[ARM] Basic And/Or/Xor handling for MVE predicates
[llvm-complete.git] / tools / llvm-objcopy / ELF / Object.cpp
blob2d85b3ad36f8fc4d788e7ba54996eebf5c0a1004
1 //===- Object.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Object.h"
10 #include "llvm-objcopy.h"
11 #include "llvm/ADT/ArrayRef.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/ADT/iterator_range.h"
16 #include "llvm/BinaryFormat/ELF.h"
17 #include "llvm/MC/MCTargetOptions.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
32 namespace llvm {
33 namespace objcopy {
34 namespace elf {
36 using namespace object;
37 using namespace ELF;
39 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
40 uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
41 Seg.Index * sizeof(Elf_Phdr);
42 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
43 Phdr.p_type = Seg.Type;
44 Phdr.p_flags = Seg.Flags;
45 Phdr.p_offset = Seg.Offset;
46 Phdr.p_vaddr = Seg.VAddr;
47 Phdr.p_paddr = Seg.PAddr;
48 Phdr.p_filesz = Seg.FileSize;
49 Phdr.p_memsz = Seg.MemSize;
50 Phdr.p_align = Seg.Align;
53 Error SectionBase::removeSectionReferences(
54 bool AllowBrokenLinks,
55 function_ref<bool(const SectionBase *)> ToRemove) {
56 return Error::success();
59 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
60 return Error::success();
63 void SectionBase::initialize(SectionTableRef SecTable) {}
64 void SectionBase::finalize() {}
65 void SectionBase::markSymbols() {}
66 void SectionBase::replaceSectionReferences(
67 const DenseMap<SectionBase *, SectionBase *> &) {}
69 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
70 uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
71 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
72 Shdr.sh_name = Sec.NameIndex;
73 Shdr.sh_type = Sec.Type;
74 Shdr.sh_flags = Sec.Flags;
75 Shdr.sh_addr = Sec.Addr;
76 Shdr.sh_offset = Sec.Offset;
77 Shdr.sh_size = Sec.Size;
78 Shdr.sh_link = Sec.Link;
79 Shdr.sh_info = Sec.Info;
80 Shdr.sh_addralign = Sec.Align;
81 Shdr.sh_entsize = Sec.EntrySize;
84 template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}
86 template <class ELFT>
87 void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}
89 template <class ELFT>
90 void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}
92 template <class ELFT>
93 void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}
95 template <class ELFT>
96 void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
97 Sec.EntrySize = sizeof(Elf_Sym);
98 Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
99 // Align to the largest field in Elf_Sym.
100 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
103 template <class ELFT>
104 void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
105 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
106 Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
107 // Align to the largest field in Elf_Rel(a).
108 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
111 template <class ELFT>
112 void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}
114 template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {}
116 template <class ELFT>
117 void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}
119 template <class ELFT>
120 void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}
122 template <class ELFT>
123 void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}
125 void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
126 error("cannot write symbol section index table '" + Sec.Name + "' ");
129 void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
130 error("cannot write symbol table '" + Sec.Name + "' out to binary");
133 void BinarySectionWriter::visit(const RelocationSection &Sec) {
134 error("cannot write relocation section '" + Sec.Name + "' out to binary");
137 void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
138 error("cannot write '" + Sec.Name + "' out to binary");
141 void BinarySectionWriter::visit(const GroupSection &Sec) {
142 error("cannot write '" + Sec.Name + "' out to binary");
145 void SectionWriter::visit(const Section &Sec) {
146 if (Sec.Type != SHT_NOBITS)
147 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
150 static bool addressOverflows32bit(uint64_t Addr) {
151 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
152 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
155 template <class T> static T checkedGetHex(StringRef S) {
156 T Value;
157 bool Fail = S.getAsInteger(16, Value);
158 assert(!Fail);
159 (void)Fail;
160 return Value;
163 // Fills exactly Len bytes of buffer with hexadecimal characters
164 // representing value 'X'
165 template <class T, class Iterator>
166 static Iterator utohexstr(T X, Iterator It, size_t Len) {
167 // Fill range with '0'
168 std::fill(It, It + Len, '0');
170 for (long I = Len - 1; I >= 0; --I) {
171 unsigned char Mod = static_cast<unsigned char>(X) & 15;
172 *(It + I) = hexdigit(Mod, false);
173 X >>= 4;
175 assert(X == 0);
176 return It + Len;
179 uint8_t IHexRecord::getChecksum(StringRef S) {
180 assert((S.size() & 1) == 0);
181 uint8_t Checksum = 0;
182 while (!S.empty()) {
183 Checksum += checkedGetHex<uint8_t>(S.take_front(2));
184 S = S.drop_front(2);
186 return -Checksum;
189 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
190 ArrayRef<uint8_t> Data) {
191 IHexLineData Line(getLineLength(Data.size()));
192 assert(Line.size());
193 auto Iter = Line.begin();
194 *Iter++ = ':';
195 Iter = utohexstr(Data.size(), Iter, 2);
196 Iter = utohexstr(Addr, Iter, 4);
197 Iter = utohexstr(Type, Iter, 2);
198 for (uint8_t X : Data)
199 Iter = utohexstr(X, Iter, 2);
200 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
201 Iter = utohexstr(getChecksum(S), Iter, 2);
202 *Iter++ = '\r';
203 *Iter++ = '\n';
204 assert(Iter == Line.end());
205 return Line;
208 static Error checkRecord(const IHexRecord &R) {
209 switch (R.Type) {
210 case IHexRecord::Data:
211 if (R.HexData.size() == 0)
212 return createStringError(
213 errc::invalid_argument,
214 "zero data length is not allowed for data records");
215 break;
216 case IHexRecord::EndOfFile:
217 break;
218 case IHexRecord::SegmentAddr:
219 // 20-bit segment address. Data length must be 2 bytes
220 // (4 bytes in hex)
221 if (R.HexData.size() != 4)
222 return createStringError(
223 errc::invalid_argument,
224 "segment address data should be 2 bytes in size");
225 break;
226 case IHexRecord::StartAddr80x86:
227 case IHexRecord::StartAddr:
228 if (R.HexData.size() != 8)
229 return createStringError(errc::invalid_argument,
230 "start address data should be 4 bytes in size");
231 // According to Intel HEX specification '03' record
232 // only specifies the code address within the 20-bit
233 // segmented address space of the 8086/80186. This
234 // means 12 high order bits should be zeroes.
235 if (R.Type == IHexRecord::StartAddr80x86 &&
236 R.HexData.take_front(3) != "000")
237 return createStringError(errc::invalid_argument,
238 "start address exceeds 20 bit for 80x86");
239 break;
240 case IHexRecord::ExtendedAddr:
241 // 16-31 bits of linear base address
242 if (R.HexData.size() != 4)
243 return createStringError(
244 errc::invalid_argument,
245 "extended address data should be 2 bytes in size");
246 break;
247 default:
248 // Unknown record type
249 return createStringError(errc::invalid_argument, "unknown record type: %u",
250 static_cast<unsigned>(R.Type));
252 return Error::success();
255 // Checks that IHEX line contains valid characters.
256 // This allows converting hexadecimal data to integers
257 // without extra verification.
258 static Error checkChars(StringRef Line) {
259 assert(!Line.empty());
260 if (Line[0] != ':')
261 return createStringError(errc::invalid_argument,
262 "missing ':' in the beginning of line.");
264 for (size_t Pos = 1; Pos < Line.size(); ++Pos)
265 if (hexDigitValue(Line[Pos]) == -1U)
266 return createStringError(errc::invalid_argument,
267 "invalid character at position %zu.", Pos + 1);
268 return Error::success();
271 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
272 assert(!Line.empty());
274 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
275 if (Line.size() < 11)
276 return createStringError(errc::invalid_argument,
277 "line is too short: %zu chars.", Line.size());
279 if (Error E = checkChars(Line))
280 return std::move(E);
282 IHexRecord Rec;
283 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
284 if (Line.size() != getLength(DataLen))
285 return createStringError(errc::invalid_argument,
286 "invalid line length %zu (should be %zu)",
287 Line.size(), getLength(DataLen));
289 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
290 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
291 Rec.HexData = Line.substr(9, DataLen * 2);
293 if (getChecksum(Line.drop_front(1)) != 0)
294 return createStringError(errc::invalid_argument, "incorrect checksum.");
295 if (Error E = checkRecord(Rec))
296 return std::move(E);
297 return Rec;
300 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
301 Segment *Seg = Sec->ParentSegment;
302 if (Seg && Seg->Type != ELF::PT_LOAD)
303 Seg = nullptr;
304 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
305 : Sec->Addr;
308 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
309 ArrayRef<uint8_t> Data) {
310 assert(Data.size() == Sec->Size);
311 const uint32_t ChunkSize = 16;
312 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
313 while (!Data.empty()) {
314 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
315 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
316 if (Addr > 0xFFFFFU) {
317 // Write extended address record, zeroing segment address
318 // if needed.
319 if (SegmentAddr != 0)
320 SegmentAddr = writeSegmentAddr(0U);
321 BaseAddr = writeBaseAddr(Addr);
322 } else {
323 // We can still remain 16-bit
324 SegmentAddr = writeSegmentAddr(Addr);
327 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
328 assert(SegOffset <= 0xFFFFU);
329 DataSize = std::min(DataSize, 0x10000U - SegOffset);
330 writeData(0, SegOffset, Data.take_front(DataSize));
331 Addr += DataSize;
332 Data = Data.drop_front(DataSize);
336 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
337 assert(Addr <= 0xFFFFFU);
338 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
339 writeData(2, 0, Data);
340 return Addr & 0xF0000U;
343 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
344 assert(Addr <= 0xFFFFFFFFU);
345 uint64_t Base = Addr & 0xFFFF0000U;
346 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
347 static_cast<uint8_t>((Base >> 16) & 0xFF)};
348 writeData(4, 0, Data);
349 return Base;
352 void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
353 ArrayRef<uint8_t> Data) {
354 Offset += IHexRecord::getLineLength(Data.size());
357 void IHexSectionWriterBase::visit(const Section &Sec) {
358 writeSection(&Sec, Sec.Contents);
361 void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
362 writeSection(&Sec, Sec.Data);
365 void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
366 // Check that sizer has already done its work
367 assert(Sec.Size == Sec.StrTabBuilder.getSize());
368 // We are free to pass an invalid pointer to writeSection as long
369 // as we don't actually write any data. The real writer class has
370 // to override this method .
371 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
374 void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
375 writeSection(&Sec, Sec.Contents);
378 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
379 ArrayRef<uint8_t> Data) {
380 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
381 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
382 Offset += HexData.size();
385 void IHexSectionWriter::visit(const StringTableSection &Sec) {
386 assert(Sec.Size == Sec.StrTabBuilder.getSize());
387 std::vector<uint8_t> Data(Sec.Size);
388 Sec.StrTabBuilder.write(Data.data());
389 writeSection(&Sec, Data);
392 void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
394 void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }
396 void SectionWriter::visit(const OwnedDataSection &Sec) {
397 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
400 static const std::vector<uint8_t> ZlibGnuMagic = {'Z', 'L', 'I', 'B'};
402 static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
403 return Data.size() > ZlibGnuMagic.size() &&
404 std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
407 template <class ELFT>
408 static std::tuple<uint64_t, uint64_t>
409 getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
410 const bool IsGnuDebug = isDataGnuCompressed(Data);
411 const uint64_t DecompressedSize =
412 IsGnuDebug
413 ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
414 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
415 const uint64_t DecompressedAlign =
416 IsGnuDebug ? 1
417 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
418 ->ch_addralign;
420 return std::make_tuple(DecompressedSize, DecompressedAlign);
423 template <class ELFT>
424 void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
425 const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
426 ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
427 : sizeof(Elf_Chdr_Impl<ELFT>);
429 StringRef CompressedContent(
430 reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
431 Sec.OriginalData.size() - DataOffset);
433 SmallVector<char, 128> DecompressedContent;
434 if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
435 static_cast<size_t>(Sec.Size)))
436 reportError(Sec.Name, std::move(E));
438 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
439 std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
442 void BinarySectionWriter::visit(const DecompressedSection &Sec) {
443 error("cannot write compressed section '" + Sec.Name + "' ");
446 void DecompressedSection::accept(SectionVisitor &Visitor) const {
447 Visitor.visit(*this);
450 void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
451 Visitor.visit(*this);
454 void OwnedDataSection::accept(SectionVisitor &Visitor) const {
455 Visitor.visit(*this);
458 void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
459 Visitor.visit(*this);
462 void OwnedDataSection::appendHexData(StringRef HexData) {
463 assert((HexData.size() & 1) == 0);
464 while (!HexData.empty()) {
465 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
466 HexData = HexData.drop_front(2);
468 Size = Data.size();
471 void BinarySectionWriter::visit(const CompressedSection &Sec) {
472 error("cannot write compressed section '" + Sec.Name + "' ");
475 template <class ELFT>
476 void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
477 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
478 if (Sec.CompressionType == DebugCompressionType::None) {
479 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
480 return;
483 if (Sec.CompressionType == DebugCompressionType::GNU) {
484 const char *Magic = "ZLIB";
485 memcpy(Buf, Magic, strlen(Magic));
486 Buf += strlen(Magic);
487 const uint64_t DecompressedSize =
488 support::endian::read64be(&Sec.DecompressedSize);
489 memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
490 Buf += sizeof(DecompressedSize);
491 } else {
492 Elf_Chdr_Impl<ELFT> Chdr;
493 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
494 Chdr.ch_size = Sec.DecompressedSize;
495 Chdr.ch_addralign = Sec.DecompressedAlign;
496 memcpy(Buf, &Chdr, sizeof(Chdr));
497 Buf += sizeof(Chdr);
500 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
503 CompressedSection::CompressedSection(const SectionBase &Sec,
504 DebugCompressionType CompressionType)
505 : SectionBase(Sec), CompressionType(CompressionType),
506 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
507 if (Error E = zlib::compress(
508 StringRef(reinterpret_cast<const char *>(OriginalData.data()),
509 OriginalData.size()),
510 CompressedData))
511 reportError(Name, std::move(E));
513 size_t ChdrSize;
514 if (CompressionType == DebugCompressionType::GNU) {
515 Name = ".z" + Sec.Name.substr(1);
516 ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
517 } else {
518 Flags |= ELF::SHF_COMPRESSED;
519 ChdrSize =
520 std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
521 sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
522 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
523 sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
525 Size = ChdrSize + CompressedData.size();
526 Align = 8;
529 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
530 uint64_t DecompressedSize,
531 uint64_t DecompressedAlign)
532 : CompressionType(DebugCompressionType::None),
533 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
534 OriginalData = CompressedData;
537 void CompressedSection::accept(SectionVisitor &Visitor) const {
538 Visitor.visit(*this);
541 void CompressedSection::accept(MutableSectionVisitor &Visitor) {
542 Visitor.visit(*this);
545 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
547 uint32_t StringTableSection::findIndex(StringRef Name) const {
548 return StrTabBuilder.getOffset(Name);
551 void StringTableSection::prepareForLayout() {
552 StrTabBuilder.finalize();
553 Size = StrTabBuilder.getSize();
556 void SectionWriter::visit(const StringTableSection &Sec) {
557 Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
560 void StringTableSection::accept(SectionVisitor &Visitor) const {
561 Visitor.visit(*this);
564 void StringTableSection::accept(MutableSectionVisitor &Visitor) {
565 Visitor.visit(*this);
568 template <class ELFT>
569 void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
570 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
571 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
574 void SectionIndexSection::initialize(SectionTableRef SecTable) {
575 Size = 0;
576 setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
577 Link,
578 "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
579 "Link field value " + Twine(Link) + " in section " + Name +
580 " is not a symbol table"));
581 Symbols->setShndxTable(this);
584 void SectionIndexSection::finalize() { Link = Symbols->Index; }
586 void SectionIndexSection::accept(SectionVisitor &Visitor) const {
587 Visitor.visit(*this);
590 void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
591 Visitor.visit(*this);
594 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
595 switch (Index) {
596 case SHN_ABS:
597 case SHN_COMMON:
598 return true;
601 if (Machine == EM_AMDGPU) {
602 return Index == SHN_AMDGPU_LDS;
605 if (Machine == EM_HEXAGON) {
606 switch (Index) {
607 case SHN_HEXAGON_SCOMMON:
608 case SHN_HEXAGON_SCOMMON_2:
609 case SHN_HEXAGON_SCOMMON_4:
610 case SHN_HEXAGON_SCOMMON_8:
611 return true;
614 return false;
617 // Large indexes force us to clarify exactly what this function should do. This
618 // function should return the value that will appear in st_shndx when written
619 // out.
620 uint16_t Symbol::getShndx() const {
621 if (DefinedIn != nullptr) {
622 if (DefinedIn->Index >= SHN_LORESERVE)
623 return SHN_XINDEX;
624 return DefinedIn->Index;
627 if (ShndxType == SYMBOL_SIMPLE_INDEX) {
628 // This means that we don't have a defined section but we do need to
629 // output a legitimate section index.
630 return SHN_UNDEF;
633 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
634 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
635 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
636 return static_cast<uint16_t>(ShndxType);
639 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
641 void SymbolTableSection::assignIndices() {
642 uint32_t Index = 0;
643 for (auto &Sym : Symbols)
644 Sym->Index = Index++;
647 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
648 SectionBase *DefinedIn, uint64_t Value,
649 uint8_t Visibility, uint16_t Shndx,
650 uint64_t SymbolSize) {
651 Symbol Sym;
652 Sym.Name = Name.str();
653 Sym.Binding = Bind;
654 Sym.Type = Type;
655 Sym.DefinedIn = DefinedIn;
656 if (DefinedIn != nullptr)
657 DefinedIn->HasSymbol = true;
658 if (DefinedIn == nullptr) {
659 if (Shndx >= SHN_LORESERVE)
660 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
661 else
662 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
664 Sym.Value = Value;
665 Sym.Visibility = Visibility;
666 Sym.Size = SymbolSize;
667 Sym.Index = Symbols.size();
668 Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
669 Size += this->EntrySize;
672 Error SymbolTableSection::removeSectionReferences(
673 bool AllowBrokenLinks,
674 function_ref<bool(const SectionBase *)> ToRemove) {
675 if (ToRemove(SectionIndexTable))
676 SectionIndexTable = nullptr;
677 if (ToRemove(SymbolNames)) {
678 if (!AllowBrokenLinks)
679 return createStringError(
680 llvm::errc::invalid_argument,
681 "string table '%s' cannot be removed because it is "
682 "referenced by the symbol table '%s'",
683 SymbolNames->Name.data(), this->Name.data());
684 SymbolNames = nullptr;
686 return removeSymbols(
687 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
690 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
691 std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
692 [Callable](SymPtr &Sym) { Callable(*Sym); });
693 std::stable_partition(
694 std::begin(Symbols), std::end(Symbols),
695 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
696 assignIndices();
699 Error SymbolTableSection::removeSymbols(
700 function_ref<bool(const Symbol &)> ToRemove) {
701 Symbols.erase(
702 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
703 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
704 std::end(Symbols));
705 Size = Symbols.size() * EntrySize;
706 assignIndices();
707 return Error::success();
710 void SymbolTableSection::replaceSectionReferences(
711 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
712 for (std::unique_ptr<Symbol> &Sym : Symbols)
713 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
714 Sym->DefinedIn = To;
717 void SymbolTableSection::initialize(SectionTableRef SecTable) {
718 Size = 0;
719 setStrTab(SecTable.getSectionOfType<StringTableSection>(
720 Link,
721 "Symbol table has link index of " + Twine(Link) +
722 " which is not a valid index",
723 "Symbol table has link index of " + Twine(Link) +
724 " which is not a string table"));
727 void SymbolTableSection::finalize() {
728 uint32_t MaxLocalIndex = 0;
729 for (std::unique_ptr<Symbol> &Sym : Symbols) {
730 Sym->NameIndex =
731 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
732 if (Sym->Binding == STB_LOCAL)
733 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
735 // Now we need to set the Link and Info fields.
736 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
737 Info = MaxLocalIndex + 1;
740 void SymbolTableSection::prepareForLayout() {
741 // Reserve proper amount of space in section index table, so we can
742 // layout sections correctly. We will fill the table with correct
743 // indexes later in fillShdnxTable.
744 if (SectionIndexTable)
745 SectionIndexTable->reserve(Symbols.size());
747 // Add all of our strings to SymbolNames so that SymbolNames has the right
748 // size before layout is decided.
749 // If the symbol names section has been removed, don't try to add strings to
750 // the table.
751 if (SymbolNames != nullptr)
752 for (std::unique_ptr<Symbol> &Sym : Symbols)
753 SymbolNames->addString(Sym->Name);
756 void SymbolTableSection::fillShndxTable() {
757 if (SectionIndexTable == nullptr)
758 return;
759 // Fill section index table with real section indexes. This function must
760 // be called after assignOffsets.
761 for (const std::unique_ptr<Symbol> &Sym : Symbols) {
762 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
763 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
764 else
765 SectionIndexTable->addIndex(SHN_UNDEF);
769 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
770 if (Symbols.size() <= Index)
771 error("invalid symbol index: " + Twine(Index));
772 return Symbols[Index].get();
775 Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
776 return const_cast<Symbol *>(
777 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
780 template <class ELFT>
781 void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
782 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
783 // Loop though symbols setting each entry of the symbol table.
784 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
785 Sym->st_name = Symbol->NameIndex;
786 Sym->st_value = Symbol->Value;
787 Sym->st_size = Symbol->Size;
788 Sym->st_other = Symbol->Visibility;
789 Sym->setBinding(Symbol->Binding);
790 Sym->setType(Symbol->Type);
791 Sym->st_shndx = Symbol->getShndx();
792 ++Sym;
796 void SymbolTableSection::accept(SectionVisitor &Visitor) const {
797 Visitor.visit(*this);
800 void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
801 Visitor.visit(*this);
804 Error RelocationSection::removeSectionReferences(
805 bool AllowBrokenLinks,
806 function_ref<bool(const SectionBase *)> ToRemove) {
807 if (ToRemove(Symbols)) {
808 if (!AllowBrokenLinks)
809 return createStringError(
810 llvm::errc::invalid_argument,
811 "symbol table '%s' cannot be removed because it is "
812 "referenced by the relocation section '%s'",
813 Symbols->Name.data(), this->Name.data());
814 Symbols = nullptr;
817 for (const Relocation &R : Relocations) {
818 if (!R.RelocSymbol->DefinedIn || !ToRemove(R.RelocSymbol->DefinedIn))
819 continue;
820 return createStringError(llvm::errc::invalid_argument,
821 "section '%s' cannot be removed: (%s+0x%" PRIx64
822 ") has relocation against symbol '%s'",
823 R.RelocSymbol->DefinedIn->Name.data(),
824 SecToApplyRel->Name.data(), R.Offset,
825 R.RelocSymbol->Name.c_str());
828 return Error::success();
831 template <class SymTabType>
832 void RelocSectionWithSymtabBase<SymTabType>::initialize(
833 SectionTableRef SecTable) {
834 if (Link != SHN_UNDEF)
835 setSymTab(SecTable.getSectionOfType<SymTabType>(
836 Link,
837 "Link field value " + Twine(Link) + " in section " + Name +
838 " is invalid",
839 "Link field value " + Twine(Link) + " in section " + Name +
840 " is not a symbol table"));
842 if (Info != SHN_UNDEF)
843 setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
844 " in section " + Name +
845 " is invalid"));
846 else
847 setSection(nullptr);
850 template <class SymTabType>
851 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
852 this->Link = Symbols ? Symbols->Index : 0;
854 if (SecToApplyRel != nullptr)
855 this->Info = SecToApplyRel->Index;
858 template <class ELFT>
859 static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
861 template <class ELFT>
862 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
863 Rela.r_addend = Addend;
866 template <class RelRange, class T>
867 static void writeRel(const RelRange &Relocations, T *Buf) {
868 for (const auto &Reloc : Relocations) {
869 Buf->r_offset = Reloc.Offset;
870 setAddend(*Buf, Reloc.Addend);
871 Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
872 ++Buf;
876 template <class ELFT>
877 void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
878 uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
879 if (Sec.Type == SHT_REL)
880 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
881 else
882 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
885 void RelocationSection::accept(SectionVisitor &Visitor) const {
886 Visitor.visit(*this);
889 void RelocationSection::accept(MutableSectionVisitor &Visitor) {
890 Visitor.visit(*this);
893 Error RelocationSection::removeSymbols(
894 function_ref<bool(const Symbol &)> ToRemove) {
895 for (const Relocation &Reloc : Relocations)
896 if (ToRemove(*Reloc.RelocSymbol))
897 return createStringError(
898 llvm::errc::invalid_argument,
899 "not stripping symbol '%s' because it is named in a relocation",
900 Reloc.RelocSymbol->Name.data());
901 return Error::success();
904 void RelocationSection::markSymbols() {
905 for (const Relocation &Reloc : Relocations)
906 Reloc.RelocSymbol->Referenced = true;
909 void RelocationSection::replaceSectionReferences(
910 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
911 // Update the target section if it was replaced.
912 if (SectionBase *To = FromTo.lookup(SecToApplyRel))
913 SecToApplyRel = To;
916 void SectionWriter::visit(const DynamicRelocationSection &Sec) {
917 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
920 void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
921 Visitor.visit(*this);
924 void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
925 Visitor.visit(*this);
928 Error DynamicRelocationSection::removeSectionReferences(
929 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
930 if (ToRemove(Symbols)) {
931 if (!AllowBrokenLinks)
932 return createStringError(
933 llvm::errc::invalid_argument,
934 "symbol table '%s' cannot be removed because it is "
935 "referenced by the relocation section '%s'",
936 Symbols->Name.data(), this->Name.data());
937 Symbols = nullptr;
940 // SecToApplyRel contains a section referenced by sh_info field. It keeps
941 // a section to which the relocation section applies. When we remove any
942 // sections we also remove their relocation sections. Since we do that much
943 // earlier, this assert should never be triggered.
944 assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
945 return Error::success();
948 Error Section::removeSectionReferences(
949 bool AllowBrokenDependency,
950 function_ref<bool(const SectionBase *)> ToRemove) {
951 if (ToRemove(LinkSection)) {
952 if (!AllowBrokenDependency)
953 return createStringError(llvm::errc::invalid_argument,
954 "section '%s' cannot be removed because it is "
955 "referenced by the section '%s'",
956 LinkSection->Name.data(), this->Name.data());
957 LinkSection = nullptr;
959 return Error::success();
962 void GroupSection::finalize() {
963 this->Info = Sym->Index;
964 this->Link = SymTab->Index;
967 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
968 if (ToRemove(*Sym))
969 return createStringError(llvm::errc::invalid_argument,
970 "symbol '%s' cannot be removed because it is "
971 "referenced by the section '%s[%d]'",
972 Sym->Name.data(), this->Name.data(), this->Index);
973 return Error::success();
976 void GroupSection::markSymbols() {
977 if (Sym)
978 Sym->Referenced = true;
981 void GroupSection::replaceSectionReferences(
982 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
983 for (SectionBase *&Sec : GroupMembers)
984 if (SectionBase *To = FromTo.lookup(Sec))
985 Sec = To;
988 void Section::initialize(SectionTableRef SecTable) {
989 if (Link == ELF::SHN_UNDEF)
990 return;
991 LinkSection =
992 SecTable.getSection(Link, "Link field value " + Twine(Link) +
993 " in section " + Name + " is invalid");
994 if (LinkSection->Type == ELF::SHT_SYMTAB)
995 LinkSection = nullptr;
998 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1000 void GnuDebugLinkSection::init(StringRef File) {
1001 FileName = sys::path::filename(File);
1002 // The format for the .gnu_debuglink starts with the file name and is
1003 // followed by a null terminator and then the CRC32 of the file. The CRC32
1004 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1005 // byte, and then finally push the size to alignment and add 4.
1006 Size = alignTo(FileName.size() + 1, 4) + 4;
1007 // The CRC32 will only be aligned if we align the whole section.
1008 Align = 4;
1009 Type = ELF::SHT_PROGBITS;
1010 Name = ".gnu_debuglink";
1011 // For sections not found in segments, OriginalOffset is only used to
1012 // establish the order that sections should go in. By using the maximum
1013 // possible offset we cause this section to wind up at the end.
1014 OriginalOffset = std::numeric_limits<uint64_t>::max();
1017 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1018 uint32_t PrecomputedCRC)
1019 : FileName(File), CRC32(PrecomputedCRC) {
1020 init(File);
1023 template <class ELFT>
1024 void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1025 unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
1026 Elf_Word *CRC =
1027 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1028 *CRC = Sec.CRC32;
1029 llvm::copy(Sec.FileName, Buf);
1032 void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1033 Visitor.visit(*this);
1036 void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1037 Visitor.visit(*this);
1040 template <class ELFT>
1041 void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1042 ELF::Elf32_Word *Buf =
1043 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1044 *Buf++ = Sec.FlagWord;
1045 for (SectionBase *S : Sec.GroupMembers)
1046 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1049 void GroupSection::accept(SectionVisitor &Visitor) const {
1050 Visitor.visit(*this);
1053 void GroupSection::accept(MutableSectionVisitor &Visitor) {
1054 Visitor.visit(*this);
1057 // Returns true IFF a section is wholly inside the range of a segment
1058 static bool sectionWithinSegment(const SectionBase &Section,
1059 const Segment &Segment) {
1060 // If a section is empty it should be treated like it has a size of 1. This is
1061 // to clarify the case when an empty section lies on a boundary between two
1062 // segments and ensures that the section "belongs" to the second segment and
1063 // not the first.
1064 uint64_t SecSize = Section.Size ? Section.Size : 1;
1066 if (Section.Type == SHT_NOBITS) {
1067 if (!(Section.Flags & SHF_ALLOC))
1068 return false;
1070 bool SectionIsTLS = Section.Flags & SHF_TLS;
1071 bool SegmentIsTLS = Segment.Type == PT_TLS;
1072 if (SectionIsTLS != SegmentIsTLS)
1073 return false;
1075 return Segment.VAddr <= Section.Addr &&
1076 Segment.VAddr + Segment.MemSize >= Section.Addr + SecSize;
1079 return Segment.Offset <= Section.OriginalOffset &&
1080 Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
1083 // Returns true IFF a segment's original offset is inside of another segment's
1084 // range.
1085 static bool segmentOverlapsSegment(const Segment &Child,
1086 const Segment &Parent) {
1088 return Parent.OriginalOffset <= Child.OriginalOffset &&
1089 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1092 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1093 // Any segment without a parent segment should come before a segment
1094 // that has a parent segment.
1095 if (A->OriginalOffset < B->OriginalOffset)
1096 return true;
1097 if (A->OriginalOffset > B->OriginalOffset)
1098 return false;
1099 return A->Index < B->Index;
1102 static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
1103 if (A->PAddr < B->PAddr)
1104 return true;
1105 if (A->PAddr > B->PAddr)
1106 return false;
1107 return A->Index < B->Index;
1110 void BasicELFBuilder::initFileHeader() {
1111 Obj->Flags = 0x0;
1112 Obj->Type = ET_REL;
1113 Obj->OSABI = ELFOSABI_NONE;
1114 Obj->ABIVersion = 0;
1115 Obj->Entry = 0x0;
1116 Obj->Machine = EMachine;
1117 Obj->Version = 1;
1120 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1122 StringTableSection *BasicELFBuilder::addStrTab() {
1123 auto &StrTab = Obj->addSection<StringTableSection>();
1124 StrTab.Name = ".strtab";
1126 Obj->SectionNames = &StrTab;
1127 return &StrTab;
1130 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1131 auto &SymTab = Obj->addSection<SymbolTableSection>();
1133 SymTab.Name = ".symtab";
1134 SymTab.Link = StrTab->Index;
1136 // The symbol table always needs a null symbol
1137 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1139 Obj->SymbolTable = &SymTab;
1140 return &SymTab;
1143 void BasicELFBuilder::initSections() {
1144 for (auto &Section : Obj->sections())
1145 Section.initialize(Obj->sections());
1148 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1149 auto Data = ArrayRef<uint8_t>(
1150 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1151 MemBuf->getBufferSize());
1152 auto &DataSection = Obj->addSection<Section>(Data);
1153 DataSection.Name = ".data";
1154 DataSection.Type = ELF::SHT_PROGBITS;
1155 DataSection.Size = Data.size();
1156 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1158 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1159 std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
1160 [](char C) { return !isalnum(C); }, '_');
1161 Twine Prefix = Twine("_binary_") + SanitizedFilename;
1163 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1164 /*Value=*/0, STV_DEFAULT, 0, 0);
1165 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1166 /*Value=*/DataSection.Size, STV_DEFAULT, 0, 0);
1167 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1168 /*Value=*/DataSection.Size, STV_DEFAULT, SHN_ABS, 0);
1171 std::unique_ptr<Object> BinaryELFBuilder::build() {
1172 initFileHeader();
1173 initHeaderSegment();
1175 SymbolTableSection *SymTab = addSymTab(addStrTab());
1176 initSections();
1177 addData(SymTab);
1179 return std::move(Obj);
1182 // Adds sections from IHEX data file. Data should have been
1183 // fully validated by this time.
1184 void IHexELFBuilder::addDataSections() {
1185 OwnedDataSection *Section = nullptr;
1186 uint64_t SegmentAddr = 0, BaseAddr = 0;
1187 uint32_t SecNo = 1;
1189 for (const IHexRecord &R : Records) {
1190 uint64_t RecAddr;
1191 switch (R.Type) {
1192 case IHexRecord::Data:
1193 // Ignore empty data records
1194 if (R.HexData.empty())
1195 continue;
1196 RecAddr = R.Addr + SegmentAddr + BaseAddr;
1197 if (!Section || Section->Addr + Section->Size != RecAddr)
1198 // OriginalOffset field is only used to sort section properly, so
1199 // instead of keeping track of real offset in IHEX file, we use
1200 // section number.
1201 Section = &Obj->addSection<OwnedDataSection>(
1202 ".sec" + std::to_string(SecNo++), RecAddr,
1203 ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
1204 Section->appendHexData(R.HexData);
1205 break;
1206 case IHexRecord::EndOfFile:
1207 break;
1208 case IHexRecord::SegmentAddr:
1209 // 20-bit segment address.
1210 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1211 break;
1212 case IHexRecord::StartAddr80x86:
1213 case IHexRecord::StartAddr:
1214 Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1215 assert(Obj->Entry <= 0xFFFFFU);
1216 break;
1217 case IHexRecord::ExtendedAddr:
1218 // 16-31 bits of linear base address
1219 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1220 break;
1221 default:
1222 llvm_unreachable("unknown record type");
1227 std::unique_ptr<Object> IHexELFBuilder::build() {
1228 initFileHeader();
1229 initHeaderSegment();
1230 StringTableSection *StrTab = addStrTab();
1231 addSymTab(StrTab);
1232 initSections();
1233 addDataSections();
1235 return std::move(Obj);
1238 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1239 for (Segment &Parent : Obj.segments()) {
1240 // Every segment will overlap with itself but we don't want a segment to
1241 // be it's own parent so we avoid that situation.
1242 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1243 // We want a canonical "most parental" segment but this requires
1244 // inspecting the ParentSegment.
1245 if (compareSegmentsByOffset(&Parent, &Child))
1246 if (Child.ParentSegment == nullptr ||
1247 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1248 Child.ParentSegment = &Parent;
1254 template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
1255 if (!ExtractPartition)
1256 return;
1258 for (const SectionBase &Section : Obj.sections()) {
1259 if (Section.Type == SHT_LLVM_PART_EHDR &&
1260 Section.Name == *ExtractPartition) {
1261 EhdrOffset = Section.Offset;
1262 return;
1265 error("could not find partition named '" + *ExtractPartition + "'");
1268 template <class ELFT>
1269 void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1270 uint32_t Index = 0;
1271 for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
1272 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1273 error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1274 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1275 " goes past the end of the file");
1277 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1278 (size_t)Phdr.p_filesz};
1279 Segment &Seg = Obj.addSegment(Data);
1280 Seg.Type = Phdr.p_type;
1281 Seg.Flags = Phdr.p_flags;
1282 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1283 Seg.Offset = Phdr.p_offset + EhdrOffset;
1284 Seg.VAddr = Phdr.p_vaddr;
1285 Seg.PAddr = Phdr.p_paddr;
1286 Seg.FileSize = Phdr.p_filesz;
1287 Seg.MemSize = Phdr.p_memsz;
1288 Seg.Align = Phdr.p_align;
1289 Seg.Index = Index++;
1290 for (SectionBase &Section : Obj.sections()) {
1291 if (sectionWithinSegment(Section, Seg)) {
1292 Seg.addSection(&Section);
1293 if (!Section.ParentSegment ||
1294 Section.ParentSegment->Offset > Seg.Offset) {
1295 Section.ParentSegment = &Seg;
1301 auto &ElfHdr = Obj.ElfHdrSegment;
1302 ElfHdr.Index = Index++;
1303 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1305 const auto &Ehdr = *HeadersFile.getHeader();
1306 auto &PrHdr = Obj.ProgramHdrSegment;
1307 PrHdr.Type = PT_PHDR;
1308 PrHdr.Flags = 0;
1309 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1310 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1311 // always non-zero and to ensure the equation we assign the same value to
1312 // VAddr as well.
1313 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1314 PrHdr.PAddr = 0;
1315 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1316 // The spec requires us to naturally align all the fields.
1317 PrHdr.Align = sizeof(Elf_Addr);
1318 PrHdr.Index = Index++;
1320 // Now we do an O(n^2) loop through the segments in order to match up
1321 // segments.
1322 for (Segment &Child : Obj.segments())
1323 setParentSegment(Child);
1324 setParentSegment(ElfHdr);
1325 setParentSegment(PrHdr);
1328 template <class ELFT>
1329 void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1330 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1331 error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
1332 GroupSec->Name + "'");
1333 SectionTableRef SecTable = Obj.sections();
1334 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1335 GroupSec->Link,
1336 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1337 GroupSec->Name + "' is invalid",
1338 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1339 GroupSec->Name + "' is not a symbol table");
1340 Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
1341 if (!Sym)
1342 error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
1343 GroupSec->Name + "' is not a valid symbol index");
1344 GroupSec->setSymTab(SymTab);
1345 GroupSec->setSymbol(Sym);
1346 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1347 GroupSec->Contents.empty())
1348 error("the content of the section " + GroupSec->Name + " is malformed");
1349 const ELF::Elf32_Word *Word =
1350 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1351 const ELF::Elf32_Word *End =
1352 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1353 GroupSec->setFlagWord(*Word++);
1354 for (; Word != End; ++Word) {
1355 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1356 GroupSec->addMember(SecTable.getSection(
1357 Index, "group member index " + Twine(Index) + " in section '" +
1358 GroupSec->Name + "' is invalid"));
1362 template <class ELFT>
1363 void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1364 const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
1365 StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
1366 ArrayRef<Elf_Word> ShndxData;
1368 auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
1369 for (const auto &Sym : Symbols) {
1370 SectionBase *DefSection = nullptr;
1371 StringRef Name = unwrapOrError(Sym.getName(StrTabData));
1373 if (Sym.st_shndx == SHN_XINDEX) {
1374 if (SymTab->getShndxTable() == nullptr)
1375 error("symbol '" + Name +
1376 "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
1377 if (ShndxData.data() == nullptr) {
1378 const Elf_Shdr &ShndxSec =
1379 *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
1380 ShndxData = unwrapOrError(
1381 ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
1382 if (ShndxData.size() != Symbols.size())
1383 error("symbol section index table does not have the same number of "
1384 "entries as the symbol table");
1386 Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
1387 DefSection = Obj.sections().getSection(
1388 Index,
1389 "symbol '" + Name + "' has invalid section index " + Twine(Index));
1390 } else if (Sym.st_shndx >= SHN_LORESERVE) {
1391 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1392 error(
1393 "symbol '" + Name +
1394 "' has unsupported value greater than or equal to SHN_LORESERVE: " +
1395 Twine(Sym.st_shndx));
1397 } else if (Sym.st_shndx != SHN_UNDEF) {
1398 DefSection = Obj.sections().getSection(
1399 Sym.st_shndx, "symbol '" + Name +
1400 "' is defined has invalid section index " +
1401 Twine(Sym.st_shndx));
1404 SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
1405 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1409 template <class ELFT>
1410 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
1412 template <class ELFT>
1413 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1414 ToSet = Rela.r_addend;
1417 template <class T>
1418 static void initRelocations(RelocationSection *Relocs,
1419 SymbolTableSection *SymbolTable, T RelRange) {
1420 for (const auto &Rel : RelRange) {
1421 Relocation ToAdd;
1422 ToAdd.Offset = Rel.r_offset;
1423 getAddend(ToAdd.Addend, Rel);
1424 ToAdd.Type = Rel.getType(false);
1425 ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
1426 Relocs->addRelocation(ToAdd);
1430 SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
1431 if (Index == SHN_UNDEF || Index > Sections.size())
1432 error(ErrMsg);
1433 return Sections[Index - 1].get();
1436 template <class T>
1437 T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
1438 Twine TypeErrMsg) {
1439 if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
1440 return Sec;
1441 error(TypeErrMsg);
1444 template <class ELFT>
1445 SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1446 ArrayRef<uint8_t> Data;
1447 switch (Shdr.sh_type) {
1448 case SHT_REL:
1449 case SHT_RELA:
1450 if (Shdr.sh_flags & SHF_ALLOC) {
1451 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1452 return Obj.addSection<DynamicRelocationSection>(Data);
1454 return Obj.addSection<RelocationSection>();
1455 case SHT_STRTAB:
1456 // If a string table is allocated we don't want to mess with it. That would
1457 // mean altering the memory image. There are no special link types or
1458 // anything so we can just use a Section.
1459 if (Shdr.sh_flags & SHF_ALLOC) {
1460 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1461 return Obj.addSection<Section>(Data);
1463 return Obj.addSection<StringTableSection>();
1464 case SHT_HASH:
1465 case SHT_GNU_HASH:
1466 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1467 // Because of this we don't need to mess with the hash tables either.
1468 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1469 return Obj.addSection<Section>(Data);
1470 case SHT_GROUP:
1471 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1472 return Obj.addSection<GroupSection>(Data);
1473 case SHT_DYNSYM:
1474 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1475 return Obj.addSection<DynamicSymbolTableSection>(Data);
1476 case SHT_DYNAMIC:
1477 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1478 return Obj.addSection<DynamicSection>(Data);
1479 case SHT_SYMTAB: {
1480 auto &SymTab = Obj.addSection<SymbolTableSection>();
1481 Obj.SymbolTable = &SymTab;
1482 return SymTab;
1484 case SHT_SYMTAB_SHNDX: {
1485 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1486 Obj.SectionIndexTable = &ShndxSection;
1487 return ShndxSection;
1489 case SHT_NOBITS:
1490 return Obj.addSection<Section>(Data);
1491 default: {
1492 Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
1494 StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
1495 if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
1496 uint64_t DecompressedSize, DecompressedAlign;
1497 std::tie(DecompressedSize, DecompressedAlign) =
1498 getDecompressedSizeAndAlignment<ELFT>(Data);
1499 return Obj.addSection<CompressedSection>(Data, DecompressedSize,
1500 DecompressedAlign);
1503 return Obj.addSection<Section>(Data);
1508 template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
1509 uint32_t Index = 0;
1510 for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
1511 if (Index == 0) {
1512 ++Index;
1513 continue;
1515 auto &Sec = makeSection(Shdr);
1516 Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
1517 Sec.Type = Shdr.sh_type;
1518 Sec.Flags = Shdr.sh_flags;
1519 Sec.Addr = Shdr.sh_addr;
1520 Sec.Offset = Shdr.sh_offset;
1521 Sec.OriginalOffset = Shdr.sh_offset;
1522 Sec.Size = Shdr.sh_size;
1523 Sec.Link = Shdr.sh_link;
1524 Sec.Info = Shdr.sh_info;
1525 Sec.Align = Shdr.sh_addralign;
1526 Sec.EntrySize = Shdr.sh_entsize;
1527 Sec.Index = Index++;
1528 Sec.OriginalData =
1529 ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
1530 (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
1534 template <class ELFT> void ELFBuilder<ELFT>::readSections() {
1535 // If a section index table exists we'll need to initialize it before we
1536 // initialize the symbol table because the symbol table might need to
1537 // reference it.
1538 if (Obj.SectionIndexTable)
1539 Obj.SectionIndexTable->initialize(Obj.sections());
1541 // Now that all of the sections have been added we can fill out some extra
1542 // details about symbol tables. We need the symbol table filled out before
1543 // any relocations.
1544 if (Obj.SymbolTable) {
1545 Obj.SymbolTable->initialize(Obj.sections());
1546 initSymbolTable(Obj.SymbolTable);
1549 // Now that all sections and symbols have been added we can add
1550 // relocations that reference symbols and set the link and info fields for
1551 // relocation sections.
1552 for (auto &Section : Obj.sections()) {
1553 if (&Section == Obj.SymbolTable)
1554 continue;
1555 Section.initialize(Obj.sections());
1556 if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
1557 auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
1558 if (RelSec->Type == SHT_REL)
1559 initRelocations(RelSec, Obj.SymbolTable,
1560 unwrapOrError(ElfFile.rels(Shdr)));
1561 else
1562 initRelocations(RelSec, Obj.SymbolTable,
1563 unwrapOrError(ElfFile.relas(Shdr)));
1564 } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) {
1565 initGroupSection(GroupSec);
1569 uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
1570 if (ShstrIndex == SHN_XINDEX)
1571 ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
1573 if (ShstrIndex == SHN_UNDEF)
1574 Obj.HadShdrs = false;
1575 else
1576 Obj.SectionNames =
1577 Obj.sections().template getSectionOfType<StringTableSection>(
1578 ShstrIndex,
1579 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1580 " is invalid",
1581 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1582 " is not a string table");
1585 template <class ELFT> void ELFBuilder<ELFT>::build() {
1586 readSectionHeaders();
1587 findEhdrOffset();
1589 // The ELFFile whose ELF headers and program headers are copied into the
1590 // output file. Normally the same as ElfFile, but if we're extracting a
1591 // loadable partition it will point to the partition's headers.
1592 ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
1593 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));
1595 auto &Ehdr = *HeadersFile.getHeader();
1596 Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1597 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1598 Obj.Type = Ehdr.e_type;
1599 Obj.Machine = Ehdr.e_machine;
1600 Obj.Version = Ehdr.e_version;
1601 Obj.Entry = Ehdr.e_entry;
1602 Obj.Flags = Ehdr.e_flags;
1604 readSections();
1605 readProgramHeaders(HeadersFile);
1608 Writer::~Writer() {}
1610 Reader::~Reader() {}
1612 std::unique_ptr<Object> BinaryReader::create() const {
1613 return BinaryELFBuilder(MInfo.EMachine, MemBuf).build();
1616 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1617 SmallVector<StringRef, 16> Lines;
1618 std::vector<IHexRecord> Records;
1619 bool HasSections = false;
1621 MemBuf->getBuffer().split(Lines, '\n');
1622 Records.reserve(Lines.size());
1623 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1624 StringRef Line = Lines[LineNo - 1].trim();
1625 if (Line.empty())
1626 continue;
1628 Expected<IHexRecord> R = IHexRecord::parse(Line);
1629 if (!R)
1630 return parseError(LineNo, R.takeError());
1631 if (R->Type == IHexRecord::EndOfFile)
1632 break;
1633 HasSections |= (R->Type == IHexRecord::Data);
1634 Records.push_back(*R);
1636 if (!HasSections)
1637 return parseError(-1U, "no sections");
1639 return std::move(Records);
1642 std::unique_ptr<Object> IHexReader::create() const {
1643 std::vector<IHexRecord> Records = unwrapOrError(parse());
1644 return IHexELFBuilder(Records).build();
1647 std::unique_ptr<Object> ELFReader::create() const {
1648 auto Obj = llvm::make_unique<Object>();
1649 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1650 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1651 Builder.build();
1652 return Obj;
1653 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1654 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1655 Builder.build();
1656 return Obj;
1657 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1658 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1659 Builder.build();
1660 return Obj;
1661 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1662 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1663 Builder.build();
1664 return Obj;
1666 error("invalid file type");
1669 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1670 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
1671 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1672 Ehdr.e_ident[EI_MAG0] = 0x7f;
1673 Ehdr.e_ident[EI_MAG1] = 'E';
1674 Ehdr.e_ident[EI_MAG2] = 'L';
1675 Ehdr.e_ident[EI_MAG3] = 'F';
1676 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1677 Ehdr.e_ident[EI_DATA] =
1678 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1679 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1680 Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1681 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1683 Ehdr.e_type = Obj.Type;
1684 Ehdr.e_machine = Obj.Machine;
1685 Ehdr.e_version = Obj.Version;
1686 Ehdr.e_entry = Obj.Entry;
1687 // We have to use the fully-qualified name llvm::size
1688 // since some compilers complain on ambiguous resolution.
1689 Ehdr.e_phnum = llvm::size(Obj.segments());
1690 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
1691 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
1692 Ehdr.e_flags = Obj.Flags;
1693 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
1694 if (WriteSectionHeaders && Obj.sections().size() != 0) {
1695 Ehdr.e_shentsize = sizeof(Elf_Shdr);
1696 Ehdr.e_shoff = Obj.SHOffset;
1697 // """
1698 // If the number of sections is greater than or equal to
1699 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
1700 // number of section header table entries is contained in the sh_size field
1701 // of the section header at index 0.
1702 // """
1703 auto Shnum = Obj.sections().size() + 1;
1704 if (Shnum >= SHN_LORESERVE)
1705 Ehdr.e_shnum = 0;
1706 else
1707 Ehdr.e_shnum = Shnum;
1708 // """
1709 // If the section name string table section index is greater than or equal
1710 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
1711 // and the actual index of the section name string table section is
1712 // contained in the sh_link field of the section header at index 0.
1713 // """
1714 if (Obj.SectionNames->Index >= SHN_LORESERVE)
1715 Ehdr.e_shstrndx = SHN_XINDEX;
1716 else
1717 Ehdr.e_shstrndx = Obj.SectionNames->Index;
1718 } else {
1719 Ehdr.e_shentsize = 0;
1720 Ehdr.e_shoff = 0;
1721 Ehdr.e_shnum = 0;
1722 Ehdr.e_shstrndx = 0;
1726 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
1727 for (auto &Seg : Obj.segments())
1728 writePhdr(Seg);
1731 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
1732 // This reference serves to write the dummy section header at the begining
1733 // of the file. It is not used for anything else
1734 Elf_Shdr &Shdr =
1735 *reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOffset);
1736 Shdr.sh_name = 0;
1737 Shdr.sh_type = SHT_NULL;
1738 Shdr.sh_flags = 0;
1739 Shdr.sh_addr = 0;
1740 Shdr.sh_offset = 0;
1741 // See writeEhdr for why we do this.
1742 uint64_t Shnum = Obj.sections().size() + 1;
1743 if (Shnum >= SHN_LORESERVE)
1744 Shdr.sh_size = Shnum;
1745 else
1746 Shdr.sh_size = 0;
1747 // See writeEhdr for why we do this.
1748 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
1749 Shdr.sh_link = Obj.SectionNames->Index;
1750 else
1751 Shdr.sh_link = 0;
1752 Shdr.sh_info = 0;
1753 Shdr.sh_addralign = 0;
1754 Shdr.sh_entsize = 0;
1756 for (SectionBase &Sec : Obj.sections())
1757 writeShdr(Sec);
1760 template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
1761 for (SectionBase &Sec : Obj.sections())
1762 // Segments are responsible for writing their contents, so only write the
1763 // section data if the section is not in a segment. Note that this renders
1764 // sections in segments effectively immutable.
1765 if (Sec.ParentSegment == nullptr)
1766 Sec.accept(*SecWriter);
1769 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
1770 for (Segment &Seg : Obj.segments()) {
1771 uint8_t *B = Buf.getBufferStart() + Seg.Offset;
1772 assert(Seg.FileSize == Seg.getContents().size() &&
1773 "Segment size must match contents size");
1774 std::memcpy(B, Seg.getContents().data(), Seg.FileSize);
1777 // Iterate over removed sections and overwrite their old data with zeroes.
1778 for (auto &Sec : Obj.removedSections()) {
1779 Segment *Parent = Sec.ParentSegment;
1780 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
1781 continue;
1782 uint64_t Offset =
1783 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
1784 std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
1788 template <class ELFT>
1789 ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH)
1790 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs) {}
1792 Error Object::removeSections(bool AllowBrokenLinks,
1793 std::function<bool(const SectionBase &)> ToRemove) {
1795 auto Iter = std::stable_partition(
1796 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
1797 if (ToRemove(*Sec))
1798 return false;
1799 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
1800 if (auto ToRelSec = RelSec->getSection())
1801 return !ToRemove(*ToRelSec);
1803 return true;
1805 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
1806 SymbolTable = nullptr;
1807 if (SectionNames != nullptr && ToRemove(*SectionNames))
1808 SectionNames = nullptr;
1809 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
1810 SectionIndexTable = nullptr;
1811 // Now make sure there are no remaining references to the sections that will
1812 // be removed. Sometimes it is impossible to remove a reference so we emit
1813 // an error here instead.
1814 std::unordered_set<const SectionBase *> RemoveSections;
1815 RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
1816 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
1817 for (auto &Segment : Segments)
1818 Segment->removeSection(RemoveSec.get());
1819 RemoveSections.insert(RemoveSec.get());
1822 // For each section that remains alive, we want to remove the dead references.
1823 // This either might update the content of the section (e.g. remove symbols
1824 // from symbol table that belongs to removed section) or trigger an error if
1825 // a live section critically depends on a section being removed somehow
1826 // (e.g. the removed section is referenced by a relocation).
1827 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
1828 if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
1829 [&RemoveSections](const SectionBase *Sec) {
1830 return RemoveSections.find(Sec) != RemoveSections.end();
1832 return E;
1835 // Transfer removed sections into the Object RemovedSections container for use
1836 // later.
1837 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
1838 // Now finally get rid of them all together.
1839 Sections.erase(Iter, std::end(Sections));
1840 return Error::success();
1843 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1844 if (SymbolTable)
1845 for (const SecPtr &Sec : Sections)
1846 if (Error E = Sec->removeSymbols(ToRemove))
1847 return E;
1848 return Error::success();
1851 void Object::sortSections() {
1852 // Use stable_sort to maintain the original ordering as closely as possible.
1853 llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
1854 // Put SHT_GROUP sections first, since group section headers must come
1855 // before the sections they contain. This also matches what GNU objcopy
1856 // does.
1857 if (A->Type != B->Type &&
1858 (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
1859 return A->Type == ELF::SHT_GROUP;
1860 // For all other sections, sort by offset order.
1861 return A->OriginalOffset < B->OriginalOffset;
1865 static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
1866 // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
1867 if (Align == 0)
1868 Align = 1;
1869 auto Diff =
1870 static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
1871 // We only want to add to Offset, however, so if Diff < 0 we can add Align and
1872 // (Offset + Diff) & -Align == Addr & -Align will still hold.
1873 if (Diff < 0)
1874 Diff += Align;
1875 return Offset + Diff;
1878 // Orders segments such that if x = y->ParentSegment then y comes before x.
1879 static void orderSegments(std::vector<Segment *> &Segments) {
1880 llvm::stable_sort(Segments, compareSegmentsByOffset);
1883 // This function finds a consistent layout for a list of segments starting from
1884 // an Offset. It assumes that Segments have been sorted by OrderSegments and
1885 // returns an Offset one past the end of the last segment.
1886 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
1887 uint64_t Offset) {
1888 assert(std::is_sorted(std::begin(Segments), std::end(Segments),
1889 compareSegmentsByOffset));
1890 // The only way a segment should move is if a section was between two
1891 // segments and that section was removed. If that section isn't in a segment
1892 // then it's acceptable, but not ideal, to simply move it to after the
1893 // segments. So we can simply layout segments one after the other accounting
1894 // for alignment.
1895 for (Segment *Seg : Segments) {
1896 // We assume that segments have been ordered by OriginalOffset and Index
1897 // such that a parent segment will always come before a child segment in
1898 // OrderedSegments. This means that the Offset of the ParentSegment should
1899 // already be set and we can set our offset relative to it.
1900 if (Seg->ParentSegment != nullptr) {
1901 Segment *Parent = Seg->ParentSegment;
1902 Seg->Offset =
1903 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
1904 } else {
1905 Offset = alignToAddr(Offset, Seg->VAddr, Seg->Align);
1906 Seg->Offset = Offset;
1908 Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
1910 return Offset;
1913 // This function finds a consistent layout for a list of sections. It assumes
1914 // that the ->ParentSegment of each section has already been laid out. The
1915 // supplied starting Offset is used for the starting offset of any section that
1916 // does not have a ParentSegment. It returns either the offset given if all
1917 // sections had a ParentSegment or an offset one past the last section if there
1918 // was a section that didn't have a ParentSegment.
1919 template <class Range>
1920 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
1921 // Now the offset of every segment has been set we can assign the offsets
1922 // of each section. For sections that are covered by a segment we should use
1923 // the segment's original offset and the section's original offset to compute
1924 // the offset from the start of the segment. Using the offset from the start
1925 // of the segment we can assign a new offset to the section. For sections not
1926 // covered by segments we can just bump Offset to the next valid location.
1927 uint32_t Index = 1;
1928 for (auto &Section : Sections) {
1929 Section.Index = Index++;
1930 if (Section.ParentSegment != nullptr) {
1931 auto Segment = *Section.ParentSegment;
1932 Section.Offset =
1933 Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
1934 } else {
1935 Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
1936 Section.Offset = Offset;
1937 if (Section.Type != SHT_NOBITS)
1938 Offset += Section.Size;
1941 return Offset;
1944 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
1945 Segment &ElfHdr = Obj.ElfHdrSegment;
1946 ElfHdr.Type = PT_PHDR;
1947 ElfHdr.Flags = 0;
1948 ElfHdr.VAddr = 0;
1949 ElfHdr.PAddr = 0;
1950 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
1951 ElfHdr.Align = 0;
1954 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
1955 // We need a temporary list of segments that has a special order to it
1956 // so that we know that anytime ->ParentSegment is set that segment has
1957 // already had its offset properly set.
1958 std::vector<Segment *> OrderedSegments;
1959 for (Segment &Segment : Obj.segments())
1960 OrderedSegments.push_back(&Segment);
1961 OrderedSegments.push_back(&Obj.ElfHdrSegment);
1962 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
1963 orderSegments(OrderedSegments);
1964 // Offset is used as the start offset of the first segment to be laid out.
1965 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
1966 // we start at offset 0.
1967 uint64_t Offset = 0;
1968 Offset = layoutSegments(OrderedSegments, Offset);
1969 Offset = layoutSections(Obj.sections(), Offset);
1970 // If we need to write the section header table out then we need to align the
1971 // Offset so that SHOffset is valid.
1972 if (WriteSectionHeaders)
1973 Offset = alignTo(Offset, sizeof(Elf_Addr));
1974 Obj.SHOffset = Offset;
1977 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
1978 // We already have the section header offset so we can calculate the total
1979 // size by just adding up the size of each section header.
1980 if (!WriteSectionHeaders)
1981 return Obj.SHOffset;
1982 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
1983 return Obj.SHOffset + ShdrCount * sizeof(Elf_Shdr);
1986 template <class ELFT> Error ELFWriter<ELFT>::write() {
1987 // Segment data must be written first, so that the ELF header and program
1988 // header tables can overwrite it, if covered by a segment.
1989 writeSegmentData();
1990 writeEhdr();
1991 writePhdrs();
1992 writeSectionData();
1993 if (WriteSectionHeaders)
1994 writeShdrs();
1995 return Buf.commit();
1998 static Error removeUnneededSections(Object &Obj) {
1999 // We can remove an empty symbol table from non-relocatable objects.
2000 // Relocatable objects typically have relocation sections whose
2001 // sh_link field points to .symtab, so we can't remove .symtab
2002 // even if it is empty.
2003 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2004 !Obj.SymbolTable->empty())
2005 return Error::success();
2007 // .strtab can be used for section names. In such a case we shouldn't
2008 // remove it.
2009 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2010 ? nullptr
2011 : Obj.SymbolTable->getStrTab();
2012 return Obj.removeSections(false, [&](const SectionBase &Sec) {
2013 return &Sec == Obj.SymbolTable || &Sec == StrTab;
2017 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2018 // It could happen that SectionNames has been removed and yet the user wants
2019 // a section header table output. We need to throw an error if a user tries
2020 // to do that.
2021 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2022 return createStringError(llvm::errc::invalid_argument,
2023 "cannot write section header table because "
2024 "section header string table was removed");
2026 if (Error E = removeUnneededSections(Obj))
2027 return E;
2028 Obj.sortSections();
2030 // We need to assign indexes before we perform layout because we need to know
2031 // if we need large indexes or not. We can assign indexes first and check as
2032 // we go to see if we will actully need large indexes.
2033 bool NeedsLargeIndexes = false;
2034 if (Obj.sections().size() >= SHN_LORESERVE) {
2035 SectionTableRef Sections = Obj.sections();
2036 NeedsLargeIndexes =
2037 std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
2038 [](const SectionBase &Sec) { return Sec.HasSymbol; });
2039 // TODO: handle case where only one section needs the large index table but
2040 // only needs it because the large index table hasn't been removed yet.
2043 if (NeedsLargeIndexes) {
2044 // This means we definitely need to have a section index table but if we
2045 // already have one then we should use it instead of making a new one.
2046 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2047 // Addition of a section to the end does not invalidate the indexes of
2048 // other sections and assigns the correct index to the new section.
2049 auto &Shndx = Obj.addSection<SectionIndexSection>();
2050 Obj.SymbolTable->setShndxTable(&Shndx);
2051 Shndx.setSymTab(Obj.SymbolTable);
2053 } else {
2054 // Since we don't need SectionIndexTable we should remove it and all
2055 // references to it.
2056 if (Obj.SectionIndexTable != nullptr) {
2057 // We do not support sections referring to the section index table.
2058 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2059 [this](const SectionBase &Sec) {
2060 return &Sec == Obj.SectionIndexTable;
2062 return E;
2066 // Make sure we add the names of all the sections. Importantly this must be
2067 // done after we decide to add or remove SectionIndexes.
2068 if (Obj.SectionNames != nullptr)
2069 for (const auto &Section : Obj.sections()) {
2070 Obj.SectionNames->addString(Section.Name);
2073 initEhdrSegment();
2075 // Before we can prepare for layout the indexes need to be finalized.
2076 // Also, the output arch may not be the same as the input arch, so fix up
2077 // size-related fields before doing layout calculations.
2078 uint64_t Index = 0;
2079 auto SecSizer = llvm::make_unique<ELFSectionSizer<ELFT>>();
2080 for (auto &Sec : Obj.sections()) {
2081 Sec.Index = Index++;
2082 Sec.accept(*SecSizer);
2085 // The symbol table does not update all other sections on update. For
2086 // instance, symbol names are not added as new symbols are added. This means
2087 // that some sections, like .strtab, don't yet have their final size.
2088 if (Obj.SymbolTable != nullptr)
2089 Obj.SymbolTable->prepareForLayout();
2091 // Now that all strings are added we want to finalize string table builders,
2092 // because that affects section sizes which in turn affects section offsets.
2093 for (SectionBase &Sec : Obj.sections())
2094 if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2095 StrTab->prepareForLayout();
2097 assignOffsets();
2099 // layoutSections could have modified section indexes, so we need
2100 // to fill the index table after assignOffsets.
2101 if (Obj.SymbolTable != nullptr)
2102 Obj.SymbolTable->fillShndxTable();
2104 // Finally now that all offsets and indexes have been set we can finalize any
2105 // remaining issues.
2106 uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
2107 for (SectionBase &Section : Obj.sections()) {
2108 Section.HeaderOffset = Offset;
2109 Offset += sizeof(Elf_Shdr);
2110 if (WriteSectionHeaders)
2111 Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
2112 Section.finalize();
2115 if (Error E = Buf.allocate(totalSize()))
2116 return E;
2117 SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf);
2118 return Error::success();
2121 Error BinaryWriter::write() {
2122 for (auto &Section : Obj.sections())
2123 if (Section.Flags & SHF_ALLOC)
2124 Section.accept(*SecWriter);
2125 return Buf.commit();
2128 Error BinaryWriter::finalize() {
2129 // TODO: Create a filter range to construct OrderedSegments from so that this
2130 // code can be deduped with assignOffsets above. This should also solve the
2131 // todo below for LayoutSections.
2132 // We need a temporary list of segments that has a special order to it
2133 // so that we know that anytime ->ParentSegment is set that segment has
2134 // already had it's offset properly set. We only want to consider the segments
2135 // that will affect layout of allocated sections so we only add those.
2136 std::vector<Segment *> OrderedSegments;
2137 for (SectionBase &Section : Obj.sections())
2138 if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr)
2139 OrderedSegments.push_back(Section.ParentSegment);
2141 // For binary output, we're going to use physical addresses instead of
2142 // virtual addresses, since a binary output is used for cases like ROM
2143 // loading and physical addresses are intended for ROM loading.
2144 // However, if no segment has a physical address, we'll fallback to using
2145 // virtual addresses for all.
2146 if (all_of(OrderedSegments,
2147 [](const Segment *Seg) { return Seg->PAddr == 0; }))
2148 for (Segment *Seg : OrderedSegments)
2149 Seg->PAddr = Seg->VAddr;
2151 llvm::stable_sort(OrderedSegments, compareSegmentsByPAddr);
2153 // Because we add a ParentSegment for each section we might have duplicate
2154 // segments in OrderedSegments. If there were duplicates then LayoutSegments
2155 // would do very strange things.
2156 auto End =
2157 std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
2158 OrderedSegments.erase(End, std::end(OrderedSegments));
2160 uint64_t Offset = 0;
2162 // Modify the first segment so that there is no gap at the start. This allows
2163 // our layout algorithm to proceed as expected while not writing out the gap
2164 // at the start.
2165 if (!OrderedSegments.empty()) {
2166 Segment *Seg = OrderedSegments[0];
2167 const SectionBase *Sec = Seg->firstSection();
2168 auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
2169 Seg->OriginalOffset += Diff;
2170 // The size needs to be shrunk as well.
2171 Seg->FileSize -= Diff;
2172 // The PAddr needs to be increased to remove the gap before the first
2173 // section.
2174 Seg->PAddr += Diff;
2175 uint64_t LowestPAddr = Seg->PAddr;
2176 for (Segment *Segment : OrderedSegments) {
2177 Segment->Offset = Segment->PAddr - LowestPAddr;
2178 Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
2182 // TODO: generalize LayoutSections to take a range. Pass a special range
2183 // constructed from an iterator that skips values for which a predicate does
2184 // not hold. Then pass such a range to LayoutSections instead of constructing
2185 // AllocatedSections here.
2186 std::vector<SectionBase *> AllocatedSections;
2187 for (SectionBase &Section : Obj.sections())
2188 if (Section.Flags & SHF_ALLOC)
2189 AllocatedSections.push_back(&Section);
2190 layoutSections(make_pointee_range(AllocatedSections), Offset);
2192 // Now that every section has been laid out we just need to compute the total
2193 // file size. This might not be the same as the offset returned by
2194 // LayoutSections, because we want to truncate the last segment to the end of
2195 // its last section, to match GNU objcopy's behaviour.
2196 TotalSize = 0;
2197 for (SectionBase *Section : AllocatedSections)
2198 if (Section->Type != SHT_NOBITS)
2199 TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
2201 if (Error E = Buf.allocate(TotalSize))
2202 return E;
2203 SecWriter = llvm::make_unique<BinarySectionWriter>(Buf);
2204 return Error::success();
2207 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2208 const SectionBase *Rhs) const {
2209 return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2210 (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2213 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2214 IHexLineData HexData;
2215 uint8_t Data[4] = {};
2216 // We don't write entry point record if entry is zero.
2217 if (Obj.Entry == 0)
2218 return 0;
2220 if (Obj.Entry <= 0xFFFFFU) {
2221 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2222 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2223 support::big);
2224 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2225 } else {
2226 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2227 support::big);
2228 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2230 memcpy(Buf, HexData.data(), HexData.size());
2231 return HexData.size();
2234 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2235 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2236 memcpy(Buf, HexData.data(), HexData.size());
2237 return HexData.size();
2240 Error IHexWriter::write() {
2241 IHexSectionWriter Writer(Buf);
2242 // Write sections.
2243 for (const SectionBase *Sec : Sections)
2244 Sec->accept(Writer);
2246 uint64_t Offset = Writer.getBufferOffset();
2247 // Write entry point address.
2248 Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
2249 // Write EOF.
2250 Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
2251 assert(Offset == TotalSize);
2252 return Buf.commit();
2255 Error IHexWriter::checkSection(const SectionBase &Sec) {
2256 uint64_t Addr = sectionPhysicalAddr(&Sec);
2257 if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2258 return createStringError(
2259 errc::invalid_argument,
2260 "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
2261 Addr, Addr + Sec.Size - 1);
2262 return Error::success();
2265 Error IHexWriter::finalize() {
2266 bool UseSegments = false;
2267 auto ShouldWrite = [](const SectionBase &Sec) {
2268 return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
2270 auto IsInPtLoad = [](const SectionBase &Sec) {
2271 return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
2274 // We can't write 64-bit addresses.
2275 if (addressOverflows32bit(Obj.Entry))
2276 return createStringError(errc::invalid_argument,
2277 "Entry point address 0x%llx overflows 32 bits.",
2278 Obj.Entry);
2280 // If any section we're to write has segment then we
2281 // switch to using physical addresses. Otherwise we
2282 // use section virtual address.
2283 for (auto &Section : Obj.sections())
2284 if (ShouldWrite(Section) && IsInPtLoad(Section)) {
2285 UseSegments = true;
2286 break;
2289 for (auto &Section : Obj.sections())
2290 if (ShouldWrite(Section) && (!UseSegments || IsInPtLoad(Section))) {
2291 if (Error E = checkSection(Section))
2292 return E;
2293 Sections.insert(&Section);
2296 IHexSectionWriterBase LengthCalc(Buf);
2297 for (const SectionBase *Sec : Sections)
2298 Sec->accept(LengthCalc);
2300 // We need space to write section records + StartAddress record
2301 // (if start adress is not zero) + EndOfFile record.
2302 TotalSize = LengthCalc.getBufferOffset() +
2303 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2304 IHexRecord::getLineLength(0);
2305 if (Error E = Buf.allocate(TotalSize))
2306 return E;
2307 return Error::success();
2310 template class ELFBuilder<ELF64LE>;
2311 template class ELFBuilder<ELF64BE>;
2312 template class ELFBuilder<ELF32LE>;
2313 template class ELFBuilder<ELF32BE>;
2315 template class ELFWriter<ELF64LE>;
2316 template class ELFWriter<ELF64BE>;
2317 template class ELFWriter<ELF32LE>;
2318 template class ELFWriter<ELF32BE>;
2320 } // end namespace elf
2321 } // end namespace objcopy
2322 } // end namespace llvm