Commit r331416 breaks the big-endian PPC bot. On the big endian build, we
[llvm-core.git] / tools / llvm-readobj / ELFDumper.cpp
blob32ab126d8d5b42767f86c880f8e465464d200e28
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements the ELF-specific dumper for llvm-readobj.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "ARMEHABIPrinter.h"
16 #include "DwarfCFIEHPrinter.h"
17 #include "Error.h"
18 #include "ObjDumper.h"
19 #include "StackMapPrinter.h"
20 #include "llvm-readobj.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/Object/ELF.h"
33 #include "llvm/Object/ELFObjectFile.h"
34 #include "llvm/Object/ELFTypes.h"
35 #include "llvm/Object/Error.h"
36 #include "llvm/Object/ObjectFile.h"
37 #include "llvm/Object/StackMapParser.h"
38 #include "llvm/Support/AMDGPUMetadata.h"
39 #include "llvm/Support/ARMAttributeParser.h"
40 #include "llvm/Support/ARMBuildAttributes.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Endian.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/FormattedStream.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/MipsABIFlags.h"
49 #include "llvm/Support/ScopedPrinter.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cinttypes>
53 #include <cstddef>
54 #include <cstdint>
55 #include <cstdlib>
56 #include <iterator>
57 #include <memory>
58 #include <string>
59 #include <system_error>
60 #include <vector>
62 using namespace llvm;
63 using namespace llvm::object;
64 using namespace ELF;
66 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
67 case ns::enum: return #enum;
69 #define ENUM_ENT(enum, altName) \
70 { #enum, altName, ELF::enum }
72 #define ENUM_ENT_1(enum) \
73 { #enum, #enum, ELF::enum }
75 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \
76 case ns::enum: \
77 return std::string(#enum).substr(3);
79 #define TYPEDEF_ELF_TYPES(ELFT) \
80 using ELFO = ELFFile<ELFT>; \
81 using Elf_Addr = typename ELFT::Addr; \
82 using Elf_Shdr = typename ELFT::Shdr; \
83 using Elf_Sym = typename ELFT::Sym; \
84 using Elf_Dyn = typename ELFT::Dyn; \
85 using Elf_Dyn_Range = typename ELFT::DynRange; \
86 using Elf_Rel = typename ELFT::Rel; \
87 using Elf_Rela = typename ELFT::Rela; \
88 using Elf_Rel_Range = typename ELFT::RelRange; \
89 using Elf_Rela_Range = typename ELFT::RelaRange; \
90 using Elf_Phdr = typename ELFT::Phdr; \
91 using Elf_Half = typename ELFT::Half; \
92 using Elf_Ehdr = typename ELFT::Ehdr; \
93 using Elf_Word = typename ELFT::Word; \
94 using Elf_Hash = typename ELFT::Hash; \
95 using Elf_GnuHash = typename ELFT::GnuHash; \
96 using Elf_Note = typename ELFT::Note; \
97 using Elf_Sym_Range = typename ELFT::SymRange; \
98 using Elf_Versym = typename ELFT::Versym; \
99 using Elf_Verneed = typename ELFT::Verneed; \
100 using Elf_Vernaux = typename ELFT::Vernaux; \
101 using Elf_Verdef = typename ELFT::Verdef; \
102 using Elf_Verdaux = typename ELFT::Verdaux; \
103 using uintX_t = typename ELFT::uint;
105 namespace {
107 template <class ELFT> class DumpStyle;
109 /// Represents a contiguous uniform range in the file. We cannot just create a
110 /// range directly because when creating one of these from the .dynamic table
111 /// the size, entity size and virtual address are different entries in arbitrary
112 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
113 struct DynRegionInfo {
114 DynRegionInfo() = default;
115 DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
116 : Addr(A), Size(S), EntSize(ES) {}
118 /// Address in current address space.
119 const void *Addr = nullptr;
120 /// Size in bytes of the region.
121 uint64_t Size = 0;
122 /// Size of each entity in the region.
123 uint64_t EntSize = 0;
125 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
126 const Type *Start = reinterpret_cast<const Type *>(Addr);
127 if (!Start)
128 return {Start, Start};
129 if (EntSize != sizeof(Type) || Size % EntSize)
130 reportError("Invalid entity size");
131 return {Start, Start + (Size / EntSize)};
135 template<typename ELFT>
136 class ELFDumper : public ObjDumper {
137 public:
138 ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer);
140 void printFileHeaders() override;
141 void printSections() override;
142 void printRelocations() override;
143 void printDynamicRelocations() override;
144 void printSymbols() override;
145 void printDynamicSymbols() override;
146 void printUnwindInfo() override;
148 void printDynamicTable() override;
149 void printNeededLibraries() override;
150 void printProgramHeaders() override;
151 void printHashTable() override;
152 void printGnuHashTable() override;
153 void printLoadName() override;
154 void printVersionInfo() override;
155 void printGroupSections() override;
157 void printAttributes() override;
158 void printMipsPLTGOT() override;
159 void printMipsABIFlags() override;
160 void printMipsReginfo() override;
161 void printMipsOptions() override;
163 void printStackMap() const override;
165 void printHashHistogram() override;
167 void printNotes() override;
169 void printELFLinkerOptions() override;
171 private:
172 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
174 TYPEDEF_ELF_TYPES(ELFT)
176 DynRegionInfo checkDRI(DynRegionInfo DRI) {
177 if (DRI.Addr < Obj->base() ||
178 (const uint8_t *)DRI.Addr + DRI.Size > Obj->base() + Obj->getBufSize())
179 error(llvm::object::object_error::parse_failed);
180 return DRI;
183 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
184 return checkDRI({Obj->base() + P->p_offset, P->p_filesz, EntSize});
187 DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
188 return checkDRI({Obj->base() + S->sh_offset, S->sh_size, S->sh_entsize});
191 void parseDynamicTable(ArrayRef<const Elf_Phdr *> LoadSegments);
193 void printValue(uint64_t Type, uint64_t Value);
195 StringRef getDynamicString(uint64_t Offset) const;
196 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
197 bool &IsDefault) const;
198 void LoadVersionMap() const;
199 void LoadVersionNeeds(const Elf_Shdr *ec) const;
200 void LoadVersionDefs(const Elf_Shdr *sec) const;
202 const ELFO *Obj;
203 DynRegionInfo DynRelRegion;
204 DynRegionInfo DynRelaRegion;
205 DynRegionInfo DynPLTRelRegion;
206 DynRegionInfo DynSymRegion;
207 DynRegionInfo DynamicTable;
208 StringRef DynamicStringTable;
209 StringRef SOName;
210 const Elf_Hash *HashTable = nullptr;
211 const Elf_GnuHash *GnuHashTable = nullptr;
212 const Elf_Shdr *DotSymtabSec = nullptr;
213 StringRef DynSymtabName;
214 ArrayRef<Elf_Word> ShndxTable;
216 const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version
217 const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r
218 const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d
220 // Records for each version index the corresponding Verdef or Vernaux entry.
221 // This is filled the first time LoadVersionMap() is called.
222 class VersionMapEntry : public PointerIntPair<const void *, 1> {
223 public:
224 // If the integer is 0, this is an Elf_Verdef*.
225 // If the integer is 1, this is an Elf_Vernaux*.
226 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
227 VersionMapEntry(const Elf_Verdef *verdef)
228 : PointerIntPair<const void *, 1>(verdef, 0) {}
229 VersionMapEntry(const Elf_Vernaux *vernaux)
230 : PointerIntPair<const void *, 1>(vernaux, 1) {}
232 bool isNull() const { return getPointer() == nullptr; }
233 bool isVerdef() const { return !isNull() && getInt() == 0; }
234 bool isVernaux() const { return !isNull() && getInt() == 1; }
235 const Elf_Verdef *getVerdef() const {
236 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
238 const Elf_Vernaux *getVernaux() const {
239 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
242 mutable SmallVector<VersionMapEntry, 16> VersionMap;
244 public:
245 Elf_Dyn_Range dynamic_table() const {
246 return DynamicTable.getAsArrayRef<Elf_Dyn>();
249 Elf_Sym_Range dynamic_symbols() const {
250 return DynSymRegion.getAsArrayRef<Elf_Sym>();
253 Elf_Rel_Range dyn_rels() const;
254 Elf_Rela_Range dyn_relas() const;
255 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
256 bool IsDynamic) const;
257 void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
258 StringRef &SectionName,
259 unsigned &SectionIndex) const;
261 void printSymbolsHelper(bool IsDynamic) const;
262 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
263 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
264 StringRef getDynamicStringTable() const { return DynamicStringTable; }
265 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
266 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
267 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
268 const Elf_Hash *getHashTable() const { return HashTable; }
269 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
272 template <class ELFT>
273 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
274 StringRef StrTable, SymtabName;
275 size_t Entries = 0;
276 Elf_Sym_Range Syms(nullptr, nullptr);
277 if (IsDynamic) {
278 StrTable = DynamicStringTable;
279 Syms = dynamic_symbols();
280 SymtabName = DynSymtabName;
281 if (DynSymRegion.Addr)
282 Entries = DynSymRegion.Size / DynSymRegion.EntSize;
283 } else {
284 if (!DotSymtabSec)
285 return;
286 StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
287 Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
288 SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
289 Entries = DotSymtabSec->getEntityCount();
291 if (Syms.begin() == Syms.end())
292 return;
293 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
294 for (const auto &Sym : Syms)
295 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
298 template <class ELFT> class MipsGOTParser;
300 template <typename ELFT> class DumpStyle {
301 public:
302 using Elf_Shdr = typename ELFT::Shdr;
303 using Elf_Sym = typename ELFT::Sym;
305 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
306 virtual ~DumpStyle() = default;
308 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
309 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
310 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
311 virtual void printSections(const ELFFile<ELFT> *Obj) = 0;
312 virtual void printSymbols(const ELFFile<ELFT> *Obj) = 0;
313 virtual void printDynamicSymbols(const ELFFile<ELFT> *Obj) = 0;
314 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
315 virtual void printSymtabMessage(const ELFFile<ELFT> *obj, StringRef Name,
316 size_t Offset) {}
317 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
318 const Elf_Sym *FirstSym, StringRef StrTable,
319 bool IsDynamic) = 0;
320 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj) = 0;
321 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
322 virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
323 virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
324 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
325 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
326 const ELFDumper<ELFT> *dumper() const { return Dumper; }
328 private:
329 const ELFDumper<ELFT> *Dumper;
332 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
333 formatted_raw_ostream OS;
335 public:
336 TYPEDEF_ELF_TYPES(ELFT)
338 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
339 : DumpStyle<ELFT>(Dumper), OS(W.getOStream()) {}
341 void printFileHeaders(const ELFO *Obj) override;
342 void printGroupSections(const ELFFile<ELFT> *Obj) override;
343 void printRelocations(const ELFO *Obj) override;
344 void printSections(const ELFO *Obj) override;
345 void printSymbols(const ELFO *Obj) override;
346 void printDynamicSymbols(const ELFO *Obj) override;
347 void printDynamicRelocations(const ELFO *Obj) override;
348 void printSymtabMessage(const ELFO *Obj, StringRef Name,
349 size_t Offset) override;
350 void printProgramHeaders(const ELFO *Obj) override;
351 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
352 void printNotes(const ELFFile<ELFT> *Obj) override;
353 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
354 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
355 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
357 private:
358 struct Field {
359 StringRef Str;
360 unsigned Column;
362 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
363 Field(unsigned Col) : Str(""), Column(Col) {}
366 template <typename T, typename TEnum>
367 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
368 for (const auto &EnumItem : EnumValues)
369 if (EnumItem.Value == Value)
370 return EnumItem.AltName;
371 return to_hexString(Value, false);
374 formatted_raw_ostream &printField(struct Field F) {
375 if (F.Column != 0)
376 OS.PadToColumn(F.Column);
377 OS << F.Str;
378 OS.flush();
379 return OS;
381 void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
382 StringRef StrTable, uint32_t Bucket);
383 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
384 const Elf_Rela &R, bool IsRela);
385 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
386 StringRef StrTable, bool IsDynamic) override;
387 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
388 const Elf_Sym *FirstSym);
389 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
390 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
391 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
392 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
393 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
396 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
397 public:
398 TYPEDEF_ELF_TYPES(ELFT)
400 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
401 : DumpStyle<ELFT>(Dumper), W(W) {}
403 void printFileHeaders(const ELFO *Obj) override;
404 void printGroupSections(const ELFFile<ELFT> *Obj) override;
405 void printRelocations(const ELFO *Obj) override;
406 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
407 void printSections(const ELFO *Obj) override;
408 void printSymbols(const ELFO *Obj) override;
409 void printDynamicSymbols(const ELFO *Obj) override;
410 void printDynamicRelocations(const ELFO *Obj) override;
411 void printProgramHeaders(const ELFO *Obj) override;
412 void printHashHistogram(const ELFFile<ELFT> *Obj) override;
413 void printNotes(const ELFFile<ELFT> *Obj) override;
414 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
415 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
416 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
418 private:
419 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
420 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
421 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
422 StringRef StrTable, bool IsDynamic) override;
424 ScopedPrinter &W;
427 } // end anonymous namespace
429 namespace llvm {
431 template <class ELFT>
432 static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
433 ScopedPrinter &Writer,
434 std::unique_ptr<ObjDumper> &Result) {
435 Result.reset(new ELFDumper<ELFT>(Obj, Writer));
436 return readobj_error::success;
439 std::error_code createELFDumper(const object::ObjectFile *Obj,
440 ScopedPrinter &Writer,
441 std::unique_ptr<ObjDumper> &Result) {
442 // Little-endian 32-bit
443 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
444 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
446 // Big-endian 32-bit
447 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
448 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
450 // Little-endian 64-bit
451 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
452 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
454 // Big-endian 64-bit
455 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
456 return createELFDumper(ELFObj->getELFFile(), Writer, Result);
458 return readobj_error::unsupported_obj_file_format;
461 } // end namespace llvm
463 // Iterate through the versions needed section, and place each Elf_Vernaux
464 // in the VersionMap according to its index.
465 template <class ELFT>
466 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *sec) const {
467 unsigned vn_size = sec->sh_size; // Size of section in bytes
468 unsigned vn_count = sec->sh_info; // Number of Verneed entries
469 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
470 const char *sec_end = sec_start + vn_size;
471 // The first Verneed entry is at the start of the section.
472 const char *p = sec_start;
473 for (unsigned i = 0; i < vn_count; i++) {
474 if (p + sizeof(Elf_Verneed) > sec_end)
475 report_fatal_error("Section ended unexpectedly while scanning "
476 "version needed records.");
477 const Elf_Verneed *vn = reinterpret_cast<const Elf_Verneed *>(p);
478 if (vn->vn_version != ELF::VER_NEED_CURRENT)
479 report_fatal_error("Unexpected verneed version");
480 // Iterate through the Vernaux entries
481 const char *paux = p + vn->vn_aux;
482 for (unsigned j = 0; j < vn->vn_cnt; j++) {
483 if (paux + sizeof(Elf_Vernaux) > sec_end)
484 report_fatal_error("Section ended unexpected while scanning auxiliary "
485 "version needed records.");
486 const Elf_Vernaux *vna = reinterpret_cast<const Elf_Vernaux *>(paux);
487 size_t index = vna->vna_other & ELF::VERSYM_VERSION;
488 if (index >= VersionMap.size())
489 VersionMap.resize(index + 1);
490 VersionMap[index] = VersionMapEntry(vna);
491 paux += vna->vna_next;
493 p += vn->vn_next;
497 // Iterate through the version definitions, and place each Elf_Verdef
498 // in the VersionMap according to its index.
499 template <class ELFT>
500 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *sec) const {
501 unsigned vd_size = sec->sh_size; // Size of section in bytes
502 unsigned vd_count = sec->sh_info; // Number of Verdef entries
503 const char *sec_start = (const char *)Obj->base() + sec->sh_offset;
504 const char *sec_end = sec_start + vd_size;
505 // The first Verdef entry is at the start of the section.
506 const char *p = sec_start;
507 for (unsigned i = 0; i < vd_count; i++) {
508 if (p + sizeof(Elf_Verdef) > sec_end)
509 report_fatal_error("Section ended unexpectedly while scanning "
510 "version definitions.");
511 const Elf_Verdef *vd = reinterpret_cast<const Elf_Verdef *>(p);
512 if (vd->vd_version != ELF::VER_DEF_CURRENT)
513 report_fatal_error("Unexpected verdef version");
514 size_t index = vd->vd_ndx & ELF::VERSYM_VERSION;
515 if (index >= VersionMap.size())
516 VersionMap.resize(index + 1);
517 VersionMap[index] = VersionMapEntry(vd);
518 p += vd->vd_next;
522 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
523 // If there is no dynamic symtab or version table, there is nothing to do.
524 if (!DynSymRegion.Addr || !dot_gnu_version_sec)
525 return;
527 // Has the VersionMap already been loaded?
528 if (VersionMap.size() > 0)
529 return;
531 // The first two version indexes are reserved.
532 // Index 0 is LOCAL, index 1 is GLOBAL.
533 VersionMap.push_back(VersionMapEntry());
534 VersionMap.push_back(VersionMapEntry());
536 if (dot_gnu_version_d_sec)
537 LoadVersionDefs(dot_gnu_version_d_sec);
539 if (dot_gnu_version_r_sec)
540 LoadVersionNeeds(dot_gnu_version_r_sec);
543 template <typename ELFO, class ELFT>
544 static void printVersionSymbolSection(ELFDumper<ELFT> *Dumper, const ELFO *Obj,
545 const typename ELFO::Elf_Shdr *Sec,
546 ScopedPrinter &W) {
547 DictScope SS(W, "Version symbols");
548 if (!Sec)
549 return;
550 StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
551 W.printNumber("Section Name", Name, Sec->sh_name);
552 W.printHex("Address", Sec->sh_addr);
553 W.printHex("Offset", Sec->sh_offset);
554 W.printNumber("Link", Sec->sh_link);
556 const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset;
557 StringRef StrTable = Dumper->getDynamicStringTable();
559 // Same number of entries in the dynamic symbol table (DT_SYMTAB).
560 ListScope Syms(W, "Symbols");
561 for (const typename ELFO::Elf_Sym &Sym : Dumper->dynamic_symbols()) {
562 DictScope S(W, "Symbol");
563 std::string FullSymbolName =
564 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
565 W.printNumber("Version", *P);
566 W.printString("Name", FullSymbolName);
567 P += sizeof(typename ELFO::Elf_Half);
571 static const EnumEntry<unsigned> SymVersionFlags[] = {
572 {"Base", "BASE", VER_FLG_BASE},
573 {"Weak", "WEAK", VER_FLG_WEAK},
574 {"Info", "INFO", VER_FLG_INFO}};
576 template <typename ELFO, class ELFT>
577 static void printVersionDefinitionSection(ELFDumper<ELFT> *Dumper,
578 const ELFO *Obj,
579 const typename ELFO::Elf_Shdr *Sec,
580 ScopedPrinter &W) {
581 using VerDef = typename ELFO::Elf_Verdef;
582 using VerdAux = typename ELFO::Elf_Verdaux;
584 DictScope SD(W, "SHT_GNU_verdef");
585 if (!Sec)
586 return;
588 // The number of entries in the section SHT_GNU_verdef
589 // is determined by DT_VERDEFNUM tag.
590 unsigned VerDefsNum = 0;
591 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) {
592 if (Dyn.d_tag == DT_VERDEFNUM)
593 VerDefsNum = Dyn.d_un.d_val;
595 const uint8_t *SecStartAddress =
596 (const uint8_t *)Obj->base() + Sec->sh_offset;
597 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
598 const uint8_t *P = SecStartAddress;
599 const typename ELFO::Elf_Shdr *StrTab =
600 unwrapOrError(Obj->getSection(Sec->sh_link));
602 while (VerDefsNum--) {
603 if (P + sizeof(VerDef) > SecEndAddress)
604 report_fatal_error("invalid offset in the section");
606 auto *VD = reinterpret_cast<const VerDef *>(P);
607 DictScope Def(W, "Definition");
608 W.printNumber("Version", VD->vd_version);
609 W.printEnum("Flags", VD->vd_flags, makeArrayRef(SymVersionFlags));
610 W.printNumber("Index", VD->vd_ndx);
611 W.printNumber("Hash", VD->vd_hash);
612 W.printString("Name",
613 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
614 VD->getAux()->vda_name)));
615 if (!VD->vd_cnt)
616 report_fatal_error("at least one definition string must exist");
617 if (VD->vd_cnt > 2)
618 report_fatal_error("more than one predecessor is not expected");
620 if (VD->vd_cnt == 2) {
621 const uint8_t *PAux = P + VD->vd_aux + VD->getAux()->vda_next;
622 const VerdAux *Aux = reinterpret_cast<const VerdAux *>(PAux);
623 W.printString("Predecessor",
624 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
625 Aux->vda_name)));
628 P += VD->vd_next;
632 template <typename ELFO, class ELFT>
633 static void printVersionDependencySection(ELFDumper<ELFT> *Dumper,
634 const ELFO *Obj,
635 const typename ELFO::Elf_Shdr *Sec,
636 ScopedPrinter &W) {
637 using VerNeed = typename ELFO::Elf_Verneed;
638 using VernAux = typename ELFO::Elf_Vernaux;
640 DictScope SD(W, "SHT_GNU_verneed");
641 if (!Sec)
642 return;
644 unsigned VerNeedNum = 0;
645 for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table())
646 if (Dyn.d_tag == DT_VERNEEDNUM)
647 VerNeedNum = Dyn.d_un.d_val;
649 const uint8_t *SecData = (const uint8_t *)Obj->base() + Sec->sh_offset;
650 const typename ELFO::Elf_Shdr *StrTab =
651 unwrapOrError(Obj->getSection(Sec->sh_link));
653 const uint8_t *P = SecData;
654 for (unsigned I = 0; I < VerNeedNum; ++I) {
655 const VerNeed *Need = reinterpret_cast<const VerNeed *>(P);
656 DictScope Entry(W, "Dependency");
657 W.printNumber("Version", Need->vn_version);
658 W.printNumber("Count", Need->vn_cnt);
659 W.printString("FileName",
660 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
661 Need->vn_file)));
663 const uint8_t *PAux = P + Need->vn_aux;
664 for (unsigned J = 0; J < Need->vn_cnt; ++J) {
665 const VernAux *Aux = reinterpret_cast<const VernAux *>(PAux);
666 DictScope Entry(W, "Entry");
667 W.printNumber("Hash", Aux->vna_hash);
668 W.printEnum("Flags", Aux->vna_flags, makeArrayRef(SymVersionFlags));
669 W.printNumber("Index", Aux->vna_other);
670 W.printString("Name",
671 StringRef((const char *)(Obj->base() + StrTab->sh_offset +
672 Aux->vna_name)));
673 PAux += Aux->vna_next;
675 P += Need->vn_next;
679 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
680 // Dump version symbol section.
681 printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W);
683 // Dump version definition section.
684 printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W);
686 // Dump version dependency section.
687 printVersionDependencySection(this, Obj, dot_gnu_version_r_sec, W);
690 template <typename ELFT>
691 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
692 const Elf_Sym *symb,
693 bool &IsDefault) const {
694 // This is a dynamic symbol. Look in the GNU symbol version table.
695 if (!dot_gnu_version_sec) {
696 // No version table.
697 IsDefault = false;
698 return StringRef("");
701 // Determine the position in the symbol table of this entry.
702 size_t entry_index = (reinterpret_cast<uintptr_t>(symb) -
703 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
704 sizeof(Elf_Sym);
706 // Get the corresponding version index entry
707 const Elf_Versym *vs = unwrapOrError(
708 Obj->template getEntry<Elf_Versym>(dot_gnu_version_sec, entry_index));
709 size_t version_index = vs->vs_index & ELF::VERSYM_VERSION;
711 // Special markers for unversioned symbols.
712 if (version_index == ELF::VER_NDX_LOCAL ||
713 version_index == ELF::VER_NDX_GLOBAL) {
714 IsDefault = false;
715 return StringRef("");
718 // Lookup this symbol in the version table
719 LoadVersionMap();
720 if (version_index >= VersionMap.size() || VersionMap[version_index].isNull())
721 reportError("Invalid version entry");
722 const VersionMapEntry &entry = VersionMap[version_index];
724 // Get the version name string
725 size_t name_offset;
726 if (entry.isVerdef()) {
727 // The first Verdaux entry holds the name.
728 name_offset = entry.getVerdef()->getAux()->vda_name;
729 IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN);
730 } else {
731 name_offset = entry.getVernaux()->vna_name;
732 IsDefault = false;
734 if (name_offset >= StrTab.size())
735 reportError("Invalid string offset");
736 return StringRef(StrTab.data() + name_offset);
739 template <typename ELFT>
740 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
741 StringRef StrTable,
742 bool IsDynamic) const {
743 StringRef SymbolName = unwrapOrError(Symbol->getName(StrTable));
744 if (!IsDynamic)
745 return SymbolName;
747 std::string FullSymbolName(SymbolName);
749 bool IsDefault;
750 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
751 FullSymbolName += (IsDefault ? "@@" : "@");
752 FullSymbolName += Version;
753 return FullSymbolName;
756 template <typename ELFT>
757 void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
758 const Elf_Sym *FirstSym,
759 StringRef &SectionName,
760 unsigned &SectionIndex) const {
761 SectionIndex = Symbol->st_shndx;
762 if (Symbol->isUndefined())
763 SectionName = "Undefined";
764 else if (Symbol->isProcessorSpecific())
765 SectionName = "Processor Specific";
766 else if (Symbol->isOSSpecific())
767 SectionName = "Operating System Specific";
768 else if (Symbol->isAbsolute())
769 SectionName = "Absolute";
770 else if (Symbol->isCommon())
771 SectionName = "Common";
772 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
773 SectionName = "Reserved";
774 else {
775 if (SectionIndex == SHN_XINDEX)
776 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
777 Symbol, FirstSym, ShndxTable));
778 const typename ELFT::Shdr *Sec =
779 unwrapOrError(Obj->getSection(SectionIndex));
780 SectionName = unwrapOrError(Obj->getSectionName(Sec));
784 template <class ELFO>
785 static const typename ELFO::Elf_Shdr *
786 findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
787 for (const auto &Shdr : unwrapOrError(Obj->sections()))
788 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
789 return &Shdr;
790 return nullptr;
793 template <class ELFO>
794 static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
795 StringRef Name) {
796 for (const auto &Shdr : unwrapOrError(Obj.sections())) {
797 if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
798 return &Shdr;
800 return nullptr;
803 static const EnumEntry<unsigned> ElfClass[] = {
804 {"None", "none", ELF::ELFCLASSNONE},
805 {"32-bit", "ELF32", ELF::ELFCLASS32},
806 {"64-bit", "ELF64", ELF::ELFCLASS64},
809 static const EnumEntry<unsigned> ElfDataEncoding[] = {
810 {"None", "none", ELF::ELFDATANONE},
811 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
812 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
815 static const EnumEntry<unsigned> ElfObjectFileType[] = {
816 {"None", "NONE (none)", ELF::ET_NONE},
817 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
818 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
819 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
820 {"Core", "CORE (Core file)", ELF::ET_CORE},
823 static const EnumEntry<unsigned> ElfOSABI[] = {
824 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
825 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
826 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
827 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
828 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
829 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
830 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
831 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
832 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
833 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
834 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
835 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
836 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
837 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
838 {"AROS", "AROS", ELF::ELFOSABI_AROS},
839 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
840 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
841 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
844 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
845 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
846 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
847 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
850 static const EnumEntry<unsigned> ARMElfOSABI[] = {
851 {"ARM", "ARM", ELF::ELFOSABI_ARM}
854 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
855 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
856 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
859 static const EnumEntry<unsigned> ElfMachineType[] = {
860 ENUM_ENT(EM_NONE, "None"),
861 ENUM_ENT(EM_M32, "WE32100"),
862 ENUM_ENT(EM_SPARC, "Sparc"),
863 ENUM_ENT(EM_386, "Intel 80386"),
864 ENUM_ENT(EM_68K, "MC68000"),
865 ENUM_ENT(EM_88K, "MC88000"),
866 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
867 ENUM_ENT(EM_860, "Intel 80860"),
868 ENUM_ENT(EM_MIPS, "MIPS R3000"),
869 ENUM_ENT(EM_S370, "IBM System/370"),
870 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
871 ENUM_ENT(EM_PARISC, "HPPA"),
872 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
873 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
874 ENUM_ENT(EM_960, "Intel 80960"),
875 ENUM_ENT(EM_PPC, "PowerPC"),
876 ENUM_ENT(EM_PPC64, "PowerPC64"),
877 ENUM_ENT(EM_S390, "IBM S/390"),
878 ENUM_ENT(EM_SPU, "SPU"),
879 ENUM_ENT(EM_V800, "NEC V800 series"),
880 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
881 ENUM_ENT(EM_RH32, "TRW RH-32"),
882 ENUM_ENT(EM_RCE, "Motorola RCE"),
883 ENUM_ENT(EM_ARM, "ARM"),
884 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
885 ENUM_ENT(EM_SH, "Hitachi SH"),
886 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
887 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
888 ENUM_ENT(EM_ARC, "ARC"),
889 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
890 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
891 ENUM_ENT(EM_H8S, "Hitachi H8S"),
892 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
893 ENUM_ENT(EM_IA_64, "Intel IA-64"),
894 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
895 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
896 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
897 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
898 ENUM_ENT(EM_PCP, "Siemens PCP"),
899 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
900 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
901 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
902 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
903 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
904 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
905 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
906 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
907 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
908 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
909 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
910 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
911 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
912 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
913 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
914 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
915 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
916 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
917 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
918 ENUM_ENT(EM_VAX, "Digital VAX"),
919 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
920 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
921 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
922 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
923 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
924 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
925 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
926 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
927 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
928 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
929 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
930 ENUM_ENT(EM_V850, "NEC v850"),
931 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
932 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
933 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
934 ENUM_ENT(EM_PJ, "picoJava"),
935 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
936 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
937 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
938 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
939 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
940 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
941 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
942 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
943 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
944 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
945 ENUM_ENT(EM_MAX, "MAX Processor"),
946 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
947 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
948 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
949 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
950 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
951 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
952 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
953 ENUM_ENT(EM_UNICORE, "Unicore"),
954 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
955 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
956 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
957 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
958 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
959 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
960 ENUM_ENT(EM_M16C, "Renesas M16C"),
961 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
962 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
963 ENUM_ENT(EM_M32C, "Renesas M32C"),
964 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
965 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
966 ENUM_ENT(EM_SHARC, "EM_SHARC"),
967 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
968 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
969 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
970 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
971 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
972 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
973 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
974 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
975 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
976 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
977 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
978 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
979 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
980 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
981 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
982 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
983 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
984 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
985 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
986 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
987 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
988 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
989 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
990 ENUM_ENT(EM_RX, "Renesas RX"),
991 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
992 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
993 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
994 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
995 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
996 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
997 ENUM_ENT(EM_L10M, "EM_L10M"),
998 ENUM_ENT(EM_K10M, "EM_K10M"),
999 ENUM_ENT(EM_AARCH64, "AArch64"),
1000 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1001 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1002 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1003 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1004 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1005 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1006 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1007 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1008 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1009 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1010 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1011 ENUM_ENT(EM_RL78, "Renesas RL78"),
1012 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1013 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1014 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1015 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1016 ENUM_ENT(EM_RISCV, "RISC-V"),
1017 ENUM_ENT(EM_WEBASSEMBLY, "EM_WEBASSEMBLY"),
1018 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1019 ENUM_ENT(EM_BPF, "EM_BPF"),
1022 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1023 {"Local", "LOCAL", ELF::STB_LOCAL},
1024 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1025 {"Weak", "WEAK", ELF::STB_WEAK},
1026 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1028 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1029 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1030 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1031 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1032 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1034 static const EnumEntry<unsigned> ElfSymbolTypes[] = {
1035 {"None", "NOTYPE", ELF::STT_NOTYPE},
1036 {"Object", "OBJECT", ELF::STT_OBJECT},
1037 {"Function", "FUNC", ELF::STT_FUNC},
1038 {"Section", "SECTION", ELF::STT_SECTION},
1039 {"File", "FILE", ELF::STT_FILE},
1040 {"Common", "COMMON", ELF::STT_COMMON},
1041 {"TLS", "TLS", ELF::STT_TLS},
1042 {"GNU_IFunc", "IFUNC", ELF::STT_GNU_IFUNC}};
1044 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1045 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1048 static const char *getGroupType(uint32_t Flag) {
1049 if (Flag & ELF::GRP_COMDAT)
1050 return "COMDAT";
1051 else
1052 return "(unknown)";
1055 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1056 ENUM_ENT(SHF_WRITE, "W"),
1057 ENUM_ENT(SHF_ALLOC, "A"),
1058 ENUM_ENT(SHF_EXCLUDE, "E"),
1059 ENUM_ENT(SHF_EXECINSTR, "X"),
1060 ENUM_ENT(SHF_MERGE, "M"),
1061 ENUM_ENT(SHF_STRINGS, "S"),
1062 ENUM_ENT(SHF_INFO_LINK, "I"),
1063 ENUM_ENT(SHF_LINK_ORDER, "L"),
1064 ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1065 ENUM_ENT(SHF_GROUP, "G"),
1066 ENUM_ENT(SHF_TLS, "T"),
1067 ENUM_ENT(SHF_MASKOS, "o"),
1068 ENUM_ENT(SHF_MASKPROC, "p"),
1069 ENUM_ENT_1(SHF_COMPRESSED),
1072 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1073 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1074 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1077 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1078 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
1081 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1082 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1085 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1086 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1087 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ),
1088 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ),
1089 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1090 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ),
1091 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ),
1092 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ),
1093 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1096 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1097 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1100 static std::string getGNUFlags(uint64_t Flags) {
1101 std::string Str;
1102 for (auto Entry : ElfSectionFlags) {
1103 uint64_t Flag = Entry.Value & Flags;
1104 Flags &= ~Entry.Value;
1105 switch (Flag) {
1106 case ELF::SHF_WRITE:
1107 case ELF::SHF_ALLOC:
1108 case ELF::SHF_EXECINSTR:
1109 case ELF::SHF_MERGE:
1110 case ELF::SHF_STRINGS:
1111 case ELF::SHF_INFO_LINK:
1112 case ELF::SHF_LINK_ORDER:
1113 case ELF::SHF_OS_NONCONFORMING:
1114 case ELF::SHF_GROUP:
1115 case ELF::SHF_TLS:
1116 case ELF::SHF_EXCLUDE:
1117 Str += Entry.AltName;
1118 break;
1119 default:
1120 if (Flag & ELF::SHF_MASKOS)
1121 Str += "o";
1122 else if (Flag & ELF::SHF_MASKPROC)
1123 Str += "p";
1124 else if (Flag)
1125 Str += "x";
1128 return Str;
1131 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1132 // Check potentially overlapped processor-specific
1133 // program header type.
1134 switch (Arch) {
1135 case ELF::EM_ARM:
1136 switch (Type) {
1137 LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
1139 case ELF::EM_MIPS:
1140 case ELF::EM_MIPS_RS3_LE:
1141 switch (Type) {
1142 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1143 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1144 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1145 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1149 switch (Type) {
1150 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
1151 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
1152 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1153 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1154 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
1155 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
1156 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
1157 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
1159 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1160 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1162 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1163 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1165 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1166 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1167 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1169 default: return "";
1173 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1174 switch (Type) {
1175 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1176 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1177 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1178 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1179 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1180 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1181 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1182 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1183 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1184 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1185 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1186 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1187 default:
1188 // All machine specific PT_* types
1189 switch (Arch) {
1190 case ELF::EM_ARM:
1191 if (Type == ELF::PT_ARM_EXIDX)
1192 return "EXIDX";
1193 return "";
1194 case ELF::EM_MIPS:
1195 case ELF::EM_MIPS_RS3_LE:
1196 switch (Type) {
1197 case PT_MIPS_REGINFO:
1198 return "REGINFO";
1199 case PT_MIPS_RTPROC:
1200 return "RTPROC";
1201 case PT_MIPS_OPTIONS:
1202 return "OPTIONS";
1203 case PT_MIPS_ABIFLAGS:
1204 return "ABIFLAGS";
1206 return "";
1209 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1212 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1213 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1214 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1215 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1218 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1219 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
1220 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
1221 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
1222 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
1223 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
1224 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
1225 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
1226 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
1227 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
1228 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
1229 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
1230 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
1231 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
1232 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
1233 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
1234 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
1235 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
1236 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
1237 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
1238 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
1239 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
1240 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
1241 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
1242 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
1243 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
1244 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
1245 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
1246 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
1247 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
1248 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
1249 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
1250 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
1251 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
1252 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
1253 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
1254 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
1255 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
1256 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
1257 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
1258 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
1259 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
1260 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
1261 LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
1264 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1265 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1266 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1267 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1268 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1269 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1270 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1271 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1272 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1273 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1274 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1275 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1276 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1277 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1278 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1279 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1280 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1281 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1282 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1283 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1284 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1285 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1286 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1287 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1288 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1289 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1290 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1291 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1292 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1293 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1294 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1295 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1296 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1297 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK)
1300 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1301 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_RVC),
1302 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_SINGLE),
1303 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_DOUBLE),
1304 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_FLOAT_ABI_QUAD),
1305 LLVM_READOBJ_ENUM_ENT(ELF, EF_RISCV_RVE)
1308 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1309 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1310 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1311 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1314 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1315 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1316 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1317 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1318 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1321 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1322 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1323 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1324 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1327 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1328 switch (Odk) {
1329 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1330 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1331 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1332 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1333 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1334 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1335 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1336 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1337 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1338 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1339 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1340 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1341 default:
1342 return "Unknown";
1346 template <typename ELFT>
1347 ELFDumper<ELFT>::ELFDumper(const ELFFile<ELFT> *Obj, ScopedPrinter &Writer)
1348 : ObjDumper(Writer), Obj(Obj) {
1349 SmallVector<const Elf_Phdr *, 4> LoadSegments;
1350 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
1351 if (Phdr.p_type == ELF::PT_DYNAMIC) {
1352 DynamicTable = createDRIFrom(&Phdr, sizeof(Elf_Dyn));
1353 continue;
1355 if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0)
1356 continue;
1357 LoadSegments.push_back(&Phdr);
1360 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1361 switch (Sec.sh_type) {
1362 case ELF::SHT_SYMTAB:
1363 if (DotSymtabSec != nullptr)
1364 reportError("Multiple SHT_SYMTAB");
1365 DotSymtabSec = &Sec;
1366 break;
1367 case ELF::SHT_DYNSYM:
1368 if (DynSymRegion.Size)
1369 reportError("Multiple SHT_DYNSYM");
1370 DynSymRegion = createDRIFrom(&Sec);
1371 // This is only used (if Elf_Shdr present)for naming section in GNU style
1372 DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1373 DynamicStringTable = unwrapOrError(Obj->getStringTableForSymtab(Sec));
1374 break;
1375 case ELF::SHT_SYMTAB_SHNDX:
1376 ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1377 break;
1378 case ELF::SHT_GNU_versym:
1379 if (dot_gnu_version_sec != nullptr)
1380 reportError("Multiple SHT_GNU_versym");
1381 dot_gnu_version_sec = &Sec;
1382 break;
1383 case ELF::SHT_GNU_verdef:
1384 if (dot_gnu_version_d_sec != nullptr)
1385 reportError("Multiple SHT_GNU_verdef");
1386 dot_gnu_version_d_sec = &Sec;
1387 break;
1388 case ELF::SHT_GNU_verneed:
1389 if (dot_gnu_version_r_sec != nullptr)
1390 reportError("Multiple SHT_GNU_verneed");
1391 dot_gnu_version_r_sec = &Sec;
1392 break;
1396 parseDynamicTable(LoadSegments);
1398 if (opts::Output == opts::GNU)
1399 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1400 else
1401 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1404 template <typename ELFT>
1405 void ELFDumper<ELFT>::parseDynamicTable(
1406 ArrayRef<const Elf_Phdr *> LoadSegments) {
1407 auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * {
1408 const Elf_Phdr *const *I =
1409 std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
1410 [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
1411 return VAddr < Phdr->p_vaddr;
1413 if (I == LoadSegments.begin())
1414 report_fatal_error("Virtual address is not in any segment");
1415 --I;
1416 const Elf_Phdr &Phdr = **I;
1417 uint64_t Delta = VAddr - Phdr.p_vaddr;
1418 if (Delta >= Phdr.p_filesz)
1419 report_fatal_error("Virtual address is not in any segment");
1420 return Obj->base() + Phdr.p_offset + Delta;
1423 uint64_t SONameOffset = 0;
1424 const char *StringTableBegin = nullptr;
1425 uint64_t StringTableSize = 0;
1426 for (const Elf_Dyn &Dyn : dynamic_table()) {
1427 switch (Dyn.d_tag) {
1428 case ELF::DT_HASH:
1429 HashTable =
1430 reinterpret_cast<const Elf_Hash *>(toMappedAddr(Dyn.getPtr()));
1431 break;
1432 case ELF::DT_GNU_HASH:
1433 GnuHashTable =
1434 reinterpret_cast<const Elf_GnuHash *>(toMappedAddr(Dyn.getPtr()));
1435 break;
1436 case ELF::DT_STRTAB:
1437 StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr());
1438 break;
1439 case ELF::DT_STRSZ:
1440 StringTableSize = Dyn.getVal();
1441 break;
1442 case ELF::DT_SYMTAB:
1443 DynSymRegion.Addr = toMappedAddr(Dyn.getPtr());
1444 DynSymRegion.EntSize = sizeof(Elf_Sym);
1445 break;
1446 case ELF::DT_RELA:
1447 DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr());
1448 break;
1449 case ELF::DT_RELASZ:
1450 DynRelaRegion.Size = Dyn.getVal();
1451 break;
1452 case ELF::DT_RELAENT:
1453 DynRelaRegion.EntSize = Dyn.getVal();
1454 break;
1455 case ELF::DT_SONAME:
1456 SONameOffset = Dyn.getVal();
1457 break;
1458 case ELF::DT_REL:
1459 DynRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1460 break;
1461 case ELF::DT_RELSZ:
1462 DynRelRegion.Size = Dyn.getVal();
1463 break;
1464 case ELF::DT_RELENT:
1465 DynRelRegion.EntSize = Dyn.getVal();
1466 break;
1467 case ELF::DT_PLTREL:
1468 if (Dyn.getVal() == DT_REL)
1469 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1470 else if (Dyn.getVal() == DT_RELA)
1471 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1472 else
1473 reportError(Twine("unknown DT_PLTREL value of ") +
1474 Twine((uint64_t)Dyn.getVal()));
1475 break;
1476 case ELF::DT_JMPREL:
1477 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getPtr());
1478 break;
1479 case ELF::DT_PLTRELSZ:
1480 DynPLTRelRegion.Size = Dyn.getVal();
1481 break;
1484 if (StringTableBegin)
1485 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1486 if (SONameOffset)
1487 SOName = getDynamicString(SONameOffset);
1490 template <typename ELFT>
1491 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1492 return DynRelRegion.getAsArrayRef<Elf_Rel>();
1495 template <typename ELFT>
1496 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1497 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1500 template<class ELFT>
1501 void ELFDumper<ELFT>::printFileHeaders() {
1502 ELFDumperStyle->printFileHeaders(Obj);
1505 template<class ELFT>
1506 void ELFDumper<ELFT>::printSections() {
1507 ELFDumperStyle->printSections(Obj);
1510 template<class ELFT>
1511 void ELFDumper<ELFT>::printRelocations() {
1512 ELFDumperStyle->printRelocations(Obj);
1515 template <class ELFT> void ELFDumper<ELFT>::printProgramHeaders() {
1516 ELFDumperStyle->printProgramHeaders(Obj);
1519 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1520 ELFDumperStyle->printDynamicRelocations(Obj);
1523 template<class ELFT>
1524 void ELFDumper<ELFT>::printSymbols() {
1525 ELFDumperStyle->printSymbols(Obj);
1528 template<class ELFT>
1529 void ELFDumper<ELFT>::printDynamicSymbols() {
1530 ELFDumperStyle->printDynamicSymbols(Obj);
1533 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1534 ELFDumperStyle->printHashHistogram(Obj);
1537 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
1538 ELFDumperStyle->printNotes(Obj);
1541 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
1542 ELFDumperStyle->printELFLinkerOptions(Obj);
1545 static const char *getTypeString(unsigned Arch, uint64_t Type) {
1546 #define DYNAMIC_TAG(n, v)
1547 switch (Arch) {
1548 case EM_HEXAGON:
1549 switch (Type) {
1550 #define HEXAGON_DYNAMIC_TAG(name, value) \
1551 case DT_##name: \
1552 return #name;
1553 #include "llvm/BinaryFormat/DynamicTags.def"
1554 #undef HEXAGON_DYNAMIC_TAG
1557 case EM_MIPS:
1558 switch (Type) {
1559 #define MIPS_DYNAMIC_TAG(name, value) \
1560 case DT_##name: \
1561 return #name;
1562 #include "llvm/BinaryFormat/DynamicTags.def"
1563 #undef MIPS_DYNAMIC_TAG
1566 case EM_PPC64:
1567 switch(Type) {
1568 #define PPC64_DYNAMIC_TAG(name, value) \
1569 case DT_##name: \
1570 return #name;
1571 #include "llvm/BinaryFormat/DynamicTags.def"
1572 #undef PPC64_DYNAMIC_TAG
1575 #undef DYNAMIC_TAG
1576 switch (Type) {
1577 // Now handle all dynamic tags except the architecture specific ones
1578 #define MIPS_DYNAMIC_TAG(name, value)
1579 #define HEXAGON_DYNAMIC_TAG(name, value)
1580 #define PPC64_DYNAMIC_TAG(name, value)
1581 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1582 #define DYNAMIC_TAG_MARKER(name, value)
1583 #define DYNAMIC_TAG(name, value) \
1584 case DT_##name: \
1585 return #name;
1586 #include "llvm/BinaryFormat/DynamicTags.def"
1587 #undef DYNAMIC_TAG
1588 #undef MIPS_DYNAMIC_TAG
1589 #undef HEXAGON_DYNAMIC_TAG
1590 #undef PPC64_DYNAMIC_TAG
1591 #undef DYNAMIC_TAG_MARKER
1592 default: return "unknown";
1596 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
1597 { #enum, prefix##_##enum }
1599 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1600 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1601 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1602 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1603 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1604 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1607 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1608 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1609 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1610 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1611 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1612 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1613 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1614 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1615 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1616 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1617 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1618 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1619 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1620 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1621 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1622 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1623 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1624 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1625 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1626 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1627 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1628 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1629 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1630 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1631 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1632 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1635 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1636 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1637 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1638 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1639 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1640 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1641 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1642 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1643 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1644 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1645 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1646 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1647 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1648 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1649 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1650 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1651 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1654 #undef LLVM_READOBJ_DT_FLAG_ENT
1656 template <typename T, typename TFlag>
1657 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1658 using FlagEntry = EnumEntry<TFlag>;
1659 using FlagVector = SmallVector<FlagEntry, 10>;
1660 FlagVector SetFlags;
1662 for (const auto &Flag : Flags) {
1663 if (Flag.Value == 0)
1664 continue;
1666 if ((Value & Flag.Value) == Flag.Value)
1667 SetFlags.push_back(Flag);
1670 for (const auto &Flag : SetFlags) {
1671 OS << Flag.Name << " ";
1675 template <class ELFT>
1676 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
1677 if (Value >= DynamicStringTable.size())
1678 reportError("Invalid dynamic string table reference");
1679 return StringRef(DynamicStringTable.data() + Value);
1682 static void printLibrary(raw_ostream &OS, const Twine &Tag, const Twine &Name) {
1683 OS << Tag << ": [" << Name << "]";
1686 template <class ELFT>
1687 void ELFDumper<ELFT>::printValue(uint64_t Type, uint64_t Value) {
1688 raw_ostream &OS = W.getOStream();
1689 const char* ConvChar = (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1690 switch (Type) {
1691 case DT_PLTREL:
1692 if (Value == DT_REL) {
1693 OS << "REL";
1694 break;
1695 } else if (Value == DT_RELA) {
1696 OS << "RELA";
1697 break;
1699 LLVM_FALLTHROUGH;
1700 case DT_PLTGOT:
1701 case DT_HASH:
1702 case DT_STRTAB:
1703 case DT_SYMTAB:
1704 case DT_RELA:
1705 case DT_INIT:
1706 case DT_FINI:
1707 case DT_REL:
1708 case DT_JMPREL:
1709 case DT_INIT_ARRAY:
1710 case DT_FINI_ARRAY:
1711 case DT_PREINIT_ARRAY:
1712 case DT_DEBUG:
1713 case DT_VERDEF:
1714 case DT_VERNEED:
1715 case DT_VERSYM:
1716 case DT_GNU_HASH:
1717 case DT_NULL:
1718 case DT_MIPS_BASE_ADDRESS:
1719 case DT_MIPS_GOTSYM:
1720 case DT_MIPS_RLD_MAP:
1721 case DT_MIPS_RLD_MAP_REL:
1722 case DT_MIPS_PLTGOT:
1723 case DT_MIPS_OPTIONS:
1724 OS << format(ConvChar, Value);
1725 break;
1726 case DT_RELACOUNT:
1727 case DT_RELCOUNT:
1728 case DT_VERDEFNUM:
1729 case DT_VERNEEDNUM:
1730 case DT_MIPS_RLD_VERSION:
1731 case DT_MIPS_LOCAL_GOTNO:
1732 case DT_MIPS_SYMTABNO:
1733 case DT_MIPS_UNREFEXTNO:
1734 OS << Value;
1735 break;
1736 case DT_PLTRELSZ:
1737 case DT_RELASZ:
1738 case DT_RELAENT:
1739 case DT_STRSZ:
1740 case DT_SYMENT:
1741 case DT_RELSZ:
1742 case DT_RELENT:
1743 case DT_INIT_ARRAYSZ:
1744 case DT_FINI_ARRAYSZ:
1745 case DT_PREINIT_ARRAYSZ:
1746 case DT_ANDROID_RELSZ:
1747 case DT_ANDROID_RELASZ:
1748 OS << Value << " (bytes)";
1749 break;
1750 case DT_NEEDED:
1751 printLibrary(OS, "Shared library", getDynamicString(Value));
1752 break;
1753 case DT_SONAME:
1754 printLibrary(OS, "Library soname", getDynamicString(Value));
1755 break;
1756 case DT_AUXILIARY:
1757 printLibrary(OS, "Auxiliary library", getDynamicString(Value));
1758 break;
1759 case DT_FILTER:
1760 printLibrary(OS, "Filter library", getDynamicString(Value));
1761 break;
1762 case DT_RPATH:
1763 case DT_RUNPATH:
1764 OS << getDynamicString(Value);
1765 break;
1766 case DT_MIPS_FLAGS:
1767 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1768 break;
1769 case DT_FLAGS:
1770 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1771 break;
1772 case DT_FLAGS_1:
1773 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1774 break;
1775 default:
1776 OS << format(ConvChar, Value);
1777 break;
1781 template<class ELFT>
1782 void ELFDumper<ELFT>::printUnwindInfo() {
1783 const unsigned Machine = Obj->getHeader()->e_machine;
1784 if (Machine == EM_386 || Machine == EM_X86_64) {
1785 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, Obj);
1786 return Ctx.printUnwindInformation();
1788 W.startLine() << "UnwindInfo not implemented.\n";
1791 namespace {
1793 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
1794 const unsigned Machine = Obj->getHeader()->e_machine;
1795 if (Machine == EM_ARM) {
1796 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, DotSymtabSec);
1797 return Ctx.PrintUnwindInformation();
1799 W.startLine() << "UnwindInfo not implemented.\n";
1802 } // end anonymous namespace
1804 template<class ELFT>
1805 void ELFDumper<ELFT>::printDynamicTable() {
1806 auto I = dynamic_table().begin();
1807 auto E = dynamic_table().end();
1809 if (I == E)
1810 return;
1812 --E;
1813 while (I != E && E->getTag() == ELF::DT_NULL)
1814 --E;
1815 if (E->getTag() != ELF::DT_NULL)
1816 ++E;
1817 ++E;
1819 ptrdiff_t Total = std::distance(I, E);
1820 if (Total == 0)
1821 return;
1823 raw_ostream &OS = W.getOStream();
1824 W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
1826 bool Is64 = ELFT::Is64Bits;
1828 W.startLine()
1829 << " Tag" << (Is64 ? " " : " ") << "Type"
1830 << " " << "Name/Value\n";
1831 while (I != E) {
1832 const Elf_Dyn &Entry = *I;
1833 uintX_t Tag = Entry.getTag();
1834 ++I;
1835 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, opts::Output != opts::GNU) << " "
1836 << format("%-21s", getTypeString(Obj->getHeader()->e_machine, Tag));
1837 printValue(Tag, Entry.getVal());
1838 OS << "\n";
1841 W.startLine() << "]\n";
1844 template<class ELFT>
1845 void ELFDumper<ELFT>::printNeededLibraries() {
1846 ListScope D(W, "NeededLibraries");
1848 using LibsTy = std::vector<StringRef>;
1849 LibsTy Libs;
1851 for (const auto &Entry : dynamic_table())
1852 if (Entry.d_tag == ELF::DT_NEEDED)
1853 Libs.push_back(getDynamicString(Entry.d_un.d_val));
1855 std::stable_sort(Libs.begin(), Libs.end());
1857 for (const auto &L : Libs)
1858 W.startLine() << L << "\n";
1862 template <typename ELFT>
1863 void ELFDumper<ELFT>::printHashTable() {
1864 DictScope D(W, "HashTable");
1865 if (!HashTable)
1866 return;
1867 W.printNumber("Num Buckets", HashTable->nbucket);
1868 W.printNumber("Num Chains", HashTable->nchain);
1869 W.printList("Buckets", HashTable->buckets());
1870 W.printList("Chains", HashTable->chains());
1873 template <typename ELFT>
1874 void ELFDumper<ELFT>::printGnuHashTable() {
1875 DictScope D(W, "GnuHashTable");
1876 if (!GnuHashTable)
1877 return;
1878 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
1879 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
1880 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
1881 W.printNumber("Shift Count", GnuHashTable->shift2);
1882 W.printHexList("Bloom Filter", GnuHashTable->filter());
1883 W.printList("Buckets", GnuHashTable->buckets());
1884 Elf_Sym_Range Syms = dynamic_symbols();
1885 unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
1886 if (!NumSyms)
1887 reportError("No dynamic symbol section");
1888 W.printHexList("Values", GnuHashTable->values(NumSyms));
1891 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
1892 W.printString("LoadName", SOName);
1895 template <class ELFT>
1896 void ELFDumper<ELFT>::printAttributes() {
1897 W.startLine() << "Attributes not implemented.\n";
1900 namespace {
1902 template <> void ELFDumper<ELF32LE>::printAttributes() {
1903 if (Obj->getHeader()->e_machine != EM_ARM) {
1904 W.startLine() << "Attributes not implemented.\n";
1905 return;
1908 DictScope BA(W, "BuildAttributes");
1909 for (const ELFO::Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1910 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
1911 continue;
1913 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
1914 if (Contents[0] != ARMBuildAttrs::Format_Version) {
1915 errs() << "unrecognised FormatVersion: 0x"
1916 << Twine::utohexstr(Contents[0]) << '\n';
1917 continue;
1920 W.printHex("FormatVersion", Contents[0]);
1921 if (Contents.size() == 1)
1922 continue;
1924 ARMAttributeParser(&W).Parse(Contents, true);
1928 template <class ELFT> class MipsGOTParser {
1929 public:
1930 TYPEDEF_ELF_TYPES(ELFT)
1931 using Entry = typename ELFO::Elf_Addr;
1932 using Entries = ArrayRef<Entry>;
1934 const bool IsStatic;
1935 const ELFO * const Obj;
1937 MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
1939 bool hasGot() const { return !GotEntries.empty(); }
1940 bool hasPlt() const { return !PltEntries.empty(); }
1942 uint64_t getGp() const;
1944 const Entry *getGotLazyResolver() const;
1945 const Entry *getGotModulePointer() const;
1946 const Entry *getPltLazyResolver() const;
1947 const Entry *getPltModulePointer() const;
1949 Entries getLocalEntries() const;
1950 Entries getGlobalEntries() const;
1951 Entries getOtherEntries() const;
1952 Entries getPltEntries() const;
1954 uint64_t getGotAddress(const Entry * E) const;
1955 int64_t getGotOffset(const Entry * E) const;
1956 const Elf_Sym *getGotSym(const Entry *E) const;
1958 uint64_t getPltAddress(const Entry * E) const;
1959 const Elf_Sym *getPltSym(const Entry *E) const;
1961 StringRef getPltStrTable() const { return PltStrTable; }
1963 private:
1964 const Elf_Shdr *GotSec;
1965 size_t LocalNum;
1966 size_t GlobalNum;
1968 const Elf_Shdr *PltSec;
1969 const Elf_Shdr *PltRelSec;
1970 const Elf_Shdr *PltSymTable;
1971 Elf_Sym_Range GotDynSyms;
1972 StringRef PltStrTable;
1974 Entries GotEntries;
1975 Entries PltEntries;
1978 } // end anonymous namespace
1980 template <class ELFT>
1981 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable,
1982 Elf_Sym_Range DynSyms)
1983 : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
1984 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
1985 // See "Global Offset Table" in Chapter 5 in the following document
1986 // for detailed GOT description.
1987 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1989 // Find static GOT secton.
1990 if (IsStatic) {
1991 GotSec = findSectionByName(*Obj, ".got");
1992 if (!GotSec)
1993 reportError("Cannot find .got section");
1995 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
1996 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
1997 Content.size() / sizeof(Entry));
1998 LocalNum = GotEntries.size();
1999 return;
2002 // Lookup dynamic table tags which define GOT/PLT layouts.
2003 Optional<uint64_t> DtPltGot;
2004 Optional<uint64_t> DtLocalGotNum;
2005 Optional<uint64_t> DtGotSym;
2006 Optional<uint64_t> DtMipsPltGot;
2007 Optional<uint64_t> DtJmpRel;
2008 for (const auto &Entry : DynTable) {
2009 switch (Entry.getTag()) {
2010 case ELF::DT_PLTGOT:
2011 DtPltGot = Entry.getVal();
2012 break;
2013 case ELF::DT_MIPS_LOCAL_GOTNO:
2014 DtLocalGotNum = Entry.getVal();
2015 break;
2016 case ELF::DT_MIPS_GOTSYM:
2017 DtGotSym = Entry.getVal();
2018 break;
2019 case ELF::DT_MIPS_PLTGOT:
2020 DtMipsPltGot = Entry.getVal();
2021 break;
2022 case ELF::DT_JMPREL:
2023 DtJmpRel = Entry.getVal();
2024 break;
2028 // Find dynamic GOT section.
2029 if (DtPltGot || DtLocalGotNum || DtGotSym) {
2030 if (!DtPltGot)
2031 report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2032 if (!DtLocalGotNum)
2033 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2034 if (!DtGotSym)
2035 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2037 size_t DynSymTotal = DynSyms.size();
2038 if (*DtGotSym > DynSymTotal)
2039 reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2041 GotSec = findNotEmptySectionByAddress(Obj, *DtPltGot);
2042 if (!GotSec)
2043 reportError("There is no not empty GOT section at 0x" +
2044 Twine::utohexstr(*DtPltGot));
2046 LocalNum = *DtLocalGotNum;
2047 GlobalNum = DynSymTotal - *DtGotSym;
2049 ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2050 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2051 Content.size() / sizeof(Entry));
2052 GotDynSyms = DynSyms.drop_front(*DtGotSym);
2055 // Find PLT section.
2056 if (DtMipsPltGot || DtJmpRel) {
2057 if (!DtMipsPltGot)
2058 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2059 if (!DtJmpRel)
2060 report_fatal_error("Cannot find JMPREL dynamic table tag.");
2062 PltSec = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2063 if (!PltSec)
2064 report_fatal_error("There is no not empty PLTGOT section at 0x " +
2065 Twine::utohexstr(*DtMipsPltGot));
2067 PltRelSec = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2068 if (!PltRelSec)
2069 report_fatal_error("There is no not empty RELPLT section at 0x" +
2070 Twine::utohexstr(*DtJmpRel));
2072 ArrayRef<uint8_t> PltContent =
2073 unwrapOrError(Obj->getSectionContents(PltSec));
2074 PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2075 PltContent.size() / sizeof(Entry));
2077 PltSymTable = unwrapOrError(Obj->getSection(PltRelSec->sh_link));
2078 PltStrTable = unwrapOrError(Obj->getStringTableForSymtab(*PltSymTable));
2082 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2083 return GotSec->sh_addr + 0x7ff0;
2086 template <class ELFT>
2087 const typename MipsGOTParser<ELFT>::Entry *
2088 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2089 return LocalNum > 0 ? &GotEntries[0] : nullptr;
2092 template <class ELFT>
2093 const typename MipsGOTParser<ELFT>::Entry *
2094 MipsGOTParser<ELFT>::getGotModulePointer() const {
2095 if (LocalNum < 2)
2096 return nullptr;
2097 const Entry &E = GotEntries[1];
2098 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2099 return nullptr;
2100 return &E;
2103 template <class ELFT>
2104 typename MipsGOTParser<ELFT>::Entries
2105 MipsGOTParser<ELFT>::getLocalEntries() const {
2106 size_t Skip = getGotModulePointer() ? 2 : 1;
2107 if (LocalNum - Skip <= 0)
2108 return Entries();
2109 return GotEntries.slice(Skip, LocalNum - Skip);
2112 template <class ELFT>
2113 typename MipsGOTParser<ELFT>::Entries
2114 MipsGOTParser<ELFT>::getGlobalEntries() const {
2115 if (GlobalNum == 0)
2116 return Entries();
2117 return GotEntries.slice(LocalNum, GlobalNum);
2120 template <class ELFT>
2121 typename MipsGOTParser<ELFT>::Entries
2122 MipsGOTParser<ELFT>::getOtherEntries() const {
2123 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2124 if (OtherNum == 0)
2125 return Entries();
2126 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2129 template <class ELFT>
2130 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2131 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2132 return GotSec->sh_addr + Offset;
2135 template <class ELFT>
2136 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2137 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2138 return Offset - 0x7ff0;
2141 template <class ELFT>
2142 const typename MipsGOTParser<ELFT>::Elf_Sym *
2143 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2144 int64_t Offset = std::distance(GotEntries.data(), E);
2145 return &GotDynSyms[Offset - LocalNum];
2148 template <class ELFT>
2149 const typename MipsGOTParser<ELFT>::Entry *
2150 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2151 return PltEntries.empty() ? nullptr : &PltEntries[0];
2154 template <class ELFT>
2155 const typename MipsGOTParser<ELFT>::Entry *
2156 MipsGOTParser<ELFT>::getPltModulePointer() const {
2157 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2160 template <class ELFT>
2161 typename MipsGOTParser<ELFT>::Entries
2162 MipsGOTParser<ELFT>::getPltEntries() const {
2163 if (PltEntries.size() <= 2)
2164 return Entries();
2165 return PltEntries.slice(2, PltEntries.size() - 2);
2168 template <class ELFT>
2169 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2170 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2171 return PltSec->sh_addr + Offset;
2174 template <class ELFT>
2175 const typename MipsGOTParser<ELFT>::Elf_Sym *
2176 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2177 int64_t Offset = std::distance(getPltEntries().data(), E);
2178 if (PltRelSec->sh_type == ELF::SHT_REL) {
2179 Elf_Rel_Range Rels = unwrapOrError(Obj->rels(PltRelSec));
2180 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2181 } else {
2182 Elf_Rela_Range Rels = unwrapOrError(Obj->relas(PltRelSec));
2183 return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2187 template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2188 if (Obj->getHeader()->e_machine != EM_MIPS)
2189 reportError("MIPS PLT GOT is available for MIPS targets only");
2191 MipsGOTParser<ELFT> Parser(Obj, dynamic_table(), dynamic_symbols());
2192 if (Parser.hasGot())
2193 ELFDumperStyle->printMipsGOT(Parser);
2194 if (Parser.hasPlt())
2195 ELFDumperStyle->printMipsPLT(Parser);
2198 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2199 {"None", Mips::AFL_EXT_NONE},
2200 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
2201 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
2202 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2203 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2204 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2205 {"LSI R4010", Mips::AFL_EXT_4010},
2206 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
2207 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
2208 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
2209 {"MIPS R4650", Mips::AFL_EXT_4650},
2210 {"MIPS R5900", Mips::AFL_EXT_5900},
2211 {"MIPS R10000", Mips::AFL_EXT_10000},
2212 {"NEC VR4100", Mips::AFL_EXT_4100},
2213 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
2214 {"NEC VR4120", Mips::AFL_EXT_4120},
2215 {"NEC VR5400", Mips::AFL_EXT_5400},
2216 {"NEC VR5500", Mips::AFL_EXT_5500},
2217 {"RMI Xlr", Mips::AFL_EXT_XLR},
2218 {"Toshiba R3900", Mips::AFL_EXT_3900}
2221 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2222 {"DSP", Mips::AFL_ASE_DSP},
2223 {"DSPR2", Mips::AFL_ASE_DSPR2},
2224 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2225 {"MCU", Mips::AFL_ASE_MCU},
2226 {"MDMX", Mips::AFL_ASE_MDMX},
2227 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
2228 {"MT", Mips::AFL_ASE_MT},
2229 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
2230 {"VZ", Mips::AFL_ASE_VIRT},
2231 {"MSA", Mips::AFL_ASE_MSA},
2232 {"MIPS16", Mips::AFL_ASE_MIPS16},
2233 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
2234 {"XPA", Mips::AFL_ASE_XPA},
2235 {"CRC", Mips::AFL_ASE_CRC},
2238 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2239 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
2240 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2241 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2242 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2243 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2244 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2245 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
2246 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2247 {"Hard float compat (32-bit CPU, 64-bit FPU)",
2248 Mips::Val_GNU_MIPS_ABI_FP_64A}
2251 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2252 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2255 static int getMipsRegisterSize(uint8_t Flag) {
2256 switch (Flag) {
2257 case Mips::AFL_REG_NONE:
2258 return 0;
2259 case Mips::AFL_REG_32:
2260 return 32;
2261 case Mips::AFL_REG_64:
2262 return 64;
2263 case Mips::AFL_REG_128:
2264 return 128;
2265 default:
2266 return -1;
2270 template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2271 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2272 if (!Shdr) {
2273 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2274 return;
2276 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2277 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2278 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2279 return;
2282 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2284 raw_ostream &OS = W.getOStream();
2285 DictScope GS(W, "MIPS ABI Flags");
2287 W.printNumber("Version", Flags->version);
2288 W.startLine() << "ISA: ";
2289 if (Flags->isa_rev <= 1)
2290 OS << format("MIPS%u", Flags->isa_level);
2291 else
2292 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2293 OS << "\n";
2294 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2295 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2296 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2297 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2298 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2299 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2300 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2301 W.printHex("Flags 2", Flags->flags2);
2304 template <class ELFT>
2305 static void printMipsReginfoData(ScopedPrinter &W,
2306 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2307 W.printHex("GP", Reginfo.ri_gp_value);
2308 W.printHex("General Mask", Reginfo.ri_gprmask);
2309 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2310 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2311 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2312 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2315 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2316 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2317 if (!Shdr) {
2318 W.startLine() << "There is no .reginfo section in the file.\n";
2319 return;
2321 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2322 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2323 W.startLine() << "The .reginfo section has a wrong size.\n";
2324 return;
2327 DictScope GS(W, "MIPS RegInfo");
2328 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2329 printMipsReginfoData(W, *Reginfo);
2332 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2333 const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2334 if (!Shdr) {
2335 W.startLine() << "There is no .MIPS.options section in the file.\n";
2336 return;
2339 DictScope GS(W, "MIPS Options");
2341 ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2342 while (!Sec.empty()) {
2343 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2344 W.startLine() << "The .MIPS.options section has a wrong size.\n";
2345 return;
2347 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2348 DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2349 switch (O->kind) {
2350 case ODK_REGINFO:
2351 printMipsReginfoData(W, O->getRegInfo());
2352 break;
2353 default:
2354 W.startLine() << "Unsupported MIPS options tag.\n";
2355 break;
2357 Sec = Sec.slice(O->size);
2361 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2362 const Elf_Shdr *StackMapSection = nullptr;
2363 for (const auto &Sec : unwrapOrError(Obj->sections())) {
2364 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2365 if (Name == ".llvm_stackmaps") {
2366 StackMapSection = &Sec;
2367 break;
2371 if (!StackMapSection)
2372 return;
2374 ArrayRef<uint8_t> StackMapContentsArray =
2375 unwrapOrError(Obj->getSectionContents(StackMapSection));
2377 prettyPrintStackMap(
2378 W, StackMapV2Parser<ELFT::TargetEndianness>(StackMapContentsArray));
2381 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2382 ELFDumperStyle->printGroupSections(Obj);
2385 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2386 StringRef Str2) {
2387 OS.PadToColumn(2u);
2388 OS << Str1;
2389 OS.PadToColumn(37u);
2390 OS << Str2 << "\n";
2391 OS.flush();
2394 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2395 const Elf_Ehdr *e = Obj->getHeader();
2396 OS << "ELF Header:\n";
2397 OS << " Magic: ";
2398 std::string Str;
2399 for (int i = 0; i < ELF::EI_NIDENT; i++)
2400 OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2401 OS << "\n";
2402 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2403 printFields(OS, "Class:", Str);
2404 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2405 printFields(OS, "Data:", Str);
2406 OS.PadToColumn(2u);
2407 OS << "Version:";
2408 OS.PadToColumn(37u);
2409 OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2410 if (e->e_version == ELF::EV_CURRENT)
2411 OS << " (current)";
2412 OS << "\n";
2413 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2414 printFields(OS, "OS/ABI:", Str);
2415 Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2416 printFields(OS, "ABI Version:", Str);
2417 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2418 printFields(OS, "Type:", Str);
2419 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2420 printFields(OS, "Machine:", Str);
2421 Str = "0x" + to_hexString(e->e_version);
2422 printFields(OS, "Version:", Str);
2423 Str = "0x" + to_hexString(e->e_entry);
2424 printFields(OS, "Entry point address:", Str);
2425 Str = to_string(e->e_phoff) + " (bytes into file)";
2426 printFields(OS, "Start of program headers:", Str);
2427 Str = to_string(e->e_shoff) + " (bytes into file)";
2428 printFields(OS, "Start of section headers:", Str);
2429 Str = "0x" + to_hexString(e->e_flags);
2430 printFields(OS, "Flags:", Str);
2431 Str = to_string(e->e_ehsize) + " (bytes)";
2432 printFields(OS, "Size of this header:", Str);
2433 Str = to_string(e->e_phentsize) + " (bytes)";
2434 printFields(OS, "Size of program headers:", Str);
2435 Str = to_string(e->e_phnum);
2436 printFields(OS, "Number of program headers:", Str);
2437 Str = to_string(e->e_shentsize) + " (bytes)";
2438 printFields(OS, "Size of section headers:", Str);
2439 Str = to_string(e->e_shnum);
2440 printFields(OS, "Number of section headers:", Str);
2441 Str = to_string(e->e_shstrndx);
2442 printFields(OS, "Section header string table index:", Str);
2445 namespace {
2446 struct GroupMember {
2447 StringRef Name;
2448 uint64_t Index;
2451 struct GroupSection {
2452 StringRef Name;
2453 StringRef Signature;
2454 uint64_t ShName;
2455 uint64_t Index;
2456 uint32_t Link;
2457 uint32_t Info;
2458 uint32_t Type;
2459 std::vector<GroupMember> Members;
2462 template <class ELFT>
2463 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj) {
2464 using Elf_Shdr = typename ELFT::Shdr;
2465 using Elf_Sym = typename ELFT::Sym;
2466 using Elf_Word = typename ELFT::Word;
2468 std::vector<GroupSection> Ret;
2469 uint64_t I = 0;
2470 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2471 ++I;
2472 if (Sec.sh_type != ELF::SHT_GROUP)
2473 continue;
2475 const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2476 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2477 const Elf_Sym *Sym =
2478 unwrapOrError(Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
2479 auto Data =
2480 unwrapOrError(Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2482 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2483 StringRef Signature = StrTable.data() + Sym->st_name;
2484 Ret.push_back({Name,
2485 Signature,
2486 Sec.sh_name,
2487 I - 1,
2488 Sec.sh_link,
2489 Sec.sh_info,
2490 Data[0],
2491 {}});
2493 std::vector<GroupMember> &GM = Ret.back().Members;
2494 for (uint32_t Ndx : Data.slice(1)) {
2495 auto Sec = unwrapOrError(Obj->getSection(Ndx));
2496 const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2497 GM.push_back({Name, Ndx});
2500 return Ret;
2503 DenseMap<uint64_t, const GroupSection *>
2504 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
2505 DenseMap<uint64_t, const GroupSection *> Ret;
2506 for (const GroupSection &G : Groups)
2507 for (const GroupMember &GM : G.Members)
2508 Ret.insert({GM.Index, &G});
2509 return Ret;
2512 } // namespace
2514 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2515 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
2516 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
2517 for (const GroupSection &G : V) {
2518 OS << "\n"
2519 << getGroupType(G.Type) << " group section ["
2520 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
2521 << "] contains " << G.Members.size() << " sections:\n"
2522 << " [Index] Name\n";
2523 for (const GroupMember &GM : G.Members) {
2524 const GroupSection *MainGroup = Map[GM.Index];
2525 if (MainGroup != &G) {
2526 OS.flush();
2527 errs() << "Error: section [" << format_decimal(GM.Index, 5)
2528 << "] in group section [" << format_decimal(G.Index, 5)
2529 << "] already in group section ["
2530 << format_decimal(MainGroup->Index, 5) << "]";
2531 errs().flush();
2532 continue;
2534 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
2538 if (V.empty())
2539 OS << "There are no section groups in this file.\n";
2542 template <class ELFT>
2543 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2544 const Elf_Rela &R, bool IsRela) {
2545 std::string Offset, Info, Addend, Value;
2546 SmallString<32> RelocName;
2547 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2548 StringRef TargetName;
2549 const Elf_Sym *Sym = nullptr;
2550 unsigned Width = ELFT::Is64Bits ? 16 : 8;
2551 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2553 // First two fields are bit width dependent. The rest of them are after are
2554 // fixed width.
2555 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2556 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2557 Sym = unwrapOrError(Obj->getRelocationSymbol(&R, SymTab));
2558 if (Sym && Sym->getType() == ELF::STT_SECTION) {
2559 const Elf_Shdr *Sec = unwrapOrError(
2560 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2561 TargetName = unwrapOrError(Obj->getSectionName(Sec));
2562 } else if (Sym) {
2563 TargetName = unwrapOrError(Sym->getName(StrTable));
2566 if (Sym && IsRela) {
2567 if (R.r_addend < 0)
2568 Addend = " - ";
2569 else
2570 Addend = " + ";
2573 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
2574 Info = to_string(format_hex_no_prefix(R.r_info, Width));
2576 int64_t RelAddend = R.r_addend;
2577 if (IsRela)
2578 Addend += to_hexString(std::abs(RelAddend), false);
2580 if (Sym)
2581 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2583 Fields[0].Str = Offset;
2584 Fields[1].Str = Info;
2585 Fields[2].Str = RelocName;
2586 Fields[3].Str = Value;
2587 Fields[4].Str = TargetName;
2588 for (auto &field : Fields)
2589 printField(field);
2590 OS << Addend;
2591 OS << "\n";
2594 static inline void printRelocHeader(raw_ostream &OS, bool Is64, bool IsRela) {
2595 if (Is64)
2596 OS << " Offset Info Type"
2597 << " Symbol's Value Symbol's Name";
2598 else
2599 OS << " Offset Info Type Sym. Value "
2600 << "Symbol's Name";
2601 if (IsRela)
2602 OS << (IsRela ? " + Addend" : "");
2603 OS << "\n";
2606 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2607 bool HasRelocSections = false;
2608 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2609 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
2610 Sec.sh_type != ELF::SHT_ANDROID_REL &&
2611 Sec.sh_type != ELF::SHT_ANDROID_RELA)
2612 continue;
2613 HasRelocSections = true;
2614 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2615 unsigned Entries = Sec.getEntityCount();
2616 uintX_t Offset = Sec.sh_offset;
2617 OS << "\nRelocation section '" << Name << "' at offset 0x"
2618 << to_hexString(Offset, false) << " contains " << Entries
2619 << " entries:\n";
2620 printRelocHeader(OS, ELFT::Is64Bits,
2621 Sec.sh_type == ELF::SHT_RELA ||
2622 Sec.sh_type == ELF::SHT_ANDROID_RELA);
2623 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2624 switch (Sec.sh_type) {
2625 case ELF::SHT_REL:
2626 for (const auto &R : unwrapOrError(Obj->rels(&Sec))) {
2627 Elf_Rela Rela;
2628 Rela.r_offset = R.r_offset;
2629 Rela.r_info = R.r_info;
2630 Rela.r_addend = 0;
2631 printRelocation(Obj, SymTab, Rela, false);
2633 break;
2634 case ELF::SHT_RELA:
2635 for (const auto &R : unwrapOrError(Obj->relas(&Sec)))
2636 printRelocation(Obj, SymTab, R, true);
2637 break;
2638 case ELF::SHT_ANDROID_REL:
2639 case ELF::SHT_ANDROID_RELA:
2640 for (const auto &R : unwrapOrError(Obj->android_relas(&Sec)))
2641 printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
2642 break;
2645 if (!HasRelocSections)
2646 OS << "\nThere are no relocations in this file.\n";
2649 std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2650 using namespace ELF;
2652 switch (Arch) {
2653 case EM_ARM:
2654 switch (Type) {
2655 case SHT_ARM_EXIDX:
2656 return "ARM_EXIDX";
2657 case SHT_ARM_PREEMPTMAP:
2658 return "ARM_PREEMPTMAP";
2659 case SHT_ARM_ATTRIBUTES:
2660 return "ARM_ATTRIBUTES";
2661 case SHT_ARM_DEBUGOVERLAY:
2662 return "ARM_DEBUGOVERLAY";
2663 case SHT_ARM_OVERLAYSECTION:
2664 return "ARM_OVERLAYSECTION";
2666 case EM_X86_64:
2667 switch (Type) {
2668 case SHT_X86_64_UNWIND:
2669 return "X86_64_UNWIND";
2671 case EM_MIPS:
2672 case EM_MIPS_RS3_LE:
2673 switch (Type) {
2674 case SHT_MIPS_REGINFO:
2675 return "MIPS_REGINFO";
2676 case SHT_MIPS_OPTIONS:
2677 return "MIPS_OPTIONS";
2678 case SHT_MIPS_ABIFLAGS:
2679 return "MIPS_ABIFLAGS";
2680 case SHT_MIPS_DWARF:
2681 return "SHT_MIPS_DWARF";
2684 switch (Type) {
2685 case SHT_NULL:
2686 return "NULL";
2687 case SHT_PROGBITS:
2688 return "PROGBITS";
2689 case SHT_SYMTAB:
2690 return "SYMTAB";
2691 case SHT_STRTAB:
2692 return "STRTAB";
2693 case SHT_RELA:
2694 return "RELA";
2695 case SHT_HASH:
2696 return "HASH";
2697 case SHT_DYNAMIC:
2698 return "DYNAMIC";
2699 case SHT_NOTE:
2700 return "NOTE";
2701 case SHT_NOBITS:
2702 return "NOBITS";
2703 case SHT_REL:
2704 return "REL";
2705 case SHT_SHLIB:
2706 return "SHLIB";
2707 case SHT_DYNSYM:
2708 return "DYNSYM";
2709 case SHT_INIT_ARRAY:
2710 return "INIT_ARRAY";
2711 case SHT_FINI_ARRAY:
2712 return "FINI_ARRAY";
2713 case SHT_PREINIT_ARRAY:
2714 return "PREINIT_ARRAY";
2715 case SHT_GROUP:
2716 return "GROUP";
2717 case SHT_SYMTAB_SHNDX:
2718 return "SYMTAB SECTION INDICES";
2719 case SHT_LLVM_ODRTAB:
2720 return "LLVM_ODRTAB";
2721 case SHT_LLVM_LINKER_OPTIONS:
2722 return "LLVM_LINKER_OPTIONS";
2723 // FIXME: Parse processor specific GNU attributes
2724 case SHT_GNU_ATTRIBUTES:
2725 return "ATTRIBUTES";
2726 case SHT_GNU_HASH:
2727 return "GNU_HASH";
2728 case SHT_GNU_verdef:
2729 return "VERDEF";
2730 case SHT_GNU_verneed:
2731 return "VERNEED";
2732 case SHT_GNU_versym:
2733 return "VERSYM";
2734 default:
2735 return "";
2737 return "";
2740 template <class ELFT> void GNUStyle<ELFT>::printSections(const ELFO *Obj) {
2741 size_t SectionIndex = 0;
2742 std::string Number, Type, Size, Address, Offset, Flags, Link, Info, EntrySize,
2743 Alignment;
2744 unsigned Bias;
2745 unsigned Width;
2747 if (ELFT::Is64Bits) {
2748 Bias = 0;
2749 Width = 16;
2750 } else {
2751 Bias = 8;
2752 Width = 8;
2754 OS << "There are " << to_string(Obj->getHeader()->e_shnum)
2755 << " section headers, starting at offset "
2756 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
2757 OS << "Section Headers:\n";
2758 Field Fields[11] = {{"[Nr]", 2},
2759 {"Name", 7},
2760 {"Type", 25},
2761 {"Address", 41},
2762 {"Off", 58 - Bias},
2763 {"Size", 65 - Bias},
2764 {"ES", 72 - Bias},
2765 {"Flg", 75 - Bias},
2766 {"Lk", 79 - Bias},
2767 {"Inf", 82 - Bias},
2768 {"Al", 86 - Bias}};
2769 for (auto &f : Fields)
2770 printField(f);
2771 OS << "\n";
2773 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2774 Number = to_string(SectionIndex);
2775 Fields[0].Str = Number;
2776 Fields[1].Str = unwrapOrError(Obj->getSectionName(&Sec));
2777 Type = getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
2778 Fields[2].Str = Type;
2779 Address = to_string(format_hex_no_prefix(Sec.sh_addr, Width));
2780 Fields[3].Str = Address;
2781 Offset = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
2782 Fields[4].Str = Offset;
2783 Size = to_string(format_hex_no_prefix(Sec.sh_size, 6));
2784 Fields[5].Str = Size;
2785 EntrySize = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
2786 Fields[6].Str = EntrySize;
2787 Flags = getGNUFlags(Sec.sh_flags);
2788 Fields[7].Str = Flags;
2789 Link = to_string(Sec.sh_link);
2790 Fields[8].Str = Link;
2791 Info = to_string(Sec.sh_info);
2792 Fields[9].Str = Info;
2793 Alignment = to_string(Sec.sh_addralign);
2794 Fields[10].Str = Alignment;
2795 OS.PadToColumn(Fields[0].Column);
2796 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
2797 for (int i = 1; i < 7; i++)
2798 printField(Fields[i]);
2799 OS.PadToColumn(Fields[7].Column);
2800 OS << right_justify(Fields[7].Str, 3);
2801 OS.PadToColumn(Fields[8].Column);
2802 OS << right_justify(Fields[8].Str, 2);
2803 OS.PadToColumn(Fields[9].Column);
2804 OS << right_justify(Fields[9].Str, 3);
2805 OS.PadToColumn(Fields[10].Column);
2806 OS << right_justify(Fields[10].Str, 2);
2807 OS << "\n";
2808 ++SectionIndex;
2810 OS << "Key to Flags:\n"
2811 << " W (write), A (alloc), X (execute), M (merge), S (strings), l "
2812 "(large)\n"
2813 << " I (info), L (link order), G (group), T (TLS), E (exclude),\
2814 x (unknown)\n"
2815 << " O (extra OS processing required) o (OS specific),\
2816 p (processor specific)\n";
2819 template <class ELFT>
2820 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
2821 size_t Entries) {
2822 if (!Name.empty())
2823 OS << "\nSymbol table '" << Name << "' contains " << Entries
2824 << " entries:\n";
2825 else
2826 OS << "\n Symbol table for image:\n";
2828 if (ELFT::Is64Bits)
2829 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2830 else
2831 OS << " Num: Value Size Type Bind Vis Ndx Name\n";
2834 template <class ELFT>
2835 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
2836 const Elf_Sym *Symbol,
2837 const Elf_Sym *FirstSym) {
2838 unsigned SectionIndex = Symbol->st_shndx;
2839 switch (SectionIndex) {
2840 case ELF::SHN_UNDEF:
2841 return "UND";
2842 case ELF::SHN_ABS:
2843 return "ABS";
2844 case ELF::SHN_COMMON:
2845 return "COM";
2846 case ELF::SHN_XINDEX:
2847 SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
2848 Symbol, FirstSym, this->dumper()->getShndxTable()));
2849 LLVM_FALLTHROUGH;
2850 default:
2851 // Find if:
2852 // Processor specific
2853 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
2854 return std::string("PRC[0x") +
2855 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2856 // OS specific
2857 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
2858 return std::string("OS[0x") +
2859 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2860 // Architecture reserved:
2861 if (SectionIndex >= ELF::SHN_LORESERVE &&
2862 SectionIndex <= ELF::SHN_HIRESERVE)
2863 return std::string("RSV[0x") +
2864 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
2865 // A normal section with an index
2866 return to_string(format_decimal(SectionIndex, 3));
2870 template <class ELFT>
2871 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
2872 const Elf_Sym *FirstSym, StringRef StrTable,
2873 bool IsDynamic) {
2874 static int Idx = 0;
2875 static bool Dynamic = true;
2876 size_t Width;
2878 // If this function was called with a different value from IsDynamic
2879 // from last call, happens when we move from dynamic to static symbol
2880 // table, "Num" field should be reset.
2881 if (!Dynamic != !IsDynamic) {
2882 Idx = 0;
2883 Dynamic = false;
2885 std::string Num, Name, Value, Size, Binding, Type, Visibility, Section;
2886 unsigned Bias = 0;
2887 if (ELFT::Is64Bits) {
2888 Bias = 8;
2889 Width = 16;
2890 } else {
2891 Bias = 0;
2892 Width = 8;
2894 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
2895 31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
2896 Num = to_string(format_decimal(Idx++, 6)) + ":";
2897 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2898 Size = to_string(format_decimal(Symbol->st_size, 5));
2899 unsigned char SymbolType = Symbol->getType();
2900 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2901 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2902 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2903 else
2904 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2905 unsigned Vis = Symbol->getVisibility();
2906 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2907 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2908 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2909 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
2910 Fields[0].Str = Num;
2911 Fields[1].Str = Value;
2912 Fields[2].Str = Size;
2913 Fields[3].Str = Type;
2914 Fields[4].Str = Binding;
2915 Fields[5].Str = Visibility;
2916 Fields[6].Str = Section;
2917 Fields[7].Str = Name;
2918 for (auto &Entry : Fields)
2919 printField(Entry);
2920 OS << "\n";
2922 template <class ELFT>
2923 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
2924 uint32_t Sym, StringRef StrTable,
2925 uint32_t Bucket) {
2926 std::string Num, Buc, Name, Value, Size, Binding, Type, Visibility, Section;
2927 unsigned Width, Bias = 0;
2928 if (ELFT::Is64Bits) {
2929 Bias = 8;
2930 Width = 16;
2931 } else {
2932 Bias = 0;
2933 Width = 8;
2935 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
2936 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
2937 Num = to_string(format_decimal(Sym, 5));
2938 Buc = to_string(format_decimal(Bucket, 3)) + ":";
2940 const auto Symbol = FirstSym + Sym;
2941 Value = to_string(format_hex_no_prefix(Symbol->st_value, Width));
2942 Size = to_string(format_decimal(Symbol->st_size, 5));
2943 unsigned char SymbolType = Symbol->getType();
2944 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
2945 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
2946 Type = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
2947 else
2948 Type = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
2949 unsigned Vis = Symbol->getVisibility();
2950 Binding = printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
2951 Visibility = printEnum(Vis, makeArrayRef(ElfSymbolVisibilities));
2952 Section = getSymbolSectionNdx(Obj, Symbol, FirstSym);
2953 Name = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
2954 Fields[0].Str = Num;
2955 Fields[1].Str = Buc;
2956 Fields[2].Str = Value;
2957 Fields[3].Str = Size;
2958 Fields[4].Str = Type;
2959 Fields[5].Str = Binding;
2960 Fields[6].Str = Visibility;
2961 Fields[7].Str = Section;
2962 Fields[8].Str = Name;
2963 for (auto &Entry : Fields)
2964 printField(Entry);
2965 OS << "\n";
2968 template <class ELFT> void GNUStyle<ELFT>::printSymbols(const ELFO *Obj) {
2969 if (opts::DynamicSymbols)
2970 return;
2971 this->dumper()->printSymbolsHelper(true);
2972 this->dumper()->printSymbolsHelper(false);
2975 template <class ELFT>
2976 void GNUStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
2977 if (this->dumper()->getDynamicStringTable().empty())
2978 return;
2979 auto StringTable = this->dumper()->getDynamicStringTable();
2980 auto DynSyms = this->dumper()->dynamic_symbols();
2981 auto GnuHash = this->dumper()->getGnuHashTable();
2982 auto SysVHash = this->dumper()->getHashTable();
2984 // If no hash or .gnu.hash found, try using symbol table
2985 if (GnuHash == nullptr && SysVHash == nullptr)
2986 this->dumper()->printSymbolsHelper(true);
2988 // Try printing .hash
2989 if (this->dumper()->getHashTable()) {
2990 OS << "\n Symbol table of .hash for image:\n";
2991 if (ELFT::Is64Bits)
2992 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
2993 else
2994 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
2995 OS << "\n";
2997 uint32_t NBuckets = SysVHash->nbucket;
2998 uint32_t NChains = SysVHash->nchain;
2999 auto Buckets = SysVHash->buckets();
3000 auto Chains = SysVHash->chains();
3001 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3002 if (Buckets[Buc] == ELF::STN_UNDEF)
3003 continue;
3004 for (uint32_t Ch = Buckets[Buc]; Ch < NChains; Ch = Chains[Ch]) {
3005 if (Ch == ELF::STN_UNDEF)
3006 break;
3007 printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3012 // Try printing .gnu.hash
3013 if (GnuHash) {
3014 OS << "\n Symbol table of .gnu.hash for image:\n";
3015 if (ELFT::Is64Bits)
3016 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3017 else
3018 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
3019 OS << "\n";
3020 uint32_t NBuckets = GnuHash->nbuckets;
3021 auto Buckets = GnuHash->buckets();
3022 for (uint32_t Buc = 0; Buc < NBuckets; Buc++) {
3023 if (Buckets[Buc] == ELF::STN_UNDEF)
3024 continue;
3025 uint32_t Index = Buckets[Buc];
3026 uint32_t GnuHashable = Index - GnuHash->symndx;
3027 // Print whole chain
3028 while (true) {
3029 printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3030 // Chain ends at symbol with stopper bit
3031 if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3032 break;
3038 static inline std::string printPhdrFlags(unsigned Flag) {
3039 std::string Str;
3040 Str = (Flag & PF_R) ? "R" : " ";
3041 Str += (Flag & PF_W) ? "W" : " ";
3042 Str += (Flag & PF_X) ? "E" : " ";
3043 return Str;
3046 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3047 // PT_TLS must only have SHF_TLS sections
3048 template <class ELFT>
3049 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3050 const Elf_Shdr &Sec) {
3051 return (((Sec.sh_flags & ELF::SHF_TLS) &&
3052 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3053 (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3054 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3057 // Non-SHT_NOBITS must have its offset inside the segment
3058 // Only non-zero section can be at end of segment
3059 template <class ELFT>
3060 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3061 if (Sec.sh_type == ELF::SHT_NOBITS)
3062 return true;
3063 bool IsSpecial =
3064 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3065 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3066 auto SectionSize =
3067 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3068 if (Sec.sh_offset >= Phdr.p_offset)
3069 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3070 /*only non-zero sized sections at end*/ &&
3071 (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3072 return false;
3075 // SHF_ALLOC must have VMA inside segment
3076 // Only non-zero section can be at end of segment
3077 template <class ELFT>
3078 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3079 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3080 return true;
3081 bool IsSpecial =
3082 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3083 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3084 auto SectionSize =
3085 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3086 if (Sec.sh_addr >= Phdr.p_vaddr)
3087 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3088 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3089 return false;
3092 // No section with zero size must be at start or end of PT_DYNAMIC
3093 template <class ELFT>
3094 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3095 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3096 return true;
3097 // Is section within the phdr both based on offset and VMA ?
3098 return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3099 (Sec.sh_offset > Phdr.p_offset &&
3100 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3101 (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3102 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3105 template <class ELFT>
3106 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3107 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3108 unsigned Width = ELFT::Is64Bits ? 18 : 10;
3109 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3110 std::string Type, Offset, VMA, LMA, FileSz, MemSz, Flag, Align;
3112 const Elf_Ehdr *Header = Obj->getHeader();
3113 Field Fields[8] = {2, 17, 26, 37 + Bias,
3114 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3115 OS << "\nElf file type is "
3116 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3117 << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3118 << "There are " << Header->e_phnum << " program headers,"
3119 << " starting at offset " << Header->e_phoff << "\n\n"
3120 << "Program Headers:\n";
3121 if (ELFT::Is64Bits)
3122 OS << " Type Offset VirtAddr PhysAddr "
3123 << " FileSiz MemSiz Flg Align\n";
3124 else
3125 OS << " Type Offset VirtAddr PhysAddr FileSiz "
3126 << "MemSiz Flg Align\n";
3127 for (const auto &Phdr : unwrapOrError(Obj->program_headers())) {
3128 Type = getElfPtType(Header->e_machine, Phdr.p_type);
3129 Offset = to_string(format_hex(Phdr.p_offset, 8));
3130 VMA = to_string(format_hex(Phdr.p_vaddr, Width));
3131 LMA = to_string(format_hex(Phdr.p_paddr, Width));
3132 FileSz = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3133 MemSz = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3134 Flag = printPhdrFlags(Phdr.p_flags);
3135 Align = to_string(format_hex(Phdr.p_align, 1));
3136 Fields[0].Str = Type;
3137 Fields[1].Str = Offset;
3138 Fields[2].Str = VMA;
3139 Fields[3].Str = LMA;
3140 Fields[4].Str = FileSz;
3141 Fields[5].Str = MemSz;
3142 Fields[6].Str = Flag;
3143 Fields[7].Str = Align;
3144 for (auto Field : Fields)
3145 printField(Field);
3146 if (Phdr.p_type == ELF::PT_INTERP) {
3147 OS << "\n [Requesting program interpreter: ";
3148 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3150 OS << "\n";
3152 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
3153 int Phnum = 0;
3154 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
3155 std::string Sections;
3156 OS << format(" %2.2d ", Phnum++);
3157 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3158 // Check if each section is in a segment and then print mapping.
3159 // readelf additionally makes sure it does not print zero sized sections
3160 // at end of segments and for PT_DYNAMIC both start and end of section
3161 // .tbss must only be shown in PT_TLS section.
3162 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3163 ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3164 Phdr.p_type != ELF::PT_TLS;
3165 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3166 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3167 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL))
3168 Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
3170 OS << Sections << "\n";
3171 OS.flush();
3175 template <class ELFT>
3176 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3177 bool IsRela) {
3178 SmallString<32> RelocName;
3179 StringRef SymbolName;
3180 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3181 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3182 // First two fields are bit width dependent. The rest of them are after are
3183 // fixed width.
3184 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3186 uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
3187 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3188 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3189 SymbolName =
3190 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
3191 std::string Addend, Info, Offset, Value;
3192 Offset = to_string(format_hex_no_prefix(R.r_offset, Width));
3193 Info = to_string(format_hex_no_prefix(R.r_info, Width));
3194 Value = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3195 int64_t RelAddend = R.r_addend;
3196 if (!SymbolName.empty() && IsRela) {
3197 if (R.r_addend < 0)
3198 Addend = " - ";
3199 else
3200 Addend = " + ";
3203 if (SymbolName.empty() && Sym->getValue() == 0)
3204 Value = "";
3206 if (IsRela)
3207 Addend += to_string(format_hex_no_prefix(std::abs(RelAddend), 1));
3210 Fields[0].Str = Offset;
3211 Fields[1].Str = Info;
3212 Fields[2].Str = RelocName.c_str();
3213 Fields[3].Str = Value;
3214 Fields[4].Str = SymbolName;
3215 for (auto &Field : Fields)
3216 printField(Field);
3217 OS << Addend;
3218 OS << "\n";
3221 template <class ELFT>
3222 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3223 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3224 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3225 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3226 if (DynRelaRegion.Size > 0) {
3227 OS << "\n'RELA' relocation section at offset "
3228 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3229 Obj->base(),
3230 1) << " contains " << DynRelaRegion.Size << " bytes:\n";
3231 printRelocHeader(OS, ELFT::Is64Bits, true);
3232 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3233 printDynamicRelocation(Obj, Rela, true);
3235 if (DynRelRegion.Size > 0) {
3236 OS << "\n'REL' relocation section at offset "
3237 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3238 Obj->base(),
3239 1) << " contains " << DynRelRegion.Size << " bytes:\n";
3240 printRelocHeader(OS, ELFT::Is64Bits, false);
3241 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3242 Elf_Rela Rela;
3243 Rela.r_offset = Rel.r_offset;
3244 Rela.r_info = Rel.r_info;
3245 Rela.r_addend = 0;
3246 printDynamicRelocation(Obj, Rela, false);
3249 if (DynPLTRelRegion.Size) {
3250 OS << "\n'PLT' relocation section at offset "
3251 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3252 Obj->base(),
3253 1) << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3255 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3256 printRelocHeader(OS, ELFT::Is64Bits, true);
3257 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3258 printDynamicRelocation(Obj, Rela, true);
3259 } else {
3260 printRelocHeader(OS, ELFT::Is64Bits, false);
3261 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3262 Elf_Rela Rela;
3263 Rela.r_offset = Rel.r_offset;
3264 Rela.r_info = Rel.r_info;
3265 Rela.r_addend = 0;
3266 printDynamicRelocation(Obj, Rela, false);
3271 // Hash histogram shows statistics of how efficient the hash was for the
3272 // dynamic symbol table. The table shows number of hash buckets for different
3273 // lengths of chains as absolute number and percentage of the total buckets.
3274 // Additionally cumulative coverage of symbols for each set of buckets.
3275 template <class ELFT>
3276 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3278 const Elf_Hash *HashTable = this->dumper()->getHashTable();
3279 const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable();
3281 // Print histogram for .hash section
3282 if (HashTable) {
3283 size_t NBucket = HashTable->nbucket;
3284 size_t NChain = HashTable->nchain;
3285 ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3286 ArrayRef<Elf_Word> Chains = HashTable->chains();
3287 size_t TotalSyms = 0;
3288 // If hash table is correct, we have at least chains with 0 length
3289 size_t MaxChain = 1;
3290 size_t CumulativeNonZero = 0;
3292 if (NChain == 0 || NBucket == 0)
3293 return;
3295 std::vector<size_t> ChainLen(NBucket, 0);
3296 // Go over all buckets and and note chain lengths of each bucket (total
3297 // unique chain lengths).
3298 for (size_t B = 0; B < NBucket; B++) {
3299 for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3300 if (MaxChain <= ++ChainLen[B])
3301 MaxChain++;
3302 TotalSyms += ChainLen[B];
3305 if (!TotalSyms)
3306 return;
3308 std::vector<size_t> Count(MaxChain, 0) ;
3309 // Count how long is the chain for each bucket
3310 for (size_t B = 0; B < NBucket; B++)
3311 ++Count[ChainLen[B]];
3312 // Print Number of buckets with each chain lengths and their cumulative
3313 // coverage of the symbols
3314 OS << "Histogram for bucket list length (total of " << NBucket
3315 << " buckets)\n"
3316 << " Length Number % of total Coverage\n";
3317 for (size_t I = 0; I < MaxChain; I++) {
3318 CumulativeNonZero += Count[I] * I;
3319 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3320 (Count[I] * 100.0) / NBucket,
3321 (CumulativeNonZero * 100.0) / TotalSyms);
3325 // Print histogram for .gnu.hash section
3326 if (GnuHashTable) {
3327 size_t NBucket = GnuHashTable->nbuckets;
3328 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3329 unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3330 if (!NumSyms)
3331 return;
3332 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3333 size_t Symndx = GnuHashTable->symndx;
3334 size_t TotalSyms = 0;
3335 size_t MaxChain = 1;
3336 size_t CumulativeNonZero = 0;
3338 if (Chains.empty() || NBucket == 0)
3339 return;
3341 std::vector<size_t> ChainLen(NBucket, 0);
3343 for (size_t B = 0; B < NBucket; B++) {
3344 if (!Buckets[B])
3345 continue;
3346 size_t Len = 1;
3347 for (size_t C = Buckets[B] - Symndx;
3348 C < Chains.size() && (Chains[C] & 1) == 0; C++)
3349 if (MaxChain < ++Len)
3350 MaxChain++;
3351 ChainLen[B] = Len;
3352 TotalSyms += Len;
3354 MaxChain++;
3356 if (!TotalSyms)
3357 return;
3359 std::vector<size_t> Count(MaxChain, 0) ;
3360 for (size_t B = 0; B < NBucket; B++)
3361 ++Count[ChainLen[B]];
3362 // Print Number of buckets with each chain lengths and their cumulative
3363 // coverage of the symbols
3364 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3365 << " buckets)\n"
3366 << " Length Number % of total Coverage\n";
3367 for (size_t I = 0; I <MaxChain; I++) {
3368 CumulativeNonZero += Count[I] * I;
3369 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
3370 (Count[I] * 100.0) / NBucket,
3371 (CumulativeNonZero * 100.0) / TotalSyms);
3376 static std::string getGNUNoteTypeName(const uint32_t NT) {
3377 static const struct {
3378 uint32_t ID;
3379 const char *Name;
3380 } Notes[] = {
3381 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
3382 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3383 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3384 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
3385 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
3388 for (const auto &Note : Notes)
3389 if (Note.ID == NT)
3390 return std::string(Note.Name);
3392 std::string string;
3393 raw_string_ostream OS(string);
3394 OS << format("Unknown note type (0x%08x)", NT);
3395 return OS.str();
3398 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
3399 static const struct {
3400 uint32_t ID;
3401 const char *Name;
3402 } Notes[] = {
3403 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
3404 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
3405 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
3406 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
3407 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
3408 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
3409 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3410 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
3411 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
3412 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3413 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
3416 for (const auto &Note : Notes)
3417 if (Note.ID == NT)
3418 return std::string(Note.Name);
3420 std::string string;
3421 raw_string_ostream OS(string);
3422 OS << format("Unknown note type (0x%08x)", NT);
3423 return OS.str();
3426 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
3427 static const struct {
3428 uint32_t ID;
3429 const char *Name;
3430 } Notes[] = {
3431 {ELF::NT_AMD_AMDGPU_HSA_METADATA,
3432 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3433 {ELF::NT_AMD_AMDGPU_ISA,
3434 "NT_AMD_AMDGPU_ISA (ISA Version)"},
3435 {ELF::NT_AMD_AMDGPU_PAL_METADATA,
3436 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}
3439 for (const auto &Note : Notes)
3440 if (Note.ID == NT)
3441 return std::string(Note.Name);
3443 std::string string;
3444 raw_string_ostream OS(string);
3445 OS << format("Unknown note type (0x%08x)", NT);
3446 return OS.str();
3449 template <typename ELFT>
3450 static void printGNUProperty(raw_ostream &OS, uint32_t Type, uint32_t DataSize,
3451 ArrayRef<uint8_t> Data) {
3452 switch (Type) {
3453 default:
3454 OS << format(" <application-specific type 0x%x>\n", Type);
3455 return;
3456 case GNU_PROPERTY_STACK_SIZE: {
3457 OS << " stack size: ";
3458 if (DataSize == sizeof(typename ELFT::uint))
3459 OS << format("0x%x\n",
3460 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
3461 else
3462 OS << format("<corrupt length: 0x%x>\n", DataSize);
3463 break;
3465 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
3466 OS << " no copy on protected";
3467 if (DataSize)
3468 OS << format(" <corrupt length: 0x%x>", DataSize);
3469 OS << "\n";
3470 break;
3474 template <typename ELFT>
3475 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
3476 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3477 using Elf_Word = typename ELFT::Word;
3479 switch (NoteType) {
3480 default:
3481 return;
3482 case ELF::NT_GNU_ABI_TAG: {
3483 static const char *OSNames[] = {
3484 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
3487 StringRef OSName = "Unknown";
3488 if (Words[0] < array_lengthof(OSNames))
3489 OSName = OSNames[Words[0]];
3490 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
3492 if (Words.size() < 4)
3493 OS << " <corrupt GNU_ABI_TAG>";
3494 else
3495 OS << " OS: " << OSName << ", ABI: " << Major << "." << Minor << "."
3496 << Patch;
3497 break;
3499 case ELF::NT_GNU_BUILD_ID: {
3500 OS << " Build ID: ";
3501 ArrayRef<uint8_t> ID(reinterpret_cast<const uint8_t *>(Words.data()), Size);
3502 for (const auto &B : ID)
3503 OS << format_hex_no_prefix(B, 2);
3504 break;
3506 case ELF::NT_GNU_GOLD_VERSION:
3507 OS << " Version: "
3508 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3509 break;
3510 case ELF::NT_GNU_PROPERTY_TYPE_0:
3511 OS << " Properties:";
3513 ArrayRef<uint8_t> Arr(reinterpret_cast<const uint8_t *>(Words.data()),
3514 Size);
3515 while (Arr.size() >= 8) {
3516 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
3517 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
3518 Arr = Arr.drop_front(8);
3520 // Take padding size into account if present.
3521 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
3522 if (Arr.size() < PaddedSize) {
3523 OS << format(" <corrupt type (0x%x) datasz: 0x%x>\n", Type,
3524 DataSize);
3525 break;
3527 printGNUProperty<ELFT>(OS, Type, DataSize, Arr.take_front(PaddedSize));
3528 Arr = Arr.drop_front(PaddedSize);
3531 if (!Arr.empty())
3532 OS << " <corrupted GNU_PROPERTY_TYPE_0>";
3533 break;
3535 OS << '\n';
3538 template <typename ELFT>
3539 static void printAMDGPUNote(raw_ostream &OS, uint32_t NoteType,
3540 ArrayRef<typename ELFT::Word> Words, size_t Size) {
3541 switch (NoteType) {
3542 default:
3543 return;
3544 case ELF::NT_AMD_AMDGPU_HSA_METADATA:
3545 OS << " HSA Metadata:\n"
3546 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3547 break;
3548 case ELF::NT_AMD_AMDGPU_ISA:
3549 OS << " ISA Version:\n"
3550 << " "
3551 << StringRef(reinterpret_cast<const char *>(Words.data()), Size);
3552 break;
3553 case ELF::NT_AMD_AMDGPU_PAL_METADATA:
3554 const uint32_t *PALMetadataBegin = reinterpret_cast<const uint32_t *>(Words.data());
3555 const uint32_t *PALMetadataEnd = PALMetadataBegin + Size;
3556 std::vector<uint32_t> PALMetadata(PALMetadataBegin, PALMetadataEnd);
3557 std::string PALMetadataString;
3558 auto Error = AMDGPU::PALMD::toString(PALMetadata, PALMetadataString);
3559 OS << " PAL Metadata:\n";
3560 if (Error) {
3561 OS << " Invalid";
3562 return;
3564 OS << PALMetadataString;
3565 break;
3567 OS.flush();
3570 template <class ELFT>
3571 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
3572 const Elf_Ehdr *e = Obj->getHeader();
3573 bool IsCore = e->e_type == ELF::ET_CORE;
3575 auto PrintHeader = [&](const typename ELFT::Off Offset,
3576 const typename ELFT::Addr Size) {
3577 OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
3578 << " with length " << format_hex(Size, 10) << ":\n"
3579 << " Owner Data size\tDescription\n";
3582 auto ProcessNote = [&](const Elf_Note &Note) {
3583 StringRef Name = Note.getName();
3584 ArrayRef<Elf_Word> Descriptor = Note.getDesc();
3585 Elf_Word Type = Note.getType();
3587 OS << " " << Name << std::string(22 - Name.size(), ' ')
3588 << format_hex(Descriptor.size(), 10) << '\t';
3590 if (Name == "GNU") {
3591 OS << getGNUNoteTypeName(Type) << '\n';
3592 printGNUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3593 } else if (Name == "FreeBSD") {
3594 OS << getFreeBSDNoteTypeName(Type) << '\n';
3595 } else if (Name == "AMD") {
3596 OS << getAMDGPUNoteTypeName(Type) << '\n';
3597 printAMDGPUNote<ELFT>(OS, Type, Descriptor, Descriptor.size());
3598 } else {
3599 OS << "Unknown note type: (" << format_hex(Type, 10) << ')';
3601 OS << '\n';
3604 if (IsCore) {
3605 for (const auto &P : unwrapOrError(Obj->program_headers())) {
3606 if (P.p_type != PT_NOTE)
3607 continue;
3608 PrintHeader(P.p_offset, P.p_filesz);
3609 Error Err = Error::success();
3610 for (const auto &Note : Obj->notes(P, Err))
3611 ProcessNote(Note);
3612 if (Err)
3613 error(std::move(Err));
3615 } else {
3616 for (const auto &S : unwrapOrError(Obj->sections())) {
3617 if (S.sh_type != SHT_NOTE)
3618 continue;
3619 PrintHeader(S.sh_offset, S.sh_size);
3620 Error Err = Error::success();
3621 for (const auto &Note : Obj->notes(S, Err))
3622 ProcessNote(Note);
3623 if (Err)
3624 error(std::move(Err));
3629 template <class ELFT>
3630 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
3631 OS << "printELFLinkerOptions not implemented!\n";
3634 template <class ELFT>
3635 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
3636 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3637 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3638 OS.PadToColumn(2);
3639 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3640 OS.PadToColumn(11 + Bias);
3641 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
3642 OS.PadToColumn(22 + Bias);
3643 OS << format_hex_no_prefix(*E, 8 + Bias);
3644 OS.PadToColumn(31 + 2 * Bias);
3645 OS << Purpose << "\n";
3648 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
3649 OS << " Canonical gp value: "
3650 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
3652 OS << " Reserved entries:\n";
3653 OS << " Address Access Initial Purpose\n";
3654 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
3655 if (Parser.getGotModulePointer())
3656 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
3658 if (!Parser.getLocalEntries().empty()) {
3659 OS << "\n";
3660 OS << " Local entries:\n";
3661 OS << " Address Access Initial\n";
3662 for (auto &E : Parser.getLocalEntries())
3663 PrintEntry(&E, "");
3666 if (Parser.IsStatic)
3667 return;
3669 if (!Parser.getGlobalEntries().empty()) {
3670 OS << "\n";
3671 OS << " Global entries:\n";
3672 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
3673 for (auto &E : Parser.getGlobalEntries()) {
3674 const Elf_Sym *Sym = Parser.getGotSym(&E);
3675 std::string SymName = this->dumper()->getFullSymbolName(
3676 Sym, this->dumper()->getDynamicStringTable(), false);
3678 OS.PadToColumn(2);
3679 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3680 OS.PadToColumn(11 + Bias);
3681 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
3682 OS.PadToColumn(22 + Bias);
3683 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3684 OS.PadToColumn(31 + 2 * Bias);
3685 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3686 OS.PadToColumn(40 + 3 * Bias);
3687 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3688 OS.PadToColumn(48 + 3 * Bias);
3689 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3690 this->dumper()->dynamic_symbols().begin());
3691 OS.PadToColumn(52 + 3 * Bias);
3692 OS << SymName << "\n";
3696 if (!Parser.getOtherEntries().empty())
3697 OS << "\n Number of TLS and multi-GOT entries "
3698 << Parser.getOtherEntries().size() << "\n";
3701 template <class ELFT>
3702 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
3703 size_t Bias = ELFT::Is64Bits ? 8 : 0;
3704 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
3705 OS.PadToColumn(2);
3706 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
3707 OS.PadToColumn(11 + Bias);
3708 OS << format_hex_no_prefix(*E, 8 + Bias);
3709 OS.PadToColumn(20 + 2 * Bias);
3710 OS << Purpose << "\n";
3713 OS << "PLT GOT:\n\n";
3715 OS << " Reserved entries:\n";
3716 OS << " Address Initial Purpose\n";
3717 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
3718 if (Parser.getPltModulePointer())
3719 PrintEntry(Parser.getGotModulePointer(), "Module pointer");
3721 if (!Parser.getPltEntries().empty()) {
3722 OS << "\n";
3723 OS << " Entries:\n";
3724 OS << " Address Initial Sym.Val. Type Ndx Name\n";
3725 for (auto &E : Parser.getPltEntries()) {
3726 const Elf_Sym *Sym = Parser.getPltSym(&E);
3727 std::string SymName = this->dumper()->getFullSymbolName(
3728 Sym, this->dumper()->getDynamicStringTable(), false);
3730 OS.PadToColumn(2);
3731 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
3732 OS.PadToColumn(11 + Bias);
3733 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
3734 OS.PadToColumn(20 + 2 * Bias);
3735 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
3736 OS.PadToColumn(29 + 3 * Bias);
3737 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
3738 OS.PadToColumn(37 + 3 * Bias);
3739 OS << getSymbolSectionNdx(Parser.Obj, Sym,
3740 this->dumper()->dynamic_symbols().begin());
3741 OS.PadToColumn(41 + 3 * Bias);
3742 OS << SymName << "\n";
3747 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3748 const Elf_Ehdr *e = Obj->getHeader();
3750 DictScope D(W, "ElfHeader");
3752 DictScope D(W, "Ident");
3753 W.printBinary("Magic", makeArrayRef(e->e_ident).slice(ELF::EI_MAG0, 4));
3754 W.printEnum("Class", e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3755 W.printEnum("DataEncoding", e->e_ident[ELF::EI_DATA],
3756 makeArrayRef(ElfDataEncoding));
3757 W.printNumber("FileVersion", e->e_ident[ELF::EI_VERSION]);
3759 auto OSABI = makeArrayRef(ElfOSABI);
3760 if (e->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3761 e->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3762 switch (e->e_machine) {
3763 case ELF::EM_AMDGPU:
3764 OSABI = makeArrayRef(AMDGPUElfOSABI);
3765 break;
3766 case ELF::EM_ARM:
3767 OSABI = makeArrayRef(ARMElfOSABI);
3768 break;
3769 case ELF::EM_TI_C6000:
3770 OSABI = makeArrayRef(C6000ElfOSABI);
3771 break;
3774 W.printEnum("OS/ABI", e->e_ident[ELF::EI_OSABI], OSABI);
3775 W.printNumber("ABIVersion", e->e_ident[ELF::EI_ABIVERSION]);
3776 W.printBinary("Unused", makeArrayRef(e->e_ident).slice(ELF::EI_PAD));
3779 W.printEnum("Type", e->e_type, makeArrayRef(ElfObjectFileType));
3780 W.printEnum("Machine", e->e_machine, makeArrayRef(ElfMachineType));
3781 W.printNumber("Version", e->e_version);
3782 W.printHex("Entry", e->e_entry);
3783 W.printHex("ProgramHeaderOffset", e->e_phoff);
3784 W.printHex("SectionHeaderOffset", e->e_shoff);
3785 if (e->e_machine == EM_MIPS)
3786 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3787 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3788 unsigned(ELF::EF_MIPS_MACH));
3789 else if (e->e_machine == EM_AMDGPU)
3790 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
3791 unsigned(ELF::EF_AMDGPU_MACH));
3792 else if (e->e_machine == EM_RISCV)
3793 W.printFlags("Flags", e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3794 else
3795 W.printFlags("Flags", e->e_flags);
3796 W.printNumber("HeaderSize", e->e_ehsize);
3797 W.printNumber("ProgramHeaderEntrySize", e->e_phentsize);
3798 W.printNumber("ProgramHeaderCount", e->e_phnum);
3799 W.printNumber("SectionHeaderEntrySize", e->e_shentsize);
3800 W.printNumber("SectionHeaderCount", e->e_shnum);
3801 W.printNumber("StringTableSectionIndex", e->e_shstrndx);
3805 template <class ELFT>
3806 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3807 DictScope Lists(W, "Groups");
3808 std::vector<GroupSection> V = getGroups<ELFT>(Obj);
3809 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3810 for (const GroupSection &G : V) {
3811 DictScope D(W, "Group");
3812 W.printNumber("Name", G.Name, G.ShName);
3813 W.printNumber("Index", G.Index);
3814 W.printNumber("Link", G.Link);
3815 W.printNumber("Info", G.Info);
3816 W.printHex("Type", getGroupType(G.Type), G.Type);
3817 W.startLine() << "Signature: " << G.Signature << "\n";
3819 ListScope L(W, "Section(s) in group");
3820 for (const GroupMember &GM : G.Members) {
3821 const GroupSection *MainGroup = Map[GM.Index];
3822 if (MainGroup != &G) {
3823 W.flush();
3824 errs() << "Error: " << GM.Name << " (" << GM.Index
3825 << ") in a group " + G.Name + " (" << G.Index
3826 << ") is already in a group " + MainGroup->Name + " ("
3827 << MainGroup->Index << ")\n";
3828 errs().flush();
3829 continue;
3831 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
3835 if (V.empty())
3836 W.startLine() << "There are no group sections in the file.\n";
3839 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
3840 ListScope D(W, "Relocations");
3842 int SectionNumber = -1;
3843 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3844 ++SectionNumber;
3846 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
3847 Sec.sh_type != ELF::SHT_ANDROID_REL &&
3848 Sec.sh_type != ELF::SHT_ANDROID_RELA)
3849 continue;
3851 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3853 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
3854 W.indent();
3856 printRelocations(&Sec, Obj);
3858 W.unindent();
3859 W.startLine() << "}\n";
3863 template <class ELFT>
3864 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
3865 const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
3867 switch (Sec->sh_type) {
3868 case ELF::SHT_REL:
3869 for (const Elf_Rel &R : unwrapOrError(Obj->rels(Sec))) {
3870 Elf_Rela Rela;
3871 Rela.r_offset = R.r_offset;
3872 Rela.r_info = R.r_info;
3873 Rela.r_addend = 0;
3874 printRelocation(Obj, Rela, SymTab);
3876 break;
3877 case ELF::SHT_RELA:
3878 for (const Elf_Rela &R : unwrapOrError(Obj->relas(Sec)))
3879 printRelocation(Obj, R, SymTab);
3880 break;
3881 case ELF::SHT_ANDROID_REL:
3882 case ELF::SHT_ANDROID_RELA:
3883 for (const Elf_Rela &R : unwrapOrError(Obj->android_relas(Sec)))
3884 printRelocation(Obj, R, SymTab);
3885 break;
3889 template <class ELFT>
3890 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
3891 const Elf_Shdr *SymTab) {
3892 SmallString<32> RelocName;
3893 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
3894 StringRef TargetName;
3895 const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&Rel, SymTab));
3896 if (Sym && Sym->getType() == ELF::STT_SECTION) {
3897 const Elf_Shdr *Sec = unwrapOrError(
3898 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
3899 TargetName = unwrapOrError(Obj->getSectionName(Sec));
3900 } else if (Sym) {
3901 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
3902 TargetName = unwrapOrError(Sym->getName(StrTable));
3905 if (opts::ExpandRelocs) {
3906 DictScope Group(W, "Relocation");
3907 W.printHex("Offset", Rel.r_offset);
3908 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
3909 W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
3910 Rel.getSymbol(Obj->isMips64EL()));
3911 W.printHex("Addend", Rel.r_addend);
3912 } else {
3913 raw_ostream &OS = W.startLine();
3914 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
3915 << (!TargetName.empty() ? TargetName : "-") << " "
3916 << W.hex(Rel.r_addend) << "\n";
3920 template <class ELFT> void LLVMStyle<ELFT>::printSections(const ELFO *Obj) {
3921 ListScope SectionsD(W, "Sections");
3923 int SectionIndex = -1;
3924 for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3925 ++SectionIndex;
3927 StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
3929 DictScope SectionD(W, "Section");
3930 W.printNumber("Index", SectionIndex);
3931 W.printNumber("Name", Name, Sec.sh_name);
3932 W.printHex(
3933 "Type",
3934 object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
3935 Sec.sh_type);
3936 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
3937 std::end(ElfSectionFlags));
3938 switch (Obj->getHeader()->e_machine) {
3939 case EM_ARM:
3940 SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
3941 std::end(ElfARMSectionFlags));
3942 break;
3943 case EM_HEXAGON:
3944 SectionFlags.insert(SectionFlags.end(),
3945 std::begin(ElfHexagonSectionFlags),
3946 std::end(ElfHexagonSectionFlags));
3947 break;
3948 case EM_MIPS:
3949 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
3950 std::end(ElfMipsSectionFlags));
3951 break;
3952 case EM_X86_64:
3953 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
3954 std::end(ElfX86_64SectionFlags));
3955 break;
3956 case EM_XCORE:
3957 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
3958 std::end(ElfXCoreSectionFlags));
3959 break;
3960 default:
3961 // Nothing to do.
3962 break;
3964 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
3965 W.printHex("Address", Sec.sh_addr);
3966 W.printHex("Offset", Sec.sh_offset);
3967 W.printNumber("Size", Sec.sh_size);
3968 W.printNumber("Link", Sec.sh_link);
3969 W.printNumber("Info", Sec.sh_info);
3970 W.printNumber("AddressAlignment", Sec.sh_addralign);
3971 W.printNumber("EntrySize", Sec.sh_entsize);
3973 if (opts::SectionRelocations) {
3974 ListScope D(W, "Relocations");
3975 printRelocations(&Sec, Obj);
3978 if (opts::SectionSymbols) {
3979 ListScope D(W, "Symbols");
3980 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
3981 StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
3983 for (const Elf_Sym &Sym : unwrapOrError(Obj->symbols(Symtab))) {
3984 const Elf_Shdr *SymSec = unwrapOrError(
3985 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
3986 if (SymSec == &Sec)
3987 printSymbol(Obj, &Sym, unwrapOrError(Obj->symbols(Symtab)).begin(),
3988 StrTable, false);
3992 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
3993 ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
3994 W.printBinaryBlock("SectionData",
3995 StringRef((const char *)Data.data(), Data.size()));
4000 template <class ELFT>
4001 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
4002 const Elf_Sym *First, StringRef StrTable,
4003 bool IsDynamic) {
4004 unsigned SectionIndex = 0;
4005 StringRef SectionName;
4006 this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
4007 std::string FullSymbolName =
4008 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
4009 unsigned char SymbolType = Symbol->getType();
4011 DictScope D(W, "Symbol");
4012 W.printNumber("Name", FullSymbolName, Symbol->st_name);
4013 W.printHex("Value", Symbol->st_value);
4014 W.printNumber("Size", Symbol->st_size);
4015 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4016 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
4017 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4018 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4019 else
4020 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
4021 if (Symbol->st_other == 0)
4022 // Usually st_other flag is zero. Do not pollute the output
4023 // by flags enumeration in that case.
4024 W.printNumber("Other", 0);
4025 else {
4026 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
4027 std::end(ElfSymOtherFlags));
4028 if (Obj->getHeader()->e_machine == EM_MIPS) {
4029 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4030 // flag overlapped with other ST_MIPS_xxx flags. So consider both
4031 // cases separately.
4032 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
4033 SymOtherFlags.insert(SymOtherFlags.end(),
4034 std::begin(ElfMips16SymOtherFlags),
4035 std::end(ElfMips16SymOtherFlags));
4036 else
4037 SymOtherFlags.insert(SymOtherFlags.end(),
4038 std::begin(ElfMipsSymOtherFlags),
4039 std::end(ElfMipsSymOtherFlags));
4041 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
4043 W.printHex("Section", SectionName, SectionIndex);
4046 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
4047 ListScope Group(W, "Symbols");
4048 this->dumper()->printSymbolsHelper(false);
4051 template <class ELFT>
4052 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
4053 ListScope Group(W, "DynamicSymbols");
4054 this->dumper()->printSymbolsHelper(true);
4057 template <class ELFT>
4058 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4059 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4060 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4061 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4062 if (DynRelRegion.Size && DynRelaRegion.Size)
4063 report_fatal_error("There are both REL and RELA dynamic relocations");
4064 W.startLine() << "Dynamic Relocations {\n";
4065 W.indent();
4066 if (DynRelaRegion.Size > 0)
4067 for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4068 printDynamicRelocation(Obj, Rela);
4069 else
4070 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4071 Elf_Rela Rela;
4072 Rela.r_offset = Rel.r_offset;
4073 Rela.r_info = Rel.r_info;
4074 Rela.r_addend = 0;
4075 printDynamicRelocation(Obj, Rela);
4077 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
4078 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4079 printDynamicRelocation(Obj, Rela);
4080 else
4081 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4082 Elf_Rela Rela;
4083 Rela.r_offset = Rel.r_offset;
4084 Rela.r_info = Rel.r_info;
4085 Rela.r_addend = 0;
4086 printDynamicRelocation(Obj, Rela);
4088 W.unindent();
4089 W.startLine() << "}\n";
4092 template <class ELFT>
4093 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
4094 SmallString<32> RelocName;
4095 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4096 StringRef SymbolName;
4097 uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
4098 const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
4099 SymbolName =
4100 unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable()));
4101 if (opts::ExpandRelocs) {
4102 DictScope Group(W, "Relocation");
4103 W.printHex("Offset", Rel.r_offset);
4104 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4105 W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
4106 W.printHex("Addend", Rel.r_addend);
4107 } else {
4108 raw_ostream &OS = W.startLine();
4109 OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4110 << (!SymbolName.empty() ? SymbolName : "-") << " "
4111 << W.hex(Rel.r_addend) << "\n";
4115 template <class ELFT>
4116 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4117 ListScope L(W, "ProgramHeaders");
4119 for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
4120 DictScope P(W, "ProgramHeader");
4121 W.printHex("Type",
4122 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
4123 Phdr.p_type);
4124 W.printHex("Offset", Phdr.p_offset);
4125 W.printHex("VirtualAddress", Phdr.p_vaddr);
4126 W.printHex("PhysicalAddress", Phdr.p_paddr);
4127 W.printNumber("FileSize", Phdr.p_filesz);
4128 W.printNumber("MemSize", Phdr.p_memsz);
4129 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
4130 W.printNumber("Alignment", Phdr.p_align);
4134 template <class ELFT>
4135 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
4136 W.startLine() << "Hash Histogram not implemented!\n";
4139 template <class ELFT>
4140 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4141 W.startLine() << "printNotes not implemented!\n";
4144 template <class ELFT>
4145 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4146 ListScope L(W, "LinkerOptions");
4148 for (const Elf_Shdr &Shdr : unwrapOrError(Obj->sections())) {
4149 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
4150 continue;
4152 ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Shdr));
4153 for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
4154 StringRef Key = StringRef(reinterpret_cast<const char *>(P));
4155 StringRef Value =
4156 StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
4158 W.printString(Key, Value);
4160 P = P + Key.size() + Value.size() + 2;
4165 template <class ELFT>
4166 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
4167 auto PrintEntry = [&](const Elf_Addr *E) {
4168 W.printHex("Address", Parser.getGotAddress(E));
4169 W.printNumber("Access", Parser.getGotOffset(E));
4170 W.printHex("Initial", *E);
4173 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
4175 W.printHex("Canonical gp value", Parser.getGp());
4177 ListScope RS(W, "Reserved entries");
4179 DictScope D(W, "Entry");
4180 PrintEntry(Parser.getGotLazyResolver());
4181 W.printString("Purpose", StringRef("Lazy resolver"));
4184 if (Parser.getGotModulePointer()) {
4185 DictScope D(W, "Entry");
4186 PrintEntry(Parser.getGotModulePointer());
4187 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
4191 ListScope LS(W, "Local entries");
4192 for (auto &E : Parser.getLocalEntries()) {
4193 DictScope D(W, "Entry");
4194 PrintEntry(&E);
4198 if (Parser.IsStatic)
4199 return;
4202 ListScope GS(W, "Global entries");
4203 for (auto &E : Parser.getGlobalEntries()) {
4204 DictScope D(W, "Entry");
4206 PrintEntry(&E);
4208 const Elf_Sym *Sym = Parser.getGotSym(&E);
4209 W.printHex("Value", Sym->st_value);
4210 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4212 unsigned SectionIndex = 0;
4213 StringRef SectionName;
4214 this->dumper()->getSectionNameIndex(
4215 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4216 SectionIndex);
4217 W.printHex("Section", SectionName, SectionIndex);
4219 std::string SymName = this->dumper()->getFullSymbolName(
4220 Sym, this->dumper()->getDynamicStringTable(), true);
4221 W.printNumber("Name", SymName, Sym->st_name);
4225 W.printNumber("Number of TLS and multi-GOT entries",
4226 uint64_t(Parser.getOtherEntries().size()));
4229 template <class ELFT>
4230 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
4231 auto PrintEntry = [&](const Elf_Addr *E) {
4232 W.printHex("Address", Parser.getPltAddress(E));
4233 W.printHex("Initial", *E);
4236 DictScope GS(W, "PLT GOT");
4239 ListScope RS(W, "Reserved entries");
4241 DictScope D(W, "Entry");
4242 PrintEntry(Parser.getPltLazyResolver());
4243 W.printString("Purpose", StringRef("PLT lazy resolver"));
4246 if (auto E = Parser.getPltModulePointer()) {
4247 DictScope D(W, "Entry");
4248 PrintEntry(E);
4249 W.printString("Purpose", StringRef("Module pointer"));
4253 ListScope LS(W, "Entries");
4254 for (auto &E : Parser.getPltEntries()) {
4255 DictScope D(W, "Entry");
4256 PrintEntry(&E);
4258 const Elf_Sym *Sym = Parser.getPltSym(&E);
4259 W.printHex("Value", Sym->st_value);
4260 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
4262 unsigned SectionIndex = 0;
4263 StringRef SectionName;
4264 this->dumper()->getSectionNameIndex(
4265 Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
4266 SectionIndex);
4267 W.printHex("Section", SectionName, SectionIndex);
4269 std::string SymName =
4270 this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
4271 W.printNumber("Name", SymName, Sym->st_name);