1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/MachineValueType.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Type.h"
40 // When adding a NEW PPCISD node please add it to the correct position in
41 // the enum. The order of elements in this enum matters!
42 // Values that are added after this entry:
43 // STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44 // are considerd memory opcodes and are treated differently than entries
45 // that come before it. For example, ADD or MUL should be placed before
46 // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
48 enum NodeType
: unsigned {
49 // Start the numbering where the builtin ops and target ops leave off.
50 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
52 /// FSEL - Traditional three-operand fsel node.
56 /// FCFID - The FCFID instruction, taking an f64 operand and producing
57 /// and f64 value containing the FP representation of the integer that
58 /// was temporarily in the f64 operand.
61 /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62 /// unsigned integers and single-precision outputs.
63 FCFIDU
, FCFIDS
, FCFIDUS
,
65 /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66 /// operand, producing an f64 value containing the integer representation
70 /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71 /// unsigned integers with round toward zero.
74 /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
75 /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
78 /// SExtVElems, takes an input vector of a smaller type and sign
79 /// extends to an output vector of a larger type.
82 /// Reciprocal estimate instructions (unary FP ops).
85 // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
86 // three v4f32 operands and producing a v4f32 result.
89 /// VPERM - The PPC VPERM Instruction.
93 /// XXSPLT - The PPC VSX splat instructions
97 /// VECINSERT - The PPC vector insert instruction
101 /// XXREVERSE - The PPC VSX reverse instruction
105 /// VECSHL - The PPC vector shift left instruction
109 /// XXPERMDI - The PPC XXPERMDI instruction
113 /// The CMPB instruction (takes two operands of i32 or i64).
116 /// Hi/Lo - These represent the high and low 16-bit parts of a global
117 /// address respectively. These nodes have two operands, the first of
118 /// which must be a TargetGlobalAddress, and the second of which must be a
119 /// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
120 /// though these are usually folded into other nodes.
123 /// The following two target-specific nodes are used for calls through
124 /// function pointers in the 64-bit SVR4 ABI.
126 /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
127 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
128 /// compute an allocation on the stack.
131 /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
132 /// compute an offset from native SP to the address of the most recent
136 /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
137 /// at function entry, used for PIC code.
140 /// These nodes represent PPC shifts.
142 /// For scalar types, only the last `n + 1` bits of the shift amounts
143 /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
144 /// for exact behaviors.
146 /// For vector types, only the last n bits are used. See vsld.
149 /// The combination of sra[wd]i and addze used to implemented signed
150 /// integer division by a power of 2. The first operand is the dividend,
151 /// and the second is the constant shift amount (representing the
155 /// CALL - A direct function call.
156 /// CALL_NOP is a call with the special NOP which follows 64-bit
160 /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
161 /// MTCTR instruction.
164 /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
165 /// BCTRL instruction.
168 /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
169 /// instruction and the TOC reload required on SVR4 PPC64.
172 /// Return with a flag operand, matched by 'blr'
175 /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
176 /// This copies the bits corresponding to the specified CRREG into the
177 /// resultant GPR. Bits corresponding to other CR regs are undefined.
180 /// Direct move from a VSX register to a GPR
183 /// Direct move from a GPR to a VSX register (algebraic)
186 /// Direct move from a GPR to a VSX register (zero)
189 /// Extract a subvector from signed integer vector and convert to FP.
190 /// It is primarily used to convert a (widened) illegal integer vector
191 /// type to a legal floating point vector type.
192 /// For example v2i32 -> widened to v4i32 -> v2f64
195 /// Extract a subvector from unsigned integer vector and convert to FP.
196 /// As with SINT_VEC_TO_FP, used for converting illegal types.
199 // FIXME: Remove these once the ANDI glue bug is fixed:
200 /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
201 /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
202 /// implement truncation of i32 or i64 to i1.
203 ANDIo_1_EQ_BIT
, ANDIo_1_GT_BIT
,
205 // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
206 // target (returns (Lo, Hi)). It takes a chain operand.
209 // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
212 // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
215 /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
216 /// instructions. For lack of better number, we use the opcode number
217 /// encoding for the OPC field to identify the compare. For example, 838
221 /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
222 /// altivec VCMP*o instructions. For lack of better number, we use the
223 /// opcode number encoding for the OPC field to identify the compare. For
224 /// example, 838 is VCMPGTSH.
227 /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
228 /// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
229 /// condition register to branch on, OPC is the branch opcode to use (e.g.
230 /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
231 /// an optional input flag argument.
234 /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
238 /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
239 /// towards zero. Used only as part of the long double-to-int
240 /// conversion sequence.
243 /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
246 /// TC_RETURN - A tail call return.
248 /// operand #1 callee (register or absolute)
249 /// operand #2 stack adjustment
250 /// operand #3 optional in flag
253 /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
257 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
261 /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
262 /// local dynamic TLS on PPC32.
265 /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
266 /// TLS model, produces an ADDIS8 instruction that adds the GOT
267 /// base to sym\@got\@tprel\@ha.
270 /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
271 /// TLS model, produces a LD instruction with base register G8RReg
272 /// and offset sym\@got\@tprel\@l. This completes the addition that
273 /// finds the offset of "sym" relative to the thread pointer.
276 /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
277 /// model, produces an ADD instruction that adds the contents of
278 /// G8RReg to the thread pointer. Symbol contains a relocation
279 /// sym\@tls which is to be replaced by the thread pointer and
280 /// identifies to the linker that the instruction is part of a
284 /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
285 /// model, produces an ADDIS8 instruction that adds the GOT base
286 /// register to sym\@got\@tlsgd\@ha.
289 /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
290 /// model, produces an ADDI8 instruction that adds G8RReg to
291 /// sym\@got\@tlsgd\@l and stores the result in X3. Hidden by
292 /// ADDIS_TLSGD_L_ADDR until after register assignment.
295 /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
296 /// model, produces a call to __tls_get_addr(sym\@tlsgd). Hidden by
297 /// ADDIS_TLSGD_L_ADDR until after register assignment.
300 /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
301 /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
302 /// register assignment.
305 /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
306 /// model, produces an ADDIS8 instruction that adds the GOT base
307 /// register to sym\@got\@tlsld\@ha.
310 /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
311 /// model, produces an ADDI8 instruction that adds G8RReg to
312 /// sym\@got\@tlsld\@l and stores the result in X3. Hidden by
313 /// ADDIS_TLSLD_L_ADDR until after register assignment.
316 /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
317 /// model, produces a call to __tls_get_addr(sym\@tlsld). Hidden by
318 /// ADDIS_TLSLD_L_ADDR until after register assignment.
321 /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
322 /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
323 /// following register assignment.
326 /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
327 /// model, produces an ADDIS8 instruction that adds X3 to
331 /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
332 /// model, produces an ADDI8 instruction that adds G8RReg to
333 /// sym\@got\@dtprel\@l.
336 /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
337 /// during instruction selection to optimize a BUILD_VECTOR into
338 /// operations on splats. This is necessary to avoid losing these
339 /// optimizations due to constant folding.
342 /// CHAIN = SC CHAIN, Imm128 - System call. The 7-bit unsigned
343 /// operand identifies the operating system entry point.
346 /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
349 /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
350 /// history rolling buffer entry.
353 /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
356 /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
357 /// endian. Maps to an xxswapd instruction that corrects an lxvd2x
358 /// or stxvd2x instruction. The chain is necessary because the
359 /// sequence replaces a load and needs to provide the same number
363 /// An SDNode for swaps that are not associated with any loads/stores
364 /// and thereby have no chain.
367 /// QVFPERM = This corresponds to the QPX qvfperm instruction.
370 /// QVGPCI = This corresponds to the QPX qvgpci instruction.
373 /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
376 /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
379 /// QBFLT = Access the underlying QPX floating-point boolean
383 /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
384 /// byte-swapping store instruction. It byte-swaps the low "Type" bits of
385 /// the GPRC input, then stores it through Ptr. Type can be either i16 or
387 STBRX
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
389 /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
390 /// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
391 /// then puts it in the bottom bits of the GPRC. TYPE can be either i16
395 /// STFIWX - The STFIWX instruction. The first operand is an input token
396 /// chain, then an f64 value to store, then an address to store it to.
399 /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
400 /// load which sign-extends from a 32-bit integer value into the
401 /// destination 64-bit register.
404 /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
405 /// load which zero-extends from a 32-bit integer value into the
406 /// destination 64-bit register.
409 /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
410 /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
411 /// This can be used for converting loaded integers to floating point.
414 /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
415 /// chain, then an f64 value to store, then an address to store it to,
416 /// followed by a byte-width for the store.
419 /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
420 /// Maps directly to an lxvd2x instruction that will be followed by
424 /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
425 /// Maps directly to an stxvd2x instruction that will be preceded by
429 /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
430 /// The 4xf32 load used for v4i1 constants.
433 /// GPRC = TOC_ENTRY GA, TOC
434 /// Loads the entry for GA from the TOC, where the TOC base is given by
435 /// the last operand.
439 } // end namespace PPCISD
441 /// Define some predicates that are used for node matching.
444 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
445 /// VPKUHUM instruction.
446 bool isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
449 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
450 /// VPKUWUM instruction.
451 bool isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
454 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
455 /// VPKUDUM instruction.
456 bool isVPKUDUMShuffleMask(ShuffleVectorSDNode
*N
, unsigned ShuffleKind
,
459 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
460 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
461 bool isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
462 unsigned ShuffleKind
, SelectionDAG
&DAG
);
464 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
465 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
466 bool isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
467 unsigned ShuffleKind
, SelectionDAG
&DAG
);
469 /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
470 /// a VMRGEW or VMRGOW instruction
471 bool isVMRGEOShuffleMask(ShuffleVectorSDNode
*N
, bool CheckEven
,
472 unsigned ShuffleKind
, SelectionDAG
&DAG
);
473 /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
474 /// for a XXSLDWI instruction.
475 bool isXXSLDWIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
476 bool &Swap
, bool IsLE
);
478 /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
479 /// for a XXBRH instruction.
480 bool isXXBRHShuffleMask(ShuffleVectorSDNode
*N
);
482 /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
483 /// for a XXBRW instruction.
484 bool isXXBRWShuffleMask(ShuffleVectorSDNode
*N
);
486 /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
487 /// for a XXBRD instruction.
488 bool isXXBRDShuffleMask(ShuffleVectorSDNode
*N
);
490 /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
491 /// for a XXBRQ instruction.
492 bool isXXBRQShuffleMask(ShuffleVectorSDNode
*N
);
494 /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
495 /// for a XXPERMDI instruction.
496 bool isXXPERMDIShuffleMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
497 bool &Swap
, bool IsLE
);
499 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
500 /// shift amount, otherwise return -1.
501 int isVSLDOIShuffleMask(SDNode
*N
, unsigned ShuffleKind
,
504 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
505 /// specifies a splat of a single element that is suitable for input to
506 /// VSPLTB/VSPLTH/VSPLTW.
507 bool isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
);
509 /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
510 /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
511 /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
512 /// vector into the other. This function will also set a couple of
513 /// output parameters for how much the source vector needs to be shifted and
514 /// what byte number needs to be specified for the instruction to put the
515 /// element in the desired location of the target vector.
516 bool isXXINSERTWMask(ShuffleVectorSDNode
*N
, unsigned &ShiftElts
,
517 unsigned &InsertAtByte
, bool &Swap
, bool IsLE
);
519 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
520 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
521 unsigned getVSPLTImmediate(SDNode
*N
, unsigned EltSize
, SelectionDAG
&DAG
);
523 /// get_VSPLTI_elt - If this is a build_vector of constants which can be
524 /// formed by using a vspltis[bhw] instruction of the specified element
525 /// size, return the constant being splatted. The ByteSize field indicates
526 /// the number of bytes of each element [124] -> [bhw].
527 SDValue
get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
);
529 /// If this is a qvaligni shuffle mask, return the shift
530 /// amount, otherwise return -1.
531 int isQVALIGNIShuffleMask(SDNode
*N
);
533 } // end namespace PPC
535 class PPCTargetLowering
: public TargetLowering
{
536 const PPCSubtarget
&Subtarget
;
539 explicit PPCTargetLowering(const PPCTargetMachine
&TM
,
540 const PPCSubtarget
&STI
);
542 /// getTargetNodeName() - This method returns the name of a target specific
544 const char *getTargetNodeName(unsigned Opcode
) const override
;
546 /// getPreferredVectorAction - The code we generate when vector types are
547 /// legalized by promoting the integer element type is often much worse
548 /// than code we generate if we widen the type for applicable vector types.
549 /// The issue with promoting is that the vector is scalaraized, individual
550 /// elements promoted and then the vector is rebuilt. So say we load a pair
551 /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
552 /// loads, moves back into VSR's (or memory ops if we don't have moves) and
553 /// then the VPERM for the shuffle. All in all a very slow sequence.
554 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT
)
556 if (VT
.getScalarSizeInBits() % 8 == 0)
557 return TypeWidenVector
;
558 return TargetLoweringBase::getPreferredVectorAction(VT
);
561 bool useSoftFloat() const override
;
563 MVT
getScalarShiftAmountTy(const DataLayout
&, EVT
) const override
{
567 bool isCheapToSpeculateCttz() const override
{
571 bool isCheapToSpeculateCtlz() const override
{
575 bool isCtlzFast() const override
{
579 bool hasAndNotCompare(SDValue
) const override
{
583 bool convertSetCCLogicToBitwiseLogic(EVT VT
) const override
{
584 return VT
.isScalarInteger();
587 bool supportSplitCSR(MachineFunction
*MF
) const override
{
589 MF
->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS
&&
590 MF
->getFunction()->hasFnAttribute(Attribute::NoUnwind
);
593 void initializeSplitCSR(MachineBasicBlock
*Entry
) const override
;
595 void insertCopiesSplitCSR(
596 MachineBasicBlock
*Entry
,
597 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const override
;
599 /// getSetCCResultType - Return the ISD::SETCC ValueType
600 EVT
getSetCCResultType(const DataLayout
&DL
, LLVMContext
&Context
,
601 EVT VT
) const override
;
603 /// Return true if target always beneficiates from combining into FMA for a
604 /// given value type. This must typically return false on targets where FMA
605 /// takes more cycles to execute than FADD.
606 bool enableAggressiveFMAFusion(EVT VT
) const override
;
608 /// getPreIndexedAddressParts - returns true by value, base pointer and
609 /// offset pointer and addressing mode by reference if the node's address
610 /// can be legally represented as pre-indexed load / store address.
611 bool getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
613 ISD::MemIndexedMode
&AM
,
614 SelectionDAG
&DAG
) const override
;
616 /// SelectAddressRegReg - Given the specified addressed, check to see if it
617 /// can be represented as an indexed [r+r] operation. Returns false if it
618 /// can be more efficiently represented with [r+imm].
619 bool SelectAddressRegReg(SDValue N
, SDValue
&Base
, SDValue
&Index
,
620 SelectionDAG
&DAG
) const;
622 /// SelectAddressRegImm - Returns true if the address N can be represented
623 /// by a base register plus a signed 16-bit displacement [r+imm], and if it
624 /// is not better represented as reg+reg. If Aligned is true, only accept
625 /// displacements suitable for STD and friends, i.e. multiples of 4.
626 bool SelectAddressRegImm(SDValue N
, SDValue
&Disp
, SDValue
&Base
,
627 SelectionDAG
&DAG
, unsigned Alignment
) const;
629 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
630 /// represented as an indexed [r+r] operation.
631 bool SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
, SDValue
&Index
,
632 SelectionDAG
&DAG
) const;
634 Sched::Preference
getSchedulingPreference(SDNode
*N
) const override
;
636 /// LowerOperation - Provide custom lowering hooks for some operations.
638 SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const override
;
640 /// ReplaceNodeResults - Replace the results of node with an illegal result
641 /// type with new values built out of custom code.
643 void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
644 SelectionDAG
&DAG
) const override
;
646 SDValue
expandVSXLoadForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
647 SDValue
expandVSXStoreForLE(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
649 SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const override
;
651 SDValue
BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
, SelectionDAG
&DAG
,
652 std::vector
<SDNode
*> *Created
) const override
;
654 unsigned getRegisterByName(const char* RegName
, EVT VT
,
655 SelectionDAG
&DAG
) const override
;
657 void computeKnownBitsForTargetNode(const SDValue Op
,
659 const APInt
&DemandedElts
,
660 const SelectionDAG
&DAG
,
661 unsigned Depth
= 0) const override
;
663 unsigned getPrefLoopAlignment(MachineLoop
*ML
) const override
;
665 bool shouldInsertFencesForAtomic(const Instruction
*I
) const override
{
669 Instruction
*emitLeadingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
670 AtomicOrdering Ord
) const override
;
671 Instruction
*emitTrailingFence(IRBuilder
<> &Builder
, Instruction
*Inst
,
672 AtomicOrdering Ord
) const override
;
675 EmitInstrWithCustomInserter(MachineInstr
&MI
,
676 MachineBasicBlock
*MBB
) const override
;
677 MachineBasicBlock
*EmitAtomicBinary(MachineInstr
&MI
,
678 MachineBasicBlock
*MBB
,
681 unsigned CmpOpcode
= 0,
682 unsigned CmpPred
= 0) const;
683 MachineBasicBlock
*EmitPartwordAtomicBinary(MachineInstr
&MI
,
684 MachineBasicBlock
*MBB
,
687 unsigned CmpOpcode
= 0,
688 unsigned CmpPred
= 0) const;
690 MachineBasicBlock
*emitEHSjLjSetJmp(MachineInstr
&MI
,
691 MachineBasicBlock
*MBB
) const;
693 MachineBasicBlock
*emitEHSjLjLongJmp(MachineInstr
&MI
,
694 MachineBasicBlock
*MBB
) const;
696 ConstraintType
getConstraintType(StringRef Constraint
) const override
;
698 /// Examine constraint string and operand type and determine a weight value.
699 /// The operand object must already have been set up with the operand type.
700 ConstraintWeight
getSingleConstraintMatchWeight(
701 AsmOperandInfo
&info
, const char *constraint
) const override
;
703 std::pair
<unsigned, const TargetRegisterClass
*>
704 getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
705 StringRef Constraint
, MVT VT
) const override
;
707 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
708 /// function arguments in the caller parameter area. This is the actual
709 /// alignment, not its logarithm.
710 unsigned getByValTypeAlignment(Type
*Ty
,
711 const DataLayout
&DL
) const override
;
713 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
714 /// vector. If it is invalid, don't add anything to Ops.
715 void LowerAsmOperandForConstraint(SDValue Op
,
716 std::string
&Constraint
,
717 std::vector
<SDValue
> &Ops
,
718 SelectionDAG
&DAG
) const override
;
721 getInlineAsmMemConstraint(StringRef ConstraintCode
) const override
{
722 if (ConstraintCode
== "es")
723 return InlineAsm::Constraint_es
;
724 else if (ConstraintCode
== "o")
725 return InlineAsm::Constraint_o
;
726 else if (ConstraintCode
== "Q")
727 return InlineAsm::Constraint_Q
;
728 else if (ConstraintCode
== "Z")
729 return InlineAsm::Constraint_Z
;
730 else if (ConstraintCode
== "Zy")
731 return InlineAsm::Constraint_Zy
;
732 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode
);
735 /// isLegalAddressingMode - Return true if the addressing mode represented
736 /// by AM is legal for this target, for a load/store of the specified type.
737 bool isLegalAddressingMode(const DataLayout
&DL
, const AddrMode
&AM
,
738 Type
*Ty
, unsigned AS
,
739 Instruction
*I
= nullptr) const override
;
741 /// isLegalICmpImmediate - Return true if the specified immediate is legal
742 /// icmp immediate, that is the target has icmp instructions which can
743 /// compare a register against the immediate without having to materialize
744 /// the immediate into a register.
745 bool isLegalICmpImmediate(int64_t Imm
) const override
;
747 /// isLegalAddImmediate - Return true if the specified immediate is legal
748 /// add immediate, that is the target has add instructions which can
749 /// add a register and the immediate without having to materialize
750 /// the immediate into a register.
751 bool isLegalAddImmediate(int64_t Imm
) const override
;
753 /// isTruncateFree - Return true if it's free to truncate a value of
754 /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
755 /// register X1 to i32 by referencing its sub-register R1.
756 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) const override
;
757 bool isTruncateFree(EVT VT1
, EVT VT2
) const override
;
759 bool isZExtFree(SDValue Val
, EVT VT2
) const override
;
761 bool isFPExtFree(EVT DestVT
, EVT SrcVT
) const override
;
763 /// \brief Returns true if it is beneficial to convert a load of a constant
764 /// to just the constant itself.
765 bool shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
766 Type
*Ty
) const override
;
768 bool convertSelectOfConstantsToMath(EVT VT
) const override
{
772 bool isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const override
;
774 bool getTgtMemIntrinsic(IntrinsicInfo
&Info
,
777 unsigned Intrinsic
) const override
;
779 /// getOptimalMemOpType - Returns the target specific optimal type for load
780 /// and store operations as a result of memset, memcpy, and memmove
781 /// lowering. If DstAlign is zero that means it's safe to destination
782 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
783 /// means there isn't a need to check it against alignment requirement,
784 /// probably because the source does not need to be loaded. If 'IsMemset' is
785 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
786 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
787 /// source is constant so it does not need to be loaded.
788 /// It returns EVT::Other if the type should be determined using generic
789 /// target-independent logic.
791 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
792 bool IsMemset
, bool ZeroMemset
, bool MemcpyStrSrc
,
793 MachineFunction
&MF
) const override
;
795 /// Is unaligned memory access allowed for the given type, and is it fast
796 /// relative to software emulation.
797 bool allowsMisalignedMemoryAccesses(EVT VT
,
800 bool *Fast
= nullptr) const override
;
802 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
803 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
804 /// expanded to FMAs when this method returns true, otherwise fmuladd is
805 /// expanded to fmul + fadd.
806 bool isFMAFasterThanFMulAndFAdd(EVT VT
) const override
;
808 const MCPhysReg
*getScratchRegisters(CallingConv::ID CC
) const override
;
810 // Should we expand the build vector with shuffles?
812 shouldExpandBuildVectorWithShuffles(EVT VT
,
813 unsigned DefinedValues
) const override
;
815 /// createFastISel - This method returns a target-specific FastISel object,
816 /// or null if the target does not support "fast" instruction selection.
817 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
818 const TargetLibraryInfo
*LibInfo
) const override
;
820 /// \brief Returns true if an argument of type Ty needs to be passed in a
821 /// contiguous block of registers in calling convention CallConv.
822 bool functionArgumentNeedsConsecutiveRegisters(
823 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const override
{
824 // We support any array type as "consecutive" block in the parameter
825 // save area. The element type defines the alignment requirement and
826 // whether the argument should go in GPRs, FPRs, or VRs if available.
828 // Note that clang uses this capability both to implement the ELFv2
829 // homogeneous float/vector aggregate ABI, and to avoid having to use
830 // "byval" when passing aggregates that might fully fit in registers.
831 return Ty
->isArrayTy();
834 /// If a physical register, this returns the register that receives the
835 /// exception address on entry to an EH pad.
837 getExceptionPointerRegister(const Constant
*PersonalityFn
) const override
;
839 /// If a physical register, this returns the register that receives the
840 /// exception typeid on entry to a landing pad.
842 getExceptionSelectorRegister(const Constant
*PersonalityFn
) const override
;
844 /// Override to support customized stack guard loading.
845 bool useLoadStackGuardNode() const override
;
846 void insertSSPDeclarations(Module
&M
) const override
;
848 bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const override
;
850 unsigned getJumpTableEncoding() const override
;
851 bool isJumpTableRelative() const override
;
852 SDValue
getPICJumpTableRelocBase(SDValue Table
,
853 SelectionDAG
&DAG
) const override
;
854 const MCExpr
*getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
856 MCContext
&Ctx
) const override
;
859 struct ReuseLoadInfo
{
863 MachinePointerInfo MPI
;
864 bool IsDereferenceable
= false;
865 bool IsInvariant
= false;
866 unsigned Alignment
= 0;
868 const MDNode
*Ranges
= nullptr;
870 ReuseLoadInfo() = default;
872 MachineMemOperand::Flags
MMOFlags() const {
873 MachineMemOperand::Flags F
= MachineMemOperand::MONone
;
874 if (IsDereferenceable
)
875 F
|= MachineMemOperand::MODereferenceable
;
877 F
|= MachineMemOperand::MOInvariant
;
882 bool canReuseLoadAddress(SDValue Op
, EVT MemVT
, ReuseLoadInfo
&RLI
,
884 ISD::LoadExtType ET
= ISD::NON_EXTLOAD
) const;
885 void spliceIntoChain(SDValue ResChain
, SDValue NewResChain
,
886 SelectionDAG
&DAG
) const;
888 void LowerFP_TO_INTForReuse(SDValue Op
, ReuseLoadInfo
&RLI
,
889 SelectionDAG
&DAG
, const SDLoc
&dl
) const;
890 SDValue
LowerFP_TO_INTDirectMove(SDValue Op
, SelectionDAG
&DAG
,
891 const SDLoc
&dl
) const;
893 bool directMoveIsProfitable(const SDValue
&Op
) const;
894 SDValue
LowerINT_TO_FPDirectMove(SDValue Op
, SelectionDAG
&DAG
,
895 const SDLoc
&dl
) const;
897 SDValue
getFramePointerFrameIndex(SelectionDAG
& DAG
) const;
898 SDValue
getReturnAddrFrameIndex(SelectionDAG
& DAG
) const;
901 IsEligibleForTailCallOptimization(SDValue Callee
,
902 CallingConv::ID CalleeCC
,
904 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
905 SelectionDAG
& DAG
) const;
908 IsEligibleForTailCallOptimization_64SVR4(
910 CallingConv::ID CalleeCC
,
911 ImmutableCallSite CS
,
913 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
914 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
915 SelectionDAG
& DAG
) const;
917 SDValue
EmitTailCallLoadFPAndRetAddr(SelectionDAG
&DAG
, int SPDiff
,
918 SDValue Chain
, SDValue
&LROpOut
,
920 const SDLoc
&dl
) const;
922 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
923 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
924 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
925 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
926 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
927 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
928 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
929 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
930 SDValue
LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
931 SDValue
LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
932 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
933 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
934 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
935 SDValue
LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
) const;
936 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
937 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
938 SDValue
LowerEH_DWARF_CFA(SDValue Op
, SelectionDAG
&DAG
) const;
939 SDValue
LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const;
940 SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const;
941 SDValue
LowerTRUNCATE(SDValue Op
, SelectionDAG
&DAG
) const;
942 SDValue
LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const;
943 SDValue
LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
944 const SDLoc
&dl
) const;
945 SDValue
LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
946 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
947 SDValue
LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
948 SDValue
LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
949 SDValue
LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const;
950 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
951 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
952 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
953 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
954 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
955 SDValue
LowerINTRINSIC_VOID(SDValue Op
, SelectionDAG
&DAG
) const;
956 SDValue
LowerREM(SDValue Op
, SelectionDAG
&DAG
) const;
957 SDValue
LowerBSWAP(SDValue Op
, SelectionDAG
&DAG
) const;
958 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
959 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op
, SelectionDAG
&DAG
) const;
960 SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const;
962 SDValue
LowerVectorLoad(SDValue Op
, SelectionDAG
&DAG
) const;
963 SDValue
LowerVectorStore(SDValue Op
, SelectionDAG
&DAG
) const;
965 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
966 CallingConv::ID CallConv
, bool isVarArg
,
967 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
968 const SDLoc
&dl
, SelectionDAG
&DAG
,
969 SmallVectorImpl
<SDValue
> &InVals
) const;
970 SDValue
FinishCall(CallingConv::ID CallConv
, const SDLoc
&dl
,
971 bool isTailCall
, bool isVarArg
, bool isPatchPoint
,
972 bool hasNest
, SelectionDAG
&DAG
,
973 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
974 SDValue InFlag
, SDValue Chain
, SDValue CallSeqStart
,
975 SDValue
&Callee
, int SPDiff
, unsigned NumBytes
,
976 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
977 SmallVectorImpl
<SDValue
> &InVals
,
978 ImmutableCallSite CS
) const;
981 LowerFormalArguments(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
982 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
983 const SDLoc
&dl
, SelectionDAG
&DAG
,
984 SmallVectorImpl
<SDValue
> &InVals
) const override
;
986 SDValue
LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
987 SmallVectorImpl
<SDValue
> &InVals
) const override
;
989 bool CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
991 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
992 LLVMContext
&Context
) const override
;
994 SDValue
LowerReturn(SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
995 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
996 const SmallVectorImpl
<SDValue
> &OutVals
,
997 const SDLoc
&dl
, SelectionDAG
&DAG
) const override
;
999 SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags
, EVT ObjectVT
,
1000 SelectionDAG
&DAG
, SDValue ArgVal
,
1001 const SDLoc
&dl
) const;
1003 SDValue
LowerFormalArguments_Darwin(
1004 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1005 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1006 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1007 SDValue
LowerFormalArguments_64SVR4(
1008 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1009 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1010 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1011 SDValue
LowerFormalArguments_32SVR4(
1012 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1013 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1014 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const;
1016 SDValue
createMemcpyOutsideCallSeq(SDValue Arg
, SDValue PtrOff
,
1017 SDValue CallSeqStart
,
1018 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
1019 const SDLoc
&dl
) const;
1021 SDValue
LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
1022 CallingConv::ID CallConv
, bool isVarArg
,
1023 bool isTailCall
, bool isPatchPoint
,
1024 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1025 const SmallVectorImpl
<SDValue
> &OutVals
,
1026 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1027 const SDLoc
&dl
, SelectionDAG
&DAG
,
1028 SmallVectorImpl
<SDValue
> &InVals
,
1029 ImmutableCallSite CS
) const;
1030 SDValue
LowerCall_64SVR4(SDValue Chain
, SDValue Callee
,
1031 CallingConv::ID CallConv
, bool isVarArg
,
1032 bool isTailCall
, bool isPatchPoint
,
1033 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1034 const SmallVectorImpl
<SDValue
> &OutVals
,
1035 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1036 const SDLoc
&dl
, SelectionDAG
&DAG
,
1037 SmallVectorImpl
<SDValue
> &InVals
,
1038 ImmutableCallSite CS
) const;
1039 SDValue
LowerCall_32SVR4(SDValue Chain
, SDValue Callee
,
1040 CallingConv::ID CallConv
, bool isVarArg
,
1041 bool isTailCall
, bool isPatchPoint
,
1042 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1043 const SmallVectorImpl
<SDValue
> &OutVals
,
1044 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
1045 const SDLoc
&dl
, SelectionDAG
&DAG
,
1046 SmallVectorImpl
<SDValue
> &InVals
,
1047 ImmutableCallSite CS
) const;
1049 SDValue
lowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1050 SDValue
lowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const;
1052 SDValue
DAGCombineExtBoolTrunc(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1053 SDValue
DAGCombineBuildVector(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1054 SDValue
DAGCombineTruncBoolExt(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1055 SDValue
combineFPToIntToFP(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1056 SDValue
combineSHL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1057 SDValue
combineSRA(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1058 SDValue
combineSRL(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1060 /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1061 /// SETCC with integer subtraction when (1) there is a legal way of doing it
1062 /// (2) keeping the result of comparison in GPR has performance benefit.
1063 SDValue
ConvertSETCCToSubtract(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
1065 SDValue
getSqrtEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1066 int &RefinementSteps
, bool &UseOneConstNR
,
1067 bool Reciprocal
) const override
;
1068 SDValue
getRecipEstimate(SDValue Operand
, SelectionDAG
&DAG
, int Enabled
,
1069 int &RefinementSteps
) const override
;
1070 unsigned combineRepeatedFPDivisors() const override
;
1072 CCAssignFn
*useFastISelCCs(unsigned Flag
) const;
1075 combineElementTruncationToVectorTruncation(SDNode
*N
,
1076 DAGCombinerInfo
&DCI
) const;
1078 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1079 /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1080 /// essentially any shuffle of v8i16 vectors that just inserts one element
1081 /// from one vector into the other.
1082 SDValue
lowerToVINSERTH(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1084 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1085 /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1086 /// essentially v16i8 vector version of VINSERTH.
1087 SDValue
lowerToVINSERTB(ShuffleVectorSDNode
*N
, SelectionDAG
&DAG
) const;
1089 // Return whether the call instruction can potentially be optimized to a
1090 // tail call. This will cause the optimizers to attempt to move, or
1091 // duplicate return instructions to help enable tail call optimizations.
1092 bool mayBeEmittedAsTailCall(const CallInst
*CI
) const override
;
1093 }; // end class PPCTargetLowering
1097 FastISel
*createFastISel(FunctionLoweringInfo
&FuncInfo
,
1098 const TargetLibraryInfo
*LibInfo
);
1100 } // end namespace PPC
1102 bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo
, MVT
&ValVT
, MVT
&LocVT
,
1103 CCValAssign::LocInfo
&LocInfo
,
1104 ISD::ArgFlagsTy
&ArgFlags
,
1107 bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1109 CCValAssign::LocInfo
&LocInfo
,
1110 ISD::ArgFlagsTy
&ArgFlags
,
1114 CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo
, MVT
&ValVT
,
1116 CCValAssign::LocInfo
&LocInfo
,
1117 ISD::ArgFlagsTy
&ArgFlags
,
1120 bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1122 CCValAssign::LocInfo
&LocInfo
,
1123 ISD::ArgFlagsTy
&ArgFlags
,
1126 bool isIntS16Immediate(SDNode
*N
, int16_t &Imm
);
1127 bool isIntS16Immediate(SDValue Op
, int16_t &Imm
);
1129 } // end namespace llvm
1131 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H