1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the PowerPC implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCInstrInfo.h"
15 #include "MCTargetDesc/PPCPredicates.h"
17 #include "PPCHazardRecognizers.h"
18 #include "PPCInstrBuilder.h"
19 #include "PPCMachineFunctionInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCInst.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Support/raw_ostream.h"
43 #define DEBUG_TYPE "ppc-instr-info"
45 #define GET_INSTRMAP_INFO
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "PPCGenInstrInfo.inc"
49 STATISTIC(NumStoreSPILLVSRRCAsVec
,
50 "Number of spillvsrrc spilled to stack as vec");
51 STATISTIC(NumStoreSPILLVSRRCAsGpr
,
52 "Number of spillvsrrc spilled to stack as gpr");
53 STATISTIC(NumGPRtoVSRSpill
, "Number of gpr spills to spillvsrrc");
54 STATISTIC(CmpIselsConverted
,
55 "Number of ISELs that depend on comparison of constants converted");
56 STATISTIC(MissedConvertibleImmediateInstrs
,
57 "Number of compare-immediate instructions fed by constants");
60 opt
<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden
,
61 cl::desc("Disable analysis for CTR loops"));
63 static cl::opt
<bool> DisableCmpOpt("disable-ppc-cmp-opt",
64 cl::desc("Disable compare instruction optimization"), cl::Hidden
);
66 static cl::opt
<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
67 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
71 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden
,
72 cl::desc("Use the old (incorrect) instruction latency calculation"));
74 // Pin the vtable to this file.
75 void PPCInstrInfo::anchor() {}
77 PPCInstrInfo::PPCInstrInfo(PPCSubtarget
&STI
)
78 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN
, PPC::ADJCALLSTACKUP
,
79 /* CatchRetOpcode */ -1,
80 STI
.isPPC64() ? PPC::BLR8
: PPC::BLR
),
81 Subtarget(STI
), RI(STI
.getTargetMachine()) {}
83 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
84 /// this target when scheduling the DAG.
85 ScheduleHazardRecognizer
*
86 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
87 const ScheduleDAG
*DAG
) const {
89 static_cast<const PPCSubtarget
*>(STI
)->getDarwinDirective();
90 if (Directive
== PPC::DIR_440
|| Directive
== PPC::DIR_A2
||
91 Directive
== PPC::DIR_E500mc
|| Directive
== PPC::DIR_E5500
) {
92 const InstrItineraryData
*II
=
93 static_cast<const PPCSubtarget
*>(STI
)->getInstrItineraryData();
94 return new ScoreboardHazardRecognizer(II
, DAG
);
97 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
100 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
101 /// to use for this target when scheduling the DAG.
102 ScheduleHazardRecognizer
*
103 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
104 const ScheduleDAG
*DAG
) const {
106 DAG
->MF
.getSubtarget
<PPCSubtarget
>().getDarwinDirective();
108 // FIXME: Leaving this as-is until we have POWER9 scheduling info
109 if (Directive
== PPC::DIR_PWR7
|| Directive
== PPC::DIR_PWR8
)
110 return new PPCDispatchGroupSBHazardRecognizer(II
, DAG
);
112 // Most subtargets use a PPC970 recognizer.
113 if (Directive
!= PPC::DIR_440
&& Directive
!= PPC::DIR_A2
&&
114 Directive
!= PPC::DIR_E500mc
&& Directive
!= PPC::DIR_E5500
) {
115 assert(DAG
->TII
&& "No InstrInfo?");
117 return new PPCHazardRecognizer970(*DAG
);
120 return new ScoreboardHazardRecognizer(II
, DAG
);
123 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
124 const MachineInstr
&MI
,
125 unsigned *PredCost
) const {
126 if (!ItinData
|| UseOldLatencyCalc
)
127 return PPCGenInstrInfo::getInstrLatency(ItinData
, MI
, PredCost
);
129 // The default implementation of getInstrLatency calls getStageLatency, but
130 // getStageLatency does not do the right thing for us. While we have
131 // itinerary, most cores are fully pipelined, and so the itineraries only
132 // express the first part of the pipeline, not every stage. Instead, we need
133 // to use the listed output operand cycle number (using operand 0 here, which
136 unsigned Latency
= 1;
137 unsigned DefClass
= MI
.getDesc().getSchedClass();
138 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
139 const MachineOperand
&MO
= MI
.getOperand(i
);
140 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
143 int Cycle
= ItinData
->getOperandCycle(DefClass
, i
);
147 Latency
= std::max(Latency
, (unsigned) Cycle
);
153 int PPCInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
154 const MachineInstr
&DefMI
, unsigned DefIdx
,
155 const MachineInstr
&UseMI
,
156 unsigned UseIdx
) const {
157 int Latency
= PPCGenInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
160 if (!DefMI
.getParent())
163 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
164 unsigned Reg
= DefMO
.getReg();
167 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
168 const MachineRegisterInfo
*MRI
=
169 &DefMI
.getParent()->getParent()->getRegInfo();
170 IsRegCR
= MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRRCRegClass
) ||
171 MRI
->getRegClass(Reg
)->hasSuperClassEq(&PPC::CRBITRCRegClass
);
173 IsRegCR
= PPC::CRRCRegClass
.contains(Reg
) ||
174 PPC::CRBITRCRegClass
.contains(Reg
);
177 if (UseMI
.isBranch() && IsRegCR
) {
179 Latency
= getInstrLatency(ItinData
, DefMI
);
181 // On some cores, there is an additional delay between writing to a condition
182 // register, and using it from a branch.
183 unsigned Directive
= Subtarget
.getDarwinDirective();
197 // FIXME: Is this needed for POWER9?
206 // This function does not list all associative and commutative operations, but
207 // only those worth feeding through the machine combiner in an attempt to
208 // reduce the critical path. Mostly, this means floating-point operations,
209 // because they have high latencies (compared to other operations, such and
210 // and/or, which are also associative and commutative, but have low latencies).
211 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
212 switch (Inst
.getOpcode()) {
245 bool PPCInstrInfo::getMachineCombinerPatterns(
247 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
248 // Using the machine combiner in this way is potentially expensive, so
249 // restrict to when aggressive optimizations are desired.
250 if (Subtarget
.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive
)
253 // FP reassociation is only legal when we don't need strict IEEE semantics.
254 if (!Root
.getParent()->getParent()->getTarget().Options
.UnsafeFPMath
)
257 return TargetInstrInfo::getMachineCombinerPatterns(Root
, Patterns
);
260 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
261 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
262 unsigned &SrcReg
, unsigned &DstReg
,
263 unsigned &SubIdx
) const {
264 switch (MI
.getOpcode()) {
265 default: return false;
268 case PPC::EXTSW_32_64
:
269 SrcReg
= MI
.getOperand(1).getReg();
270 DstReg
= MI
.getOperand(0).getReg();
271 SubIdx
= PPC::sub_32
;
276 unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
277 int &FrameIndex
) const {
278 // Note: This list must be kept consistent with LoadRegFromStackSlot.
279 switch (MI
.getOpcode()) {
285 case PPC::RESTORE_CR
:
286 case PPC::RESTORE_CRBIT
:
293 case PPC::RESTORE_VRSAVE
:
294 case PPC::SPILLTOVSR_LD
:
295 // Check for the operands added by addFrameReference (the immediate is the
296 // offset which defaults to 0).
297 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
298 MI
.getOperand(2).isFI()) {
299 FrameIndex
= MI
.getOperand(2).getIndex();
300 return MI
.getOperand(0).getReg();
307 // For opcodes with the ReMaterializable flag set, this function is called to
308 // verify the instruction is really rematable.
309 bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
310 AliasAnalysis
*AA
) const {
311 switch (MI
.getOpcode()) {
313 // This function should only be called for opcodes with the ReMaterializable
315 llvm_unreachable("Unknown rematerializable operation!");
322 case PPC::ADDIStocHA
:
324 case PPC::LOAD_STACK_GUARD
:
330 unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
331 int &FrameIndex
) const {
332 // Note: This list must be kept consistent with StoreRegToStackSlot.
333 switch (MI
.getOpcode()) {
340 case PPC::SPILL_CRBIT
:
347 case PPC::SPILL_VRSAVE
:
348 case PPC::SPILLTOVSR_ST
:
349 // Check for the operands added by addFrameReference (the immediate is the
350 // offset which defaults to 0).
351 if (MI
.getOperand(1).isImm() && !MI
.getOperand(1).getImm() &&
352 MI
.getOperand(2).isFI()) {
353 FrameIndex
= MI
.getOperand(2).getIndex();
354 return MI
.getOperand(0).getReg();
361 MachineInstr
*PPCInstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
363 unsigned OpIdx2
) const {
364 MachineFunction
&MF
= *MI
.getParent()->getParent();
366 // Normal instructions can be commuted the obvious way.
367 if (MI
.getOpcode() != PPC::RLWIMI
&& MI
.getOpcode() != PPC::RLWIMIo
)
368 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
369 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
370 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
371 // changing the relative order of the mask operands might change what happens
372 // to the high-bits of the mask (and, thus, the result).
374 // Cannot commute if it has a non-zero rotate count.
375 if (MI
.getOperand(3).getImm() != 0)
378 // If we have a zero rotate count, we have:
380 // Op0 = (Op1 & ~M) | (Op2 & M)
382 // M = mask((ME+1)&31, (MB-1)&31)
383 // Op0 = (Op2 & ~M) | (Op1 & M)
386 assert(((OpIdx1
== 1 && OpIdx2
== 2) || (OpIdx1
== 2 && OpIdx2
== 1)) &&
387 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMIo.");
388 unsigned Reg0
= MI
.getOperand(0).getReg();
389 unsigned Reg1
= MI
.getOperand(1).getReg();
390 unsigned Reg2
= MI
.getOperand(2).getReg();
391 unsigned SubReg1
= MI
.getOperand(1).getSubReg();
392 unsigned SubReg2
= MI
.getOperand(2).getSubReg();
393 bool Reg1IsKill
= MI
.getOperand(1).isKill();
394 bool Reg2IsKill
= MI
.getOperand(2).isKill();
395 bool ChangeReg0
= false;
396 // If machine instrs are no longer in two-address forms, update
397 // destination register as well.
399 // Must be two address instruction!
400 assert(MI
.getDesc().getOperandConstraint(0, MCOI::TIED_TO
) &&
401 "Expecting a two-address instruction!");
402 assert(MI
.getOperand(0).getSubReg() == SubReg1
&& "Tied subreg mismatch");
408 unsigned MB
= MI
.getOperand(4).getImm();
409 unsigned ME
= MI
.getOperand(5).getImm();
411 // We can't commute a trivial mask (there is no way to represent an all-zero
413 if (MB
== 0 && ME
== 31)
417 // Create a new instruction.
418 unsigned Reg0
= ChangeReg0
? Reg2
: MI
.getOperand(0).getReg();
419 bool Reg0IsDead
= MI
.getOperand(0).isDead();
420 return BuildMI(MF
, MI
.getDebugLoc(), MI
.getDesc())
421 .addReg(Reg0
, RegState::Define
| getDeadRegState(Reg0IsDead
))
422 .addReg(Reg2
, getKillRegState(Reg2IsKill
))
423 .addReg(Reg1
, getKillRegState(Reg1IsKill
))
424 .addImm((ME
+ 1) & 31)
425 .addImm((MB
- 1) & 31);
429 MI
.getOperand(0).setReg(Reg2
);
430 MI
.getOperand(0).setSubReg(SubReg2
);
432 MI
.getOperand(2).setReg(Reg1
);
433 MI
.getOperand(1).setReg(Reg2
);
434 MI
.getOperand(2).setSubReg(SubReg1
);
435 MI
.getOperand(1).setSubReg(SubReg2
);
436 MI
.getOperand(2).setIsKill(Reg1IsKill
);
437 MI
.getOperand(1).setIsKill(Reg2IsKill
);
439 // Swap the mask around.
440 MI
.getOperand(4).setImm((ME
+ 1) & 31);
441 MI
.getOperand(5).setImm((MB
- 1) & 31);
445 bool PPCInstrInfo::findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
446 unsigned &SrcOpIdx2
) const {
447 // For VSX A-Type FMA instructions, it is the first two operands that can be
448 // commuted, however, because the non-encoded tied input operand is listed
449 // first, the operands to swap are actually the second and third.
451 int AltOpc
= PPC::getAltVSXFMAOpcode(MI
.getOpcode());
453 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
455 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
457 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 2, 3);
460 void PPCInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
461 MachineBasicBlock::iterator MI
) const {
462 // This function is used for scheduling, and the nop wanted here is the type
463 // that terminates dispatch groups on the POWER cores.
464 unsigned Directive
= Subtarget
.getDarwinDirective();
467 default: Opcode
= PPC::NOP
; break;
468 case PPC::DIR_PWR6
: Opcode
= PPC::NOP_GT_PWR6
; break;
469 case PPC::DIR_PWR7
: Opcode
= PPC::NOP_GT_PWR7
; break;
470 case PPC::DIR_PWR8
: Opcode
= PPC::NOP_GT_PWR7
; break; /* FIXME: Update when P8 InstrScheduling model is ready */
471 // FIXME: Update when POWER9 scheduling model is ready.
472 case PPC::DIR_PWR9
: Opcode
= PPC::NOP_GT_PWR7
; break;
476 BuildMI(MBB
, MI
, DL
, get(Opcode
));
479 /// Return the noop instruction to use for a noop.
480 void PPCInstrInfo::getNoop(MCInst
&NopInst
) const {
481 NopInst
.setOpcode(PPC::NOP
);
485 // Note: If the condition register is set to CTR or CTR8 then this is a
486 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
487 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
488 MachineBasicBlock
*&TBB
,
489 MachineBasicBlock
*&FBB
,
490 SmallVectorImpl
<MachineOperand
> &Cond
,
491 bool AllowModify
) const {
492 bool isPPC64
= Subtarget
.isPPC64();
494 // If the block has no terminators, it just falls into the block after it.
495 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
499 if (!isUnpredicatedTerminator(*I
))
503 // If the BB ends with an unconditional branch to the fallthrough BB,
504 // we eliminate the branch instruction.
505 if (I
->getOpcode() == PPC::B
&&
506 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
507 I
->eraseFromParent();
509 // We update iterator after deleting the last branch.
510 I
= MBB
.getLastNonDebugInstr();
511 if (I
== MBB
.end() || !isUnpredicatedTerminator(*I
))
516 // Get the last instruction in the block.
517 MachineInstr
&LastInst
= *I
;
519 // If there is only one terminator instruction, process it.
520 if (I
== MBB
.begin() || !isUnpredicatedTerminator(*--I
)) {
521 if (LastInst
.getOpcode() == PPC::B
) {
522 if (!LastInst
.getOperand(0).isMBB())
524 TBB
= LastInst
.getOperand(0).getMBB();
526 } else if (LastInst
.getOpcode() == PPC::BCC
) {
527 if (!LastInst
.getOperand(2).isMBB())
529 // Block ends with fall-through condbranch.
530 TBB
= LastInst
.getOperand(2).getMBB();
531 Cond
.push_back(LastInst
.getOperand(0));
532 Cond
.push_back(LastInst
.getOperand(1));
534 } else if (LastInst
.getOpcode() == PPC::BC
) {
535 if (!LastInst
.getOperand(1).isMBB())
537 // Block ends with fall-through condbranch.
538 TBB
= LastInst
.getOperand(1).getMBB();
539 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
540 Cond
.push_back(LastInst
.getOperand(0));
542 } else if (LastInst
.getOpcode() == PPC::BCn
) {
543 if (!LastInst
.getOperand(1).isMBB())
545 // Block ends with fall-through condbranch.
546 TBB
= LastInst
.getOperand(1).getMBB();
547 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
548 Cond
.push_back(LastInst
.getOperand(0));
550 } else if (LastInst
.getOpcode() == PPC::BDNZ8
||
551 LastInst
.getOpcode() == PPC::BDNZ
) {
552 if (!LastInst
.getOperand(0).isMBB())
554 if (DisableCTRLoopAnal
)
556 TBB
= LastInst
.getOperand(0).getMBB();
557 Cond
.push_back(MachineOperand::CreateImm(1));
558 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
561 } else if (LastInst
.getOpcode() == PPC::BDZ8
||
562 LastInst
.getOpcode() == PPC::BDZ
) {
563 if (!LastInst
.getOperand(0).isMBB())
565 if (DisableCTRLoopAnal
)
567 TBB
= LastInst
.getOperand(0).getMBB();
568 Cond
.push_back(MachineOperand::CreateImm(0));
569 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
574 // Otherwise, don't know what this is.
578 // Get the instruction before it if it's a terminator.
579 MachineInstr
&SecondLastInst
= *I
;
581 // If there are three terminators, we don't know what sort of block this is.
582 if (I
!= MBB
.begin() && isUnpredicatedTerminator(*--I
))
585 // If the block ends with PPC::B and PPC:BCC, handle it.
586 if (SecondLastInst
.getOpcode() == PPC::BCC
&&
587 LastInst
.getOpcode() == PPC::B
) {
588 if (!SecondLastInst
.getOperand(2).isMBB() ||
589 !LastInst
.getOperand(0).isMBB())
591 TBB
= SecondLastInst
.getOperand(2).getMBB();
592 Cond
.push_back(SecondLastInst
.getOperand(0));
593 Cond
.push_back(SecondLastInst
.getOperand(1));
594 FBB
= LastInst
.getOperand(0).getMBB();
596 } else if (SecondLastInst
.getOpcode() == PPC::BC
&&
597 LastInst
.getOpcode() == PPC::B
) {
598 if (!SecondLastInst
.getOperand(1).isMBB() ||
599 !LastInst
.getOperand(0).isMBB())
601 TBB
= SecondLastInst
.getOperand(1).getMBB();
602 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET
));
603 Cond
.push_back(SecondLastInst
.getOperand(0));
604 FBB
= LastInst
.getOperand(0).getMBB();
606 } else if (SecondLastInst
.getOpcode() == PPC::BCn
&&
607 LastInst
.getOpcode() == PPC::B
) {
608 if (!SecondLastInst
.getOperand(1).isMBB() ||
609 !LastInst
.getOperand(0).isMBB())
611 TBB
= SecondLastInst
.getOperand(1).getMBB();
612 Cond
.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET
));
613 Cond
.push_back(SecondLastInst
.getOperand(0));
614 FBB
= LastInst
.getOperand(0).getMBB();
616 } else if ((SecondLastInst
.getOpcode() == PPC::BDNZ8
||
617 SecondLastInst
.getOpcode() == PPC::BDNZ
) &&
618 LastInst
.getOpcode() == PPC::B
) {
619 if (!SecondLastInst
.getOperand(0).isMBB() ||
620 !LastInst
.getOperand(0).isMBB())
622 if (DisableCTRLoopAnal
)
624 TBB
= SecondLastInst
.getOperand(0).getMBB();
625 Cond
.push_back(MachineOperand::CreateImm(1));
626 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
628 FBB
= LastInst
.getOperand(0).getMBB();
630 } else if ((SecondLastInst
.getOpcode() == PPC::BDZ8
||
631 SecondLastInst
.getOpcode() == PPC::BDZ
) &&
632 LastInst
.getOpcode() == PPC::B
) {
633 if (!SecondLastInst
.getOperand(0).isMBB() ||
634 !LastInst
.getOperand(0).isMBB())
636 if (DisableCTRLoopAnal
)
638 TBB
= SecondLastInst
.getOperand(0).getMBB();
639 Cond
.push_back(MachineOperand::CreateImm(0));
640 Cond
.push_back(MachineOperand::CreateReg(isPPC64
? PPC::CTR8
: PPC::CTR
,
642 FBB
= LastInst
.getOperand(0).getMBB();
646 // If the block ends with two PPC:Bs, handle it. The second one is not
647 // executed, so remove it.
648 if (SecondLastInst
.getOpcode() == PPC::B
&& LastInst
.getOpcode() == PPC::B
) {
649 if (!SecondLastInst
.getOperand(0).isMBB())
651 TBB
= SecondLastInst
.getOperand(0).getMBB();
654 I
->eraseFromParent();
658 // Otherwise, can't handle this.
662 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
663 int *BytesRemoved
) const {
664 assert(!BytesRemoved
&& "code size not handled");
666 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
670 if (I
->getOpcode() != PPC::B
&& I
->getOpcode() != PPC::BCC
&&
671 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
672 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
673 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
676 // Remove the branch.
677 I
->eraseFromParent();
681 if (I
== MBB
.begin()) return 1;
683 if (I
->getOpcode() != PPC::BCC
&&
684 I
->getOpcode() != PPC::BC
&& I
->getOpcode() != PPC::BCn
&&
685 I
->getOpcode() != PPC::BDNZ8
&& I
->getOpcode() != PPC::BDNZ
&&
686 I
->getOpcode() != PPC::BDZ8
&& I
->getOpcode() != PPC::BDZ
)
689 // Remove the branch.
690 I
->eraseFromParent();
694 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
695 MachineBasicBlock
*TBB
,
696 MachineBasicBlock
*FBB
,
697 ArrayRef
<MachineOperand
> Cond
,
699 int *BytesAdded
) const {
700 // Shouldn't be a fall through.
701 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
702 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
703 "PPC branch conditions have two components!");
704 assert(!BytesAdded
&& "code size not handled");
706 bool isPPC64
= Subtarget
.isPPC64();
710 if (Cond
.empty()) // Unconditional branch
711 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(TBB
);
712 else if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
713 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
714 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
715 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
716 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
717 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
718 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
719 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
720 else // Conditional branch
721 BuildMI(&MBB
, DL
, get(PPC::BCC
))
722 .addImm(Cond
[0].getImm())
728 // Two-way Conditional Branch.
729 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
730 BuildMI(&MBB
, DL
, get(Cond
[0].getImm() ?
731 (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
) :
732 (isPPC64
? PPC::BDZ8
: PPC::BDZ
))).addMBB(TBB
);
733 else if (Cond
[0].getImm() == PPC::PRED_BIT_SET
)
734 BuildMI(&MBB
, DL
, get(PPC::BC
)).add(Cond
[1]).addMBB(TBB
);
735 else if (Cond
[0].getImm() == PPC::PRED_BIT_UNSET
)
736 BuildMI(&MBB
, DL
, get(PPC::BCn
)).add(Cond
[1]).addMBB(TBB
);
738 BuildMI(&MBB
, DL
, get(PPC::BCC
))
739 .addImm(Cond
[0].getImm())
742 BuildMI(&MBB
, DL
, get(PPC::B
)).addMBB(FBB
);
747 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
748 ArrayRef
<MachineOperand
> Cond
,
749 unsigned TrueReg
, unsigned FalseReg
,
750 int &CondCycles
, int &TrueCycles
, int &FalseCycles
) const {
751 if (Cond
.size() != 2)
754 // If this is really a bdnz-like condition, then it cannot be turned into a
756 if (Cond
[1].getReg() == PPC::CTR
|| Cond
[1].getReg() == PPC::CTR8
)
759 // Check register classes.
760 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
761 const TargetRegisterClass
*RC
=
762 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
766 // isel is for regular integer GPRs only.
767 if (!PPC::GPRCRegClass
.hasSubClassEq(RC
) &&
768 !PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
) &&
769 !PPC::G8RCRegClass
.hasSubClassEq(RC
) &&
770 !PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
))
773 // FIXME: These numbers are for the A2, how well they work for other cores is
774 // an open question. On the A2, the isel instruction has a 2-cycle latency
775 // but single-cycle throughput. These numbers are used in combination with
776 // the MispredictPenalty setting from the active SchedMachineModel.
784 void PPCInstrInfo::insertSelect(MachineBasicBlock
&MBB
,
785 MachineBasicBlock::iterator MI
,
786 const DebugLoc
&dl
, unsigned DestReg
,
787 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
788 unsigned FalseReg
) const {
789 assert(Cond
.size() == 2 &&
790 "PPC branch conditions have two components!");
792 // Get the register classes.
793 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
794 const TargetRegisterClass
*RC
=
795 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
796 assert(RC
&& "TrueReg and FalseReg must have overlapping register classes");
798 bool Is64Bit
= PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
799 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
);
801 PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
802 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) &&
803 "isel is for regular integer GPRs only");
805 unsigned OpCode
= Is64Bit
? PPC::ISEL8
: PPC::ISEL
;
806 auto SelectPred
= static_cast<PPC::Predicate
>(Cond
[0].getImm());
809 bool SwapOps
= false;
810 switch (SelectPred
) {
812 case PPC::PRED_EQ_MINUS
:
813 case PPC::PRED_EQ_PLUS
:
814 SubIdx
= PPC::sub_eq
; SwapOps
= false; break;
816 case PPC::PRED_NE_MINUS
:
817 case PPC::PRED_NE_PLUS
:
818 SubIdx
= PPC::sub_eq
; SwapOps
= true; break;
820 case PPC::PRED_LT_MINUS
:
821 case PPC::PRED_LT_PLUS
:
822 SubIdx
= PPC::sub_lt
; SwapOps
= false; break;
824 case PPC::PRED_GE_MINUS
:
825 case PPC::PRED_GE_PLUS
:
826 SubIdx
= PPC::sub_lt
; SwapOps
= true; break;
828 case PPC::PRED_GT_MINUS
:
829 case PPC::PRED_GT_PLUS
:
830 SubIdx
= PPC::sub_gt
; SwapOps
= false; break;
832 case PPC::PRED_LE_MINUS
:
833 case PPC::PRED_LE_PLUS
:
834 SubIdx
= PPC::sub_gt
; SwapOps
= true; break;
836 case PPC::PRED_UN_MINUS
:
837 case PPC::PRED_UN_PLUS
:
838 SubIdx
= PPC::sub_un
; SwapOps
= false; break;
840 case PPC::PRED_NU_MINUS
:
841 case PPC::PRED_NU_PLUS
:
842 SubIdx
= PPC::sub_un
; SwapOps
= true; break;
843 case PPC::PRED_BIT_SET
: SubIdx
= 0; SwapOps
= false; break;
844 case PPC::PRED_BIT_UNSET
: SubIdx
= 0; SwapOps
= true; break;
847 unsigned FirstReg
= SwapOps
? FalseReg
: TrueReg
,
848 SecondReg
= SwapOps
? TrueReg
: FalseReg
;
850 // The first input register of isel cannot be r0. If it is a member
851 // of a register class that can be r0, then copy it first (the
852 // register allocator should eliminate the copy).
853 if (MRI
.getRegClass(FirstReg
)->contains(PPC::R0
) ||
854 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
)) {
855 const TargetRegisterClass
*FirstRC
=
856 MRI
.getRegClass(FirstReg
)->contains(PPC::X0
) ?
857 &PPC::G8RC_NOX0RegClass
: &PPC::GPRC_NOR0RegClass
;
858 unsigned OldFirstReg
= FirstReg
;
859 FirstReg
= MRI
.createVirtualRegister(FirstRC
);
860 BuildMI(MBB
, MI
, dl
, get(TargetOpcode::COPY
), FirstReg
)
861 .addReg(OldFirstReg
);
864 BuildMI(MBB
, MI
, dl
, get(OpCode
), DestReg
)
865 .addReg(FirstReg
).addReg(SecondReg
)
866 .addReg(Cond
[1].getReg(), 0, SubIdx
);
869 static unsigned getCRBitValue(unsigned CRBit
) {
871 if (CRBit
== PPC::CR0LT
|| CRBit
== PPC::CR1LT
||
872 CRBit
== PPC::CR2LT
|| CRBit
== PPC::CR3LT
||
873 CRBit
== PPC::CR4LT
|| CRBit
== PPC::CR5LT
||
874 CRBit
== PPC::CR6LT
|| CRBit
== PPC::CR7LT
)
876 if (CRBit
== PPC::CR0GT
|| CRBit
== PPC::CR1GT
||
877 CRBit
== PPC::CR2GT
|| CRBit
== PPC::CR3GT
||
878 CRBit
== PPC::CR4GT
|| CRBit
== PPC::CR5GT
||
879 CRBit
== PPC::CR6GT
|| CRBit
== PPC::CR7GT
)
881 if (CRBit
== PPC::CR0EQ
|| CRBit
== PPC::CR1EQ
||
882 CRBit
== PPC::CR2EQ
|| CRBit
== PPC::CR3EQ
||
883 CRBit
== PPC::CR4EQ
|| CRBit
== PPC::CR5EQ
||
884 CRBit
== PPC::CR6EQ
|| CRBit
== PPC::CR7EQ
)
886 if (CRBit
== PPC::CR0UN
|| CRBit
== PPC::CR1UN
||
887 CRBit
== PPC::CR2UN
|| CRBit
== PPC::CR3UN
||
888 CRBit
== PPC::CR4UN
|| CRBit
== PPC::CR5UN
||
889 CRBit
== PPC::CR6UN
|| CRBit
== PPC::CR7UN
)
892 assert(Ret
!= 4 && "Invalid CR bit register");
896 void PPCInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
897 MachineBasicBlock::iterator I
,
898 const DebugLoc
&DL
, unsigned DestReg
,
899 unsigned SrcReg
, bool KillSrc
) const {
900 // We can end up with self copies and similar things as a result of VSX copy
901 // legalization. Promote them here.
902 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
903 if (PPC::F8RCRegClass
.contains(DestReg
) &&
904 PPC::VSRCRegClass
.contains(SrcReg
)) {
906 TRI
->getMatchingSuperReg(DestReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
908 if (VSXSelfCopyCrash
&& SrcReg
== SuperReg
)
909 llvm_unreachable("nop VSX copy");
912 } else if (PPC::F8RCRegClass
.contains(SrcReg
) &&
913 PPC::VSRCRegClass
.contains(DestReg
)) {
915 TRI
->getMatchingSuperReg(SrcReg
, PPC::sub_64
, &PPC::VSRCRegClass
);
917 if (VSXSelfCopyCrash
&& DestReg
== SuperReg
)
918 llvm_unreachable("nop VSX copy");
923 // Different class register copy
924 if (PPC::CRBITRCRegClass
.contains(SrcReg
) &&
925 PPC::GPRCRegClass
.contains(DestReg
)) {
926 unsigned CRReg
= getCRFromCRBit(SrcReg
);
927 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(CRReg
);
928 getKillRegState(KillSrc
);
929 // Rotate the CR bit in the CR fields to be the least significant bit and
930 // then mask with 0x1 (MB = ME = 31).
931 BuildMI(MBB
, I
, DL
, get(PPC::RLWINM
), DestReg
)
932 .addReg(DestReg
, RegState::Kill
)
933 .addImm(TRI
->getEncodingValue(CRReg
) * 4 + (4 - getCRBitValue(SrcReg
)))
937 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
938 PPC::G8RCRegClass
.contains(DestReg
)) {
939 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF8
), DestReg
).addReg(SrcReg
);
940 getKillRegState(KillSrc
);
942 } else if (PPC::CRRCRegClass
.contains(SrcReg
) &&
943 PPC::GPRCRegClass
.contains(DestReg
)) {
944 BuildMI(MBB
, I
, DL
, get(PPC::MFOCRF
), DestReg
).addReg(SrcReg
);
945 getKillRegState(KillSrc
);
947 } else if (PPC::G8RCRegClass
.contains(SrcReg
) &&
948 PPC::VSFRCRegClass
.contains(DestReg
)) {
949 BuildMI(MBB
, I
, DL
, get(PPC::MTVSRD
), DestReg
).addReg(SrcReg
);
951 getKillRegState(KillSrc
);
953 } else if (PPC::VSFRCRegClass
.contains(SrcReg
) &&
954 PPC::G8RCRegClass
.contains(DestReg
)) {
955 BuildMI(MBB
, I
, DL
, get(PPC::MFVSRD
), DestReg
).addReg(SrcReg
);
956 getKillRegState(KillSrc
);
961 if (PPC::GPRCRegClass
.contains(DestReg
, SrcReg
))
963 else if (PPC::G8RCRegClass
.contains(DestReg
, SrcReg
))
965 else if (PPC::F4RCRegClass
.contains(DestReg
, SrcReg
))
967 else if (PPC::CRRCRegClass
.contains(DestReg
, SrcReg
))
969 else if (PPC::VRRCRegClass
.contains(DestReg
, SrcReg
))
971 else if (PPC::VSRCRegClass
.contains(DestReg
, SrcReg
))
972 // There are two different ways this can be done:
973 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
974 // issue in VSU pipeline 0.
975 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
976 // can go to either pipeline.
977 // We'll always use xxlor here, because in practically all cases where
978 // copies are generated, they are close enough to some use that the
979 // lower-latency form is preferable.
981 else if (PPC::VSFRCRegClass
.contains(DestReg
, SrcReg
) ||
982 PPC::VSSRCRegClass
.contains(DestReg
, SrcReg
))
984 else if (PPC::QFRCRegClass
.contains(DestReg
, SrcReg
))
986 else if (PPC::QSRCRegClass
.contains(DestReg
, SrcReg
))
988 else if (PPC::QBRCRegClass
.contains(DestReg
, SrcReg
))
990 else if (PPC::CRBITRCRegClass
.contains(DestReg
, SrcReg
))
993 llvm_unreachable("Impossible reg-to-reg copy");
995 const MCInstrDesc
&MCID
= get(Opc
);
996 if (MCID
.getNumOperands() == 3)
997 BuildMI(MBB
, I
, DL
, MCID
, DestReg
)
998 .addReg(SrcReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1000 BuildMI(MBB
, I
, DL
, MCID
, DestReg
).addReg(SrcReg
, getKillRegState(KillSrc
));
1003 // This function returns true if a CR spill is necessary and false otherwise.
1005 PPCInstrInfo::StoreRegToStackSlot(MachineFunction
&MF
,
1006 unsigned SrcReg
, bool isKill
,
1008 const TargetRegisterClass
*RC
,
1009 SmallVectorImpl
<MachineInstr
*> &NewMIs
,
1010 bool &NonRI
, bool &SpillsVRS
) const{
1011 // Note: If additional store instructions are added here,
1012 // update isStoreToStackSlot.
1015 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1016 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1017 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::STW
))
1019 getKillRegState(isKill
)),
1021 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1022 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1023 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::STD
))
1025 getKillRegState(isKill
)),
1027 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1028 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::STFD
))
1030 getKillRegState(isKill
)),
1032 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1033 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::STFS
))
1035 getKillRegState(isKill
)),
1037 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1038 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::SPILL_CR
))
1040 getKillRegState(isKill
)),
1043 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1044 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::SPILL_CRBIT
))
1046 getKillRegState(isKill
)),
1049 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1050 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::STVX
))
1052 getKillRegState(isKill
)),
1055 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1056 unsigned Op
= Subtarget
.hasP9Vector() ? PPC::STXV
: PPC::STXVD2X
;
1057 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Op
))
1059 getKillRegState(isKill
)),
1062 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1063 unsigned Opc
= Subtarget
.hasP9Vector() ? PPC::DFSTOREf64
: PPC::STXSDX
;
1064 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opc
))
1066 getKillRegState(isKill
)),
1069 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1070 unsigned Opc
= Subtarget
.hasP9Vector() ? PPC::DFSTOREf32
: PPC::STXSSPX
;
1071 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opc
))
1073 getKillRegState(isKill
)),
1076 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1077 assert(Subtarget
.isDarwin() &&
1078 "VRSAVE only needs spill/restore on Darwin");
1079 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::SPILL_VRSAVE
))
1081 getKillRegState(isKill
)),
1084 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1085 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVSTFDX
))
1087 getKillRegState(isKill
)),
1090 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1091 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVSTFSXs
))
1093 getKillRegState(isKill
)),
1096 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1097 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVSTFDXb
))
1099 getKillRegState(isKill
)),
1102 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1103 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::SPILLTOVSR_ST
))
1105 getKillRegState(isKill
)),
1108 llvm_unreachable("Unknown regclass!");
1115 PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
1116 MachineBasicBlock::iterator MI
,
1117 unsigned SrcReg
, bool isKill
, int FrameIdx
,
1118 const TargetRegisterClass
*RC
,
1119 const TargetRegisterInfo
*TRI
) const {
1120 MachineFunction
&MF
= *MBB
.getParent();
1121 SmallVector
<MachineInstr
*, 4> NewMIs
;
1123 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1124 FuncInfo
->setHasSpills();
1126 // We need to avoid a situation in which the value from a VRRC register is
1127 // spilled using an Altivec instruction and reloaded into a VSRC register
1128 // using a VSX instruction. The issue with this is that the VSX
1129 // load/store instructions swap the doublewords in the vector and the Altivec
1130 // ones don't. The register classes on the spill/reload may be different if
1131 // the register is defined using an Altivec instruction and is then used by a
1135 bool NonRI
= false, SpillsVRS
= false;
1136 if (StoreRegToStackSlot(MF
, SrcReg
, isKill
, FrameIdx
, RC
, NewMIs
,
1138 FuncInfo
->setSpillsCR();
1141 FuncInfo
->setSpillsVRSAVE();
1144 FuncInfo
->setHasNonRISpills();
1146 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1147 MBB
.insert(MI
, NewMIs
[i
]);
1149 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1150 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1151 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1152 MachineMemOperand::MOStore
, MFI
.getObjectSize(FrameIdx
),
1153 MFI
.getObjectAlignment(FrameIdx
));
1154 NewMIs
.back()->addMemOperand(MF
, MMO
);
1157 bool PPCInstrInfo::LoadRegFromStackSlot(MachineFunction
&MF
, const DebugLoc
&DL
,
1158 unsigned DestReg
, int FrameIdx
,
1159 const TargetRegisterClass
*RC
,
1160 SmallVectorImpl
<MachineInstr
*> &NewMIs
,
1161 bool &NonRI
, bool &SpillsVRS
) const {
1162 // Note: If additional load instructions are added here,
1163 // update isLoadFromStackSlot.
1165 if (PPC::GPRCRegClass
.hasSubClassEq(RC
) ||
1166 PPC::GPRC_NOR0RegClass
.hasSubClassEq(RC
)) {
1167 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::LWZ
),
1168 DestReg
), FrameIdx
));
1169 } else if (PPC::G8RCRegClass
.hasSubClassEq(RC
) ||
1170 PPC::G8RC_NOX0RegClass
.hasSubClassEq(RC
)) {
1171 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::LD
), DestReg
),
1173 } else if (PPC::F8RCRegClass
.hasSubClassEq(RC
)) {
1174 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::LFD
), DestReg
),
1176 } else if (PPC::F4RCRegClass
.hasSubClassEq(RC
)) {
1177 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::LFS
), DestReg
),
1179 } else if (PPC::CRRCRegClass
.hasSubClassEq(RC
)) {
1180 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
,
1181 get(PPC::RESTORE_CR
), DestReg
),
1184 } else if (PPC::CRBITRCRegClass
.hasSubClassEq(RC
)) {
1185 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
,
1186 get(PPC::RESTORE_CRBIT
), DestReg
),
1189 } else if (PPC::VRRCRegClass
.hasSubClassEq(RC
)) {
1190 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::LVX
), DestReg
),
1193 } else if (PPC::VSRCRegClass
.hasSubClassEq(RC
)) {
1194 unsigned Op
= Subtarget
.hasP9Vector() ? PPC::LXV
: PPC::LXVD2X
;
1195 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Op
), DestReg
),
1198 } else if (PPC::VSFRCRegClass
.hasSubClassEq(RC
)) {
1199 unsigned Opc
= Subtarget
.hasP9Vector() ? PPC::DFLOADf64
: PPC::LXSDX
;
1200 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opc
),
1201 DestReg
), FrameIdx
));
1203 } else if (PPC::VSSRCRegClass
.hasSubClassEq(RC
)) {
1204 unsigned Opc
= Subtarget
.hasP9Vector() ? PPC::DFLOADf32
: PPC::LXSSPX
;
1205 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(Opc
),
1206 DestReg
), FrameIdx
));
1208 } else if (PPC::VRSAVERCRegClass
.hasSubClassEq(RC
)) {
1209 assert(Subtarget
.isDarwin() &&
1210 "VRSAVE only needs spill/restore on Darwin");
1211 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
,
1212 get(PPC::RESTORE_VRSAVE
),
1216 } else if (PPC::QFRCRegClass
.hasSubClassEq(RC
)) {
1217 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVLFDX
), DestReg
),
1220 } else if (PPC::QSRCRegClass
.hasSubClassEq(RC
)) {
1221 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVLFSXs
), DestReg
),
1224 } else if (PPC::QBRCRegClass
.hasSubClassEq(RC
)) {
1225 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::QVLFDXb
), DestReg
),
1228 } else if (PPC::SPILLTOVSRRCRegClass
.hasSubClassEq(RC
)) {
1229 NewMIs
.push_back(addFrameReference(BuildMI(MF
, DL
, get(PPC::SPILLTOVSR_LD
),
1230 DestReg
), FrameIdx
));
1232 llvm_unreachable("Unknown regclass!");
1239 PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
1240 MachineBasicBlock::iterator MI
,
1241 unsigned DestReg
, int FrameIdx
,
1242 const TargetRegisterClass
*RC
,
1243 const TargetRegisterInfo
*TRI
) const {
1244 MachineFunction
&MF
= *MBB
.getParent();
1245 SmallVector
<MachineInstr
*, 4> NewMIs
;
1247 if (MI
!= MBB
.end()) DL
= MI
->getDebugLoc();
1249 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1250 FuncInfo
->setHasSpills();
1252 // We need to avoid a situation in which the value from a VRRC register is
1253 // spilled using an Altivec instruction and reloaded into a VSRC register
1254 // using a VSX instruction. The issue with this is that the VSX
1255 // load/store instructions swap the doublewords in the vector and the Altivec
1256 // ones don't. The register classes on the spill/reload may be different if
1257 // the register is defined using an Altivec instruction and is then used by a
1259 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
1260 RC
= &PPC::VSRCRegClass
;
1262 bool NonRI
= false, SpillsVRS
= false;
1263 if (LoadRegFromStackSlot(MF
, DL
, DestReg
, FrameIdx
, RC
, NewMIs
,
1265 FuncInfo
->setSpillsCR();
1268 FuncInfo
->setSpillsVRSAVE();
1271 FuncInfo
->setHasNonRISpills();
1273 for (unsigned i
= 0, e
= NewMIs
.size(); i
!= e
; ++i
)
1274 MBB
.insert(MI
, NewMIs
[i
]);
1276 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1277 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1278 MachinePointerInfo::getFixedStack(MF
, FrameIdx
),
1279 MachineMemOperand::MOLoad
, MFI
.getObjectSize(FrameIdx
),
1280 MFI
.getObjectAlignment(FrameIdx
));
1281 NewMIs
.back()->addMemOperand(MF
, MMO
);
1285 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1286 assert(Cond
.size() == 2 && "Invalid PPC branch opcode!");
1287 if (Cond
[1].getReg() == PPC::CTR8
|| Cond
[1].getReg() == PPC::CTR
)
1288 Cond
[0].setImm(Cond
[0].getImm() == 0 ? 1 : 0);
1290 // Leave the CR# the same, but invert the condition.
1291 Cond
[0].setImm(PPC::InvertPredicate((PPC::Predicate
)Cond
[0].getImm()));
1295 bool PPCInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1296 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1297 // For some instructions, it is legal to fold ZERO into the RA register field.
1298 // A zero immediate should always be loaded with a single li.
1299 unsigned DefOpc
= DefMI
.getOpcode();
1300 if (DefOpc
!= PPC::LI
&& DefOpc
!= PPC::LI8
)
1302 if (!DefMI
.getOperand(1).isImm())
1304 if (DefMI
.getOperand(1).getImm() != 0)
1307 // Note that we cannot here invert the arguments of an isel in order to fold
1308 // a ZERO into what is presented as the second argument. All we have here
1309 // is the condition bit, and that might come from a CR-logical bit operation.
1311 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
1313 // Only fold into real machine instructions.
1314 if (UseMCID
.isPseudo())
1318 for (UseIdx
= 0; UseIdx
< UseMI
.getNumOperands(); ++UseIdx
)
1319 if (UseMI
.getOperand(UseIdx
).isReg() &&
1320 UseMI
.getOperand(UseIdx
).getReg() == Reg
)
1323 assert(UseIdx
< UseMI
.getNumOperands() && "Cannot find Reg in UseMI");
1324 assert(UseIdx
< UseMCID
.getNumOperands() && "No operand description for Reg");
1326 const MCOperandInfo
*UseInfo
= &UseMCID
.OpInfo
[UseIdx
];
1328 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1329 // register (which might also be specified as a pointer class kind).
1330 if (UseInfo
->isLookupPtrRegClass()) {
1331 if (UseInfo
->RegClass
/* Kind */ != 1)
1334 if (UseInfo
->RegClass
!= PPC::GPRC_NOR0RegClassID
&&
1335 UseInfo
->RegClass
!= PPC::G8RC_NOX0RegClassID
)
1339 // Make sure this is not tied to an output register (or otherwise
1340 // constrained). This is true for ST?UX registers, for example, which
1341 // are tied to their output registers.
1342 if (UseInfo
->Constraints
!= 0)
1346 if (UseInfo
->isLookupPtrRegClass()) {
1347 bool isPPC64
= Subtarget
.isPPC64();
1348 ZeroReg
= isPPC64
? PPC::ZERO8
: PPC::ZERO
;
1350 ZeroReg
= UseInfo
->RegClass
== PPC::G8RC_NOX0RegClassID
?
1351 PPC::ZERO8
: PPC::ZERO
;
1354 bool DeleteDef
= MRI
->hasOneNonDBGUse(Reg
);
1355 UseMI
.getOperand(UseIdx
).setReg(ZeroReg
);
1358 DefMI
.eraseFromParent();
1363 static bool MBBDefinesCTR(MachineBasicBlock
&MBB
) {
1364 for (MachineBasicBlock::iterator I
= MBB
.begin(), IE
= MBB
.end();
1366 if (I
->definesRegister(PPC::CTR
) || I
->definesRegister(PPC::CTR8
))
1371 // We should make sure that, if we're going to predicate both sides of a
1372 // condition (a diamond), that both sides don't define the counter register. We
1373 // can predicate counter-decrement-based branches, but while that predicates
1374 // the branching, it does not predicate the counter decrement. If we tried to
1375 // merge the triangle into one predicated block, we'd decrement the counter
1377 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
1378 unsigned NumT
, unsigned ExtraT
,
1379 MachineBasicBlock
&FMBB
,
1380 unsigned NumF
, unsigned ExtraF
,
1381 BranchProbability Probability
) const {
1382 return !(MBBDefinesCTR(TMBB
) && MBBDefinesCTR(FMBB
));
1386 bool PPCInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1387 // The predicated branches are identified by their type, not really by the
1388 // explicit presence of a predicate. Furthermore, some of them can be
1389 // predicated more than once. Because if conversion won't try to predicate
1390 // any instruction which already claims to be predicated (by returning true
1391 // here), always return false. In doing so, we let isPredicable() be the
1392 // final word on whether not the instruction can be (further) predicated.
1397 bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
1398 if (!MI
.isTerminator())
1401 // Conditional branch is a special case.
1402 if (MI
.isBranch() && !MI
.isBarrier())
1405 return !isPredicated(MI
);
1408 bool PPCInstrInfo::PredicateInstruction(MachineInstr
&MI
,
1409 ArrayRef
<MachineOperand
> Pred
) const {
1410 unsigned OpC
= MI
.getOpcode();
1411 if (OpC
== PPC::BLR
|| OpC
== PPC::BLR8
) {
1412 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1413 bool isPPC64
= Subtarget
.isPPC64();
1414 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZLR8
: PPC::BDNZLR
)
1415 : (isPPC64
? PPC::BDZLR8
: PPC::BDZLR
)));
1416 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1417 MI
.setDesc(get(PPC::BCLR
));
1418 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1419 .addReg(Pred
[1].getReg());
1420 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1421 MI
.setDesc(get(PPC::BCLRn
));
1422 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1423 .addReg(Pred
[1].getReg());
1425 MI
.setDesc(get(PPC::BCCLR
));
1426 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1427 .addImm(Pred
[0].getImm())
1428 .addReg(Pred
[1].getReg());
1432 } else if (OpC
== PPC::B
) {
1433 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
) {
1434 bool isPPC64
= Subtarget
.isPPC64();
1435 MI
.setDesc(get(Pred
[0].getImm() ? (isPPC64
? PPC::BDNZ8
: PPC::BDNZ
)
1436 : (isPPC64
? PPC::BDZ8
: PPC::BDZ
)));
1437 } else if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1438 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1439 MI
.RemoveOperand(0);
1441 MI
.setDesc(get(PPC::BC
));
1442 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1443 .addReg(Pred
[1].getReg())
1445 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1446 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1447 MI
.RemoveOperand(0);
1449 MI
.setDesc(get(PPC::BCn
));
1450 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1451 .addReg(Pred
[1].getReg())
1454 MachineBasicBlock
*MBB
= MI
.getOperand(0).getMBB();
1455 MI
.RemoveOperand(0);
1457 MI
.setDesc(get(PPC::BCC
));
1458 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1459 .addImm(Pred
[0].getImm())
1460 .addReg(Pred
[1].getReg())
1465 } else if (OpC
== PPC::BCTR
|| OpC
== PPC::BCTR8
||
1466 OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
) {
1467 if (Pred
[1].getReg() == PPC::CTR8
|| Pred
[1].getReg() == PPC::CTR
)
1468 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1470 bool setLR
= OpC
== PPC::BCTRL
|| OpC
== PPC::BCTRL8
;
1471 bool isPPC64
= Subtarget
.isPPC64();
1473 if (Pred
[0].getImm() == PPC::PRED_BIT_SET
) {
1474 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8
: PPC::BCCTR8
)
1475 : (setLR
? PPC::BCCTRL
: PPC::BCCTR
)));
1476 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1477 .addReg(Pred
[1].getReg());
1479 } else if (Pred
[0].getImm() == PPC::PRED_BIT_UNSET
) {
1480 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCTRL8n
: PPC::BCCTR8n
)
1481 : (setLR
? PPC::BCCTRLn
: PPC::BCCTRn
)));
1482 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1483 .addReg(Pred
[1].getReg());
1487 MI
.setDesc(get(isPPC64
? (setLR
? PPC::BCCCTRL8
: PPC::BCCCTR8
)
1488 : (setLR
? PPC::BCCCTRL
: PPC::BCCCTR
)));
1489 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
1490 .addImm(Pred
[0].getImm())
1491 .addReg(Pred
[1].getReg());
1498 bool PPCInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1499 ArrayRef
<MachineOperand
> Pred2
) const {
1500 assert(Pred1
.size() == 2 && "Invalid PPC first predicate");
1501 assert(Pred2
.size() == 2 && "Invalid PPC second predicate");
1503 if (Pred1
[1].getReg() == PPC::CTR8
|| Pred1
[1].getReg() == PPC::CTR
)
1505 if (Pred2
[1].getReg() == PPC::CTR8
|| Pred2
[1].getReg() == PPC::CTR
)
1508 // P1 can only subsume P2 if they test the same condition register.
1509 if (Pred1
[1].getReg() != Pred2
[1].getReg())
1512 PPC::Predicate P1
= (PPC::Predicate
) Pred1
[0].getImm();
1513 PPC::Predicate P2
= (PPC::Predicate
) Pred2
[0].getImm();
1518 // Does P1 subsume P2, e.g. GE subsumes GT.
1519 if (P1
== PPC::PRED_LE
&&
1520 (P2
== PPC::PRED_LT
|| P2
== PPC::PRED_EQ
))
1522 if (P1
== PPC::PRED_GE
&&
1523 (P2
== PPC::PRED_GT
|| P2
== PPC::PRED_EQ
))
1529 bool PPCInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1530 std::vector
<MachineOperand
> &Pred
) const {
1531 // Note: At the present time, the contents of Pred from this function is
1532 // unused by IfConversion. This implementation follows ARM by pushing the
1533 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1534 // predicate, instructions defining CTR or CTR8 are also included as
1535 // predicate-defining instructions.
1537 const TargetRegisterClass
*RCs
[] =
1538 { &PPC::CRRCRegClass
, &PPC::CRBITRCRegClass
,
1539 &PPC::CTRRCRegClass
, &PPC::CTRRC8RegClass
};
1542 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1543 const MachineOperand
&MO
= MI
.getOperand(i
);
1544 for (unsigned c
= 0; c
< array_lengthof(RCs
) && !Found
; ++c
) {
1545 const TargetRegisterClass
*RC
= RCs
[c
];
1547 if (MO
.isDef() && RC
->contains(MO
.getReg())) {
1551 } else if (MO
.isRegMask()) {
1552 for (TargetRegisterClass::iterator I
= RC
->begin(),
1553 IE
= RC
->end(); I
!= IE
; ++I
)
1554 if (MO
.clobbersPhysReg(*I
)) {
1565 bool PPCInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1566 unsigned OpC
= MI
.getOpcode();
1581 bool PPCInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1582 unsigned &SrcReg2
, int &Mask
,
1584 unsigned Opc
= MI
.getOpcode();
1587 default: return false;
1592 SrcReg
= MI
.getOperand(1).getReg();
1594 Value
= MI
.getOperand(2).getImm();
1603 SrcReg
= MI
.getOperand(1).getReg();
1604 SrcReg2
= MI
.getOperand(2).getReg();
1611 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1612 unsigned SrcReg2
, int Mask
, int Value
,
1613 const MachineRegisterInfo
*MRI
) const {
1617 int OpC
= CmpInstr
.getOpcode();
1618 unsigned CRReg
= CmpInstr
.getOperand(0).getReg();
1620 // FP record forms set CR1 based on the execption status bits, not a
1621 // comparison with zero.
1622 if (OpC
== PPC::FCMPUS
|| OpC
== PPC::FCMPUD
)
1625 // The record forms set the condition register based on a signed comparison
1626 // with zero (so says the ISA manual). This is not as straightforward as it
1627 // seems, however, because this is always a 64-bit comparison on PPC64, even
1628 // for instructions that are 32-bit in nature (like slw for example).
1629 // So, on PPC32, for unsigned comparisons, we can use the record forms only
1630 // for equality checks (as those don't depend on the sign). On PPC64,
1631 // we are restricted to equality for unsigned 64-bit comparisons and for
1632 // signed 32-bit comparisons the applicability is more restricted.
1633 bool isPPC64
= Subtarget
.isPPC64();
1634 bool is32BitSignedCompare
= OpC
== PPC::CMPWI
|| OpC
== PPC::CMPW
;
1635 bool is32BitUnsignedCompare
= OpC
== PPC::CMPLWI
|| OpC
== PPC::CMPLW
;
1636 bool is64BitUnsignedCompare
= OpC
== PPC::CMPLDI
|| OpC
== PPC::CMPLD
;
1638 // Get the unique definition of SrcReg.
1639 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
1640 if (!MI
) return false;
1642 bool equalityOnly
= false;
1645 if (is32BitSignedCompare
) {
1646 // We can perform this optimization only if MI is sign-extending.
1647 if (isSignExtended(*MI
))
1651 } else if (is32BitUnsignedCompare
) {
1652 // We can perform this optimization, equality only, if MI is
1654 if (isZeroExtended(*MI
)) {
1656 equalityOnly
= true;
1660 equalityOnly
= is64BitUnsignedCompare
;
1662 equalityOnly
= is32BitUnsignedCompare
;
1665 // We need to check the uses of the condition register in order to reject
1666 // non-equality comparisons.
1667 for (MachineRegisterInfo::use_instr_iterator
1668 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1670 MachineInstr
*UseMI
= &*I
;
1671 if (UseMI
->getOpcode() == PPC::BCC
) {
1672 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1673 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1674 // We ignore hint bits when checking for non-equality comparisons.
1675 if (PredCond
!= PPC::PRED_EQ
&& PredCond
!= PPC::PRED_NE
)
1677 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1678 UseMI
->getOpcode() == PPC::ISEL8
) {
1679 unsigned SubIdx
= UseMI
->getOperand(3).getSubReg();
1680 if (SubIdx
!= PPC::sub_eq
)
1687 MachineBasicBlock::iterator I
= CmpInstr
;
1689 // Scan forward to find the first use of the compare.
1690 for (MachineBasicBlock::iterator EL
= CmpInstr
.getParent()->end(); I
!= EL
;
1692 bool FoundUse
= false;
1693 for (MachineRegisterInfo::use_instr_iterator
1694 J
= MRI
->use_instr_begin(CRReg
), JE
= MRI
->use_instr_end();
1705 SmallVector
<std::pair
<MachineOperand
*, PPC::Predicate
>, 4> PredsToUpdate
;
1706 SmallVector
<std::pair
<MachineOperand
*, unsigned>, 4> SubRegsToUpdate
;
1708 // There are two possible candidates which can be changed to set CR[01].
1709 // One is MI, the other is a SUB instruction.
1710 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1711 MachineInstr
*Sub
= nullptr;
1713 // MI is not a candidate for CMPrr.
1715 // FIXME: Conservatively refuse to convert an instruction which isn't in the
1716 // same BB as the comparison. This is to allow the check below to avoid calls
1717 // (and other explicit clobbers); instead we should really check for these
1718 // more explicitly (in at least a few predecessors).
1719 else if (MI
->getParent() != CmpInstr
.getParent())
1721 else if (Value
!= 0) {
1722 // The record-form instructions set CR bit based on signed comparison
1723 // against 0. We try to convert a compare against 1 or -1 into a compare
1724 // against 0 to exploit record-form instructions. For example, we change
1725 // the condition "greater than -1" into "greater than or equal to 0"
1726 // and "less than 1" into "less than or equal to 0".
1728 // Since we optimize comparison based on a specific branch condition,
1729 // we don't optimize if condition code is used by more than once.
1730 if (equalityOnly
|| !MRI
->hasOneUse(CRReg
))
1733 MachineInstr
*UseMI
= &*MRI
->use_instr_begin(CRReg
);
1734 if (UseMI
->getOpcode() != PPC::BCC
)
1737 PPC::Predicate Pred
= (PPC::Predicate
)UseMI
->getOperand(0).getImm();
1738 PPC::Predicate NewPred
= Pred
;
1739 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1740 unsigned PredHint
= PPC::getPredicateHint(Pred
);
1741 int16_t Immed
= (int16_t)Value
;
1743 // When modyfing the condition in the predicate, we propagate hint bits
1744 // from the original predicate to the new one.
1745 if (Immed
== -1 && PredCond
== PPC::PRED_GT
)
1746 // We convert "greater than -1" into "greater than or equal to 0",
1747 // since we are assuming signed comparison by !equalityOnly
1748 NewPred
= PPC::getPredicate(PPC::PRED_GE
, PredHint
);
1749 else if (Immed
== -1 && PredCond
== PPC::PRED_LE
)
1750 // We convert "less than or equal to -1" into "less than 0".
1751 NewPred
= PPC::getPredicate(PPC::PRED_LT
, PredHint
);
1752 else if (Immed
== 1 && PredCond
== PPC::PRED_LT
)
1753 // We convert "less than 1" into "less than or equal to 0".
1754 NewPred
= PPC::getPredicate(PPC::PRED_LE
, PredHint
);
1755 else if (Immed
== 1 && PredCond
== PPC::PRED_GE
)
1756 // We convert "greater than or equal to 1" into "greater than 0".
1757 NewPred
= PPC::getPredicate(PPC::PRED_GT
, PredHint
);
1761 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1766 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1769 // Get ready to iterate backward from CmpInstr.
1770 MachineBasicBlock::iterator E
= MI
, B
= CmpInstr
.getParent()->begin();
1772 for (; I
!= E
&& !noSub
; --I
) {
1773 const MachineInstr
&Instr
= *I
;
1774 unsigned IOpC
= Instr
.getOpcode();
1776 if (&*I
!= &CmpInstr
&& (Instr
.modifiesRegister(PPC::CR0
, TRI
) ||
1777 Instr
.readsRegister(PPC::CR0
, TRI
)))
1778 // This instruction modifies or uses the record condition register after
1779 // the one we want to change. While we could do this transformation, it
1780 // would likely not be profitable. This transformation removes one
1781 // instruction, and so even forcing RA to generate one move probably
1782 // makes it unprofitable.
1785 // Check whether CmpInstr can be made redundant by the current instruction.
1786 if ((OpC
== PPC::CMPW
|| OpC
== PPC::CMPLW
||
1787 OpC
== PPC::CMPD
|| OpC
== PPC::CMPLD
) &&
1788 (IOpC
== PPC::SUBF
|| IOpC
== PPC::SUBF8
) &&
1789 ((Instr
.getOperand(1).getReg() == SrcReg
&&
1790 Instr
.getOperand(2).getReg() == SrcReg2
) ||
1791 (Instr
.getOperand(1).getReg() == SrcReg2
&&
1792 Instr
.getOperand(2).getReg() == SrcReg
))) {
1798 // The 'and' is below the comparison instruction.
1802 // Return false if no candidates exist.
1806 // The single candidate is called MI.
1810 int MIOpC
= MI
->getOpcode();
1811 if (MIOpC
== PPC::ANDIo
|| MIOpC
== PPC::ANDIo8
)
1814 NewOpC
= PPC::getRecordFormOpcode(MIOpC
);
1815 if (NewOpC
== -1 && PPC::getNonRecordFormOpcode(MIOpC
) != -1)
1819 // FIXME: On the non-embedded POWER architectures, only some of the record
1820 // forms are fast, and we should use only the fast ones.
1822 // The defining instruction has a record form (or is already a record
1823 // form). It is possible, however, that we'll need to reverse the condition
1824 // code of the users.
1828 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1829 // needs to be updated to be based on SUB. Push the condition code
1830 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
1831 // condition code of these operands will be modified.
1832 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
1833 // comparison against 0, which may modify predicate.
1834 bool ShouldSwap
= false;
1835 if (Sub
&& Value
== 0) {
1836 ShouldSwap
= SrcReg2
!= 0 && Sub
->getOperand(1).getReg() == SrcReg2
&&
1837 Sub
->getOperand(2).getReg() == SrcReg
;
1839 // The operands to subf are the opposite of sub, so only in the fixed-point
1840 // case, invert the order.
1841 ShouldSwap
= !ShouldSwap
;
1845 for (MachineRegisterInfo::use_instr_iterator
1846 I
= MRI
->use_instr_begin(CRReg
), IE
= MRI
->use_instr_end();
1848 MachineInstr
*UseMI
= &*I
;
1849 if (UseMI
->getOpcode() == PPC::BCC
) {
1850 PPC::Predicate Pred
= (PPC::Predicate
) UseMI
->getOperand(0).getImm();
1851 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
1852 assert((!equalityOnly
||
1853 PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
) &&
1854 "Invalid predicate for equality-only optimization");
1855 (void)PredCond
; // To suppress warning in release build.
1856 PredsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(0)),
1857 PPC::getSwappedPredicate(Pred
)));
1858 } else if (UseMI
->getOpcode() == PPC::ISEL
||
1859 UseMI
->getOpcode() == PPC::ISEL8
) {
1860 unsigned NewSubReg
= UseMI
->getOperand(3).getSubReg();
1861 assert((!equalityOnly
|| NewSubReg
== PPC::sub_eq
) &&
1862 "Invalid CR bit for equality-only optimization");
1864 if (NewSubReg
== PPC::sub_lt
)
1865 NewSubReg
= PPC::sub_gt
;
1866 else if (NewSubReg
== PPC::sub_gt
)
1867 NewSubReg
= PPC::sub_lt
;
1869 SubRegsToUpdate
.push_back(std::make_pair(&(UseMI
->getOperand(3)),
1871 } else // We need to abort on a user we don't understand.
1874 assert(!(Value
!= 0 && ShouldSwap
) &&
1875 "Non-zero immediate support and ShouldSwap"
1876 "may conflict in updating predicate");
1878 // Create a new virtual register to hold the value of the CR set by the
1879 // record-form instruction. If the instruction was not previously in
1880 // record form, then set the kill flag on the CR.
1881 CmpInstr
.eraseFromParent();
1883 MachineBasicBlock::iterator MII
= MI
;
1884 BuildMI(*MI
->getParent(), std::next(MII
), MI
->getDebugLoc(),
1885 get(TargetOpcode::COPY
), CRReg
)
1886 .addReg(PPC::CR0
, MIOpC
!= NewOpC
? RegState::Kill
: 0);
1888 // Even if CR0 register were dead before, it is alive now since the
1889 // instruction we just built uses it.
1890 MI
->clearRegisterDeads(PPC::CR0
);
1892 if (MIOpC
!= NewOpC
) {
1893 // We need to be careful here: we're replacing one instruction with
1894 // another, and we need to make sure that we get all of the right
1895 // implicit uses and defs. On the other hand, the caller may be holding
1896 // an iterator to this instruction, and so we can't delete it (this is
1897 // specifically the case if this is the instruction directly after the
1900 const MCInstrDesc
&NewDesc
= get(NewOpC
);
1901 MI
->setDesc(NewDesc
);
1903 if (NewDesc
.ImplicitDefs
)
1904 for (const MCPhysReg
*ImpDefs
= NewDesc
.getImplicitDefs();
1905 *ImpDefs
; ++ImpDefs
)
1906 if (!MI
->definesRegister(*ImpDefs
))
1907 MI
->addOperand(*MI
->getParent()->getParent(),
1908 MachineOperand::CreateReg(*ImpDefs
, true, true));
1909 if (NewDesc
.ImplicitUses
)
1910 for (const MCPhysReg
*ImpUses
= NewDesc
.getImplicitUses();
1911 *ImpUses
; ++ImpUses
)
1912 if (!MI
->readsRegister(*ImpUses
))
1913 MI
->addOperand(*MI
->getParent()->getParent(),
1914 MachineOperand::CreateReg(*ImpUses
, false, true));
1916 assert(MI
->definesRegister(PPC::CR0
) &&
1917 "Record-form instruction does not define cr0?");
1919 // Modify the condition code of operands in OperandsToUpdate.
1920 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1921 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1922 for (unsigned i
= 0, e
= PredsToUpdate
.size(); i
< e
; i
++)
1923 PredsToUpdate
[i
].first
->setImm(PredsToUpdate
[i
].second
);
1925 for (unsigned i
= 0, e
= SubRegsToUpdate
.size(); i
< e
; i
++)
1926 SubRegsToUpdate
[i
].first
->setSubReg(SubRegsToUpdate
[i
].second
);
1931 /// GetInstSize - Return the number of bytes of code the specified
1932 /// instruction may be. This returns the maximum number of bytes.
1934 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
1935 unsigned Opcode
= MI
.getOpcode();
1937 if (Opcode
== PPC::INLINEASM
) {
1938 const MachineFunction
*MF
= MI
.getParent()->getParent();
1939 const char *AsmStr
= MI
.getOperand(0).getSymbolName();
1940 return getInlineAsmLength(AsmStr
, *MF
->getTarget().getMCAsmInfo());
1941 } else if (Opcode
== TargetOpcode::STACKMAP
) {
1942 StackMapOpers
Opers(&MI
);
1943 return Opers
.getNumPatchBytes();
1944 } else if (Opcode
== TargetOpcode::PATCHPOINT
) {
1945 PatchPointOpers
Opers(&MI
);
1946 return Opers
.getNumPatchBytes();
1948 return get(Opcode
).getSize();
1952 std::pair
<unsigned, unsigned>
1953 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
1954 const unsigned Mask
= PPCII::MO_ACCESS_MASK
;
1955 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
1958 ArrayRef
<std::pair
<unsigned, const char *>>
1959 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1960 using namespace PPCII
;
1961 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
1964 {MO_TPREL_LO
, "ppc-tprel-lo"},
1965 {MO_TPREL_HA
, "ppc-tprel-ha"},
1966 {MO_DTPREL_LO
, "ppc-dtprel-lo"},
1967 {MO_TLSLD_LO
, "ppc-tlsld-lo"},
1968 {MO_TOC_LO
, "ppc-toc-lo"},
1969 {MO_TLS
, "ppc-tls"}};
1970 return makeArrayRef(TargetFlags
);
1973 ArrayRef
<std::pair
<unsigned, const char *>>
1974 PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1975 using namespace PPCII
;
1976 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
1977 {MO_PLT
, "ppc-plt"},
1978 {MO_PIC_FLAG
, "ppc-pic"},
1979 {MO_NLP_FLAG
, "ppc-nlp"},
1980 {MO_NLP_HIDDEN_FLAG
, "ppc-nlp-hidden"}};
1981 return makeArrayRef(TargetFlags
);
1984 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
1985 // The VSX versions have the advantage of a full 64-register target whereas
1986 // the FP ones have the advantage of lower latency and higher throughput. So
1987 // what we are after is using the faster instructions in low register pressure
1988 // situations and using the larger register file in high register pressure
1990 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr
&MI
) const {
1991 unsigned UpperOpcode
, LowerOpcode
;
1992 switch (MI
.getOpcode()) {
1993 case PPC::DFLOADf32
:
1994 UpperOpcode
= PPC::LXSSP
;
1995 LowerOpcode
= PPC::LFS
;
1997 case PPC::DFLOADf64
:
1998 UpperOpcode
= PPC::LXSD
;
1999 LowerOpcode
= PPC::LFD
;
2001 case PPC::DFSTOREf32
:
2002 UpperOpcode
= PPC::STXSSP
;
2003 LowerOpcode
= PPC::STFS
;
2005 case PPC::DFSTOREf64
:
2006 UpperOpcode
= PPC::STXSD
;
2007 LowerOpcode
= PPC::STFD
;
2009 case PPC::XFLOADf32
:
2010 UpperOpcode
= PPC::LXSSPX
;
2011 LowerOpcode
= PPC::LFSX
;
2013 case PPC::XFLOADf64
:
2014 UpperOpcode
= PPC::LXSDX
;
2015 LowerOpcode
= PPC::LFDX
;
2017 case PPC::XFSTOREf32
:
2018 UpperOpcode
= PPC::STXSSPX
;
2019 LowerOpcode
= PPC::STFSX
;
2021 case PPC::XFSTOREf64
:
2022 UpperOpcode
= PPC::STXSDX
;
2023 LowerOpcode
= PPC::STFDX
;
2026 UpperOpcode
= PPC::LXSIWAX
;
2027 LowerOpcode
= PPC::LFIWAX
;
2030 UpperOpcode
= PPC::LXSIWZX
;
2031 LowerOpcode
= PPC::LFIWZX
;
2034 UpperOpcode
= PPC::STXSIWX
;
2035 LowerOpcode
= PPC::STFIWX
;
2038 llvm_unreachable("Unknown Operation!");
2041 unsigned TargetReg
= MI
.getOperand(0).getReg();
2043 if ((TargetReg
>= PPC::F0
&& TargetReg
<= PPC::F31
) ||
2044 (TargetReg
>= PPC::VSL0
&& TargetReg
<= PPC::VSL31
))
2045 Opcode
= LowerOpcode
;
2047 Opcode
= UpperOpcode
;
2048 MI
.setDesc(get(Opcode
));
2052 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
2053 auto &MBB
= *MI
.getParent();
2054 auto DL
= MI
.getDebugLoc();
2056 switch (MI
.getOpcode()) {
2057 case TargetOpcode::LOAD_STACK_GUARD
: {
2058 assert(Subtarget
.isTargetLinux() &&
2059 "Only Linux target is expected to contain LOAD_STACK_GUARD");
2060 const int64_t Offset
= Subtarget
.isPPC64() ? -0x7010 : -0x7008;
2061 const unsigned Reg
= Subtarget
.isPPC64() ? PPC::X13
: PPC::R2
;
2062 MI
.setDesc(get(Subtarget
.isPPC64() ? PPC::LD
: PPC::LWZ
));
2063 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2068 case PPC::DFLOADf32
:
2069 case PPC::DFLOADf64
:
2070 case PPC::DFSTOREf32
:
2071 case PPC::DFSTOREf64
: {
2072 assert(Subtarget
.hasP9Vector() &&
2073 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
2074 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isImm() &&
2075 "D-form op must have register and immediate operands");
2076 return expandVSXMemPseudo(MI
);
2078 case PPC::XFLOADf32
:
2079 case PPC::XFSTOREf32
:
2083 assert(Subtarget
.hasP8Vector() &&
2084 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
2085 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2086 "X-form op must have register and register operands");
2087 return expandVSXMemPseudo(MI
);
2089 case PPC::XFLOADf64
:
2090 case PPC::XFSTOREf64
: {
2091 assert(Subtarget
.hasVSX() &&
2092 "Invalid X-Form Pseudo-ops on target that has no VSX.");
2093 assert(MI
.getOperand(2).isReg() && MI
.getOperand(1).isReg() &&
2094 "X-form op must have register and register operands");
2095 return expandVSXMemPseudo(MI
);
2097 case PPC::SPILLTOVSR_LD
: {
2098 unsigned TargetReg
= MI
.getOperand(0).getReg();
2099 if (PPC::VSFRCRegClass
.contains(TargetReg
)) {
2100 MI
.setDesc(get(PPC::DFLOADf64
));
2101 return expandPostRAPseudo(MI
);
2104 MI
.setDesc(get(PPC::LD
));
2107 case PPC::SPILLTOVSR_ST
: {
2108 unsigned SrcReg
= MI
.getOperand(0).getReg();
2109 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2110 NumStoreSPILLVSRRCAsVec
++;
2111 MI
.setDesc(get(PPC::DFSTOREf64
));
2112 return expandPostRAPseudo(MI
);
2114 NumStoreSPILLVSRRCAsGpr
++;
2115 MI
.setDesc(get(PPC::STD
));
2119 case PPC::SPILLTOVSR_LDX
: {
2120 unsigned TargetReg
= MI
.getOperand(0).getReg();
2121 if (PPC::VSFRCRegClass
.contains(TargetReg
))
2122 MI
.setDesc(get(PPC::LXSDX
));
2124 MI
.setDesc(get(PPC::LDX
));
2127 case PPC::SPILLTOVSR_STX
: {
2128 unsigned SrcReg
= MI
.getOperand(0).getReg();
2129 if (PPC::VSFRCRegClass
.contains(SrcReg
)) {
2130 NumStoreSPILLVSRRCAsVec
++;
2131 MI
.setDesc(get(PPC::STXSDX
));
2133 NumStoreSPILLVSRRCAsGpr
++;
2134 MI
.setDesc(get(PPC::STDX
));
2139 case PPC::CFENCE8
: {
2140 auto Val
= MI
.getOperand(0).getReg();
2141 BuildMI(MBB
, MI
, DL
, get(PPC::CMPD
), PPC::CR7
).addReg(Val
).addReg(Val
);
2142 BuildMI(MBB
, MI
, DL
, get(PPC::CTRL_DEP
))
2143 .addImm(PPC::PRED_NE_MINUS
)
2146 MI
.setDesc(get(PPC::ISYNC
));
2147 MI
.RemoveOperand(0);
2154 unsigned PPCInstrInfo::lookThruCopyLike(unsigned SrcReg
,
2155 const MachineRegisterInfo
*MRI
) {
2157 MachineInstr
*MI
= MRI
->getVRegDef(SrcReg
);
2158 if (!MI
->isCopyLike())
2161 unsigned CopySrcReg
;
2163 CopySrcReg
= MI
->getOperand(1).getReg();
2165 assert(MI
->isSubregToReg() && "Bad opcode for lookThruCopyLike");
2166 CopySrcReg
= MI
->getOperand(2).getReg();
2169 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg
))
2172 SrcReg
= CopySrcReg
;
2176 // Essentially a compile-time implementation of a compare->isel sequence.
2177 // It takes two constants to compare, along with the true/false registers
2178 // and the comparison type (as a subreg to a CR field) and returns one
2179 // of the true/false registers, depending on the comparison results.
2180 static unsigned selectReg(int64_t Imm1
, int64_t Imm2
, unsigned CompareOpc
,
2181 unsigned TrueReg
, unsigned FalseReg
,
2182 unsigned CRSubReg
) {
2183 // Signed comparisons. The immediates are assumed to be sign-extended.
2184 if (CompareOpc
== PPC::CMPWI
|| CompareOpc
== PPC::CMPDI
) {
2186 default: llvm_unreachable("Unknown integer comparison type.");
2188 return Imm1
< Imm2
? TrueReg
: FalseReg
;
2190 return Imm1
> Imm2
? TrueReg
: FalseReg
;
2192 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2195 // Unsigned comparisons.
2196 else if (CompareOpc
== PPC::CMPLWI
|| CompareOpc
== PPC::CMPLDI
) {
2198 default: llvm_unreachable("Unknown integer comparison type.");
2200 return (uint64_t)Imm1
< (uint64_t)Imm2
? TrueReg
: FalseReg
;
2202 return (uint64_t)Imm1
> (uint64_t)Imm2
? TrueReg
: FalseReg
;
2204 return Imm1
== Imm2
? TrueReg
: FalseReg
;
2207 return PPC::NoRegister
;
2210 // Replace an instruction with one that materializes a constant (and sets
2211 // CR0 if the original instruction was a record-form instruction).
2212 void PPCInstrInfo::replaceInstrWithLI(MachineInstr
&MI
,
2213 const LoadImmediateInfo
&LII
) const {
2214 // Remove existing operands.
2215 int OperandToKeep
= LII
.SetCR
? 1 : 0;
2216 for (int i
= MI
.getNumOperands() - 1; i
> OperandToKeep
; i
--)
2217 MI
.RemoveOperand(i
);
2219 // Replace the instruction.
2221 MI
.setDesc(get(LII
.Is64Bit
? PPC::ANDIo8
: PPC::ANDIo
));
2223 MI
.setDesc(get(LII
.Is64Bit
? PPC::LI8
: PPC::LI
));
2225 // Set the immediate.
2226 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
2230 MachineInstr
*PPCInstrInfo::getConstantDefMI(MachineInstr
&MI
,
2232 bool &SeenIntermediateUse
) const {
2234 MachineInstr
*DefMI
= nullptr;
2235 MachineRegisterInfo
*MRI
= &MI
.getParent()->getParent()->getRegInfo();
2236 // If we'ere in SSA, get the defs through the MRI. Otherwise, only look
2237 // within the basic block to see if the register is defined using an LI/LI8.
2239 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2240 if (!MI
.getOperand(i
).isReg())
2242 unsigned Reg
= MI
.getOperand(i
).getReg();
2243 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
2245 unsigned TrueReg
= lookThruCopyLike(Reg
, MRI
);
2246 if (TargetRegisterInfo::isVirtualRegister(TrueReg
)) {
2247 DefMI
= MRI
->getVRegDef(TrueReg
);
2248 if (DefMI
->getOpcode() == PPC::LI
|| DefMI
->getOpcode() == PPC::LI8
) {
2255 // Looking back through the definition for each operand could be expensive,
2256 // so exit early if this isn't an instruction that either has an immediate
2257 // form or is already an immediate form that we can handle.
2259 unsigned Opc
= MI
.getOpcode();
2260 bool ConvertibleImmForm
=
2261 Opc
== PPC::CMPWI
|| Opc
== PPC::CMPLWI
||
2262 Opc
== PPC::CMPDI
|| Opc
== PPC::CMPLDI
||
2263 Opc
== PPC::ADDI
|| Opc
== PPC::ADDI8
||
2264 Opc
== PPC::ORI
|| Opc
== PPC::ORI8
||
2265 Opc
== PPC::XORI
|| Opc
== PPC::XORI8
||
2266 Opc
== PPC::RLDICL
|| Opc
== PPC::RLDICLo
||
2267 Opc
== PPC::RLDICL_32
|| Opc
== PPC::RLDICL_32_64
||
2268 Opc
== PPC::RLWINM
|| Opc
== PPC::RLWINMo
||
2269 Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2270 if (!instrHasImmForm(MI
, III
) && !ConvertibleImmForm
)
2273 // Don't convert or %X, %Y, %Y since that's just a register move.
2274 if ((Opc
== PPC::OR
|| Opc
== PPC::OR8
) &&
2275 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
2277 for (int i
= 1, e
= MI
.getNumOperands(); i
< e
; i
++) {
2278 MachineOperand
&MO
= MI
.getOperand(i
);
2279 SeenIntermediateUse
= false;
2280 if (MO
.isReg() && MO
.isUse() && !MO
.isImplicit()) {
2281 MachineBasicBlock::reverse_iterator E
= MI
.getParent()->rend(), It
= MI
;
2283 unsigned Reg
= MI
.getOperand(i
).getReg();
2285 // Is this register defined by a load-immediate in this block?
2286 for ( ; It
!= E
; ++It
) {
2287 if (It
->modifiesRegister(Reg
, &getRegisterInfo())) {
2288 if (It
->getOpcode() == PPC::LI
|| It
->getOpcode() == PPC::LI8
) {
2293 } else if (It
->readsRegister(Reg
, &getRegisterInfo()))
2294 // If we see another use of this reg between the def and the MI,
2295 // we want to flat it so the def isn't deleted.
2296 SeenIntermediateUse
= true;
2301 return ConstOp
== ~0U ? nullptr : DefMI
;
2304 // If this instruction has an immediate form and one of its operands is a
2305 // result of a load-immediate, convert it to the immediate form if the constant
2307 bool PPCInstrInfo::convertToImmediateForm(MachineInstr
&MI
,
2308 MachineInstr
**KilledDef
) const {
2309 MachineFunction
*MF
= MI
.getParent()->getParent();
2310 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
2311 bool PostRA
= !MRI
->isSSA();
2312 bool SeenIntermediateUse
= true;
2313 unsigned ConstantOperand
= ~0U;
2314 MachineInstr
*DefMI
= getConstantDefMI(MI
, ConstantOperand
,
2315 SeenIntermediateUse
);
2316 if (!DefMI
|| !DefMI
->getOperand(1).isImm())
2318 assert(ConstantOperand
< MI
.getNumOperands() &&
2319 "The constant operand needs to be valid at this point");
2321 int64_t Immediate
= DefMI
->getOperand(1).getImm();
2322 // Sign-extend to 64-bits.
2323 int64_t SExtImm
= ((uint64_t)Immediate
& ~0x7FFFuLL
) != 0 ?
2324 (Immediate
| 0xFFFFFFFFFFFF0000) : Immediate
;
2326 if (KilledDef
&& MI
.getOperand(ConstantOperand
).isKill() &&
2327 !SeenIntermediateUse
)
2330 // If this is a reg+reg instruction that has a reg+imm form, convert it now.
2332 if (instrHasImmForm(MI
, III
))
2333 return transformToImmForm(MI
, III
, ConstantOperand
, SExtImm
);
2335 bool ReplaceWithLI
= false;
2336 bool Is64BitLI
= false;
2339 unsigned Opc
= MI
.getOpcode();
2341 default: return false;
2343 // FIXME: Any branches conditional on such a comparison can be made
2344 // unconditional. At this time, this happens too infrequently to be worth
2345 // the implementation effort, but if that ever changes, we could convert
2346 // such a pattern here.
2351 // Doing this post-RA would require dataflow analysis to reliably find uses
2352 // of the CR register set by the compare.
2355 // If a compare-immediate is fed by an immediate and is itself an input of
2356 // an ISEL (the most common case) into a COPY of the correct register.
2357 bool Changed
= false;
2358 unsigned DefReg
= MI
.getOperand(0).getReg();
2359 int64_t Comparand
= MI
.getOperand(2).getImm();
2360 int64_t SExtComparand
= ((uint64_t)Comparand
& ~0x7FFFuLL
) != 0 ?
2361 (Comparand
| 0xFFFFFFFFFFFF0000) : Comparand
;
2363 for (auto &CompareUseMI
: MRI
->use_instructions(DefReg
)) {
2364 unsigned UseOpc
= CompareUseMI
.getOpcode();
2365 if (UseOpc
!= PPC::ISEL
&& UseOpc
!= PPC::ISEL8
)
2367 unsigned CRSubReg
= CompareUseMI
.getOperand(3).getSubReg();
2368 unsigned TrueReg
= CompareUseMI
.getOperand(1).getReg();
2369 unsigned FalseReg
= CompareUseMI
.getOperand(2).getReg();
2370 unsigned RegToCopy
= selectReg(SExtImm
, SExtComparand
, Opc
, TrueReg
,
2371 FalseReg
, CRSubReg
);
2372 if (RegToCopy
== PPC::NoRegister
)
2374 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
2375 if (RegToCopy
== PPC::ZERO
|| RegToCopy
== PPC::ZERO8
) {
2376 CompareUseMI
.setDesc(get(UseOpc
== PPC::ISEL8
? PPC::LI8
: PPC::LI
));
2377 CompareUseMI
.getOperand(1).ChangeToImmediate(0);
2378 CompareUseMI
.RemoveOperand(3);
2379 CompareUseMI
.RemoveOperand(2);
2382 DEBUG(dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
2383 DEBUG(DefMI
->dump(); MI
.dump(); CompareUseMI
.dump());
2384 DEBUG(dbgs() << "Is converted to:\n");
2385 // Convert to copy and remove unneeded operands.
2386 CompareUseMI
.setDesc(get(PPC::COPY
));
2387 CompareUseMI
.RemoveOperand(3);
2388 CompareUseMI
.RemoveOperand(RegToCopy
== TrueReg
? 2 : 1);
2389 CmpIselsConverted
++;
2391 DEBUG(CompareUseMI
.dump());
2395 // This may end up incremented multiple times since this function is called
2396 // during a fixed-point transformation, but it is only meant to indicate the
2397 // presence of this opportunity.
2398 MissedConvertibleImmediateInstrs
++;
2402 // Immediate forms - may simply be convertable to an LI.
2405 // Does the sum fit in a 16-bit signed field?
2406 int64_t Addend
= MI
.getOperand(2).getImm();
2407 if (isInt
<16>(Addend
+ SExtImm
)) {
2408 ReplaceWithLI
= true;
2409 Is64BitLI
= Opc
== PPC::ADDI8
;
2410 NewImm
= Addend
+ SExtImm
;
2416 case PPC::RLDICL_32
:
2417 case PPC::RLDICL_32_64
: {
2418 // Use APInt's rotate function.
2419 int64_t SH
= MI
.getOperand(2).getImm();
2420 int64_t MB
= MI
.getOperand(3).getImm();
2421 APInt
InVal(Opc
== PPC::RLDICL
? 64 : 32, SExtImm
, true);
2422 InVal
= InVal
.rotl(SH
);
2423 uint64_t Mask
= (1LU << (63 - MB
+ 1)) - 1;
2425 // Can't replace negative values with an LI as that will sign-extend
2426 // and not clear the left bits. If we're setting the CR bit, we will use
2427 // ANDIo which won't sign extend, so that's safe.
2428 if (isUInt
<15>(InVal
.getSExtValue()) ||
2429 (Opc
== PPC::RLDICLo
&& isUInt
<16>(InVal
.getSExtValue()))) {
2430 ReplaceWithLI
= true;
2431 Is64BitLI
= Opc
!= PPC::RLDICL_32
;
2432 NewImm
= InVal
.getSExtValue();
2433 SetCR
= Opc
== PPC::RLDICLo
;
2441 case PPC::RLWINM8o
: {
2442 int64_t SH
= MI
.getOperand(2).getImm();
2443 int64_t MB
= MI
.getOperand(3).getImm();
2444 int64_t ME
= MI
.getOperand(4).getImm();
2445 APInt
InVal(32, SExtImm
, true);
2446 InVal
= InVal
.rotl(SH
);
2447 // Set the bits ( MB + 32 ) to ( ME + 32 ).
2448 uint64_t Mask
= ((1 << (32 - MB
)) - 1) & ~((1 << (31 - ME
)) - 1);
2450 // Can't replace negative values with an LI as that will sign-extend
2451 // and not clear the left bits. If we're setting the CR bit, we will use
2452 // ANDIo which won't sign extend, so that's safe.
2453 bool ValueFits
= isUInt
<15>(InVal
.getSExtValue());
2454 ValueFits
|= ((Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
) &&
2455 isUInt
<16>(InVal
.getSExtValue()));
2457 ReplaceWithLI
= true;
2458 Is64BitLI
= Opc
== PPC::RLWINM8
|| Opc
== PPC::RLWINM8o
;
2459 NewImm
= InVal
.getSExtValue();
2460 SetCR
= Opc
== PPC::RLWINMo
|| Opc
== PPC::RLWINM8o
;
2469 int64_t LogicalImm
= MI
.getOperand(2).getImm();
2471 if (Opc
== PPC::ORI
|| Opc
== PPC::ORI8
)
2472 Result
= LogicalImm
| SExtImm
;
2474 Result
= LogicalImm
^ SExtImm
;
2475 if (isInt
<16>(Result
)) {
2476 ReplaceWithLI
= true;
2477 Is64BitLI
= Opc
== PPC::ORI8
|| Opc
== PPC::XORI8
;
2485 if (ReplaceWithLI
) {
2486 DEBUG(dbgs() << "Replacing instruction:\n");
2488 DEBUG(dbgs() << "Fed by:\n");
2489 DEBUG(DefMI
->dump());
2490 LoadImmediateInfo LII
;
2492 LII
.Is64Bit
= Is64BitLI
;
2494 // If we're setting the CR, the original load-immediate must be kept (as an
2495 // operand to ANDIo/ANDI8o).
2496 if (KilledDef
&& SetCR
)
2497 *KilledDef
= nullptr;
2498 replaceInstrWithLI(MI
, LII
);
2499 DEBUG(dbgs() << "With:\n");
2506 bool PPCInstrInfo::instrHasImmForm(const MachineInstr
&MI
,
2507 ImmInstrInfo
&III
) const {
2508 unsigned Opc
= MI
.getOpcode();
2509 // The vast majority of the instructions would need their operand 2 replaced
2510 // with an immediate when switching to the reg+imm form. A marked exception
2511 // are the update form loads/stores for which a constant operand 2 would need
2512 // to turn into a displacement and move operand 1 to the operand 2 position.
2514 III
.ConstantOpNo
= 2;
2516 III
.ImmMustBeMultipleOf
= 1;
2518 default: return false;
2521 III
.SignedImm
= true;
2522 III
.ZeroIsSpecialOrig
= 0;
2523 III
.ZeroIsSpecialNew
= 1;
2524 III
.IsCommutative
= true;
2525 III
.ImmOpcode
= Opc
== PPC::ADD4
? PPC::ADDI
: PPC::ADDI8
;
2529 III
.SignedImm
= true;
2530 III
.ZeroIsSpecialOrig
= 0;
2531 III
.ZeroIsSpecialNew
= 0;
2532 III
.IsCommutative
= true;
2533 III
.ImmOpcode
= Opc
== PPC::ADDC
? PPC::ADDIC
: PPC::ADDIC8
;
2536 III
.SignedImm
= true;
2537 III
.ZeroIsSpecialOrig
= 0;
2538 III
.ZeroIsSpecialNew
= 0;
2539 III
.IsCommutative
= true;
2540 III
.ImmOpcode
= PPC::ADDICo
;
2544 III
.SignedImm
= true;
2545 III
.ZeroIsSpecialOrig
= 0;
2546 III
.ZeroIsSpecialNew
= 0;
2547 III
.IsCommutative
= false;
2548 III
.ImmOpcode
= Opc
== PPC::SUBFC
? PPC::SUBFIC
: PPC::SUBFIC8
;
2552 III
.SignedImm
= true;
2553 III
.ZeroIsSpecialOrig
= 0;
2554 III
.ZeroIsSpecialNew
= 0;
2555 III
.IsCommutative
= false;
2556 III
.ImmOpcode
= Opc
== PPC::CMPW
? PPC::CMPWI
: PPC::CMPDI
;
2560 III
.SignedImm
= false;
2561 III
.ZeroIsSpecialOrig
= 0;
2562 III
.ZeroIsSpecialNew
= 0;
2563 III
.IsCommutative
= false;
2564 III
.ImmOpcode
= Opc
== PPC::CMPLW
? PPC::CMPLWI
: PPC::CMPLDI
;
2572 III
.SignedImm
= false;
2573 III
.ZeroIsSpecialOrig
= 0;
2574 III
.ZeroIsSpecialNew
= 0;
2575 III
.IsCommutative
= true;
2577 default: llvm_unreachable("Unknown opcode");
2578 case PPC::ANDo
: III
.ImmOpcode
= PPC::ANDIo
; break;
2579 case PPC::AND8o
: III
.ImmOpcode
= PPC::ANDIo8
; break;
2580 case PPC::OR
: III
.ImmOpcode
= PPC::ORI
; break;
2581 case PPC::OR8
: III
.ImmOpcode
= PPC::ORI8
; break;
2582 case PPC::XOR
: III
.ImmOpcode
= PPC::XORI
; break;
2583 case PPC::XOR8
: III
.ImmOpcode
= PPC::XORI8
; break;
2610 III
.SignedImm
= false;
2611 III
.ZeroIsSpecialOrig
= 0;
2612 III
.ZeroIsSpecialNew
= 0;
2613 III
.IsCommutative
= false;
2614 // This isn't actually true, but the instructions ignore any of the
2615 // upper bits, so any immediate loaded with an LI is acceptable.
2618 default: llvm_unreachable("Unknown opcode");
2619 case PPC::RLWNM
: III
.ImmOpcode
= PPC::RLWINM
; break;
2620 case PPC::RLWNM8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2621 case PPC::RLWNMo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2622 case PPC::RLWNM8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2623 case PPC::RLDCL
: III
.ImmOpcode
= PPC::RLDICL
; break;
2624 case PPC::RLDCLo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2625 case PPC::RLDCR
: III
.ImmOpcode
= PPC::RLDICR
; break;
2626 case PPC::RLDCRo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2627 case PPC::SLW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2628 case PPC::SLW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2629 case PPC::SLWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2630 case PPC::SLW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2631 case PPC::SRW
: III
.ImmOpcode
= PPC::RLWINM
; break;
2632 case PPC::SRW8
: III
.ImmOpcode
= PPC::RLWINM8
; break;
2633 case PPC::SRWo
: III
.ImmOpcode
= PPC::RLWINMo
; break;
2634 case PPC::SRW8o
: III
.ImmOpcode
= PPC::RLWINM8o
; break;
2635 case PPC::SRAW
: III
.ImmOpcode
= PPC::SRAWI
; break;
2636 case PPC::SRAWo
: III
.ImmOpcode
= PPC::SRAWIo
; break;
2637 case PPC::SLD
: III
.ImmOpcode
= PPC::RLDICR
; break;
2638 case PPC::SLDo
: III
.ImmOpcode
= PPC::RLDICRo
; break;
2639 case PPC::SRD
: III
.ImmOpcode
= PPC::RLDICL
; break;
2640 case PPC::SRDo
: III
.ImmOpcode
= PPC::RLDICLo
; break;
2641 case PPC::SRAD
: III
.ImmOpcode
= PPC::SRADI
; break;
2642 case PPC::SRADo
: III
.ImmOpcode
= PPC::SRADIo
; break;
2645 // Loads and stores:
2667 III
.SignedImm
= true;
2668 III
.ZeroIsSpecialOrig
= 1;
2669 III
.ZeroIsSpecialNew
= 2;
2670 III
.IsCommutative
= true;
2672 III
.ConstantOpNo
= 2;
2674 default: llvm_unreachable("Unknown opcode");
2675 case PPC::LBZX
: III
.ImmOpcode
= PPC::LBZ
; break;
2676 case PPC::LBZX8
: III
.ImmOpcode
= PPC::LBZ8
; break;
2677 case PPC::LHZX
: III
.ImmOpcode
= PPC::LHZ
; break;
2678 case PPC::LHZX8
: III
.ImmOpcode
= PPC::LHZ8
; break;
2679 case PPC::LHAX
: III
.ImmOpcode
= PPC::LHA
; break;
2680 case PPC::LHAX8
: III
.ImmOpcode
= PPC::LHA8
; break;
2681 case PPC::LWZX
: III
.ImmOpcode
= PPC::LWZ
; break;
2682 case PPC::LWZX8
: III
.ImmOpcode
= PPC::LWZ8
; break;
2684 III
.ImmOpcode
= PPC::LWA
;
2685 III
.ImmMustBeMultipleOf
= 4;
2687 case PPC::LDX
: III
.ImmOpcode
= PPC::LD
; III
.ImmMustBeMultipleOf
= 4; break;
2688 case PPC::LFSX
: III
.ImmOpcode
= PPC::LFS
; break;
2689 case PPC::LFDX
: III
.ImmOpcode
= PPC::LFD
; break;
2690 case PPC::STBX
: III
.ImmOpcode
= PPC::STB
; break;
2691 case PPC::STBX8
: III
.ImmOpcode
= PPC::STB8
; break;
2692 case PPC::STHX
: III
.ImmOpcode
= PPC::STH
; break;
2693 case PPC::STHX8
: III
.ImmOpcode
= PPC::STH8
; break;
2694 case PPC::STWX
: III
.ImmOpcode
= PPC::STW
; break;
2695 case PPC::STWX8
: III
.ImmOpcode
= PPC::STW8
; break;
2697 III
.ImmOpcode
= PPC::STD
;
2698 III
.ImmMustBeMultipleOf
= 4;
2700 case PPC::STFSX
: III
.ImmOpcode
= PPC::STFS
; break;
2701 case PPC::STFDX
: III
.ImmOpcode
= PPC::STFD
; break;
2724 III
.SignedImm
= true;
2725 III
.ZeroIsSpecialOrig
= 2;
2726 III
.ZeroIsSpecialNew
= 3;
2727 III
.IsCommutative
= false;
2729 III
.ConstantOpNo
= 3;
2731 default: llvm_unreachable("Unknown opcode");
2732 case PPC::LBZUX
: III
.ImmOpcode
= PPC::LBZU
; break;
2733 case PPC::LBZUX8
: III
.ImmOpcode
= PPC::LBZU8
; break;
2734 case PPC::LHZUX
: III
.ImmOpcode
= PPC::LHZU
; break;
2735 case PPC::LHZUX8
: III
.ImmOpcode
= PPC::LHZU8
; break;
2736 case PPC::LHAUX
: III
.ImmOpcode
= PPC::LHAU
; break;
2737 case PPC::LHAUX8
: III
.ImmOpcode
= PPC::LHAU8
; break;
2738 case PPC::LWZUX
: III
.ImmOpcode
= PPC::LWZU
; break;
2739 case PPC::LWZUX8
: III
.ImmOpcode
= PPC::LWZU8
; break;
2741 III
.ImmOpcode
= PPC::LDU
;
2742 III
.ImmMustBeMultipleOf
= 4;
2744 case PPC::LFSUX
: III
.ImmOpcode
= PPC::LFSU
; break;
2745 case PPC::LFDUX
: III
.ImmOpcode
= PPC::LFDU
; break;
2746 case PPC::STBUX
: III
.ImmOpcode
= PPC::STBU
; break;
2747 case PPC::STBUX8
: III
.ImmOpcode
= PPC::STBU8
; break;
2748 case PPC::STHUX
: III
.ImmOpcode
= PPC::STHU
; break;
2749 case PPC::STHUX8
: III
.ImmOpcode
= PPC::STHU8
; break;
2750 case PPC::STWUX
: III
.ImmOpcode
= PPC::STWU
; break;
2751 case PPC::STWUX8
: III
.ImmOpcode
= PPC::STWU8
; break;
2753 III
.ImmOpcode
= PPC::STDU
;
2754 III
.ImmMustBeMultipleOf
= 4;
2756 case PPC::STFSUX
: III
.ImmOpcode
= PPC::STFSU
; break;
2757 case PPC::STFDUX
: III
.ImmOpcode
= PPC::STFDU
; break;
2767 if (!Subtarget
.hasP9Vector())
2769 III
.SignedImm
= true;
2770 III
.ZeroIsSpecialOrig
= 1;
2771 III
.ZeroIsSpecialNew
= 2;
2772 III
.IsCommutative
= true;
2774 III
.ConstantOpNo
= 2;
2776 default: llvm_unreachable("Unknown opcode");
2778 III
.ImmOpcode
= PPC::LXV
;
2779 III
.ImmMustBeMultipleOf
= 16;
2782 III
.ImmOpcode
= PPC::LXSSP
;
2783 III
.ImmMustBeMultipleOf
= 4;
2786 III
.ImmOpcode
= PPC::LXSD
;
2787 III
.ImmMustBeMultipleOf
= 4;
2790 III
.ImmOpcode
= PPC::STXV
;
2791 III
.ImmMustBeMultipleOf
= 16;
2794 III
.ImmOpcode
= PPC::STXSSP
;
2795 III
.ImmMustBeMultipleOf
= 4;
2798 III
.ImmOpcode
= PPC::STXSD
;
2799 III
.ImmMustBeMultipleOf
= 4;
2807 // Utility function for swaping two arbitrary operands of an instruction.
2808 static void swapMIOperands(MachineInstr
&MI
, unsigned Op1
, unsigned Op2
) {
2809 assert(Op1
!= Op2
&& "Cannot swap operand with itself.");
2811 unsigned MaxOp
= std::max(Op1
, Op2
);
2812 unsigned MinOp
= std::min(Op1
, Op2
);
2813 MachineOperand MOp1
= MI
.getOperand(MinOp
);
2814 MachineOperand MOp2
= MI
.getOperand(MaxOp
);
2815 MI
.RemoveOperand(std::max(Op1
, Op2
));
2816 MI
.RemoveOperand(std::min(Op1
, Op2
));
2818 // If the operands we are swapping are the two at the end (the common case)
2819 // we can just remove both and add them in the opposite order.
2820 if (MaxOp
- MinOp
== 1 && MI
.getNumOperands() == MinOp
) {
2821 MI
.addOperand(MOp2
);
2822 MI
.addOperand(MOp1
);
2824 // Store all operands in a temporary vector, remove them and re-add in the
2826 SmallVector
<MachineOperand
, 2> MOps
;
2827 unsigned TotalOps
= MI
.getNumOperands() + 2; // We've already removed 2 ops.
2828 for (unsigned i
= MI
.getNumOperands() - 1; i
>= MinOp
; i
--) {
2829 MOps
.push_back(MI
.getOperand(i
));
2830 MI
.RemoveOperand(i
);
2832 // MOp2 needs to be added next.
2833 MI
.addOperand(MOp2
);
2834 // Now add the rest.
2835 for (unsigned i
= MI
.getNumOperands(); i
< TotalOps
; i
++) {
2837 MI
.addOperand(MOp1
);
2839 MI
.addOperand(MOps
.back());
2846 bool PPCInstrInfo::transformToImmForm(MachineInstr
&MI
, const ImmInstrInfo
&III
,
2847 unsigned ConstantOpNo
,
2848 int64_t Imm
) const {
2849 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
2850 bool PostRA
= !MRI
.isSSA();
2851 // Exit early if we can't convert this.
2852 if ((ConstantOpNo
!= III
.ConstantOpNo
) && !III
.IsCommutative
)
2854 if (Imm
% III
.ImmMustBeMultipleOf
)
2856 if (III
.SignedImm
) {
2857 APInt
ActualValue(64, Imm
, true);
2858 if (!ActualValue
.isSignedIntN(III
.ImmWidth
))
2861 uint64_t UnsignedMax
= (1 << III
.ImmWidth
) - 1;
2862 if ((uint64_t)Imm
> UnsignedMax
)
2866 // If we're post-RA, the instructions don't agree on whether register zero is
2867 // special, we can transform this as long as the register operand that will
2868 // end up in the location where zero is special isn't R0.
2869 if (PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
2870 unsigned PosForOrigZero
= III
.ZeroIsSpecialOrig
? III
.ZeroIsSpecialOrig
:
2871 III
.ZeroIsSpecialNew
+ 1;
2872 unsigned OrigZeroReg
= MI
.getOperand(PosForOrigZero
).getReg();
2873 unsigned NewZeroReg
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
2874 // If R0 is in the operand where zero is special for the new instruction,
2875 // it is unsafe to transform if the constant operand isn't that operand.
2876 if ((NewZeroReg
== PPC::R0
|| NewZeroReg
== PPC::X0
) &&
2877 ConstantOpNo
!= III
.ZeroIsSpecialNew
)
2879 if ((OrigZeroReg
== PPC::R0
|| OrigZeroReg
== PPC::X0
) &&
2880 ConstantOpNo
!= PosForOrigZero
)
2884 unsigned Opc
= MI
.getOpcode();
2885 bool SpecialShift32
=
2886 Opc
== PPC::SLW
|| Opc
== PPC::SLWo
|| Opc
== PPC::SRW
|| Opc
== PPC::SRWo
;
2887 bool SpecialShift64
=
2888 Opc
== PPC::SLD
|| Opc
== PPC::SLDo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
2889 bool SetCR
= Opc
== PPC::SLWo
|| Opc
== PPC::SRWo
||
2890 Opc
== PPC::SLDo
|| Opc
== PPC::SRDo
;
2892 Opc
== PPC::SRW
|| Opc
== PPC::SRWo
|| Opc
== PPC::SRD
|| Opc
== PPC::SRDo
;
2894 MI
.setDesc(get(III
.ImmOpcode
));
2895 if (ConstantOpNo
== III
.ConstantOpNo
) {
2896 // Converting shifts to immediate form is a bit tricky since they may do
2897 // one of three things:
2898 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
2899 // 2. If the shift amount is zero, the result is unchanged (save for maybe
2901 // 3. If the shift amount is in [1, OpSize), it's just a shift
2902 if (SpecialShift32
|| SpecialShift64
) {
2903 LoadImmediateInfo LII
;
2906 LII
.Is64Bit
= SpecialShift64
;
2907 uint64_t ShAmt
= Imm
& (SpecialShift32
? 0x1F : 0x3F);
2908 if (Imm
& (SpecialShift32
? 0x20 : 0x40))
2909 replaceInstrWithLI(MI
, LII
);
2910 // Shifts by zero don't change the value. If we don't need to set CR0,
2911 // just convert this to a COPY. Can't do this post-RA since we've already
2912 // cleaned up the copies.
2913 else if (!SetCR
&& ShAmt
== 0 && !PostRA
) {
2914 MI
.RemoveOperand(2);
2915 MI
.setDesc(get(PPC::COPY
));
2917 // The 32 bit and 64 bit instructions are quite different.
2918 if (SpecialShift32
) {
2919 // Left shifts use (N, 0, 31-N), right shifts use (32-N, N, 31).
2920 uint64_t SH
= RightShift
? 32 - ShAmt
: ShAmt
;
2921 uint64_t MB
= RightShift
? ShAmt
: 0;
2922 uint64_t ME
= RightShift
? 31 : 31 - ShAmt
;
2923 MI
.getOperand(III
.ConstantOpNo
).ChangeToImmediate(SH
);
2924 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(MB
)
2927 // Left shifts use (N, 63-N), right shifts use (64-N, N).
2928 uint64_t SH
= RightShift
? 64 - ShAmt
: ShAmt
;
2929 uint64_t ME
= RightShift
? ShAmt
: 63 - ShAmt
;
2930 MI
.getOperand(III
.ConstantOpNo
).ChangeToImmediate(SH
);
2931 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
).addImm(ME
);
2935 MI
.getOperand(ConstantOpNo
).ChangeToImmediate(Imm
);
2937 // Convert commutative instructions (switch the operands and convert the
2938 // desired one to an immediate.
2939 else if (III
.IsCommutative
) {
2940 MI
.getOperand(ConstantOpNo
).ChangeToImmediate(Imm
);
2941 swapMIOperands(MI
, ConstantOpNo
, III
.ConstantOpNo
);
2943 llvm_unreachable("Should have exited early!");
2945 // For instructions for which the constant register replaces a different
2946 // operand than where the immediate goes, we need to swap them.
2947 if (III
.ConstantOpNo
!= III
.ImmOpNo
)
2948 swapMIOperands(MI
, III
.ConstantOpNo
, III
.ImmOpNo
);
2950 // If the R0/X0 register is special for the original instruction and not for
2951 // the new instruction (or vice versa), we need to fix up the register class.
2952 if (!PostRA
&& III
.ZeroIsSpecialOrig
!= III
.ZeroIsSpecialNew
) {
2953 if (!III
.ZeroIsSpecialOrig
) {
2954 unsigned RegToModify
= MI
.getOperand(III
.ZeroIsSpecialNew
).getReg();
2955 const TargetRegisterClass
*NewRC
=
2956 MRI
.getRegClass(RegToModify
)->hasSuperClassEq(&PPC::GPRCRegClass
) ?
2957 &PPC::GPRC_and_GPRC_NOR0RegClass
: &PPC::G8RC_and_G8RC_NOX0RegClass
;
2958 MRI
.setRegClass(RegToModify
, NewRC
);
2964 const TargetRegisterClass
*
2965 PPCInstrInfo::updatedRC(const TargetRegisterClass
*RC
) const {
2966 if (Subtarget
.hasVSX() && RC
== &PPC::VRRCRegClass
)
2967 return &PPC::VSRCRegClass
;
2971 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode
) {
2972 return PPC::getRecordFormOpcode(Opcode
);
2975 // This function returns true if the machine instruction
2976 // always outputs a value by sign-extending a 32 bit value,
2977 // i.e. 0 to 31-th bits are same as 32-th bit.
2978 static bool isSignExtendingOp(const MachineInstr
&MI
) {
2979 int Opcode
= MI
.getOpcode();
2980 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
2981 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
||
2982 Opcode
== PPC::SRAW
|| Opcode
== PPC::SRAWo
||
2983 Opcode
== PPC::SRAWI
|| Opcode
== PPC::SRAWIo
||
2984 Opcode
== PPC::LWA
|| Opcode
== PPC::LWAX
||
2985 Opcode
== PPC::LWA_32
|| Opcode
== PPC::LWAX_32
||
2986 Opcode
== PPC::LHA
|| Opcode
== PPC::LHAX
||
2987 Opcode
== PPC::LHA8
|| Opcode
== PPC::LHAX8
||
2988 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
2989 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
2990 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
2991 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
2992 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
2993 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
2994 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
2995 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
2996 Opcode
== PPC::EXTSB
|| Opcode
== PPC::EXTSBo
||
2997 Opcode
== PPC::EXTSH
|| Opcode
== PPC::EXTSHo
||
2998 Opcode
== PPC::EXTSB8
|| Opcode
== PPC::EXTSH8
||
2999 Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSWo
||
3000 Opcode
== PPC::EXTSH8_32_64
|| Opcode
== PPC::EXTSW_32_64
||
3001 Opcode
== PPC::EXTSB8_32_64
)
3004 if (Opcode
== PPC::RLDICL
&& MI
.getOperand(3).getImm() >= 33)
3007 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3008 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
) &&
3009 MI
.getOperand(3).getImm() > 0 &&
3010 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3016 // This function returns true if the machine instruction
3017 // always outputs zeros in higher 32 bits.
3018 static bool isZeroExtendingOp(const MachineInstr
&MI
) {
3019 int Opcode
= MI
.getOpcode();
3020 // The 16-bit immediate is sign-extended in li/lis.
3021 // If the most significant bit is zero, all higher bits are zero.
3022 if (Opcode
== PPC::LI
|| Opcode
== PPC::LI8
||
3023 Opcode
== PPC::LIS
|| Opcode
== PPC::LIS8
) {
3024 int64_t Imm
= MI
.getOperand(1).getImm();
3025 if (((uint64_t)Imm
& ~0x7FFFuLL
) == 0)
3029 // We have some variations of rotate-and-mask instructions
3030 // that clear higher 32-bits.
3031 if ((Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
3032 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
||
3033 Opcode
== PPC::RLDICL_32_64
) &&
3034 MI
.getOperand(3).getImm() >= 32)
3037 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
3038 MI
.getOperand(3).getImm() >= 32 &&
3039 MI
.getOperand(3).getImm() <= 63 - MI
.getOperand(2).getImm())
3042 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
3043 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
3044 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
3045 MI
.getOperand(3).getImm() <= MI
.getOperand(4).getImm())
3048 // There are other instructions that clear higher 32-bits.
3049 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
3050 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
3051 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
||
3052 Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
3053 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
||
3054 Opcode
== PPC::POPCNTD
|| Opcode
== PPC::POPCNTW
||
3055 Opcode
== PPC::SLW
|| Opcode
== PPC::SLWo
||
3056 Opcode
== PPC::SRW
|| Opcode
== PPC::SRWo
||
3057 Opcode
== PPC::SLW8
|| Opcode
== PPC::SRW8
||
3058 Opcode
== PPC::SLWI
|| Opcode
== PPC::SLWIo
||
3059 Opcode
== PPC::SRWI
|| Opcode
== PPC::SRWIo
||
3060 Opcode
== PPC::LWZ
|| Opcode
== PPC::LWZX
||
3061 Opcode
== PPC::LWZU
|| Opcode
== PPC::LWZUX
||
3062 Opcode
== PPC::LWBRX
|| Opcode
== PPC::LHBRX
||
3063 Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
3064 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
3065 Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
3066 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
3067 Opcode
== PPC::LWZ8
|| Opcode
== PPC::LWZX8
||
3068 Opcode
== PPC::LWZU8
|| Opcode
== PPC::LWZUX8
||
3069 Opcode
== PPC::LWBRX8
|| Opcode
== PPC::LHBRX8
||
3070 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
3071 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
||
3072 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
3073 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
||
3074 Opcode
== PPC::ANDIo
|| Opcode
== PPC::ANDISo
||
3075 Opcode
== PPC::ROTRWI
|| Opcode
== PPC::ROTRWIo
||
3076 Opcode
== PPC::EXTLWI
|| Opcode
== PPC::EXTLWIo
||
3077 Opcode
== PPC::MFVSRWZ
)
3083 // This function returns true if the input MachineInstr is a TOC save
3085 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr
&MI
) const {
3086 if (!MI
.getOperand(1).isImm() || !MI
.getOperand(2).isReg())
3088 unsigned TOCSaveOffset
= Subtarget
.getFrameLowering()->getTOCSaveOffset();
3089 unsigned StackOffset
= MI
.getOperand(1).getImm();
3090 unsigned StackReg
= MI
.getOperand(2).getReg();
3091 if (StackReg
== PPC::X1
&& StackOffset
== TOCSaveOffset
)
3097 // We limit the max depth to track incoming values of PHIs or binary ops
3098 // (e.g. AND) to avoid exsessive cost.
3099 const unsigned MAX_DEPTH
= 1;
3102 PPCInstrInfo::isSignOrZeroExtended(const MachineInstr
&MI
, bool SignExt
,
3103 const unsigned Depth
) const {
3104 const MachineFunction
*MF
= MI
.getParent()->getParent();
3105 const MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
3107 // If we know this instruction returns sign- or zero-extended result,
3109 if (SignExt
? isSignExtendingOp(MI
):
3110 isZeroExtendingOp(MI
))
3113 switch (MI
.getOpcode()) {
3115 unsigned SrcReg
= MI
.getOperand(1).getReg();
3117 // In both ELFv1 and v2 ABI, method parameters and the return value
3118 // are sign- or zero-extended.
3119 if (MF
->getSubtarget
<PPCSubtarget
>().isSVR4ABI()) {
3120 const PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
3121 // We check the ZExt/SExt flags for a method parameter.
3122 if (MI
.getParent()->getBasicBlock() ==
3123 &MF
->getFunction()->getEntryBlock()) {
3124 unsigned VReg
= MI
.getOperand(0).getReg();
3125 if (MF
->getRegInfo().isLiveIn(VReg
))
3126 return SignExt
? FuncInfo
->isLiveInSExt(VReg
) :
3127 FuncInfo
->isLiveInZExt(VReg
);
3130 // For a method return value, we check the ZExt/SExt flags in attribute.
3131 // We assume the following code sequence for method call.
3132 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
3133 // BL8_NOP @func,...
3134 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
3135 // %5 = COPY %x3; G8RC:%5
3136 if (SrcReg
== PPC::X3
) {
3137 const MachineBasicBlock
*MBB
= MI
.getParent();
3138 MachineBasicBlock::const_instr_iterator II
=
3139 MachineBasicBlock::const_instr_iterator(&MI
);
3140 if (II
!= MBB
->instr_begin() &&
3141 (--II
)->getOpcode() == PPC::ADJCALLSTACKUP
) {
3142 const MachineInstr
&CallMI
= *(--II
);
3143 if (CallMI
.isCall() && CallMI
.getOperand(0).isGlobal()) {
3144 const Function
*CalleeFn
=
3145 dyn_cast
<Function
>(CallMI
.getOperand(0).getGlobal());
3148 const IntegerType
*IntTy
=
3149 dyn_cast
<IntegerType
>(CalleeFn
->getReturnType());
3150 const AttributeSet
&Attrs
=
3151 CalleeFn
->getAttributes().getRetAttributes();
3152 if (IntTy
&& IntTy
->getBitWidth() <= 32)
3153 return Attrs
.hasAttribute(SignExt
? Attribute::SExt
:
3160 // If this is a copy from another register, we recursively check source.
3161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3163 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3165 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3182 // logical operation with 16-bit immediate does not change the upper bits.
3183 // So, we track the operand register as we do for register copy.
3184 unsigned SrcReg
= MI
.getOperand(1).getReg();
3185 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3187 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3189 return isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
);
3194 // If all incoming values are sign-/zero-extended,
3195 // the output of OR, ISEL or PHI is also sign-/zero-extended.
3200 if (Depth
>= MAX_DEPTH
)
3203 // The input registers for PHI are operand 1, 3, ...
3204 // The input registers for others are operand 1 and 2.
3205 unsigned E
= 3, D
= 1;
3206 if (MI
.getOpcode() == PPC::PHI
) {
3207 E
= MI
.getNumOperands();
3211 for (unsigned I
= 1; I
!= E
; I
+= D
) {
3212 if (MI
.getOperand(I
).isReg()) {
3213 unsigned SrcReg
= MI
.getOperand(I
).getReg();
3214 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
3216 const MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
3217 if (SrcMI
== NULL
|| !isSignOrZeroExtended(*SrcMI
, SignExt
, Depth
+1))
3226 // If at least one of the incoming values of an AND is zero extended
3227 // then the output is also zero-extended. If both of the incoming values
3228 // are sign-extended then the output is also sign extended.
3231 if (Depth
>= MAX_DEPTH
)
3234 assert(MI
.getOperand(1).isReg() && MI
.getOperand(2).isReg());
3236 unsigned SrcReg1
= MI
.getOperand(1).getReg();
3237 unsigned SrcReg2
= MI
.getOperand(2).getReg();
3239 if (!TargetRegisterInfo::isVirtualRegister(SrcReg1
) ||
3240 !TargetRegisterInfo::isVirtualRegister(SrcReg2
))
3243 const MachineInstr
*MISrc1
= MRI
->getVRegDef(SrcReg1
);
3244 const MachineInstr
*MISrc2
= MRI
->getVRegDef(SrcReg2
);
3245 if (!MISrc1
|| !MISrc2
)
3249 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) &&
3250 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);
3252 return isSignOrZeroExtended(*MISrc1
, SignExt
, Depth
+1) ||
3253 isSignOrZeroExtended(*MISrc2
, SignExt
, Depth
+1);