1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/MSVCErrorWorkarounds.h"
21 #include "llvm/Support/ManagedStatic.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/MutexGuard.h"
28 using namespace llvm::object
;
30 #define DEBUG_TYPE "dyld"
34 enum RuntimeDyldErrorCode
{
35 GenericRTDyldError
= 1
38 // FIXME: This class is only here to support the transition to llvm::Error. It
39 // will be removed once this transition is complete. Clients should prefer to
40 // deal with the Error value directly, rather than converting to error_code.
41 class RuntimeDyldErrorCategory
: public std::error_category
{
43 const char *name() const noexcept override
{ return "runtimedyld"; }
45 std::string
message(int Condition
) const override
{
46 switch (static_cast<RuntimeDyldErrorCode
>(Condition
)) {
47 case GenericRTDyldError
: return "Generic RuntimeDyld error";
49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
53 static ManagedStatic
<RuntimeDyldErrorCategory
> RTDyldErrorCategory
;
57 char RuntimeDyldError::ID
= 0;
59 void RuntimeDyldError::log(raw_ostream
&OS
) const {
63 std::error_code
RuntimeDyldError::convertToErrorCode() const {
64 return std::error_code(GenericRTDyldError
, *RTDyldErrorCategory
);
67 // Empty out-of-line virtual destructor as the key function.
68 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 // Pin LoadedObjectInfo's vtables to this file.
71 void RuntimeDyld::LoadedObjectInfo::anchor() {}
75 void RuntimeDyldImpl::registerEHFrames() {}
77 void RuntimeDyldImpl::deregisterEHFrames() {
78 MemMgr
.deregisterEHFrames();
82 static void dumpSectionMemory(const SectionEntry
&S
, StringRef State
) {
83 dbgs() << "----- Contents of section " << S
.getName() << " " << State
86 if (S
.getAddress() == nullptr) {
87 dbgs() << "\n <section not emitted>\n";
91 const unsigned ColsPerRow
= 16;
93 uint8_t *DataAddr
= S
.getAddress();
94 uint64_t LoadAddr
= S
.getLoadAddress();
96 unsigned StartPadding
= LoadAddr
& (ColsPerRow
- 1);
97 unsigned BytesRemaining
= S
.getSize();
100 dbgs() << "\n" << format("0x%016" PRIx64
,
101 LoadAddr
& ~(uint64_t)(ColsPerRow
- 1)) << ":";
102 while (StartPadding
--)
106 while (BytesRemaining
> 0) {
107 if ((LoadAddr
& (ColsPerRow
- 1)) == 0)
108 dbgs() << "\n" << format("0x%016" PRIx64
, LoadAddr
) << ":";
110 dbgs() << " " << format("%02x", *DataAddr
);
121 // Resolve the relocations for all symbols we currently know about.
122 void RuntimeDyldImpl::resolveRelocations() {
123 MutexGuard
locked(lock
);
125 // Print out the sections prior to relocation.
126 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
127 dumpSectionMemory(Sections
[i
], "before relocations"););
129 // First, resolve relocations associated with external symbols.
130 if (auto Err
= resolveExternalSymbols()) {
132 ErrorStr
= toString(std::move(Err
));
135 resolveLocalRelocations();
137 // Print out sections after relocation.
138 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
139 dumpSectionMemory(Sections
[i
], "after relocations"););
142 void RuntimeDyldImpl::resolveLocalRelocations() {
143 // Iterate over all outstanding relocations
144 for (auto it
= Relocations
.begin(), e
= Relocations
.end(); it
!= e
; ++it
) {
145 // The Section here (Sections[i]) refers to the section in which the
146 // symbol for the relocation is located. The SectionID in the relocation
147 // entry provides the section to which the relocation will be applied.
149 uint64_t Addr
= Sections
[Idx
].getLoadAddress();
150 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx
<< "\t"
151 << format("%p", (uintptr_t)Addr
) << "\n");
152 resolveRelocationList(it
->second
, Addr
);
157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress
,
158 uint64_t TargetAddress
) {
159 MutexGuard
locked(lock
);
160 for (unsigned i
= 0, e
= Sections
.size(); i
!= e
; ++i
) {
161 if (Sections
[i
].getAddress() == LocalAddress
) {
162 reassignSectionAddress(i
, TargetAddress
);
166 llvm_unreachable("Attempting to remap address of unknown section!");
169 static Error
getOffset(const SymbolRef
&Sym
, SectionRef Sec
,
171 Expected
<uint64_t> AddressOrErr
= Sym
.getAddress();
173 return AddressOrErr
.takeError();
174 Result
= *AddressOrErr
- Sec
.getAddress();
175 return Error::success();
178 Expected
<RuntimeDyldImpl::ObjSectionToIDMap
>
179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile
&Obj
) {
180 MutexGuard
locked(lock
);
182 // Save information about our target
183 Arch
= (Triple::ArchType
)Obj
.getArch();
184 IsTargetLittleEndian
= Obj
.isLittleEndian();
187 // Compute the memory size required to load all sections to be loaded
188 // and pass this information to the memory manager
189 if (MemMgr
.needsToReserveAllocationSpace()) {
190 uint64_t CodeSize
= 0, RODataSize
= 0, RWDataSize
= 0;
191 uint32_t CodeAlign
= 1, RODataAlign
= 1, RWDataAlign
= 1;
192 if (auto Err
= computeTotalAllocSize(Obj
,
194 RODataSize
, RODataAlign
,
195 RWDataSize
, RWDataAlign
))
196 return std::move(Err
);
197 MemMgr
.reserveAllocationSpace(CodeSize
, CodeAlign
, RODataSize
, RODataAlign
,
198 RWDataSize
, RWDataAlign
);
201 // Used sections from the object file
202 ObjSectionToIDMap LocalSections
;
204 // Common symbols requiring allocation, with their sizes and alignments
205 CommonSymbolList CommonSymbolsToAllocate
;
207 uint64_t CommonSize
= 0;
208 uint32_t CommonAlign
= 0;
210 // First, collect all weak and common symbols. We need to know if stronger
211 // definitions occur elsewhere.
212 JITSymbolResolver::LookupSet ResponsibilitySet
;
214 JITSymbolResolver::LookupSet Symbols
;
215 for (auto &Sym
: Obj
.symbols()) {
216 uint32_t Flags
= Sym
.getFlags();
217 if ((Flags
& SymbolRef::SF_Common
) || (Flags
& SymbolRef::SF_Weak
)) {
219 if (auto NameOrErr
= Sym
.getName())
220 Symbols
.insert(*NameOrErr
);
222 return NameOrErr
.takeError();
226 if (auto ResultOrErr
= Resolver
.getResponsibilitySet(Symbols
))
227 ResponsibilitySet
= std::move(*ResultOrErr
);
229 return ResultOrErr
.takeError();
233 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
234 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
236 uint32_t Flags
= I
->getFlags();
238 // Skip undefined symbols.
239 if (Flags
& SymbolRef::SF_Undefined
)
242 // Get the symbol type.
243 object::SymbolRef::Type SymType
;
244 if (auto SymTypeOrErr
= I
->getType())
245 SymType
= *SymTypeOrErr
;
247 return SymTypeOrErr
.takeError();
251 if (auto NameOrErr
= I
->getName())
254 return NameOrErr
.takeError();
256 // Compute JIT symbol flags.
257 auto JITSymFlags
= getJITSymbolFlags(*I
);
259 return JITSymFlags
.takeError();
261 // If this is a weak definition, check to see if there's a strong one.
262 // If there is, skip this symbol (we won't be providing it: the strong
263 // definition will). If there's no strong definition, make this definition
265 if (JITSymFlags
->isWeak() || JITSymFlags
->isCommon()) {
266 // First check whether there's already a definition in this instance.
267 if (GlobalSymbolTable
.count(Name
))
270 // If we're not responsible for this symbol, skip it.
271 if (!ResponsibilitySet
.count(Name
))
274 // Otherwise update the flags on the symbol to make this definition
276 if (JITSymFlags
->isWeak())
277 *JITSymFlags
&= ~JITSymbolFlags::Weak
;
278 if (JITSymFlags
->isCommon()) {
279 *JITSymFlags
&= ~JITSymbolFlags::Common
;
280 uint32_t Align
= I
->getAlignment();
281 uint64_t Size
= I
->getCommonSize();
284 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
285 CommonSymbolsToAllocate
.push_back(*I
);
289 if (Flags
& SymbolRef::SF_Absolute
&&
290 SymType
!= object::SymbolRef::ST_File
) {
292 if (auto AddrOrErr
= I
->getAddress())
295 return AddrOrErr
.takeError();
297 unsigned SectionID
= AbsoluteSymbolSection
;
299 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " (absolute) Name: " << Name
300 << " SID: " << SectionID
301 << " Offset: " << format("%p", (uintptr_t)Addr
)
302 << " flags: " << Flags
<< "\n");
303 GlobalSymbolTable
[Name
] = SymbolTableEntry(SectionID
, Addr
, *JITSymFlags
);
304 } else if (SymType
== object::SymbolRef::ST_Function
||
305 SymType
== object::SymbolRef::ST_Data
||
306 SymType
== object::SymbolRef::ST_Unknown
||
307 SymType
== object::SymbolRef::ST_Other
) {
309 section_iterator SI
= Obj
.section_end();
310 if (auto SIOrErr
= I
->getSection())
313 return SIOrErr
.takeError();
315 if (SI
== Obj
.section_end())
318 // Get symbol offset.
320 if (auto Err
= getOffset(*I
, *SI
, SectOffset
))
321 return std::move(Err
);
323 bool IsCode
= SI
->isText();
325 if (auto SectionIDOrErr
=
326 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
327 SectionID
= *SectionIDOrErr
;
329 return SectionIDOrErr
.takeError();
331 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " Name: " << Name
332 << " SID: " << SectionID
333 << " Offset: " << format("%p", (uintptr_t)SectOffset
)
334 << " flags: " << Flags
<< "\n");
335 GlobalSymbolTable
[Name
] =
336 SymbolTableEntry(SectionID
, SectOffset
, *JITSymFlags
);
340 // Allocate common symbols
341 if (auto Err
= emitCommonSymbols(Obj
, CommonSymbolsToAllocate
, CommonSize
,
343 return std::move(Err
);
345 // Parse and process relocations
346 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
347 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
350 section_iterator RelocatedSection
= SI
->getRelocatedSection();
352 if (RelocatedSection
== SE
)
355 relocation_iterator I
= SI
->relocation_begin();
356 relocation_iterator E
= SI
->relocation_end();
358 if (I
== E
&& !ProcessAllSections
)
361 bool IsCode
= RelocatedSection
->isText();
362 unsigned SectionID
= 0;
363 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *RelocatedSection
, IsCode
,
365 SectionID
= *SectionIDOrErr
;
367 return SectionIDOrErr
.takeError();
369 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID
<< "\n");
372 if (auto IOrErr
= processRelocationRef(SectionID
, I
, Obj
, LocalSections
, Stubs
))
375 return IOrErr
.takeError();
377 // If there is a NotifyStubEmitted callback set, call it to register any
378 // stubs created for this section.
379 if (NotifyStubEmitted
) {
380 StringRef FileName
= Obj
.getFileName();
381 StringRef SectionName
= Sections
[SectionID
].getName();
382 for (auto &KV
: Stubs
) {
385 uint64_t StubAddr
= KV
.second
;
387 // If this is a named stub, just call NotifyStubEmitted.
389 NotifyStubEmitted(FileName
, SectionName
, VR
.SymbolName
, SectionID
,
394 // Otherwise we will have to try a reverse lookup on the globla symbol table.
395 for (auto &GSTMapEntry
: GlobalSymbolTable
) {
396 StringRef SymbolName
= GSTMapEntry
.first();
397 auto &GSTEntry
= GSTMapEntry
.second
;
398 if (GSTEntry
.getSectionID() == VR
.SectionID
&&
399 GSTEntry
.getOffset() == VR
.Offset
) {
400 NotifyStubEmitted(FileName
, SectionName
, SymbolName
, SectionID
,
409 // Process remaining sections
410 if (ProcessAllSections
) {
411 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
412 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
415 /* Ignore already loaded sections */
416 if (LocalSections
.find(*SI
) != LocalSections
.end())
419 bool IsCode
= SI
->isText();
420 if (auto SectionIDOrErr
=
421 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
422 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n");
424 return SectionIDOrErr
.takeError();
428 // Give the subclasses a chance to tie-up any loose ends.
429 if (auto Err
= finalizeLoad(Obj
, LocalSections
))
430 return std::move(Err
);
432 // for (auto E : LocalSections)
433 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
435 return LocalSections
;
438 // A helper method for computeTotalAllocSize.
439 // Computes the memory size required to allocate sections with the given sizes,
440 // assuming that all sections are allocated with the given alignment
442 computeAllocationSizeForSections(std::vector
<uint64_t> &SectionSizes
,
443 uint64_t Alignment
) {
444 uint64_t TotalSize
= 0;
445 for (size_t Idx
= 0, Cnt
= SectionSizes
.size(); Idx
< Cnt
; Idx
++) {
446 uint64_t AlignedSize
=
447 (SectionSizes
[Idx
] + Alignment
- 1) / Alignment
* Alignment
;
448 TotalSize
+= AlignedSize
;
453 static bool isRequiredForExecution(const SectionRef Section
) {
454 const ObjectFile
*Obj
= Section
.getObject();
455 if (isa
<object::ELFObjectFileBase
>(Obj
))
456 return ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
;
457 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
)) {
458 const coff_section
*CoffSection
= COFFObj
->getCOFFSection(Section
);
459 // Avoid loading zero-sized COFF sections.
460 // In PE files, VirtualSize gives the section size, and SizeOfRawData
461 // may be zero for sections with content. In Obj files, SizeOfRawData
462 // gives the section size, and VirtualSize is always zero. Hence
463 // the need to check for both cases below.
465 (CoffSection
->VirtualSize
> 0) || (CoffSection
->SizeOfRawData
> 0);
467 CoffSection
->Characteristics
&
468 (COFF::IMAGE_SCN_MEM_DISCARDABLE
| COFF::IMAGE_SCN_LNK_INFO
);
469 return HasContent
&& !IsDiscardable
;
472 assert(isa
<MachOObjectFile
>(Obj
));
476 static bool isReadOnlyData(const SectionRef Section
) {
477 const ObjectFile
*Obj
= Section
.getObject();
478 if (isa
<object::ELFObjectFileBase
>(Obj
))
479 return !(ELFSectionRef(Section
).getFlags() &
480 (ELF::SHF_WRITE
| ELF::SHF_EXECINSTR
));
481 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
482 return ((COFFObj
->getCOFFSection(Section
)->Characteristics
&
483 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
484 | COFF::IMAGE_SCN_MEM_READ
485 | COFF::IMAGE_SCN_MEM_WRITE
))
487 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
488 | COFF::IMAGE_SCN_MEM_READ
));
490 assert(isa
<MachOObjectFile
>(Obj
));
494 static bool isZeroInit(const SectionRef Section
) {
495 const ObjectFile
*Obj
= Section
.getObject();
496 if (isa
<object::ELFObjectFileBase
>(Obj
))
497 return ELFSectionRef(Section
).getType() == ELF::SHT_NOBITS
;
498 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
499 return COFFObj
->getCOFFSection(Section
)->Characteristics
&
500 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
502 auto *MachO
= cast
<MachOObjectFile
>(Obj
);
503 unsigned SectionType
= MachO
->getSectionType(Section
);
504 return SectionType
== MachO::S_ZEROFILL
||
505 SectionType
== MachO::S_GB_ZEROFILL
;
508 // Compute an upper bound of the memory size that is required to load all
510 Error
RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile
&Obj
,
513 uint64_t &RODataSize
,
514 uint32_t &RODataAlign
,
515 uint64_t &RWDataSize
,
516 uint32_t &RWDataAlign
) {
517 // Compute the size of all sections required for execution
518 std::vector
<uint64_t> CodeSectionSizes
;
519 std::vector
<uint64_t> ROSectionSizes
;
520 std::vector
<uint64_t> RWSectionSizes
;
522 // Collect sizes of all sections to be loaded;
523 // also determine the max alignment of all sections
524 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
526 const SectionRef
&Section
= *SI
;
528 bool IsRequired
= isRequiredForExecution(Section
) || ProcessAllSections
;
530 // Consider only the sections that are required to be loaded for execution
532 uint64_t DataSize
= Section
.getSize();
533 uint64_t Alignment64
= Section
.getAlignment();
534 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
535 bool IsCode
= Section
.isText();
536 bool IsReadOnly
= isReadOnlyData(Section
);
539 if (auto EC
= Section
.getName(Name
))
540 return errorCodeToError(EC
);
542 uint64_t StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
544 uint64_t PaddingSize
= 0;
545 if (Name
== ".eh_frame")
547 if (StubBufSize
!= 0)
548 PaddingSize
+= getStubAlignment() - 1;
550 uint64_t SectionSize
= DataSize
+ PaddingSize
+ StubBufSize
;
552 // The .eh_frame section (at least on Linux) needs an extra four bytes
554 // with zeroes added at the end. For MachO objects, this section has a
555 // slightly different name, so this won't have any effect for MachO
557 if (Name
== ".eh_frame")
564 CodeAlign
= std::max(CodeAlign
, Alignment
);
565 CodeSectionSizes
.push_back(SectionSize
);
566 } else if (IsReadOnly
) {
567 RODataAlign
= std::max(RODataAlign
, Alignment
);
568 ROSectionSizes
.push_back(SectionSize
);
570 RWDataAlign
= std::max(RWDataAlign
, Alignment
);
571 RWSectionSizes
.push_back(SectionSize
);
576 // Compute Global Offset Table size. If it is not zero we
577 // also update alignment, which is equal to a size of a
579 if (unsigned GotSize
= computeGOTSize(Obj
)) {
580 RWSectionSizes
.push_back(GotSize
);
581 RWDataAlign
= std::max
<uint32_t>(RWDataAlign
, getGOTEntrySize());
584 // Compute the size of all common symbols
585 uint64_t CommonSize
= 0;
586 uint32_t CommonAlign
= 1;
587 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
589 uint32_t Flags
= I
->getFlags();
590 if (Flags
& SymbolRef::SF_Common
) {
591 // Add the common symbols to a list. We'll allocate them all below.
592 uint64_t Size
= I
->getCommonSize();
593 uint32_t Align
= I
->getAlignment();
594 // If this is the first common symbol, use its alignment as the alignment
595 // for the common symbols section.
598 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
601 if (CommonSize
!= 0) {
602 RWSectionSizes
.push_back(CommonSize
);
603 RWDataAlign
= std::max(RWDataAlign
, CommonAlign
);
606 // Compute the required allocation space for each different type of sections
607 // (code, read-only data, read-write data) assuming that all sections are
608 // allocated with the max alignment. Note that we cannot compute with the
609 // individual alignments of the sections, because then the required size
610 // depends on the order, in which the sections are allocated.
611 CodeSize
= computeAllocationSizeForSections(CodeSectionSizes
, CodeAlign
);
612 RODataSize
= computeAllocationSizeForSections(ROSectionSizes
, RODataAlign
);
613 RWDataSize
= computeAllocationSizeForSections(RWSectionSizes
, RWDataAlign
);
615 return Error::success();
619 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile
&Obj
) {
620 size_t GotEntrySize
= getGOTEntrySize();
625 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
628 for (const RelocationRef
&Reloc
: SI
->relocations())
629 if (relocationNeedsGot(Reloc
))
630 GotSize
+= GotEntrySize
;
636 // compute stub buffer size for the given section
637 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile
&Obj
,
638 const SectionRef
&Section
) {
639 unsigned StubSize
= getMaxStubSize();
643 // FIXME: this is an inefficient way to handle this. We should computed the
644 // necessary section allocation size in loadObject by walking all the sections
646 unsigned StubBufSize
= 0;
647 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
649 section_iterator RelSecI
= SI
->getRelocatedSection();
650 if (!(RelSecI
== Section
))
653 for (const RelocationRef
&Reloc
: SI
->relocations())
654 if (relocationNeedsStub(Reloc
))
655 StubBufSize
+= StubSize
;
658 // Get section data size and alignment
659 uint64_t DataSize
= Section
.getSize();
660 uint64_t Alignment64
= Section
.getAlignment();
662 // Add stubbuf size alignment
663 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
664 unsigned StubAlignment
= getStubAlignment();
665 unsigned EndAlignment
= (DataSize
| Alignment
) & -(DataSize
| Alignment
);
666 if (StubAlignment
> EndAlignment
)
667 StubBufSize
+= StubAlignment
- EndAlignment
;
671 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src
,
672 unsigned Size
) const {
674 if (IsTargetLittleEndian
) {
677 Result
= (Result
<< 8) | *Src
--;
680 Result
= (Result
<< 8) | *Src
++;
685 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value
, uint8_t *Dst
,
686 unsigned Size
) const {
687 if (IsTargetLittleEndian
) {
689 *Dst
++ = Value
& 0xFF;
695 *Dst
-- = Value
& 0xFF;
701 Expected
<JITSymbolFlags
>
702 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef
&SR
) {
703 return JITSymbolFlags::fromObjectSymbol(SR
);
706 Error
RuntimeDyldImpl::emitCommonSymbols(const ObjectFile
&Obj
,
707 CommonSymbolList
&SymbolsToAllocate
,
709 uint32_t CommonAlign
) {
710 if (SymbolsToAllocate
.empty())
711 return Error::success();
713 // Allocate memory for the section
714 unsigned SectionID
= Sections
.size();
715 uint8_t *Addr
= MemMgr
.allocateDataSection(CommonSize
, CommonAlign
, SectionID
,
716 "<common symbols>", false);
718 report_fatal_error("Unable to allocate memory for common symbols!");
721 SectionEntry("<common symbols>", Addr
, CommonSize
, CommonSize
, 0));
722 memset(Addr
, 0, CommonSize
);
724 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
725 << " new addr: " << format("%p", Addr
)
726 << " DataSize: " << CommonSize
<< "\n");
728 // Assign the address of each symbol
729 for (auto &Sym
: SymbolsToAllocate
) {
730 uint32_t Align
= Sym
.getAlignment();
731 uint64_t Size
= Sym
.getCommonSize();
733 if (auto NameOrErr
= Sym
.getName())
736 return NameOrErr
.takeError();
738 // This symbol has an alignment requirement.
739 uint64_t AlignOffset
= OffsetToAlignment((uint64_t)Addr
, Align
);
741 Offset
+= AlignOffset
;
743 auto JITSymFlags
= getJITSymbolFlags(Sym
);
746 return JITSymFlags
.takeError();
748 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name
<< " address "
749 << format("%p", Addr
) << "\n");
750 GlobalSymbolTable
[Name
] =
751 SymbolTableEntry(SectionID
, Offset
, std::move(*JITSymFlags
));
756 return Error::success();
760 RuntimeDyldImpl::emitSection(const ObjectFile
&Obj
,
761 const SectionRef
&Section
,
764 uint64_t Alignment64
= Section
.getAlignment();
766 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
767 unsigned PaddingSize
= 0;
768 unsigned StubBufSize
= 0;
769 bool IsRequired
= isRequiredForExecution(Section
);
770 bool IsVirtual
= Section
.isVirtual();
771 bool IsZeroInit
= isZeroInit(Section
);
772 bool IsReadOnly
= isReadOnlyData(Section
);
773 uint64_t DataSize
= Section
.getSize();
775 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
776 // while being more "polite". Other formats do not support 0-aligned sections
777 // anyway, so we should guarantee that the alignment is always at least 1.
778 Alignment
= std::max(1u, Alignment
);
781 if (auto EC
= Section
.getName(Name
))
782 return errorCodeToError(EC
);
784 StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
786 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
787 // with zeroes added at the end. For MachO objects, this section has a
788 // slightly different name, so this won't have any effect for MachO objects.
789 if (Name
== ".eh_frame")
793 unsigned SectionID
= Sections
.size();
795 const char *pData
= nullptr;
797 // If this section contains any bits (i.e. isn't a virtual or bss section),
798 // grab a reference to them.
799 if (!IsVirtual
&& !IsZeroInit
) {
800 // In either case, set the location of the unrelocated section in memory,
801 // since we still process relocations for it even if we're not applying them.
802 if (Expected
<StringRef
> E
= Section
.getContents())
805 return E
.takeError();
809 // If there are any stubs then the section alignment needs to be at least as
810 // high as stub alignment or padding calculations may by incorrect when the
811 // section is remapped.
812 if (StubBufSize
!= 0) {
813 Alignment
= std::max(Alignment
, getStubAlignment());
814 PaddingSize
+= getStubAlignment() - 1;
817 // Some sections, such as debug info, don't need to be loaded for execution.
818 // Process those only if explicitly requested.
819 if (IsRequired
|| ProcessAllSections
) {
820 Allocate
= DataSize
+ PaddingSize
+ StubBufSize
;
823 Addr
= IsCode
? MemMgr
.allocateCodeSection(Allocate
, Alignment
, SectionID
,
825 : MemMgr
.allocateDataSection(Allocate
, Alignment
, SectionID
,
828 report_fatal_error("Unable to allocate section memory!");
830 // Zero-initialize or copy the data from the image
831 if (IsZeroInit
|| IsVirtual
)
832 memset(Addr
, 0, DataSize
);
834 memcpy(Addr
, pData
, DataSize
);
836 // Fill in any extra bytes we allocated for padding
837 if (PaddingSize
!= 0) {
838 memset(Addr
+ DataSize
, 0, PaddingSize
);
839 // Update the DataSize variable to include padding.
840 DataSize
+= PaddingSize
;
842 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
843 // have been increased above to account for this).
845 DataSize
&= -(uint64_t)getStubAlignment();
848 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: "
849 << Name
<< " obj addr: " << format("%p", pData
)
850 << " new addr: " << format("%p", Addr
) << " DataSize: "
851 << DataSize
<< " StubBufSize: " << StubBufSize
852 << " Allocate: " << Allocate
<< "\n");
854 // Even if we didn't load the section, we need to record an entry for it
855 // to handle later processing (and by 'handle' I mean don't do anything
856 // with these sections).
860 dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
861 << " obj addr: " << format("%p", data
.data()) << " new addr: 0"
862 << " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
863 << " Allocate: " << Allocate
<< "\n");
867 SectionEntry(Name
, Addr
, DataSize
, Allocate
, (uintptr_t)pData
));
869 // Debug info sections are linked as if their load address was zero
871 Sections
.back().setLoadAddress(0);
877 RuntimeDyldImpl::findOrEmitSection(const ObjectFile
&Obj
,
878 const SectionRef
&Section
,
880 ObjSectionToIDMap
&LocalSections
) {
882 unsigned SectionID
= 0;
883 ObjSectionToIDMap::iterator i
= LocalSections
.find(Section
);
884 if (i
!= LocalSections
.end())
885 SectionID
= i
->second
;
887 if (auto SectionIDOrErr
= emitSection(Obj
, Section
, IsCode
))
888 SectionID
= *SectionIDOrErr
;
890 return SectionIDOrErr
.takeError();
891 LocalSections
[Section
] = SectionID
;
896 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry
&RE
,
897 unsigned SectionID
) {
898 Relocations
[SectionID
].push_back(RE
);
901 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry
&RE
,
902 StringRef SymbolName
) {
903 // Relocation by symbol. If the symbol is found in the global symbol table,
904 // create an appropriate section relocation. Otherwise, add it to
905 // ExternalSymbolRelocations.
906 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(SymbolName
);
907 if (Loc
== GlobalSymbolTable
.end()) {
908 ExternalSymbolRelocations
[SymbolName
].push_back(RE
);
910 // Copy the RE since we want to modify its addend.
911 RelocationEntry RECopy
= RE
;
912 const auto &SymInfo
= Loc
->second
;
913 RECopy
.Addend
+= SymInfo
.getOffset();
914 Relocations
[SymInfo
.getSectionID()].push_back(RECopy
);
918 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr
,
919 unsigned AbiVariant
) {
920 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
) {
921 // This stub has to be able to access the full address space,
922 // since symbol lookup won't necessarily find a handy, in-range,
923 // PLT stub for functions which could be anywhere.
924 // Stub can use ip0 (== x16) to calculate address
925 writeBytesUnaligned(0xd2e00010, Addr
, 4); // movz ip0, #:abs_g3:<addr>
926 writeBytesUnaligned(0xf2c00010, Addr
+4, 4); // movk ip0, #:abs_g2_nc:<addr>
927 writeBytesUnaligned(0xf2a00010, Addr
+8, 4); // movk ip0, #:abs_g1_nc:<addr>
928 writeBytesUnaligned(0xf2800010, Addr
+12, 4); // movk ip0, #:abs_g0_nc:<addr>
929 writeBytesUnaligned(0xd61f0200, Addr
+16, 4); // br ip0
932 } else if (Arch
== Triple::arm
|| Arch
== Triple::armeb
) {
933 // TODO: There is only ARM far stub now. We should add the Thumb stub,
934 // and stubs for branches Thumb - ARM and ARM - Thumb.
935 writeBytesUnaligned(0xe51ff004, Addr
, 4); // ldr pc, [pc, #-4]
937 } else if (IsMipsO32ABI
|| IsMipsN32ABI
) {
938 // 0: 3c190000 lui t9,%hi(addr).
939 // 4: 27390000 addiu t9,t9,%lo(addr).
940 // 8: 03200008 jr t9.
942 const unsigned LuiT9Instr
= 0x3c190000, AdduiT9Instr
= 0x27390000;
943 const unsigned NopInstr
= 0x0;
944 unsigned JrT9Instr
= 0x03200008;
945 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_32R6
||
946 (AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
947 JrT9Instr
= 0x03200009;
949 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
950 writeBytesUnaligned(AdduiT9Instr
, Addr
+ 4, 4);
951 writeBytesUnaligned(JrT9Instr
, Addr
+ 8, 4);
952 writeBytesUnaligned(NopInstr
, Addr
+ 12, 4);
954 } else if (IsMipsN64ABI
) {
955 // 0: 3c190000 lui t9,%highest(addr).
956 // 4: 67390000 daddiu t9,t9,%higher(addr).
957 // 8: 0019CC38 dsll t9,t9,16.
958 // c: 67390000 daddiu t9,t9,%hi(addr).
959 // 10: 0019CC38 dsll t9,t9,16.
960 // 14: 67390000 daddiu t9,t9,%lo(addr).
961 // 18: 03200008 jr t9.
963 const unsigned LuiT9Instr
= 0x3c190000, DaddiuT9Instr
= 0x67390000,
964 DsllT9Instr
= 0x19CC38;
965 const unsigned NopInstr
= 0x0;
966 unsigned JrT9Instr
= 0x03200008;
967 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
968 JrT9Instr
= 0x03200009;
970 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
971 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 4, 4);
972 writeBytesUnaligned(DsllT9Instr
, Addr
+ 8, 4);
973 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 12, 4);
974 writeBytesUnaligned(DsllT9Instr
, Addr
+ 16, 4);
975 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 20, 4);
976 writeBytesUnaligned(JrT9Instr
, Addr
+ 24, 4);
977 writeBytesUnaligned(NopInstr
, Addr
+ 28, 4);
979 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
980 // Depending on which version of the ELF ABI is in use, we need to
981 // generate one of two variants of the stub. They both start with
982 // the same sequence to load the target address into r12.
983 writeInt32BE(Addr
, 0x3D800000); // lis r12, highest(addr)
984 writeInt32BE(Addr
+4, 0x618C0000); // ori r12, higher(addr)
985 writeInt32BE(Addr
+8, 0x798C07C6); // sldi r12, r12, 32
986 writeInt32BE(Addr
+12, 0x658C0000); // oris r12, r12, h(addr)
987 writeInt32BE(Addr
+16, 0x618C0000); // ori r12, r12, l(addr)
988 if (AbiVariant
== 2) {
989 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
990 // The address is already in r12 as required by the ABI. Branch to it.
991 writeInt32BE(Addr
+20, 0xF8410018); // std r2, 24(r1)
992 writeInt32BE(Addr
+24, 0x7D8903A6); // mtctr r12
993 writeInt32BE(Addr
+28, 0x4E800420); // bctr
995 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
996 // Load the function address on r11 and sets it to control register. Also
997 // loads the function TOC in r2 and environment pointer to r11.
998 writeInt32BE(Addr
+20, 0xF8410028); // std r2, 40(r1)
999 writeInt32BE(Addr
+24, 0xE96C0000); // ld r11, 0(r12)
1000 writeInt32BE(Addr
+28, 0xE84C0008); // ld r2, 0(r12)
1001 writeInt32BE(Addr
+32, 0x7D6903A6); // mtctr r11
1002 writeInt32BE(Addr
+36, 0xE96C0010); // ld r11, 16(r2)
1003 writeInt32BE(Addr
+40, 0x4E800420); // bctr
1006 } else if (Arch
== Triple::systemz
) {
1007 writeInt16BE(Addr
, 0xC418); // lgrl %r1,.+8
1008 writeInt16BE(Addr
+2, 0x0000);
1009 writeInt16BE(Addr
+4, 0x0004);
1010 writeInt16BE(Addr
+6, 0x07F1); // brc 15,%r1
1011 // 8-byte address stored at Addr + 8
1013 } else if (Arch
== Triple::x86_64
) {
1014 *Addr
= 0xFF; // jmp
1015 *(Addr
+1) = 0x25; // rip
1016 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1017 } else if (Arch
== Triple::x86
) {
1018 *Addr
= 0xE9; // 32-bit pc-relative jump.
1023 // Assign an address to a symbol name and resolve all the relocations
1024 // associated with it.
1025 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID
,
1027 // The address to use for relocation resolution is not
1028 // the address of the local section buffer. We must be doing
1029 // a remote execution environment of some sort. Relocations can't
1030 // be applied until all the sections have been moved. The client must
1031 // trigger this with a call to MCJIT::finalize() or
1032 // RuntimeDyld::resolveRelocations().
1034 // Addr is a uint64_t because we can't assume the pointer width
1035 // of the target is the same as that of the host. Just use a generic
1036 // "big enough" type.
1038 dbgs() << "Reassigning address for section " << SectionID
<< " ("
1039 << Sections
[SectionID
].getName() << "): "
1040 << format("0x%016" PRIx64
, Sections
[SectionID
].getLoadAddress())
1041 << " -> " << format("0x%016" PRIx64
, Addr
) << "\n");
1042 Sections
[SectionID
].setLoadAddress(Addr
);
1045 void RuntimeDyldImpl::resolveRelocationList(const RelocationList
&Relocs
,
1047 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
1048 const RelocationEntry
&RE
= Relocs
[i
];
1049 // Ignore relocations for sections that were not loaded
1050 if (Sections
[RE
.SectionID
].getAddress() == nullptr)
1052 resolveRelocation(RE
, Value
);
1056 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1057 const StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
) {
1058 while (!ExternalSymbolRelocations
.empty()) {
1060 StringMap
<RelocationList
>::iterator i
= ExternalSymbolRelocations
.begin();
1062 StringRef Name
= i
->first();
1063 if (Name
.size() == 0) {
1064 // This is an absolute symbol, use an address of zero.
1065 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1067 RelocationList
&Relocs
= i
->second
;
1068 resolveRelocationList(Relocs
, 0);
1071 JITSymbolFlags Flags
;
1072 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(Name
);
1073 if (Loc
== GlobalSymbolTable
.end()) {
1074 auto RRI
= ExternalSymbolMap
.find(Name
);
1075 assert(RRI
!= ExternalSymbolMap
.end() && "No result for symbol");
1076 Addr
= RRI
->second
.getAddress();
1077 Flags
= RRI
->second
.getFlags();
1078 // The call to getSymbolAddress may have caused additional modules to
1079 // be loaded, which may have added new entries to the
1080 // ExternalSymbolRelocations map. Consquently, we need to update our
1081 // iterator. This is also why retrieval of the relocation list
1082 // associated with this symbol is deferred until below this point.
1083 // New entries may have been added to the relocation list.
1084 i
= ExternalSymbolRelocations
.find(Name
);
1086 // We found the symbol in our global table. It was probably in a
1087 // Module that we loaded previously.
1088 const auto &SymInfo
= Loc
->second
;
1089 Addr
= getSectionLoadAddress(SymInfo
.getSectionID()) +
1090 SymInfo
.getOffset();
1091 Flags
= SymInfo
.getFlags();
1094 // FIXME: Implement error handling that doesn't kill the host program!
1096 report_fatal_error("Program used external function '" + Name
+
1097 "' which could not be resolved!");
1099 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1100 // manually and we shouldn't resolve its relocations.
1101 if (Addr
!= UINT64_MAX
) {
1103 // Tweak the address based on the symbol flags if necessary.
1104 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1105 // if the target symbol is Thumb.
1106 Addr
= modifyAddressBasedOnFlags(Addr
, Flags
);
1108 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t"
1109 << format("0x%lx", Addr
) << "\n");
1110 // This list may have been updated when we called getSymbolAddress, so
1111 // don't change this code to get the list earlier.
1112 RelocationList
&Relocs
= i
->second
;
1113 resolveRelocationList(Relocs
, Addr
);
1117 ExternalSymbolRelocations
.erase(i
);
1121 Error
RuntimeDyldImpl::resolveExternalSymbols() {
1122 StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
;
1124 // Resolution can trigger emission of more symbols, so iterate until
1125 // we've resolved *everything*.
1127 JITSymbolResolver::LookupSet ResolvedSymbols
;
1130 JITSymbolResolver::LookupSet NewSymbols
;
1132 for (auto &RelocKV
: ExternalSymbolRelocations
) {
1133 StringRef Name
= RelocKV
.first();
1134 if (!Name
.empty() && !GlobalSymbolTable
.count(Name
) &&
1135 !ResolvedSymbols
.count(Name
))
1136 NewSymbols
.insert(Name
);
1139 if (NewSymbols
.empty())
1143 using ExpectedLookupResult
=
1144 MSVCPExpected
<JITSymbolResolver::LookupResult
>;
1146 using ExpectedLookupResult
= Expected
<JITSymbolResolver::LookupResult
>;
1149 auto NewSymbolsP
= std::make_shared
<std::promise
<ExpectedLookupResult
>>();
1150 auto NewSymbolsF
= NewSymbolsP
->get_future();
1151 Resolver
.lookup(NewSymbols
,
1152 [=](Expected
<JITSymbolResolver::LookupResult
> Result
) {
1153 NewSymbolsP
->set_value(std::move(Result
));
1156 auto NewResolverResults
= NewSymbolsF
.get();
1158 if (!NewResolverResults
)
1159 return NewResolverResults
.takeError();
1161 assert(NewResolverResults
->size() == NewSymbols
.size() &&
1162 "Should have errored on unresolved symbols");
1164 for (auto &RRKV
: *NewResolverResults
) {
1165 assert(!ResolvedSymbols
.count(RRKV
.first
) && "Redundant resolution?");
1166 ExternalSymbolMap
.insert(RRKV
);
1167 ResolvedSymbols
.insert(RRKV
.first
);
1172 applyExternalSymbolRelocations(ExternalSymbolMap
);
1174 return Error::success();
1177 void RuntimeDyldImpl::finalizeAsync(
1178 std::unique_ptr
<RuntimeDyldImpl
> This
, std::function
<void(Error
)> OnEmitted
,
1179 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
) {
1181 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1183 auto SharedUnderlyingBuffer
=
1184 std::shared_ptr
<MemoryBuffer
>(std::move(UnderlyingBuffer
));
1185 auto SharedThis
= std::shared_ptr
<RuntimeDyldImpl
>(std::move(This
));
1186 auto PostResolveContinuation
=
1187 [SharedThis
, OnEmitted
, SharedUnderlyingBuffer
](
1188 Expected
<JITSymbolResolver::LookupResult
> Result
) {
1190 OnEmitted(Result
.takeError());
1194 /// Copy the result into a StringMap, where the keys are held by value.
1195 StringMap
<JITEvaluatedSymbol
> Resolved
;
1196 for (auto &KV
: *Result
)
1197 Resolved
[KV
.first
] = KV
.second
;
1199 SharedThis
->applyExternalSymbolRelocations(Resolved
);
1200 SharedThis
->resolveLocalRelocations();
1201 SharedThis
->registerEHFrames();
1203 if (SharedThis
->MemMgr
.finalizeMemory(&ErrMsg
))
1204 OnEmitted(make_error
<StringError
>(std::move(ErrMsg
),
1205 inconvertibleErrorCode()));
1207 OnEmitted(Error::success());
1210 JITSymbolResolver::LookupSet Symbols
;
1212 for (auto &RelocKV
: SharedThis
->ExternalSymbolRelocations
) {
1213 StringRef Name
= RelocKV
.first();
1214 assert(!Name
.empty() && "Symbol has no name?");
1215 assert(!SharedThis
->GlobalSymbolTable
.count(Name
) &&
1216 "Name already processed. RuntimeDyld instances can not be re-used "
1217 "when finalizing with finalizeAsync.");
1218 Symbols
.insert(Name
);
1221 if (!Symbols
.empty()) {
1222 SharedThis
->Resolver
.lookup(Symbols
, PostResolveContinuation
);
1224 PostResolveContinuation(std::map
<StringRef
, JITEvaluatedSymbol
>());
1227 //===----------------------------------------------------------------------===//
1228 // RuntimeDyld class implementation
1230 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1231 const object::SectionRef
&Sec
) const {
1233 auto I
= ObjSecToIDMap
.find(Sec
);
1234 if (I
!= ObjSecToIDMap
.end())
1235 return RTDyld
.Sections
[I
->second
].getLoadAddress();
1240 void RuntimeDyld::MemoryManager::anchor() {}
1241 void JITSymbolResolver::anchor() {}
1242 void LegacyJITSymbolResolver::anchor() {}
1244 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager
&MemMgr
,
1245 JITSymbolResolver
&Resolver
)
1246 : MemMgr(MemMgr
), Resolver(Resolver
) {
1247 // FIXME: There's a potential issue lurking here if a single instance of
1248 // RuntimeDyld is used to load multiple objects. The current implementation
1249 // associates a single memory manager with a RuntimeDyld instance. Even
1250 // though the public class spawns a new 'impl' instance for each load,
1251 // they share a single memory manager. This can become a problem when page
1252 // permissions are applied.
1254 ProcessAllSections
= false;
1257 RuntimeDyld::~RuntimeDyld() {}
1259 static std::unique_ptr
<RuntimeDyldCOFF
>
1260 createRuntimeDyldCOFF(
1261 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1262 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1263 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1264 std::unique_ptr
<RuntimeDyldCOFF
> Dyld
=
1265 RuntimeDyldCOFF::create(Arch
, MM
, Resolver
);
1266 Dyld
->setProcessAllSections(ProcessAllSections
);
1267 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1271 static std::unique_ptr
<RuntimeDyldELF
>
1272 createRuntimeDyldELF(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1273 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1274 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1275 std::unique_ptr
<RuntimeDyldELF
> Dyld
=
1276 RuntimeDyldELF::create(Arch
, MM
, Resolver
);
1277 Dyld
->setProcessAllSections(ProcessAllSections
);
1278 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1282 static std::unique_ptr
<RuntimeDyldMachO
>
1283 createRuntimeDyldMachO(
1284 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1285 JITSymbolResolver
&Resolver
,
1286 bool ProcessAllSections
,
1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1288 std::unique_ptr
<RuntimeDyldMachO
> Dyld
=
1289 RuntimeDyldMachO::create(Arch
, MM
, Resolver
);
1290 Dyld
->setProcessAllSections(ProcessAllSections
);
1291 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1295 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
1296 RuntimeDyld::loadObject(const ObjectFile
&Obj
) {
1300 createRuntimeDyldELF(static_cast<Triple::ArchType
>(Obj
.getArch()),
1301 MemMgr
, Resolver
, ProcessAllSections
,
1302 std::move(NotifyStubEmitted
));
1303 else if (Obj
.isMachO())
1304 Dyld
= createRuntimeDyldMachO(
1305 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1306 ProcessAllSections
, std::move(NotifyStubEmitted
));
1307 else if (Obj
.isCOFF())
1308 Dyld
= createRuntimeDyldCOFF(
1309 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1310 ProcessAllSections
, std::move(NotifyStubEmitted
));
1312 report_fatal_error("Incompatible object format!");
1315 if (!Dyld
->isCompatibleFile(Obj
))
1316 report_fatal_error("Incompatible object format!");
1318 auto LoadedObjInfo
= Dyld
->loadObject(Obj
);
1319 MemMgr
.notifyObjectLoaded(*this, Obj
);
1320 return LoadedObjInfo
;
1323 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name
) const {
1326 return Dyld
->getSymbolLocalAddress(Name
);
1329 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name
) const {
1330 assert(Dyld
&& "No RuntimeDyld instance attached");
1331 return Dyld
->getSymbolSectionID(Name
);
1334 JITEvaluatedSymbol
RuntimeDyld::getSymbol(StringRef Name
) const {
1337 return Dyld
->getSymbol(Name
);
1340 std::map
<StringRef
, JITEvaluatedSymbol
> RuntimeDyld::getSymbolTable() const {
1342 return std::map
<StringRef
, JITEvaluatedSymbol
>();
1343 return Dyld
->getSymbolTable();
1346 void RuntimeDyld::resolveRelocations() { Dyld
->resolveRelocations(); }
1348 void RuntimeDyld::reassignSectionAddress(unsigned SectionID
, uint64_t Addr
) {
1349 Dyld
->reassignSectionAddress(SectionID
, Addr
);
1352 void RuntimeDyld::mapSectionAddress(const void *LocalAddress
,
1353 uint64_t TargetAddress
) {
1354 Dyld
->mapSectionAddress(LocalAddress
, TargetAddress
);
1357 bool RuntimeDyld::hasError() { return Dyld
->hasError(); }
1359 StringRef
RuntimeDyld::getErrorString() { return Dyld
->getErrorString(); }
1361 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1362 bool MemoryFinalizationLocked
= MemMgr
.FinalizationLocked
;
1363 MemMgr
.FinalizationLocked
= true;
1364 resolveRelocations();
1366 if (!MemoryFinalizationLocked
) {
1367 MemMgr
.finalizeMemory();
1368 MemMgr
.FinalizationLocked
= false;
1372 StringRef
RuntimeDyld::getSectionContent(unsigned SectionID
) const {
1373 assert(Dyld
&& "No Dyld instance attached");
1374 return Dyld
->getSectionContent(SectionID
);
1377 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID
) const {
1378 assert(Dyld
&& "No Dyld instance attached");
1379 return Dyld
->getSectionLoadAddress(SectionID
);
1382 void RuntimeDyld::registerEHFrames() {
1384 Dyld
->registerEHFrames();
1387 void RuntimeDyld::deregisterEHFrames() {
1389 Dyld
->deregisterEHFrames();
1391 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1392 // so that we can re-use RuntimeDyld's implementation without twisting the
1393 // interface any further for ORC's purposes.
1394 void jitLinkForORC(object::ObjectFile
&Obj
,
1395 std::unique_ptr
<MemoryBuffer
> UnderlyingBuffer
,
1396 RuntimeDyld::MemoryManager
&MemMgr
,
1397 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1398 std::function
<Error(
1399 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
> LoadedObj
,
1400 std::map
<StringRef
, JITEvaluatedSymbol
>)>
1402 std::function
<void(Error
)> OnEmitted
) {
1404 RuntimeDyld
RTDyld(MemMgr
, Resolver
);
1405 RTDyld
.setProcessAllSections(ProcessAllSections
);
1407 auto Info
= RTDyld
.loadObject(Obj
);
1409 if (RTDyld
.hasError()) {
1410 OnEmitted(make_error
<StringError
>(RTDyld
.getErrorString(),
1411 inconvertibleErrorCode()));
1415 if (auto Err
= OnLoaded(std::move(Info
), RTDyld
.getSymbolTable()))
1416 OnEmitted(std::move(Err
));
1418 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld
.Dyld
), std::move(OnEmitted
),
1419 std::move(UnderlyingBuffer
));
1422 } // end namespace llvm