[ARM] Basic And/Or/Xor handling for MVE predicates
[llvm-complete.git] / utils / TableGen / CodeGenDAGPatterns.cpp
blobc8f710d66a03663f64e2bc9076d5a44705f72dc6
1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CodeGenDAGPatterns class, which is used to read and
10 // represent the patterns present in a .td file for instructions.
12 //===----------------------------------------------------------------------===//
14 #include "CodeGenDAGPatterns.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include <algorithm>
29 #include <cstdio>
30 #include <iterator>
31 #include <set>
32 using namespace llvm;
34 #define DEBUG_TYPE "dag-patterns"
36 static inline bool isIntegerOrPtr(MVT VT) {
37 return VT.isInteger() || VT == MVT::iPTR;
39 static inline bool isFloatingPoint(MVT VT) {
40 return VT.isFloatingPoint();
42 static inline bool isVector(MVT VT) {
43 return VT.isVector();
45 static inline bool isScalar(MVT VT) {
46 return !VT.isVector();
49 template <typename Predicate>
50 static bool berase_if(MachineValueTypeSet &S, Predicate P) {
51 bool Erased = false;
52 // It is ok to iterate over MachineValueTypeSet and remove elements from it
53 // at the same time.
54 for (MVT T : S) {
55 if (!P(T))
56 continue;
57 Erased = true;
58 S.erase(T);
60 return Erased;
63 // --- TypeSetByHwMode
65 // This is a parameterized type-set class. For each mode there is a list
66 // of types that are currently possible for a given tree node. Type
67 // inference will apply to each mode separately.
69 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
70 for (const ValueTypeByHwMode &VVT : VTList) {
71 insert(VVT);
72 AddrSpaces.push_back(VVT.PtrAddrSpace);
76 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
77 for (const auto &I : *this) {
78 if (I.second.size() > 1)
79 return false;
80 if (!AllowEmpty && I.second.empty())
81 return false;
83 return true;
86 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
87 assert(isValueTypeByHwMode(true) &&
88 "The type set has multiple types for at least one HW mode");
89 ValueTypeByHwMode VVT;
90 auto ASI = AddrSpaces.begin();
92 for (const auto &I : *this) {
93 MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
94 VVT.getOrCreateTypeForMode(I.first, T);
95 if (ASI != AddrSpaces.end())
96 VVT.PtrAddrSpace = *ASI++;
98 return VVT;
101 bool TypeSetByHwMode::isPossible() const {
102 for (const auto &I : *this)
103 if (!I.second.empty())
104 return true;
105 return false;
108 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
109 bool Changed = false;
110 bool ContainsDefault = false;
111 MVT DT = MVT::Other;
113 SmallDenseSet<unsigned, 4> Modes;
114 for (const auto &P : VVT) {
115 unsigned M = P.first;
116 Modes.insert(M);
117 // Make sure there exists a set for each specific mode from VVT.
118 Changed |= getOrCreate(M).insert(P.second).second;
119 // Cache VVT's default mode.
120 if (DefaultMode == M) {
121 ContainsDefault = true;
122 DT = P.second;
126 // If VVT has a default mode, add the corresponding type to all
127 // modes in "this" that do not exist in VVT.
128 if (ContainsDefault)
129 for (auto &I : *this)
130 if (!Modes.count(I.first))
131 Changed |= I.second.insert(DT).second;
133 return Changed;
136 // Constrain the type set to be the intersection with VTS.
137 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
138 bool Changed = false;
139 if (hasDefault()) {
140 for (const auto &I : VTS) {
141 unsigned M = I.first;
142 if (M == DefaultMode || hasMode(M))
143 continue;
144 Map.insert({M, Map.at(DefaultMode)});
145 Changed = true;
149 for (auto &I : *this) {
150 unsigned M = I.first;
151 SetType &S = I.second;
152 if (VTS.hasMode(M) || VTS.hasDefault()) {
153 Changed |= intersect(I.second, VTS.get(M));
154 } else if (!S.empty()) {
155 S.clear();
156 Changed = true;
159 return Changed;
162 template <typename Predicate>
163 bool TypeSetByHwMode::constrain(Predicate P) {
164 bool Changed = false;
165 for (auto &I : *this)
166 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
167 return Changed;
170 template <typename Predicate>
171 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
172 assert(empty());
173 for (const auto &I : VTS) {
174 SetType &S = getOrCreate(I.first);
175 for (auto J : I.second)
176 if (P(J))
177 S.insert(J);
179 return !empty();
182 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
183 SmallVector<unsigned, 4> Modes;
184 Modes.reserve(Map.size());
186 for (const auto &I : *this)
187 Modes.push_back(I.first);
188 if (Modes.empty()) {
189 OS << "{}";
190 return;
192 array_pod_sort(Modes.begin(), Modes.end());
194 OS << '{';
195 for (unsigned M : Modes) {
196 OS << ' ' << getModeName(M) << ':';
197 writeToStream(get(M), OS);
199 OS << " }";
202 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
203 SmallVector<MVT, 4> Types(S.begin(), S.end());
204 array_pod_sort(Types.begin(), Types.end());
206 OS << '[';
207 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
208 OS << ValueTypeByHwMode::getMVTName(Types[i]);
209 if (i != e-1)
210 OS << ' ';
212 OS << ']';
215 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
216 // The isSimple call is much quicker than hasDefault - check this first.
217 bool IsSimple = isSimple();
218 bool VTSIsSimple = VTS.isSimple();
219 if (IsSimple && VTSIsSimple)
220 return *begin() == *VTS.begin();
222 // Speedup: We have a default if the set is simple.
223 bool HaveDefault = IsSimple || hasDefault();
224 bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
225 if (HaveDefault != VTSHaveDefault)
226 return false;
228 SmallDenseSet<unsigned, 4> Modes;
229 for (auto &I : *this)
230 Modes.insert(I.first);
231 for (const auto &I : VTS)
232 Modes.insert(I.first);
234 if (HaveDefault) {
235 // Both sets have default mode.
236 for (unsigned M : Modes) {
237 if (get(M) != VTS.get(M))
238 return false;
240 } else {
241 // Neither set has default mode.
242 for (unsigned M : Modes) {
243 // If there is no default mode, an empty set is equivalent to not having
244 // the corresponding mode.
245 bool NoModeThis = !hasMode(M) || get(M).empty();
246 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
247 if (NoModeThis != NoModeVTS)
248 return false;
249 if (!NoModeThis)
250 if (get(M) != VTS.get(M))
251 return false;
255 return true;
258 namespace llvm {
259 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
260 T.writeToStream(OS);
261 return OS;
265 LLVM_DUMP_METHOD
266 void TypeSetByHwMode::dump() const {
267 dbgs() << *this << '\n';
270 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
271 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
272 auto Int = [&In](MVT T) -> bool { return !In.count(T); };
274 if (OutP == InP)
275 return berase_if(Out, Int);
277 // Compute the intersection of scalars separately to account for only
278 // one set containing iPTR.
279 // The itersection of iPTR with a set of integer scalar types that does not
280 // include iPTR will result in the most specific scalar type:
281 // - iPTR is more specific than any set with two elements or more
282 // - iPTR is less specific than any single integer scalar type.
283 // For example
284 // { iPTR } * { i32 } -> { i32 }
285 // { iPTR } * { i32 i64 } -> { iPTR }
286 // and
287 // { iPTR i32 } * { i32 } -> { i32 }
288 // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
289 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
291 // Compute the difference between the two sets in such a way that the
292 // iPTR is in the set that is being subtracted. This is to see if there
293 // are any extra scalars in the set without iPTR that are not in the
294 // set containing iPTR. Then the iPTR could be considered a "wildcard"
295 // matching these scalars. If there is only one such scalar, it would
296 // replace the iPTR, if there are more, the iPTR would be retained.
297 SetType Diff;
298 if (InP) {
299 Diff = Out;
300 berase_if(Diff, [&In](MVT T) { return In.count(T); });
301 // Pre-remove these elements and rely only on InP/OutP to determine
302 // whether a change has been made.
303 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
304 } else {
305 Diff = In;
306 berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
307 Out.erase(MVT::iPTR);
310 // The actual intersection.
311 bool Changed = berase_if(Out, Int);
312 unsigned NumD = Diff.size();
313 if (NumD == 0)
314 return Changed;
316 if (NumD == 1) {
317 Out.insert(*Diff.begin());
318 // This is a change only if Out was the one with iPTR (which is now
319 // being replaced).
320 Changed |= OutP;
321 } else {
322 // Multiple elements from Out are now replaced with iPTR.
323 Out.insert(MVT::iPTR);
324 Changed |= !OutP;
326 return Changed;
329 bool TypeSetByHwMode::validate() const {
330 #ifndef NDEBUG
331 if (empty())
332 return true;
333 bool AllEmpty = true;
334 for (const auto &I : *this)
335 AllEmpty &= I.second.empty();
336 return !AllEmpty;
337 #endif
338 return true;
341 // --- TypeInfer
343 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
344 const TypeSetByHwMode &In) {
345 ValidateOnExit _1(Out, *this);
346 In.validate();
347 if (In.empty() || Out == In || TP.hasError())
348 return false;
349 if (Out.empty()) {
350 Out = In;
351 return true;
354 bool Changed = Out.constrain(In);
355 if (Changed && Out.empty())
356 TP.error("Type contradiction");
358 return Changed;
361 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
362 ValidateOnExit _1(Out, *this);
363 if (TP.hasError())
364 return false;
365 assert(!Out.empty() && "cannot pick from an empty set");
367 bool Changed = false;
368 for (auto &I : Out) {
369 TypeSetByHwMode::SetType &S = I.second;
370 if (S.size() <= 1)
371 continue;
372 MVT T = *S.begin(); // Pick the first element.
373 S.clear();
374 S.insert(T);
375 Changed = true;
377 return Changed;
380 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
381 ValidateOnExit _1(Out, *this);
382 if (TP.hasError())
383 return false;
384 if (!Out.empty())
385 return Out.constrain(isIntegerOrPtr);
387 return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
390 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
391 ValidateOnExit _1(Out, *this);
392 if (TP.hasError())
393 return false;
394 if (!Out.empty())
395 return Out.constrain(isFloatingPoint);
397 return Out.assign_if(getLegalTypes(), isFloatingPoint);
400 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
401 ValidateOnExit _1(Out, *this);
402 if (TP.hasError())
403 return false;
404 if (!Out.empty())
405 return Out.constrain(isScalar);
407 return Out.assign_if(getLegalTypes(), isScalar);
410 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
411 ValidateOnExit _1(Out, *this);
412 if (TP.hasError())
413 return false;
414 if (!Out.empty())
415 return Out.constrain(isVector);
417 return Out.assign_if(getLegalTypes(), isVector);
420 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
421 ValidateOnExit _1(Out, *this);
422 if (TP.hasError() || !Out.empty())
423 return false;
425 Out = getLegalTypes();
426 return true;
429 template <typename Iter, typename Pred, typename Less>
430 static Iter min_if(Iter B, Iter E, Pred P, Less L) {
431 if (B == E)
432 return E;
433 Iter Min = E;
434 for (Iter I = B; I != E; ++I) {
435 if (!P(*I))
436 continue;
437 if (Min == E || L(*I, *Min))
438 Min = I;
440 return Min;
443 template <typename Iter, typename Pred, typename Less>
444 static Iter max_if(Iter B, Iter E, Pred P, Less L) {
445 if (B == E)
446 return E;
447 Iter Max = E;
448 for (Iter I = B; I != E; ++I) {
449 if (!P(*I))
450 continue;
451 if (Max == E || L(*Max, *I))
452 Max = I;
454 return Max;
457 /// Make sure that for each type in Small, there exists a larger type in Big.
458 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
459 TypeSetByHwMode &Big) {
460 ValidateOnExit _1(Small, *this), _2(Big, *this);
461 if (TP.hasError())
462 return false;
463 bool Changed = false;
465 if (Small.empty())
466 Changed |= EnforceAny(Small);
467 if (Big.empty())
468 Changed |= EnforceAny(Big);
470 assert(Small.hasDefault() && Big.hasDefault());
472 std::vector<unsigned> Modes = union_modes(Small, Big);
474 // 1. Only allow integer or floating point types and make sure that
475 // both sides are both integer or both floating point.
476 // 2. Make sure that either both sides have vector types, or neither
477 // of them does.
478 for (unsigned M : Modes) {
479 TypeSetByHwMode::SetType &S = Small.get(M);
480 TypeSetByHwMode::SetType &B = Big.get(M);
482 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
483 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
484 Changed |= berase_if(S, NotInt) |
485 berase_if(B, NotInt);
486 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
487 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
488 Changed |= berase_if(S, NotFP) |
489 berase_if(B, NotFP);
490 } else if (S.empty() || B.empty()) {
491 Changed = !S.empty() || !B.empty();
492 S.clear();
493 B.clear();
494 } else {
495 TP.error("Incompatible types");
496 return Changed;
499 if (none_of(S, isVector) || none_of(B, isVector)) {
500 Changed |= berase_if(S, isVector) |
501 berase_if(B, isVector);
505 auto LT = [](MVT A, MVT B) -> bool {
506 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
507 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
508 A.getSizeInBits() < B.getSizeInBits());
510 auto LE = [&LT](MVT A, MVT B) -> bool {
511 // This function is used when removing elements: when a vector is compared
512 // to a non-vector, it should return false (to avoid removal).
513 if (A.isVector() != B.isVector())
514 return false;
516 return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
517 A.getSizeInBits() == B.getSizeInBits());
520 for (unsigned M : Modes) {
521 TypeSetByHwMode::SetType &S = Small.get(M);
522 TypeSetByHwMode::SetType &B = Big.get(M);
523 // MinS = min scalar in Small, remove all scalars from Big that are
524 // smaller-or-equal than MinS.
525 auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
526 if (MinS != S.end())
527 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
529 // MaxS = max scalar in Big, remove all scalars from Small that are
530 // larger than MaxS.
531 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
532 if (MaxS != B.end())
533 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
535 // MinV = min vector in Small, remove all vectors from Big that are
536 // smaller-or-equal than MinV.
537 auto MinV = min_if(S.begin(), S.end(), isVector, LT);
538 if (MinV != S.end())
539 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
541 // MaxV = max vector in Big, remove all vectors from Small that are
542 // larger than MaxV.
543 auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
544 if (MaxV != B.end())
545 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
548 return Changed;
551 /// 1. Ensure that for each type T in Vec, T is a vector type, and that
552 /// for each type U in Elem, U is a scalar type.
553 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
554 /// type T in Vec, such that U is the element type of T.
555 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
556 TypeSetByHwMode &Elem) {
557 ValidateOnExit _1(Vec, *this), _2(Elem, *this);
558 if (TP.hasError())
559 return false;
560 bool Changed = false;
562 if (Vec.empty())
563 Changed |= EnforceVector(Vec);
564 if (Elem.empty())
565 Changed |= EnforceScalar(Elem);
567 for (unsigned M : union_modes(Vec, Elem)) {
568 TypeSetByHwMode::SetType &V = Vec.get(M);
569 TypeSetByHwMode::SetType &E = Elem.get(M);
571 Changed |= berase_if(V, isScalar); // Scalar = !vector
572 Changed |= berase_if(E, isVector); // Vector = !scalar
573 assert(!V.empty() && !E.empty());
575 SmallSet<MVT,4> VT, ST;
576 // Collect element types from the "vector" set.
577 for (MVT T : V)
578 VT.insert(T.getVectorElementType());
579 // Collect scalar types from the "element" set.
580 for (MVT T : E)
581 ST.insert(T);
583 // Remove from V all (vector) types whose element type is not in S.
584 Changed |= berase_if(V, [&ST](MVT T) -> bool {
585 return !ST.count(T.getVectorElementType());
587 // Remove from E all (scalar) types, for which there is no corresponding
588 // type in V.
589 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
592 return Changed;
595 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
596 const ValueTypeByHwMode &VVT) {
597 TypeSetByHwMode Tmp(VVT);
598 ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
599 return EnforceVectorEltTypeIs(Vec, Tmp);
602 /// Ensure that for each type T in Sub, T is a vector type, and there
603 /// exists a type U in Vec such that U is a vector type with the same
604 /// element type as T and at least as many elements as T.
605 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
606 TypeSetByHwMode &Sub) {
607 ValidateOnExit _1(Vec, *this), _2(Sub, *this);
608 if (TP.hasError())
609 return false;
611 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
612 auto IsSubVec = [](MVT B, MVT P) -> bool {
613 if (!B.isVector() || !P.isVector())
614 return false;
615 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
616 // but until there are obvious use-cases for this, keep the
617 // types separate.
618 if (B.isScalableVector() != P.isScalableVector())
619 return false;
620 if (B.getVectorElementType() != P.getVectorElementType())
621 return false;
622 return B.getVectorNumElements() < P.getVectorNumElements();
625 /// Return true if S has no element (vector type) that T is a sub-vector of,
626 /// i.e. has the same element type as T and more elements.
627 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
628 for (const auto &I : S)
629 if (IsSubVec(T, I))
630 return false;
631 return true;
634 /// Return true if S has no element (vector type) that T is a super-vector
635 /// of, i.e. has the same element type as T and fewer elements.
636 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
637 for (const auto &I : S)
638 if (IsSubVec(I, T))
639 return false;
640 return true;
643 bool Changed = false;
645 if (Vec.empty())
646 Changed |= EnforceVector(Vec);
647 if (Sub.empty())
648 Changed |= EnforceVector(Sub);
650 for (unsigned M : union_modes(Vec, Sub)) {
651 TypeSetByHwMode::SetType &S = Sub.get(M);
652 TypeSetByHwMode::SetType &V = Vec.get(M);
654 Changed |= berase_if(S, isScalar);
656 // Erase all types from S that are not sub-vectors of a type in V.
657 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
659 // Erase all types from V that are not super-vectors of a type in S.
660 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
663 return Changed;
666 /// 1. Ensure that V has a scalar type iff W has a scalar type.
667 /// 2. Ensure that for each vector type T in V, there exists a vector
668 /// type U in W, such that T and U have the same number of elements.
669 /// 3. Ensure that for each vector type U in W, there exists a vector
670 /// type T in V, such that T and U have the same number of elements
671 /// (reverse of 2).
672 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
673 ValidateOnExit _1(V, *this), _2(W, *this);
674 if (TP.hasError())
675 return false;
677 bool Changed = false;
678 if (V.empty())
679 Changed |= EnforceAny(V);
680 if (W.empty())
681 Changed |= EnforceAny(W);
683 // An actual vector type cannot have 0 elements, so we can treat scalars
684 // as zero-length vectors. This way both vectors and scalars can be
685 // processed identically.
686 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
687 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
690 for (unsigned M : union_modes(V, W)) {
691 TypeSetByHwMode::SetType &VS = V.get(M);
692 TypeSetByHwMode::SetType &WS = W.get(M);
694 SmallSet<unsigned,2> VN, WN;
695 for (MVT T : VS)
696 VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
697 for (MVT T : WS)
698 WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
700 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
701 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
703 return Changed;
706 /// 1. Ensure that for each type T in A, there exists a type U in B,
707 /// such that T and U have equal size in bits.
708 /// 2. Ensure that for each type U in B, there exists a type T in A
709 /// such that T and U have equal size in bits (reverse of 1).
710 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
711 ValidateOnExit _1(A, *this), _2(B, *this);
712 if (TP.hasError())
713 return false;
714 bool Changed = false;
715 if (A.empty())
716 Changed |= EnforceAny(A);
717 if (B.empty())
718 Changed |= EnforceAny(B);
720 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
721 return !Sizes.count(T.getSizeInBits());
724 for (unsigned M : union_modes(A, B)) {
725 TypeSetByHwMode::SetType &AS = A.get(M);
726 TypeSetByHwMode::SetType &BS = B.get(M);
727 SmallSet<unsigned,2> AN, BN;
729 for (MVT T : AS)
730 AN.insert(T.getSizeInBits());
731 for (MVT T : BS)
732 BN.insert(T.getSizeInBits());
734 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
735 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
738 return Changed;
741 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
742 ValidateOnExit _1(VTS, *this);
743 const TypeSetByHwMode &Legal = getLegalTypes();
744 assert(Legal.isDefaultOnly() && "Default-mode only expected");
745 const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
747 for (auto &I : VTS)
748 expandOverloads(I.second, LegalTypes);
751 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
752 const TypeSetByHwMode::SetType &Legal) {
753 std::set<MVT> Ovs;
754 for (MVT T : Out) {
755 if (!T.isOverloaded())
756 continue;
758 Ovs.insert(T);
759 // MachineValueTypeSet allows iteration and erasing.
760 Out.erase(T);
763 for (MVT Ov : Ovs) {
764 switch (Ov.SimpleTy) {
765 case MVT::iPTRAny:
766 Out.insert(MVT::iPTR);
767 return;
768 case MVT::iAny:
769 for (MVT T : MVT::integer_valuetypes())
770 if (Legal.count(T))
771 Out.insert(T);
772 for (MVT T : MVT::integer_vector_valuetypes())
773 if (Legal.count(T))
774 Out.insert(T);
775 return;
776 case MVT::fAny:
777 for (MVT T : MVT::fp_valuetypes())
778 if (Legal.count(T))
779 Out.insert(T);
780 for (MVT T : MVT::fp_vector_valuetypes())
781 if (Legal.count(T))
782 Out.insert(T);
783 return;
784 case MVT::vAny:
785 for (MVT T : MVT::vector_valuetypes())
786 if (Legal.count(T))
787 Out.insert(T);
788 return;
789 case MVT::Any:
790 for (MVT T : MVT::all_valuetypes())
791 if (Legal.count(T))
792 Out.insert(T);
793 return;
794 default:
795 break;
800 const TypeSetByHwMode &TypeInfer::getLegalTypes() {
801 if (!LegalTypesCached) {
802 TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
803 // Stuff all types from all modes into the default mode.
804 const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
805 for (const auto &I : LTS)
806 LegalTypes.insert(I.second);
807 LegalTypesCached = true;
809 assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
810 return LegalCache;
813 #ifndef NDEBUG
814 TypeInfer::ValidateOnExit::~ValidateOnExit() {
815 if (Infer.Validate && !VTS.validate()) {
816 dbgs() << "Type set is empty for each HW mode:\n"
817 "possible type contradiction in the pattern below "
818 "(use -print-records with llvm-tblgen to see all "
819 "expanded records).\n";
820 Infer.TP.dump();
821 llvm_unreachable(nullptr);
824 #endif
827 //===----------------------------------------------------------------------===//
828 // ScopedName Implementation
829 //===----------------------------------------------------------------------===//
831 bool ScopedName::operator==(const ScopedName &o) const {
832 return Scope == o.Scope && Identifier == o.Identifier;
835 bool ScopedName::operator!=(const ScopedName &o) const {
836 return !(*this == o);
840 //===----------------------------------------------------------------------===//
841 // TreePredicateFn Implementation
842 //===----------------------------------------------------------------------===//
844 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
845 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
846 assert(
847 (!hasPredCode() || !hasImmCode()) &&
848 ".td file corrupt: can't have a node predicate *and* an imm predicate");
851 bool TreePredicateFn::hasPredCode() const {
852 return isLoad() || isStore() || isAtomic() ||
853 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
856 std::string TreePredicateFn::getPredCode() const {
857 std::string Code = "";
859 if (!isLoad() && !isStore() && !isAtomic()) {
860 Record *MemoryVT = getMemoryVT();
862 if (MemoryVT)
863 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
864 "MemoryVT requires IsLoad or IsStore");
867 if (!isLoad() && !isStore()) {
868 if (isUnindexed())
869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
870 "IsUnindexed requires IsLoad or IsStore");
872 Record *ScalarMemoryVT = getScalarMemoryVT();
874 if (ScalarMemoryVT)
875 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
876 "ScalarMemoryVT requires IsLoad or IsStore");
879 if (isLoad() + isStore() + isAtomic() > 1)
880 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
881 "IsLoad, IsStore, and IsAtomic are mutually exclusive");
883 if (isLoad()) {
884 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
885 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
886 getScalarMemoryVT() == nullptr)
887 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
888 "IsLoad cannot be used by itself");
889 } else {
890 if (isNonExtLoad())
891 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
892 "IsNonExtLoad requires IsLoad");
893 if (isAnyExtLoad())
894 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
895 "IsAnyExtLoad requires IsLoad");
896 if (isSignExtLoad())
897 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
898 "IsSignExtLoad requires IsLoad");
899 if (isZeroExtLoad())
900 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
901 "IsZeroExtLoad requires IsLoad");
904 if (isStore()) {
905 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
906 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
907 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
908 "IsStore cannot be used by itself");
909 } else {
910 if (isNonTruncStore())
911 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
912 "IsNonTruncStore requires IsStore");
913 if (isTruncStore())
914 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
915 "IsTruncStore requires IsStore");
918 if (isAtomic()) {
919 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
920 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
921 !isAtomicOrderingAcquireRelease() &&
922 !isAtomicOrderingSequentiallyConsistent() &&
923 !isAtomicOrderingAcquireOrStronger() &&
924 !isAtomicOrderingReleaseOrStronger() &&
925 !isAtomicOrderingWeakerThanAcquire() &&
926 !isAtomicOrderingWeakerThanRelease())
927 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
928 "IsAtomic cannot be used by itself");
929 } else {
930 if (isAtomicOrderingMonotonic())
931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
932 "IsAtomicOrderingMonotonic requires IsAtomic");
933 if (isAtomicOrderingAcquire())
934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
935 "IsAtomicOrderingAcquire requires IsAtomic");
936 if (isAtomicOrderingRelease())
937 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
938 "IsAtomicOrderingRelease requires IsAtomic");
939 if (isAtomicOrderingAcquireRelease())
940 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
941 "IsAtomicOrderingAcquireRelease requires IsAtomic");
942 if (isAtomicOrderingSequentiallyConsistent())
943 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
944 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
945 if (isAtomicOrderingAcquireOrStronger())
946 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
947 "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
948 if (isAtomicOrderingReleaseOrStronger())
949 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
950 "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
951 if (isAtomicOrderingWeakerThanAcquire())
952 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
953 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
956 if (isLoad() || isStore() || isAtomic()) {
957 if (ListInit *AddressSpaces = getAddressSpaces()) {
958 Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
959 " if (";
961 bool First = true;
962 for (Init *Val : AddressSpaces->getValues()) {
963 if (First)
964 First = false;
965 else
966 Code += " && ";
968 IntInit *IntVal = dyn_cast<IntInit>(Val);
969 if (!IntVal) {
970 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
971 "AddressSpaces element must be integer");
974 Code += "AddrSpace != " + utostr(IntVal->getValue());
977 Code += ")\nreturn false;\n";
980 Record *MemoryVT = getMemoryVT();
982 if (MemoryVT)
983 Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
984 MemoryVT->getName() + ") return false;\n")
985 .str();
988 if (isAtomic() && isAtomicOrderingMonotonic())
989 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
990 "AtomicOrdering::Monotonic) return false;\n";
991 if (isAtomic() && isAtomicOrderingAcquire())
992 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
993 "AtomicOrdering::Acquire) return false;\n";
994 if (isAtomic() && isAtomicOrderingRelease())
995 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
996 "AtomicOrdering::Release) return false;\n";
997 if (isAtomic() && isAtomicOrderingAcquireRelease())
998 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
999 "AtomicOrdering::AcquireRelease) return false;\n";
1000 if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
1001 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
1002 "AtomicOrdering::SequentiallyConsistent) return false;\n";
1004 if (isAtomic() && isAtomicOrderingAcquireOrStronger())
1005 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1006 "return false;\n";
1007 if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
1008 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1009 "return false;\n";
1011 if (isAtomic() && isAtomicOrderingReleaseOrStronger())
1012 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1013 "return false;\n";
1014 if (isAtomic() && isAtomicOrderingWeakerThanRelease())
1015 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
1016 "return false;\n";
1018 if (isLoad() || isStore()) {
1019 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
1021 if (isUnindexed())
1022 Code += ("if (cast<" + SDNodeName +
1023 ">(N)->getAddressingMode() != ISD::UNINDEXED) "
1024 "return false;\n")
1025 .str();
1027 if (isLoad()) {
1028 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
1029 isZeroExtLoad()) > 1)
1030 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1031 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
1032 "IsZeroExtLoad are mutually exclusive");
1033 if (isNonExtLoad())
1034 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
1035 "ISD::NON_EXTLOAD) return false;\n";
1036 if (isAnyExtLoad())
1037 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
1038 "return false;\n";
1039 if (isSignExtLoad())
1040 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
1041 "return false;\n";
1042 if (isZeroExtLoad())
1043 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
1044 "return false;\n";
1045 } else {
1046 if ((isNonTruncStore() + isTruncStore()) > 1)
1047 PrintFatalError(
1048 getOrigPatFragRecord()->getRecord()->getLoc(),
1049 "IsNonTruncStore, and IsTruncStore are mutually exclusive");
1050 if (isNonTruncStore())
1051 Code +=
1052 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1053 if (isTruncStore())
1054 Code +=
1055 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
1058 Record *ScalarMemoryVT = getScalarMemoryVT();
1060 if (ScalarMemoryVT)
1061 Code += ("if (cast<" + SDNodeName +
1062 ">(N)->getMemoryVT().getScalarType() != MVT::" +
1063 ScalarMemoryVT->getName() + ") return false;\n")
1064 .str();
1067 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
1069 Code += PredicateCode;
1071 if (PredicateCode.empty() && !Code.empty())
1072 Code += "return true;\n";
1074 return Code;
1077 bool TreePredicateFn::hasImmCode() const {
1078 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
1081 std::string TreePredicateFn::getImmCode() const {
1082 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
1085 bool TreePredicateFn::immCodeUsesAPInt() const {
1086 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
1089 bool TreePredicateFn::immCodeUsesAPFloat() const {
1090 bool Unset;
1091 // The return value will be false when IsAPFloat is unset.
1092 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
1093 Unset);
1096 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
1097 bool Value) const {
1098 bool Unset;
1099 bool Result =
1100 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
1101 if (Unset)
1102 return false;
1103 return Result == Value;
1105 bool TreePredicateFn::usesOperands() const {
1106 return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
1108 bool TreePredicateFn::isLoad() const {
1109 return isPredefinedPredicateEqualTo("IsLoad", true);
1111 bool TreePredicateFn::isStore() const {
1112 return isPredefinedPredicateEqualTo("IsStore", true);
1114 bool TreePredicateFn::isAtomic() const {
1115 return isPredefinedPredicateEqualTo("IsAtomic", true);
1117 bool TreePredicateFn::isUnindexed() const {
1118 return isPredefinedPredicateEqualTo("IsUnindexed", true);
1120 bool TreePredicateFn::isNonExtLoad() const {
1121 return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
1123 bool TreePredicateFn::isAnyExtLoad() const {
1124 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
1126 bool TreePredicateFn::isSignExtLoad() const {
1127 return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
1129 bool TreePredicateFn::isZeroExtLoad() const {
1130 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
1132 bool TreePredicateFn::isNonTruncStore() const {
1133 return isPredefinedPredicateEqualTo("IsTruncStore", false);
1135 bool TreePredicateFn::isTruncStore() const {
1136 return isPredefinedPredicateEqualTo("IsTruncStore", true);
1138 bool TreePredicateFn::isAtomicOrderingMonotonic() const {
1139 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
1141 bool TreePredicateFn::isAtomicOrderingAcquire() const {
1142 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
1144 bool TreePredicateFn::isAtomicOrderingRelease() const {
1145 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
1147 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
1148 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
1150 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
1151 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
1152 true);
1154 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
1155 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
1157 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
1158 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
1160 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
1161 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
1163 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
1164 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
1166 Record *TreePredicateFn::getMemoryVT() const {
1167 Record *R = getOrigPatFragRecord()->getRecord();
1168 if (R->isValueUnset("MemoryVT"))
1169 return nullptr;
1170 return R->getValueAsDef("MemoryVT");
1173 ListInit *TreePredicateFn::getAddressSpaces() const {
1174 Record *R = getOrigPatFragRecord()->getRecord();
1175 if (R->isValueUnset("AddressSpaces"))
1176 return nullptr;
1177 return R->getValueAsListInit("AddressSpaces");
1180 Record *TreePredicateFn::getScalarMemoryVT() const {
1181 Record *R = getOrigPatFragRecord()->getRecord();
1182 if (R->isValueUnset("ScalarMemoryVT"))
1183 return nullptr;
1184 return R->getValueAsDef("ScalarMemoryVT");
1186 bool TreePredicateFn::hasGISelPredicateCode() const {
1187 return !PatFragRec->getRecord()
1188 ->getValueAsString("GISelPredicateCode")
1189 .empty();
1191 std::string TreePredicateFn::getGISelPredicateCode() const {
1192 return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
1195 StringRef TreePredicateFn::getImmType() const {
1196 if (immCodeUsesAPInt())
1197 return "const APInt &";
1198 if (immCodeUsesAPFloat())
1199 return "const APFloat &";
1200 return "int64_t";
1203 StringRef TreePredicateFn::getImmTypeIdentifier() const {
1204 if (immCodeUsesAPInt())
1205 return "APInt";
1206 else if (immCodeUsesAPFloat())
1207 return "APFloat";
1208 return "I64";
1211 /// isAlwaysTrue - Return true if this is a noop predicate.
1212 bool TreePredicateFn::isAlwaysTrue() const {
1213 return !hasPredCode() && !hasImmCode();
1216 /// Return the name to use in the generated code to reference this, this is
1217 /// "Predicate_foo" if from a pattern fragment "foo".
1218 std::string TreePredicateFn::getFnName() const {
1219 return "Predicate_" + PatFragRec->getRecord()->getName().str();
1222 /// getCodeToRunOnSDNode - Return the code for the function body that
1223 /// evaluates this predicate. The argument is expected to be in "Node",
1224 /// not N. This handles casting and conversion to a concrete node type as
1225 /// appropriate.
1226 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
1227 // Handle immediate predicates first.
1228 std::string ImmCode = getImmCode();
1229 if (!ImmCode.empty()) {
1230 if (isLoad())
1231 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1232 "IsLoad cannot be used with ImmLeaf or its subclasses");
1233 if (isStore())
1234 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1235 "IsStore cannot be used with ImmLeaf or its subclasses");
1236 if (isUnindexed())
1237 PrintFatalError(
1238 getOrigPatFragRecord()->getRecord()->getLoc(),
1239 "IsUnindexed cannot be used with ImmLeaf or its subclasses");
1240 if (isNonExtLoad())
1241 PrintFatalError(
1242 getOrigPatFragRecord()->getRecord()->getLoc(),
1243 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
1244 if (isAnyExtLoad())
1245 PrintFatalError(
1246 getOrigPatFragRecord()->getRecord()->getLoc(),
1247 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
1248 if (isSignExtLoad())
1249 PrintFatalError(
1250 getOrigPatFragRecord()->getRecord()->getLoc(),
1251 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
1252 if (isZeroExtLoad())
1253 PrintFatalError(
1254 getOrigPatFragRecord()->getRecord()->getLoc(),
1255 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
1256 if (isNonTruncStore())
1257 PrintFatalError(
1258 getOrigPatFragRecord()->getRecord()->getLoc(),
1259 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
1260 if (isTruncStore())
1261 PrintFatalError(
1262 getOrigPatFragRecord()->getRecord()->getLoc(),
1263 "IsTruncStore cannot be used with ImmLeaf or its subclasses");
1264 if (getMemoryVT())
1265 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
1266 "MemoryVT cannot be used with ImmLeaf or its subclasses");
1267 if (getScalarMemoryVT())
1268 PrintFatalError(
1269 getOrigPatFragRecord()->getRecord()->getLoc(),
1270 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
1272 std::string Result = (" " + getImmType() + " Imm = ").str();
1273 if (immCodeUsesAPFloat())
1274 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
1275 else if (immCodeUsesAPInt())
1276 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
1277 else
1278 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
1279 return Result + ImmCode;
1282 // Handle arbitrary node predicates.
1283 assert(hasPredCode() && "Don't have any predicate code!");
1284 StringRef ClassName;
1285 if (PatFragRec->getOnlyTree()->isLeaf())
1286 ClassName = "SDNode";
1287 else {
1288 Record *Op = PatFragRec->getOnlyTree()->getOperator();
1289 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
1291 std::string Result;
1292 if (ClassName == "SDNode")
1293 Result = " SDNode *N = Node;\n";
1294 else
1295 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
1297 return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
1300 //===----------------------------------------------------------------------===//
1301 // PatternToMatch implementation
1304 static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
1305 if (!P->isLeaf())
1306 return false;
1307 DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
1308 if (!DI)
1309 return false;
1311 Record *R = DI->getDef();
1312 return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
1315 /// getPatternSize - Return the 'size' of this pattern. We want to match large
1316 /// patterns before small ones. This is used to determine the size of a
1317 /// pattern.
1318 static unsigned getPatternSize(const TreePatternNode *P,
1319 const CodeGenDAGPatterns &CGP) {
1320 unsigned Size = 3; // The node itself.
1321 // If the root node is a ConstantSDNode, increases its size.
1322 // e.g. (set R32:$dst, 0).
1323 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
1324 Size += 2;
1326 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
1327 Size += AM->getComplexity();
1328 // We don't want to count any children twice, so return early.
1329 return Size;
1332 // If this node has some predicate function that must match, it adds to the
1333 // complexity of this node.
1334 if (!P->getPredicateCalls().empty())
1335 ++Size;
1337 // Count children in the count if they are also nodes.
1338 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
1339 const TreePatternNode *Child = P->getChild(i);
1340 if (!Child->isLeaf() && Child->getNumTypes()) {
1341 const TypeSetByHwMode &T0 = Child->getExtType(0);
1342 // At this point, all variable type sets should be simple, i.e. only
1343 // have a default mode.
1344 if (T0.getMachineValueType() != MVT::Other) {
1345 Size += getPatternSize(Child, CGP);
1346 continue;
1349 if (Child->isLeaf()) {
1350 if (isa<IntInit>(Child->getLeafValue()))
1351 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
1352 else if (Child->getComplexPatternInfo(CGP))
1353 Size += getPatternSize(Child, CGP);
1354 else if (isImmAllOnesAllZerosMatch(Child))
1355 Size += 4; // Matches a build_vector(+3) and a predicate (+1).
1356 else if (!Child->getPredicateCalls().empty())
1357 ++Size;
1361 return Size;
1364 /// Compute the complexity metric for the input pattern. This roughly
1365 /// corresponds to the number of nodes that are covered.
1366 int PatternToMatch::
1367 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
1368 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
1371 /// getPredicateCheck - Return a single string containing all of this
1372 /// pattern's predicates concatenated with "&&" operators.
1374 std::string PatternToMatch::getPredicateCheck() const {
1375 SmallVector<const Predicate*,4> PredList;
1376 for (const Predicate &P : Predicates)
1377 PredList.push_back(&P);
1378 llvm::sort(PredList, deref<llvm::less>());
1380 std::string Check;
1381 for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
1382 if (i != 0)
1383 Check += " && ";
1384 Check += '(' + PredList[i]->getCondString() + ')';
1386 return Check;
1389 //===----------------------------------------------------------------------===//
1390 // SDTypeConstraint implementation
1393 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
1394 OperandNo = R->getValueAsInt("OperandNum");
1396 if (R->isSubClassOf("SDTCisVT")) {
1397 ConstraintType = SDTCisVT;
1398 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1399 for (const auto &P : VVT)
1400 if (P.second == MVT::isVoid)
1401 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
1402 } else if (R->isSubClassOf("SDTCisPtrTy")) {
1403 ConstraintType = SDTCisPtrTy;
1404 } else if (R->isSubClassOf("SDTCisInt")) {
1405 ConstraintType = SDTCisInt;
1406 } else if (R->isSubClassOf("SDTCisFP")) {
1407 ConstraintType = SDTCisFP;
1408 } else if (R->isSubClassOf("SDTCisVec")) {
1409 ConstraintType = SDTCisVec;
1410 } else if (R->isSubClassOf("SDTCisSameAs")) {
1411 ConstraintType = SDTCisSameAs;
1412 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
1413 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
1414 ConstraintType = SDTCisVTSmallerThanOp;
1415 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
1416 R->getValueAsInt("OtherOperandNum");
1417 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
1418 ConstraintType = SDTCisOpSmallerThanOp;
1419 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
1420 R->getValueAsInt("BigOperandNum");
1421 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
1422 ConstraintType = SDTCisEltOfVec;
1423 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
1424 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
1425 ConstraintType = SDTCisSubVecOfVec;
1426 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
1427 R->getValueAsInt("OtherOpNum");
1428 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
1429 ConstraintType = SDTCVecEltisVT;
1430 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
1431 for (const auto &P : VVT) {
1432 MVT T = P.second;
1433 if (T.isVector())
1434 PrintFatalError(R->getLoc(),
1435 "Cannot use vector type as SDTCVecEltisVT");
1436 if (!T.isInteger() && !T.isFloatingPoint())
1437 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
1438 "as SDTCVecEltisVT");
1440 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
1441 ConstraintType = SDTCisSameNumEltsAs;
1442 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
1443 R->getValueAsInt("OtherOperandNum");
1444 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
1445 ConstraintType = SDTCisSameSizeAs;
1446 x.SDTCisSameSizeAs_Info.OtherOperandNum =
1447 R->getValueAsInt("OtherOperandNum");
1448 } else {
1449 PrintFatalError(R->getLoc(),
1450 "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
1454 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
1455 /// N, and the result number in ResNo.
1456 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
1457 const SDNodeInfo &NodeInfo,
1458 unsigned &ResNo) {
1459 unsigned NumResults = NodeInfo.getNumResults();
1460 if (OpNo < NumResults) {
1461 ResNo = OpNo;
1462 return N;
1465 OpNo -= NumResults;
1467 if (OpNo >= N->getNumChildren()) {
1468 std::string S;
1469 raw_string_ostream OS(S);
1470 OS << "Invalid operand number in type constraint "
1471 << (OpNo+NumResults) << " ";
1472 N->print(OS);
1473 PrintFatalError(OS.str());
1476 return N->getChild(OpNo);
1479 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
1480 /// constraint to the nodes operands. This returns true if it makes a
1481 /// change, false otherwise. If a type contradiction is found, flag an error.
1482 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
1483 const SDNodeInfo &NodeInfo,
1484 TreePattern &TP) const {
1485 if (TP.hasError())
1486 return false;
1488 unsigned ResNo = 0; // The result number being referenced.
1489 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
1490 TypeInfer &TI = TP.getInfer();
1492 switch (ConstraintType) {
1493 case SDTCisVT:
1494 // Operand must be a particular type.
1495 return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
1496 case SDTCisPtrTy:
1497 // Operand must be same as target pointer type.
1498 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1499 case SDTCisInt:
1500 // Require it to be one of the legal integer VTs.
1501 return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
1502 case SDTCisFP:
1503 // Require it to be one of the legal fp VTs.
1504 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
1505 case SDTCisVec:
1506 // Require it to be one of the legal vector VTs.
1507 return TI.EnforceVector(NodeToApply->getExtType(ResNo));
1508 case SDTCisSameAs: {
1509 unsigned OResNo = 0;
1510 TreePatternNode *OtherNode =
1511 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1512 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1513 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1515 case SDTCisVTSmallerThanOp: {
1516 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1517 // have an integer type that is smaller than the VT.
1518 if (!NodeToApply->isLeaf() ||
1519 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1520 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1521 ->isSubClassOf("ValueType")) {
1522 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1523 return false;
1525 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
1526 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1527 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
1528 TypeSetByHwMode TypeListTmp(VVT);
1530 unsigned OResNo = 0;
1531 TreePatternNode *OtherNode =
1532 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1533 OResNo);
1535 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
1537 case SDTCisOpSmallerThanOp: {
1538 unsigned BResNo = 0;
1539 TreePatternNode *BigOperand =
1540 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1541 BResNo);
1542 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
1543 BigOperand->getExtType(BResNo));
1545 case SDTCisEltOfVec: {
1546 unsigned VResNo = 0;
1547 TreePatternNode *VecOperand =
1548 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1549 VResNo);
1550 // Filter vector types out of VecOperand that don't have the right element
1551 // type.
1552 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
1553 NodeToApply->getExtType(ResNo));
1555 case SDTCisSubVecOfVec: {
1556 unsigned VResNo = 0;
1557 TreePatternNode *BigVecOperand =
1558 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1559 VResNo);
1561 // Filter vector types out of BigVecOperand that don't have the
1562 // right subvector type.
1563 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
1564 NodeToApply->getExtType(ResNo));
1566 case SDTCVecEltisVT: {
1567 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
1569 case SDTCisSameNumEltsAs: {
1570 unsigned OResNo = 0;
1571 TreePatternNode *OtherNode =
1572 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1573 N, NodeInfo, OResNo);
1574 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
1575 NodeToApply->getExtType(ResNo));
1577 case SDTCisSameSizeAs: {
1578 unsigned OResNo = 0;
1579 TreePatternNode *OtherNode =
1580 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1581 N, NodeInfo, OResNo);
1582 return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
1583 NodeToApply->getExtType(ResNo));
1586 llvm_unreachable("Invalid ConstraintType!");
1589 // Update the node type to match an instruction operand or result as specified
1590 // in the ins or outs lists on the instruction definition. Return true if the
1591 // type was actually changed.
1592 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1593 Record *Operand,
1594 TreePattern &TP) {
1595 // The 'unknown' operand indicates that types should be inferred from the
1596 // context.
1597 if (Operand->isSubClassOf("unknown_class"))
1598 return false;
1600 // The Operand class specifies a type directly.
1601 if (Operand->isSubClassOf("Operand")) {
1602 Record *R = Operand->getValueAsDef("Type");
1603 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1604 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
1607 // PointerLikeRegClass has a type that is determined at runtime.
1608 if (Operand->isSubClassOf("PointerLikeRegClass"))
1609 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1611 // Both RegisterClass and RegisterOperand operands derive their types from a
1612 // register class def.
1613 Record *RC = nullptr;
1614 if (Operand->isSubClassOf("RegisterClass"))
1615 RC = Operand;
1616 else if (Operand->isSubClassOf("RegisterOperand"))
1617 RC = Operand->getValueAsDef("RegClass");
1619 assert(RC && "Unknown operand type");
1620 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1621 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1624 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
1625 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1626 if (!TP.getInfer().isConcrete(Types[i], true))
1627 return true;
1628 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1629 if (getChild(i)->ContainsUnresolvedType(TP))
1630 return true;
1631 return false;
1634 bool TreePatternNode::hasProperTypeByHwMode() const {
1635 for (const TypeSetByHwMode &S : Types)
1636 if (!S.isDefaultOnly())
1637 return true;
1638 for (const TreePatternNodePtr &C : Children)
1639 if (C->hasProperTypeByHwMode())
1640 return true;
1641 return false;
1644 bool TreePatternNode::hasPossibleType() const {
1645 for (const TypeSetByHwMode &S : Types)
1646 if (!S.isPossible())
1647 return false;
1648 for (const TreePatternNodePtr &C : Children)
1649 if (!C->hasPossibleType())
1650 return false;
1651 return true;
1654 bool TreePatternNode::setDefaultMode(unsigned Mode) {
1655 for (TypeSetByHwMode &S : Types) {
1656 S.makeSimple(Mode);
1657 // Check if the selected mode had a type conflict.
1658 if (S.get(DefaultMode).empty())
1659 return false;
1661 for (const TreePatternNodePtr &C : Children)
1662 if (!C->setDefaultMode(Mode))
1663 return false;
1664 return true;
1667 //===----------------------------------------------------------------------===//
1668 // SDNodeInfo implementation
1670 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
1671 EnumName = R->getValueAsString("Opcode");
1672 SDClassName = R->getValueAsString("SDClass");
1673 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1674 NumResults = TypeProfile->getValueAsInt("NumResults");
1675 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1677 // Parse the properties.
1678 Properties = parseSDPatternOperatorProperties(R);
1680 // Parse the type constraints.
1681 std::vector<Record*> ConstraintList =
1682 TypeProfile->getValueAsListOfDefs("Constraints");
1683 for (Record *R : ConstraintList)
1684 TypeConstraints.emplace_back(R, CGH);
1687 /// getKnownType - If the type constraints on this node imply a fixed type
1688 /// (e.g. all stores return void, etc), then return it as an
1689 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
1690 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1691 unsigned NumResults = getNumResults();
1692 assert(NumResults <= 1 &&
1693 "We only work with nodes with zero or one result so far!");
1694 assert(ResNo == 0 && "Only handles single result nodes so far");
1696 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1697 // Make sure that this applies to the correct node result.
1698 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1699 continue;
1701 switch (Constraint.ConstraintType) {
1702 default: break;
1703 case SDTypeConstraint::SDTCisVT:
1704 if (Constraint.VVT.isSimple())
1705 return Constraint.VVT.getSimple().SimpleTy;
1706 break;
1707 case SDTypeConstraint::SDTCisPtrTy:
1708 return MVT::iPTR;
1711 return MVT::Other;
1714 //===----------------------------------------------------------------------===//
1715 // TreePatternNode implementation
1718 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1719 if (Operator->getName() == "set" ||
1720 Operator->getName() == "implicit")
1721 return 0; // All return nothing.
1723 if (Operator->isSubClassOf("Intrinsic"))
1724 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1726 if (Operator->isSubClassOf("SDNode"))
1727 return CDP.getSDNodeInfo(Operator).getNumResults();
1729 if (Operator->isSubClassOf("PatFrags")) {
1730 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1731 // the forward reference case where one pattern fragment references another
1732 // before it is processed.
1733 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
1734 // The number of results of a fragment with alternative records is the
1735 // maximum number of results across all alternatives.
1736 unsigned NumResults = 0;
1737 for (auto T : PFRec->getTrees())
1738 NumResults = std::max(NumResults, T->getNumTypes());
1739 return NumResults;
1742 ListInit *LI = Operator->getValueAsListInit("Fragments");
1743 assert(LI && "Invalid Fragment");
1744 unsigned NumResults = 0;
1745 for (Init *I : LI->getValues()) {
1746 Record *Op = nullptr;
1747 if (DagInit *Dag = dyn_cast<DagInit>(I))
1748 if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
1749 Op = DI->getDef();
1750 assert(Op && "Invalid Fragment");
1751 NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
1753 return NumResults;
1756 if (Operator->isSubClassOf("Instruction")) {
1757 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1759 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1761 // Subtract any defaulted outputs.
1762 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1763 Record *OperandNode = InstInfo.Operands[i].Rec;
1765 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1766 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1767 --NumDefsToAdd;
1770 // Add on one implicit def if it has a resolvable type.
1771 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1772 ++NumDefsToAdd;
1773 return NumDefsToAdd;
1776 if (Operator->isSubClassOf("SDNodeXForm"))
1777 return 1; // FIXME: Generalize SDNodeXForm
1779 if (Operator->isSubClassOf("ValueType"))
1780 return 1; // A type-cast of one result.
1782 if (Operator->isSubClassOf("ComplexPattern"))
1783 return 1;
1785 errs() << *Operator;
1786 PrintFatalError("Unhandled node in GetNumNodeResults");
1789 void TreePatternNode::print(raw_ostream &OS) const {
1790 if (isLeaf())
1791 OS << *getLeafValue();
1792 else
1793 OS << '(' << getOperator()->getName();
1795 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1796 OS << ':';
1797 getExtType(i).writeToStream(OS);
1800 if (!isLeaf()) {
1801 if (getNumChildren() != 0) {
1802 OS << " ";
1803 getChild(0)->print(OS);
1804 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1805 OS << ", ";
1806 getChild(i)->print(OS);
1809 OS << ")";
1812 for (const TreePredicateCall &Pred : PredicateCalls) {
1813 OS << "<<P:";
1814 if (Pred.Scope)
1815 OS << Pred.Scope << ":";
1816 OS << Pred.Fn.getFnName() << ">>";
1818 if (TransformFn)
1819 OS << "<<X:" << TransformFn->getName() << ">>";
1820 if (!getName().empty())
1821 OS << ":$" << getName();
1823 for (const ScopedName &Name : NamesAsPredicateArg)
1824 OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
1826 void TreePatternNode::dump() const {
1827 print(errs());
1830 /// isIsomorphicTo - Return true if this node is recursively
1831 /// isomorphic to the specified node. For this comparison, the node's
1832 /// entire state is considered. The assigned name is ignored, since
1833 /// nodes with differing names are considered isomorphic. However, if
1834 /// the assigned name is present in the dependent variable set, then
1835 /// the assigned name is considered significant and the node is
1836 /// isomorphic if the names match.
1837 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1838 const MultipleUseVarSet &DepVars) const {
1839 if (N == this) return true;
1840 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1841 getPredicateCalls() != N->getPredicateCalls() ||
1842 getTransformFn() != N->getTransformFn())
1843 return false;
1845 if (isLeaf()) {
1846 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1847 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1848 return ((DI->getDef() == NDI->getDef())
1849 && (DepVars.find(getName()) == DepVars.end()
1850 || getName() == N->getName()));
1853 return getLeafValue() == N->getLeafValue();
1856 if (N->getOperator() != getOperator() ||
1857 N->getNumChildren() != getNumChildren()) return false;
1858 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1859 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1860 return false;
1861 return true;
1864 /// clone - Make a copy of this tree and all of its children.
1866 TreePatternNodePtr TreePatternNode::clone() const {
1867 TreePatternNodePtr New;
1868 if (isLeaf()) {
1869 New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
1870 } else {
1871 std::vector<TreePatternNodePtr> CChildren;
1872 CChildren.reserve(Children.size());
1873 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1874 CChildren.push_back(getChild(i)->clone());
1875 New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
1876 getNumTypes());
1878 New->setName(getName());
1879 New->setNamesAsPredicateArg(getNamesAsPredicateArg());
1880 New->Types = Types;
1881 New->setPredicateCalls(getPredicateCalls());
1882 New->setTransformFn(getTransformFn());
1883 return New;
1886 /// RemoveAllTypes - Recursively strip all the types of this tree.
1887 void TreePatternNode::RemoveAllTypes() {
1888 // Reset to unknown type.
1889 std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
1890 if (isLeaf()) return;
1891 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1892 getChild(i)->RemoveAllTypes();
1896 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1897 /// with actual values specified by ArgMap.
1898 void TreePatternNode::SubstituteFormalArguments(
1899 std::map<std::string, TreePatternNodePtr> &ArgMap) {
1900 if (isLeaf()) return;
1902 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1903 TreePatternNode *Child = getChild(i);
1904 if (Child->isLeaf()) {
1905 Init *Val = Child->getLeafValue();
1906 // Note that, when substituting into an output pattern, Val might be an
1907 // UnsetInit.
1908 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1909 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1910 // We found a use of a formal argument, replace it with its value.
1911 TreePatternNodePtr NewChild = ArgMap[Child->getName()];
1912 assert(NewChild && "Couldn't find formal argument!");
1913 assert((Child->getPredicateCalls().empty() ||
1914 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1915 "Non-empty child predicate clobbered!");
1916 setChild(i, std::move(NewChild));
1918 } else {
1919 getChild(i)->SubstituteFormalArguments(ArgMap);
1925 /// InlinePatternFragments - If this pattern refers to any pattern
1926 /// fragments, return the set of inlined versions (this can be more than
1927 /// one if a PatFrags record has multiple alternatives).
1928 void TreePatternNode::InlinePatternFragments(
1929 TreePatternNodePtr T, TreePattern &TP,
1930 std::vector<TreePatternNodePtr> &OutAlternatives) {
1932 if (TP.hasError())
1933 return;
1935 if (isLeaf()) {
1936 OutAlternatives.push_back(T); // nothing to do.
1937 return;
1940 Record *Op = getOperator();
1942 if (!Op->isSubClassOf("PatFrags")) {
1943 if (getNumChildren() == 0) {
1944 OutAlternatives.push_back(T);
1945 return;
1948 // Recursively inline children nodes.
1949 std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
1950 ChildAlternatives.resize(getNumChildren());
1951 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1952 TreePatternNodePtr Child = getChildShared(i);
1953 Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
1954 // If there are no alternatives for any child, there are no
1955 // alternatives for this expression as whole.
1956 if (ChildAlternatives[i].empty())
1957 return;
1959 for (auto NewChild : ChildAlternatives[i])
1960 assert((Child->getPredicateCalls().empty() ||
1961 NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
1962 "Non-empty child predicate clobbered!");
1965 // The end result is an all-pairs construction of the resultant pattern.
1966 std::vector<unsigned> Idxs;
1967 Idxs.resize(ChildAlternatives.size());
1968 bool NotDone;
1969 do {
1970 // Create the variant and add it to the output list.
1971 std::vector<TreePatternNodePtr> NewChildren;
1972 for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
1973 NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
1974 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
1975 getOperator(), std::move(NewChildren), getNumTypes());
1977 // Copy over properties.
1978 R->setName(getName());
1979 R->setNamesAsPredicateArg(getNamesAsPredicateArg());
1980 R->setPredicateCalls(getPredicateCalls());
1981 R->setTransformFn(getTransformFn());
1982 for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
1983 R->setType(i, getExtType(i));
1984 for (unsigned i = 0, e = getNumResults(); i != e; ++i)
1985 R->setResultIndex(i, getResultIndex(i));
1987 // Register alternative.
1988 OutAlternatives.push_back(R);
1990 // Increment indices to the next permutation by incrementing the
1991 // indices from last index backward, e.g., generate the sequence
1992 // [0, 0], [0, 1], [1, 0], [1, 1].
1993 int IdxsIdx;
1994 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
1995 if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
1996 Idxs[IdxsIdx] = 0;
1997 else
1998 break;
2000 NotDone = (IdxsIdx >= 0);
2001 } while (NotDone);
2003 return;
2006 // Otherwise, we found a reference to a fragment. First, look up its
2007 // TreePattern record.
2008 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
2010 // Verify that we are passing the right number of operands.
2011 if (Frag->getNumArgs() != Children.size()) {
2012 TP.error("'" + Op->getName() + "' fragment requires " +
2013 Twine(Frag->getNumArgs()) + " operands!");
2014 return;
2017 TreePredicateFn PredFn(Frag);
2018 unsigned Scope = 0;
2019 if (TreePredicateFn(Frag).usesOperands())
2020 Scope = TP.getDAGPatterns().allocateScope();
2022 // Compute the map of formal to actual arguments.
2023 std::map<std::string, TreePatternNodePtr> ArgMap;
2024 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
2025 TreePatternNodePtr Child = getChildShared(i);
2026 if (Scope != 0) {
2027 Child = Child->clone();
2028 Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
2030 ArgMap[Frag->getArgName(i)] = Child;
2033 // Loop over all fragment alternatives.
2034 for (auto Alternative : Frag->getTrees()) {
2035 TreePatternNodePtr FragTree = Alternative->clone();
2037 if (!PredFn.isAlwaysTrue())
2038 FragTree->addPredicateCall(PredFn, Scope);
2040 // Resolve formal arguments to their actual value.
2041 if (Frag->getNumArgs())
2042 FragTree->SubstituteFormalArguments(ArgMap);
2044 // Transfer types. Note that the resolved alternative may have fewer
2045 // (but not more) results than the PatFrags node.
2046 FragTree->setName(getName());
2047 for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
2048 FragTree->UpdateNodeType(i, getExtType(i), TP);
2050 // Transfer in the old predicates.
2051 for (const TreePredicateCall &Pred : getPredicateCalls())
2052 FragTree->addPredicateCall(Pred);
2054 // The fragment we inlined could have recursive inlining that is needed. See
2055 // if there are any pattern fragments in it and inline them as needed.
2056 FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
2060 /// getImplicitType - Check to see if the specified record has an implicit
2061 /// type which should be applied to it. This will infer the type of register
2062 /// references from the register file information, for example.
2064 /// When Unnamed is set, return the type of a DAG operand with no name, such as
2065 /// the F8RC register class argument in:
2067 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
2069 /// When Unnamed is false, return the type of a named DAG operand such as the
2070 /// GPR:$src operand above.
2072 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
2073 bool NotRegisters,
2074 bool Unnamed,
2075 TreePattern &TP) {
2076 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2078 // Check to see if this is a register operand.
2079 if (R->isSubClassOf("RegisterOperand")) {
2080 assert(ResNo == 0 && "Regoperand ref only has one result!");
2081 if (NotRegisters)
2082 return TypeSetByHwMode(); // Unknown.
2083 Record *RegClass = R->getValueAsDef("RegClass");
2084 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2085 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
2088 // Check to see if this is a register or a register class.
2089 if (R->isSubClassOf("RegisterClass")) {
2090 assert(ResNo == 0 && "Regclass ref only has one result!");
2091 // An unnamed register class represents itself as an i32 immediate, for
2092 // example on a COPY_TO_REGCLASS instruction.
2093 if (Unnamed)
2094 return TypeSetByHwMode(MVT::i32);
2096 // In a named operand, the register class provides the possible set of
2097 // types.
2098 if (NotRegisters)
2099 return TypeSetByHwMode(); // Unknown.
2100 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2101 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
2104 if (R->isSubClassOf("PatFrags")) {
2105 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
2106 // Pattern fragment types will be resolved when they are inlined.
2107 return TypeSetByHwMode(); // Unknown.
2110 if (R->isSubClassOf("Register")) {
2111 assert(ResNo == 0 && "Registers only produce one result!");
2112 if (NotRegisters)
2113 return TypeSetByHwMode(); // Unknown.
2114 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
2115 return TypeSetByHwMode(T.getRegisterVTs(R));
2118 if (R->isSubClassOf("SubRegIndex")) {
2119 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
2120 return TypeSetByHwMode(MVT::i32);
2123 if (R->isSubClassOf("ValueType")) {
2124 assert(ResNo == 0 && "This node only has one result!");
2125 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
2127 // (sext_inreg GPR:$src, i16)
2128 // ~~~
2129 if (Unnamed)
2130 return TypeSetByHwMode(MVT::Other);
2131 // With a name, the ValueType simply provides the type of the named
2132 // variable.
2134 // (sext_inreg i32:$src, i16)
2135 // ~~~~~~~~
2136 if (NotRegisters)
2137 return TypeSetByHwMode(); // Unknown.
2138 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2139 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
2142 if (R->isSubClassOf("CondCode")) {
2143 assert(ResNo == 0 && "This node only has one result!");
2144 // Using a CondCodeSDNode.
2145 return TypeSetByHwMode(MVT::Other);
2148 if (R->isSubClassOf("ComplexPattern")) {
2149 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
2150 if (NotRegisters)
2151 return TypeSetByHwMode(); // Unknown.
2152 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
2154 if (R->isSubClassOf("PointerLikeRegClass")) {
2155 assert(ResNo == 0 && "Regclass can only have one result!");
2156 TypeSetByHwMode VTS(MVT::iPTR);
2157 TP.getInfer().expandOverloads(VTS);
2158 return VTS;
2161 if (R->getName() == "node" || R->getName() == "srcvalue" ||
2162 R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
2163 R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
2164 // Placeholder.
2165 return TypeSetByHwMode(); // Unknown.
2168 if (R->isSubClassOf("Operand")) {
2169 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
2170 Record *T = R->getValueAsDef("Type");
2171 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
2174 TP.error("Unknown node flavor used in pattern: " + R->getName());
2175 return TypeSetByHwMode(MVT::Other);
2179 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
2180 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
2181 const CodeGenIntrinsic *TreePatternNode::
2182 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
2183 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
2184 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
2185 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
2186 return nullptr;
2188 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
2189 return &CDP.getIntrinsicInfo(IID);
2192 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
2193 /// return the ComplexPattern information, otherwise return null.
2194 const ComplexPattern *
2195 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
2196 Record *Rec;
2197 if (isLeaf()) {
2198 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2199 if (!DI)
2200 return nullptr;
2201 Rec = DI->getDef();
2202 } else
2203 Rec = getOperator();
2205 if (!Rec->isSubClassOf("ComplexPattern"))
2206 return nullptr;
2207 return &CGP.getComplexPattern(Rec);
2210 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
2211 // A ComplexPattern specifically declares how many results it fills in.
2212 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2213 return CP->getNumOperands();
2215 // If MIOperandInfo is specified, that gives the count.
2216 if (isLeaf()) {
2217 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
2218 if (DI && DI->getDef()->isSubClassOf("Operand")) {
2219 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
2220 if (MIOps->getNumArgs())
2221 return MIOps->getNumArgs();
2225 // Otherwise there is just one result.
2226 return 1;
2229 /// NodeHasProperty - Return true if this node has the specified property.
2230 bool TreePatternNode::NodeHasProperty(SDNP Property,
2231 const CodeGenDAGPatterns &CGP) const {
2232 if (isLeaf()) {
2233 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
2234 return CP->hasProperty(Property);
2236 return false;
2239 if (Property != SDNPHasChain) {
2240 // The chain proprety is already present on the different intrinsic node
2241 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
2242 // on the intrinsic. Anything else is specific to the individual intrinsic.
2243 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
2244 return Int->hasProperty(Property);
2247 if (!Operator->isSubClassOf("SDPatternOperator"))
2248 return false;
2250 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
2256 /// TreeHasProperty - Return true if any node in this tree has the specified
2257 /// property.
2258 bool TreePatternNode::TreeHasProperty(SDNP Property,
2259 const CodeGenDAGPatterns &CGP) const {
2260 if (NodeHasProperty(Property, CGP))
2261 return true;
2262 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2263 if (getChild(i)->TreeHasProperty(Property, CGP))
2264 return true;
2265 return false;
2268 /// isCommutativeIntrinsic - Return true if the node corresponds to a
2269 /// commutative intrinsic.
2270 bool
2271 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
2272 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
2273 return Int->isCommutative;
2274 return false;
2277 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
2278 if (!N->isLeaf())
2279 return N->getOperator()->isSubClassOf(Class);
2281 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
2282 if (DI && DI->getDef()->isSubClassOf(Class))
2283 return true;
2285 return false;
2288 static void emitTooManyOperandsError(TreePattern &TP,
2289 StringRef InstName,
2290 unsigned Expected,
2291 unsigned Actual) {
2292 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
2293 " operands but expected only " + Twine(Expected) + "!");
2296 static void emitTooFewOperandsError(TreePattern &TP,
2297 StringRef InstName,
2298 unsigned Actual) {
2299 TP.error("Instruction '" + InstName +
2300 "' expects more than the provided " + Twine(Actual) + " operands!");
2303 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
2304 /// this node and its children in the tree. This returns true if it makes a
2305 /// change, false otherwise. If a type contradiction is found, flag an error.
2306 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
2307 if (TP.hasError())
2308 return false;
2310 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
2311 if (isLeaf()) {
2312 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
2313 // If it's a regclass or something else known, include the type.
2314 bool MadeChange = false;
2315 for (unsigned i = 0, e = Types.size(); i != e; ++i)
2316 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
2317 NotRegisters,
2318 !hasName(), TP), TP);
2319 return MadeChange;
2322 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
2323 assert(Types.size() == 1 && "Invalid IntInit");
2325 // Int inits are always integers. :)
2326 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
2328 if (!TP.getInfer().isConcrete(Types[0], false))
2329 return MadeChange;
2331 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
2332 for (auto &P : VVT) {
2333 MVT::SimpleValueType VT = P.second.SimpleTy;
2334 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
2335 continue;
2336 unsigned Size = MVT(VT).getSizeInBits();
2337 // Make sure that the value is representable for this type.
2338 if (Size >= 32)
2339 continue;
2340 // Check that the value doesn't use more bits than we have. It must
2341 // either be a sign- or zero-extended equivalent of the original.
2342 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
2343 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
2344 SignBitAndAbove == 1)
2345 continue;
2347 TP.error("Integer value '" + Twine(II->getValue()) +
2348 "' is out of range for type '" + getEnumName(VT) + "'!");
2349 break;
2351 return MadeChange;
2354 return false;
2357 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
2358 bool MadeChange = false;
2360 // Apply the result type to the node.
2361 unsigned NumRetVTs = Int->IS.RetVTs.size();
2362 unsigned NumParamVTs = Int->IS.ParamVTs.size();
2364 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
2365 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
2367 if (getNumChildren() != NumParamVTs + 1) {
2368 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
2369 " operands, not " + Twine(getNumChildren() - 1) + " operands!");
2370 return false;
2373 // Apply type info to the intrinsic ID.
2374 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
2376 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
2377 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
2379 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
2380 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
2381 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
2383 return MadeChange;
2386 if (getOperator()->isSubClassOf("SDNode")) {
2387 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
2389 // Check that the number of operands is sane. Negative operands -> varargs.
2390 if (NI.getNumOperands() >= 0 &&
2391 getNumChildren() != (unsigned)NI.getNumOperands()) {
2392 TP.error(getOperator()->getName() + " node requires exactly " +
2393 Twine(NI.getNumOperands()) + " operands!");
2394 return false;
2397 bool MadeChange = false;
2398 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2399 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2400 MadeChange |= NI.ApplyTypeConstraints(this, TP);
2401 return MadeChange;
2404 if (getOperator()->isSubClassOf("Instruction")) {
2405 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
2406 CodeGenInstruction &InstInfo =
2407 CDP.getTargetInfo().getInstruction(getOperator());
2409 bool MadeChange = false;
2411 // Apply the result types to the node, these come from the things in the
2412 // (outs) list of the instruction.
2413 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
2414 Inst.getNumResults());
2415 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
2416 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
2418 // If the instruction has implicit defs, we apply the first one as a result.
2419 // FIXME: This sucks, it should apply all implicit defs.
2420 if (!InstInfo.ImplicitDefs.empty()) {
2421 unsigned ResNo = NumResultsToAdd;
2423 // FIXME: Generalize to multiple possible types and multiple possible
2424 // ImplicitDefs.
2425 MVT::SimpleValueType VT =
2426 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
2428 if (VT != MVT::Other)
2429 MadeChange |= UpdateNodeType(ResNo, VT, TP);
2432 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
2433 // be the same.
2434 if (getOperator()->getName() == "INSERT_SUBREG") {
2435 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
2436 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
2437 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
2438 } else if (getOperator()->getName() == "REG_SEQUENCE") {
2439 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
2440 // variadic.
2442 unsigned NChild = getNumChildren();
2443 if (NChild < 3) {
2444 TP.error("REG_SEQUENCE requires at least 3 operands!");
2445 return false;
2448 if (NChild % 2 == 0) {
2449 TP.error("REG_SEQUENCE requires an odd number of operands!");
2450 return false;
2453 if (!isOperandClass(getChild(0), "RegisterClass")) {
2454 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
2455 return false;
2458 for (unsigned I = 1; I < NChild; I += 2) {
2459 TreePatternNode *SubIdxChild = getChild(I + 1);
2460 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
2461 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
2462 Twine(I + 1) + "!");
2463 return false;
2468 // If one or more operands with a default value appear at the end of the
2469 // formal operand list for an instruction, we allow them to be overridden
2470 // by optional operands provided in the pattern.
2472 // But if an operand B without a default appears at any point after an
2473 // operand A with a default, then we don't allow A to be overridden,
2474 // because there would be no way to specify whether the next operand in
2475 // the pattern was intended to override A or skip it.
2476 unsigned NonOverridableOperands = Inst.getNumOperands();
2477 while (NonOverridableOperands > 0 &&
2478 CDP.operandHasDefault(Inst.getOperand(NonOverridableOperands-1)))
2479 --NonOverridableOperands;
2481 unsigned ChildNo = 0;
2482 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
2483 Record *OperandNode = Inst.getOperand(i);
2485 // If the operand has a default value, do we use it? We must use the
2486 // default if we've run out of children of the pattern DAG to consume,
2487 // or if the operand is followed by a non-defaulted one.
2488 if (CDP.operandHasDefault(OperandNode) &&
2489 (i < NonOverridableOperands || ChildNo >= getNumChildren()))
2490 continue;
2492 // If we have run out of child nodes and there _isn't_ a default
2493 // value we can use for the next operand, give an error.
2494 if (ChildNo >= getNumChildren()) {
2495 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
2496 return false;
2499 TreePatternNode *Child = getChild(ChildNo++);
2500 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
2502 // If the operand has sub-operands, they may be provided by distinct
2503 // child patterns, so attempt to match each sub-operand separately.
2504 if (OperandNode->isSubClassOf("Operand")) {
2505 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
2506 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
2507 // But don't do that if the whole operand is being provided by
2508 // a single ComplexPattern-related Operand.
2510 if (Child->getNumMIResults(CDP) < NumArgs) {
2511 // Match first sub-operand against the child we already have.
2512 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
2513 MadeChange |=
2514 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2516 // And the remaining sub-operands against subsequent children.
2517 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
2518 if (ChildNo >= getNumChildren()) {
2519 emitTooFewOperandsError(TP, getOperator()->getName(),
2520 getNumChildren());
2521 return false;
2523 Child = getChild(ChildNo++);
2525 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
2526 MadeChange |=
2527 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
2529 continue;
2534 // If we didn't match by pieces above, attempt to match the whole
2535 // operand now.
2536 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
2539 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
2540 emitTooManyOperandsError(TP, getOperator()->getName(),
2541 ChildNo, getNumChildren());
2542 return false;
2545 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2546 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2547 return MadeChange;
2550 if (getOperator()->isSubClassOf("ComplexPattern")) {
2551 bool MadeChange = false;
2553 for (unsigned i = 0; i < getNumChildren(); ++i)
2554 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
2556 return MadeChange;
2559 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
2561 // Node transforms always take one operand.
2562 if (getNumChildren() != 1) {
2563 TP.error("Node transform '" + getOperator()->getName() +
2564 "' requires one operand!");
2565 return false;
2568 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
2569 return MadeChange;
2572 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
2573 /// RHS of a commutative operation, not the on LHS.
2574 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
2575 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
2576 return true;
2577 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
2578 return true;
2579 return false;
2583 /// canPatternMatch - If it is impossible for this pattern to match on this
2584 /// target, fill in Reason and return false. Otherwise, return true. This is
2585 /// used as a sanity check for .td files (to prevent people from writing stuff
2586 /// that can never possibly work), and to prevent the pattern permuter from
2587 /// generating stuff that is useless.
2588 bool TreePatternNode::canPatternMatch(std::string &Reason,
2589 const CodeGenDAGPatterns &CDP) {
2590 if (isLeaf()) return true;
2592 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2593 if (!getChild(i)->canPatternMatch(Reason, CDP))
2594 return false;
2596 // If this is an intrinsic, handle cases that would make it not match. For
2597 // example, if an operand is required to be an immediate.
2598 if (getOperator()->isSubClassOf("Intrinsic")) {
2599 // TODO:
2600 return true;
2603 if (getOperator()->isSubClassOf("ComplexPattern"))
2604 return true;
2606 // If this node is a commutative operator, check that the LHS isn't an
2607 // immediate.
2608 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2609 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2610 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2611 // Scan all of the operands of the node and make sure that only the last one
2612 // is a constant node, unless the RHS also is.
2613 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2614 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2615 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2616 if (OnlyOnRHSOfCommutative(getChild(i))) {
2617 Reason="Immediate value must be on the RHS of commutative operators!";
2618 return false;
2623 return true;
2626 //===----------------------------------------------------------------------===//
2627 // TreePattern implementation
2630 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2631 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2632 isInputPattern(isInput), HasError(false),
2633 Infer(*this) {
2634 for (Init *I : RawPat->getValues())
2635 Trees.push_back(ParseTreePattern(I, ""));
2638 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2639 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2640 isInputPattern(isInput), HasError(false),
2641 Infer(*this) {
2642 Trees.push_back(ParseTreePattern(Pat, ""));
2645 TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
2646 CodeGenDAGPatterns &cdp)
2647 : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
2648 Infer(*this) {
2649 Trees.push_back(Pat);
2652 void TreePattern::error(const Twine &Msg) {
2653 if (HasError)
2654 return;
2655 dump();
2656 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2657 HasError = true;
2660 void TreePattern::ComputeNamedNodes() {
2661 for (TreePatternNodePtr &Tree : Trees)
2662 ComputeNamedNodes(Tree.get());
2665 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2666 if (!N->getName().empty())
2667 NamedNodes[N->getName()].push_back(N);
2669 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2670 ComputeNamedNodes(N->getChild(i));
2673 TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
2674 StringRef OpName) {
2675 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2676 Record *R = DI->getDef();
2678 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2679 // TreePatternNode of its own. For example:
2680 /// (foo GPR, imm) -> (foo GPR, (imm))
2681 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
2682 return ParseTreePattern(
2683 DagInit::get(DI, nullptr,
2684 std::vector<std::pair<Init*, StringInit*> >()),
2685 OpName);
2687 // Input argument?
2688 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
2689 if (R->getName() == "node" && !OpName.empty()) {
2690 if (OpName.empty())
2691 error("'node' argument requires a name to match with operand list");
2692 Args.push_back(OpName);
2695 Res->setName(OpName);
2696 return Res;
2699 // ?:$name or just $name.
2700 if (isa<UnsetInit>(TheInit)) {
2701 if (OpName.empty())
2702 error("'?' argument requires a name to match with operand list");
2703 TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
2704 Args.push_back(OpName);
2705 Res->setName(OpName);
2706 return Res;
2709 if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
2710 if (!OpName.empty())
2711 error("Constant int or bit argument should not have a name!");
2712 if (isa<BitInit>(TheInit))
2713 TheInit = TheInit->convertInitializerTo(IntRecTy::get());
2714 return std::make_shared<TreePatternNode>(TheInit, 1);
2717 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2718 // Turn this into an IntInit.
2719 Init *II = BI->convertInitializerTo(IntRecTy::get());
2720 if (!II || !isa<IntInit>(II))
2721 error("Bits value must be constants!");
2722 return ParseTreePattern(II, OpName);
2725 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2726 if (!Dag) {
2727 TheInit->print(errs());
2728 error("Pattern has unexpected init kind!");
2730 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2731 if (!OpDef) error("Pattern has unexpected operator type!");
2732 Record *Operator = OpDef->getDef();
2734 if (Operator->isSubClassOf("ValueType")) {
2735 // If the operator is a ValueType, then this must be "type cast" of a leaf
2736 // node.
2737 if (Dag->getNumArgs() != 1)
2738 error("Type cast only takes one operand!");
2740 TreePatternNodePtr New =
2741 ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
2743 // Apply the type cast.
2744 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2745 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
2746 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
2748 if (!OpName.empty())
2749 error("ValueType cast should not have a name!");
2750 return New;
2753 // Verify that this is something that makes sense for an operator.
2754 if (!Operator->isSubClassOf("PatFrags") &&
2755 !Operator->isSubClassOf("SDNode") &&
2756 !Operator->isSubClassOf("Instruction") &&
2757 !Operator->isSubClassOf("SDNodeXForm") &&
2758 !Operator->isSubClassOf("Intrinsic") &&
2759 !Operator->isSubClassOf("ComplexPattern") &&
2760 Operator->getName() != "set" &&
2761 Operator->getName() != "implicit")
2762 error("Unrecognized node '" + Operator->getName() + "'!");
2764 // Check to see if this is something that is illegal in an input pattern.
2765 if (isInputPattern) {
2766 if (Operator->isSubClassOf("Instruction") ||
2767 Operator->isSubClassOf("SDNodeXForm"))
2768 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2769 } else {
2770 if (Operator->isSubClassOf("Intrinsic"))
2771 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2773 if (Operator->isSubClassOf("SDNode") &&
2774 Operator->getName() != "imm" &&
2775 Operator->getName() != "fpimm" &&
2776 Operator->getName() != "tglobaltlsaddr" &&
2777 Operator->getName() != "tconstpool" &&
2778 Operator->getName() != "tjumptable" &&
2779 Operator->getName() != "tframeindex" &&
2780 Operator->getName() != "texternalsym" &&
2781 Operator->getName() != "tblockaddress" &&
2782 Operator->getName() != "tglobaladdr" &&
2783 Operator->getName() != "bb" &&
2784 Operator->getName() != "vt" &&
2785 Operator->getName() != "mcsym")
2786 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2789 std::vector<TreePatternNodePtr> Children;
2791 // Parse all the operands.
2792 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2793 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
2795 // Get the actual number of results before Operator is converted to an intrinsic
2796 // node (which is hard-coded to have either zero or one result).
2797 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2799 // If the operator is an intrinsic, then this is just syntactic sugar for
2800 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2801 // convert the intrinsic name to a number.
2802 if (Operator->isSubClassOf("Intrinsic")) {
2803 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2804 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2806 // If this intrinsic returns void, it must have side-effects and thus a
2807 // chain.
2808 if (Int.IS.RetVTs.empty())
2809 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2810 else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
2811 // Has side-effects, requires chain.
2812 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2813 else // Otherwise, no chain.
2814 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2816 Children.insert(Children.begin(),
2817 std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
2820 if (Operator->isSubClassOf("ComplexPattern")) {
2821 for (unsigned i = 0; i < Children.size(); ++i) {
2822 TreePatternNodePtr Child = Children[i];
2824 if (Child->getName().empty())
2825 error("All arguments to a ComplexPattern must be named");
2827 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2828 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2829 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2830 auto OperandId = std::make_pair(Operator, i);
2831 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2832 if (PrevOp != ComplexPatternOperands.end()) {
2833 if (PrevOp->getValue() != OperandId)
2834 error("All ComplexPattern operands must appear consistently: "
2835 "in the same order in just one ComplexPattern instance.");
2836 } else
2837 ComplexPatternOperands[Child->getName()] = OperandId;
2841 TreePatternNodePtr Result =
2842 std::make_shared<TreePatternNode>(Operator, std::move(Children),
2843 NumResults);
2844 Result->setName(OpName);
2846 if (Dag->getName()) {
2847 assert(Result->getName().empty());
2848 Result->setName(Dag->getNameStr());
2850 return Result;
2853 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2854 /// will never match in favor of something obvious that will. This is here
2855 /// strictly as a convenience to target authors because it allows them to write
2856 /// more type generic things and have useless type casts fold away.
2858 /// This returns true if any change is made.
2859 static bool SimplifyTree(TreePatternNodePtr &N) {
2860 if (N->isLeaf())
2861 return false;
2863 // If we have a bitconvert with a resolved type and if the source and
2864 // destination types are the same, then the bitconvert is useless, remove it.
2865 if (N->getOperator()->getName() == "bitconvert" &&
2866 N->getExtType(0).isValueTypeByHwMode(false) &&
2867 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2868 N->getName().empty()) {
2869 N = N->getChildShared(0);
2870 SimplifyTree(N);
2871 return true;
2874 // Walk all children.
2875 bool MadeChange = false;
2876 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2877 TreePatternNodePtr Child = N->getChildShared(i);
2878 MadeChange |= SimplifyTree(Child);
2879 N->setChild(i, std::move(Child));
2881 return MadeChange;
2886 /// InferAllTypes - Infer/propagate as many types throughout the expression
2887 /// patterns as possible. Return true if all types are inferred, false
2888 /// otherwise. Flags an error if a type contradiction is found.
2889 bool TreePattern::
2890 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2891 if (NamedNodes.empty())
2892 ComputeNamedNodes();
2894 bool MadeChange = true;
2895 while (MadeChange) {
2896 MadeChange = false;
2897 for (TreePatternNodePtr &Tree : Trees) {
2898 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2899 MadeChange |= SimplifyTree(Tree);
2902 // If there are constraints on our named nodes, apply them.
2903 for (auto &Entry : NamedNodes) {
2904 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2906 // If we have input named node types, propagate their types to the named
2907 // values here.
2908 if (InNamedTypes) {
2909 if (!InNamedTypes->count(Entry.getKey())) {
2910 error("Node '" + std::string(Entry.getKey()) +
2911 "' in output pattern but not input pattern");
2912 return true;
2915 const SmallVectorImpl<TreePatternNode*> &InNodes =
2916 InNamedTypes->find(Entry.getKey())->second;
2918 // The input types should be fully resolved by now.
2919 for (TreePatternNode *Node : Nodes) {
2920 // If this node is a register class, and it is the root of the pattern
2921 // then we're mapping something onto an input register. We allow
2922 // changing the type of the input register in this case. This allows
2923 // us to match things like:
2924 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2925 if (Node == Trees[0].get() && Node->isLeaf()) {
2926 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2927 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2928 DI->getDef()->isSubClassOf("RegisterOperand")))
2929 continue;
2932 assert(Node->getNumTypes() == 1 &&
2933 InNodes[0]->getNumTypes() == 1 &&
2934 "FIXME: cannot name multiple result nodes yet");
2935 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2936 *this);
2940 // If there are multiple nodes with the same name, they must all have the
2941 // same type.
2942 if (Entry.second.size() > 1) {
2943 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2944 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2945 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2946 "FIXME: cannot name multiple result nodes yet");
2948 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2949 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2955 bool HasUnresolvedTypes = false;
2956 for (const TreePatternNodePtr &Tree : Trees)
2957 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
2958 return !HasUnresolvedTypes;
2961 void TreePattern::print(raw_ostream &OS) const {
2962 OS << getRecord()->getName();
2963 if (!Args.empty()) {
2964 OS << "(" << Args[0];
2965 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2966 OS << ", " << Args[i];
2967 OS << ")";
2969 OS << ": ";
2971 if (Trees.size() > 1)
2972 OS << "[\n";
2973 for (const TreePatternNodePtr &Tree : Trees) {
2974 OS << "\t";
2975 Tree->print(OS);
2976 OS << "\n";
2979 if (Trees.size() > 1)
2980 OS << "]\n";
2983 void TreePattern::dump() const { print(errs()); }
2985 //===----------------------------------------------------------------------===//
2986 // CodeGenDAGPatterns implementation
2989 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
2990 PatternRewriterFn PatternRewriter)
2991 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
2992 PatternRewriter(PatternRewriter) {
2994 Intrinsics = CodeGenIntrinsicTable(Records, false);
2995 TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
2996 ParseNodeInfo();
2997 ParseNodeTransforms();
2998 ParseComplexPatterns();
2999 ParsePatternFragments();
3000 ParseDefaultOperands();
3001 ParseInstructions();
3002 ParsePatternFragments(/*OutFrags*/true);
3003 ParsePatterns();
3005 // Break patterns with parameterized types into a series of patterns,
3006 // where each one has a fixed type and is predicated on the conditions
3007 // of the associated HW mode.
3008 ExpandHwModeBasedTypes();
3010 // Generate variants. For example, commutative patterns can match
3011 // multiple ways. Add them to PatternsToMatch as well.
3012 GenerateVariants();
3014 // Infer instruction flags. For example, we can detect loads,
3015 // stores, and side effects in many cases by examining an
3016 // instruction's pattern.
3017 InferInstructionFlags();
3019 // Verify that instruction flags match the patterns.
3020 VerifyInstructionFlags();
3023 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
3024 Record *N = Records.getDef(Name);
3025 if (!N || !N->isSubClassOf("SDNode"))
3026 PrintFatalError("Error getting SDNode '" + Name + "'!");
3028 return N;
3031 // Parse all of the SDNode definitions for the target, populating SDNodes.
3032 void CodeGenDAGPatterns::ParseNodeInfo() {
3033 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
3034 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
3036 while (!Nodes.empty()) {
3037 Record *R = Nodes.back();
3038 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
3039 Nodes.pop_back();
3042 // Get the builtin intrinsic nodes.
3043 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
3044 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
3045 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
3048 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
3049 /// map, and emit them to the file as functions.
3050 void CodeGenDAGPatterns::ParseNodeTransforms() {
3051 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
3052 while (!Xforms.empty()) {
3053 Record *XFormNode = Xforms.back();
3054 Record *SDNode = XFormNode->getValueAsDef("Opcode");
3055 StringRef Code = XFormNode->getValueAsString("XFormFunction");
3056 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
3058 Xforms.pop_back();
3062 void CodeGenDAGPatterns::ParseComplexPatterns() {
3063 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
3064 while (!AMs.empty()) {
3065 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
3066 AMs.pop_back();
3071 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
3072 /// file, building up the PatternFragments map. After we've collected them all,
3073 /// inline fragments together as necessary, so that there are no references left
3074 /// inside a pattern fragment to a pattern fragment.
3076 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
3077 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
3079 // First step, parse all of the fragments.
3080 for (Record *Frag : Fragments) {
3081 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3082 continue;
3084 ListInit *LI = Frag->getValueAsListInit("Fragments");
3085 TreePattern *P =
3086 (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
3087 Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
3088 *this)).get();
3090 // Validate the argument list, converting it to set, to discard duplicates.
3091 std::vector<std::string> &Args = P->getArgList();
3092 // Copy the args so we can take StringRefs to them.
3093 auto ArgsCopy = Args;
3094 SmallDenseSet<StringRef, 4> OperandsSet;
3095 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
3097 if (OperandsSet.count(""))
3098 P->error("Cannot have unnamed 'node' values in pattern fragment!");
3100 // Parse the operands list.
3101 DagInit *OpsList = Frag->getValueAsDag("Operands");
3102 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
3103 // Special cases: ops == outs == ins. Different names are used to
3104 // improve readability.
3105 if (!OpsOp ||
3106 (OpsOp->getDef()->getName() != "ops" &&
3107 OpsOp->getDef()->getName() != "outs" &&
3108 OpsOp->getDef()->getName() != "ins"))
3109 P->error("Operands list should start with '(ops ... '!");
3111 // Copy over the arguments.
3112 Args.clear();
3113 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
3114 if (!isa<DefInit>(OpsList->getArg(j)) ||
3115 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
3116 P->error("Operands list should all be 'node' values.");
3117 if (!OpsList->getArgName(j))
3118 P->error("Operands list should have names for each operand!");
3119 StringRef ArgNameStr = OpsList->getArgNameStr(j);
3120 if (!OperandsSet.count(ArgNameStr))
3121 P->error("'" + ArgNameStr +
3122 "' does not occur in pattern or was multiply specified!");
3123 OperandsSet.erase(ArgNameStr);
3124 Args.push_back(ArgNameStr);
3127 if (!OperandsSet.empty())
3128 P->error("Operands list does not contain an entry for operand '" +
3129 *OperandsSet.begin() + "'!");
3131 // If there is a node transformation corresponding to this, keep track of
3132 // it.
3133 Record *Transform = Frag->getValueAsDef("OperandTransform");
3134 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
3135 for (auto T : P->getTrees())
3136 T->setTransformFn(Transform);
3139 // Now that we've parsed all of the tree fragments, do a closure on them so
3140 // that there are not references to PatFrags left inside of them.
3141 for (Record *Frag : Fragments) {
3142 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
3143 continue;
3145 TreePattern &ThePat = *PatternFragments[Frag];
3146 ThePat.InlinePatternFragments();
3148 // Infer as many types as possible. Don't worry about it if we don't infer
3149 // all of them, some may depend on the inputs of the pattern. Also, don't
3150 // validate type sets; validation may cause spurious failures e.g. if a
3151 // fragment needs floating-point types but the current target does not have
3152 // any (this is only an error if that fragment is ever used!).
3154 TypeInfer::SuppressValidation SV(ThePat.getInfer());
3155 ThePat.InferAllTypes();
3156 ThePat.resetError();
3159 // If debugging, print out the pattern fragment result.
3160 LLVM_DEBUG(ThePat.dump());
3164 void CodeGenDAGPatterns::ParseDefaultOperands() {
3165 std::vector<Record*> DefaultOps;
3166 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
3168 // Find some SDNode.
3169 assert(!SDNodes.empty() && "No SDNodes parsed?");
3170 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
3172 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
3173 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
3175 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
3176 // SomeSDnode so that we can parse this.
3177 std::vector<std::pair<Init*, StringInit*> > Ops;
3178 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
3179 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
3180 DefaultInfo->getArgName(op)));
3181 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
3183 // Create a TreePattern to parse this.
3184 TreePattern P(DefaultOps[i], DI, false, *this);
3185 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
3187 // Copy the operands over into a DAGDefaultOperand.
3188 DAGDefaultOperand DefaultOpInfo;
3190 const TreePatternNodePtr &T = P.getTree(0);
3191 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
3192 TreePatternNodePtr TPN = T->getChildShared(op);
3193 while (TPN->ApplyTypeConstraints(P, false))
3194 /* Resolve all types */;
3196 if (TPN->ContainsUnresolvedType(P)) {
3197 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
3198 DefaultOps[i]->getName() +
3199 "' doesn't have a concrete type!");
3201 DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
3204 // Insert it into the DefaultOperands map so we can find it later.
3205 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
3209 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
3210 /// instruction input. Return true if this is a real use.
3211 static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
3212 std::map<std::string, TreePatternNodePtr> &InstInputs) {
3213 // No name -> not interesting.
3214 if (Pat->getName().empty()) {
3215 if (Pat->isLeaf()) {
3216 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3217 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
3218 DI->getDef()->isSubClassOf("RegisterOperand")))
3219 I.error("Input " + DI->getDef()->getName() + " must be named!");
3221 return false;
3224 Record *Rec;
3225 if (Pat->isLeaf()) {
3226 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
3227 if (!DI)
3228 I.error("Input $" + Pat->getName() + " must be an identifier!");
3229 Rec = DI->getDef();
3230 } else {
3231 Rec = Pat->getOperator();
3234 // SRCVALUE nodes are ignored.
3235 if (Rec->getName() == "srcvalue")
3236 return false;
3238 TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
3239 if (!Slot) {
3240 Slot = Pat;
3241 return true;
3243 Record *SlotRec;
3244 if (Slot->isLeaf()) {
3245 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
3246 } else {
3247 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
3248 SlotRec = Slot->getOperator();
3251 // Ensure that the inputs agree if we've already seen this input.
3252 if (Rec != SlotRec)
3253 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3254 // Ensure that the types can agree as well.
3255 Slot->UpdateNodeType(0, Pat->getExtType(0), I);
3256 Pat->UpdateNodeType(0, Slot->getExtType(0), I);
3257 if (Slot->getExtTypes() != Pat->getExtTypes())
3258 I.error("All $" + Pat->getName() + " inputs must agree with each other");
3259 return true;
3262 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
3263 /// part of "I", the instruction), computing the set of inputs and outputs of
3264 /// the pattern. Report errors if we see anything naughty.
3265 void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
3266 TreePattern &I, TreePatternNodePtr Pat,
3267 std::map<std::string, TreePatternNodePtr> &InstInputs,
3268 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3269 &InstResults,
3270 std::vector<Record *> &InstImpResults) {
3272 // The instruction pattern still has unresolved fragments. For *named*
3273 // nodes we must resolve those here. This may not result in multiple
3274 // alternatives.
3275 if (!Pat->getName().empty()) {
3276 TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
3277 SrcPattern.InlinePatternFragments();
3278 SrcPattern.InferAllTypes();
3279 Pat = SrcPattern.getOnlyTree();
3282 if (Pat->isLeaf()) {
3283 bool isUse = HandleUse(I, Pat, InstInputs);
3284 if (!isUse && Pat->getTransformFn())
3285 I.error("Cannot specify a transform function for a non-input value!");
3286 return;
3289 if (Pat->getOperator()->getName() == "implicit") {
3290 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3291 TreePatternNode *Dest = Pat->getChild(i);
3292 if (!Dest->isLeaf())
3293 I.error("implicitly defined value should be a register!");
3295 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3296 if (!Val || !Val->getDef()->isSubClassOf("Register"))
3297 I.error("implicitly defined value should be a register!");
3298 InstImpResults.push_back(Val->getDef());
3300 return;
3303 if (Pat->getOperator()->getName() != "set") {
3304 // If this is not a set, verify that the children nodes are not void typed,
3305 // and recurse.
3306 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
3307 if (Pat->getChild(i)->getNumTypes() == 0)
3308 I.error("Cannot have void nodes inside of patterns!");
3309 FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
3310 InstResults, InstImpResults);
3313 // If this is a non-leaf node with no children, treat it basically as if
3314 // it were a leaf. This handles nodes like (imm).
3315 bool isUse = HandleUse(I, Pat, InstInputs);
3317 if (!isUse && Pat->getTransformFn())
3318 I.error("Cannot specify a transform function for a non-input value!");
3319 return;
3322 // Otherwise, this is a set, validate and collect instruction results.
3323 if (Pat->getNumChildren() == 0)
3324 I.error("set requires operands!");
3326 if (Pat->getTransformFn())
3327 I.error("Cannot specify a transform function on a set node!");
3329 // Check the set destinations.
3330 unsigned NumDests = Pat->getNumChildren()-1;
3331 for (unsigned i = 0; i != NumDests; ++i) {
3332 TreePatternNodePtr Dest = Pat->getChildShared(i);
3333 // For set destinations we also must resolve fragments here.
3334 TreePattern DestPattern(I.getRecord(), Dest, false, *this);
3335 DestPattern.InlinePatternFragments();
3336 DestPattern.InferAllTypes();
3337 Dest = DestPattern.getOnlyTree();
3339 if (!Dest->isLeaf())
3340 I.error("set destination should be a register!");
3342 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
3343 if (!Val) {
3344 I.error("set destination should be a register!");
3345 continue;
3348 if (Val->getDef()->isSubClassOf("RegisterClass") ||
3349 Val->getDef()->isSubClassOf("ValueType") ||
3350 Val->getDef()->isSubClassOf("RegisterOperand") ||
3351 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
3352 if (Dest->getName().empty())
3353 I.error("set destination must have a name!");
3354 if (InstResults.count(Dest->getName()))
3355 I.error("cannot set '" + Dest->getName() + "' multiple times");
3356 InstResults[Dest->getName()] = Dest;
3357 } else if (Val->getDef()->isSubClassOf("Register")) {
3358 InstImpResults.push_back(Val->getDef());
3359 } else {
3360 I.error("set destination should be a register!");
3364 // Verify and collect info from the computation.
3365 FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
3366 InstResults, InstImpResults);
3369 //===----------------------------------------------------------------------===//
3370 // Instruction Analysis
3371 //===----------------------------------------------------------------------===//
3373 class InstAnalyzer {
3374 const CodeGenDAGPatterns &CDP;
3375 public:
3376 bool hasSideEffects;
3377 bool mayStore;
3378 bool mayLoad;
3379 bool isBitcast;
3380 bool isVariadic;
3381 bool hasChain;
3383 InstAnalyzer(const CodeGenDAGPatterns &cdp)
3384 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
3385 isBitcast(false), isVariadic(false), hasChain(false) {}
3387 void Analyze(const PatternToMatch &Pat) {
3388 const TreePatternNode *N = Pat.getSrcPattern();
3389 AnalyzeNode(N);
3390 // These properties are detected only on the root node.
3391 isBitcast = IsNodeBitcast(N);
3394 private:
3395 bool IsNodeBitcast(const TreePatternNode *N) const {
3396 if (hasSideEffects || mayLoad || mayStore || isVariadic)
3397 return false;
3399 if (N->isLeaf())
3400 return false;
3401 if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
3402 return false;
3404 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
3405 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
3406 return false;
3407 return OpInfo.getEnumName() == "ISD::BITCAST";
3410 public:
3411 void AnalyzeNode(const TreePatternNode *N) {
3412 if (N->isLeaf()) {
3413 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
3414 Record *LeafRec = DI->getDef();
3415 // Handle ComplexPattern leaves.
3416 if (LeafRec->isSubClassOf("ComplexPattern")) {
3417 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
3418 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
3419 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
3420 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
3423 return;
3426 // Analyze children.
3427 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3428 AnalyzeNode(N->getChild(i));
3430 // Notice properties of the node.
3431 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
3432 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
3433 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
3434 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
3435 if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
3437 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
3438 // If this is an intrinsic, analyze it.
3439 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
3440 mayLoad = true;// These may load memory.
3442 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
3443 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
3445 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
3446 IntInfo->hasSideEffects)
3447 // ReadWriteMem intrinsics can have other strange effects.
3448 hasSideEffects = true;
3454 static bool InferFromPattern(CodeGenInstruction &InstInfo,
3455 const InstAnalyzer &PatInfo,
3456 Record *PatDef) {
3457 bool Error = false;
3459 // Remember where InstInfo got its flags.
3460 if (InstInfo.hasUndefFlags())
3461 InstInfo.InferredFrom = PatDef;
3463 // Check explicitly set flags for consistency.
3464 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
3465 !InstInfo.hasSideEffects_Unset) {
3466 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
3467 // the pattern has no side effects. That could be useful for div/rem
3468 // instructions that may trap.
3469 if (!InstInfo.hasSideEffects) {
3470 Error = true;
3471 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
3472 Twine(InstInfo.hasSideEffects));
3476 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
3477 Error = true;
3478 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
3479 Twine(InstInfo.mayStore));
3482 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
3483 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
3484 // Some targets translate immediates to loads.
3485 if (!InstInfo.mayLoad) {
3486 Error = true;
3487 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
3488 Twine(InstInfo.mayLoad));
3492 // Transfer inferred flags.
3493 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
3494 InstInfo.mayStore |= PatInfo.mayStore;
3495 InstInfo.mayLoad |= PatInfo.mayLoad;
3497 // These flags are silently added without any verification.
3498 // FIXME: To match historical behavior of TableGen, for now add those flags
3499 // only when we're inferring from the primary instruction pattern.
3500 if (PatDef->isSubClassOf("Instruction")) {
3501 InstInfo.isBitcast |= PatInfo.isBitcast;
3502 InstInfo.hasChain |= PatInfo.hasChain;
3503 InstInfo.hasChain_Inferred = true;
3506 // Don't infer isVariadic. This flag means something different on SDNodes and
3507 // instructions. For example, a CALL SDNode is variadic because it has the
3508 // call arguments as operands, but a CALL instruction is not variadic - it
3509 // has argument registers as implicit, not explicit uses.
3511 return Error;
3514 /// hasNullFragReference - Return true if the DAG has any reference to the
3515 /// null_frag operator.
3516 static bool hasNullFragReference(DagInit *DI) {
3517 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
3518 if (!OpDef) return false;
3519 Record *Operator = OpDef->getDef();
3521 // If this is the null fragment, return true.
3522 if (Operator->getName() == "null_frag") return true;
3523 // If any of the arguments reference the null fragment, return true.
3524 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
3525 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
3526 if (Arg && hasNullFragReference(Arg))
3527 return true;
3530 return false;
3533 /// hasNullFragReference - Return true if any DAG in the list references
3534 /// the null_frag operator.
3535 static bool hasNullFragReference(ListInit *LI) {
3536 for (Init *I : LI->getValues()) {
3537 DagInit *DI = dyn_cast<DagInit>(I);
3538 assert(DI && "non-dag in an instruction Pattern list?!");
3539 if (hasNullFragReference(DI))
3540 return true;
3542 return false;
3545 /// Get all the instructions in a tree.
3546 static void
3547 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
3548 if (Tree->isLeaf())
3549 return;
3550 if (Tree->getOperator()->isSubClassOf("Instruction"))
3551 Instrs.push_back(Tree->getOperator());
3552 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
3553 getInstructionsInTree(Tree->getChild(i), Instrs);
3556 /// Check the class of a pattern leaf node against the instruction operand it
3557 /// represents.
3558 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
3559 Record *Leaf) {
3560 if (OI.Rec == Leaf)
3561 return true;
3563 // Allow direct value types to be used in instruction set patterns.
3564 // The type will be checked later.
3565 if (Leaf->isSubClassOf("ValueType"))
3566 return true;
3568 // Patterns can also be ComplexPattern instances.
3569 if (Leaf->isSubClassOf("ComplexPattern"))
3570 return true;
3572 return false;
3575 void CodeGenDAGPatterns::parseInstructionPattern(
3576 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
3578 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
3580 // Parse the instruction.
3581 TreePattern I(CGI.TheDef, Pat, true, *this);
3583 // InstInputs - Keep track of all of the inputs of the instruction, along
3584 // with the record they are declared as.
3585 std::map<std::string, TreePatternNodePtr> InstInputs;
3587 // InstResults - Keep track of all the virtual registers that are 'set'
3588 // in the instruction, including what reg class they are.
3589 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
3590 InstResults;
3592 std::vector<Record*> InstImpResults;
3594 // Verify that the top-level forms in the instruction are of void type, and
3595 // fill in the InstResults map.
3596 SmallString<32> TypesString;
3597 for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
3598 TypesString.clear();
3599 TreePatternNodePtr Pat = I.getTree(j);
3600 if (Pat->getNumTypes() != 0) {
3601 raw_svector_ostream OS(TypesString);
3602 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
3603 if (k > 0)
3604 OS << ", ";
3605 Pat->getExtType(k).writeToStream(OS);
3607 I.error("Top-level forms in instruction pattern should have"
3608 " void types, has types " +
3609 OS.str());
3612 // Find inputs and outputs, and verify the structure of the uses/defs.
3613 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
3614 InstImpResults);
3617 // Now that we have inputs and outputs of the pattern, inspect the operands
3618 // list for the instruction. This determines the order that operands are
3619 // added to the machine instruction the node corresponds to.
3620 unsigned NumResults = InstResults.size();
3622 // Parse the operands list from the (ops) list, validating it.
3623 assert(I.getArgList().empty() && "Args list should still be empty here!");
3625 // Check that all of the results occur first in the list.
3626 std::vector<Record*> Results;
3627 std::vector<unsigned> ResultIndices;
3628 SmallVector<TreePatternNodePtr, 2> ResNodes;
3629 for (unsigned i = 0; i != NumResults; ++i) {
3630 if (i == CGI.Operands.size()) {
3631 const std::string &OpName =
3632 std::find_if(InstResults.begin(), InstResults.end(),
3633 [](const std::pair<std::string, TreePatternNodePtr> &P) {
3634 return P.second;
3636 ->first;
3638 I.error("'" + OpName + "' set but does not appear in operand list!");
3641 const std::string &OpName = CGI.Operands[i].Name;
3643 // Check that it exists in InstResults.
3644 auto InstResultIter = InstResults.find(OpName);
3645 if (InstResultIter == InstResults.end() || !InstResultIter->second)
3646 I.error("Operand $" + OpName + " does not exist in operand list!");
3648 TreePatternNodePtr RNode = InstResultIter->second;
3649 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3650 ResNodes.push_back(std::move(RNode));
3651 if (!R)
3652 I.error("Operand $" + OpName + " should be a set destination: all "
3653 "outputs must occur before inputs in operand list!");
3655 if (!checkOperandClass(CGI.Operands[i], R))
3656 I.error("Operand $" + OpName + " class mismatch!");
3658 // Remember the return type.
3659 Results.push_back(CGI.Operands[i].Rec);
3661 // Remember the result index.
3662 ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
3664 // Okay, this one checks out.
3665 InstResultIter->second = nullptr;
3668 // Loop over the inputs next.
3669 std::vector<TreePatternNodePtr> ResultNodeOperands;
3670 std::vector<Record*> Operands;
3671 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3672 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3673 const std::string &OpName = Op.Name;
3674 if (OpName.empty())
3675 I.error("Operand #" + Twine(i) + " in operands list has no name!");
3677 if (!InstInputs.count(OpName)) {
3678 // If this is an operand with a DefaultOps set filled in, we can ignore
3679 // this. When we codegen it, we will do so as always executed.
3680 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3681 // Does it have a non-empty DefaultOps field? If so, ignore this
3682 // operand.
3683 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3684 continue;
3686 I.error("Operand $" + OpName +
3687 " does not appear in the instruction pattern");
3689 TreePatternNodePtr InVal = InstInputs[OpName];
3690 InstInputs.erase(OpName); // It occurred, remove from map.
3692 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3693 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3694 if (!checkOperandClass(Op, InRec))
3695 I.error("Operand $" + OpName + "'s register class disagrees"
3696 " between the operand and pattern");
3698 Operands.push_back(Op.Rec);
3700 // Construct the result for the dest-pattern operand list.
3701 TreePatternNodePtr OpNode = InVal->clone();
3703 // No predicate is useful on the result.
3704 OpNode->clearPredicateCalls();
3706 // Promote the xform function to be an explicit node if set.
3707 if (Record *Xform = OpNode->getTransformFn()) {
3708 OpNode->setTransformFn(nullptr);
3709 std::vector<TreePatternNodePtr> Children;
3710 Children.push_back(OpNode);
3711 OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
3712 OpNode->getNumTypes());
3715 ResultNodeOperands.push_back(std::move(OpNode));
3718 if (!InstInputs.empty())
3719 I.error("Input operand $" + InstInputs.begin()->first +
3720 " occurs in pattern but not in operands list!");
3722 TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
3723 I.getRecord(), std::move(ResultNodeOperands),
3724 GetNumNodeResults(I.getRecord(), *this));
3725 // Copy fully inferred output node types to instruction result pattern.
3726 for (unsigned i = 0; i != NumResults; ++i) {
3727 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3728 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3729 ResultPattern->setResultIndex(i, ResultIndices[i]);
3732 // FIXME: Assume only the first tree is the pattern. The others are clobber
3733 // nodes.
3734 TreePatternNodePtr Pattern = I.getTree(0);
3735 TreePatternNodePtr SrcPattern;
3736 if (Pattern->getOperator()->getName() == "set") {
3737 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3738 } else{
3739 // Not a set (store or something?)
3740 SrcPattern = Pattern;
3743 // Create and insert the instruction.
3744 // FIXME: InstImpResults should not be part of DAGInstruction.
3745 Record *R = I.getRecord();
3746 DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
3747 std::forward_as_tuple(Results, Operands, InstImpResults,
3748 SrcPattern, ResultPattern));
3750 LLVM_DEBUG(I.dump());
3753 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3754 /// any fragments involved. This populates the Instructions list with fully
3755 /// resolved instructions.
3756 void CodeGenDAGPatterns::ParseInstructions() {
3757 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3759 for (Record *Instr : Instrs) {
3760 ListInit *LI = nullptr;
3762 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3763 LI = Instr->getValueAsListInit("Pattern");
3765 // If there is no pattern, only collect minimal information about the
3766 // instruction for its operand list. We have to assume that there is one
3767 // result, as we have no detailed info. A pattern which references the
3768 // null_frag operator is as-if no pattern were specified. Normally this
3769 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3770 // null_frag.
3771 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3772 std::vector<Record*> Results;
3773 std::vector<Record*> Operands;
3775 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3777 if (InstInfo.Operands.size() != 0) {
3778 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3779 Results.push_back(InstInfo.Operands[j].Rec);
3781 // The rest are inputs.
3782 for (unsigned j = InstInfo.Operands.NumDefs,
3783 e = InstInfo.Operands.size(); j < e; ++j)
3784 Operands.push_back(InstInfo.Operands[j].Rec);
3787 // Create and insert the instruction.
3788 std::vector<Record*> ImpResults;
3789 Instructions.insert(std::make_pair(Instr,
3790 DAGInstruction(Results, Operands, ImpResults)));
3791 continue; // no pattern.
3794 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3795 parseInstructionPattern(CGI, LI, Instructions);
3798 // If we can, convert the instructions to be patterns that are matched!
3799 for (auto &Entry : Instructions) {
3800 Record *Instr = Entry.first;
3801 DAGInstruction &TheInst = Entry.second;
3802 TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
3803 TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
3805 if (SrcPattern && ResultPattern) {
3806 TreePattern Pattern(Instr, SrcPattern, true, *this);
3807 TreePattern Result(Instr, ResultPattern, false, *this);
3808 ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
3813 typedef std::pair<TreePatternNode *, unsigned> NameRecord;
3815 static void FindNames(TreePatternNode *P,
3816 std::map<std::string, NameRecord> &Names,
3817 TreePattern *PatternTop) {
3818 if (!P->getName().empty()) {
3819 NameRecord &Rec = Names[P->getName()];
3820 // If this is the first instance of the name, remember the node.
3821 if (Rec.second++ == 0)
3822 Rec.first = P;
3823 else if (Rec.first->getExtTypes() != P->getExtTypes())
3824 PatternTop->error("repetition of value: $" + P->getName() +
3825 " where different uses have different types!");
3828 if (!P->isLeaf()) {
3829 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3830 FindNames(P->getChild(i), Names, PatternTop);
3834 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
3835 std::vector<Predicate> Preds;
3836 for (Init *I : L->getValues()) {
3837 if (DefInit *Pred = dyn_cast<DefInit>(I))
3838 Preds.push_back(Pred->getDef());
3839 else
3840 llvm_unreachable("Non-def on the list");
3843 // Sort so that different orders get canonicalized to the same string.
3844 llvm::sort(Preds);
3845 return Preds;
3848 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3849 PatternToMatch &&PTM) {
3850 // Do some sanity checking on the pattern we're about to match.
3851 std::string Reason;
3852 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3853 PrintWarning(Pattern->getRecord()->getLoc(),
3854 Twine("Pattern can never match: ") + Reason);
3855 return;
3858 // If the source pattern's root is a complex pattern, that complex pattern
3859 // must specify the nodes it can potentially match.
3860 if (const ComplexPattern *CP =
3861 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3862 if (CP->getRootNodes().empty())
3863 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3864 " could match");
3867 // Find all of the named values in the input and output, ensure they have the
3868 // same type.
3869 std::map<std::string, NameRecord> SrcNames, DstNames;
3870 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3871 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3873 // Scan all of the named values in the destination pattern, rejecting them if
3874 // they don't exist in the input pattern.
3875 for (const auto &Entry : DstNames) {
3876 if (SrcNames[Entry.first].first == nullptr)
3877 Pattern->error("Pattern has input without matching name in output: $" +
3878 Entry.first);
3881 // Scan all of the named values in the source pattern, rejecting them if the
3882 // name isn't used in the dest, and isn't used to tie two values together.
3883 for (const auto &Entry : SrcNames)
3884 if (DstNames[Entry.first].first == nullptr &&
3885 SrcNames[Entry.first].second == 1)
3886 Pattern->error("Pattern has dead named input: $" + Entry.first);
3888 PatternsToMatch.push_back(PTM);
3891 void CodeGenDAGPatterns::InferInstructionFlags() {
3892 ArrayRef<const CodeGenInstruction*> Instructions =
3893 Target.getInstructionsByEnumValue();
3895 unsigned Errors = 0;
3897 // Try to infer flags from all patterns in PatternToMatch. These include
3898 // both the primary instruction patterns (which always come first) and
3899 // patterns defined outside the instruction.
3900 for (const PatternToMatch &PTM : ptms()) {
3901 // We can only infer from single-instruction patterns, otherwise we won't
3902 // know which instruction should get the flags.
3903 SmallVector<Record*, 8> PatInstrs;
3904 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3905 if (PatInstrs.size() != 1)
3906 continue;
3908 // Get the single instruction.
3909 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3911 // Only infer properties from the first pattern. We'll verify the others.
3912 if (InstInfo.InferredFrom)
3913 continue;
3915 InstAnalyzer PatInfo(*this);
3916 PatInfo.Analyze(PTM);
3917 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3920 if (Errors)
3921 PrintFatalError("pattern conflicts");
3923 // If requested by the target, guess any undefined properties.
3924 if (Target.guessInstructionProperties()) {
3925 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3926 CodeGenInstruction *InstInfo =
3927 const_cast<CodeGenInstruction *>(Instructions[i]);
3928 if (InstInfo->InferredFrom)
3929 continue;
3930 // The mayLoad and mayStore flags default to false.
3931 // Conservatively assume hasSideEffects if it wasn't explicit.
3932 if (InstInfo->hasSideEffects_Unset)
3933 InstInfo->hasSideEffects = true;
3935 return;
3938 // Complain about any flags that are still undefined.
3939 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3940 CodeGenInstruction *InstInfo =
3941 const_cast<CodeGenInstruction *>(Instructions[i]);
3942 if (InstInfo->InferredFrom)
3943 continue;
3944 if (InstInfo->hasSideEffects_Unset)
3945 PrintError(InstInfo->TheDef->getLoc(),
3946 "Can't infer hasSideEffects from patterns");
3947 if (InstInfo->mayStore_Unset)
3948 PrintError(InstInfo->TheDef->getLoc(),
3949 "Can't infer mayStore from patterns");
3950 if (InstInfo->mayLoad_Unset)
3951 PrintError(InstInfo->TheDef->getLoc(),
3952 "Can't infer mayLoad from patterns");
3957 /// Verify instruction flags against pattern node properties.
3958 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3959 unsigned Errors = 0;
3960 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3961 const PatternToMatch &PTM = *I;
3962 SmallVector<Record*, 8> Instrs;
3963 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3964 if (Instrs.empty())
3965 continue;
3967 // Count the number of instructions with each flag set.
3968 unsigned NumSideEffects = 0;
3969 unsigned NumStores = 0;
3970 unsigned NumLoads = 0;
3971 for (const Record *Instr : Instrs) {
3972 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3973 NumSideEffects += InstInfo.hasSideEffects;
3974 NumStores += InstInfo.mayStore;
3975 NumLoads += InstInfo.mayLoad;
3978 // Analyze the source pattern.
3979 InstAnalyzer PatInfo(*this);
3980 PatInfo.Analyze(PTM);
3982 // Collect error messages.
3983 SmallVector<std::string, 4> Msgs;
3985 // Check for missing flags in the output.
3986 // Permit extra flags for now at least.
3987 if (PatInfo.hasSideEffects && !NumSideEffects)
3988 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3990 // Don't verify store flags on instructions with side effects. At least for
3991 // intrinsics, side effects implies mayStore.
3992 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3993 Msgs.push_back("pattern may store, but mayStore isn't set");
3995 // Similarly, mayStore implies mayLoad on intrinsics.
3996 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3997 Msgs.push_back("pattern may load, but mayLoad isn't set");
3999 // Print error messages.
4000 if (Msgs.empty())
4001 continue;
4002 ++Errors;
4004 for (const std::string &Msg : Msgs)
4005 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
4006 (Instrs.size() == 1 ?
4007 "instruction" : "output instructions"));
4008 // Provide the location of the relevant instruction definitions.
4009 for (const Record *Instr : Instrs) {
4010 if (Instr != PTM.getSrcRecord())
4011 PrintError(Instr->getLoc(), "defined here");
4012 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
4013 if (InstInfo.InferredFrom &&
4014 InstInfo.InferredFrom != InstInfo.TheDef &&
4015 InstInfo.InferredFrom != PTM.getSrcRecord())
4016 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
4019 if (Errors)
4020 PrintFatalError("Errors in DAG patterns");
4023 /// Given a pattern result with an unresolved type, see if we can find one
4024 /// instruction with an unresolved result type. Force this result type to an
4025 /// arbitrary element if it's possible types to converge results.
4026 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
4027 if (N->isLeaf())
4028 return false;
4030 // Analyze children.
4031 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4032 if (ForceArbitraryInstResultType(N->getChild(i), TP))
4033 return true;
4035 if (!N->getOperator()->isSubClassOf("Instruction"))
4036 return false;
4038 // If this type is already concrete or completely unknown we can't do
4039 // anything.
4040 TypeInfer &TI = TP.getInfer();
4041 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
4042 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
4043 continue;
4045 // Otherwise, force its type to an arbitrary choice.
4046 if (TI.forceArbitrary(N->getExtType(i)))
4047 return true;
4050 return false;
4053 // Promote xform function to be an explicit node wherever set.
4054 static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
4055 if (Record *Xform = N->getTransformFn()) {
4056 N->setTransformFn(nullptr);
4057 std::vector<TreePatternNodePtr> Children;
4058 Children.push_back(PromoteXForms(N));
4059 return std::make_shared<TreePatternNode>(Xform, std::move(Children),
4060 N->getNumTypes());
4063 if (!N->isLeaf())
4064 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4065 TreePatternNodePtr Child = N->getChildShared(i);
4066 N->setChild(i, PromoteXForms(Child));
4068 return N;
4071 void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
4072 TreePattern &Pattern, TreePattern &Result,
4073 const std::vector<Record *> &InstImpResults) {
4075 // Inline pattern fragments and expand multiple alternatives.
4076 Pattern.InlinePatternFragments();
4077 Result.InlinePatternFragments();
4079 if (Result.getNumTrees() != 1)
4080 Result.error("Cannot use multi-alternative fragments in result pattern!");
4082 // Infer types.
4083 bool IterateInference;
4084 bool InferredAllPatternTypes, InferredAllResultTypes;
4085 do {
4086 // Infer as many types as possible. If we cannot infer all of them, we
4087 // can never do anything with this pattern: report it to the user.
4088 InferredAllPatternTypes =
4089 Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
4091 // Infer as many types as possible. If we cannot infer all of them, we
4092 // can never do anything with this pattern: report it to the user.
4093 InferredAllResultTypes =
4094 Result.InferAllTypes(&Pattern.getNamedNodesMap());
4096 IterateInference = false;
4098 // Apply the type of the result to the source pattern. This helps us
4099 // resolve cases where the input type is known to be a pointer type (which
4100 // is considered resolved), but the result knows it needs to be 32- or
4101 // 64-bits. Infer the other way for good measure.
4102 for (auto T : Pattern.getTrees())
4103 for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
4104 T->getNumTypes());
4105 i != e; ++i) {
4106 IterateInference |= T->UpdateNodeType(
4107 i, Result.getOnlyTree()->getExtType(i), Result);
4108 IterateInference |= Result.getOnlyTree()->UpdateNodeType(
4109 i, T->getExtType(i), Result);
4112 // If our iteration has converged and the input pattern's types are fully
4113 // resolved but the result pattern is not fully resolved, we may have a
4114 // situation where we have two instructions in the result pattern and
4115 // the instructions require a common register class, but don't care about
4116 // what actual MVT is used. This is actually a bug in our modelling:
4117 // output patterns should have register classes, not MVTs.
4119 // In any case, to handle this, we just go through and disambiguate some
4120 // arbitrary types to the result pattern's nodes.
4121 if (!IterateInference && InferredAllPatternTypes &&
4122 !InferredAllResultTypes)
4123 IterateInference =
4124 ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
4125 } while (IterateInference);
4127 // Verify that we inferred enough types that we can do something with the
4128 // pattern and result. If these fire the user has to add type casts.
4129 if (!InferredAllPatternTypes)
4130 Pattern.error("Could not infer all types in pattern!");
4131 if (!InferredAllResultTypes) {
4132 Pattern.dump();
4133 Result.error("Could not infer all types in pattern result!");
4136 // Promote xform function to be an explicit node wherever set.
4137 TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
4139 TreePattern Temp(Result.getRecord(), DstShared, false, *this);
4140 Temp.InferAllTypes();
4142 ListInit *Preds = TheDef->getValueAsListInit("Predicates");
4143 int Complexity = TheDef->getValueAsInt("AddedComplexity");
4145 if (PatternRewriter)
4146 PatternRewriter(&Pattern);
4148 // A pattern may end up with an "impossible" type, i.e. a situation
4149 // where all types have been eliminated for some node in this pattern.
4150 // This could occur for intrinsics that only make sense for a specific
4151 // value type, and use a specific register class. If, for some mode,
4152 // that register class does not accept that type, the type inference
4153 // will lead to a contradiction, which is not an error however, but
4154 // a sign that this pattern will simply never match.
4155 if (Temp.getOnlyTree()->hasPossibleType())
4156 for (auto T : Pattern.getTrees())
4157 if (T->hasPossibleType())
4158 AddPatternToMatch(&Pattern,
4159 PatternToMatch(TheDef, makePredList(Preds),
4160 T, Temp.getOnlyTree(),
4161 InstImpResults, Complexity,
4162 TheDef->getID()));
4165 void CodeGenDAGPatterns::ParsePatterns() {
4166 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
4168 for (Record *CurPattern : Patterns) {
4169 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
4171 // If the pattern references the null_frag, there's nothing to do.
4172 if (hasNullFragReference(Tree))
4173 continue;
4175 TreePattern Pattern(CurPattern, Tree, true, *this);
4177 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
4178 if (LI->empty()) continue; // no pattern.
4180 // Parse the instruction.
4181 TreePattern Result(CurPattern, LI, false, *this);
4183 if (Result.getNumTrees() != 1)
4184 Result.error("Cannot handle instructions producing instructions "
4185 "with temporaries yet!");
4187 // Validate that the input pattern is correct.
4188 std::map<std::string, TreePatternNodePtr> InstInputs;
4189 MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
4190 InstResults;
4191 std::vector<Record*> InstImpResults;
4192 for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
4193 FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
4194 InstResults, InstImpResults);
4196 ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
4200 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
4201 for (const TypeSetByHwMode &VTS : N->getExtTypes())
4202 for (const auto &I : VTS)
4203 Modes.insert(I.first);
4205 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4206 collectModes(Modes, N->getChild(i));
4209 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
4210 const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
4211 std::map<unsigned,std::vector<Predicate>> ModeChecks;
4212 std::vector<PatternToMatch> Copy = PatternsToMatch;
4213 PatternsToMatch.clear();
4215 auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
4216 TreePatternNodePtr NewSrc = P.SrcPattern->clone();
4217 TreePatternNodePtr NewDst = P.DstPattern->clone();
4218 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
4219 return;
4222 std::vector<Predicate> Preds = P.Predicates;
4223 const std::vector<Predicate> &MC = ModeChecks[Mode];
4224 Preds.insert(Preds.end(), MC.begin(), MC.end());
4225 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
4226 std::move(NewDst), P.getDstRegs(),
4227 P.getAddedComplexity(), Record::getNewUID(),
4228 Mode);
4231 for (PatternToMatch &P : Copy) {
4232 TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
4233 if (P.SrcPattern->hasProperTypeByHwMode())
4234 SrcP = P.SrcPattern;
4235 if (P.DstPattern->hasProperTypeByHwMode())
4236 DstP = P.DstPattern;
4237 if (!SrcP && !DstP) {
4238 PatternsToMatch.push_back(P);
4239 continue;
4242 std::set<unsigned> Modes;
4243 if (SrcP)
4244 collectModes(Modes, SrcP.get());
4245 if (DstP)
4246 collectModes(Modes, DstP.get());
4248 // The predicate for the default mode needs to be constructed for each
4249 // pattern separately.
4250 // Since not all modes must be present in each pattern, if a mode m is
4251 // absent, then there is no point in constructing a check for m. If such
4252 // a check was created, it would be equivalent to checking the default
4253 // mode, except not all modes' predicates would be a part of the checking
4254 // code. The subsequently generated check for the default mode would then
4255 // have the exact same patterns, but a different predicate code. To avoid
4256 // duplicated patterns with different predicate checks, construct the
4257 // default check as a negation of all predicates that are actually present
4258 // in the source/destination patterns.
4259 std::vector<Predicate> DefaultPred;
4261 for (unsigned M : Modes) {
4262 if (M == DefaultMode)
4263 continue;
4264 if (ModeChecks.find(M) != ModeChecks.end())
4265 continue;
4267 // Fill the map entry for this mode.
4268 const HwMode &HM = CGH.getMode(M);
4269 ModeChecks[M].emplace_back(Predicate(HM.Features, true));
4271 // Add negations of the HM's predicates to the default predicate.
4272 DefaultPred.emplace_back(Predicate(HM.Features, false));
4275 for (unsigned M : Modes) {
4276 if (M == DefaultMode)
4277 continue;
4278 AppendPattern(P, M);
4281 bool HasDefault = Modes.count(DefaultMode);
4282 if (HasDefault)
4283 AppendPattern(P, DefaultMode);
4287 /// Dependent variable map for CodeGenDAGPattern variant generation
4288 typedef StringMap<int> DepVarMap;
4290 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
4291 if (N->isLeaf()) {
4292 if (N->hasName() && isa<DefInit>(N->getLeafValue()))
4293 DepMap[N->getName()]++;
4294 } else {
4295 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
4296 FindDepVarsOf(N->getChild(i), DepMap);
4300 /// Find dependent variables within child patterns
4301 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
4302 DepVarMap depcounts;
4303 FindDepVarsOf(N, depcounts);
4304 for (const auto &Pair : depcounts) {
4305 if (Pair.getValue() > 1)
4306 DepVars.insert(Pair.getKey());
4310 #ifndef NDEBUG
4311 /// Dump the dependent variable set:
4312 static void DumpDepVars(MultipleUseVarSet &DepVars) {
4313 if (DepVars.empty()) {
4314 LLVM_DEBUG(errs() << "<empty set>");
4315 } else {
4316 LLVM_DEBUG(errs() << "[ ");
4317 for (const auto &DepVar : DepVars) {
4318 LLVM_DEBUG(errs() << DepVar.getKey() << " ");
4320 LLVM_DEBUG(errs() << "]");
4323 #endif
4326 /// CombineChildVariants - Given a bunch of permutations of each child of the
4327 /// 'operator' node, put them together in all possible ways.
4328 static void CombineChildVariants(
4329 TreePatternNodePtr Orig,
4330 const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
4331 std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
4332 const MultipleUseVarSet &DepVars) {
4333 // Make sure that each operand has at least one variant to choose from.
4334 for (const auto &Variants : ChildVariants)
4335 if (Variants.empty())
4336 return;
4338 // The end result is an all-pairs construction of the resultant pattern.
4339 std::vector<unsigned> Idxs;
4340 Idxs.resize(ChildVariants.size());
4341 bool NotDone;
4342 do {
4343 #ifndef NDEBUG
4344 LLVM_DEBUG(if (!Idxs.empty()) {
4345 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
4346 for (unsigned Idx : Idxs) {
4347 errs() << Idx << " ";
4349 errs() << "]\n";
4351 #endif
4352 // Create the variant and add it to the output list.
4353 std::vector<TreePatternNodePtr> NewChildren;
4354 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
4355 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
4356 TreePatternNodePtr R = std::make_shared<TreePatternNode>(
4357 Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
4359 // Copy over properties.
4360 R->setName(Orig->getName());
4361 R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
4362 R->setPredicateCalls(Orig->getPredicateCalls());
4363 R->setTransformFn(Orig->getTransformFn());
4364 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
4365 R->setType(i, Orig->getExtType(i));
4367 // If this pattern cannot match, do not include it as a variant.
4368 std::string ErrString;
4369 // Scan to see if this pattern has already been emitted. We can get
4370 // duplication due to things like commuting:
4371 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
4372 // which are the same pattern. Ignore the dups.
4373 if (R->canPatternMatch(ErrString, CDP) &&
4374 none_of(OutVariants, [&](TreePatternNodePtr Variant) {
4375 return R->isIsomorphicTo(Variant.get(), DepVars);
4377 OutVariants.push_back(R);
4379 // Increment indices to the next permutation by incrementing the
4380 // indices from last index backward, e.g., generate the sequence
4381 // [0, 0], [0, 1], [1, 0], [1, 1].
4382 int IdxsIdx;
4383 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
4384 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
4385 Idxs[IdxsIdx] = 0;
4386 else
4387 break;
4389 NotDone = (IdxsIdx >= 0);
4390 } while (NotDone);
4393 /// CombineChildVariants - A helper function for binary operators.
4395 static void CombineChildVariants(TreePatternNodePtr Orig,
4396 const std::vector<TreePatternNodePtr> &LHS,
4397 const std::vector<TreePatternNodePtr> &RHS,
4398 std::vector<TreePatternNodePtr> &OutVariants,
4399 CodeGenDAGPatterns &CDP,
4400 const MultipleUseVarSet &DepVars) {
4401 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4402 ChildVariants.push_back(LHS);
4403 ChildVariants.push_back(RHS);
4404 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
4407 static void
4408 GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
4409 std::vector<TreePatternNodePtr> &Children) {
4410 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
4411 Record *Operator = N->getOperator();
4413 // Only permit raw nodes.
4414 if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
4415 N->getTransformFn()) {
4416 Children.push_back(N);
4417 return;
4420 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
4421 Children.push_back(N->getChildShared(0));
4422 else
4423 GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
4425 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
4426 Children.push_back(N->getChildShared(1));
4427 else
4428 GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
4431 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
4432 /// the (potentially recursive) pattern by using algebraic laws.
4434 static void GenerateVariantsOf(TreePatternNodePtr N,
4435 std::vector<TreePatternNodePtr> &OutVariants,
4436 CodeGenDAGPatterns &CDP,
4437 const MultipleUseVarSet &DepVars) {
4438 // We cannot permute leaves or ComplexPattern uses.
4439 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
4440 OutVariants.push_back(N);
4441 return;
4444 // Look up interesting info about the node.
4445 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
4447 // If this node is associative, re-associate.
4448 if (NodeInfo.hasProperty(SDNPAssociative)) {
4449 // Re-associate by pulling together all of the linked operators
4450 std::vector<TreePatternNodePtr> MaximalChildren;
4451 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
4453 // Only handle child sizes of 3. Otherwise we'll end up trying too many
4454 // permutations.
4455 if (MaximalChildren.size() == 3) {
4456 // Find the variants of all of our maximal children.
4457 std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
4458 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
4459 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
4460 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
4462 // There are only two ways we can permute the tree:
4463 // (A op B) op C and A op (B op C)
4464 // Within these forms, we can also permute A/B/C.
4466 // Generate legal pair permutations of A/B/C.
4467 std::vector<TreePatternNodePtr> ABVariants;
4468 std::vector<TreePatternNodePtr> BAVariants;
4469 std::vector<TreePatternNodePtr> ACVariants;
4470 std::vector<TreePatternNodePtr> CAVariants;
4471 std::vector<TreePatternNodePtr> BCVariants;
4472 std::vector<TreePatternNodePtr> CBVariants;
4473 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
4474 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
4475 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
4476 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
4477 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
4478 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
4480 // Combine those into the result: (x op x) op x
4481 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
4482 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
4483 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
4484 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
4485 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
4486 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
4488 // Combine those into the result: x op (x op x)
4489 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
4490 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
4491 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
4492 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
4493 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
4494 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
4495 return;
4499 // Compute permutations of all children.
4500 std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
4501 ChildVariants.resize(N->getNumChildren());
4502 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
4503 GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
4505 // Build all permutations based on how the children were formed.
4506 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
4508 // If this node is commutative, consider the commuted order.
4509 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
4510 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
4511 assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
4512 "Commutative but doesn't have 2 children!");
4513 // Don't count children which are actually register references.
4514 unsigned NC = 0;
4515 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
4516 TreePatternNode *Child = N->getChild(i);
4517 if (Child->isLeaf())
4518 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
4519 Record *RR = DI->getDef();
4520 if (RR->isSubClassOf("Register"))
4521 continue;
4523 NC++;
4525 // Consider the commuted order.
4526 if (isCommIntrinsic) {
4527 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
4528 // operands are the commutative operands, and there might be more operands
4529 // after those.
4530 assert(NC >= 3 &&
4531 "Commutative intrinsic should have at least 3 children!");
4532 std::vector<std::vector<TreePatternNodePtr>> Variants;
4533 Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
4534 Variants.push_back(std::move(ChildVariants[2]));
4535 Variants.push_back(std::move(ChildVariants[1]));
4536 for (unsigned i = 3; i != NC; ++i)
4537 Variants.push_back(std::move(ChildVariants[i]));
4538 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4539 } else if (NC == N->getNumChildren()) {
4540 std::vector<std::vector<TreePatternNodePtr>> Variants;
4541 Variants.push_back(std::move(ChildVariants[1]));
4542 Variants.push_back(std::move(ChildVariants[0]));
4543 for (unsigned i = 2; i != NC; ++i)
4544 Variants.push_back(std::move(ChildVariants[i]));
4545 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
4551 // GenerateVariants - Generate variants. For example, commutative patterns can
4552 // match multiple ways. Add them to PatternsToMatch as well.
4553 void CodeGenDAGPatterns::GenerateVariants() {
4554 LLVM_DEBUG(errs() << "Generating instruction variants.\n");
4556 // Loop over all of the patterns we've collected, checking to see if we can
4557 // generate variants of the instruction, through the exploitation of
4558 // identities. This permits the target to provide aggressive matching without
4559 // the .td file having to contain tons of variants of instructions.
4561 // Note that this loop adds new patterns to the PatternsToMatch list, but we
4562 // intentionally do not reconsider these. Any variants of added patterns have
4563 // already been added.
4565 const unsigned NumOriginalPatterns = PatternsToMatch.size();
4566 BitVector MatchedPatterns(NumOriginalPatterns);
4567 std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
4568 BitVector(NumOriginalPatterns));
4570 typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
4571 DepsAndVariants;
4572 std::map<unsigned, DepsAndVariants> PatternsWithVariants;
4574 // Collect patterns with more than one variant.
4575 for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
4576 MultipleUseVarSet DepVars;
4577 std::vector<TreePatternNodePtr> Variants;
4578 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
4579 LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
4580 LLVM_DEBUG(DumpDepVars(DepVars));
4581 LLVM_DEBUG(errs() << "\n");
4582 GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
4583 *this, DepVars);
4585 assert(!Variants.empty() && "Must create at least original variant!");
4586 if (Variants.size() == 1) // No additional variants for this pattern.
4587 continue;
4589 LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
4590 PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
4592 PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
4594 // Cache matching predicates.
4595 if (MatchedPatterns[i])
4596 continue;
4598 const std::vector<Predicate> &Predicates =
4599 PatternsToMatch[i].getPredicates();
4601 BitVector &Matches = MatchedPredicates[i];
4602 MatchedPatterns.set(i);
4603 Matches.set(i);
4605 // Don't test patterns that have already been cached - it won't match.
4606 for (unsigned p = 0; p != NumOriginalPatterns; ++p)
4607 if (!MatchedPatterns[p])
4608 Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
4610 // Copy this to all the matching patterns.
4611 for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
4612 if (p != (int)i) {
4613 MatchedPatterns.set(p);
4614 MatchedPredicates[p] = Matches;
4618 for (auto it : PatternsWithVariants) {
4619 unsigned i = it.first;
4620 const MultipleUseVarSet &DepVars = it.second.first;
4621 const std::vector<TreePatternNodePtr> &Variants = it.second.second;
4623 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
4624 TreePatternNodePtr Variant = Variants[v];
4625 BitVector &Matches = MatchedPredicates[i];
4627 LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
4628 errs() << "\n");
4630 // Scan to see if an instruction or explicit pattern already matches this.
4631 bool AlreadyExists = false;
4632 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
4633 // Skip if the top level predicates do not match.
4634 if (!Matches[p])
4635 continue;
4636 // Check to see if this variant already exists.
4637 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
4638 DepVars)) {
4639 LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
4640 AlreadyExists = true;
4641 break;
4644 // If we already have it, ignore the variant.
4645 if (AlreadyExists) continue;
4647 // Otherwise, add it to the list of patterns we have.
4648 PatternsToMatch.push_back(PatternToMatch(
4649 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
4650 Variant, PatternsToMatch[i].getDstPatternShared(),
4651 PatternsToMatch[i].getDstRegs(),
4652 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
4653 MatchedPredicates.push_back(Matches);
4655 // Add a new match the same as this pattern.
4656 for (auto &P : MatchedPredicates)
4657 P.push_back(P[i]);
4660 LLVM_DEBUG(errs() << "\n");