1 //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===---------------------------------------------------------------------===//
10 // This pass performs peephole optimizations to clean up ugly code
11 // sequences at the MachineInstruction layer. It runs at the end of
12 // the SSA phases, following VSX swap removal. A pass of dead code
13 // elimination follows this one for quick clean-up of any dead
14 // instructions introduced here. Although we could do this as callbacks
15 // from the generic peephole pass, this would have a couple of bad
16 // effects: it might remove optimization opportunities for VSX swap
17 // removal, and it would miss cleanups made possible following VSX
20 //===---------------------------------------------------------------------===//
23 #include "PPCInstrBuilder.h"
24 #include "PPCInstrInfo.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "MCTargetDesc/PPCPredicates.h"
36 #define DEBUG_TYPE "ppc-mi-peepholes"
38 STATISTIC(RemoveTOCSave
, "Number of TOC saves removed");
39 STATISTIC(MultiTOCSaves
,
40 "Number of functions with multiple TOC saves that must be kept");
41 STATISTIC(NumEliminatedSExt
, "Number of eliminated sign-extensions");
42 STATISTIC(NumEliminatedZExt
, "Number of eliminated zero-extensions");
43 STATISTIC(NumOptADDLIs
, "Number of optimized ADD instruction fed by LI");
44 STATISTIC(NumConvertedToImmediateForm
,
45 "Number of instructions converted to their immediate form");
46 STATISTIC(NumFunctionsEnteredInMIPeephole
,
47 "Number of functions entered in PPC MI Peepholes");
48 STATISTIC(NumFixedPointIterations
,
49 "Number of fixed-point iterations converting reg-reg instructions "
53 FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden
, cl::init(true),
54 cl::desc("Iterate to a fixed point when attempting to "
55 "convert reg-reg instructions to reg-imm"));
58 ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden
, cl::init(true),
59 cl::desc("Convert eligible reg+reg instructions to reg+imm"));
62 EnableSExtElimination("ppc-eliminate-signext",
63 cl::desc("enable elimination of sign-extensions"),
64 cl::init(false), cl::Hidden
);
67 EnableZExtElimination("ppc-eliminate-zeroext",
68 cl::desc("enable elimination of zero-extensions"),
69 cl::init(false), cl::Hidden
);
73 struct PPCMIPeephole
: public MachineFunctionPass
{
76 const PPCInstrInfo
*TII
;
78 MachineRegisterInfo
*MRI
;
80 PPCMIPeephole() : MachineFunctionPass(ID
) {
81 initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
85 MachineDominatorTree
*MDT
;
87 // Initialize class variables.
88 void initialize(MachineFunction
&MFParm
);
91 bool simplifyCode(void);
94 bool eliminateRedundantCompare(void);
95 bool eliminateRedundantTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
);
96 void UpdateTOCSaves(std::map
<MachineInstr
*, bool> &TOCSaves
,
101 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
102 AU
.addRequired
<MachineDominatorTree
>();
103 AU
.addPreserved
<MachineDominatorTree
>();
104 MachineFunctionPass::getAnalysisUsage(AU
);
107 // Main entry point for this pass.
108 bool runOnMachineFunction(MachineFunction
&MF
) override
{
109 if (skipFunction(*MF
.getFunction()))
112 return simplifyCode();
116 // Initialize class variables.
117 void PPCMIPeephole::initialize(MachineFunction
&MFParm
) {
119 MRI
= &MF
->getRegInfo();
120 MDT
= &getAnalysis
<MachineDominatorTree
>();
121 TII
= MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
122 DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
126 static MachineInstr
*getVRegDefOrNull(MachineOperand
*Op
,
127 MachineRegisterInfo
*MRI
) {
128 assert(Op
&& "Invalid Operand!");
132 unsigned Reg
= Op
->getReg();
133 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
136 return MRI
->getVRegDef(Reg
);
139 // This function returns number of known zero bits in output of MI
140 // starting from the most significant bit.
142 getKnownLeadingZeroCount(MachineInstr
*MI
, const PPCInstrInfo
*TII
) {
143 unsigned Opcode
= MI
->getOpcode();
144 if (Opcode
== PPC::RLDICL
|| Opcode
== PPC::RLDICLo
||
145 Opcode
== PPC::RLDCL
|| Opcode
== PPC::RLDCLo
)
146 return MI
->getOperand(3).getImm();
148 if ((Opcode
== PPC::RLDIC
|| Opcode
== PPC::RLDICo
) &&
149 MI
->getOperand(3).getImm() <= 63 - MI
->getOperand(2).getImm())
150 return MI
->getOperand(3).getImm();
152 if ((Opcode
== PPC::RLWINM
|| Opcode
== PPC::RLWINMo
||
153 Opcode
== PPC::RLWNM
|| Opcode
== PPC::RLWNMo
||
154 Opcode
== PPC::RLWINM8
|| Opcode
== PPC::RLWNM8
) &&
155 MI
->getOperand(3).getImm() <= MI
->getOperand(4).getImm())
156 return 32 + MI
->getOperand(3).getImm();
158 if (Opcode
== PPC::ANDIo
) {
159 uint16_t Imm
= MI
->getOperand(2).getImm();
160 return 48 + countLeadingZeros(Imm
);
163 if (Opcode
== PPC::CNTLZW
|| Opcode
== PPC::CNTLZWo
||
164 Opcode
== PPC::CNTTZW
|| Opcode
== PPC::CNTTZWo
||
165 Opcode
== PPC::CNTLZW8
|| Opcode
== PPC::CNTTZW8
)
166 // The result ranges from 0 to 32.
169 if (Opcode
== PPC::CNTLZD
|| Opcode
== PPC::CNTLZDo
||
170 Opcode
== PPC::CNTTZD
|| Opcode
== PPC::CNTTZDo
)
171 // The result ranges from 0 to 64.
174 if (Opcode
== PPC::LHZ
|| Opcode
== PPC::LHZX
||
175 Opcode
== PPC::LHZ8
|| Opcode
== PPC::LHZX8
||
176 Opcode
== PPC::LHZU
|| Opcode
== PPC::LHZUX
||
177 Opcode
== PPC::LHZU8
|| Opcode
== PPC::LHZUX8
)
180 if (Opcode
== PPC::LBZ
|| Opcode
== PPC::LBZX
||
181 Opcode
== PPC::LBZ8
|| Opcode
== PPC::LBZX8
||
182 Opcode
== PPC::LBZU
|| Opcode
== PPC::LBZUX
||
183 Opcode
== PPC::LBZU8
|| Opcode
== PPC::LBZUX8
)
186 if (TII
->isZeroExtended(*MI
))
192 // This function maintains a map for the pairs <TOC Save Instr, Keep>
193 // Each time a new TOC save is encountered, it checks if any of the exisiting
194 // ones are dominated by the new one. If so, it marks the exisiting one as
195 // redundant by setting it's entry in the map as false. It then adds the new
196 // instruction to the map with either true or false depending on if any
197 // exisiting instructions dominated the new one.
198 void PPCMIPeephole::UpdateTOCSaves(
199 std::map
<MachineInstr
*, bool> &TOCSaves
, MachineInstr
*MI
) {
200 assert(TII
->isTOCSaveMI(*MI
) && "Expecting a TOC save instruction here");
202 for (auto It
= TOCSaves
.begin(); It
!= TOCSaves
.end(); It
++ ) {
203 MachineInstr
*CurrInst
= It
->first
;
204 // If new instruction dominates an exisiting one, mark exisiting one as
206 if (It
->second
&& MDT
->dominates(MI
, CurrInst
))
208 // Check if the new instruction is redundant.
209 if (MDT
->dominates(CurrInst
, MI
)) {
214 // Add new instruction to map.
218 // Perform peephole optimizations.
219 bool PPCMIPeephole::simplifyCode(void) {
220 bool Simplified
= false;
221 MachineInstr
* ToErase
= nullptr;
222 std::map
<MachineInstr
*, bool> TOCSaves
;
224 NumFunctionsEnteredInMIPeephole
++;
226 // Fixed-point conversion of reg/reg instructions fed by load-immediate
227 // into reg/imm instructions. FIXME: This is expensive, control it with
229 bool SomethingChanged
= false;
231 NumFixedPointIterations
++;
232 SomethingChanged
= false;
233 for (MachineBasicBlock
&MBB
: *MF
) {
234 for (MachineInstr
&MI
: MBB
) {
235 if (MI
.isDebugValue())
238 if (TII
->convertToImmediateForm(MI
)) {
239 // We don't erase anything in case the def has other uses. Let DCE
240 // remove it if it can be removed.
241 DEBUG(dbgs() << "Converted instruction to imm form: ");
243 NumConvertedToImmediateForm
++;
244 SomethingChanged
= true;
250 } while (SomethingChanged
&& FixedPointRegToImm
);
253 for (MachineBasicBlock
&MBB
: *MF
) {
254 for (MachineInstr
&MI
: MBB
) {
256 // If the previous instruction was marked for elimination,
259 ToErase
->eraseFromParent();
263 // Ignore debug instructions.
264 if (MI
.isDebugValue())
267 // Per-opcode peepholes.
268 switch (MI
.getOpcode()) {
274 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
275 if (MFI
.hasVarSizedObjects() ||
276 !MF
->getSubtarget
<PPCSubtarget
>().isELFv2ABI())
278 // When encountering a TOC save instruction, call UpdateTOCSaves
279 // to add it to the TOCSaves map and mark any exisiting TOC saves
280 // it dominates as redundant.
281 if (TII
->isTOCSaveMI(MI
))
282 UpdateTOCSaves(TOCSaves
, &MI
);
285 case PPC::XXPERMDI
: {
286 // Perform simplifications of 2x64 vector swaps and splats.
287 // A swap is identified by an immediate value of 2, and a splat
288 // is identified by an immediate value of 0 or 3.
289 int Immed
= MI
.getOperand(3).getImm();
293 // For each of these simplifications, we need the two source
294 // regs to match. Unfortunately, MachineCSE ignores COPY and
295 // SUBREG_TO_REG, so for example we can see
296 // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
297 // We have to look through chains of COPY and SUBREG_TO_REG
298 // to find the real source values for comparison.
300 TII
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
302 TII
->lookThruCopyLike(MI
.getOperand(2).getReg(), MRI
);
304 if (TrueReg1
== TrueReg2
305 && TargetRegisterInfo::isVirtualRegister(TrueReg1
)) {
306 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg1
);
307 unsigned DefOpc
= DefMI
? DefMI
->getOpcode() : 0;
309 // If this is a splat fed by a splatting load, the splat is
310 // redundant. Replace with a copy. This doesn't happen directly due
311 // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
312 // a load of a double to a vector of 64-bit integers.
313 auto isConversionOfLoadAndSplat
= [=]() -> bool {
314 if (DefOpc
!= PPC::XVCVDPSXDS
&& DefOpc
!= PPC::XVCVDPUXDS
)
317 TII
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
318 if (TargetRegisterInfo::isVirtualRegister(DefReg
)) {
319 MachineInstr
*LoadMI
= MRI
->getVRegDef(DefReg
);
320 if (LoadMI
&& LoadMI
->getOpcode() == PPC::LXVDSX
)
325 if (DefMI
&& (Immed
== 0 || Immed
== 3)) {
326 if (DefOpc
== PPC::LXVDSX
|| isConversionOfLoadAndSplat()) {
328 << "Optimizing load-and-splat/splat "
329 "to load-and-splat/copy: ");
331 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
332 MI
.getOperand(0).getReg())
333 .add(MI
.getOperand(1));
339 // If this is a splat or a swap fed by another splat, we
340 // can replace it with a copy.
341 if (DefOpc
== PPC::XXPERMDI
) {
342 unsigned FeedImmed
= DefMI
->getOperand(3).getImm();
344 TII
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
346 TII
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
348 if ((FeedImmed
== 0 || FeedImmed
== 3) && FeedReg1
== FeedReg2
) {
350 << "Optimizing splat/swap or splat/splat "
353 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
354 MI
.getOperand(0).getReg())
355 .add(MI
.getOperand(1));
360 // If this is a splat fed by a swap, we can simplify modify
361 // the splat to splat the other value from the swap's input
363 else if ((Immed
== 0 || Immed
== 3)
364 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
365 DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
367 MI
.getOperand(1).setReg(DefMI
->getOperand(1).getReg());
368 MI
.getOperand(2).setReg(DefMI
->getOperand(2).getReg());
369 MI
.getOperand(3).setImm(3 - Immed
);
373 // If this is a swap fed by a swap, we can replace it
374 // with a copy from the first swap's input.
375 else if (Immed
== 2 && FeedImmed
== 2 && FeedReg1
== FeedReg2
) {
376 DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
378 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
379 MI
.getOperand(0).getReg())
380 .add(DefMI
->getOperand(1));
384 } else if ((Immed
== 0 || Immed
== 3) && DefOpc
== PPC::XXPERMDIs
&&
385 (DefMI
->getOperand(2).getImm() == 0 ||
386 DefMI
->getOperand(2).getImm() == 3)) {
387 // Splat fed by another splat - switch the output of the first
388 // and remove the second.
389 DefMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
392 DEBUG(dbgs() << "Removing redundant splat: ");
402 unsigned MyOpcode
= MI
.getOpcode();
403 unsigned OpNo
= MyOpcode
== PPC::XXSPLTW
? 1 : 2;
405 TII
->lookThruCopyLike(MI
.getOperand(OpNo
).getReg(), MRI
);
406 if (!TargetRegisterInfo::isVirtualRegister(TrueReg
))
408 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
411 unsigned DefOpcode
= DefMI
->getOpcode();
412 auto isConvertOfSplat
= [=]() -> bool {
413 if (DefOpcode
!= PPC::XVCVSPSXWS
&& DefOpcode
!= PPC::XVCVSPUXWS
)
415 unsigned ConvReg
= DefMI
->getOperand(1).getReg();
416 if (!TargetRegisterInfo::isVirtualRegister(ConvReg
))
418 MachineInstr
*Splt
= MRI
->getVRegDef(ConvReg
);
419 return Splt
&& (Splt
->getOpcode() == PPC::LXVWSX
||
420 Splt
->getOpcode() == PPC::XXSPLTW
);
422 bool AlreadySplat
= (MyOpcode
== DefOpcode
) ||
423 (MyOpcode
== PPC::VSPLTB
&& DefOpcode
== PPC::VSPLTBs
) ||
424 (MyOpcode
== PPC::VSPLTH
&& DefOpcode
== PPC::VSPLTHs
) ||
425 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::XXSPLTWs
) ||
426 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::LXVWSX
) ||
427 (MyOpcode
== PPC::XXSPLTW
&& DefOpcode
== PPC::MTVSRWS
)||
428 (MyOpcode
== PPC::XXSPLTW
&& isConvertOfSplat());
429 // If the instruction[s] that feed this splat have already splat
430 // the value, this splat is redundant.
432 DEBUG(dbgs() << "Changing redundant splat to a copy: ");
434 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
435 MI
.getOperand(0).getReg())
436 .add(MI
.getOperand(OpNo
));
440 // Splat fed by a shift. Usually when we align value to splat into
441 // vector element zero.
442 if (DefOpcode
== PPC::XXSLDWI
) {
443 unsigned ShiftRes
= DefMI
->getOperand(0).getReg();
444 unsigned ShiftOp1
= DefMI
->getOperand(1).getReg();
445 unsigned ShiftOp2
= DefMI
->getOperand(2).getReg();
446 unsigned ShiftImm
= DefMI
->getOperand(3).getImm();
447 unsigned SplatImm
= MI
.getOperand(2).getImm();
448 if (ShiftOp1
== ShiftOp2
) {
449 unsigned NewElem
= (SplatImm
+ ShiftImm
) & 0x3;
450 if (MRI
->hasOneNonDBGUse(ShiftRes
)) {
451 DEBUG(dbgs() << "Removing redundant shift: ");
452 DEBUG(DefMI
->dump());
456 DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
<<
457 " to " << NewElem
<< " in instruction: ");
459 MI
.getOperand(1).setReg(ShiftOp1
);
460 MI
.getOperand(2).setImm(NewElem
);
465 case PPC::XVCVDPSP
: {
466 // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
468 TII
->lookThruCopyLike(MI
.getOperand(1).getReg(), MRI
);
469 if (!TargetRegisterInfo::isVirtualRegister(TrueReg
))
471 MachineInstr
*DefMI
= MRI
->getVRegDef(TrueReg
);
473 // This can occur when building a vector of single precision or integer
475 if (DefMI
&& DefMI
->getOpcode() == PPC::XXPERMDI
) {
477 TII
->lookThruCopyLike(DefMI
->getOperand(1).getReg(), MRI
);
479 TII
->lookThruCopyLike(DefMI
->getOperand(2).getReg(), MRI
);
480 if (!TargetRegisterInfo::isVirtualRegister(DefsReg1
) ||
481 !TargetRegisterInfo::isVirtualRegister(DefsReg2
))
483 MachineInstr
*P1
= MRI
->getVRegDef(DefsReg1
);
484 MachineInstr
*P2
= MRI
->getVRegDef(DefsReg2
);
489 // Remove the passed FRSP instruction if it only feeds this MI and
490 // set any uses of that FRSP (in this MI) to the source of the FRSP.
491 auto removeFRSPIfPossible
= [&](MachineInstr
*RoundInstr
) {
492 if (RoundInstr
->getOpcode() == PPC::FRSP
&&
493 MRI
->hasOneNonDBGUse(RoundInstr
->getOperand(0).getReg())) {
495 unsigned ConvReg1
= RoundInstr
->getOperand(1).getReg();
496 unsigned FRSPDefines
= RoundInstr
->getOperand(0).getReg();
497 MachineInstr
&Use
= *(MRI
->use_instr_begin(FRSPDefines
));
498 for (int i
= 0, e
= Use
.getNumOperands(); i
< e
; ++i
)
499 if (Use
.getOperand(i
).isReg() &&
500 Use
.getOperand(i
).getReg() == FRSPDefines
)
501 Use
.getOperand(i
).setReg(ConvReg1
);
502 DEBUG(dbgs() << "Removing redundant FRSP:\n");
503 DEBUG(RoundInstr
->dump());
504 DEBUG(dbgs() << "As it feeds instruction:\n");
506 DEBUG(dbgs() << "Through instruction:\n");
507 DEBUG(DefMI
->dump());
508 RoundInstr
->eraseFromParent();
512 // If the input to XVCVDPSP is a vector that was built (even
513 // partially) out of FRSP's, the FRSP(s) can safely be removed
514 // since this instruction performs the same operation.
516 removeFRSPIfPossible(P1
);
517 removeFRSPIfPossible(P2
);
520 removeFRSPIfPossible(P1
);
526 case PPC::EXTSH8_32_64
: {
527 if (!EnableSExtElimination
) break;
528 unsigned NarrowReg
= MI
.getOperand(1).getReg();
529 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg
))
532 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
533 // If we've used a zero-extending load that we will sign-extend,
534 // just do a sign-extending load.
535 if (SrcMI
->getOpcode() == PPC::LHZ
||
536 SrcMI
->getOpcode() == PPC::LHZX
) {
537 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
539 auto is64Bit
= [] (unsigned Opcode
) {
540 return Opcode
== PPC::EXTSH8
;
542 auto isXForm
= [] (unsigned Opcode
) {
543 return Opcode
== PPC::LHZX
;
545 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
547 if (isXForm
) return PPC::LHAX8
;
548 else return PPC::LHA8
;
550 if (isXForm
) return PPC::LHAX
;
551 else return PPC::LHA
;
553 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
554 isXForm(SrcMI
->getOpcode()));
555 DEBUG(dbgs() << "Zero-extending load\n");
556 DEBUG(SrcMI
->dump());
557 DEBUG(dbgs() << "and sign-extension\n");
559 DEBUG(dbgs() << "are merged into sign-extending load\n");
560 SrcMI
->setDesc(TII
->get(Opc
));
561 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
570 case PPC::EXTSW_32_64
: {
571 if (!EnableSExtElimination
) break;
572 unsigned NarrowReg
= MI
.getOperand(1).getReg();
573 if (!TargetRegisterInfo::isVirtualRegister(NarrowReg
))
576 MachineInstr
*SrcMI
= MRI
->getVRegDef(NarrowReg
);
577 // If we've used a zero-extending load that we will sign-extend,
578 // just do a sign-extending load.
579 if (SrcMI
->getOpcode() == PPC::LWZ
||
580 SrcMI
->getOpcode() == PPC::LWZX
) {
581 if (!MRI
->hasOneNonDBGUse(SrcMI
->getOperand(0).getReg()))
583 auto is64Bit
= [] (unsigned Opcode
) {
584 return Opcode
== PPC::EXTSW
|| Opcode
== PPC::EXTSW_32_64
;
586 auto isXForm
= [] (unsigned Opcode
) {
587 return Opcode
== PPC::LWZX
;
589 auto getSextLoadOp
= [] (bool is64Bit
, bool isXForm
) {
591 if (isXForm
) return PPC::LWAX
;
592 else return PPC::LWA
;
594 if (isXForm
) return PPC::LWAX_32
;
595 else return PPC::LWA_32
;
597 unsigned Opc
= getSextLoadOp(is64Bit(MI
.getOpcode()),
598 isXForm(SrcMI
->getOpcode()));
599 DEBUG(dbgs() << "Zero-extending load\n");
600 DEBUG(SrcMI
->dump());
601 DEBUG(dbgs() << "and sign-extension\n");
603 DEBUG(dbgs() << "are merged into sign-extending load\n");
604 SrcMI
->setDesc(TII
->get(Opc
));
605 SrcMI
->getOperand(0).setReg(MI
.getOperand(0).getReg());
609 } else if (MI
.getOpcode() == PPC::EXTSW_32_64
&&
610 TII
->isSignExtended(*SrcMI
)) {
611 // We can eliminate EXTSW if the input is known to be already
613 DEBUG(dbgs() << "Removing redundant sign-extension\n");
615 MF
->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass
);
616 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::IMPLICIT_DEF
),
618 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::INSERT_SUBREG
),
619 MI
.getOperand(0).getReg())
622 .addImm(PPC::sub_32
);
630 // We can eliminate RLDICL (e.g. for zero-extension)
631 // if all bits to clear are already zero in the input.
632 // This code assume following code sequence for zero-extension.
633 // %6 = COPY %5:sub_32; (optional)
634 // %8 = IMPLICIT_DEF;
635 // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
636 if (!EnableZExtElimination
) break;
638 if (MI
.getOperand(2).getImm() != 0)
641 unsigned SrcReg
= MI
.getOperand(1).getReg();
642 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
645 MachineInstr
*SrcMI
= MRI
->getVRegDef(SrcReg
);
646 if (!(SrcMI
&& SrcMI
->getOpcode() == PPC::INSERT_SUBREG
&&
647 SrcMI
->getOperand(0).isReg() && SrcMI
->getOperand(1).isReg()))
650 MachineInstr
*ImpDefMI
, *SubRegMI
;
651 ImpDefMI
= MRI
->getVRegDef(SrcMI
->getOperand(1).getReg());
652 SubRegMI
= MRI
->getVRegDef(SrcMI
->getOperand(2).getReg());
653 if (ImpDefMI
->getOpcode() != PPC::IMPLICIT_DEF
) break;
656 if (SubRegMI
->getOpcode() == PPC::COPY
) {
657 unsigned CopyReg
= SubRegMI
->getOperand(1).getReg();
658 if (TargetRegisterInfo::isVirtualRegister(CopyReg
))
659 SrcMI
= MRI
->getVRegDef(CopyReg
);
662 unsigned KnownZeroCount
= getKnownLeadingZeroCount(SrcMI
, TII
);
663 if (MI
.getOperand(3).getImm() <= KnownZeroCount
) {
664 DEBUG(dbgs() << "Removing redundant zero-extension\n");
665 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
666 MI
.getOperand(0).getReg())
675 // TODO: Any instruction that has an immediate form fed only by a PHI
676 // whose operands are all load immediate can be folded away. We currently
677 // do this for ADD instructions, but should expand it to arithmetic and
678 // binary instructions with immediate forms in the future.
681 auto isSingleUsePHI
= [&](MachineOperand
*PhiOp
) {
682 assert(PhiOp
&& "Invalid Operand!");
683 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
685 return DefPhiMI
&& (DefPhiMI
->getOpcode() == PPC::PHI
) &&
686 MRI
->hasOneNonDBGUse(DefPhiMI
->getOperand(0).getReg());
689 auto dominatesAllSingleUseLIs
= [&](MachineOperand
*DominatorOp
,
690 MachineOperand
*PhiOp
) {
691 assert(PhiOp
&& "Invalid Operand!");
692 assert(DominatorOp
&& "Invalid Operand!");
693 MachineInstr
*DefPhiMI
= getVRegDefOrNull(PhiOp
, MRI
);
694 MachineInstr
*DefDomMI
= getVRegDefOrNull(DominatorOp
, MRI
);
696 // Note: the vregs only show up at odd indices position of PHI Node,
697 // the even indices position save the BB info.
698 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
700 getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
702 (LiMI
->getOpcode() != PPC::LI
&& LiMI
->getOpcode() != PPC::LI8
)
703 || !MRI
->hasOneNonDBGUse(LiMI
->getOperand(0).getReg()) ||
704 !MDT
->dominates(DefDomMI
, LiMI
))
711 MachineOperand Op1
= MI
.getOperand(1);
712 MachineOperand Op2
= MI
.getOperand(2);
713 if (isSingleUsePHI(&Op2
) && dominatesAllSingleUseLIs(&Op1
, &Op2
))
715 else if (!isSingleUsePHI(&Op1
) || !dominatesAllSingleUseLIs(&Op2
, &Op1
))
716 break; // We don't have an ADD fed by LI's that can be transformed
718 // Now we know that Op1 is the PHI node and Op2 is the dominator
719 unsigned DominatorReg
= Op2
.getReg();
721 const TargetRegisterClass
*TRC
= MI
.getOpcode() == PPC::ADD8
722 ? &PPC::G8RC_and_G8RC_NOX0RegClass
723 : &PPC::GPRC_and_GPRC_NOR0RegClass
;
724 MRI
->setRegClass(DominatorReg
, TRC
);
726 // replace LIs with ADDIs
727 MachineInstr
*DefPhiMI
= getVRegDefOrNull(&Op1
, MRI
);
728 for (unsigned i
= 1; i
< DefPhiMI
->getNumOperands(); i
+= 2) {
729 MachineInstr
*LiMI
= getVRegDefOrNull(&DefPhiMI
->getOperand(i
), MRI
);
730 DEBUG(dbgs() << "Optimizing LI to ADDI: ");
733 // There could be repeated registers in the PHI, e.g: %1 =
734 // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
735 // already replaced the def instruction, skip.
736 if (LiMI
->getOpcode() == PPC::ADDI
|| LiMI
->getOpcode() == PPC::ADDI8
)
739 assert((LiMI
->getOpcode() == PPC::LI
||
740 LiMI
->getOpcode() == PPC::LI8
) &&
742 auto LiImm
= LiMI
->getOperand(1).getImm(); // save the imm of LI
743 LiMI
->RemoveOperand(1); // remove the imm of LI
744 LiMI
->setDesc(TII
->get(LiMI
->getOpcode() == PPC::LI
? PPC::ADDI
746 MachineInstrBuilder(*LiMI
->getParent()->getParent(), *LiMI
)
747 .addReg(DominatorReg
)
748 .addImm(LiImm
); // restore the imm of LI
752 // Replace ADD with COPY
753 DEBUG(dbgs() << "Optimizing ADD to COPY: ");
755 BuildMI(MBB
, &MI
, MI
.getDebugLoc(), TII
->get(PPC::COPY
),
756 MI
.getOperand(0).getReg())
766 // If the last instruction was marked for elimination,
769 ToErase
->eraseFromParent();
774 // Eliminate all the TOC save instructions which are redundant.
775 Simplified
|= eliminateRedundantTOCSaves(TOCSaves
);
776 // We try to eliminate redundant compare instruction.
777 //Simplified |= eliminateRedundantCompare();
782 // helper functions for eliminateRedundantCompare
783 static bool isEqOrNe(MachineInstr
*BI
) {
784 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
785 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
786 return (PredCond
== PPC::PRED_EQ
|| PredCond
== PPC::PRED_NE
);
789 static bool isSupportedCmpOp(unsigned opCode
) {
790 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
791 opCode
== PPC::CMPLW
|| opCode
== PPC::CMPW
||
792 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
||
793 opCode
== PPC::CMPLWI
|| opCode
== PPC::CMPWI
);
796 static bool is64bitCmpOp(unsigned opCode
) {
797 return (opCode
== PPC::CMPLD
|| opCode
== PPC::CMPD
||
798 opCode
== PPC::CMPLDI
|| opCode
== PPC::CMPDI
);
801 static bool isSignedCmpOp(unsigned opCode
) {
802 return (opCode
== PPC::CMPD
|| opCode
== PPC::CMPW
||
803 opCode
== PPC::CMPDI
|| opCode
== PPC::CMPWI
);
806 static unsigned getSignedCmpOpCode(unsigned opCode
) {
807 if (opCode
== PPC::CMPLD
) return PPC::CMPD
;
808 if (opCode
== PPC::CMPLW
) return PPC::CMPW
;
809 if (opCode
== PPC::CMPLDI
) return PPC::CMPDI
;
810 if (opCode
== PPC::CMPLWI
) return PPC::CMPWI
;
814 // We can decrement immediate x in (GE x) by changing it to (GT x-1) or
815 // (LT x) to (LE x-1)
816 static unsigned getPredicateToDecImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
817 uint64_t Imm
= CMPI
->getOperand(2).getImm();
818 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
819 if ((!SignedCmp
&& Imm
== 0) || (SignedCmp
&& Imm
== 0x8000))
822 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
823 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
824 unsigned PredHint
= PPC::getPredicateHint(Pred
);
825 if (PredCond
== PPC::PRED_GE
)
826 return PPC::getPredicate(PPC::PRED_GT
, PredHint
);
827 if (PredCond
== PPC::PRED_LT
)
828 return PPC::getPredicate(PPC::PRED_LE
, PredHint
);
833 // We can increment immediate x in (GT x) by changing it to (GE x+1) or
834 // (LE x) to (LT x+1)
835 static unsigned getPredicateToIncImm(MachineInstr
*BI
, MachineInstr
*CMPI
) {
836 uint64_t Imm
= CMPI
->getOperand(2).getImm();
837 bool SignedCmp
= isSignedCmpOp(CMPI
->getOpcode());
838 if ((!SignedCmp
&& Imm
== 0xFFFF) || (SignedCmp
&& Imm
== 0x7FFF))
841 PPC::Predicate Pred
= (PPC::Predicate
)BI
->getOperand(0).getImm();
842 unsigned PredCond
= PPC::getPredicateCondition(Pred
);
843 unsigned PredHint
= PPC::getPredicateHint(Pred
);
844 if (PredCond
== PPC::PRED_GT
)
845 return PPC::getPredicate(PPC::PRED_GE
, PredHint
);
846 if (PredCond
== PPC::PRED_LE
)
847 return PPC::getPredicate(PPC::PRED_LT
, PredHint
);
852 // This takes a Phi node and returns a register value for the spefied BB.
853 static unsigned getIncomingRegForBlock(MachineInstr
*Phi
,
854 MachineBasicBlock
*MBB
) {
855 for (unsigned I
= 2, E
= Phi
->getNumOperands() + 1; I
!= E
; I
+= 2) {
856 MachineOperand
&MO
= Phi
->getOperand(I
);
857 if (MO
.getMBB() == MBB
)
858 return Phi
->getOperand(I
-1).getReg();
860 llvm_unreachable("invalid src basic block for this Phi node\n");
864 // This function tracks the source of the register through register copy.
865 // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
866 // assuming that the control comes from BB1 into BB2.
867 static unsigned getSrcVReg(unsigned Reg
, MachineBasicBlock
*BB1
,
868 MachineBasicBlock
*BB2
, MachineRegisterInfo
*MRI
) {
869 unsigned SrcReg
= Reg
;
871 unsigned NextReg
= SrcReg
;
872 MachineInstr
*Inst
= MRI
->getVRegDef(SrcReg
);
873 if (BB1
&& Inst
->getOpcode() == PPC::PHI
&& Inst
->getParent() == BB2
) {
874 NextReg
= getIncomingRegForBlock(Inst
, BB1
);
875 // We track through PHI only once to avoid infinite loop.
878 else if (Inst
->isFullCopy())
879 NextReg
= Inst
->getOperand(1).getReg();
880 if (NextReg
== SrcReg
|| !TargetRegisterInfo::isVirtualRegister(NextReg
))
887 static bool eligibleForCompareElimination(MachineBasicBlock
&MBB
,
888 MachineBasicBlock
*&PredMBB
,
889 MachineBasicBlock
*&MBBtoMoveCmp
,
890 MachineRegisterInfo
*MRI
) {
892 auto isEligibleBB
= [&](MachineBasicBlock
&BB
) {
893 auto BII
= BB
.getFirstInstrTerminator();
894 // We optimize BBs ending with a conditional branch.
895 // We check only for BCC here, not BCCLR, because BCCLR
896 // will be formed only later in the pipeline.
897 if (BB
.succ_size() == 2 &&
898 BII
!= BB
.instr_end() &&
899 (*BII
).getOpcode() == PPC::BCC
&&
900 (*BII
).getOperand(1).isReg()) {
901 // We optimize only if the condition code is used only by one BCC.
902 unsigned CndReg
= (*BII
).getOperand(1).getReg();
903 if (!TargetRegisterInfo::isVirtualRegister(CndReg
) ||
904 !MRI
->hasOneNonDBGUse(CndReg
))
907 MachineInstr
*CMPI
= MRI
->getVRegDef(CndReg
);
908 // We assume compare and branch are in the same BB for ease of analysis.
909 if (CMPI
->getParent() != &BB
)
912 // We skip this BB if a physical register is used in comparison.
913 for (MachineOperand
&MO
: CMPI
->operands())
914 if (MO
.isReg() && !TargetRegisterInfo::isVirtualRegister(MO
.getReg()))
922 // If this BB has more than one successor, we can create a new BB and
923 // move the compare instruction in the new BB.
924 // So far, we do not move compare instruction to a BB having multiple
925 // successors to avoid potentially increasing code size.
926 auto isEligibleForMoveCmp
= [](MachineBasicBlock
&BB
) {
927 return BB
.succ_size() == 1;
930 if (!isEligibleBB(MBB
))
933 unsigned NumPredBBs
= MBB
.pred_size();
934 if (NumPredBBs
== 1) {
935 MachineBasicBlock
*TmpMBB
= *MBB
.pred_begin();
936 if (isEligibleBB(*TmpMBB
)) {
938 MBBtoMoveCmp
= nullptr;
942 else if (NumPredBBs
== 2) {
943 // We check for partially redundant case.
944 // So far, we support cases with only two predecessors
945 // to avoid increasing the number of instructions.
946 MachineBasicBlock::pred_iterator PI
= MBB
.pred_begin();
947 MachineBasicBlock
*Pred1MBB
= *PI
;
948 MachineBasicBlock
*Pred2MBB
= *(PI
+1);
950 if (isEligibleBB(*Pred1MBB
) && isEligibleForMoveCmp(*Pred2MBB
)) {
951 // We assume Pred1MBB is the BB containing the compare to be merged and
952 // Pred2MBB is the BB to which we will append a compare instruction.
953 // Hence we can proceed as is.
955 else if (isEligibleBB(*Pred2MBB
) && isEligibleForMoveCmp(*Pred1MBB
)) {
956 // We need to swap Pred1MBB and Pred2MBB to canonicalize.
957 std::swap(Pred1MBB
, Pred2MBB
);
961 // Here, Pred2MBB is the BB to which we need to append a compare inst.
962 // We cannot move the compare instruction if operands are not available
963 // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
964 MachineInstr
*BI
= &*MBB
.getFirstInstrTerminator();
965 MachineInstr
*CMPI
= MRI
->getVRegDef(BI
->getOperand(1).getReg());
966 for (int I
= 1; I
<= 2; I
++)
967 if (CMPI
->getOperand(I
).isReg()) {
968 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI
->getOperand(I
).getReg());
969 if (Inst
->getParent() == &MBB
&& Inst
->getOpcode() != PPC::PHI
)
974 MBBtoMoveCmp
= Pred2MBB
;
981 // This function will iterate over the input map containing a pair of TOC save
982 // instruction and a flag. The flag will be set to false if the TOC save is proven
983 // redundant. This function will erase from the basic block all the TOC saves
984 // marked as redundant.
985 bool PPCMIPeephole::eliminateRedundantTOCSaves(
986 std::map
<MachineInstr
*, bool> &TOCSaves
) {
987 bool Simplified
= false;
989 for (auto TOCSave
: TOCSaves
) {
990 if (!TOCSave
.second
) {
991 TOCSave
.first
->eraseFromParent();
1005 // If multiple conditional branches are executed based on the (essentially)
1006 // same comparison, we merge compare instructions into one and make multiple
1007 // conditional branches on this comparison.
1009 // if (a == 0) { ... }
1010 // else if (a < 0) { ... }
1011 // can be executed by one compare and two conditional branches instead of
1012 // two pairs of a compare and a conditional branch.
1014 // This method merges two compare instructions in two MBBs and modifies the
1015 // compare and conditional branch instructions if needed.
1016 // For the above example, the input for this pass looks like:
1021 // So, before merging two compares, we need to modify these instructions as
1022 // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
1024 // cmpwi r3, 0 ; greather than -1 means greater or equal to 0
1027 bool PPCMIPeephole::eliminateRedundantCompare(void) {
1028 bool Simplified
= false;
1030 for (MachineBasicBlock
&MBB2
: *MF
) {
1031 MachineBasicBlock
*MBB1
= nullptr, *MBBtoMoveCmp
= nullptr;
1033 // For fully redundant case, we select two basic blocks MBB1 and MBB2
1034 // as an optimization target if
1035 // - both MBBs end with a conditional branch,
1036 // - MBB1 is the only predecessor of MBB2, and
1037 // - compare does not take a physical register as a operand in both MBBs.
1038 // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
1040 // As partially redundant case, we additionally handle if MBB2 has one
1041 // additional predecessor, which has only one successor (MBB2).
1042 // In this case, we move the compare instruction originally in MBB2 into
1043 // MBBtoMoveCmp. This partially redundant case is typically appear by
1044 // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
1046 // Overview of CFG of related basic blocks
1047 // Fully redundant case Partially redundant case
1048 // -------- ---------------- --------
1049 // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
1050 // -------- ---------------- --------
1051 // | \ (w/ 1 succ) \ | \
1054 // -------- --------
1055 // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
1056 // -------- and 2 succ) -------- and 2 succ)
1060 if (!eligibleForCompareElimination(MBB2
, MBB1
, MBBtoMoveCmp
, MRI
))
1063 MachineInstr
*BI1
= &*MBB1
->getFirstInstrTerminator();
1064 MachineInstr
*CMPI1
= MRI
->getVRegDef(BI1
->getOperand(1).getReg());
1066 MachineInstr
*BI2
= &*MBB2
.getFirstInstrTerminator();
1067 MachineInstr
*CMPI2
= MRI
->getVRegDef(BI2
->getOperand(1).getReg());
1068 bool IsPartiallyRedundant
= (MBBtoMoveCmp
!= nullptr);
1070 // We cannot optimize an unsupported compare opcode or
1071 // a mix of 32-bit and 64-bit comaprisons
1072 if (!isSupportedCmpOp(CMPI1
->getOpcode()) ||
1073 !isSupportedCmpOp(CMPI2
->getOpcode()) ||
1074 is64bitCmpOp(CMPI1
->getOpcode()) != is64bitCmpOp(CMPI2
->getOpcode()))
1077 unsigned NewOpCode
= 0;
1078 unsigned NewPredicate1
= 0, NewPredicate2
= 0;
1079 int16_t Imm1
= 0, NewImm1
= 0, Imm2
= 0, NewImm2
= 0;
1080 bool SwapOperands
= false;
1082 if (CMPI1
->getOpcode() != CMPI2
->getOpcode()) {
1083 // Typically, unsigned comparison is used for equality check, but
1084 // we replace it with a signed comparison if the comparison
1085 // to be merged is a signed comparison.
1086 // In other cases of opcode mismatch, we cannot optimize this.
1087 if (isEqOrNe(BI2
) &&
1088 CMPI1
->getOpcode() == getSignedCmpOpCode(CMPI2
->getOpcode()))
1089 NewOpCode
= CMPI1
->getOpcode();
1090 else if (isEqOrNe(BI1
) &&
1091 getSignedCmpOpCode(CMPI1
->getOpcode()) == CMPI2
->getOpcode())
1092 NewOpCode
= CMPI2
->getOpcode();
1096 if (CMPI1
->getOperand(2).isReg() && CMPI2
->getOperand(2).isReg()) {
1097 // In case of comparisons between two registers, these two registers
1098 // must be same to merge two comparisons.
1099 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1100 nullptr, nullptr, MRI
);
1101 unsigned Cmp1Operand2
= getSrcVReg(CMPI1
->getOperand(2).getReg(),
1102 nullptr, nullptr, MRI
);
1103 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1105 unsigned Cmp2Operand2
= getSrcVReg(CMPI2
->getOperand(2).getReg(),
1108 if (Cmp1Operand1
== Cmp2Operand1
&& Cmp1Operand2
== Cmp2Operand2
) {
1109 // Same pair of registers in the same order; ready to merge as is.
1111 else if (Cmp1Operand1
== Cmp2Operand2
&& Cmp1Operand2
== Cmp2Operand1
) {
1112 // Same pair of registers in different order.
1113 // We reverse the predicate to merge compare instructions.
1114 PPC::Predicate Pred
= (PPC::Predicate
)BI2
->getOperand(0).getImm();
1115 NewPredicate2
= (unsigned)PPC::getSwappedPredicate(Pred
);
1116 // In case of partial redundancy, we need to swap operands
1117 // in another compare instruction.
1118 SwapOperands
= true;
1122 else if (CMPI1
->getOperand(2).isImm() && CMPI2
->getOperand(2).isImm()) {
1123 // In case of comparisons between a register and an immediate,
1124 // the operand register must be same for two compare instructions.
1125 unsigned Cmp1Operand1
= getSrcVReg(CMPI1
->getOperand(1).getReg(),
1126 nullptr, nullptr, MRI
);
1127 unsigned Cmp2Operand1
= getSrcVReg(CMPI2
->getOperand(1).getReg(),
1129 if (Cmp1Operand1
!= Cmp2Operand1
)
1132 NewImm1
= Imm1
= (int16_t)CMPI1
->getOperand(2).getImm();
1133 NewImm2
= Imm2
= (int16_t)CMPI2
->getOperand(2).getImm();
1135 // If immediate are not same, we try to adjust by changing predicate;
1136 // e.g. GT imm means GE (imm+1).
1137 if (Imm1
!= Imm2
&& (!isEqOrNe(BI2
) || !isEqOrNe(BI1
))) {
1138 int Diff
= Imm1
- Imm2
;
1139 if (Diff
< -2 || Diff
> 2)
1142 unsigned PredToInc1
= getPredicateToIncImm(BI1
, CMPI1
);
1143 unsigned PredToDec1
= getPredicateToDecImm(BI1
, CMPI1
);
1144 unsigned PredToInc2
= getPredicateToIncImm(BI2
, CMPI2
);
1145 unsigned PredToDec2
= getPredicateToDecImm(BI2
, CMPI2
);
1147 if (PredToInc2
&& PredToDec1
) {
1148 NewPredicate2
= PredToInc2
;
1149 NewPredicate1
= PredToDec1
;
1154 else if (Diff
== 1) {
1157 NewPredicate2
= PredToInc2
;
1159 else if (PredToDec1
) {
1161 NewPredicate1
= PredToDec1
;
1164 else if (Diff
== -1) {
1167 NewPredicate2
= PredToDec2
;
1169 else if (PredToInc1
) {
1171 NewPredicate1
= PredToInc1
;
1174 else if (Diff
== -2) {
1175 if (PredToDec2
&& PredToInc1
) {
1176 NewPredicate2
= PredToDec2
;
1177 NewPredicate1
= PredToInc1
;
1184 // We cannnot merge two compares if the immediates are not same.
1185 if (NewImm2
!= NewImm1
)
1189 DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
1190 DEBUG(CMPI1
->dump());
1192 DEBUG(CMPI2
->dump());
1195 // We adjust opcode, predicates and immediate as we determined above.
1196 if (NewOpCode
!= 0 && NewOpCode
!= CMPI1
->getOpcode()) {
1197 CMPI1
->setDesc(TII
->get(NewOpCode
));
1199 if (NewPredicate1
) {
1200 BI1
->getOperand(0).setImm(NewPredicate1
);
1202 if (NewPredicate2
) {
1203 BI2
->getOperand(0).setImm(NewPredicate2
);
1205 if (NewImm1
!= Imm1
) {
1206 CMPI1
->getOperand(2).setImm(NewImm1
);
1209 if (IsPartiallyRedundant
) {
1210 // We touch up the compare instruction in MBB2 and move it to
1211 // a previous BB to handle partially redundant case.
1213 unsigned Op1
= CMPI2
->getOperand(1).getReg();
1214 unsigned Op2
= CMPI2
->getOperand(2).getReg();
1215 CMPI2
->getOperand(1).setReg(Op2
);
1216 CMPI2
->getOperand(2).setReg(Op1
);
1218 if (NewImm2
!= Imm2
)
1219 CMPI2
->getOperand(2).setImm(NewImm2
);
1221 for (int I
= 1; I
<= 2; I
++) {
1222 if (CMPI2
->getOperand(I
).isReg()) {
1223 MachineInstr
*Inst
= MRI
->getVRegDef(CMPI2
->getOperand(I
).getReg());
1224 if (Inst
->getParent() != &MBB2
)
1227 assert(Inst
->getOpcode() == PPC::PHI
&&
1228 "We cannot support if an operand comes from this BB.");
1229 unsigned SrcReg
= getIncomingRegForBlock(Inst
, MBBtoMoveCmp
);
1230 CMPI2
->getOperand(I
).setReg(SrcReg
);
1233 auto I
= MachineBasicBlock::iterator(MBBtoMoveCmp
->getFirstTerminator());
1234 MBBtoMoveCmp
->splice(I
, &MBB2
, MachineBasicBlock::iterator(CMPI2
));
1236 DebugLoc DL
= CMPI2
->getDebugLoc();
1237 unsigned NewVReg
= MRI
->createVirtualRegister(&PPC::CRRCRegClass
);
1238 BuildMI(MBB2
, MBB2
.begin(), DL
,
1239 TII
->get(PPC::PHI
), NewVReg
)
1240 .addReg(BI1
->getOperand(1).getReg()).addMBB(MBB1
)
1241 .addReg(BI2
->getOperand(1).getReg()).addMBB(MBBtoMoveCmp
);
1242 BI2
->getOperand(1).setReg(NewVReg
);
1245 // We finally eliminate compare instruction in MBB2.
1246 BI2
->getOperand(1).setReg(BI1
->getOperand(1).getReg());
1247 CMPI2
->eraseFromParent();
1249 BI2
->getOperand(1).setIsKill(true);
1250 BI1
->getOperand(1).setIsKill(false);
1252 DEBUG(dbgs() << "into a compare and two branches:\n");
1253 DEBUG(CMPI1
->dump());
1256 if (IsPartiallyRedundant
) {
1257 DEBUG(dbgs() << "The following compare is moved into "
1258 << printMBBReference(*MBBtoMoveCmp
)
1259 << " to handle partial redundancy.\n");
1260 DEBUG(CMPI2
->dump());
1269 } // end default namespace
1271 INITIALIZE_PASS_BEGIN(PPCMIPeephole
, DEBUG_TYPE
,
1272 "PowerPC MI Peephole Optimization", false, false)
1273 INITIALIZE_PASS_END(PPCMIPeephole
, DEBUG_TYPE
,
1274 "PowerPC MI Peephole Optimization", false, false)
1276 char PPCMIPeephole::ID
= 0;
1278 llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }