableGen/Record.h"
20 #include "llvm/TableGen/StringMatcher.h"
21 #include "llvm/TableGen/TableGenBackend.h"
22 #include "llvm/TableGen/StringToOffsetTable.h"
23 #include <algorithm>
24 using namespace llvm;
26 namespace {
27 class IntrinsicEmitter {
28 RecordKeeper &Records;
29 bool TargetOnly;
30 std::string TargetPrefix;
32 public:
33 IntrinsicEmitter(RecordKeeper &R, bool T)
34 : Records(R), TargetOnly(T) {}
36 void run(raw_ostream &OS, bool Enums);
38 void EmitPrefix(raw_ostream &OS);
40 void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
41 void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
42 void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
43 raw_ostream &OS);
44 void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
45 raw_ostream &OS);
46 void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
47 void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
48 void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
49 raw_ostream &OS);
50 void EmitSuffix(raw_ostream &OS);
52 } // End anonymous namespace
54 //===----------------------------------------------------------------------===//
55 // IntrinsicEmitter Implementation
56 //===----------------------------------------------------------------------===//
58 void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
59 emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
61 CodeGenIntrinsicTable Ints(Records, TargetOnly);
63 if (TargetOnly && !Ints.empty())
64 TargetPrefix = Ints[0].TargetPrefix;
66 EmitPrefix(OS);
68 if (Enums) {
69 // Emit the enum information.
70 EmitEnumInfo(Ints, OS);
71 } else {
72 // Emit the target metadata.
73 EmitTargetInfo(Ints, OS);
75 // Emit the intrinsic ID -> name table.
76 EmitIntrinsicToNameTable(Ints, OS);
78 // Emit the intrinsic ID -> overload table.
79 EmitIntrinsicToOverloadTable(Ints, OS);
81 // Emit the intrinsic declaration generator.
82 EmitGenerator(Ints, OS);
84 // Emit the intrinsic parameter attributes.
85 EmitAttributes(Ints, OS);
87 // Emit code to translate GCC builtins into LLVM intrinsics.
88 EmitIntrinsicToBuiltinMap(Ints, true, OS);
90 // Emit code to translate MS builtins into LLVM intrinsics.
91 EmitIntrinsicToBuiltinMap(Ints, false, OS);
94 EmitSuffix(OS);
97 void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) {
98 OS << "// VisualStudio defines setjmp as _setjmp\n"
99 "#if defined(_MSC_VER) && defined(setjmp) && \\\n"
100 " !defined(setjmp_undefined_for_msvc)\n"
101 "# pragma push_macro(\"setjmp\")\n"
102 "# undef setjmp\n"
103 "# define setjmp_undefined_for_msvc\n"
104 "#endif\n\n";
107 void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) {
108 OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n"
109 "// let's return it to _setjmp state\n"
110 "# pragma pop_macro(\"setjmp\")\n"
111 "# undef setjmp_undefined_for_msvc\n"
112 "#endif\n\n";
115 void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
116 raw_ostream &OS) {
117 OS << "// Enum values for Intrinsics.h\n";
118 OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n";
119 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
120 OS << " " << Ints[i].EnumName;
121 OS << ((i != e-1) ? ", " : " ");
122 if (Ints[i].EnumName.size() < 40)
123 OS << std::string(40-Ints[i].EnumName.size(), ' ');
124 OS << " // " << Ints[i].Name << "\n";
126 OS << "#endif\n\n";
129 void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
130 raw_ostream &OS) {
131 OS << "// Target mapping\n";
132 OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
133 OS << "struct IntrinsicTargetInfo {\n"
134 << " llvm::StringLiteral Name;\n"
135 << " size_t Offset;\n"
136 << " size_t Count;\n"
137 << "};\n";
138 OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
139 for (auto Target : Ints.Targets)
140 OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
141 << ", " << Target.Count << "},\n";
142 OS << "};\n";
143 OS << "#endif\n\n";
146 void IntrinsicEmitter::EmitIntrinsicToNameTable(
147 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
148 OS << "// Intrinsic ID to name table\n";
149 OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
150 OS << " // Note that entry #0 is the invalid intrinsic!\n";
151 for (unsigned i = 0, e = Ints.size(); i != e; ++i)
152 OS << " \"" << Ints[i].Name << "\",\n";
153 OS << "#endif\n\n";
156 void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
157 const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
158 OS << "// Intrinsic ID to overload bitset\n";
159 OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
160 OS << "static const uint8_t OTable[] = {\n";
161 OS << " 0";
162 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
163 // Add one to the index so we emit a null bit for the invalid #0 intrinsic.
164 if ((i+1)%8 == 0)
165 OS << ",\n 0";
166 if (Ints[i].isOverloaded)
167 OS << " | (1<<" << (i+1)%8 << ')';
169 OS << "\n};\n\n";
170 // OTable contains a true bit at the position if the intrinsic is overloaded.
171 OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
172 OS << "#endif\n\n";
176 // NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
177 enum IIT_Info {
178 // Common values should be encoded with 0-15.
179 IIT_Done = 0,
180 IIT_I1 = 1,
181 IIT_I8 = 2,
182 IIT_I16 = 3,
183 IIT_I32 = 4,
184 IIT_I64 = 5,
185 IIT_F16 = 6,
186 IIT_F32 = 7,
187 IIT_F64 = 8,
188 IIT_V2 = 9,
189 IIT_V4 = 10,
190 IIT_V8 = 11,
191 IIT_V16 = 12,
192 IIT_V32 = 13,
193 IIT_PTR = 14,
194 IIT_ARG = 15,
196 // Values from 16+ are only encodable with the inefficient encoding.
197 IIT_V64 = 16,
198 IIT_MMX = 17,
199 IIT_TOKEN = 18,
200 IIT_METADATA = 19,
201 IIT_EMPTYSTRUCT = 20,
202 IIT_STRUCT2 = 21,
203 IIT_STRUCT3 = 22,
204 IIT_STRUCT4 = 23,
205 IIT_STRUCT5 = 24,
206 IIT_EXTEND_ARG = 25,
207 IIT_TRUNC_ARG = 26,
208 IIT_ANYPTR = 27,
209 IIT_V1 = 28,
210 IIT_VARARG = 29,
211 IIT_HALF_VEC_ARG = 30,
212 IIT_SAME_VEC_WIDTH_ARG = 31,
213 IIT_PTR_TO_ARG = 32,
214 IIT_PTR_TO_ELT = 33,
215 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
216 IIT_I128 = 35,
217 IIT_V512 = 36,
218 IIT_V1024 = 37,
219 IIT_STRUCT6 = 38,
220 IIT_STRUCT7 = 39,
221 IIT_STRUCT8 = 40,
222 IIT_F128 = 41,
223 IIT_VEC_ELEMENT = 42,
224 IIT_SCALABLE_VEC = 43
227 static void EncodeFixedValueType(MVT::SimpleValueType VT,
228 std::vector<unsigned char> &Sig) {
229 if (MVT(VT).isInteger()) {
230 unsigned BitWidth = MVT(VT).getSizeInBits();
231 switch (BitWidth) {
232 default: PrintFatalError("unhandled integer type width in intrinsic!");
233 case 1: return Sig.push_back(IIT_I1);
234 case 8: return Sig.push_back(IIT_I8);
235 case 16: return Sig.push_back(IIT_I16);
236 case 32: return Sig.push_back(IIT_I32);
237 case 64: return Sig.push_back(IIT_I64);
238 case 128: return Sig.push_back(IIT_I128);
242 switch (VT) {
243 default: PrintFatalError("unhandled MVT in intrinsic!");
244 case MVT::f16: return Sig.push_back(IIT_F16);
245 case MVT::f32: return Sig.push_back(IIT_F32);
246 case MVT::f64: return Sig.push_back(IIT_F64);
247 case MVT::f128: return Sig.push_back(IIT_F128);
248 case MVT::token: return Sig.push_back(IIT_TOKEN);
249 case MVT::Metadata: return Sig.push_back(IIT_METADATA);
250 case MVT::x86mmx: return Sig.push_back(IIT_MMX);
251 // MVT::OtherVT is used to mean the empty struct type here.
252 case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
253 // MVT::isVoid is used to represent varargs here.
254 case MVT::isVoid: return Sig.push_back(IIT_VARARG);
258 #if defined(_MSC_VER) && !defined(__clang__)
259 #pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
260 #endif
262 static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
263 unsigned &NextArgCode,
264 std::vector<unsigned char> &Sig,
265 ArrayRef<unsigned char> Mapping) {
267 if (R->isSubClassOf("LLVMMatchType")) {
268 unsigned Number = Mapping[R->getValueAsInt("Number")];
269 assert(Number < ArgCodes.size() && "Invalid matching number!");
270 if (R->isSubClassOf("LLVMExtendedType"))
271 Sig.push_back(IIT_EXTEND_ARG);
272 else if (R->isSubClassOf("LLVMTruncatedType"))
273 Sig.push_back(IIT_TRUNC_ARG);
274 else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
275 Sig.push_back(IIT_HALF_VEC_ARG);
276 else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
277 Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
278 Sig.push_back((Number << 3) | ArgCodes[Number]);
279 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
280 EncodeFixedValueType(VT, Sig);
281 return;
283 else if (R->isSubClassOf("LLVMPointerTo"))
284 Sig.push_back(IIT_PTR_TO_ARG);
285 else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
286 Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
287 // Encode overloaded ArgNo
288 Sig.push_back(NextArgCode++);
289 // Encode LLVMMatchType<Number> ArgNo
290 Sig.push_back(Number);
291 return;
292 } else if (R->isSubClassOf("LLVMPointerToElt"))
293 Sig.push_back(IIT_PTR_TO_ELT);
294 else if (R->isSubClassOf("LLVMVectorElementType"))
295 Sig.push_back(IIT_VEC_ELEMENT);
296 else
297 Sig.push_back(IIT_ARG);
298 return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
301 MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
303 unsigned Tmp = 0;
304 switch (VT) {
305 default: break;
306 case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
307 case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
308 case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
309 case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
310 case MVT::Any: {
311 // If this is an "any" valuetype, then the type is the type of the next
312 // type in the list specified to getIntrinsic().
313 Sig.push_back(IIT_ARG);
315 // Figure out what arg # this is consuming, and remember what kind it was.
316 assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
317 "Invalid or no ArgCode associated with overloaded VT!");
318 unsigned ArgNo = NextArgCode++;
320 // Encode what sort of argument it must be in the low 3 bits of the ArgNo.
321 return Sig.push_back((ArgNo << 3) | Tmp);
324 case MVT::iPTR: {
325 unsigned AddrSpace = 0;
326 if (R->isSubClassOf("LLVMQualPointerType")) {
327 AddrSpace = R->getValueAsInt("AddrSpace");
328 assert(AddrSpace < 256 && "Address space exceeds 255");
330 if (AddrSpace) {
331 Sig.push_back(IIT_ANYPTR);
332 Sig.push_back(AddrSpace);
333 } else {
334 Sig.push_back(IIT_PTR);
336 return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
337 Mapping);
341 if (MVT(VT).isVector()) {
342 MVT VVT = VT;
343 if (VVT.isScalableVector())
344 Sig.push_back(IIT_SCALABLE_VEC);
345 switch (VVT.getVectorNumElements()) {
346 default: PrintFatalError("unhandled vector type width in intrinsic!");
347 case 1: Sig.push_back(IIT_V1); break;
348 case 2: Sig.push_back(IIT_V2); break;
349 case 4: Sig.push_back(IIT_V4); break;
350 case 8: Sig.push_back(IIT_V8); break;
351 case 16: Sig.push_back(IIT_V16); break;
352 case 32: Sig.push_back(IIT_V32); break;
353 case 64: Sig.push_back(IIT_V64); break;
354 case 512: Sig.push_back(IIT_V512); break;
355 case 1024: Sig.push_back(IIT_V1024); break;
358 return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
361 EncodeFixedValueType(VT, Sig);
364 static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
365 unsigned int &NumInserted,
366 SmallVectorImpl<unsigned char> &Mapping) {
367 if (R->isSubClassOf("LLVMMatchType")) {
368 if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
369 ArgCodes.push_back(3 /*vAny*/);
370 ++NumInserted;
372 return;
375 unsigned Tmp = 0;
376 switch (getValueType(R->getValueAsDef("VT"))) {
377 default: break;
378 case MVT::iPTR:
379 UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
380 break;
381 case MVT::iPTRAny:
382 ++Tmp;
383 LLVM_FALLTHROUGH;
384 case MVT::vAny:
385 ++Tmp;
386 LLVM_FALLTHROUGH;
387 case MVT::fAny:
388 ++Tmp;
389 LLVM_FALLTHROUGH;
390 case MVT::iAny:
391 ++Tmp;
392 LLVM_FALLTHROUGH;
393 case MVT::Any:
394 unsigned OriginalIdx = ArgCodes.size() - NumInserted;
395 assert(OriginalIdx >= Mapping.size());
396 Mapping.resize(OriginalIdx+1);
397 Mapping[OriginalIdx] = ArgCodes.size();
398 ArgCodes.push_back(Tmp);
399 break;
403 #if defined(_MSC_VER) && !defined(__clang__)
404 #pragma optimize("",on)
405 #endif
407 /// ComputeFixedEncoding - If we can encode the type signature for this
408 /// intrinsic into 32 bits, return it. If not, return ~0U.
409 static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
410 std::vector<unsigned char> &TypeSig) {
411 std::vector<unsigned char> ArgCodes;
413 // Add codes for any overloaded result VTs.
414 unsigned int NumInserted = 0;
415 SmallVector<unsigned char, 8> ArgMapping;
416 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
417 UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
419 // Add codes for any overloaded operand VTs.
420 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
421 UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
423 unsigned NextArgCode = 0;
424 if (Int.IS.RetVTs.empty())
425 TypeSig.push_back(IIT_Done);
426 else if (Int.IS.RetVTs.size() == 1 &&
427 Int.IS.RetVTs[0] == MVT::isVoid)
428 TypeSig.push_back(IIT_Done);
429 else {
430 switch (Int.IS.RetVTs.size()) {
431 case 1: break;
432 case 2: TypeSig.push_back(IIT_STRUCT2); break;
433 case 3: TypeSig.push_back(IIT_STRUCT3); break;
434 case 4: TypeSig.push_back(IIT_STRUCT4); break;
435 case 5: TypeSig.push_back(IIT_STRUCT5); break;
436 case 6: TypeSig.push_back(IIT_STRUCT6); break;
437 case 7: TypeSig.push_back(IIT_STRUCT7); break;
438 case 8: TypeSig.push_back(IIT_STRUCT8); break;
439 default: llvm_unreachable("Unhandled case in struct");
442 for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
443 EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
444 ArgMapping);
447 for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
448 EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
449 ArgMapping);
452 static void printIITEntry(raw_ostream &OS, unsigned char X) {
453 OS << (unsigned)X;
456 void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
457 raw_ostream &OS) {
458 // If we can compute a 32-bit fixed encoding for this intrinsic, do so and
459 // capture it in this vector, otherwise store a ~0U.
460 std::vector<unsigned> FixedEncodings;
462 SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
464 std::vector<unsigned char> TypeSig;
466 // Compute the unique argument type info.
467 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
468 // Get the signature for the intrinsic.
469 TypeSig.clear();
470 ComputeFixedEncoding(Ints[i], TypeSig);
472 // Check to see if we can encode it into a 32-bit word. We can only encode
473 // 8 nibbles into a 32-bit word.
474 if (TypeSig.size() <= 8) {
475 bool Failed = false;
476 unsigned Result = 0;
477 for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
478 // If we had an unencodable argument, bail out.
479 if (TypeSig[i] > 15) {
480 Failed = true;
481 break;
483 Result = (Result << 4) | TypeSig[e-i-1];
486 // If this could be encoded into a 31-bit word, return it.
487 if (!Failed && (Result >> 31) == 0) {
488 FixedEncodings.push_back(Result);
489 continue;
493 // Otherwise, we're going to unique the sequence into the
494 // LongEncodingTable, and use its offset in the 32-bit table instead.
495 LongEncodingTable.add(TypeSig);
497 // This is a placehold that we'll replace after the table is laid out.
498 FixedEncodings.push_back(~0U);
501 LongEncodingTable.layout();
503 OS << "// Global intrinsic function declaration type table.\n";
504 OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
506 OS << "static const unsigned IIT_Table[] = {\n ";
508 for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
509 if ((i & 7) == 7)
510 OS << "\n ";
512 // If the entry fit in the table, just emit it.
513 if (FixedEncodings[i] != ~0U) {
514 OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
515 continue;
518 TypeSig.clear();
519 ComputeFixedEncoding(Ints[i], TypeSig);
522 // Otherwise, emit the offset into the long encoding table. We emit it this
523 // way so that it is easier to read the offset in the .def file.
524 OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
527 OS << "0\n};\n\n";
529 // Emit the shared table of register lists.
530 OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
531 if (!LongEncodingTable.empty())
532 LongEncodingTable.emit(OS, printIITEntry);
533 OS << " 255\n};\n\n";
535 OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
538 namespace {
539 struct AttributeComparator {
540 bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
541 // Sort throwing intrinsics after non-throwing intrinsics.
542 if (L->canThrow != R->canThrow)
543 return R->canThrow;
545 if (L->isNoDuplicate != R->isNoDuplicate)
546 return R->isNoDuplicate;
548 if (L->isNoReturn != R->isNoReturn)
549 return R->isNoReturn;
551 if (L->isWillReturn != R->isWillReturn)
552 return R->isWillReturn;
554 if (L->isCold != R->isCold)
555 return R->isCold;
557 if (L->isConvergent != R->isConvergent)
558 return R->isConvergent;
560 if (L->isSpeculatable != R->isSpeculatable)
561 return R->isSpeculatable;
563 if (L->hasSideEffects != R->hasSideEffects)
564 return R->hasSideEffects;
566 // Try to order by readonly/readnone attribute.
567 CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
568 CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
569 if (LK != RK) return (LK > RK);
570 // Order by argument attributes.
571 // This is reliable because each side is already sorted internally.
572 return (L->ArgumentAttributes < R->ArgumentAttributes);
575 } // End anonymous namespace
577 /// EmitAttributes - This emits the Intrinsic::getAttributes method.
578 void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
579 raw_ostream &OS) {
580 OS << "// Add parameter attributes that are not common to all intrinsics.\n";
581 OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
582 if (TargetOnly)
583 OS << "static AttributeList getAttributes(LLVMContext &C, " << TargetPrefix
584 << "Intrinsic::ID id) {\n";
585 else
586 OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
588 // Compute the maximum number of attribute arguments and the map
589 typedef std::map<const CodeGenIntrinsic*, unsigned,
590 AttributeComparator> UniqAttrMapTy;
591 UniqAttrMapTy UniqAttributes;
592 unsigned maxArgAttrs = 0;
593 unsigned AttrNum = 0;
594 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
595 const CodeGenIntrinsic &intrinsic = Ints[i];
596 maxArgAttrs =
597 std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
598 unsigned &N = UniqAttributes[&intrinsic];
599 if (N) continue;
600 assert(AttrNum < 256 && "Too many unique attributes for table!");
601 N = ++AttrNum;
604 // Emit an array of AttributeList. Most intrinsics will have at least one
605 // entry, for the function itself (index ~1), which is usually nounwind.
606 OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n";
608 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
609 const CodeGenIntrinsic &intrinsic = Ints[i];
611 OS << " " << UniqAttributes[&intrinsic] << ", // "
612 << intrinsic.Name << "\n";
614 OS << " };\n\n";
616 OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
617 OS << " unsigned NumAttrs = 0;\n";
618 OS << " if (id != 0) {\n";
619 OS << " switch(IntrinsicsToAttributesMap[id - ";
620 if (TargetOnly)
621 OS << "Intrinsic::num_intrinsics";
622 else
623 OS << "1";
624 OS << "]) {\n";
625 OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
626 for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
627 E = UniqAttributes.end(); I != E; ++I) {
628 OS << " case " << I->second << ": {\n";
630 const CodeGenIntrinsic &intrinsic = *(I->first);
632 // Keep track of the number of attributes we're writing out.
633 unsigned numAttrs = 0;
635 // The argument attributes are alreadys sorted by argument index.
636 unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
637 if (ae) {
638 while (ai != ae) {
639 unsigned argNo = intrinsic.ArgumentAttributes[ai].first;
640 unsigned attrIdx = argNo + 1; // Must match AttributeList::FirstArgIndex
642 OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
643 bool addComma = false;
645 do {
646 switch (intrinsic.ArgumentAttributes[ai].second) {
647 case CodeGenIntrinsic::NoCapture:
648 if (addComma)
649 OS << ",";
650 OS << "Attribute::NoCapture";
651 addComma = true;
652 break;
653 case CodeGenIntrinsic::NoAlias:
654 if (addComma)
655 OS << ",";
656 OS << "Attribute::NoAlias";
657 addComma = true;
658 break;
659 case CodeGenIntrinsic::Returned:
660 if (addComma)
661 OS << ",";
662 OS << "Attribute::Returned";
663 addComma = true;
664 break;
665 case CodeGenIntrinsic::ReadOnly:
666 if (addComma)
667 OS << ",";
668 OS << "Attribute::ReadOnly";
669 addComma = true;
670 break;
671 case CodeGenIntrinsic::WriteOnly:
672 if (addComma)
673 OS << ",";
674 OS << "Attribute::WriteOnly";
675 addComma = true;
676 break;
677 case CodeGenIntrinsic::ReadNone:
678 if (addComma)
679 OS << ",";
680 OS << "Attribute::ReadNone";
681 addComma = true;
682 break;
683 case CodeGenIntrinsic::ImmArg:
684 if (addComma)
685 OS << ',';
686 OS << "Attribute::ImmArg";
687 addComma = true;
688 break;
691 ++ai;
692 } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo);
693 OS << "};\n";
694 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
695 << attrIdx << ", AttrParam" << attrIdx << ");\n";
699 if (!intrinsic.canThrow ||
700 (intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem && !intrinsic.hasSideEffects) ||
701 intrinsic.isNoReturn || intrinsic.isWillReturn || intrinsic.isCold ||
702 intrinsic.isNoDuplicate || intrinsic.isConvergent ||
703 intrinsic.isSpeculatable) {
704 OS << " const Attribute::AttrKind Atts[] = {";
705 bool addComma = false;
706 if (!intrinsic.canThrow) {
707 OS << "Attribute::NoUnwind";
708 addComma = true;
710 if (intrinsic.isNoReturn) {
711 if (addComma)
712 OS << ",";
713 OS << "Attribute::NoReturn";
714 addComma = true;
716 if (intrinsic.isWillReturn) {
717 if (addComma)
718 OS << ",";
719 OS << "Attribute::WillReturn";
720 addComma = true;
722 if (intrinsic.isCold) {
723 if (addComma)
724 OS << ",";
725 OS << "Attribute::Cold";
726 addComma = true;
728 if (intrinsic.isNoDuplicate) {
729 if (addComma)
730 OS << ",";
731 OS << "Attribute::NoDuplicate";
732 addComma = true;
734 if (intrinsic.isConvergent) {
735 if (addComma)
736 OS << ",";
737 OS << "Attribute::Convergent";
738 addComma = true;
740 if (intrinsic.isSpeculatable) {
741 if (addComma)
742 OS << ",";
743 OS << "Attribute::Speculatable";
744 addComma = true;
747 switch (intrinsic.ModRef) {
748 case CodeGenIntrinsic::NoMem:
749 if (intrinsic.hasSideEffects)
750 break;
751 if (addComma)
752 OS << ",";
753 OS << "Attribute::ReadNone";
754 break;
755 case CodeGenIntrinsic::ReadArgMem:
756 if (addComma)
757 OS << ",";
758 OS << "Attribute::ReadOnly,";
759 OS << "Attribute::ArgMemOnly";
760 break;
761 case CodeGenIntrinsic::ReadMem:
762 if (addComma)
763 OS << ",";
764 OS << "Attribute::ReadOnly";
765 break;
766 case CodeGenIntrinsic::ReadInaccessibleMem:
767 if (addComma)
768 OS << ",";
769 OS << "Attribute::ReadOnly,";
770 OS << "Attribute::InaccessibleMemOnly";
771 break;
772 case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
773 if (addComma)
774 OS << ",";
775 OS << "Attribute::ReadOnly,";
776 OS << "Attribute::InaccessibleMemOrArgMemOnly";
777 break;
778 case CodeGenIntrinsic::WriteArgMem:
779 if (addComma)
780 OS << ",";
781 OS << "Attribute::WriteOnly,";
782 OS << "Attribute::ArgMemOnly";
783 break;
784 case CodeGenIntrinsic::WriteMem:
785 if (addComma)
786 OS << ",";
787 OS << "Attribute::WriteOnly";
788 break;
789 case CodeGenIntrinsic::WriteInaccessibleMem:
790 if (addComma)
791 OS << ",";
792 OS << "Attribute::WriteOnly,";
793 OS << "Attribute::InaccessibleMemOnly";
794 break;
795 case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
796 if (addComma)
797 OS << ",";
798 OS << "Attribute::WriteOnly,";
799 OS << "Attribute::InaccessibleMemOrArgMemOnly";
800 break;
801 case CodeGenIntrinsic::ReadWriteArgMem:
802 if (addComma)
803 OS << ",";
804 OS << "Attribute::ArgMemOnly";
805 break;
806 case CodeGenIntrinsic::ReadWriteInaccessibleMem:
807 if (addComma)
808 OS << ",";
809 OS << "Attribute::InaccessibleMemOnly";
810 break;
811 case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
812 if (addComma)
813 OS << ",";
814 OS << "Attribute::InaccessibleMemOrArgMemOnly";
815 break;
816 case CodeGenIntrinsic::ReadWriteMem:
817 break;
819 OS << "};\n";
820 OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
821 << "AttributeList::FunctionIndex, Atts);\n";
824 if (numAttrs) {
825 OS << " NumAttrs = " << numAttrs << ";\n";
826 OS << " break;\n";
827 OS << " }\n";
828 } else {
829 OS << " return AttributeList();\n";
830 OS << " }\n";
834 OS << " }\n";
835 OS << " }\n";
836 OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
837 OS << "}\n";
838 OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
841 void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
842 const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
843 StringRef CompilerName = (IsGCC ? "GCC" : "MS");
844 typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
845 BIMTy BuiltinMap;
846 StringToOffsetTable Table;
847 for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
848 const std::string &BuiltinName =
849 IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
850 if (!BuiltinName.empty()) {
851 // Get the map for this target prefix.
852 std::map<std::string, std::string> &BIM =
853 BuiltinMap[Ints[i].TargetPrefix];
855 if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
856 PrintFatalError(Ints[i].TheDef->getLoc(),
857 "Intrinsic '" + Ints[i].TheDef->getName() +
858 "': duplicate " + CompilerName + " builtin name!");
859 Table.GetOrAddStringOffset(BuiltinName);
863 OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
864 OS << "// This is used by the C front-end. The builtin name is passed\n";
865 OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
866 OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
867 OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
869 if (TargetOnly) {
870 OS << "static " << TargetPrefix << "Intrinsic::ID "
871 << "getIntrinsicFor" << CompilerName << "Builtin(const char "
872 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
873 } else {
874 OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
875 << "Builtin(const char "
876 << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
879 if (Table.Empty()) {
880 OS << " return ";
881 if (!TargetPrefix.empty())
882 OS << "(" << TargetPrefix << "Intrinsic::ID)";
883 OS << "Intrinsic::not_intrinsic;\n";
884 OS << "}\n";
885 OS << "#endif\n\n";
886 return;
889 OS << " static const char BuiltinNames[] = {\n";
890 Table.EmitCharArray(OS);
891 OS << " };\n\n";
893 OS << " struct BuiltinEntry {\n";
894 OS << " Intrinsic::ID IntrinID;\n";
895 OS << " unsigned StrTabOffset;\n";
896 OS << " const char *getName() const {\n";
897 OS << " return &BuiltinNames[StrTabOffset];\n";
898 OS << " }\n";
899 OS << " bool operator<(StringRef RHS) const {\n";
900 OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
901 OS << " }\n";
902 OS << " };\n";
904 OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
906 // Note: this could emit significantly better code if we cared.
907 for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
908 OS << " ";
909 if (!I->first.empty())
910 OS << "if (TargetPrefix == \"" << I->first << "\") ";
911 else
912 OS << "/* Target Independent Builtins */ ";
913 OS << "{\n";
915 // Emit the comparisons for this target prefix.
916 OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
917 for (const auto &P : I->second) {
918 OS << " {Intrinsic::" << P.second << ", "
919 << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
921 OS << " };\n";
922 OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
923 OS << " std::end(" << I->first << "Names),\n";
924 OS << " BuiltinNameStr);\n";
925 OS << " if (I != std::end(" << I->first << "Names) &&\n";
926 OS << " I->getName() == BuiltinNameStr)\n";
927 OS << " return I->IntrinID;\n";
928 OS << " }\n";
930 OS << " return ";
931 if (!TargetPrefix.empty())
932 OS << "(" << TargetPrefix << "Intrinsic::ID)";
933 OS << "Intrinsic::not_intrinsic;\n";
934 OS << "}\n";
935 OS << "#endif\n\n";
938 void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS,
939 bool TargetOnly) {
940 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/true);
943 void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS,
944 bool TargetOnly) {
945 IntrinsicEmitter(RK, TargetOnly).run(OS, /*Enums=*/false);