1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
11 /// This file implements the ELF-specific dumper for llvm-readobj.
13 //===----------------------------------------------------------------------===//
15 #include "ARMEHABIPrinter.h"
16 #include "DwarfCFIEHPrinter.h"
18 #include "ObjDumper.h"
19 #include "StackMapPrinter.h"
20 #include "llvm-readobj.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/Object/ELF.h"
33 #include "llvm/Object/ELFObjectFile.h"
34 #include "llvm/Object/ELFTypes.h"
35 #include "llvm/Object/Error.h"
36 #include "llvm/Object/ObjectFile.h"
37 #include "llvm/Object/StackMapParser.h"
38 #include "llvm/Support/AMDGPUMetadata.h"
39 #include "llvm/Support/ARMAttributeParser.h"
40 #include "llvm/Support/ARMBuildAttributes.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/FormattedStream.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/MipsABIFlags.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/raw_ostream.h"
59 #include <system_error>
63 using namespace llvm::object
;
66 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
67 case ns::enum: return #enum;
69 #define ENUM_ENT(enum, altName) \
70 { #enum, altName, ELF::enum }
72 #define ENUM_ENT_1(enum) \
73 { #enum, #enum, ELF::enum }
75 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
77 return std::string(#enum).substr(3);
79 #define TYPEDEF_ELF_TYPES(ELFT) \
80 using ELFO = ELFFile<ELFT>; \
81 using Elf_Addr = typename ELFT::Addr; \
82 using Elf_Shdr = typename ELFT::Shdr; \
83 using Elf_Sym = typename ELFT::Sym; \
84 using Elf_Dyn = typename ELFT::Dyn; \
85 using Elf_Dyn_Range = typename ELFT::DynRange; \
86 using Elf_Rel = typename ELFT::Rel; \
87 using Elf_Rela = typename ELFT::Rela; \
88 using Elf_Rel_Range = typename ELFT::RelRange; \
89 using Elf_Rela_Range = typename ELFT::RelaRange; \
90 using Elf_Phdr = typename ELFT::Phdr; \
91 using Elf_Half = typename ELFT::Half; \
92 using Elf_Ehdr = typename ELFT::Ehdr; \
93 using Elf_Word = typename ELFT::Word; \
94 using Elf_Hash = typename ELFT::Hash; \
95 using Elf_GnuHash = typename ELFT::GnuHash; \
96 using Elf_Note = typename ELFT::Note; \
97 using Elf_Sym_Range = typename ELFT::SymRange; \
98 using Elf_Versym = typename ELFT::Versym; \
99 using Elf_Verneed = typename ELFT::Verneed; \
100 using Elf_Vernaux = typename ELFT::Vernaux; \
101 using Elf_Verdef = typename ELFT::Verdef; \
102 using Elf_Verdaux = typename ELFT::Verdaux; \
103 using uintX_t = typename ELFT::uint;
107 template <class ELFT
> class DumpStyle
;
109 /// Represents a contiguous uniform range in the file. We cannot just create a
110 /// range directly because when creating one of these from the .dynamic table
111 /// the size, entity size and virtual address are different entries in arbitrary
112 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
113 struct DynRegionInfo
{
114 DynRegionInfo() = default;
115 DynRegionInfo(const void *A
, uint64_t S
, uint64_t ES
)
116 : Addr(A
), Size(S
), EntSize(ES
) {}
118 /// Address in current address space.
119 const void *Addr
= nullptr;
120 /// Size in bytes of the region.
122 /// Size of each entity in the region.
123 uint64_t EntSize
= 0;
125 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
126 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
128 return {Start
, Start
};
129 if (EntSize
!= sizeof(Type
) || Size
% EntSize
)
130 reportError("Invalid entity size");
131 return {Start
, Start
+ (Size
/ EntSize
)};
135 template<typename ELFT
>
136 class ELFDumper
: public ObjDumper
{
138 ELFDumper(const ELFFile
<ELFT
> *Obj
, ScopedPrinter
&Writer
);
140 void printFileHeaders() override
;
141 void printSections() override
;
142 void printRelocations() override
;
143 void printDynamicRelocations() override
;
144 void printSymbols() override
;
145 void printDynamicSymbols() override
;
146 void printUnwindInfo() override
;
148 void printDynamicTable() override
;
149 void printNeededLibraries() override
;
150 void printProgramHeaders() override
;
151 void printHashTable() override
;
152 void printGnuHashTable() override
;
153 void printLoadName() override
;
154 void printVersionInfo() override
;
155 void printGroupSections() override
;
157 void printAttributes() override
;
158 void printMipsPLTGOT() override
;
159 void printMipsABIFlags() override
;
160 void printMipsReginfo() override
;
161 void printMipsOptions() override
;
163 void printStackMap() const override
;
165 void printHashHistogram() override
;
167 void printNotes() override
;
169 void printELFLinkerOptions() override
;
172 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
174 TYPEDEF_ELF_TYPES(ELFT
)
176 DynRegionInfo
checkDRI(DynRegionInfo DRI
) {
177 if (DRI
.Addr
< Obj
->base() ||
178 (const uint8_t *)DRI
.Addr
+ DRI
.Size
> Obj
->base() + Obj
->getBufSize())
179 error(llvm::object::object_error::parse_failed
);
183 DynRegionInfo
createDRIFrom(const Elf_Phdr
*P
, uintX_t EntSize
) {
184 return checkDRI({Obj
->base() + P
->p_offset
, P
->p_filesz
, EntSize
});
187 DynRegionInfo
createDRIFrom(const Elf_Shdr
*S
) {
188 return checkDRI({Obj
->base() + S
->sh_offset
, S
->sh_size
, S
->sh_entsize
});
191 void parseDynamicTable(ArrayRef
<const Elf_Phdr
*> LoadSegments
);
193 void printValue(uint64_t Type
, uint64_t Value
);
195 StringRef
getDynamicString(uint64_t Offset
) const;
196 StringRef
getSymbolVersion(StringRef StrTab
, const Elf_Sym
*symb
,
197 bool &IsDefault
) const;
198 void LoadVersionMap() const;
199 void LoadVersionNeeds(const Elf_Shdr
*ec
) const;
200 void LoadVersionDefs(const Elf_Shdr
*sec
) const;
203 DynRegionInfo DynRelRegion
;
204 DynRegionInfo DynRelaRegion
;
205 DynRegionInfo DynPLTRelRegion
;
206 DynRegionInfo DynSymRegion
;
207 DynRegionInfo DynamicTable
;
208 StringRef DynamicStringTable
;
210 const Elf_Hash
*HashTable
= nullptr;
211 const Elf_GnuHash
*GnuHashTable
= nullptr;
212 const Elf_Shdr
*DotSymtabSec
= nullptr;
213 StringRef DynSymtabName
;
214 ArrayRef
<Elf_Word
> ShndxTable
;
216 const Elf_Shdr
*dot_gnu_version_sec
= nullptr; // .gnu.version
217 const Elf_Shdr
*dot_gnu_version_r_sec
= nullptr; // .gnu.version_r
218 const Elf_Shdr
*dot_gnu_version_d_sec
= nullptr; // .gnu.version_d
220 // Records for each version index the corresponding Verdef or Vernaux entry.
221 // This is filled the first time LoadVersionMap() is called.
222 class VersionMapEntry
: public PointerIntPair
<const void *, 1> {
224 // If the integer is 0, this is an Elf_Verdef*.
225 // If the integer is 1, this is an Elf_Vernaux*.
226 VersionMapEntry() : PointerIntPair
<const void *, 1>(nullptr, 0) {}
227 VersionMapEntry(const Elf_Verdef
*verdef
)
228 : PointerIntPair
<const void *, 1>(verdef
, 0) {}
229 VersionMapEntry(const Elf_Vernaux
*vernaux
)
230 : PointerIntPair
<const void *, 1>(vernaux
, 1) {}
232 bool isNull() const { return getPointer() == nullptr; }
233 bool isVerdef() const { return !isNull() && getInt() == 0; }
234 bool isVernaux() const { return !isNull() && getInt() == 1; }
235 const Elf_Verdef
*getVerdef() const {
236 return isVerdef() ? (const Elf_Verdef
*)getPointer() : nullptr;
238 const Elf_Vernaux
*getVernaux() const {
239 return isVernaux() ? (const Elf_Vernaux
*)getPointer() : nullptr;
242 mutable SmallVector
<VersionMapEntry
, 16> VersionMap
;
245 Elf_Dyn_Range
dynamic_table() const {
246 return DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
249 Elf_Sym_Range
dynamic_symbols() const {
250 return DynSymRegion
.getAsArrayRef
<Elf_Sym
>();
253 Elf_Rel_Range
dyn_rels() const;
254 Elf_Rela_Range
dyn_relas() const;
255 std::string
getFullSymbolName(const Elf_Sym
*Symbol
, StringRef StrTable
,
256 bool IsDynamic
) const;
257 void getSectionNameIndex(const Elf_Sym
*Symbol
, const Elf_Sym
*FirstSym
,
258 StringRef
&SectionName
,
259 unsigned &SectionIndex
) const;
261 void printSymbolsHelper(bool IsDynamic
) const;
262 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
263 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
264 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
265 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
266 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
267 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
268 const Elf_Hash
*getHashTable() const { return HashTable
; }
269 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
272 template <class ELFT
>
273 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
274 StringRef StrTable
, SymtabName
;
276 Elf_Sym_Range
Syms(nullptr, nullptr);
278 StrTable
= DynamicStringTable
;
279 Syms
= dynamic_symbols();
280 SymtabName
= DynSymtabName
;
281 if (DynSymRegion
.Addr
)
282 Entries
= DynSymRegion
.Size
/ DynSymRegion
.EntSize
;
286 StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*DotSymtabSec
));
287 Syms
= unwrapOrError(Obj
->symbols(DotSymtabSec
));
288 SymtabName
= unwrapOrError(Obj
->getSectionName(DotSymtabSec
));
289 Entries
= DotSymtabSec
->getEntityCount();
291 if (Syms
.begin() == Syms
.end())
293 ELFDumperStyle
->printSymtabMessage(Obj
, SymtabName
, Entries
);
294 for (const auto &Sym
: Syms
)
295 ELFDumperStyle
->printSymbol(Obj
, &Sym
, Syms
.begin(), StrTable
, IsDynamic
);
298 template <class ELFT
> class MipsGOTParser
;
300 template <typename ELFT
> class DumpStyle
{
302 using Elf_Shdr
= typename
ELFT::Shdr
;
303 using Elf_Sym
= typename
ELFT::Sym
;
305 DumpStyle(ELFDumper
<ELFT
> *Dumper
) : Dumper(Dumper
) {}
306 virtual ~DumpStyle() = default;
308 virtual void printFileHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
309 virtual void printGroupSections(const ELFFile
<ELFT
> *Obj
) = 0;
310 virtual void printRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
311 virtual void printSections(const ELFFile
<ELFT
> *Obj
) = 0;
312 virtual void printSymbols(const ELFFile
<ELFT
> *Obj
) = 0;
313 virtual void printDynamicSymbols(const ELFFile
<ELFT
> *Obj
) = 0;
314 virtual void printDynamicRelocations(const ELFFile
<ELFT
> *Obj
) = 0;
315 virtual void printSymtabMessage(const ELFFile
<ELFT
> *obj
, StringRef Name
,
317 virtual void printSymbol(const ELFFile
<ELFT
> *Obj
, const Elf_Sym
*Symbol
,
318 const Elf_Sym
*FirstSym
, StringRef StrTable
,
320 virtual void printProgramHeaders(const ELFFile
<ELFT
> *Obj
) = 0;
321 virtual void printHashHistogram(const ELFFile
<ELFT
> *Obj
) = 0;
322 virtual void printNotes(const ELFFile
<ELFT
> *Obj
) = 0;
323 virtual void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) = 0;
324 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
325 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
326 const ELFDumper
<ELFT
> *dumper() const { return Dumper
; }
329 const ELFDumper
<ELFT
> *Dumper
;
332 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
333 formatted_raw_ostream OS
;
336 TYPEDEF_ELF_TYPES(ELFT
)
338 GNUStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
339 : DumpStyle
<ELFT
>(Dumper
), OS(W
.getOStream()) {}
341 void printFileHeaders(const ELFO
*Obj
) override
;
342 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
343 void printRelocations(const ELFO
*Obj
) override
;
344 void printSections(const ELFO
*Obj
) override
;
345 void printSymbols(const ELFO
*Obj
) override
;
346 void printDynamicSymbols(const ELFO
*Obj
) override
;
347 void printDynamicRelocations(const ELFO
*Obj
) override
;
348 void printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
349 size_t Offset
) override
;
350 void printProgramHeaders(const ELFO
*Obj
) override
;
351 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
352 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
353 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
354 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
355 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
362 Field(StringRef S
, unsigned Col
) : Str(S
), Column(Col
) {}
363 Field(unsigned Col
) : Str(""), Column(Col
) {}
366 template <typename T
, typename TEnum
>
367 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
368 for (const auto &EnumItem
: EnumValues
)
369 if (EnumItem
.Value
== Value
)
370 return EnumItem
.AltName
;
371 return to_hexString(Value
, false);
374 formatted_raw_ostream
&printField(struct Field F
) {
376 OS
.PadToColumn(F
.Column
);
381 void printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
, uint32_t Sym
,
382 StringRef StrTable
, uint32_t Bucket
);
383 void printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
384 const Elf_Rela
&R
, bool IsRela
);
385 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
386 StringRef StrTable
, bool IsDynamic
) override
;
387 std::string
getSymbolSectionNdx(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
388 const Elf_Sym
*FirstSym
);
389 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
, bool IsRela
);
390 bool checkTLSSections(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
391 bool checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
392 bool checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
393 bool checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
);
396 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
398 TYPEDEF_ELF_TYPES(ELFT
)
400 LLVMStyle(ScopedPrinter
&W
, ELFDumper
<ELFT
> *Dumper
)
401 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
403 void printFileHeaders(const ELFO
*Obj
) override
;
404 void printGroupSections(const ELFFile
<ELFT
> *Obj
) override
;
405 void printRelocations(const ELFO
*Obj
) override
;
406 void printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
);
407 void printSections(const ELFO
*Obj
) override
;
408 void printSymbols(const ELFO
*Obj
) override
;
409 void printDynamicSymbols(const ELFO
*Obj
) override
;
410 void printDynamicRelocations(const ELFO
*Obj
) override
;
411 void printProgramHeaders(const ELFO
*Obj
) override
;
412 void printHashHistogram(const ELFFile
<ELFT
> *Obj
) override
;
413 void printNotes(const ELFFile
<ELFT
> *Obj
) override
;
414 void printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) override
;
415 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
416 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
419 void printRelocation(const ELFO
*Obj
, Elf_Rela Rel
, const Elf_Shdr
*SymTab
);
420 void printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
);
421 void printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
, const Elf_Sym
*First
,
422 StringRef StrTable
, bool IsDynamic
) override
;
427 } // end anonymous namespace
431 template <class ELFT
>
432 static std::error_code
createELFDumper(const ELFFile
<ELFT
> *Obj
,
433 ScopedPrinter
&Writer
,
434 std::unique_ptr
<ObjDumper
> &Result
) {
435 Result
.reset(new ELFDumper
<ELFT
>(Obj
, Writer
));
436 return readobj_error::success
;
439 std::error_code
createELFDumper(const object::ObjectFile
*Obj
,
440 ScopedPrinter
&Writer
,
441 std::unique_ptr
<ObjDumper
> &Result
) {
442 // Little-endian 32-bit
443 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(Obj
))
444 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
447 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(Obj
))
448 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
450 // Little-endian 64-bit
451 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(Obj
))
452 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
455 if (const ELF64BEObjectFile
*ELFObj
= dyn_cast
<ELF64BEObjectFile
>(Obj
))
456 return createELFDumper(ELFObj
->getELFFile(), Writer
, Result
);
458 return readobj_error::unsupported_obj_file_format
;
461 } // end namespace llvm
463 // Iterate through the versions needed section, and place each Elf_Vernaux
464 // in the VersionMap according to its index.
465 template <class ELFT
>
466 void ELFDumper
<ELFT
>::LoadVersionNeeds(const Elf_Shdr
*sec
) const {
467 unsigned vn_size
= sec
->sh_size
; // Size of section in bytes
468 unsigned vn_count
= sec
->sh_info
; // Number of Verneed entries
469 const char *sec_start
= (const char *)Obj
->base() + sec
->sh_offset
;
470 const char *sec_end
= sec_start
+ vn_size
;
471 // The first Verneed entry is at the start of the section.
472 const char *p
= sec_start
;
473 for (unsigned i
= 0; i
< vn_count
; i
++) {
474 if (p
+ sizeof(Elf_Verneed
) > sec_end
)
475 report_fatal_error("Section ended unexpectedly while scanning "
476 "version needed records.");
477 const Elf_Verneed
*vn
= reinterpret_cast<const Elf_Verneed
*>(p
);
478 if (vn
->vn_version
!= ELF::VER_NEED_CURRENT
)
479 report_fatal_error("Unexpected verneed version");
480 // Iterate through the Vernaux entries
481 const char *paux
= p
+ vn
->vn_aux
;
482 for (unsigned j
= 0; j
< vn
->vn_cnt
; j
++) {
483 if (paux
+ sizeof(Elf_Vernaux
) > sec_end
)
484 report_fatal_error("Section ended unexpected while scanning auxiliary "
485 "version needed records.");
486 const Elf_Vernaux
*vna
= reinterpret_cast<const Elf_Vernaux
*>(paux
);
487 size_t index
= vna
->vna_other
& ELF::VERSYM_VERSION
;
488 if (index
>= VersionMap
.size())
489 VersionMap
.resize(index
+ 1);
490 VersionMap
[index
] = VersionMapEntry(vna
);
491 paux
+= vna
->vna_next
;
497 // Iterate through the version definitions, and place each Elf_Verdef
498 // in the VersionMap according to its index.
499 template <class ELFT
>
500 void ELFDumper
<ELFT
>::LoadVersionDefs(const Elf_Shdr
*sec
) const {
501 unsigned vd_size
= sec
->sh_size
; // Size of section in bytes
502 unsigned vd_count
= sec
->sh_info
; // Number of Verdef entries
503 const char *sec_start
= (const char *)Obj
->base() + sec
->sh_offset
;
504 const char *sec_end
= sec_start
+ vd_size
;
505 // The first Verdef entry is at the start of the section.
506 const char *p
= sec_start
;
507 for (unsigned i
= 0; i
< vd_count
; i
++) {
508 if (p
+ sizeof(Elf_Verdef
) > sec_end
)
509 report_fatal_error("Section ended unexpectedly while scanning "
510 "version definitions.");
511 const Elf_Verdef
*vd
= reinterpret_cast<const Elf_Verdef
*>(p
);
512 if (vd
->vd_version
!= ELF::VER_DEF_CURRENT
)
513 report_fatal_error("Unexpected verdef version");
514 size_t index
= vd
->vd_ndx
& ELF::VERSYM_VERSION
;
515 if (index
>= VersionMap
.size())
516 VersionMap
.resize(index
+ 1);
517 VersionMap
[index
] = VersionMapEntry(vd
);
522 template <class ELFT
> void ELFDumper
<ELFT
>::LoadVersionMap() const {
523 // If there is no dynamic symtab or version table, there is nothing to do.
524 if (!DynSymRegion
.Addr
|| !dot_gnu_version_sec
)
527 // Has the VersionMap already been loaded?
528 if (VersionMap
.size() > 0)
531 // The first two version indexes are reserved.
532 // Index 0 is LOCAL, index 1 is GLOBAL.
533 VersionMap
.push_back(VersionMapEntry());
534 VersionMap
.push_back(VersionMapEntry());
536 if (dot_gnu_version_d_sec
)
537 LoadVersionDefs(dot_gnu_version_d_sec
);
539 if (dot_gnu_version_r_sec
)
540 LoadVersionNeeds(dot_gnu_version_r_sec
);
543 template <typename ELFO
, class ELFT
>
544 static void printVersionSymbolSection(ELFDumper
<ELFT
> *Dumper
, const ELFO
*Obj
,
545 const typename
ELFO::Elf_Shdr
*Sec
,
547 DictScope
SS(W
, "Version symbols");
550 StringRef Name
= unwrapOrError(Obj
->getSectionName(Sec
));
551 W
.printNumber("Section Name", Name
, Sec
->sh_name
);
552 W
.printHex("Address", Sec
->sh_addr
);
553 W
.printHex("Offset", Sec
->sh_offset
);
554 W
.printNumber("Link", Sec
->sh_link
);
556 const uint8_t *P
= (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
557 StringRef StrTable
= Dumper
->getDynamicStringTable();
559 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
560 ListScope
Syms(W
, "Symbols");
561 for (const typename
ELFO::Elf_Sym
&Sym
: Dumper
->dynamic_symbols()) {
562 DictScope
S(W
, "Symbol");
563 std::string FullSymbolName
=
564 Dumper
->getFullSymbolName(&Sym
, StrTable
, true /* IsDynamic */);
565 W
.printNumber("Version", *P
);
566 W
.printString("Name", FullSymbolName
);
567 P
+= sizeof(typename
ELFO::Elf_Half
);
571 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
572 {"Base", "BASE", VER_FLG_BASE
},
573 {"Weak", "WEAK", VER_FLG_WEAK
},
574 {"Info", "INFO", VER_FLG_INFO
}};
576 template <typename ELFO
, class ELFT
>
577 static void printVersionDefinitionSection(ELFDumper
<ELFT
> *Dumper
,
579 const typename
ELFO::Elf_Shdr
*Sec
,
581 using VerDef
= typename
ELFO::Elf_Verdef
;
582 using VerdAux
= typename
ELFO::Elf_Verdaux
;
584 DictScope
SD(W
, "SHT_GNU_verdef");
588 // The number of entries in the section SHT_GNU_verdef
589 // is determined by DT_VERDEFNUM tag.
590 unsigned VerDefsNum
= 0;
591 for (const typename
ELFO::Elf_Dyn
&Dyn
: Dumper
->dynamic_table()) {
592 if (Dyn
.d_tag
== DT_VERDEFNUM
)
593 VerDefsNum
= Dyn
.d_un
.d_val
;
595 const uint8_t *SecStartAddress
=
596 (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
597 const uint8_t *SecEndAddress
= SecStartAddress
+ Sec
->sh_size
;
598 const uint8_t *P
= SecStartAddress
;
599 const typename
ELFO::Elf_Shdr
*StrTab
=
600 unwrapOrError(Obj
->getSection(Sec
->sh_link
));
602 while (VerDefsNum
--) {
603 if (P
+ sizeof(VerDef
) > SecEndAddress
)
604 report_fatal_error("invalid offset in the section");
606 auto *VD
= reinterpret_cast<const VerDef
*>(P
);
607 DictScope
Def(W
, "Definition");
608 W
.printNumber("Version", VD
->vd_version
);
609 W
.printEnum("Flags", VD
->vd_flags
, makeArrayRef(SymVersionFlags
));
610 W
.printNumber("Index", VD
->vd_ndx
);
611 W
.printNumber("Hash", VD
->vd_hash
);
612 W
.printString("Name",
613 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
614 VD
->getAux()->vda_name
)));
616 report_fatal_error("at least one definition string must exist");
618 report_fatal_error("more than one predecessor is not expected");
620 if (VD
->vd_cnt
== 2) {
621 const uint8_t *PAux
= P
+ VD
->vd_aux
+ VD
->getAux()->vda_next
;
622 const VerdAux
*Aux
= reinterpret_cast<const VerdAux
*>(PAux
);
623 W
.printString("Predecessor",
624 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
632 template <typename ELFO
, class ELFT
>
633 static void printVersionDependencySection(ELFDumper
<ELFT
> *Dumper
,
635 const typename
ELFO::Elf_Shdr
*Sec
,
637 using VerNeed
= typename
ELFO::Elf_Verneed
;
638 using VernAux
= typename
ELFO::Elf_Vernaux
;
640 DictScope
SD(W
, "SHT_GNU_verneed");
644 unsigned VerNeedNum
= 0;
645 for (const typename
ELFO::Elf_Dyn
&Dyn
: Dumper
->dynamic_table())
646 if (Dyn
.d_tag
== DT_VERNEEDNUM
)
647 VerNeedNum
= Dyn
.d_un
.d_val
;
649 const uint8_t *SecData
= (const uint8_t *)Obj
->base() + Sec
->sh_offset
;
650 const typename
ELFO::Elf_Shdr
*StrTab
=
651 unwrapOrError(Obj
->getSection(Sec
->sh_link
));
653 const uint8_t *P
= SecData
;
654 for (unsigned I
= 0; I
< VerNeedNum
; ++I
) {
655 const VerNeed
*Need
= reinterpret_cast<const VerNeed
*>(P
);
656 DictScope
Entry(W
, "Dependency");
657 W
.printNumber("Version", Need
->vn_version
);
658 W
.printNumber("Count", Need
->vn_cnt
);
659 W
.printString("FileName",
660 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
663 const uint8_t *PAux
= P
+ Need
->vn_aux
;
664 for (unsigned J
= 0; J
< Need
->vn_cnt
; ++J
) {
665 const VernAux
*Aux
= reinterpret_cast<const VernAux
*>(PAux
);
666 DictScope
Entry(W
, "Entry");
667 W
.printNumber("Hash", Aux
->vna_hash
);
668 W
.printEnum("Flags", Aux
->vna_flags
, makeArrayRef(SymVersionFlags
));
669 W
.printNumber("Index", Aux
->vna_other
);
670 W
.printString("Name",
671 StringRef((const char *)(Obj
->base() + StrTab
->sh_offset
+
673 PAux
+= Aux
->vna_next
;
679 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
680 // Dump version symbol section.
681 printVersionSymbolSection(this, Obj
, dot_gnu_version_sec
, W
);
683 // Dump version definition section.
684 printVersionDefinitionSection(this, Obj
, dot_gnu_version_d_sec
, W
);
686 // Dump version dependency section.
687 printVersionDependencySection(this, Obj
, dot_gnu_version_r_sec
, W
);
690 template <typename ELFT
>
691 StringRef ELFDumper
<ELFT
>::getSymbolVersion(StringRef StrTab
,
693 bool &IsDefault
) const {
694 // This is a dynamic symbol. Look in the GNU symbol version table.
695 if (!dot_gnu_version_sec
) {
698 return StringRef("");
701 // Determine the position in the symbol table of this entry.
702 size_t entry_index
= (reinterpret_cast<uintptr_t>(symb
) -
703 reinterpret_cast<uintptr_t>(DynSymRegion
.Addr
)) /
706 // Get the corresponding version index entry
707 const Elf_Versym
*vs
= unwrapOrError(
708 Obj
->template getEntry
<Elf_Versym
>(dot_gnu_version_sec
, entry_index
));
709 size_t version_index
= vs
->vs_index
& ELF::VERSYM_VERSION
;
711 // Special markers for unversioned symbols.
712 if (version_index
== ELF::VER_NDX_LOCAL
||
713 version_index
== ELF::VER_NDX_GLOBAL
) {
715 return StringRef("");
718 // Lookup this symbol in the version table
720 if (version_index
>= VersionMap
.size() || VersionMap
[version_index
].isNull())
721 reportError("Invalid version entry");
722 const VersionMapEntry
&entry
= VersionMap
[version_index
];
724 // Get the version name string
726 if (entry
.isVerdef()) {
727 // The first Verdaux entry holds the name.
728 name_offset
= entry
.getVerdef()->getAux()->vda_name
;
729 IsDefault
= !(vs
->vs_index
& ELF::VERSYM_HIDDEN
);
731 name_offset
= entry
.getVernaux()->vna_name
;
734 if (name_offset
>= StrTab
.size())
735 reportError("Invalid string offset");
736 return StringRef(StrTab
.data() + name_offset
);
739 template <typename ELFT
>
740 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
*Symbol
,
742 bool IsDynamic
) const {
743 StringRef SymbolName
= unwrapOrError(Symbol
->getName(StrTable
));
747 std::string
FullSymbolName(SymbolName
);
750 StringRef Version
= getSymbolVersion(StrTable
, &*Symbol
, IsDefault
);
751 FullSymbolName
+= (IsDefault
? "@@" : "@");
752 FullSymbolName
+= Version
;
753 return FullSymbolName
;
756 template <typename ELFT
>
757 void ELFDumper
<ELFT
>::getSectionNameIndex(const Elf_Sym
*Symbol
,
758 const Elf_Sym
*FirstSym
,
759 StringRef
&SectionName
,
760 unsigned &SectionIndex
) const {
761 SectionIndex
= Symbol
->st_shndx
;
762 if (Symbol
->isUndefined())
763 SectionName
= "Undefined";
764 else if (Symbol
->isProcessorSpecific())
765 SectionName
= "Processor Specific";
766 else if (Symbol
->isOSSpecific())
767 SectionName
= "Operating System Specific";
768 else if (Symbol
->isAbsolute())
769 SectionName
= "Absolute";
770 else if (Symbol
->isCommon())
771 SectionName
= "Common";
772 else if (Symbol
->isReserved() && SectionIndex
!= SHN_XINDEX
)
773 SectionName
= "Reserved";
775 if (SectionIndex
== SHN_XINDEX
)
776 SectionIndex
= unwrapOrError(object::getExtendedSymbolTableIndex
<ELFT
>(
777 Symbol
, FirstSym
, ShndxTable
));
778 const typename
ELFT::Shdr
*Sec
=
779 unwrapOrError(Obj
->getSection(SectionIndex
));
780 SectionName
= unwrapOrError(Obj
->getSectionName(Sec
));
784 template <class ELFO
>
785 static const typename
ELFO::Elf_Shdr
*
786 findNotEmptySectionByAddress(const ELFO
*Obj
, uint64_t Addr
) {
787 for (const auto &Shdr
: unwrapOrError(Obj
->sections()))
788 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
793 template <class ELFO
>
794 static const typename
ELFO::Elf_Shdr
*findSectionByName(const ELFO
&Obj
,
796 for (const auto &Shdr
: unwrapOrError(Obj
.sections())) {
797 if (Name
== unwrapOrError(Obj
.getSectionName(&Shdr
)))
803 static const EnumEntry
<unsigned> ElfClass
[] = {
804 {"None", "none", ELF::ELFCLASSNONE
},
805 {"32-bit", "ELF32", ELF::ELFCLASS32
},
806 {"64-bit", "ELF64", ELF::ELFCLASS64
},
809 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
810 {"None", "none", ELF::ELFDATANONE
},
811 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
812 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
815 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
816 {"None", "NONE (none)", ELF::ET_NONE
},
817 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
818 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
819 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
820 {"Core", "CORE (Core file)", ELF::ET_CORE
},
823 static const EnumEntry
<unsigned> ElfOSABI
[] = {
824 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
825 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
826 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
827 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
828 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
829 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
830 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
831 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
832 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
833 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
834 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
835 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
836 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
837 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
838 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
839 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
840 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
841 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
844 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
845 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
846 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
847 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
850 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
851 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
854 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
855 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
856 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
859 static const EnumEntry
<unsigned> ElfMachineType
[] = {
860 ENUM_ENT(EM_NONE
, "None"),
861 ENUM_ENT(EM_M32
, "WE32100"),
862 ENUM_ENT(EM_SPARC
, "Sparc"),
863 ENUM_ENT(EM_386
, "Intel 80386"),
864 ENUM_ENT(EM_68K
, "MC68000"),
865 ENUM_ENT(EM_88K
, "MC88000"),
866 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
867 ENUM_ENT(EM_860
, "Intel 80860"),
868 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
869 ENUM_ENT(EM_S370
, "IBM System/370"),
870 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
871 ENUM_ENT(EM_PARISC
, "HPPA"),
872 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
873 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
874 ENUM_ENT(EM_960
, "Intel 80960"),
875 ENUM_ENT(EM_PPC
, "PowerPC"),
876 ENUM_ENT(EM_PPC64
, "PowerPC64"),
877 ENUM_ENT(EM_S390
, "IBM S/390"),
878 ENUM_ENT(EM_SPU
, "SPU"),
879 ENUM_ENT(EM_V800
, "NEC V800 series"),
880 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
881 ENUM_ENT(EM_RH32
, "TRW RH-32"),
882 ENUM_ENT(EM_RCE
, "Motorola RCE"),
883 ENUM_ENT(EM_ARM
, "ARM"),
884 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
885 ENUM_ENT(EM_SH
, "Hitachi SH"),
886 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
887 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
888 ENUM_ENT(EM_ARC
, "ARC"),
889 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
890 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
891 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
892 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
893 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
894 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
895 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
896 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
897 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
898 ENUM_ENT(EM_PCP
, "Siemens PCP"),
899 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
900 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
901 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
902 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
903 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
904 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
905 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
906 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
907 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
908 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
909 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
910 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
911 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
912 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
913 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
914 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
915 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
916 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
917 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
918 ENUM_ENT(EM_VAX
, "Digital VAX"),
919 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
920 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
921 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
922 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
923 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
924 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
925 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
926 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
927 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
928 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
929 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
930 ENUM_ENT(EM_V850
, "NEC v850"),
931 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
932 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
933 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
934 ENUM_ENT(EM_PJ
, "picoJava"),
935 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
936 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
937 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
938 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
939 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
940 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
941 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
942 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
943 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
944 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
945 ENUM_ENT(EM_MAX
, "MAX Processor"),
946 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
947 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
948 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
949 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
950 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
951 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
952 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
953 ENUM_ENT(EM_UNICORE
, "Unicore"),
954 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
955 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
956 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
957 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
958 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
959 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
960 ENUM_ENT(EM_M16C
, "Renesas M16C"),
961 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
962 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
963 ENUM_ENT(EM_M32C
, "Renesas M32C"),
964 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
965 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
966 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
967 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
968 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
969 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
970 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
971 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
972 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
973 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
974 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
975 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
976 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
977 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
978 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
979 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
980 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
981 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
982 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
983 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
984 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
985 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
986 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
987 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
988 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
989 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
990 ENUM_ENT(EM_RX
, "Renesas RX"),
991 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
992 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
993 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
994 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
995 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
996 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
997 ENUM_ENT(EM_L10M
, "EM_L10M"),
998 ENUM_ENT(EM_K10M
, "EM_K10M"),
999 ENUM_ENT(EM_AARCH64
, "AArch64"),
1000 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1001 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1002 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1003 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1004 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1005 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1006 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1007 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1008 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1009 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1010 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1011 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1012 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1013 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1014 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1015 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1016 ENUM_ENT(EM_RISCV
, "RISC-V"),
1017 ENUM_ENT(EM_WEBASSEMBLY
, "EM_WEBASSEMBLY"),
1018 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1019 ENUM_ENT(EM_BPF
, "EM_BPF"),
1022 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1023 {"Local", "LOCAL", ELF::STB_LOCAL
},
1024 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1025 {"Weak", "WEAK", ELF::STB_WEAK
},
1026 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1028 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1029 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1030 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1031 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1032 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1034 static const EnumEntry
<unsigned> ElfSymbolTypes
[] = {
1035 {"None", "NOTYPE", ELF::STT_NOTYPE
},
1036 {"Object", "OBJECT", ELF::STT_OBJECT
},
1037 {"Function", "FUNC", ELF::STT_FUNC
},
1038 {"Section", "SECTION", ELF::STT_SECTION
},
1039 {"File", "FILE", ELF::STT_FILE
},
1040 {"Common", "COMMON", ELF::STT_COMMON
},
1041 {"TLS", "TLS", ELF::STT_TLS
},
1042 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC
}};
1044 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1045 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1048 static const char *getGroupType(uint32_t Flag
) {
1049 if (Flag
& ELF::GRP_COMDAT
)
1055 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1056 ENUM_ENT(SHF_WRITE
, "W"),
1057 ENUM_ENT(SHF_ALLOC
, "A"),
1058 ENUM_ENT(SHF_EXCLUDE
, "E"),
1059 ENUM_ENT(SHF_EXECINSTR
, "X"),
1060 ENUM_ENT(SHF_MERGE
, "M"),
1061 ENUM_ENT(SHF_STRINGS
, "S"),
1062 ENUM_ENT(SHF_INFO_LINK
, "I"),
1063 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1064 ENUM_ENT(SHF_OS_NONCONFORMING
, "o"),
1065 ENUM_ENT(SHF_GROUP
, "G"),
1066 ENUM_ENT(SHF_TLS
, "T"),
1067 ENUM_ENT(SHF_MASKOS
, "o"),
1068 ENUM_ENT(SHF_MASKPROC
, "p"),
1069 ENUM_ENT_1(SHF_COMPRESSED
),
1072 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1073 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_CP_SECTION
),
1074 LLVM_READOBJ_ENUM_ENT(ELF
, XCORE_SHF_DP_SECTION
)
1077 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1078 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_ARM_PURECODE
)
1081 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1082 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_HEX_GPREL
)
1085 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1086 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NODUPES
),
1087 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NAMES
),
1088 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_LOCAL
),
1089 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_NOSTRIP
),
1090 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_GPREL
),
1091 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_MERGE
),
1092 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_ADDR
),
1093 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_MIPS_STRING
)
1096 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1097 LLVM_READOBJ_ENUM_ENT(ELF
, SHF_X86_64_LARGE
)
1100 static std::string
getGNUFlags(uint64_t Flags
) {
1102 for (auto Entry
: ElfSectionFlags
) {
1103 uint64_t Flag
= Entry
.Value
& Flags
;
1104 Flags
&= ~Entry
.Value
;
1106 case ELF::SHF_WRITE
:
1107 case ELF::SHF_ALLOC
:
1108 case ELF::SHF_EXECINSTR
:
1109 case ELF::SHF_MERGE
:
1110 case ELF::SHF_STRINGS
:
1111 case ELF::SHF_INFO_LINK
:
1112 case ELF::SHF_LINK_ORDER
:
1113 case ELF::SHF_OS_NONCONFORMING
:
1114 case ELF::SHF_GROUP
:
1116 case ELF::SHF_EXCLUDE
:
1117 Str
+= Entry
.AltName
;
1120 if (Flag
& ELF::SHF_MASKOS
)
1122 else if (Flag
& ELF::SHF_MASKPROC
)
1131 static const char *getElfSegmentType(unsigned Arch
, unsigned Type
) {
1132 // Check potentially overlapped processor-specific
1133 // program header type.
1137 LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
);
1140 case ELF::EM_MIPS_RS3_LE
:
1142 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1143 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1144 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1145 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1150 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1151 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1152 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1153 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1154 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1155 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1156 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1157 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1159 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1160 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1162 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1163 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1165 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1166 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1167 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1173 static std::string
getElfPtType(unsigned Arch
, unsigned Type
) {
1175 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NULL
)
1176 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_LOAD
)
1177 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_DYNAMIC
)
1178 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_INTERP
)
1179 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_NOTE
)
1180 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SHLIB
)
1181 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_PHDR
)
1182 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_TLS
)
1183 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_EH_FRAME
)
1184 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_SUNW_UNWIND
)
1185 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_STACK
)
1186 LLVM_READOBJ_PHDR_ENUM(ELF
, PT_GNU_RELRO
)
1188 // All machine specific PT_* types
1191 if (Type
== ELF::PT_ARM_EXIDX
)
1195 case ELF::EM_MIPS_RS3_LE
:
1197 case PT_MIPS_REGINFO
:
1199 case PT_MIPS_RTPROC
:
1201 case PT_MIPS_OPTIONS
:
1203 case PT_MIPS_ABIFLAGS
:
1209 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1212 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1213 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1214 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1215 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1218 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1219 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_NOREORDER
),
1220 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_PIC
),
1221 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_CPIC
),
1222 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI2
),
1223 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_32BITMODE
),
1224 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_FP64
),
1225 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_NAN2008
),
1226 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_O32
),
1227 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_O64
),
1228 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_EABI32
),
1229 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ABI_EABI64
),
1230 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_3900
),
1231 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4010
),
1232 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4100
),
1233 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4650
),
1234 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4120
),
1235 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_4111
),
1236 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_SB1
),
1237 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON
),
1238 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_XLR
),
1239 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON2
),
1240 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_OCTEON3
),
1241 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5400
),
1242 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5900
),
1243 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_5500
),
1244 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_9000
),
1245 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS2E
),
1246 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS2F
),
1247 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MACH_LS3A
),
1248 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_MICROMIPS
),
1249 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_ASE_M16
),
1250 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_ASE_MDMX
),
1251 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_1
),
1252 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_2
),
1253 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_3
),
1254 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_4
),
1255 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_5
),
1256 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32
),
1257 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64
),
1258 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32R2
),
1259 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64R2
),
1260 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_32R6
),
1261 LLVM_READOBJ_ENUM_ENT(ELF
, EF_MIPS_ARCH_64R6
)
1264 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1265 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1266 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1267 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1268 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1269 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1270 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1271 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1272 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1273 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1274 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1275 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1276 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1277 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1278 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1279 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1280 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1281 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1282 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1283 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1284 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1285 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1286 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1287 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1288 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1289 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1290 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1291 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1292 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1293 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1294 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1295 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1296 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1297 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
)
1300 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1301 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_RVC
),
1302 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_SINGLE
),
1303 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_DOUBLE
),
1304 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_FLOAT_ABI_QUAD
),
1305 LLVM_READOBJ_ENUM_ENT(ELF
, EF_RISCV_RVE
)
1308 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1309 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1310 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1311 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1314 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1315 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1316 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1317 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1318 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1321 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1322 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1323 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1324 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1327 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1329 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1330 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1331 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1332 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1333 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1334 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1335 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1336 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1337 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1338 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1339 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1340 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1346 template <typename ELFT
>
1347 ELFDumper
<ELFT
>::ELFDumper(const ELFFile
<ELFT
> *Obj
, ScopedPrinter
&Writer
)
1348 : ObjDumper(Writer
), Obj(Obj
) {
1349 SmallVector
<const Elf_Phdr
*, 4> LoadSegments
;
1350 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
1351 if (Phdr
.p_type
== ELF::PT_DYNAMIC
) {
1352 DynamicTable
= createDRIFrom(&Phdr
, sizeof(Elf_Dyn
));
1355 if (Phdr
.p_type
!= ELF::PT_LOAD
|| Phdr
.p_filesz
== 0)
1357 LoadSegments
.push_back(&Phdr
);
1360 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
1361 switch (Sec
.sh_type
) {
1362 case ELF::SHT_SYMTAB
:
1363 if (DotSymtabSec
!= nullptr)
1364 reportError("Multiple SHT_SYMTAB");
1365 DotSymtabSec
= &Sec
;
1367 case ELF::SHT_DYNSYM
:
1368 if (DynSymRegion
.Size
)
1369 reportError("Multiple SHT_DYNSYM");
1370 DynSymRegion
= createDRIFrom(&Sec
);
1371 // This is only used (if Elf_Shdr present)for naming section in GNU style
1372 DynSymtabName
= unwrapOrError(Obj
->getSectionName(&Sec
));
1373 DynamicStringTable
= unwrapOrError(Obj
->getStringTableForSymtab(Sec
));
1375 case ELF::SHT_SYMTAB_SHNDX
:
1376 ShndxTable
= unwrapOrError(Obj
->getSHNDXTable(Sec
));
1378 case ELF::SHT_GNU_versym
:
1379 if (dot_gnu_version_sec
!= nullptr)
1380 reportError("Multiple SHT_GNU_versym");
1381 dot_gnu_version_sec
= &Sec
;
1383 case ELF::SHT_GNU_verdef
:
1384 if (dot_gnu_version_d_sec
!= nullptr)
1385 reportError("Multiple SHT_GNU_verdef");
1386 dot_gnu_version_d_sec
= &Sec
;
1388 case ELF::SHT_GNU_verneed
:
1389 if (dot_gnu_version_r_sec
!= nullptr)
1390 reportError("Multiple SHT_GNU_verneed");
1391 dot_gnu_version_r_sec
= &Sec
;
1396 parseDynamicTable(LoadSegments
);
1398 if (opts::Output
== opts::GNU
)
1399 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, this));
1401 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, this));
1404 template <typename ELFT
>
1405 void ELFDumper
<ELFT
>::parseDynamicTable(
1406 ArrayRef
<const Elf_Phdr
*> LoadSegments
) {
1407 auto toMappedAddr
= [&](uint64_t VAddr
) -> const uint8_t * {
1408 const Elf_Phdr
*const *I
=
1409 std::upper_bound(LoadSegments
.begin(), LoadSegments
.end(), VAddr
,
1410 [](uint64_t VAddr
, const Elf_Phdr_Impl
<ELFT
> *Phdr
) {
1411 return VAddr
< Phdr
->p_vaddr
;
1413 if (I
== LoadSegments
.begin())
1414 report_fatal_error("Virtual address is not in any segment");
1416 const Elf_Phdr
&Phdr
= **I
;
1417 uint64_t Delta
= VAddr
- Phdr
.p_vaddr
;
1418 if (Delta
>= Phdr
.p_filesz
)
1419 report_fatal_error("Virtual address is not in any segment");
1420 return Obj
->base() + Phdr
.p_offset
+ Delta
;
1423 uint64_t SONameOffset
= 0;
1424 const char *StringTableBegin
= nullptr;
1425 uint64_t StringTableSize
= 0;
1426 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
1427 switch (Dyn
.d_tag
) {
1430 reinterpret_cast<const Elf_Hash
*>(toMappedAddr(Dyn
.getPtr()));
1432 case ELF::DT_GNU_HASH
:
1434 reinterpret_cast<const Elf_GnuHash
*>(toMappedAddr(Dyn
.getPtr()));
1436 case ELF::DT_STRTAB
:
1437 StringTableBegin
= (const char *)toMappedAddr(Dyn
.getPtr());
1440 StringTableSize
= Dyn
.getVal();
1442 case ELF::DT_SYMTAB
:
1443 DynSymRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1444 DynSymRegion
.EntSize
= sizeof(Elf_Sym
);
1447 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1449 case ELF::DT_RELASZ
:
1450 DynRelaRegion
.Size
= Dyn
.getVal();
1452 case ELF::DT_RELAENT
:
1453 DynRelaRegion
.EntSize
= Dyn
.getVal();
1455 case ELF::DT_SONAME
:
1456 SONameOffset
= Dyn
.getVal();
1459 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1462 DynRelRegion
.Size
= Dyn
.getVal();
1464 case ELF::DT_RELENT
:
1465 DynRelRegion
.EntSize
= Dyn
.getVal();
1467 case ELF::DT_PLTREL
:
1468 if (Dyn
.getVal() == DT_REL
)
1469 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
1470 else if (Dyn
.getVal() == DT_RELA
)
1471 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
1473 reportError(Twine("unknown DT_PLTREL value of ") +
1474 Twine((uint64_t)Dyn
.getVal()));
1476 case ELF::DT_JMPREL
:
1477 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getPtr());
1479 case ELF::DT_PLTRELSZ
:
1480 DynPLTRelRegion
.Size
= Dyn
.getVal();
1484 if (StringTableBegin
)
1485 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
1487 SOName
= getDynamicString(SONameOffset
);
1490 template <typename ELFT
>
1491 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
1492 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
1495 template <typename ELFT
>
1496 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
1497 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
1500 template<class ELFT
>
1501 void ELFDumper
<ELFT
>::printFileHeaders() {
1502 ELFDumperStyle
->printFileHeaders(Obj
);
1505 template<class ELFT
>
1506 void ELFDumper
<ELFT
>::printSections() {
1507 ELFDumperStyle
->printSections(Obj
);
1510 template<class ELFT
>
1511 void ELFDumper
<ELFT
>::printRelocations() {
1512 ELFDumperStyle
->printRelocations(Obj
);
1515 template <class ELFT
> void ELFDumper
<ELFT
>::printProgramHeaders() {
1516 ELFDumperStyle
->printProgramHeaders(Obj
);
1519 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
1520 ELFDumperStyle
->printDynamicRelocations(Obj
);
1523 template<class ELFT
>
1524 void ELFDumper
<ELFT
>::printSymbols() {
1525 ELFDumperStyle
->printSymbols(Obj
);
1528 template<class ELFT
>
1529 void ELFDumper
<ELFT
>::printDynamicSymbols() {
1530 ELFDumperStyle
->printDynamicSymbols(Obj
);
1533 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistogram() {
1534 ELFDumperStyle
->printHashHistogram(Obj
);
1537 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
1538 ELFDumperStyle
->printNotes(Obj
);
1541 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
1542 ELFDumperStyle
->printELFLinkerOptions(Obj
);
1545 static const char *getTypeString(unsigned Arch
, uint64_t Type
) {
1546 #define DYNAMIC_TAG(n, v)
1550 #define HEXAGON_DYNAMIC_TAG(name, value) \
1553 #include "llvm/BinaryFormat/DynamicTags.def"
1554 #undef HEXAGON_DYNAMIC_TAG
1559 #define MIPS_DYNAMIC_TAG(name, value) \
1562 #include "llvm/BinaryFormat/DynamicTags.def"
1563 #undef MIPS_DYNAMIC_TAG
1568 #define PPC64_DYNAMIC_TAG(name, value) \
1571 #include "llvm/BinaryFormat/DynamicTags.def"
1572 #undef PPC64_DYNAMIC_TAG
1577 // Now handle all dynamic tags except the architecture specific ones
1578 #define MIPS_DYNAMIC_TAG(name, value)
1579 #define HEXAGON_DYNAMIC_TAG(name, value)
1580 #define PPC64_DYNAMIC_TAG(name, value)
1581 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1582 #define DYNAMIC_TAG_MARKER(name, value)
1583 #define DYNAMIC_TAG(name, value) \
1586 #include "llvm/BinaryFormat/DynamicTags.def"
1588 #undef MIPS_DYNAMIC_TAG
1589 #undef HEXAGON_DYNAMIC_TAG
1590 #undef PPC64_DYNAMIC_TAG
1591 #undef DYNAMIC_TAG_MARKER
1592 default: return "unknown";
1596 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1597 { #enum, prefix##_##enum }
1599 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
1600 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
1601 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
1602 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
1603 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
1604 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
1607 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
1608 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
1609 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
1610 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
1611 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
1612 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
1613 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
1614 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
1615 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
1616 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
1617 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
1618 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
1619 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
1620 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
1621 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
1622 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
1623 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
1624 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
1625 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
1626 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
1627 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
1628 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
1629 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
1630 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
1631 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
1632 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
)
1635 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
1636 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
1637 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
1638 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
1639 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
1640 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
1641 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
1642 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
1643 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
1644 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
1645 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
1646 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
1647 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
1648 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
1649 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
1650 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
1651 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
1654 #undef LLVM_READOBJ_DT_FLAG_ENT
1656 template <typename T
, typename TFlag
>
1657 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
1658 using FlagEntry
= EnumEntry
<TFlag
>;
1659 using FlagVector
= SmallVector
<FlagEntry
, 10>;
1660 FlagVector SetFlags
;
1662 for (const auto &Flag
: Flags
) {
1663 if (Flag
.Value
== 0)
1666 if ((Value
& Flag
.Value
) == Flag
.Value
)
1667 SetFlags
.push_back(Flag
);
1670 for (const auto &Flag
: SetFlags
) {
1671 OS
<< Flag
.Name
<< " ";
1675 template <class ELFT
>
1676 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
1677 if (Value
>= DynamicStringTable
.size())
1678 reportError("Invalid dynamic string table reference");
1679 return StringRef(DynamicStringTable
.data() + Value
);
1682 static void printLibrary(raw_ostream
&OS
, const Twine
&Tag
, const Twine
&Name
) {
1683 OS
<< Tag
<< ": [" << Name
<< "]";
1686 template <class ELFT
>
1687 void ELFDumper
<ELFT
>::printValue(uint64_t Type
, uint64_t Value
) {
1688 raw_ostream
&OS
= W
.getOStream();
1689 const char* ConvChar
= (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
1692 if (Value
== DT_REL
) {
1695 } else if (Value
== DT_RELA
) {
1711 case DT_PREINIT_ARRAY
:
1718 case DT_MIPS_BASE_ADDRESS
:
1719 case DT_MIPS_GOTSYM
:
1720 case DT_MIPS_RLD_MAP
:
1721 case DT_MIPS_RLD_MAP_REL
:
1722 case DT_MIPS_PLTGOT
:
1723 case DT_MIPS_OPTIONS
:
1724 OS
<< format(ConvChar
, Value
);
1730 case DT_MIPS_RLD_VERSION
:
1731 case DT_MIPS_LOCAL_GOTNO
:
1732 case DT_MIPS_SYMTABNO
:
1733 case DT_MIPS_UNREFEXTNO
:
1743 case DT_INIT_ARRAYSZ
:
1744 case DT_FINI_ARRAYSZ
:
1745 case DT_PREINIT_ARRAYSZ
:
1746 case DT_ANDROID_RELSZ
:
1747 case DT_ANDROID_RELASZ
:
1748 OS
<< Value
<< " (bytes)";
1751 printLibrary(OS
, "Shared library", getDynamicString(Value
));
1754 printLibrary(OS
, "Library soname", getDynamicString(Value
));
1757 printLibrary(OS
, "Auxiliary library", getDynamicString(Value
));
1760 printLibrary(OS
, "Filter library", getDynamicString(Value
));
1764 OS
<< getDynamicString(Value
);
1767 printFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
), OS
);
1770 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags
), OS
);
1773 printFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
), OS
);
1776 OS
<< format(ConvChar
, Value
);
1781 template<class ELFT
>
1782 void ELFDumper
<ELFT
>::printUnwindInfo() {
1783 const unsigned Machine
= Obj
->getHeader()->e_machine
;
1784 if (Machine
== EM_386
|| Machine
== EM_X86_64
) {
1785 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, Obj
);
1786 return Ctx
.printUnwindInformation();
1788 W
.startLine() << "UnwindInfo not implemented.\n";
1793 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
1794 const unsigned Machine
= Obj
->getHeader()->e_machine
;
1795 if (Machine
== EM_ARM
) {
1796 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, DotSymtabSec
);
1797 return Ctx
.PrintUnwindInformation();
1799 W
.startLine() << "UnwindInfo not implemented.\n";
1802 } // end anonymous namespace
1804 template<class ELFT
>
1805 void ELFDumper
<ELFT
>::printDynamicTable() {
1806 auto I
= dynamic_table().begin();
1807 auto E
= dynamic_table().end();
1813 while (I
!= E
&& E
->getTag() == ELF::DT_NULL
)
1815 if (E
->getTag() != ELF::DT_NULL
)
1819 ptrdiff_t Total
= std::distance(I
, E
);
1823 raw_ostream
&OS
= W
.getOStream();
1824 W
.startLine() << "DynamicSection [ (" << Total
<< " entries)\n";
1826 bool Is64
= ELFT::Is64Bits
;
1829 << " Tag" << (Is64
? " " : " ") << "Type"
1830 << " " << "Name/Value\n";
1832 const Elf_Dyn
&Entry
= *I
;
1833 uintX_t Tag
= Entry
.getTag();
1835 W
.startLine() << " " << format_hex(Tag
, Is64
? 18 : 10, opts::Output
!= opts::GNU
) << " "
1836 << format("%-21s", getTypeString(Obj
->getHeader()->e_machine
, Tag
));
1837 printValue(Tag
, Entry
.getVal());
1841 W
.startLine() << "]\n";
1844 template<class ELFT
>
1845 void ELFDumper
<ELFT
>::printNeededLibraries() {
1846 ListScope
D(W
, "NeededLibraries");
1848 using LibsTy
= std::vector
<StringRef
>;
1851 for (const auto &Entry
: dynamic_table())
1852 if (Entry
.d_tag
== ELF::DT_NEEDED
)
1853 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
1855 std::stable_sort(Libs
.begin(), Libs
.end());
1857 for (const auto &L
: Libs
)
1858 W
.startLine() << L
<< "\n";
1862 template <typename ELFT
>
1863 void ELFDumper
<ELFT
>::printHashTable() {
1864 DictScope
D(W
, "HashTable");
1867 W
.printNumber("Num Buckets", HashTable
->nbucket
);
1868 W
.printNumber("Num Chains", HashTable
->nchain
);
1869 W
.printList("Buckets", HashTable
->buckets());
1870 W
.printList("Chains", HashTable
->chains());
1873 template <typename ELFT
>
1874 void ELFDumper
<ELFT
>::printGnuHashTable() {
1875 DictScope
D(W
, "GnuHashTable");
1878 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
1879 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
1880 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
1881 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
1882 W
.printHexList("Bloom Filter", GnuHashTable
->filter());
1883 W
.printList("Buckets", GnuHashTable
->buckets());
1884 Elf_Sym_Range Syms
= dynamic_symbols();
1885 unsigned NumSyms
= std::distance(Syms
.begin(), Syms
.end());
1887 reportError("No dynamic symbol section");
1888 W
.printHexList("Values", GnuHashTable
->values(NumSyms
));
1891 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
1892 W
.printString("LoadName", SOName
);
1895 template <class ELFT
>
1896 void ELFDumper
<ELFT
>::printAttributes() {
1897 W
.startLine() << "Attributes not implemented.\n";
1902 template <> void ELFDumper
<ELF32LE
>::printAttributes() {
1903 if (Obj
->getHeader()->e_machine
!= EM_ARM
) {
1904 W
.startLine() << "Attributes not implemented.\n";
1908 DictScope
BA(W
, "BuildAttributes");
1909 for (const ELFO::Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
1910 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
)
1913 ArrayRef
<uint8_t> Contents
= unwrapOrError(Obj
->getSectionContents(&Sec
));
1914 if (Contents
[0] != ARMBuildAttrs::Format_Version
) {
1915 errs() << "unrecognised FormatVersion: 0x"
1916 << Twine::utohexstr(Contents
[0]) << '\n';
1920 W
.printHex("FormatVersion", Contents
[0]);
1921 if (Contents
.size() == 1)
1924 ARMAttributeParser(&W
).Parse(Contents
, true);
1928 template <class ELFT
> class MipsGOTParser
{
1930 TYPEDEF_ELF_TYPES(ELFT
)
1931 using Entry
= typename
ELFO::Elf_Addr
;
1932 using Entries
= ArrayRef
<Entry
>;
1934 const bool IsStatic
;
1935 const ELFO
* const Obj
;
1937 MipsGOTParser(const ELFO
*Obj
, Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
1939 bool hasGot() const { return !GotEntries
.empty(); }
1940 bool hasPlt() const { return !PltEntries
.empty(); }
1942 uint64_t getGp() const;
1944 const Entry
*getGotLazyResolver() const;
1945 const Entry
*getGotModulePointer() const;
1946 const Entry
*getPltLazyResolver() const;
1947 const Entry
*getPltModulePointer() const;
1949 Entries
getLocalEntries() const;
1950 Entries
getGlobalEntries() const;
1951 Entries
getOtherEntries() const;
1952 Entries
getPltEntries() const;
1954 uint64_t getGotAddress(const Entry
* E
) const;
1955 int64_t getGotOffset(const Entry
* E
) const;
1956 const Elf_Sym
*getGotSym(const Entry
*E
) const;
1958 uint64_t getPltAddress(const Entry
* E
) const;
1959 const Elf_Sym
*getPltSym(const Entry
*E
) const;
1961 StringRef
getPltStrTable() const { return PltStrTable
; }
1964 const Elf_Shdr
*GotSec
;
1968 const Elf_Shdr
*PltSec
;
1969 const Elf_Shdr
*PltRelSec
;
1970 const Elf_Shdr
*PltSymTable
;
1971 Elf_Sym_Range GotDynSyms
;
1972 StringRef PltStrTable
;
1978 } // end anonymous namespace
1980 template <class ELFT
>
1981 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFO
*Obj
, Elf_Dyn_Range DynTable
,
1982 Elf_Sym_Range DynSyms
)
1983 : IsStatic(DynTable
.empty()), Obj(Obj
), GotSec(nullptr), LocalNum(0),
1984 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
1985 // See "Global Offset Table" in Chapter 5 in the following document
1986 // for detailed GOT description.
1987 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1989 // Find static GOT secton.
1991 GotSec
= findSectionByName(*Obj
, ".got");
1993 reportError("Cannot find .got section");
1995 ArrayRef
<uint8_t> Content
= unwrapOrError(Obj
->getSectionContents(GotSec
));
1996 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
1997 Content
.size() / sizeof(Entry
));
1998 LocalNum
= GotEntries
.size();
2002 // Lookup dynamic table tags which define GOT/PLT layouts.
2003 Optional
<uint64_t> DtPltGot
;
2004 Optional
<uint64_t> DtLocalGotNum
;
2005 Optional
<uint64_t> DtGotSym
;
2006 Optional
<uint64_t> DtMipsPltGot
;
2007 Optional
<uint64_t> DtJmpRel
;
2008 for (const auto &Entry
: DynTable
) {
2009 switch (Entry
.getTag()) {
2010 case ELF::DT_PLTGOT
:
2011 DtPltGot
= Entry
.getVal();
2013 case ELF::DT_MIPS_LOCAL_GOTNO
:
2014 DtLocalGotNum
= Entry
.getVal();
2016 case ELF::DT_MIPS_GOTSYM
:
2017 DtGotSym
= Entry
.getVal();
2019 case ELF::DT_MIPS_PLTGOT
:
2020 DtMipsPltGot
= Entry
.getVal();
2022 case ELF::DT_JMPREL
:
2023 DtJmpRel
= Entry
.getVal();
2028 // Find dynamic GOT section.
2029 if (DtPltGot
|| DtLocalGotNum
|| DtGotSym
) {
2031 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2033 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2035 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2037 size_t DynSymTotal
= DynSyms
.size();
2038 if (*DtGotSym
> DynSymTotal
)
2039 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2041 GotSec
= findNotEmptySectionByAddress(Obj
, *DtPltGot
);
2043 reportError("There is no not empty GOT section at 0x" +
2044 Twine::utohexstr(*DtPltGot
));
2046 LocalNum
= *DtLocalGotNum
;
2047 GlobalNum
= DynSymTotal
- *DtGotSym
;
2049 ArrayRef
<uint8_t> Content
= unwrapOrError(Obj
->getSectionContents(GotSec
));
2050 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
2051 Content
.size() / sizeof(Entry
));
2052 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
2055 // Find PLT section.
2056 if (DtMipsPltGot
|| DtJmpRel
) {
2058 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2060 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2062 PltSec
= findNotEmptySectionByAddress(Obj
, *DtMipsPltGot
);
2064 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2065 Twine::utohexstr(*DtMipsPltGot
));
2067 PltRelSec
= findNotEmptySectionByAddress(Obj
, *DtJmpRel
);
2069 report_fatal_error("There is no not empty RELPLT section at 0x" +
2070 Twine::utohexstr(*DtJmpRel
));
2072 ArrayRef
<uint8_t> PltContent
=
2073 unwrapOrError(Obj
->getSectionContents(PltSec
));
2074 PltEntries
= Entries(reinterpret_cast<const Entry
*>(PltContent
.data()),
2075 PltContent
.size() / sizeof(Entry
));
2077 PltSymTable
= unwrapOrError(Obj
->getSection(PltRelSec
->sh_link
));
2078 PltStrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*PltSymTable
));
2082 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
2083 return GotSec
->sh_addr
+ 0x7ff0;
2086 template <class ELFT
>
2087 const typename MipsGOTParser
<ELFT
>::Entry
*
2088 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
2089 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
2092 template <class ELFT
>
2093 const typename MipsGOTParser
<ELFT
>::Entry
*
2094 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
2097 const Entry
&E
= GotEntries
[1];
2098 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
2103 template <class ELFT
>
2104 typename MipsGOTParser
<ELFT
>::Entries
2105 MipsGOTParser
<ELFT
>::getLocalEntries() const {
2106 size_t Skip
= getGotModulePointer() ? 2 : 1;
2107 if (LocalNum
- Skip
<= 0)
2109 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
2112 template <class ELFT
>
2113 typename MipsGOTParser
<ELFT
>::Entries
2114 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
2117 return GotEntries
.slice(LocalNum
, GlobalNum
);
2120 template <class ELFT
>
2121 typename MipsGOTParser
<ELFT
>::Entries
2122 MipsGOTParser
<ELFT
>::getOtherEntries() const {
2123 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
2126 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
2129 template <class ELFT
>
2130 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
2131 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2132 return GotSec
->sh_addr
+ Offset
;
2135 template <class ELFT
>
2136 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
2137 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
2138 return Offset
- 0x7ff0;
2141 template <class ELFT
>
2142 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2143 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
2144 int64_t Offset
= std::distance(GotEntries
.data(), E
);
2145 return &GotDynSyms
[Offset
- LocalNum
];
2148 template <class ELFT
>
2149 const typename MipsGOTParser
<ELFT
>::Entry
*
2150 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
2151 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
2154 template <class ELFT
>
2155 const typename MipsGOTParser
<ELFT
>::Entry
*
2156 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
2157 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
2160 template <class ELFT
>
2161 typename MipsGOTParser
<ELFT
>::Entries
2162 MipsGOTParser
<ELFT
>::getPltEntries() const {
2163 if (PltEntries
.size() <= 2)
2165 return PltEntries
.slice(2, PltEntries
.size() - 2);
2168 template <class ELFT
>
2169 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
2170 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
2171 return PltSec
->sh_addr
+ Offset
;
2174 template <class ELFT
>
2175 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
2176 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
2177 int64_t Offset
= std::distance(getPltEntries().data(), E
);
2178 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
2179 Elf_Rel_Range Rels
= unwrapOrError(Obj
->rels(PltRelSec
));
2180 return unwrapOrError(Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2182 Elf_Rela_Range Rels
= unwrapOrError(Obj
->relas(PltRelSec
));
2183 return unwrapOrError(Obj
->getRelocationSymbol(&Rels
[Offset
], PltSymTable
));
2187 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsPLTGOT() {
2188 if (Obj
->getHeader()->e_machine
!= EM_MIPS
)
2189 reportError("MIPS PLT GOT is available for MIPS targets only");
2191 MipsGOTParser
<ELFT
> Parser(Obj
, dynamic_table(), dynamic_symbols());
2192 if (Parser
.hasGot())
2193 ELFDumperStyle
->printMipsGOT(Parser
);
2194 if (Parser
.hasPlt())
2195 ELFDumperStyle
->printMipsPLT(Parser
);
2198 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
2199 {"None", Mips::AFL_EXT_NONE
},
2200 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
2201 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
2202 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
2203 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
2204 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
2205 {"LSI R4010", Mips::AFL_EXT_4010
},
2206 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
2207 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
2208 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
2209 {"MIPS R4650", Mips::AFL_EXT_4650
},
2210 {"MIPS R5900", Mips::AFL_EXT_5900
},
2211 {"MIPS R10000", Mips::AFL_EXT_10000
},
2212 {"NEC VR4100", Mips::AFL_EXT_4100
},
2213 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
2214 {"NEC VR4120", Mips::AFL_EXT_4120
},
2215 {"NEC VR5400", Mips::AFL_EXT_5400
},
2216 {"NEC VR5500", Mips::AFL_EXT_5500
},
2217 {"RMI Xlr", Mips::AFL_EXT_XLR
},
2218 {"Toshiba R3900", Mips::AFL_EXT_3900
}
2221 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
2222 {"DSP", Mips::AFL_ASE_DSP
},
2223 {"DSPR2", Mips::AFL_ASE_DSPR2
},
2224 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
2225 {"MCU", Mips::AFL_ASE_MCU
},
2226 {"MDMX", Mips::AFL_ASE_MDMX
},
2227 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
2228 {"MT", Mips::AFL_ASE_MT
},
2229 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
2230 {"VZ", Mips::AFL_ASE_VIRT
},
2231 {"MSA", Mips::AFL_ASE_MSA
},
2232 {"MIPS16", Mips::AFL_ASE_MIPS16
},
2233 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
2234 {"XPA", Mips::AFL_ASE_XPA
},
2235 {"CRC", Mips::AFL_ASE_CRC
},
2238 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
2239 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
2240 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
2241 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
2242 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
2243 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2244 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
2245 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
2246 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
2247 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2248 Mips::Val_GNU_MIPS_ABI_FP_64A
}
2251 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
2252 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
2255 static int getMipsRegisterSize(uint8_t Flag
) {
2257 case Mips::AFL_REG_NONE
:
2259 case Mips::AFL_REG_32
:
2261 case Mips::AFL_REG_64
:
2263 case Mips::AFL_REG_128
:
2270 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsABIFlags() {
2271 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".MIPS.abiflags");
2273 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2276 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2277 if (Sec
.size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>)) {
2278 W
.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2282 auto *Flags
= reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(Sec
.data());
2284 raw_ostream
&OS
= W
.getOStream();
2285 DictScope
GS(W
, "MIPS ABI Flags");
2287 W
.printNumber("Version", Flags
->version
);
2288 W
.startLine() << "ISA: ";
2289 if (Flags
->isa_rev
<= 1)
2290 OS
<< format("MIPS%u", Flags
->isa_level
);
2292 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
2294 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
2295 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
2296 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
2297 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
2298 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
2299 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
2300 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
2301 W
.printHex("Flags 2", Flags
->flags2
);
2304 template <class ELFT
>
2305 static void printMipsReginfoData(ScopedPrinter
&W
,
2306 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
2307 W
.printHex("GP", Reginfo
.ri_gp_value
);
2308 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
2309 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
2310 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
2311 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
2312 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
2315 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
2316 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".reginfo");
2318 W
.startLine() << "There is no .reginfo section in the file.\n";
2321 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2322 if (Sec
.size() != sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
2323 W
.startLine() << "The .reginfo section has a wrong size.\n";
2327 DictScope
GS(W
, "MIPS RegInfo");
2328 auto *Reginfo
= reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(Sec
.data());
2329 printMipsReginfoData(W
, *Reginfo
);
2332 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
2333 const Elf_Shdr
*Shdr
= findSectionByName(*Obj
, ".MIPS.options");
2335 W
.startLine() << "There is no .MIPS.options section in the file.\n";
2339 DictScope
GS(W
, "MIPS Options");
2341 ArrayRef
<uint8_t> Sec
= unwrapOrError(Obj
->getSectionContents(Shdr
));
2342 while (!Sec
.empty()) {
2343 if (Sec
.size() < sizeof(Elf_Mips_Options
<ELFT
>)) {
2344 W
.startLine() << "The .MIPS.options section has a wrong size.\n";
2347 auto *O
= reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(Sec
.data());
2348 DictScope
GS(W
, getElfMipsOptionsOdkType(O
->kind
));
2351 printMipsReginfoData(W
, O
->getRegInfo());
2354 W
.startLine() << "Unsupported MIPS options tag.\n";
2357 Sec
= Sec
.slice(O
->size
);
2361 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
2362 const Elf_Shdr
*StackMapSection
= nullptr;
2363 for (const auto &Sec
: unwrapOrError(Obj
->sections())) {
2364 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2365 if (Name
== ".llvm_stackmaps") {
2366 StackMapSection
= &Sec
;
2371 if (!StackMapSection
)
2374 ArrayRef
<uint8_t> StackMapContentsArray
=
2375 unwrapOrError(Obj
->getSectionContents(StackMapSection
));
2377 prettyPrintStackMap(
2378 W
, StackMapV2Parser
<ELFT::TargetEndianness
>(StackMapContentsArray
));
2381 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
2382 ELFDumperStyle
->printGroupSections(Obj
);
2385 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
2389 OS
.PadToColumn(37u);
2394 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
2395 const Elf_Ehdr
*e
= Obj
->getHeader();
2396 OS
<< "ELF Header:\n";
2399 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
2400 OS
<< format(" %02x", static_cast<int>(e
->e_ident
[i
]));
2402 Str
= printEnum(e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
2403 printFields(OS
, "Class:", Str
);
2404 Str
= printEnum(e
->e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
2405 printFields(OS
, "Data:", Str
);
2408 OS
.PadToColumn(37u);
2409 OS
<< to_hexString(e
->e_ident
[ELF::EI_VERSION
]);
2410 if (e
->e_version
== ELF::EV_CURRENT
)
2413 Str
= printEnum(e
->e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
2414 printFields(OS
, "OS/ABI:", Str
);
2415 Str
= "0x" + to_hexString(e
->e_ident
[ELF::EI_ABIVERSION
]);
2416 printFields(OS
, "ABI Version:", Str
);
2417 Str
= printEnum(e
->e_type
, makeArrayRef(ElfObjectFileType
));
2418 printFields(OS
, "Type:", Str
);
2419 Str
= printEnum(e
->e_machine
, makeArrayRef(ElfMachineType
));
2420 printFields(OS
, "Machine:", Str
);
2421 Str
= "0x" + to_hexString(e
->e_version
);
2422 printFields(OS
, "Version:", Str
);
2423 Str
= "0x" + to_hexString(e
->e_entry
);
2424 printFields(OS
, "Entry point address:", Str
);
2425 Str
= to_string(e
->e_phoff
) + " (bytes into file)";
2426 printFields(OS
, "Start of program headers:", Str
);
2427 Str
= to_string(e
->e_shoff
) + " (bytes into file)";
2428 printFields(OS
, "Start of section headers:", Str
);
2429 Str
= "0x" + to_hexString(e
->e_flags
);
2430 printFields(OS
, "Flags:", Str
);
2431 Str
= to_string(e
->e_ehsize
) + " (bytes)";
2432 printFields(OS
, "Size of this header:", Str
);
2433 Str
= to_string(e
->e_phentsize
) + " (bytes)";
2434 printFields(OS
, "Size of program headers:", Str
);
2435 Str
= to_string(e
->e_phnum
);
2436 printFields(OS
, "Number of program headers:", Str
);
2437 Str
= to_string(e
->e_shentsize
) + " (bytes)";
2438 printFields(OS
, "Size of section headers:", Str
);
2439 Str
= to_string(e
->e_shnum
);
2440 printFields(OS
, "Number of section headers:", Str
);
2441 Str
= to_string(e
->e_shstrndx
);
2442 printFields(OS
, "Section header string table index:", Str
);
2446 struct GroupMember
{
2451 struct GroupSection
{
2453 StringRef Signature
;
2459 std::vector
<GroupMember
> Members
;
2462 template <class ELFT
>
2463 std::vector
<GroupSection
> getGroups(const ELFFile
<ELFT
> *Obj
) {
2464 using Elf_Shdr
= typename
ELFT::Shdr
;
2465 using Elf_Sym
= typename
ELFT::Sym
;
2466 using Elf_Word
= typename
ELFT::Word
;
2468 std::vector
<GroupSection
> Ret
;
2470 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2472 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
2475 const Elf_Shdr
*Symtab
= unwrapOrError(Obj
->getSection(Sec
.sh_link
));
2476 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*Symtab
));
2477 const Elf_Sym
*Sym
=
2478 unwrapOrError(Obj
->template getEntry
<Elf_Sym
>(Symtab
, Sec
.sh_info
));
2480 unwrapOrError(Obj
->template getSectionContentsAsArray
<Elf_Word
>(&Sec
));
2482 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2483 StringRef Signature
= StrTable
.data() + Sym
->st_name
;
2484 Ret
.push_back({Name
,
2493 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
2494 for (uint32_t Ndx
: Data
.slice(1)) {
2495 auto Sec
= unwrapOrError(Obj
->getSection(Ndx
));
2496 const StringRef Name
= unwrapOrError(Obj
->getSectionName(Sec
));
2497 GM
.push_back({Name
, Ndx
});
2503 DenseMap
<uint64_t, const GroupSection
*>
2504 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
2505 DenseMap
<uint64_t, const GroupSection
*> Ret
;
2506 for (const GroupSection
&G
: Groups
)
2507 for (const GroupMember
&GM
: G
.Members
)
2508 Ret
.insert({GM
.Index
, &G
});
2514 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
2515 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
);
2516 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
2517 for (const GroupSection
&G
: V
) {
2519 << getGroupType(G
.Type
) << " group section ["
2520 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
2521 << "] contains " << G
.Members
.size() << " sections:\n"
2522 << " [Index] Name\n";
2523 for (const GroupMember
&GM
: G
.Members
) {
2524 const GroupSection
*MainGroup
= Map
[GM
.Index
];
2525 if (MainGroup
!= &G
) {
2527 errs() << "Error: section [" << format_decimal(GM
.Index
, 5)
2528 << "] in group section [" << format_decimal(G
.Index
, 5)
2529 << "] already in group section ["
2530 << format_decimal(MainGroup
->Index
, 5) << "]";
2534 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
2539 OS
<< "There are no section groups in this file.\n";
2542 template <class ELFT
>
2543 void GNUStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, const Elf_Shdr
*SymTab
,
2544 const Elf_Rela
&R
, bool IsRela
) {
2545 std::string Offset
, Info
, Addend
, Value
;
2546 SmallString
<32> RelocName
;
2547 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*SymTab
));
2548 StringRef TargetName
;
2549 const Elf_Sym
*Sym
= nullptr;
2550 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
2551 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
2553 // First two fields are bit width dependent. The rest of them are after are
2555 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
2556 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
2557 Sym
= unwrapOrError(Obj
->getRelocationSymbol(&R
, SymTab
));
2558 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
2559 const Elf_Shdr
*Sec
= unwrapOrError(
2560 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
2561 TargetName
= unwrapOrError(Obj
->getSectionName(Sec
));
2563 TargetName
= unwrapOrError(Sym
->getName(StrTable
));
2566 if (Sym
&& IsRela
) {
2573 Offset
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
2574 Info
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
2576 int64_t RelAddend
= R
.r_addend
;
2578 Addend
+= to_hexString(std::abs(RelAddend
), false);
2581 Value
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
2583 Fields
[0].Str
= Offset
;
2584 Fields
[1].Str
= Info
;
2585 Fields
[2].Str
= RelocName
;
2586 Fields
[3].Str
= Value
;
2587 Fields
[4].Str
= TargetName
;
2588 for (auto &field
: Fields
)
2594 static inline void printRelocHeader(raw_ostream
&OS
, bool Is64
, bool IsRela
) {
2596 OS
<< " Offset Info Type"
2597 << " Symbol's Value Symbol's Name";
2599 OS
<< " Offset Info Type Sym. Value "
2602 OS
<< (IsRela
? " + Addend" : "");
2606 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
2607 bool HasRelocSections
= false;
2608 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2609 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
2610 Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
2611 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
)
2613 HasRelocSections
= true;
2614 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
2615 unsigned Entries
= Sec
.getEntityCount();
2616 uintX_t Offset
= Sec
.sh_offset
;
2617 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
2618 << to_hexString(Offset
, false) << " contains " << Entries
2620 printRelocHeader(OS
, ELFT::Is64Bits
,
2621 Sec
.sh_type
== ELF::SHT_RELA
||
2622 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
2623 const Elf_Shdr
*SymTab
= unwrapOrError(Obj
->getSection(Sec
.sh_link
));
2624 switch (Sec
.sh_type
) {
2626 for (const auto &R
: unwrapOrError(Obj
->rels(&Sec
))) {
2628 Rela
.r_offset
= R
.r_offset
;
2629 Rela
.r_info
= R
.r_info
;
2631 printRelocation(Obj
, SymTab
, Rela
, false);
2635 for (const auto &R
: unwrapOrError(Obj
->relas(&Sec
)))
2636 printRelocation(Obj
, SymTab
, R
, true);
2638 case ELF::SHT_ANDROID_REL
:
2639 case ELF::SHT_ANDROID_RELA
:
2640 for (const auto &R
: unwrapOrError(Obj
->android_relas(&Sec
)))
2641 printRelocation(Obj
, SymTab
, R
, Sec
.sh_type
== ELF::SHT_ANDROID_RELA
);
2645 if (!HasRelocSections
)
2646 OS
<< "\nThere are no relocations in this file.\n";
2649 std::string
getSectionTypeString(unsigned Arch
, unsigned Type
) {
2650 using namespace ELF
;
2657 case SHT_ARM_PREEMPTMAP
:
2658 return "ARM_PREEMPTMAP";
2659 case SHT_ARM_ATTRIBUTES
:
2660 return "ARM_ATTRIBUTES";
2661 case SHT_ARM_DEBUGOVERLAY
:
2662 return "ARM_DEBUGOVERLAY";
2663 case SHT_ARM_OVERLAYSECTION
:
2664 return "ARM_OVERLAYSECTION";
2668 case SHT_X86_64_UNWIND
:
2669 return "X86_64_UNWIND";
2672 case EM_MIPS_RS3_LE
:
2674 case SHT_MIPS_REGINFO
:
2675 return "MIPS_REGINFO";
2676 case SHT_MIPS_OPTIONS
:
2677 return "MIPS_OPTIONS";
2678 case SHT_MIPS_ABIFLAGS
:
2679 return "MIPS_ABIFLAGS";
2680 case SHT_MIPS_DWARF
:
2681 return "SHT_MIPS_DWARF";
2709 case SHT_INIT_ARRAY
:
2710 return "INIT_ARRAY";
2711 case SHT_FINI_ARRAY
:
2712 return "FINI_ARRAY";
2713 case SHT_PREINIT_ARRAY
:
2714 return "PREINIT_ARRAY";
2717 case SHT_SYMTAB_SHNDX
:
2718 return "SYMTAB SECTION INDICES";
2719 case SHT_LLVM_ODRTAB
:
2720 return "LLVM_ODRTAB";
2721 case SHT_LLVM_LINKER_OPTIONS
:
2722 return "LLVM_LINKER_OPTIONS";
2723 // FIXME: Parse processor specific GNU attributes
2724 case SHT_GNU_ATTRIBUTES
:
2725 return "ATTRIBUTES";
2728 case SHT_GNU_verdef
:
2730 case SHT_GNU_verneed
:
2732 case SHT_GNU_versym
:
2740 template <class ELFT
> void GNUStyle
<ELFT
>::printSections(const ELFO
*Obj
) {
2741 size_t SectionIndex
= 0;
2742 std::string Number
, Type
, Size
, Address
, Offset
, Flags
, Link
, Info
, EntrySize
,
2747 if (ELFT::Is64Bits
) {
2754 OS
<< "There are " << to_string(Obj
->getHeader()->e_shnum
)
2755 << " section headers, starting at offset "
2756 << "0x" << to_hexString(Obj
->getHeader()->e_shoff
, false) << ":\n\n";
2757 OS
<< "Section Headers:\n";
2758 Field Fields
[11] = {{"[Nr]", 2},
2763 {"Size", 65 - Bias
},
2769 for (auto &f
: Fields
)
2773 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
2774 Number
= to_string(SectionIndex
);
2775 Fields
[0].Str
= Number
;
2776 Fields
[1].Str
= unwrapOrError(Obj
->getSectionName(&Sec
));
2777 Type
= getSectionTypeString(Obj
->getHeader()->e_machine
, Sec
.sh_type
);
2778 Fields
[2].Str
= Type
;
2779 Address
= to_string(format_hex_no_prefix(Sec
.sh_addr
, Width
));
2780 Fields
[3].Str
= Address
;
2781 Offset
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
2782 Fields
[4].Str
= Offset
;
2783 Size
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
2784 Fields
[5].Str
= Size
;
2785 EntrySize
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
2786 Fields
[6].Str
= EntrySize
;
2787 Flags
= getGNUFlags(Sec
.sh_flags
);
2788 Fields
[7].Str
= Flags
;
2789 Link
= to_string(Sec
.sh_link
);
2790 Fields
[8].Str
= Link
;
2791 Info
= to_string(Sec
.sh_info
);
2792 Fields
[9].Str
= Info
;
2793 Alignment
= to_string(Sec
.sh_addralign
);
2794 Fields
[10].Str
= Alignment
;
2795 OS
.PadToColumn(Fields
[0].Column
);
2796 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
2797 for (int i
= 1; i
< 7; i
++)
2798 printField(Fields
[i
]);
2799 OS
.PadToColumn(Fields
[7].Column
);
2800 OS
<< right_justify(Fields
[7].Str
, 3);
2801 OS
.PadToColumn(Fields
[8].Column
);
2802 OS
<< right_justify(Fields
[8].Str
, 2);
2803 OS
.PadToColumn(Fields
[9].Column
);
2804 OS
<< right_justify(Fields
[9].Str
, 3);
2805 OS
.PadToColumn(Fields
[10].Column
);
2806 OS
<< right_justify(Fields
[10].Str
, 2);
2810 OS
<< "Key to Flags:\n"
2811 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2813 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2815 << " O (extra OS processing required) o (OS specific),\
2816 p (processor specific)\n";
2819 template <class ELFT
>
2820 void GNUStyle
<ELFT
>::printSymtabMessage(const ELFO
*Obj
, StringRef Name
,
2823 OS
<< "\nSymbol table '" << Name
<< "' contains " << Entries
2826 OS
<< "\n Symbol table for image:\n";
2829 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
2831 OS
<< " Num: Value Size Type Bind Vis Ndx Name\n";
2834 template <class ELFT
>
2835 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const ELFO
*Obj
,
2836 const Elf_Sym
*Symbol
,
2837 const Elf_Sym
*FirstSym
) {
2838 unsigned SectionIndex
= Symbol
->st_shndx
;
2839 switch (SectionIndex
) {
2840 case ELF::SHN_UNDEF
:
2844 case ELF::SHN_COMMON
:
2846 case ELF::SHN_XINDEX
:
2847 SectionIndex
= unwrapOrError(object::getExtendedSymbolTableIndex
<ELFT
>(
2848 Symbol
, FirstSym
, this->dumper()->getShndxTable()));
2852 // Processor specific
2853 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
2854 return std::string("PRC[0x") +
2855 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2857 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
2858 return std::string("OS[0x") +
2859 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2860 // Architecture reserved:
2861 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
2862 SectionIndex
<= ELF::SHN_HIRESERVE
)
2863 return std::string("RSV[0x") +
2864 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
2865 // A normal section with an index
2866 return to_string(format_decimal(SectionIndex
, 3));
2870 template <class ELFT
>
2871 void GNUStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
2872 const Elf_Sym
*FirstSym
, StringRef StrTable
,
2875 static bool Dynamic
= true;
2878 // If this function was called with a different value from IsDynamic
2879 // from last call, happens when we move from dynamic to static symbol
2880 // table, "Num" field should be reset.
2881 if (!Dynamic
!= !IsDynamic
) {
2885 std::string Num
, Name
, Value
, Size
, Binding
, Type
, Visibility
, Section
;
2887 if (ELFT::Is64Bits
) {
2894 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
2895 31 + Bias
, 38 + Bias
, 47 + Bias
, 51 + Bias
};
2896 Num
= to_string(format_decimal(Idx
++, 6)) + ":";
2897 Value
= to_string(format_hex_no_prefix(Symbol
->st_value
, Width
));
2898 Size
= to_string(format_decimal(Symbol
->st_size
, 5));
2899 unsigned char SymbolType
= Symbol
->getType();
2900 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
2901 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
2902 Type
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
2904 Type
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
2905 unsigned Vis
= Symbol
->getVisibility();
2906 Binding
= printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
2907 Visibility
= printEnum(Vis
, makeArrayRef(ElfSymbolVisibilities
));
2908 Section
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
2909 Name
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
2910 Fields
[0].Str
= Num
;
2911 Fields
[1].Str
= Value
;
2912 Fields
[2].Str
= Size
;
2913 Fields
[3].Str
= Type
;
2914 Fields
[4].Str
= Binding
;
2915 Fields
[5].Str
= Visibility
;
2916 Fields
[6].Str
= Section
;
2917 Fields
[7].Str
= Name
;
2918 for (auto &Entry
: Fields
)
2922 template <class ELFT
>
2923 void GNUStyle
<ELFT
>::printHashedSymbol(const ELFO
*Obj
, const Elf_Sym
*FirstSym
,
2924 uint32_t Sym
, StringRef StrTable
,
2926 std::string Num
, Buc
, Name
, Value
, Size
, Binding
, Type
, Visibility
, Section
;
2927 unsigned Width
, Bias
= 0;
2928 if (ELFT::Is64Bits
) {
2935 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
2936 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
2937 Num
= to_string(format_decimal(Sym
, 5));
2938 Buc
= to_string(format_decimal(Bucket
, 3)) + ":";
2940 const auto Symbol
= FirstSym
+ Sym
;
2941 Value
= to_string(format_hex_no_prefix(Symbol
->st_value
, Width
));
2942 Size
= to_string(format_decimal(Symbol
->st_size
, 5));
2943 unsigned char SymbolType
= Symbol
->getType();
2944 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
2945 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
2946 Type
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
2948 Type
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
2949 unsigned Vis
= Symbol
->getVisibility();
2950 Binding
= printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
2951 Visibility
= printEnum(Vis
, makeArrayRef(ElfSymbolVisibilities
));
2952 Section
= getSymbolSectionNdx(Obj
, Symbol
, FirstSym
);
2953 Name
= this->dumper()->getFullSymbolName(Symbol
, StrTable
, true);
2954 Fields
[0].Str
= Num
;
2955 Fields
[1].Str
= Buc
;
2956 Fields
[2].Str
= Value
;
2957 Fields
[3].Str
= Size
;
2958 Fields
[4].Str
= Type
;
2959 Fields
[5].Str
= Binding
;
2960 Fields
[6].Str
= Visibility
;
2961 Fields
[7].Str
= Section
;
2962 Fields
[8].Str
= Name
;
2963 for (auto &Entry
: Fields
)
2968 template <class ELFT
> void GNUStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
2969 if (opts::DynamicSymbols
)
2971 this->dumper()->printSymbolsHelper(true);
2972 this->dumper()->printSymbolsHelper(false);
2975 template <class ELFT
>
2976 void GNUStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
2977 if (this->dumper()->getDynamicStringTable().empty())
2979 auto StringTable
= this->dumper()->getDynamicStringTable();
2980 auto DynSyms
= this->dumper()->dynamic_symbols();
2981 auto GnuHash
= this->dumper()->getGnuHashTable();
2982 auto SysVHash
= this->dumper()->getHashTable();
2984 // If no hash or .gnu.hash found, try using symbol table
2985 if (GnuHash
== nullptr && SysVHash
== nullptr)
2986 this->dumper()->printSymbolsHelper(true);
2988 // Try printing .hash
2989 if (this->dumper()->getHashTable()) {
2990 OS
<< "\n Symbol table of .hash for image:\n";
2992 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
2994 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
2997 uint32_t NBuckets
= SysVHash
->nbucket
;
2998 uint32_t NChains
= SysVHash
->nchain
;
2999 auto Buckets
= SysVHash
->buckets();
3000 auto Chains
= SysVHash
->chains();
3001 for (uint32_t Buc
= 0; Buc
< NBuckets
; Buc
++) {
3002 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3004 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< NChains
; Ch
= Chains
[Ch
]) {
3005 if (Ch
== ELF::STN_UNDEF
)
3007 printHashedSymbol(Obj
, &DynSyms
[0], Ch
, StringTable
, Buc
);
3012 // Try printing .gnu.hash
3014 OS
<< "\n Symbol table of .gnu.hash for image:\n";
3016 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3018 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
3020 uint32_t NBuckets
= GnuHash
->nbuckets
;
3021 auto Buckets
= GnuHash
->buckets();
3022 for (uint32_t Buc
= 0; Buc
< NBuckets
; Buc
++) {
3023 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
3025 uint32_t Index
= Buckets
[Buc
];
3026 uint32_t GnuHashable
= Index
- GnuHash
->symndx
;
3027 // Print whole chain
3029 printHashedSymbol(Obj
, &DynSyms
[0], Index
++, StringTable
, Buc
);
3030 // Chain ends at symbol with stopper bit
3031 if ((GnuHash
->values(DynSyms
.size())[GnuHashable
++] & 1) == 1)
3038 static inline std::string
printPhdrFlags(unsigned Flag
) {
3040 Str
= (Flag
& PF_R
) ? "R" : " ";
3041 Str
+= (Flag
& PF_W
) ? "W" : " ";
3042 Str
+= (Flag
& PF_X
) ? "E" : " ";
3046 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3047 // PT_TLS must only have SHF_TLS sections
3048 template <class ELFT
>
3049 bool GNUStyle
<ELFT
>::checkTLSSections(const Elf_Phdr
&Phdr
,
3050 const Elf_Shdr
&Sec
) {
3051 return (((Sec
.sh_flags
& ELF::SHF_TLS
) &&
3052 ((Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
3053 (Phdr
.p_type
== ELF::PT_GNU_RELRO
))) ||
3054 (!(Sec
.sh_flags
& ELF::SHF_TLS
) && Phdr
.p_type
!= ELF::PT_TLS
));
3057 // Non-SHT_NOBITS must have its offset inside the segment
3058 // Only non-zero section can be at end of segment
3059 template <class ELFT
>
3060 bool GNUStyle
<ELFT
>::checkoffsets(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3061 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
3064 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3065 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3067 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3068 if (Sec
.sh_offset
>= Phdr
.p_offset
)
3069 return ((Sec
.sh_offset
+ SectionSize
<= Phdr
.p_filesz
+ Phdr
.p_offset
)
3070 /*only non-zero sized sections at end*/ &&
3071 (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
));
3075 // SHF_ALLOC must have VMA inside segment
3076 // Only non-zero section can be at end of segment
3077 template <class ELFT
>
3078 bool GNUStyle
<ELFT
>::checkVMA(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3079 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
3082 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
3083 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3085 (IsSpecial
&& Phdr
.p_type
!= ELF::PT_TLS
) ? 0 : Sec
.sh_size
;
3086 if (Sec
.sh_addr
>= Phdr
.p_vaddr
)
3087 return ((Sec
.sh_addr
+ SectionSize
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
) &&
3088 (Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
));
3092 // No section with zero size must be at start or end of PT_DYNAMIC
3093 template <class ELFT
>
3094 bool GNUStyle
<ELFT
>::checkPTDynamic(const Elf_Phdr
&Phdr
, const Elf_Shdr
&Sec
) {
3095 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Sec
.sh_size
!= 0 || Phdr
.p_memsz
== 0)
3097 // Is section within the phdr both based on offset and VMA ?
3098 return ((Sec
.sh_type
== ELF::SHT_NOBITS
) ||
3099 (Sec
.sh_offset
> Phdr
.p_offset
&&
3100 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
)) &&
3101 (!(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
3102 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
));
3105 template <class ELFT
>
3106 void GNUStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
3107 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3108 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
3109 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
3110 std::string Type
, Offset
, VMA
, LMA
, FileSz
, MemSz
, Flag
, Align
;
3112 const Elf_Ehdr
*Header
= Obj
->getHeader();
3113 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
3114 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
3115 OS
<< "\nElf file type is "
3116 << printEnum(Header
->e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
3117 << "Entry point " << format_hex(Header
->e_entry
, 3) << "\n"
3118 << "There are " << Header
->e_phnum
<< " program headers,"
3119 << " starting at offset " << Header
->e_phoff
<< "\n\n"
3120 << "Program Headers:\n";
3122 OS
<< " Type Offset VirtAddr PhysAddr "
3123 << " FileSiz MemSiz Flg Align\n";
3125 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
3126 << "MemSiz Flg Align\n";
3127 for (const auto &Phdr
: unwrapOrError(Obj
->program_headers())) {
3128 Type
= getElfPtType(Header
->e_machine
, Phdr
.p_type
);
3129 Offset
= to_string(format_hex(Phdr
.p_offset
, 8));
3130 VMA
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
3131 LMA
= to_string(format_hex(Phdr
.p_paddr
, Width
));
3132 FileSz
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
3133 MemSz
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
3134 Flag
= printPhdrFlags(Phdr
.p_flags
);
3135 Align
= to_string(format_hex(Phdr
.p_align
, 1));
3136 Fields
[0].Str
= Type
;
3137 Fields
[1].Str
= Offset
;
3138 Fields
[2].Str
= VMA
;
3139 Fields
[3].Str
= LMA
;
3140 Fields
[4].Str
= FileSz
;
3141 Fields
[5].Str
= MemSz
;
3142 Fields
[6].Str
= Flag
;
3143 Fields
[7].Str
= Align
;
3144 for (auto Field
: Fields
)
3146 if (Phdr
.p_type
== ELF::PT_INTERP
) {
3147 OS
<< "\n [Requesting program interpreter: ";
3148 OS
<< reinterpret_cast<const char *>(Obj
->base()) + Phdr
.p_offset
<< "]";
3152 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
3154 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
3155 std::string Sections
;
3156 OS
<< format(" %2.2d ", Phnum
++);
3157 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3158 // Check if each section is in a segment and then print mapping.
3159 // readelf additionally makes sure it does not print zero sized sections
3160 // at end of segments and for PT_DYNAMIC both start and end of section
3161 // .tbss must only be shown in PT_TLS section.
3162 bool TbssInNonTLS
= (Sec
.sh_type
== ELF::SHT_NOBITS
) &&
3163 ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0) &&
3164 Phdr
.p_type
!= ELF::PT_TLS
;
3165 if (!TbssInNonTLS
&& checkTLSSections(Phdr
, Sec
) &&
3166 checkoffsets(Phdr
, Sec
) && checkVMA(Phdr
, Sec
) &&
3167 checkPTDynamic(Phdr
, Sec
) && (Sec
.sh_type
!= ELF::SHT_NULL
))
3168 Sections
+= unwrapOrError(Obj
->getSectionName(&Sec
)).str() + " ";
3170 OS
<< Sections
<< "\n";
3175 template <class ELFT
>
3176 void GNUStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela R
,
3178 SmallString
<32> RelocName
;
3179 StringRef SymbolName
;
3180 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3181 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3182 // First two fields are bit width dependent. The rest of them are after are
3184 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3186 uint32_t SymIndex
= R
.getSymbol(Obj
->isMips64EL());
3187 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
3188 Obj
->getRelocationTypeName(R
.getType(Obj
->isMips64EL()), RelocName
);
3190 unwrapOrError(Sym
->getName(this->dumper()->getDynamicStringTable()));
3191 std::string Addend
, Info
, Offset
, Value
;
3192 Offset
= to_string(format_hex_no_prefix(R
.r_offset
, Width
));
3193 Info
= to_string(format_hex_no_prefix(R
.r_info
, Width
));
3194 Value
= to_string(format_hex_no_prefix(Sym
->getValue(), Width
));
3195 int64_t RelAddend
= R
.r_addend
;
3196 if (!SymbolName
.empty() && IsRela
) {
3203 if (SymbolName
.empty() && Sym
->getValue() == 0)
3207 Addend
+= to_string(format_hex_no_prefix(std::abs(RelAddend
), 1));
3210 Fields
[0].Str
= Offset
;
3211 Fields
[1].Str
= Info
;
3212 Fields
[2].Str
= RelocName
.c_str();
3213 Fields
[3].Str
= Value
;
3214 Fields
[4].Str
= SymbolName
;
3215 for (auto &Field
: Fields
)
3221 template <class ELFT
>
3222 void GNUStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
3223 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
3224 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
3225 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
3226 if (DynRelaRegion
.Size
> 0) {
3227 OS
<< "\n'RELA' relocation section at offset "
3228 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion
.Addr
) -
3230 1) << " contains " << DynRelaRegion
.Size
<< " bytes:\n";
3231 printRelocHeader(OS
, ELFT::Is64Bits
, true);
3232 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
3233 printDynamicRelocation(Obj
, Rela
, true);
3235 if (DynRelRegion
.Size
> 0) {
3236 OS
<< "\n'REL' relocation section at offset "
3237 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion
.Addr
) -
3239 1) << " contains " << DynRelRegion
.Size
<< " bytes:\n";
3240 printRelocHeader(OS
, ELFT::Is64Bits
, false);
3241 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
3243 Rela
.r_offset
= Rel
.r_offset
;
3244 Rela
.r_info
= Rel
.r_info
;
3246 printDynamicRelocation(Obj
, Rela
, false);
3249 if (DynPLTRelRegion
.Size
) {
3250 OS
<< "\n'PLT' relocation section at offset "
3251 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion
.Addr
) -
3253 1) << " contains " << DynPLTRelRegion
.Size
<< " bytes:\n";
3255 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
3256 printRelocHeader(OS
, ELFT::Is64Bits
, true);
3257 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
3258 printDynamicRelocation(Obj
, Rela
, true);
3260 printRelocHeader(OS
, ELFT::Is64Bits
, false);
3261 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
3263 Rela
.r_offset
= Rel
.r_offset
;
3264 Rela
.r_info
= Rel
.r_info
;
3266 printDynamicRelocation(Obj
, Rela
, false);
3271 // Hash histogram shows statistics of how efficient the hash was for the
3272 // dynamic symbol table. The table shows number of hash buckets for different
3273 // lengths of chains as absolute number and percentage of the total buckets.
3274 // Additionally cumulative coverage of symbols for each set of buckets.
3275 template <class ELFT
>
3276 void GNUStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
3278 const Elf_Hash
*HashTable
= this->dumper()->getHashTable();
3279 const Elf_GnuHash
*GnuHashTable
= this->dumper()->getGnuHashTable();
3281 // Print histogram for .hash section
3283 size_t NBucket
= HashTable
->nbucket
;
3284 size_t NChain
= HashTable
->nchain
;
3285 ArrayRef
<Elf_Word
> Buckets
= HashTable
->buckets();
3286 ArrayRef
<Elf_Word
> Chains
= HashTable
->chains();
3287 size_t TotalSyms
= 0;
3288 // If hash table is correct, we have at least chains with 0 length
3289 size_t MaxChain
= 1;
3290 size_t CumulativeNonZero
= 0;
3292 if (NChain
== 0 || NBucket
== 0)
3295 std::vector
<size_t> ChainLen(NBucket
, 0);
3296 // Go over all buckets and and note chain lengths of each bucket (total
3297 // unique chain lengths).
3298 for (size_t B
= 0; B
< NBucket
; B
++) {
3299 for (size_t C
= Buckets
[B
]; C
> 0 && C
< NChain
; C
= Chains
[C
])
3300 if (MaxChain
<= ++ChainLen
[B
])
3302 TotalSyms
+= ChainLen
[B
];
3308 std::vector
<size_t> Count(MaxChain
, 0) ;
3309 // Count how long is the chain for each bucket
3310 for (size_t B
= 0; B
< NBucket
; B
++)
3311 ++Count
[ChainLen
[B
]];
3312 // Print Number of buckets with each chain lengths and their cumulative
3313 // coverage of the symbols
3314 OS
<< "Histogram for bucket list length (total of " << NBucket
3316 << " Length Number % of total Coverage\n";
3317 for (size_t I
= 0; I
< MaxChain
; I
++) {
3318 CumulativeNonZero
+= Count
[I
] * I
;
3319 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3320 (Count
[I
] * 100.0) / NBucket
,
3321 (CumulativeNonZero
* 100.0) / TotalSyms
);
3325 // Print histogram for .gnu.hash section
3327 size_t NBucket
= GnuHashTable
->nbuckets
;
3328 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
3329 unsigned NumSyms
= this->dumper()->dynamic_symbols().size();
3332 ArrayRef
<Elf_Word
> Chains
= GnuHashTable
->values(NumSyms
);
3333 size_t Symndx
= GnuHashTable
->symndx
;
3334 size_t TotalSyms
= 0;
3335 size_t MaxChain
= 1;
3336 size_t CumulativeNonZero
= 0;
3338 if (Chains
.empty() || NBucket
== 0)
3341 std::vector
<size_t> ChainLen(NBucket
, 0);
3343 for (size_t B
= 0; B
< NBucket
; B
++) {
3347 for (size_t C
= Buckets
[B
] - Symndx
;
3348 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
3349 if (MaxChain
< ++Len
)
3359 std::vector
<size_t> Count(MaxChain
, 0) ;
3360 for (size_t B
= 0; B
< NBucket
; B
++)
3361 ++Count
[ChainLen
[B
]];
3362 // Print Number of buckets with each chain lengths and their cumulative
3363 // coverage of the symbols
3364 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3366 << " Length Number % of total Coverage\n";
3367 for (size_t I
= 0; I
<MaxChain
; I
++) {
3368 CumulativeNonZero
+= Count
[I
] * I
;
3369 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
3370 (Count
[I
] * 100.0) / NBucket
,
3371 (CumulativeNonZero
* 100.0) / TotalSyms
);
3376 static std::string
getGNUNoteTypeName(const uint32_t NT
) {
3377 static const struct {
3381 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
3382 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3383 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3384 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
3385 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
3388 for (const auto &Note
: Notes
)
3390 return std::string(Note
.Name
);
3393 raw_string_ostream
OS(string
);
3394 OS
<< format("Unknown note type (0x%08x)", NT
);
3398 static std::string
getFreeBSDNoteTypeName(const uint32_t NT
) {
3399 static const struct {
3403 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
3404 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
3405 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
3406 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
3407 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
3408 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
3409 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3410 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
3411 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
3412 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3413 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
3416 for (const auto &Note
: Notes
)
3418 return std::string(Note
.Name
);
3421 raw_string_ostream
OS(string
);
3422 OS
<< format("Unknown note type (0x%08x)", NT
);
3426 static std::string
getAMDGPUNoteTypeName(const uint32_t NT
) {
3427 static const struct {
3431 {ELF::NT_AMD_AMDGPU_HSA_METADATA
,
3432 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3433 {ELF::NT_AMD_AMDGPU_ISA
,
3434 "NT_AMD_AMDGPU_ISA (ISA Version)"},
3435 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
3436 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}
3439 for (const auto &Note
: Notes
)
3441 return std::string(Note
.Name
);
3444 raw_string_ostream
OS(string
);
3445 OS
<< format("Unknown note type (0x%08x)", NT
);
3449 template <typename ELFT
>
3450 static void printGNUProperty(raw_ostream
&OS
, uint32_t Type
, uint32_t DataSize
,
3451 ArrayRef
<uint8_t> Data
) {
3454 OS
<< format(" <application-specific type 0x%x>\n", Type
);
3456 case GNU_PROPERTY_STACK_SIZE
: {
3457 OS
<< " stack size: ";
3458 if (DataSize
== sizeof(typename
ELFT::uint
))
3459 OS
<< format("0x%x\n",
3460 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
3462 OS
<< format("<corrupt length: 0x%x>\n", DataSize
);
3465 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
3466 OS
<< " no copy on protected";
3468 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
3474 template <typename ELFT
>
3475 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
3476 ArrayRef
<typename
ELFT::Word
> Words
, size_t Size
) {
3477 using Elf_Word
= typename
ELFT::Word
;
3482 case ELF::NT_GNU_ABI_TAG
: {
3483 static const char *OSNames
[] = {
3484 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
3487 StringRef OSName
= "Unknown";
3488 if (Words
[0] < array_lengthof(OSNames
))
3489 OSName
= OSNames
[Words
[0]];
3490 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
3492 if (Words
.size() < 4)
3493 OS
<< " <corrupt GNU_ABI_TAG>";
3495 OS
<< " OS: " << OSName
<< ", ABI: " << Major
<< "." << Minor
<< "."
3499 case ELF::NT_GNU_BUILD_ID
: {
3500 OS
<< " Build ID: ";
3501 ArrayRef
<uint8_t> ID(reinterpret_cast<const uint8_t *>(Words
.data()), Size
);
3502 for (const auto &B
: ID
)
3503 OS
<< format_hex_no_prefix(B
, 2);
3506 case ELF::NT_GNU_GOLD_VERSION
:
3508 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3510 case ELF::NT_GNU_PROPERTY_TYPE_0
:
3511 OS
<< " Properties:";
3513 ArrayRef
<uint8_t> Arr(reinterpret_cast<const uint8_t *>(Words
.data()),
3515 while (Arr
.size() >= 8) {
3516 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
3517 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
3518 Arr
= Arr
.drop_front(8);
3520 // Take padding size into account if present.
3521 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
3522 if (Arr
.size() < PaddedSize
) {
3523 OS
<< format(" <corrupt type (0x%x) datasz: 0x%x>\n", Type
,
3527 printGNUProperty
<ELFT
>(OS
, Type
, DataSize
, Arr
.take_front(PaddedSize
));
3528 Arr
= Arr
.drop_front(PaddedSize
);
3532 OS
<< " <corrupted GNU_PROPERTY_TYPE_0>";
3538 template <typename ELFT
>
3539 static void printAMDGPUNote(raw_ostream
&OS
, uint32_t NoteType
,
3540 ArrayRef
<typename
ELFT::Word
> Words
, size_t Size
) {
3544 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
3545 OS
<< " HSA Metadata:\n"
3546 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3548 case ELF::NT_AMD_AMDGPU_ISA
:
3549 OS
<< " ISA Version:\n"
3551 << StringRef(reinterpret_cast<const char *>(Words
.data()), Size
);
3553 case ELF::NT_AMD_AMDGPU_PAL_METADATA
:
3554 const uint32_t *PALMetadataBegin
= reinterpret_cast<const uint32_t *>(Words
.data());
3555 const uint32_t *PALMetadataEnd
= PALMetadataBegin
+ Size
;
3556 std::vector
<uint32_t> PALMetadata(PALMetadataBegin
, PALMetadataEnd
);
3557 std::string PALMetadataString
;
3558 auto Error
= AMDGPU::PALMD::toString(PALMetadata
, PALMetadataString
);
3559 OS
<< " PAL Metadata:\n";
3564 OS
<< PALMetadataString
;
3570 template <class ELFT
>
3571 void GNUStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
3572 const Elf_Ehdr
*e
= Obj
->getHeader();
3573 bool IsCore
= e
->e_type
== ELF::ET_CORE
;
3575 auto PrintHeader
= [&](const typename
ELFT::Off Offset
,
3576 const typename
ELFT::Addr Size
) {
3577 OS
<< "Displaying notes found at file offset " << format_hex(Offset
, 10)
3578 << " with length " << format_hex(Size
, 10) << ":\n"
3579 << " Owner Data size\tDescription\n";
3582 auto ProcessNote
= [&](const Elf_Note
&Note
) {
3583 StringRef Name
= Note
.getName();
3584 ArrayRef
<Elf_Word
> Descriptor
= Note
.getDesc();
3585 Elf_Word Type
= Note
.getType();
3587 OS
<< " " << Name
<< std::string(22 - Name
.size(), ' ')
3588 << format_hex(Descriptor
.size(), 10) << '\t';
3590 if (Name
== "GNU") {
3591 OS
<< getGNUNoteTypeName(Type
) << '\n';
3592 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
, Descriptor
.size());
3593 } else if (Name
== "FreeBSD") {
3594 OS
<< getFreeBSDNoteTypeName(Type
) << '\n';
3595 } else if (Name
== "AMD") {
3596 OS
<< getAMDGPUNoteTypeName(Type
) << '\n';
3597 printAMDGPUNote
<ELFT
>(OS
, Type
, Descriptor
, Descriptor
.size());
3599 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ')';
3605 for (const auto &P
: unwrapOrError(Obj
->program_headers())) {
3606 if (P
.p_type
!= PT_NOTE
)
3608 PrintHeader(P
.p_offset
, P
.p_filesz
);
3609 Error Err
= Error::success();
3610 for (const auto &Note
: Obj
->notes(P
, Err
))
3613 error(std::move(Err
));
3616 for (const auto &S
: unwrapOrError(Obj
->sections())) {
3617 if (S
.sh_type
!= SHT_NOTE
)
3619 PrintHeader(S
.sh_offset
, S
.sh_size
);
3620 Error Err
= Error::success();
3621 for (const auto &Note
: Obj
->notes(S
, Err
))
3624 error(std::move(Err
));
3629 template <class ELFT
>
3630 void GNUStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
3631 OS
<< "printELFLinkerOptions not implemented!\n";
3634 template <class ELFT
>
3635 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
3636 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
3637 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
3639 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
3640 OS
.PadToColumn(11 + Bias
);
3641 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
3642 OS
.PadToColumn(22 + Bias
);
3643 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
3644 OS
.PadToColumn(31 + 2 * Bias
);
3645 OS
<< Purpose
<< "\n";
3648 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
3649 OS
<< " Canonical gp value: "
3650 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
3652 OS
<< " Reserved entries:\n";
3653 OS
<< " Address Access Initial Purpose\n";
3654 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
3655 if (Parser
.getGotModulePointer())
3656 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
3658 if (!Parser
.getLocalEntries().empty()) {
3660 OS
<< " Local entries:\n";
3661 OS
<< " Address Access Initial\n";
3662 for (auto &E
: Parser
.getLocalEntries())
3666 if (Parser
.IsStatic
)
3669 if (!Parser
.getGlobalEntries().empty()) {
3671 OS
<< " Global entries:\n";
3672 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
3673 for (auto &E
: Parser
.getGlobalEntries()) {
3674 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
3675 std::string SymName
= this->dumper()->getFullSymbolName(
3676 Sym
, this->dumper()->getDynamicStringTable(), false);
3679 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
3680 OS
.PadToColumn(11 + Bias
);
3681 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
3682 OS
.PadToColumn(22 + Bias
);
3683 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
3684 OS
.PadToColumn(31 + 2 * Bias
);
3685 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
3686 OS
.PadToColumn(40 + 3 * Bias
);
3687 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
3688 OS
.PadToColumn(48 + 3 * Bias
);
3689 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
3690 this->dumper()->dynamic_symbols().begin());
3691 OS
.PadToColumn(52 + 3 * Bias
);
3692 OS
<< SymName
<< "\n";
3696 if (!Parser
.getOtherEntries().empty())
3697 OS
<< "\n Number of TLS and multi-GOT entries "
3698 << Parser
.getOtherEntries().size() << "\n";
3701 template <class ELFT
>
3702 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
3703 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
3704 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
3706 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
3707 OS
.PadToColumn(11 + Bias
);
3708 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
3709 OS
.PadToColumn(20 + 2 * Bias
);
3710 OS
<< Purpose
<< "\n";
3713 OS
<< "PLT GOT:\n\n";
3715 OS
<< " Reserved entries:\n";
3716 OS
<< " Address Initial Purpose\n";
3717 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
3718 if (Parser
.getPltModulePointer())
3719 PrintEntry(Parser
.getGotModulePointer(), "Module pointer");
3721 if (!Parser
.getPltEntries().empty()) {
3723 OS
<< " Entries:\n";
3724 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
3725 for (auto &E
: Parser
.getPltEntries()) {
3726 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
3727 std::string SymName
= this->dumper()->getFullSymbolName(
3728 Sym
, this->dumper()->getDynamicStringTable(), false);
3731 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
3732 OS
.PadToColumn(11 + Bias
);
3733 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
3734 OS
.PadToColumn(20 + 2 * Bias
);
3735 OS
<< to_string(format_hex_no_prefix(Sym
->st_value
, 8 + Bias
));
3736 OS
.PadToColumn(29 + 3 * Bias
);
3737 OS
<< printEnum(Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
3738 OS
.PadToColumn(37 + 3 * Bias
);
3739 OS
<< getSymbolSectionNdx(Parser
.Obj
, Sym
,
3740 this->dumper()->dynamic_symbols().begin());
3741 OS
.PadToColumn(41 + 3 * Bias
);
3742 OS
<< SymName
<< "\n";
3747 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders(const ELFO
*Obj
) {
3748 const Elf_Ehdr
*e
= Obj
->getHeader();
3750 DictScope
D(W
, "ElfHeader");
3752 DictScope
D(W
, "Ident");
3753 W
.printBinary("Magic", makeArrayRef(e
->e_ident
).slice(ELF::EI_MAG0
, 4));
3754 W
.printEnum("Class", e
->e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
3755 W
.printEnum("DataEncoding", e
->e_ident
[ELF::EI_DATA
],
3756 makeArrayRef(ElfDataEncoding
));
3757 W
.printNumber("FileVersion", e
->e_ident
[ELF::EI_VERSION
]);
3759 auto OSABI
= makeArrayRef(ElfOSABI
);
3760 if (e
->e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
3761 e
->e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
3762 switch (e
->e_machine
) {
3763 case ELF::EM_AMDGPU
:
3764 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
3767 OSABI
= makeArrayRef(ARMElfOSABI
);
3769 case ELF::EM_TI_C6000
:
3770 OSABI
= makeArrayRef(C6000ElfOSABI
);
3774 W
.printEnum("OS/ABI", e
->e_ident
[ELF::EI_OSABI
], OSABI
);
3775 W
.printNumber("ABIVersion", e
->e_ident
[ELF::EI_ABIVERSION
]);
3776 W
.printBinary("Unused", makeArrayRef(e
->e_ident
).slice(ELF::EI_PAD
));
3779 W
.printEnum("Type", e
->e_type
, makeArrayRef(ElfObjectFileType
));
3780 W
.printEnum("Machine", e
->e_machine
, makeArrayRef(ElfMachineType
));
3781 W
.printNumber("Version", e
->e_version
);
3782 W
.printHex("Entry", e
->e_entry
);
3783 W
.printHex("ProgramHeaderOffset", e
->e_phoff
);
3784 W
.printHex("SectionHeaderOffset", e
->e_shoff
);
3785 if (e
->e_machine
== EM_MIPS
)
3786 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
3787 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
3788 unsigned(ELF::EF_MIPS_MACH
));
3789 else if (e
->e_machine
== EM_AMDGPU
)
3790 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
3791 unsigned(ELF::EF_AMDGPU_MACH
));
3792 else if (e
->e_machine
== EM_RISCV
)
3793 W
.printFlags("Flags", e
->e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
3795 W
.printFlags("Flags", e
->e_flags
);
3796 W
.printNumber("HeaderSize", e
->e_ehsize
);
3797 W
.printNumber("ProgramHeaderEntrySize", e
->e_phentsize
);
3798 W
.printNumber("ProgramHeaderCount", e
->e_phnum
);
3799 W
.printNumber("SectionHeaderEntrySize", e
->e_shentsize
);
3800 W
.printNumber("SectionHeaderCount", e
->e_shnum
);
3801 W
.printNumber("StringTableSectionIndex", e
->e_shstrndx
);
3805 template <class ELFT
>
3806 void LLVMStyle
<ELFT
>::printGroupSections(const ELFO
*Obj
) {
3807 DictScope
Lists(W
, "Groups");
3808 std::vector
<GroupSection
> V
= getGroups
<ELFT
>(Obj
);
3809 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3810 for (const GroupSection
&G
: V
) {
3811 DictScope
D(W
, "Group");
3812 W
.printNumber("Name", G
.Name
, G
.ShName
);
3813 W
.printNumber("Index", G
.Index
);
3814 W
.printNumber("Link", G
.Link
);
3815 W
.printNumber("Info", G
.Info
);
3816 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
3817 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
3819 ListScope
L(W
, "Section(s) in group");
3820 for (const GroupMember
&GM
: G
.Members
) {
3821 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3822 if (MainGroup
!= &G
) {
3824 errs() << "Error: " << GM
.Name
<< " (" << GM
.Index
3825 << ") in a group " + G
.Name
+ " (" << G
.Index
3826 << ") is already in a group " + MainGroup
->Name
+ " ("
3827 << MainGroup
->Index
<< ")\n";
3831 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
3836 W
.startLine() << "There are no group sections in the file.\n";
3839 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations(const ELFO
*Obj
) {
3840 ListScope
D(W
, "Relocations");
3842 int SectionNumber
= -1;
3843 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3846 if (Sec
.sh_type
!= ELF::SHT_REL
&& Sec
.sh_type
!= ELF::SHT_RELA
&&
3847 Sec
.sh_type
!= ELF::SHT_ANDROID_REL
&&
3848 Sec
.sh_type
!= ELF::SHT_ANDROID_RELA
)
3851 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
3853 W
.startLine() << "Section (" << SectionNumber
<< ") " << Name
<< " {\n";
3856 printRelocations(&Sec
, Obj
);
3859 W
.startLine() << "}\n";
3863 template <class ELFT
>
3864 void LLVMStyle
<ELFT
>::printRelocations(const Elf_Shdr
*Sec
, const ELFO
*Obj
) {
3865 const Elf_Shdr
*SymTab
= unwrapOrError(Obj
->getSection(Sec
->sh_link
));
3867 switch (Sec
->sh_type
) {
3869 for (const Elf_Rel
&R
: unwrapOrError(Obj
->rels(Sec
))) {
3871 Rela
.r_offset
= R
.r_offset
;
3872 Rela
.r_info
= R
.r_info
;
3874 printRelocation(Obj
, Rela
, SymTab
);
3878 for (const Elf_Rela
&R
: unwrapOrError(Obj
->relas(Sec
)))
3879 printRelocation(Obj
, R
, SymTab
);
3881 case ELF::SHT_ANDROID_REL
:
3882 case ELF::SHT_ANDROID_RELA
:
3883 for (const Elf_Rela
&R
: unwrapOrError(Obj
->android_relas(Sec
)))
3884 printRelocation(Obj
, R
, SymTab
);
3889 template <class ELFT
>
3890 void LLVMStyle
<ELFT
>::printRelocation(const ELFO
*Obj
, Elf_Rela Rel
,
3891 const Elf_Shdr
*SymTab
) {
3892 SmallString
<32> RelocName
;
3893 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
3894 StringRef TargetName
;
3895 const Elf_Sym
*Sym
= unwrapOrError(Obj
->getRelocationSymbol(&Rel
, SymTab
));
3896 if (Sym
&& Sym
->getType() == ELF::STT_SECTION
) {
3897 const Elf_Shdr
*Sec
= unwrapOrError(
3898 Obj
->getSection(Sym
, SymTab
, this->dumper()->getShndxTable()));
3899 TargetName
= unwrapOrError(Obj
->getSectionName(Sec
));
3901 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*SymTab
));
3902 TargetName
= unwrapOrError(Sym
->getName(StrTable
));
3905 if (opts::ExpandRelocs
) {
3906 DictScope
Group(W
, "Relocation");
3907 W
.printHex("Offset", Rel
.r_offset
);
3908 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
3909 W
.printNumber("Symbol", !TargetName
.empty() ? TargetName
: "-",
3910 Rel
.getSymbol(Obj
->isMips64EL()));
3911 W
.printHex("Addend", Rel
.r_addend
);
3913 raw_ostream
&OS
= W
.startLine();
3914 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
3915 << (!TargetName
.empty() ? TargetName
: "-") << " "
3916 << W
.hex(Rel
.r_addend
) << "\n";
3920 template <class ELFT
> void LLVMStyle
<ELFT
>::printSections(const ELFO
*Obj
) {
3921 ListScope
SectionsD(W
, "Sections");
3923 int SectionIndex
= -1;
3924 for (const Elf_Shdr
&Sec
: unwrapOrError(Obj
->sections())) {
3927 StringRef Name
= unwrapOrError(Obj
->getSectionName(&Sec
));
3929 DictScope
SectionD(W
, "Section");
3930 W
.printNumber("Index", SectionIndex
);
3931 W
.printNumber("Name", Name
, Sec
.sh_name
);
3934 object::getELFSectionTypeName(Obj
->getHeader()->e_machine
, Sec
.sh_type
),
3936 std::vector
<EnumEntry
<unsigned>> SectionFlags(std::begin(ElfSectionFlags
),
3937 std::end(ElfSectionFlags
));
3938 switch (Obj
->getHeader()->e_machine
) {
3940 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfARMSectionFlags
),
3941 std::end(ElfARMSectionFlags
));
3944 SectionFlags
.insert(SectionFlags
.end(),
3945 std::begin(ElfHexagonSectionFlags
),
3946 std::end(ElfHexagonSectionFlags
));
3949 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfMipsSectionFlags
),
3950 std::end(ElfMipsSectionFlags
));
3953 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfX86_64SectionFlags
),
3954 std::end(ElfX86_64SectionFlags
));
3957 SectionFlags
.insert(SectionFlags
.end(), std::begin(ElfXCoreSectionFlags
),
3958 std::end(ElfXCoreSectionFlags
));
3964 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(SectionFlags
));
3965 W
.printHex("Address", Sec
.sh_addr
);
3966 W
.printHex("Offset", Sec
.sh_offset
);
3967 W
.printNumber("Size", Sec
.sh_size
);
3968 W
.printNumber("Link", Sec
.sh_link
);
3969 W
.printNumber("Info", Sec
.sh_info
);
3970 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
3971 W
.printNumber("EntrySize", Sec
.sh_entsize
);
3973 if (opts::SectionRelocations
) {
3974 ListScope
D(W
, "Relocations");
3975 printRelocations(&Sec
, Obj
);
3978 if (opts::SectionSymbols
) {
3979 ListScope
D(W
, "Symbols");
3980 const Elf_Shdr
*Symtab
= this->dumper()->getDotSymtabSec();
3981 StringRef StrTable
= unwrapOrError(Obj
->getStringTableForSymtab(*Symtab
));
3983 for (const Elf_Sym
&Sym
: unwrapOrError(Obj
->symbols(Symtab
))) {
3984 const Elf_Shdr
*SymSec
= unwrapOrError(
3985 Obj
->getSection(&Sym
, Symtab
, this->dumper()->getShndxTable()));
3987 printSymbol(Obj
, &Sym
, unwrapOrError(Obj
->symbols(Symtab
)).begin(),
3992 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
3993 ArrayRef
<uint8_t> Data
= unwrapOrError(Obj
->getSectionContents(&Sec
));
3994 W
.printBinaryBlock("SectionData",
3995 StringRef((const char *)Data
.data(), Data
.size()));
4000 template <class ELFT
>
4001 void LLVMStyle
<ELFT
>::printSymbol(const ELFO
*Obj
, const Elf_Sym
*Symbol
,
4002 const Elf_Sym
*First
, StringRef StrTable
,
4004 unsigned SectionIndex
= 0;
4005 StringRef SectionName
;
4006 this->dumper()->getSectionNameIndex(Symbol
, First
, SectionName
, SectionIndex
);
4007 std::string FullSymbolName
=
4008 this->dumper()->getFullSymbolName(Symbol
, StrTable
, IsDynamic
);
4009 unsigned char SymbolType
= Symbol
->getType();
4011 DictScope
D(W
, "Symbol");
4012 W
.printNumber("Name", FullSymbolName
, Symbol
->st_name
);
4013 W
.printHex("Value", Symbol
->st_value
);
4014 W
.printNumber("Size", Symbol
->st_size
);
4015 W
.printEnum("Binding", Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
4016 if (Obj
->getHeader()->e_machine
== ELF::EM_AMDGPU
&&
4017 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4018 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
4020 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
4021 if (Symbol
->st_other
== 0)
4022 // Usually st_other flag is zero. Do not pollute the output
4023 // by flags enumeration in that case.
4024 W
.printNumber("Other", 0);
4026 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
4027 std::end(ElfSymOtherFlags
));
4028 if (Obj
->getHeader()->e_machine
== EM_MIPS
) {
4029 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4030 // flag overlapped with other ST_MIPS_xxx flags. So consider both
4031 // cases separately.
4032 if ((Symbol
->st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
4033 SymOtherFlags
.insert(SymOtherFlags
.end(),
4034 std::begin(ElfMips16SymOtherFlags
),
4035 std::end(ElfMips16SymOtherFlags
));
4037 SymOtherFlags
.insert(SymOtherFlags
.end(),
4038 std::begin(ElfMipsSymOtherFlags
),
4039 std::end(ElfMipsSymOtherFlags
));
4041 W
.printFlags("Other", Symbol
->st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
4043 W
.printHex("Section", SectionName
, SectionIndex
);
4046 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols(const ELFO
*Obj
) {
4047 ListScope
Group(W
, "Symbols");
4048 this->dumper()->printSymbolsHelper(false);
4051 template <class ELFT
>
4052 void LLVMStyle
<ELFT
>::printDynamicSymbols(const ELFO
*Obj
) {
4053 ListScope
Group(W
, "DynamicSymbols");
4054 this->dumper()->printSymbolsHelper(true);
4057 template <class ELFT
>
4058 void LLVMStyle
<ELFT
>::printDynamicRelocations(const ELFO
*Obj
) {
4059 const DynRegionInfo
&DynRelRegion
= this->dumper()->getDynRelRegion();
4060 const DynRegionInfo
&DynRelaRegion
= this->dumper()->getDynRelaRegion();
4061 const DynRegionInfo
&DynPLTRelRegion
= this->dumper()->getDynPLTRelRegion();
4062 if (DynRelRegion
.Size
&& DynRelaRegion
.Size
)
4063 report_fatal_error("There are both REL and RELA dynamic relocations");
4064 W
.startLine() << "Dynamic Relocations {\n";
4066 if (DynRelaRegion
.Size
> 0)
4067 for (const Elf_Rela
&Rela
: this->dumper()->dyn_relas())
4068 printDynamicRelocation(Obj
, Rela
);
4070 for (const Elf_Rel
&Rel
: this->dumper()->dyn_rels()) {
4072 Rela
.r_offset
= Rel
.r_offset
;
4073 Rela
.r_info
= Rel
.r_info
;
4075 printDynamicRelocation(Obj
, Rela
);
4077 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
))
4078 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
4079 printDynamicRelocation(Obj
, Rela
);
4081 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>()) {
4083 Rela
.r_offset
= Rel
.r_offset
;
4084 Rela
.r_info
= Rel
.r_info
;
4086 printDynamicRelocation(Obj
, Rela
);
4089 W
.startLine() << "}\n";
4092 template <class ELFT
>
4093 void LLVMStyle
<ELFT
>::printDynamicRelocation(const ELFO
*Obj
, Elf_Rela Rel
) {
4094 SmallString
<32> RelocName
;
4095 Obj
->getRelocationTypeName(Rel
.getType(Obj
->isMips64EL()), RelocName
);
4096 StringRef SymbolName
;
4097 uint32_t SymIndex
= Rel
.getSymbol(Obj
->isMips64EL());
4098 const Elf_Sym
*Sym
= this->dumper()->dynamic_symbols().begin() + SymIndex
;
4100 unwrapOrError(Sym
->getName(this->dumper()->getDynamicStringTable()));
4101 if (opts::ExpandRelocs
) {
4102 DictScope
Group(W
, "Relocation");
4103 W
.printHex("Offset", Rel
.r_offset
);
4104 W
.printNumber("Type", RelocName
, (int)Rel
.getType(Obj
->isMips64EL()));
4105 W
.printString("Symbol", !SymbolName
.empty() ? SymbolName
: "-");
4106 W
.printHex("Addend", Rel
.r_addend
);
4108 raw_ostream
&OS
= W
.startLine();
4109 OS
<< W
.hex(Rel
.r_offset
) << " " << RelocName
<< " "
4110 << (!SymbolName
.empty() ? SymbolName
: "-") << " "
4111 << W
.hex(Rel
.r_addend
) << "\n";
4115 template <class ELFT
>
4116 void LLVMStyle
<ELFT
>::printProgramHeaders(const ELFO
*Obj
) {
4117 ListScope
L(W
, "ProgramHeaders");
4119 for (const Elf_Phdr
&Phdr
: unwrapOrError(Obj
->program_headers())) {
4120 DictScope
P(W
, "ProgramHeader");
4122 getElfSegmentType(Obj
->getHeader()->e_machine
, Phdr
.p_type
),
4124 W
.printHex("Offset", Phdr
.p_offset
);
4125 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
4126 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
4127 W
.printNumber("FileSize", Phdr
.p_filesz
);
4128 W
.printNumber("MemSize", Phdr
.p_memsz
);
4129 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
4130 W
.printNumber("Alignment", Phdr
.p_align
);
4134 template <class ELFT
>
4135 void LLVMStyle
<ELFT
>::printHashHistogram(const ELFFile
<ELFT
> *Obj
) {
4136 W
.startLine() << "Hash Histogram not implemented!\n";
4139 template <class ELFT
>
4140 void LLVMStyle
<ELFT
>::printNotes(const ELFFile
<ELFT
> *Obj
) {
4141 W
.startLine() << "printNotes not implemented!\n";
4144 template <class ELFT
>
4145 void LLVMStyle
<ELFT
>::printELFLinkerOptions(const ELFFile
<ELFT
> *Obj
) {
4146 ListScope
L(W
, "LinkerOptions");
4148 for (const Elf_Shdr
&Shdr
: unwrapOrError(Obj
->sections())) {
4149 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
4152 ArrayRef
<uint8_t> Contents
= unwrapOrError(Obj
->getSectionContents(&Shdr
));
4153 for (const uint8_t *P
= Contents
.begin(), *E
= Contents
.end(); P
< E
; ) {
4154 StringRef Key
= StringRef(reinterpret_cast<const char *>(P
));
4156 StringRef(reinterpret_cast<const char *>(P
) + Key
.size() + 1);
4158 W
.printString(Key
, Value
);
4160 P
= P
+ Key
.size() + Value
.size() + 2;
4165 template <class ELFT
>
4166 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
4167 auto PrintEntry
= [&](const Elf_Addr
*E
) {
4168 W
.printHex("Address", Parser
.getGotAddress(E
));
4169 W
.printNumber("Access", Parser
.getGotOffset(E
));
4170 W
.printHex("Initial", *E
);
4173 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
4175 W
.printHex("Canonical gp value", Parser
.getGp());
4177 ListScope
RS(W
, "Reserved entries");
4179 DictScope
D(W
, "Entry");
4180 PrintEntry(Parser
.getGotLazyResolver());
4181 W
.printString("Purpose", StringRef("Lazy resolver"));
4184 if (Parser
.getGotModulePointer()) {
4185 DictScope
D(W
, "Entry");
4186 PrintEntry(Parser
.getGotModulePointer());
4187 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
4191 ListScope
LS(W
, "Local entries");
4192 for (auto &E
: Parser
.getLocalEntries()) {
4193 DictScope
D(W
, "Entry");
4198 if (Parser
.IsStatic
)
4202 ListScope
GS(W
, "Global entries");
4203 for (auto &E
: Parser
.getGlobalEntries()) {
4204 DictScope
D(W
, "Entry");
4208 const Elf_Sym
*Sym
= Parser
.getGotSym(&E
);
4209 W
.printHex("Value", Sym
->st_value
);
4210 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4212 unsigned SectionIndex
= 0;
4213 StringRef SectionName
;
4214 this->dumper()->getSectionNameIndex(
4215 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
4217 W
.printHex("Section", SectionName
, SectionIndex
);
4219 std::string SymName
= this->dumper()->getFullSymbolName(
4220 Sym
, this->dumper()->getDynamicStringTable(), true);
4221 W
.printNumber("Name", SymName
, Sym
->st_name
);
4225 W
.printNumber("Number of TLS and multi-GOT entries",
4226 uint64_t(Parser
.getOtherEntries().size()));
4229 template <class ELFT
>
4230 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
4231 auto PrintEntry
= [&](const Elf_Addr
*E
) {
4232 W
.printHex("Address", Parser
.getPltAddress(E
));
4233 W
.printHex("Initial", *E
);
4236 DictScope
GS(W
, "PLT GOT");
4239 ListScope
RS(W
, "Reserved entries");
4241 DictScope
D(W
, "Entry");
4242 PrintEntry(Parser
.getPltLazyResolver());
4243 W
.printString("Purpose", StringRef("PLT lazy resolver"));
4246 if (auto E
= Parser
.getPltModulePointer()) {
4247 DictScope
D(W
, "Entry");
4249 W
.printString("Purpose", StringRef("Module pointer"));
4253 ListScope
LS(W
, "Entries");
4254 for (auto &E
: Parser
.getPltEntries()) {
4255 DictScope
D(W
, "Entry");
4258 const Elf_Sym
*Sym
= Parser
.getPltSym(&E
);
4259 W
.printHex("Value", Sym
->st_value
);
4260 W
.printEnum("Type", Sym
->getType(), makeArrayRef(ElfSymbolTypes
));
4262 unsigned SectionIndex
= 0;
4263 StringRef SectionName
;
4264 this->dumper()->getSectionNameIndex(
4265 Sym
, this->dumper()->dynamic_symbols().begin(), SectionName
,
4267 W
.printHex("Section", SectionName
, SectionIndex
);
4269 std::string SymName
=
4270 this->dumper()->getFullSymbolName(Sym
, Parser
.getPltStrTable(), true);
4271 W
.printNumber("Name", SymName
, Sym
->st_name
);