[Alignment][NFC] migrate DataLayout internal struct to llvm::Align
[llvm-core.git] / lib / Target / Hexagon / HexagonConstPropagation.cpp
bloba82501cabb9bfeab5d7e22c5f417f64a5cdb5e22
1 //===- HexagonConstPropagation.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #define DEBUG_TYPE "hcp"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <cstring>
41 #include <iterator>
42 #include <map>
43 #include <queue>
44 #include <set>
45 #include <utility>
46 #include <vector>
48 using namespace llvm;
50 namespace {
52 // Properties of a value that are tracked by the propagation.
53 // A property that is marked as present (i.e. bit is set) dentes that the
54 // value is known (proven) to have this property. Not all combinations
55 // of bits make sense, for example Zero and NonZero are mutually exclusive,
56 // but on the other hand, Zero implies Finite. In this case, whenever
57 // the Zero property is present, Finite should also be present.
58 class ConstantProperties {
59 public:
60 enum {
61 Unknown = 0x0000,
62 Zero = 0x0001,
63 NonZero = 0x0002,
64 Finite = 0x0004,
65 Infinity = 0x0008,
66 NaN = 0x0010,
67 SignedZero = 0x0020,
68 NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero),
69 PosOrZero = 0x0100,
70 NegOrZero = 0x0200,
71 SignProperties = (PosOrZero|NegOrZero),
72 Everything = (NumericProperties|SignProperties)
75 // For a given constant, deduce the set of trackable properties that this
76 // constant has.
77 static uint32_t deduce(const Constant *C);
80 // A representation of a register as it can appear in a MachineOperand,
81 // i.e. a pair register:subregister.
83 // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in
84 // HexagonGenPredicate
85 struct RegisterSubReg {
86 unsigned Reg, SubReg;
88 explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {}
89 explicit RegisterSubReg(const MachineOperand &MO)
90 : Reg(MO.getReg()), SubReg(MO.getSubReg()) {}
92 void print(const TargetRegisterInfo *TRI = nullptr) const {
93 dbgs() << printReg(Reg, TRI, SubReg);
96 bool operator== (const RegisterSubReg &R) const {
97 return (Reg == R.Reg) && (SubReg == R.SubReg);
101 // Lattice cell, based on that was described in the W-Z paper on constant
102 // propagation.
103 // Latice cell will be allowed to hold multiple constant values. While
104 // multiple values would normally indicate "bottom", we can still derive
105 // some useful information from them. For example, comparison X > 0
106 // could be folded if all the values in the cell associated with X are
107 // positive.
108 class LatticeCell {
109 private:
110 enum { Normal, Top, Bottom };
112 static const unsigned MaxCellSize = 4;
114 unsigned Kind:2;
115 unsigned Size:3;
116 unsigned IsSpecial:1;
117 unsigned :0;
119 public:
120 union {
121 uint32_t Properties;
122 const Constant *Value;
123 const Constant *Values[MaxCellSize];
126 LatticeCell() : Kind(Top), Size(0), IsSpecial(false) {
127 for (unsigned i = 0; i < MaxCellSize; ++i)
128 Values[i] = nullptr;
131 bool meet(const LatticeCell &L);
132 bool add(const Constant *C);
133 bool add(uint32_t Property);
134 uint32_t properties() const;
135 unsigned size() const { return Size; }
137 LatticeCell &operator= (const LatticeCell &L) {
138 if (this != &L) {
139 // This memcpy also copies Properties (when L.Size == 0).
140 uint32_t N = L.IsSpecial ? sizeof L.Properties
141 : L.Size*sizeof(const Constant*);
142 memcpy(Values, L.Values, N);
143 Kind = L.Kind;
144 Size = L.Size;
145 IsSpecial = L.IsSpecial;
147 return *this;
150 bool isSingle() const { return size() == 1; }
151 bool isProperty() const { return IsSpecial; }
152 bool isTop() const { return Kind == Top; }
153 bool isBottom() const { return Kind == Bottom; }
155 bool setBottom() {
156 bool Changed = (Kind != Bottom);
157 Kind = Bottom;
158 Size = 0;
159 IsSpecial = false;
160 return Changed;
163 void print(raw_ostream &os) const;
165 private:
166 void setProperty() {
167 IsSpecial = true;
168 Size = 0;
169 Kind = Normal;
172 bool convertToProperty();
175 #ifndef NDEBUG
176 raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) {
177 L.print(os);
178 return os;
180 #endif
182 class MachineConstEvaluator;
184 class MachineConstPropagator {
185 public:
186 MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) {
187 Bottom.setBottom();
190 // Mapping: vreg -> cell
191 // The keys are registers _without_ subregisters. This won't allow
192 // definitions in the form of "vreg:subreg = ...". Such definitions
193 // would be questionable from the point of view of SSA, since the "vreg"
194 // could not be initialized in its entirety (specifically, an instruction
195 // defining the "other part" of "vreg" would also count as a definition
196 // of "vreg", which would violate the SSA).
197 // If a value of a pair vreg:subreg needs to be obtained, the cell for
198 // "vreg" needs to be looked up, and then the value of subregister "subreg"
199 // needs to be evaluated.
200 class CellMap {
201 public:
202 CellMap() {
203 assert(Top.isTop());
204 Bottom.setBottom();
207 void clear() { Map.clear(); }
209 bool has(unsigned R) const {
210 // All non-virtual registers are considered "bottom".
211 if (!Register::isVirtualRegister(R))
212 return true;
213 MapType::const_iterator F = Map.find(R);
214 return F != Map.end();
217 const LatticeCell &get(unsigned R) const {
218 if (!Register::isVirtualRegister(R))
219 return Bottom;
220 MapType::const_iterator F = Map.find(R);
221 if (F != Map.end())
222 return F->second;
223 return Top;
226 // Invalidates any const references.
227 void update(unsigned R, const LatticeCell &L) {
228 Map[R] = L;
231 void print(raw_ostream &os, const TargetRegisterInfo &TRI) const;
233 private:
234 using MapType = std::map<unsigned, LatticeCell>;
236 MapType Map;
237 // To avoid creating "top" entries, return a const reference to
238 // this cell in "get". Also, have a "Bottom" cell to return from
239 // get when a value of a physical register is requested.
240 LatticeCell Top, Bottom;
242 public:
243 using const_iterator = MapType::const_iterator;
245 const_iterator begin() const { return Map.begin(); }
246 const_iterator end() const { return Map.end(); }
249 bool run(MachineFunction &MF);
251 private:
252 void visitPHI(const MachineInstr &PN);
253 void visitNonBranch(const MachineInstr &MI);
254 void visitBranchesFrom(const MachineInstr &BrI);
255 void visitUsesOf(unsigned R);
256 bool computeBlockSuccessors(const MachineBasicBlock *MB,
257 SetVector<const MachineBasicBlock*> &Targets);
258 void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To);
260 void propagate(MachineFunction &MF);
261 bool rewrite(MachineFunction &MF);
263 MachineRegisterInfo *MRI;
264 MachineConstEvaluator &MCE;
266 using CFGEdge = std::pair<unsigned, unsigned>;
267 using SetOfCFGEdge = std::set<CFGEdge>;
268 using SetOfInstr = std::set<const MachineInstr *>;
269 using QueueOfCFGEdge = std::queue<CFGEdge>;
271 LatticeCell Bottom;
272 CellMap Cells;
273 SetOfCFGEdge EdgeExec;
274 SetOfInstr InstrExec;
275 QueueOfCFGEdge FlowQ;
278 // The "evaluator/rewriter" of machine instructions. This is an abstract
279 // base class that provides the interface that the propagator will use,
280 // as well as some helper functions that are target-independent.
281 class MachineConstEvaluator {
282 public:
283 MachineConstEvaluator(MachineFunction &Fn)
284 : TRI(*Fn.getSubtarget().getRegisterInfo()),
285 MF(Fn), CX(Fn.getFunction().getContext()) {}
286 virtual ~MachineConstEvaluator() = default;
288 // The required interface:
289 // - A set of three "evaluate" functions. Each returns "true" if the
290 // computation succeeded, "false" otherwise.
291 // (1) Given an instruction MI, and the map with input values "Inputs",
292 // compute the set of output values "Outputs". An example of when
293 // the computation can "fail" is if MI is not an instruction that
294 // is recognized by the evaluator.
295 // (2) Given a register R (as reg:subreg), compute the cell that
296 // corresponds to the "subreg" part of the given register.
297 // (3) Given a branch instruction BrI, compute the set of target blocks.
298 // If the branch can fall-through, add null (0) to the list of
299 // possible targets.
300 // - A function "rewrite", that given the cell map after propagation,
301 // could rewrite instruction MI in a more beneficial form. Return
302 // "true" if a change has been made, "false" otherwise.
303 using CellMap = MachineConstPropagator::CellMap;
304 virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
305 CellMap &Outputs) = 0;
306 virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
307 LatticeCell &Result) = 0;
308 virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
309 SetVector<const MachineBasicBlock*> &Targets,
310 bool &CanFallThru) = 0;
311 virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0;
313 const TargetRegisterInfo &TRI;
315 protected:
316 MachineFunction &MF;
317 LLVMContext &CX;
319 struct Comparison {
320 enum {
321 Unk = 0x00,
322 EQ = 0x01,
323 NE = 0x02,
324 L = 0x04, // Less-than property.
325 G = 0x08, // Greater-than property.
326 U = 0x40, // Unsigned property.
327 LTs = L,
328 LEs = L | EQ,
329 GTs = G,
330 GEs = G | EQ,
331 LTu = L | U,
332 LEu = L | EQ | U,
333 GTu = G | U,
334 GEu = G | EQ | U
337 static uint32_t negate(uint32_t Cmp) {
338 if (Cmp == EQ)
339 return NE;
340 if (Cmp == NE)
341 return EQ;
342 assert((Cmp & (L|G)) != (L|G));
343 return Cmp ^ (L|G);
347 // Helper functions.
349 bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC);
350 bool constToInt(const Constant *C, APInt &Val) const;
351 bool constToFloat(const Constant *C, APFloat &Val) const;
352 const ConstantInt *intToConst(const APInt &Val) const;
354 // Compares.
355 bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2,
356 const CellMap &Inputs, bool &Result);
357 bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2,
358 const CellMap &Inputs, bool &Result);
359 bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2,
360 const CellMap &Inputs, bool &Result);
361 bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2,
362 bool &Result);
363 bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2,
364 bool &Result);
365 bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2,
366 bool &Result);
368 bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs,
369 LatticeCell &Result);
371 // Logical operations.
372 bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
373 const CellMap &Inputs, LatticeCell &Result);
374 bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2,
375 const CellMap &Inputs, LatticeCell &Result);
376 bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result);
377 bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
378 const CellMap &Inputs, LatticeCell &Result);
379 bool evaluateORri(const RegisterSubReg &R1, const APInt &A2,
380 const CellMap &Inputs, LatticeCell &Result);
381 bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result);
382 bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2,
383 const CellMap &Inputs, LatticeCell &Result);
384 bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2,
385 const CellMap &Inputs, LatticeCell &Result);
386 bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result);
388 // Extensions.
389 bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
390 const CellMap &Inputs, LatticeCell &Result);
391 bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits,
392 APInt &Result);
393 bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
394 const CellMap &Inputs, LatticeCell &Result);
395 bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits,
396 APInt &Result);
398 // Leading/trailing bits.
399 bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
400 const CellMap &Inputs, LatticeCell &Result);
401 bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
402 bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones,
403 const CellMap &Inputs, LatticeCell &Result);
404 bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result);
406 // Bitfield extract.
407 bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits,
408 unsigned Offset, bool Signed, const CellMap &Inputs,
409 LatticeCell &Result);
410 bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset,
411 bool Signed, APInt &Result);
412 // Vector operations.
413 bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count,
414 const CellMap &Inputs, LatticeCell &Result);
415 bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count,
416 APInt &Result);
419 } // end anonymous namespace
421 uint32_t ConstantProperties::deduce(const Constant *C) {
422 if (isa<ConstantInt>(C)) {
423 const ConstantInt *CI = cast<ConstantInt>(C);
424 if (CI->isZero())
425 return Zero | PosOrZero | NegOrZero | Finite;
426 uint32_t Props = (NonZero | Finite);
427 if (CI->isNegative())
428 return Props | NegOrZero;
429 return Props | PosOrZero;
432 if (isa<ConstantFP>(C)) {
433 const ConstantFP *CF = cast<ConstantFP>(C);
434 uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero)
435 : PosOrZero;
436 if (CF->isZero())
437 return (Props & ~NumericProperties) | (Zero|Finite);
438 Props = (Props & ~NumericProperties) | NonZero;
439 if (CF->isNaN())
440 return (Props & ~NumericProperties) | NaN;
441 const APFloat &Val = CF->getValueAPF();
442 if (Val.isInfinity())
443 return (Props & ~NumericProperties) | Infinity;
444 Props |= Finite;
445 return Props;
448 return Unknown;
451 // Convert a cell from a set of specific values to a cell that tracks
452 // properties.
453 bool LatticeCell::convertToProperty() {
454 if (isProperty())
455 return false;
456 // Corner case: converting a fresh (top) cell to "special".
457 // This can happen, when adding a property to a top cell.
458 uint32_t Everything = ConstantProperties::Everything;
459 uint32_t Ps = !isTop() ? properties()
460 : Everything;
461 if (Ps != ConstantProperties::Unknown) {
462 Properties = Ps;
463 setProperty();
464 } else {
465 setBottom();
467 return true;
470 #ifndef NDEBUG
471 void LatticeCell::print(raw_ostream &os) const {
472 if (isProperty()) {
473 os << "{ ";
474 uint32_t Ps = properties();
475 if (Ps & ConstantProperties::Zero)
476 os << "zero ";
477 if (Ps & ConstantProperties::NonZero)
478 os << "nonzero ";
479 if (Ps & ConstantProperties::Finite)
480 os << "finite ";
481 if (Ps & ConstantProperties::Infinity)
482 os << "infinity ";
483 if (Ps & ConstantProperties::NaN)
484 os << "nan ";
485 if (Ps & ConstantProperties::PosOrZero)
486 os << "poz ";
487 if (Ps & ConstantProperties::NegOrZero)
488 os << "nez ";
489 os << '}';
490 return;
493 os << "{ ";
494 if (isBottom()) {
495 os << "bottom";
496 } else if (isTop()) {
497 os << "top";
498 } else {
499 for (unsigned i = 0; i < size(); ++i) {
500 const Constant *C = Values[i];
501 if (i != 0)
502 os << ", ";
503 C->print(os);
506 os << " }";
508 #endif
510 // "Meet" operation on two cells. This is the key of the propagation
511 // algorithm.
512 bool LatticeCell::meet(const LatticeCell &L) {
513 bool Changed = false;
514 if (L.isBottom())
515 Changed = setBottom();
516 if (isBottom() || L.isTop())
517 return Changed;
518 if (isTop()) {
519 *this = L;
520 // L can be neither Top nor Bottom, so *this must have changed.
521 return true;
524 // Top/bottom cases covered. Need to integrate L's set into ours.
525 if (L.isProperty())
526 return add(L.properties());
527 for (unsigned i = 0; i < L.size(); ++i) {
528 const Constant *LC = L.Values[i];
529 Changed |= add(LC);
531 return Changed;
534 // Add a new constant to the cell. This is actually where the cell update
535 // happens. If a cell has room for more constants, the new constant is added.
536 // Otherwise, the cell is converted to a "property" cell (i.e. a cell that
537 // will track properties of the associated values, and not the values
538 // themselves. Care is taken to handle special cases, like "bottom", etc.
539 bool LatticeCell::add(const Constant *LC) {
540 assert(LC);
541 if (isBottom())
542 return false;
544 if (!isProperty()) {
545 // Cell is not special. Try to add the constant here first,
546 // if there is room.
547 unsigned Index = 0;
548 while (Index < Size) {
549 const Constant *C = Values[Index];
550 // If the constant is already here, no change is needed.
551 if (C == LC)
552 return false;
553 Index++;
555 if (Index < MaxCellSize) {
556 Values[Index] = LC;
557 Kind = Normal;
558 Size++;
559 return true;
563 bool Changed = false;
565 // This cell is special, or is not special, but is full. After this
566 // it will be special.
567 Changed = convertToProperty();
568 uint32_t Ps = properties();
569 uint32_t NewPs = Ps & ConstantProperties::deduce(LC);
570 if (NewPs == ConstantProperties::Unknown) {
571 setBottom();
572 return true;
574 if (Ps != NewPs) {
575 Properties = NewPs;
576 Changed = true;
578 return Changed;
581 // Add a property to the cell. This will force the cell to become a property-
582 // tracking cell.
583 bool LatticeCell::add(uint32_t Property) {
584 bool Changed = convertToProperty();
585 uint32_t Ps = properties();
586 if (Ps == (Ps & Property))
587 return Changed;
588 Properties = Property & Ps;
589 return true;
592 // Return the properties of the values in the cell. This is valid for any
593 // cell, and does not alter the cell itself.
594 uint32_t LatticeCell::properties() const {
595 if (isProperty())
596 return Properties;
597 assert(!isTop() && "Should not call this for a top cell");
598 if (isBottom())
599 return ConstantProperties::Unknown;
601 assert(size() > 0 && "Empty cell");
602 uint32_t Ps = ConstantProperties::deduce(Values[0]);
603 for (unsigned i = 1; i < size(); ++i) {
604 if (Ps == ConstantProperties::Unknown)
605 break;
606 Ps &= ConstantProperties::deduce(Values[i]);
608 return Ps;
611 #ifndef NDEBUG
612 void MachineConstPropagator::CellMap::print(raw_ostream &os,
613 const TargetRegisterInfo &TRI) const {
614 for (auto &I : Map)
615 dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n';
617 #endif
619 void MachineConstPropagator::visitPHI(const MachineInstr &PN) {
620 const MachineBasicBlock *MB = PN.getParent();
621 unsigned MBN = MB->getNumber();
622 LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN);
624 const MachineOperand &MD = PN.getOperand(0);
625 RegisterSubReg DefR(MD);
626 assert(Register::isVirtualRegister(DefR.Reg));
628 bool Changed = false;
630 // If the def has a sub-register, set the corresponding cell to "bottom".
631 if (DefR.SubReg) {
632 Bottomize:
633 const LatticeCell &T = Cells.get(DefR.Reg);
634 Changed = !T.isBottom();
635 Cells.update(DefR.Reg, Bottom);
636 if (Changed)
637 visitUsesOf(DefR.Reg);
638 return;
641 LatticeCell DefC = Cells.get(DefR.Reg);
643 for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) {
644 const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB();
645 unsigned PBN = PB->getNumber();
646 if (!EdgeExec.count(CFGEdge(PBN, MBN))) {
647 LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->"
648 << printMBBReference(*MB) << " not executable\n");
649 continue;
651 const MachineOperand &SO = PN.getOperand(i);
652 RegisterSubReg UseR(SO);
653 // If the input is not a virtual register, we don't really know what
654 // value it holds.
655 if (!Register::isVirtualRegister(UseR.Reg))
656 goto Bottomize;
657 // If there is no cell for an input register, it means top.
658 if (!Cells.has(UseR.Reg))
659 continue;
661 LatticeCell SrcC;
662 bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC);
663 LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": "
664 << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC
665 << '\n');
666 Changed |= Eval ? DefC.meet(SrcC)
667 : DefC.setBottom();
668 Cells.update(DefR.Reg, DefC);
669 if (DefC.isBottom())
670 break;
672 if (Changed)
673 visitUsesOf(DefR.Reg);
676 void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) {
677 LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent())
678 << "): " << MI);
679 CellMap Outputs;
680 bool Eval = MCE.evaluate(MI, Cells, Outputs);
681 LLVM_DEBUG({
682 if (Eval) {
683 dbgs() << " outputs:";
684 for (auto &I : Outputs)
685 dbgs() << ' ' << I.second;
686 dbgs() << '\n';
690 // Update outputs. If the value was not computed, set all the
691 // def cells to bottom.
692 for (const MachineOperand &MO : MI.operands()) {
693 if (!MO.isReg() || !MO.isDef())
694 continue;
695 RegisterSubReg DefR(MO);
696 // Only track virtual registers.
697 if (!Register::isVirtualRegister(DefR.Reg))
698 continue;
699 bool Changed = false;
700 // If the evaluation failed, set cells for all output registers to bottom.
701 if (!Eval) {
702 const LatticeCell &T = Cells.get(DefR.Reg);
703 Changed = !T.isBottom();
704 Cells.update(DefR.Reg, Bottom);
705 } else {
706 // Find the corresponding cell in the computed outputs.
707 // If it's not there, go on to the next def.
708 if (!Outputs.has(DefR.Reg))
709 continue;
710 LatticeCell RC = Cells.get(DefR.Reg);
711 Changed = RC.meet(Outputs.get(DefR.Reg));
712 Cells.update(DefR.Reg, RC);
714 if (Changed)
715 visitUsesOf(DefR.Reg);
719 // Starting at a given branch, visit remaining branches in the block.
720 // Traverse over the subsequent branches for as long as the preceding one
721 // can fall through. Add all the possible targets to the flow work queue,
722 // including the potential fall-through to the layout-successor block.
723 void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) {
724 const MachineBasicBlock &B = *BrI.getParent();
725 unsigned MBN = B.getNumber();
726 MachineBasicBlock::const_iterator It = BrI.getIterator();
727 MachineBasicBlock::const_iterator End = B.end();
729 SetVector<const MachineBasicBlock*> Targets;
730 bool EvalOk = true, FallsThru = true;
731 while (It != End) {
732 const MachineInstr &MI = *It;
733 InstrExec.insert(&MI);
734 LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "("
735 << printMBBReference(B) << "): " << MI);
736 // Do not evaluate subsequent branches if the evaluation of any of the
737 // previous branches failed. Keep iterating over the branches only
738 // to mark them as executable.
739 EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru);
740 if (!EvalOk)
741 FallsThru = true;
742 if (!FallsThru)
743 break;
744 ++It;
747 if (EvalOk) {
748 // Need to add all CFG successors that lead to EH landing pads.
749 // There won't be explicit branches to these blocks, but they must
750 // be processed.
751 for (const MachineBasicBlock *SB : B.successors()) {
752 if (SB->isEHPad())
753 Targets.insert(SB);
755 if (FallsThru) {
756 const MachineFunction &MF = *B.getParent();
757 MachineFunction::const_iterator BI = B.getIterator();
758 MachineFunction::const_iterator Next = std::next(BI);
759 if (Next != MF.end())
760 Targets.insert(&*Next);
762 } else {
763 // If the evaluation of the branches failed, make "Targets" to be the
764 // set of all successors of the block from the CFG.
765 // If the evaluation succeeded for all visited branches, then if the
766 // last one set "FallsThru", then add an edge to the layout successor
767 // to the targets.
768 Targets.clear();
769 LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG "
770 "successors\n");
771 for (const MachineBasicBlock *SB : B.successors())
772 Targets.insert(SB);
775 for (const MachineBasicBlock *TB : Targets) {
776 unsigned TBN = TB->getNumber();
777 LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> "
778 << printMBBReference(*TB) << "\n");
779 FlowQ.push(CFGEdge(MBN, TBN));
783 void MachineConstPropagator::visitUsesOf(unsigned Reg) {
784 LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI)
785 << Cells.get(Reg) << '\n');
786 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
787 // Do not process non-executable instructions. They can become exceutable
788 // later (via a flow-edge in the work queue). In such case, the instruc-
789 // tion will be visited at that time.
790 if (!InstrExec.count(&MI))
791 continue;
792 if (MI.isPHI())
793 visitPHI(MI);
794 else if (!MI.isBranch())
795 visitNonBranch(MI);
796 else
797 visitBranchesFrom(MI);
801 bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB,
802 SetVector<const MachineBasicBlock*> &Targets) {
803 MachineBasicBlock::const_iterator FirstBr = MB->end();
804 for (const MachineInstr &MI : *MB) {
805 if (MI.isDebugInstr())
806 continue;
807 if (MI.isBranch()) {
808 FirstBr = MI.getIterator();
809 break;
813 Targets.clear();
814 MachineBasicBlock::const_iterator End = MB->end();
816 bool DoNext = true;
817 for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) {
818 const MachineInstr &MI = *I;
819 // Can there be debug instructions between branches?
820 if (MI.isDebugInstr())
821 continue;
822 if (!InstrExec.count(&MI))
823 continue;
824 bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext);
825 if (!Eval)
826 return false;
827 if (!DoNext)
828 break;
830 // If the last branch could fall-through, add block's layout successor.
831 if (DoNext) {
832 MachineFunction::const_iterator BI = MB->getIterator();
833 MachineFunction::const_iterator NextI = std::next(BI);
834 if (NextI != MB->getParent()->end())
835 Targets.insert(&*NextI);
838 // Add all the EH landing pads.
839 for (const MachineBasicBlock *SB : MB->successors())
840 if (SB->isEHPad())
841 Targets.insert(SB);
843 return true;
846 void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From,
847 MachineBasicBlock *To) {
848 // First, remove the CFG successor/predecessor information.
849 From->removeSuccessor(To);
850 // Remove all corresponding PHI operands in the To block.
851 for (auto I = To->begin(), E = To->getFirstNonPHI(); I != E; ++I) {
852 MachineInstr *PN = &*I;
853 // reg0 = PHI reg1, bb2, reg3, bb4, ...
854 int N = PN->getNumOperands()-2;
855 while (N > 0) {
856 if (PN->getOperand(N+1).getMBB() == From) {
857 PN->RemoveOperand(N+1);
858 PN->RemoveOperand(N);
860 N -= 2;
865 void MachineConstPropagator::propagate(MachineFunction &MF) {
866 MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF);
867 unsigned EntryNum = Entry->getNumber();
869 // Start with a fake edge, just to process the entry node.
870 FlowQ.push(CFGEdge(EntryNum, EntryNum));
872 while (!FlowQ.empty()) {
873 CFGEdge Edge = FlowQ.front();
874 FlowQ.pop();
876 LLVM_DEBUG(
877 dbgs() << "Picked edge "
878 << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->"
879 << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n');
880 if (Edge.first != EntryNum)
881 if (EdgeExec.count(Edge))
882 continue;
883 EdgeExec.insert(Edge);
884 MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second);
886 // Process the block in three stages:
887 // - visit all PHI nodes,
888 // - visit all non-branch instructions,
889 // - visit block branches.
890 MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end();
892 // Visit PHI nodes in the successor block.
893 while (It != End && It->isPHI()) {
894 InstrExec.insert(&*It);
895 visitPHI(*It);
896 ++It;
899 // If the successor block just became executable, visit all instructions.
900 // To see if this is the first time we're visiting it, check the first
901 // non-debug instruction to see if it is executable.
902 while (It != End && It->isDebugInstr())
903 ++It;
904 assert(It == End || !It->isPHI());
905 // If this block has been visited, go on to the next one.
906 if (It != End && InstrExec.count(&*It))
907 continue;
908 // For now, scan all non-branch instructions. Branches require different
909 // processing.
910 while (It != End && !It->isBranch()) {
911 if (!It->isDebugInstr()) {
912 InstrExec.insert(&*It);
913 visitNonBranch(*It);
915 ++It;
918 // Time to process the end of the block. This is different from
919 // processing regular (non-branch) instructions, because there can
920 // be multiple branches in a block, and they can cause the block to
921 // terminate early.
922 if (It != End) {
923 visitBranchesFrom(*It);
924 } else {
925 // If the block didn't have a branch, add all successor edges to the
926 // work queue. (There should really be only one successor in such case.)
927 unsigned SBN = SB->getNumber();
928 for (const MachineBasicBlock *SSB : SB->successors())
929 FlowQ.push(CFGEdge(SBN, SSB->getNumber()));
931 } // while (FlowQ)
933 LLVM_DEBUG({
934 dbgs() << "Cells after propagation:\n";
935 Cells.print(dbgs(), MCE.TRI);
936 dbgs() << "Dead CFG edges:\n";
937 for (const MachineBasicBlock &B : MF) {
938 unsigned BN = B.getNumber();
939 for (const MachineBasicBlock *SB : B.successors()) {
940 unsigned SN = SB->getNumber();
941 if (!EdgeExec.count(CFGEdge(BN, SN)))
942 dbgs() << " " << printMBBReference(B) << " -> "
943 << printMBBReference(*SB) << '\n';
949 bool MachineConstPropagator::rewrite(MachineFunction &MF) {
950 bool Changed = false;
951 // Rewrite all instructions based on the collected cell information.
953 // Traverse the instructions in a post-order, so that rewriting an
954 // instruction can make changes "downstream" in terms of control-flow
955 // without affecting the rewriting process. (We should not change
956 // instructions that have not yet been visited by the rewriter.)
957 // The reason for this is that the rewriter can introduce new vregs,
958 // and replace uses of old vregs (which had corresponding cells
959 // computed during propagation) with these new vregs (which at this
960 // point would not have any cells, and would appear to be "top").
961 // If an attempt was made to evaluate an instruction with a fresh
962 // "top" vreg, it would cause an error (abend) in the evaluator.
964 // Collect the post-order-traversal block ordering. The subsequent
965 // traversal/rewrite will update block successors, so it's safer
966 // if the visiting order it computed ahead of time.
967 std::vector<MachineBasicBlock*> POT;
968 for (MachineBasicBlock *B : post_order(&MF))
969 if (!B->empty())
970 POT.push_back(B);
972 for (MachineBasicBlock *B : POT) {
973 // Walk the block backwards (which usually begin with the branches).
974 // If any branch is rewritten, we may need to update the successor
975 // information for this block. Unless the block's successors can be
976 // precisely determined (which may not be the case for indirect
977 // branches), we cannot modify any branch.
979 // Compute the successor information.
980 SetVector<const MachineBasicBlock*> Targets;
981 bool HaveTargets = computeBlockSuccessors(B, Targets);
982 // Rewrite the executable instructions. Skip branches if we don't
983 // have block successor information.
984 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
985 MachineInstr &MI = *I;
986 if (InstrExec.count(&MI)) {
987 if (MI.isBranch() && !HaveTargets)
988 continue;
989 Changed |= MCE.rewrite(MI, Cells);
992 // The rewriting could rewrite PHI nodes to non-PHI nodes, causing
993 // regular instructions to appear in between PHI nodes. Bring all
994 // the PHI nodes to the beginning of the block.
995 for (auto I = B->begin(), E = B->end(); I != E; ++I) {
996 if (I->isPHI())
997 continue;
998 // I is not PHI. Find the next PHI node P.
999 auto P = I;
1000 while (++P != E)
1001 if (P->isPHI())
1002 break;
1003 // Not found.
1004 if (P == E)
1005 break;
1006 // Splice P right before I.
1007 B->splice(I, B, P);
1008 // Reset I to point at the just spliced PHI node.
1009 --I;
1011 // Update the block successor information: remove unnecessary successors.
1012 if (HaveTargets) {
1013 SmallVector<MachineBasicBlock*,2> ToRemove;
1014 for (MachineBasicBlock *SB : B->successors()) {
1015 if (!Targets.count(SB))
1016 ToRemove.push_back(const_cast<MachineBasicBlock*>(SB));
1017 Targets.remove(SB);
1019 for (unsigned i = 0, n = ToRemove.size(); i < n; ++i)
1020 removeCFGEdge(B, ToRemove[i]);
1021 // If there are any blocks left in the computed targets, it means that
1022 // we think that the block could go somewhere, but the CFG does not.
1023 // This could legitimately happen in blocks that have non-returning
1024 // calls---we would think that the execution can continue, but the
1025 // CFG will not have a successor edge.
1028 // Need to do some final post-processing.
1029 // If a branch was not executable, it will not get rewritten, but should
1030 // be removed (or replaced with something equivalent to a A2_nop). We can't
1031 // erase instructions during rewriting, so this needs to be delayed until
1032 // now.
1033 for (MachineBasicBlock &B : MF) {
1034 MachineBasicBlock::iterator I = B.begin(), E = B.end();
1035 while (I != E) {
1036 auto Next = std::next(I);
1037 if (I->isBranch() && !InstrExec.count(&*I))
1038 B.erase(I);
1039 I = Next;
1042 return Changed;
1045 // This is the constant propagation algorithm as described by Wegman-Zadeck.
1046 // Most of the terminology comes from there.
1047 bool MachineConstPropagator::run(MachineFunction &MF) {
1048 LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr));
1050 MRI = &MF.getRegInfo();
1052 Cells.clear();
1053 EdgeExec.clear();
1054 InstrExec.clear();
1055 assert(FlowQ.empty());
1057 propagate(MF);
1058 bool Changed = rewrite(MF);
1060 LLVM_DEBUG({
1061 dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n";
1062 if (Changed)
1063 MF.print(dbgs(), nullptr);
1065 return Changed;
1068 // --------------------------------------------------------------------
1069 // Machine const evaluator.
1071 bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs,
1072 LatticeCell &RC) {
1073 if (!Register::isVirtualRegister(R.Reg))
1074 return false;
1075 const LatticeCell &L = Inputs.get(R.Reg);
1076 if (!R.SubReg) {
1077 RC = L;
1078 return !RC.isBottom();
1080 bool Eval = evaluate(R, L, RC);
1081 return Eval && !RC.isBottom();
1084 bool MachineConstEvaluator::constToInt(const Constant *C,
1085 APInt &Val) const {
1086 const ConstantInt *CI = dyn_cast<ConstantInt>(C);
1087 if (!CI)
1088 return false;
1089 Val = CI->getValue();
1090 return true;
1093 const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const {
1094 return ConstantInt::get(CX, Val);
1097 bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1,
1098 const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) {
1099 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1100 LatticeCell LS1, LS2;
1101 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1102 return false;
1104 bool IsProp1 = LS1.isProperty();
1105 bool IsProp2 = LS2.isProperty();
1106 if (IsProp1) {
1107 uint32_t Prop1 = LS1.properties();
1108 if (IsProp2)
1109 return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result);
1110 uint32_t NegCmp = Comparison::negate(Cmp);
1111 return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result);
1113 if (IsProp2) {
1114 uint32_t Prop2 = LS2.properties();
1115 return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result);
1118 APInt A;
1119 bool IsTrue = true, IsFalse = true;
1120 for (unsigned i = 0; i < LS2.size(); ++i) {
1121 bool Res;
1122 bool Computed = constToInt(LS2.Values[i], A) &&
1123 evaluateCMPri(Cmp, R1, A, Inputs, Res);
1124 if (!Computed)
1125 return false;
1126 IsTrue &= Res;
1127 IsFalse &= !Res;
1129 assert(!IsTrue || !IsFalse);
1130 // The actual logical value of the comparison is same as IsTrue.
1131 Result = IsTrue;
1132 // Return true if the result was proven to be true or proven to be false.
1133 return IsTrue || IsFalse;
1136 bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1,
1137 const APInt &A2, const CellMap &Inputs, bool &Result) {
1138 assert(Inputs.has(R1.Reg));
1139 LatticeCell LS;
1140 if (!getCell(R1, Inputs, LS))
1141 return false;
1142 if (LS.isProperty())
1143 return evaluateCMPpi(Cmp, LS.properties(), A2, Result);
1145 APInt A;
1146 bool IsTrue = true, IsFalse = true;
1147 for (unsigned i = 0; i < LS.size(); ++i) {
1148 bool Res;
1149 bool Computed = constToInt(LS.Values[i], A) &&
1150 evaluateCMPii(Cmp, A, A2, Res);
1151 if (!Computed)
1152 return false;
1153 IsTrue &= Res;
1154 IsFalse &= !Res;
1156 assert(!IsTrue || !IsFalse);
1157 // The actual logical value of the comparison is same as IsTrue.
1158 Result = IsTrue;
1159 // Return true if the result was proven to be true or proven to be false.
1160 return IsTrue || IsFalse;
1163 bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1,
1164 uint64_t Props2, const CellMap &Inputs, bool &Result) {
1165 assert(Inputs.has(R1.Reg));
1166 LatticeCell LS;
1167 if (!getCell(R1, Inputs, LS))
1168 return false;
1169 if (LS.isProperty())
1170 return evaluateCMPpp(Cmp, LS.properties(), Props2, Result);
1172 APInt A;
1173 uint32_t NegCmp = Comparison::negate(Cmp);
1174 bool IsTrue = true, IsFalse = true;
1175 for (unsigned i = 0; i < LS.size(); ++i) {
1176 bool Res;
1177 bool Computed = constToInt(LS.Values[i], A) &&
1178 evaluateCMPpi(NegCmp, Props2, A, Res);
1179 if (!Computed)
1180 return false;
1181 IsTrue &= Res;
1182 IsFalse &= !Res;
1184 assert(!IsTrue || !IsFalse);
1185 Result = IsTrue;
1186 return IsTrue || IsFalse;
1189 bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1,
1190 const APInt &A2, bool &Result) {
1191 // NE is a special kind of comparison (not composed of smaller properties).
1192 if (Cmp == Comparison::NE) {
1193 Result = !APInt::isSameValue(A1, A2);
1194 return true;
1196 if (Cmp == Comparison::EQ) {
1197 Result = APInt::isSameValue(A1, A2);
1198 return true;
1200 if (Cmp & Comparison::EQ) {
1201 if (APInt::isSameValue(A1, A2))
1202 return (Result = true);
1204 assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison");
1205 Result = false;
1207 unsigned W1 = A1.getBitWidth();
1208 unsigned W2 = A2.getBitWidth();
1209 unsigned MaxW = (W1 >= W2) ? W1 : W2;
1210 if (Cmp & Comparison::U) {
1211 const APInt Zx1 = A1.zextOrSelf(MaxW);
1212 const APInt Zx2 = A2.zextOrSelf(MaxW);
1213 if (Cmp & Comparison::L)
1214 Result = Zx1.ult(Zx2);
1215 else if (Cmp & Comparison::G)
1216 Result = Zx2.ult(Zx1);
1217 return true;
1220 // Signed comparison.
1221 const APInt Sx1 = A1.sextOrSelf(MaxW);
1222 const APInt Sx2 = A2.sextOrSelf(MaxW);
1223 if (Cmp & Comparison::L)
1224 Result = Sx1.slt(Sx2);
1225 else if (Cmp & Comparison::G)
1226 Result = Sx2.slt(Sx1);
1227 return true;
1230 bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props,
1231 const APInt &A2, bool &Result) {
1232 if (Props == ConstantProperties::Unknown)
1233 return false;
1235 // Should never see NaN here, but check for it for completeness.
1236 if (Props & ConstantProperties::NaN)
1237 return false;
1238 // Infinity could theoretically be compared to a number, but the
1239 // presence of infinity here would be very suspicious. If we don't
1240 // know for sure that the number is finite, bail out.
1241 if (!(Props & ConstantProperties::Finite))
1242 return false;
1244 // Let X be a number that has properties Props.
1246 if (Cmp & Comparison::U) {
1247 // In case of unsigned comparisons, we can only compare against 0.
1248 if (A2 == 0) {
1249 // Any x!=0 will be considered >0 in an unsigned comparison.
1250 if (Props & ConstantProperties::Zero)
1251 Result = (Cmp & Comparison::EQ);
1252 else if (Props & ConstantProperties::NonZero)
1253 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1254 else
1255 return false;
1256 return true;
1258 // A2 is not zero. The only handled case is if X = 0.
1259 if (Props & ConstantProperties::Zero) {
1260 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1261 return true;
1263 return false;
1266 // Signed comparisons are different.
1267 if (Props & ConstantProperties::Zero) {
1268 if (A2 == 0)
1269 Result = (Cmp & Comparison::EQ);
1270 else
1271 Result = (Cmp == Comparison::NE) ||
1272 ((Cmp & Comparison::L) && !A2.isNegative()) ||
1273 ((Cmp & Comparison::G) && A2.isNegative());
1274 return true;
1276 if (Props & ConstantProperties::PosOrZero) {
1277 // X >= 0 and !(A2 < 0) => cannot compare
1278 if (!A2.isNegative())
1279 return false;
1280 // X >= 0 and A2 < 0
1281 Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE);
1282 return true;
1284 if (Props & ConstantProperties::NegOrZero) {
1285 // X <= 0 and Src1 < 0 => cannot compare
1286 if (A2 == 0 || A2.isNegative())
1287 return false;
1288 // X <= 0 and A2 > 0
1289 Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE);
1290 return true;
1293 return false;
1296 bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1,
1297 uint32_t Props2, bool &Result) {
1298 using P = ConstantProperties;
1300 if ((Props1 & P::NaN) && (Props2 & P::NaN))
1301 return false;
1302 if (!(Props1 & P::Finite) || !(Props2 & P::Finite))
1303 return false;
1305 bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero);
1306 bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero);
1307 if (Zero1 && Zero2) {
1308 Result = (Cmp & Comparison::EQ);
1309 return true;
1311 if (Cmp == Comparison::NE) {
1312 if ((Zero1 && NonZero2) || (NonZero1 && Zero2))
1313 return (Result = true);
1314 return false;
1317 if (Cmp & Comparison::U) {
1318 // In unsigned comparisons, we can only compare against a known zero,
1319 // or a known non-zero.
1320 if (Zero1 && NonZero2) {
1321 Result = (Cmp & Comparison::L);
1322 return true;
1324 if (NonZero1 && Zero2) {
1325 Result = (Cmp & Comparison::G);
1326 return true;
1328 return false;
1331 // Signed comparison. The comparison is not NE.
1332 bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero);
1333 bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero);
1334 if (Nez1 && Poz2) {
1335 if (NonZero1 || NonZero2) {
1336 Result = (Cmp & Comparison::L);
1337 return true;
1339 // Either (or both) could be zero. Can only say that X <= Y.
1340 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L))
1341 return (Result = true);
1343 if (Poz1 && Nez2) {
1344 if (NonZero1 || NonZero2) {
1345 Result = (Cmp & Comparison::G);
1346 return true;
1348 // Either (or both) could be zero. Can only say that X >= Y.
1349 if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G))
1350 return (Result = true);
1353 return false;
1356 bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1,
1357 const CellMap &Inputs, LatticeCell &Result) {
1358 return getCell(R1, Inputs, Result);
1361 bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1,
1362 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1363 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1364 const LatticeCell &L1 = Inputs.get(R2.Reg);
1365 const LatticeCell &L2 = Inputs.get(R2.Reg);
1366 // If both sources are bottom, exit. Otherwise try to evaluate ANDri
1367 // with the non-bottom argument passed as the immediate. This is to
1368 // catch cases of ANDing with 0.
1369 if (L2.isBottom()) {
1370 if (L1.isBottom())
1371 return false;
1372 return evaluateANDrr(R2, R1, Inputs, Result);
1374 LatticeCell LS2;
1375 if (!evaluate(R2, L2, LS2))
1376 return false;
1377 if (LS2.isBottom() || LS2.isProperty())
1378 return false;
1380 APInt A;
1381 for (unsigned i = 0; i < LS2.size(); ++i) {
1382 LatticeCell RC;
1383 bool Eval = constToInt(LS2.Values[i], A) &&
1384 evaluateANDri(R1, A, Inputs, RC);
1385 if (!Eval)
1386 return false;
1387 Result.meet(RC);
1389 return !Result.isBottom();
1392 bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1,
1393 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1394 assert(Inputs.has(R1.Reg));
1395 if (A2 == -1)
1396 return getCell(R1, Inputs, Result);
1397 if (A2 == 0) {
1398 LatticeCell RC;
1399 RC.add(intToConst(A2));
1400 // Overwrite Result.
1401 Result = RC;
1402 return true;
1404 LatticeCell LS1;
1405 if (!getCell(R1, Inputs, LS1))
1406 return false;
1407 if (LS1.isBottom() || LS1.isProperty())
1408 return false;
1410 APInt A, ResA;
1411 for (unsigned i = 0; i < LS1.size(); ++i) {
1412 bool Eval = constToInt(LS1.Values[i], A) &&
1413 evaluateANDii(A, A2, ResA);
1414 if (!Eval)
1415 return false;
1416 const Constant *C = intToConst(ResA);
1417 Result.add(C);
1419 return !Result.isBottom();
1422 bool MachineConstEvaluator::evaluateANDii(const APInt &A1,
1423 const APInt &A2, APInt &Result) {
1424 Result = A1 & A2;
1425 return true;
1428 bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1,
1429 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1430 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1431 const LatticeCell &L1 = Inputs.get(R2.Reg);
1432 const LatticeCell &L2 = Inputs.get(R2.Reg);
1433 // If both sources are bottom, exit. Otherwise try to evaluate ORri
1434 // with the non-bottom argument passed as the immediate. This is to
1435 // catch cases of ORing with -1.
1436 if (L2.isBottom()) {
1437 if (L1.isBottom())
1438 return false;
1439 return evaluateORrr(R2, R1, Inputs, Result);
1441 LatticeCell LS2;
1442 if (!evaluate(R2, L2, LS2))
1443 return false;
1444 if (LS2.isBottom() || LS2.isProperty())
1445 return false;
1447 APInt A;
1448 for (unsigned i = 0; i < LS2.size(); ++i) {
1449 LatticeCell RC;
1450 bool Eval = constToInt(LS2.Values[i], A) &&
1451 evaluateORri(R1, A, Inputs, RC);
1452 if (!Eval)
1453 return false;
1454 Result.meet(RC);
1456 return !Result.isBottom();
1459 bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1,
1460 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1461 assert(Inputs.has(R1.Reg));
1462 if (A2 == 0)
1463 return getCell(R1, Inputs, Result);
1464 if (A2 == -1) {
1465 LatticeCell RC;
1466 RC.add(intToConst(A2));
1467 // Overwrite Result.
1468 Result = RC;
1469 return true;
1471 LatticeCell LS1;
1472 if (!getCell(R1, Inputs, LS1))
1473 return false;
1474 if (LS1.isBottom() || LS1.isProperty())
1475 return false;
1477 APInt A, ResA;
1478 for (unsigned i = 0; i < LS1.size(); ++i) {
1479 bool Eval = constToInt(LS1.Values[i], A) &&
1480 evaluateORii(A, A2, ResA);
1481 if (!Eval)
1482 return false;
1483 const Constant *C = intToConst(ResA);
1484 Result.add(C);
1486 return !Result.isBottom();
1489 bool MachineConstEvaluator::evaluateORii(const APInt &A1,
1490 const APInt &A2, APInt &Result) {
1491 Result = A1 | A2;
1492 return true;
1495 bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1,
1496 const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) {
1497 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
1498 LatticeCell LS1, LS2;
1499 if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2))
1500 return false;
1501 if (LS1.isProperty()) {
1502 if (LS1.properties() & ConstantProperties::Zero)
1503 return !(Result = LS2).isBottom();
1504 return false;
1506 if (LS2.isProperty()) {
1507 if (LS2.properties() & ConstantProperties::Zero)
1508 return !(Result = LS1).isBottom();
1509 return false;
1512 APInt A;
1513 for (unsigned i = 0; i < LS2.size(); ++i) {
1514 LatticeCell RC;
1515 bool Eval = constToInt(LS2.Values[i], A) &&
1516 evaluateXORri(R1, A, Inputs, RC);
1517 if (!Eval)
1518 return false;
1519 Result.meet(RC);
1521 return !Result.isBottom();
1524 bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1,
1525 const APInt &A2, const CellMap &Inputs, LatticeCell &Result) {
1526 assert(Inputs.has(R1.Reg));
1527 LatticeCell LS1;
1528 if (!getCell(R1, Inputs, LS1))
1529 return false;
1530 if (LS1.isProperty()) {
1531 if (LS1.properties() & ConstantProperties::Zero) {
1532 const Constant *C = intToConst(A2);
1533 Result.add(C);
1534 return !Result.isBottom();
1536 return false;
1539 APInt A, XA;
1540 for (unsigned i = 0; i < LS1.size(); ++i) {
1541 bool Eval = constToInt(LS1.Values[i], A) &&
1542 evaluateXORii(A, A2, XA);
1543 if (!Eval)
1544 return false;
1545 const Constant *C = intToConst(XA);
1546 Result.add(C);
1548 return !Result.isBottom();
1551 bool MachineConstEvaluator::evaluateXORii(const APInt &A1,
1552 const APInt &A2, APInt &Result) {
1553 Result = A1 ^ A2;
1554 return true;
1557 bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width,
1558 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1559 assert(Inputs.has(R1.Reg));
1560 LatticeCell LS1;
1561 if (!getCell(R1, Inputs, LS1))
1562 return false;
1563 if (LS1.isProperty())
1564 return false;
1566 APInt A, XA;
1567 for (unsigned i = 0; i < LS1.size(); ++i) {
1568 bool Eval = constToInt(LS1.Values[i], A) &&
1569 evaluateZEXTi(A, Width, Bits, XA);
1570 if (!Eval)
1571 return false;
1572 const Constant *C = intToConst(XA);
1573 Result.add(C);
1575 return true;
1578 bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width,
1579 unsigned Bits, APInt &Result) {
1580 unsigned BW = A1.getBitWidth();
1581 (void)BW;
1582 assert(Width >= Bits && BW >= Bits);
1583 APInt Mask = APInt::getLowBitsSet(Width, Bits);
1584 Result = A1.zextOrTrunc(Width) & Mask;
1585 return true;
1588 bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width,
1589 unsigned Bits, const CellMap &Inputs, LatticeCell &Result) {
1590 assert(Inputs.has(R1.Reg));
1591 LatticeCell LS1;
1592 if (!getCell(R1, Inputs, LS1))
1593 return false;
1594 if (LS1.isBottom() || LS1.isProperty())
1595 return false;
1597 APInt A, XA;
1598 for (unsigned i = 0; i < LS1.size(); ++i) {
1599 bool Eval = constToInt(LS1.Values[i], A) &&
1600 evaluateSEXTi(A, Width, Bits, XA);
1601 if (!Eval)
1602 return false;
1603 const Constant *C = intToConst(XA);
1604 Result.add(C);
1606 return true;
1609 bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width,
1610 unsigned Bits, APInt &Result) {
1611 unsigned BW = A1.getBitWidth();
1612 assert(Width >= Bits && BW >= Bits);
1613 // Special case to make things faster for smaller source widths.
1614 // Sign extension of 0 bits generates 0 as a result. This is consistent
1615 // with what the HW does.
1616 if (Bits == 0) {
1617 Result = APInt(Width, 0);
1618 return true;
1620 // In C, shifts by 64 invoke undefined behavior: handle that case in APInt.
1621 if (BW <= 64 && Bits != 0) {
1622 int64_t V = A1.getSExtValue();
1623 switch (Bits) {
1624 case 8:
1625 V = static_cast<int8_t>(V);
1626 break;
1627 case 16:
1628 V = static_cast<int16_t>(V);
1629 break;
1630 case 32:
1631 V = static_cast<int32_t>(V);
1632 break;
1633 default:
1634 // Shift left to lose all bits except lower "Bits" bits, then shift
1635 // the value back, replicating what was a sign bit after the first
1636 // shift.
1637 V = (V << (64-Bits)) >> (64-Bits);
1638 break;
1640 // V is a 64-bit sign-extended value. Convert it to APInt of desired
1641 // width.
1642 Result = APInt(Width, V, true);
1643 return true;
1645 // Slow case: the value doesn't fit in int64_t.
1646 if (Bits < BW)
1647 Result = A1.trunc(Bits).sext(Width);
1648 else // Bits == BW
1649 Result = A1.sext(Width);
1650 return true;
1653 bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros,
1654 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1655 assert(Inputs.has(R1.Reg));
1656 LatticeCell LS1;
1657 if (!getCell(R1, Inputs, LS1))
1658 return false;
1659 if (LS1.isBottom() || LS1.isProperty())
1660 return false;
1662 APInt A, CA;
1663 for (unsigned i = 0; i < LS1.size(); ++i) {
1664 bool Eval = constToInt(LS1.Values[i], A) &&
1665 evaluateCLBi(A, Zeros, Ones, CA);
1666 if (!Eval)
1667 return false;
1668 const Constant *C = intToConst(CA);
1669 Result.add(C);
1671 return true;
1674 bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros,
1675 bool Ones, APInt &Result) {
1676 unsigned BW = A1.getBitWidth();
1677 if (!Zeros && !Ones)
1678 return false;
1679 unsigned Count = 0;
1680 if (Zeros && (Count == 0))
1681 Count = A1.countLeadingZeros();
1682 if (Ones && (Count == 0))
1683 Count = A1.countLeadingOnes();
1684 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1685 return true;
1688 bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros,
1689 bool Ones, const CellMap &Inputs, LatticeCell &Result) {
1690 assert(Inputs.has(R1.Reg));
1691 LatticeCell LS1;
1692 if (!getCell(R1, Inputs, LS1))
1693 return false;
1694 if (LS1.isBottom() || LS1.isProperty())
1695 return false;
1697 APInt A, CA;
1698 for (unsigned i = 0; i < LS1.size(); ++i) {
1699 bool Eval = constToInt(LS1.Values[i], A) &&
1700 evaluateCTBi(A, Zeros, Ones, CA);
1701 if (!Eval)
1702 return false;
1703 const Constant *C = intToConst(CA);
1704 Result.add(C);
1706 return true;
1709 bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros,
1710 bool Ones, APInt &Result) {
1711 unsigned BW = A1.getBitWidth();
1712 if (!Zeros && !Ones)
1713 return false;
1714 unsigned Count = 0;
1715 if (Zeros && (Count == 0))
1716 Count = A1.countTrailingZeros();
1717 if (Ones && (Count == 0))
1718 Count = A1.countTrailingOnes();
1719 Result = APInt(BW, static_cast<uint64_t>(Count), false);
1720 return true;
1723 bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1,
1724 unsigned Width, unsigned Bits, unsigned Offset, bool Signed,
1725 const CellMap &Inputs, LatticeCell &Result) {
1726 assert(Inputs.has(R1.Reg));
1727 assert(Bits+Offset <= Width);
1728 LatticeCell LS1;
1729 if (!getCell(R1, Inputs, LS1))
1730 return false;
1731 if (LS1.isBottom())
1732 return false;
1733 if (LS1.isProperty()) {
1734 uint32_t Ps = LS1.properties();
1735 if (Ps & ConstantProperties::Zero) {
1736 const Constant *C = intToConst(APInt(Width, 0, false));
1737 Result.add(C);
1738 return true;
1740 return false;
1743 APInt A, CA;
1744 for (unsigned i = 0; i < LS1.size(); ++i) {
1745 bool Eval = constToInt(LS1.Values[i], A) &&
1746 evaluateEXTRACTi(A, Bits, Offset, Signed, CA);
1747 if (!Eval)
1748 return false;
1749 const Constant *C = intToConst(CA);
1750 Result.add(C);
1752 return true;
1755 bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits,
1756 unsigned Offset, bool Signed, APInt &Result) {
1757 unsigned BW = A1.getBitWidth();
1758 assert(Bits+Offset <= BW);
1759 // Extracting 0 bits generates 0 as a result (as indicated by the HW people).
1760 if (Bits == 0) {
1761 Result = APInt(BW, 0);
1762 return true;
1764 if (BW <= 64) {
1765 int64_t V = A1.getZExtValue();
1766 V <<= (64-Bits-Offset);
1767 if (Signed)
1768 V >>= (64-Bits);
1769 else
1770 V = static_cast<uint64_t>(V) >> (64-Bits);
1771 Result = APInt(BW, V, Signed);
1772 return true;
1774 if (Signed)
1775 Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits);
1776 else
1777 Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits);
1778 return true;
1781 bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1,
1782 unsigned Bits, unsigned Count, const CellMap &Inputs,
1783 LatticeCell &Result) {
1784 assert(Inputs.has(R1.Reg));
1785 LatticeCell LS1;
1786 if (!getCell(R1, Inputs, LS1))
1787 return false;
1788 if (LS1.isBottom() || LS1.isProperty())
1789 return false;
1791 APInt A, SA;
1792 for (unsigned i = 0; i < LS1.size(); ++i) {
1793 bool Eval = constToInt(LS1.Values[i], A) &&
1794 evaluateSplati(A, Bits, Count, SA);
1795 if (!Eval)
1796 return false;
1797 const Constant *C = intToConst(SA);
1798 Result.add(C);
1800 return true;
1803 bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits,
1804 unsigned Count, APInt &Result) {
1805 assert(Count > 0);
1806 unsigned BW = A1.getBitWidth(), SW = Count*Bits;
1807 APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zextOrSelf(Bits);
1808 if (Count > 1)
1809 LoBits = LoBits.zext(SW);
1811 APInt Res(SW, 0, false);
1812 for (unsigned i = 0; i < Count; ++i) {
1813 Res <<= Bits;
1814 Res |= LoBits;
1816 Result = Res;
1817 return true;
1820 // ----------------------------------------------------------------------
1821 // Hexagon-specific code.
1823 namespace llvm {
1825 FunctionPass *createHexagonConstPropagationPass();
1826 void initializeHexagonConstPropagationPass(PassRegistry &Registry);
1828 } // end namespace llvm
1830 namespace {
1832 class HexagonConstEvaluator : public MachineConstEvaluator {
1833 public:
1834 HexagonConstEvaluator(MachineFunction &Fn);
1836 bool evaluate(const MachineInstr &MI, const CellMap &Inputs,
1837 CellMap &Outputs) override;
1838 bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC,
1839 LatticeCell &Result) override;
1840 bool evaluate(const MachineInstr &BrI, const CellMap &Inputs,
1841 SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru)
1842 override;
1843 bool rewrite(MachineInstr &MI, const CellMap &Inputs) override;
1845 private:
1846 unsigned getRegBitWidth(unsigned Reg) const;
1848 static uint32_t getCmp(unsigned Opc);
1849 static APInt getCmpImm(unsigned Opc, unsigned OpX,
1850 const MachineOperand &MO);
1851 void replaceWithNop(MachineInstr &MI);
1853 bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs,
1854 LatticeCell &Result);
1855 bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs,
1856 CellMap &Outputs);
1857 // This is suitable to be called for compare-and-jump instructions.
1858 bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1,
1859 const MachineOperand &Src2, const CellMap &Inputs, bool &Result);
1860 bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs,
1861 CellMap &Outputs);
1862 bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs,
1863 CellMap &Outputs);
1864 bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs,
1865 CellMap &Outputs);
1866 bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs,
1867 CellMap &Outputs);
1868 bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs,
1869 CellMap &Outputs);
1871 void replaceAllRegUsesWith(unsigned FromReg, unsigned ToReg);
1872 bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs);
1873 bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs,
1874 bool &AllDefs);
1875 bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs);
1877 MachineRegisterInfo *MRI;
1878 const HexagonInstrInfo &HII;
1879 const HexagonRegisterInfo &HRI;
1882 class HexagonConstPropagation : public MachineFunctionPass {
1883 public:
1884 static char ID;
1886 HexagonConstPropagation() : MachineFunctionPass(ID) {}
1888 StringRef getPassName() const override {
1889 return "Hexagon Constant Propagation";
1892 bool runOnMachineFunction(MachineFunction &MF) override {
1893 const Function &F = MF.getFunction();
1894 if (skipFunction(F))
1895 return false;
1897 HexagonConstEvaluator HCE(MF);
1898 return MachineConstPropagator(HCE).run(MF);
1902 } // end anonymous namespace
1904 char HexagonConstPropagation::ID = 0;
1906 INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp",
1907 "Hexagon Constant Propagation", false, false)
1909 HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn)
1910 : MachineConstEvaluator(Fn),
1911 HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()),
1912 HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) {
1913 MRI = &Fn.getRegInfo();
1916 bool HexagonConstEvaluator::evaluate(const MachineInstr &MI,
1917 const CellMap &Inputs, CellMap &Outputs) {
1918 if (MI.isCall())
1919 return false;
1920 if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg())
1921 return false;
1922 const MachineOperand &MD = MI.getOperand(0);
1923 if (!MD.isDef())
1924 return false;
1926 unsigned Opc = MI.getOpcode();
1927 RegisterSubReg DefR(MD);
1928 assert(!DefR.SubReg);
1929 if (!Register::isVirtualRegister(DefR.Reg))
1930 return false;
1932 if (MI.isCopy()) {
1933 LatticeCell RC;
1934 RegisterSubReg SrcR(MI.getOperand(1));
1935 bool Eval = evaluateCOPY(SrcR, Inputs, RC);
1936 if (!Eval)
1937 return false;
1938 Outputs.update(DefR.Reg, RC);
1939 return true;
1941 if (MI.isRegSequence()) {
1942 unsigned Sub1 = MI.getOperand(2).getImm();
1943 unsigned Sub2 = MI.getOperand(4).getImm();
1944 const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg);
1945 unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo);
1946 unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi);
1947 if (Sub1 != SubLo && Sub1 != SubHi)
1948 return false;
1949 if (Sub2 != SubLo && Sub2 != SubHi)
1950 return false;
1951 assert(Sub1 != Sub2);
1952 bool LoIs1 = (Sub1 == SubLo);
1953 const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3);
1954 const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1);
1955 LatticeCell RC;
1956 RegisterSubReg SrcRL(OpLo), SrcRH(OpHi);
1957 bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC);
1958 if (!Eval)
1959 return false;
1960 Outputs.update(DefR.Reg, RC);
1961 return true;
1963 if (MI.isCompare()) {
1964 bool Eval = evaluateHexCompare(MI, Inputs, Outputs);
1965 return Eval;
1968 switch (Opc) {
1969 default:
1970 return false;
1971 case Hexagon::A2_tfrsi:
1972 case Hexagon::A2_tfrpi:
1973 case Hexagon::CONST32:
1974 case Hexagon::CONST64:
1976 const MachineOperand &VO = MI.getOperand(1);
1977 // The operand of CONST32 can be a blockaddress, e.g.
1978 // %0 = CONST32 <blockaddress(@eat, %l)>
1979 // Do this check for all instructions for safety.
1980 if (!VO.isImm())
1981 return false;
1982 int64_t V = MI.getOperand(1).getImm();
1983 unsigned W = getRegBitWidth(DefR.Reg);
1984 if (W != 32 && W != 64)
1985 return false;
1986 IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX)
1987 : Type::getInt64Ty(CX);
1988 const ConstantInt *CI = ConstantInt::get(Ty, V, true);
1989 LatticeCell RC = Outputs.get(DefR.Reg);
1990 RC.add(CI);
1991 Outputs.update(DefR.Reg, RC);
1992 break;
1995 case Hexagon::PS_true:
1996 case Hexagon::PS_false:
1998 LatticeCell RC = Outputs.get(DefR.Reg);
1999 bool NonZero = (Opc == Hexagon::PS_true);
2000 uint32_t P = NonZero ? ConstantProperties::NonZero
2001 : ConstantProperties::Zero;
2002 RC.add(P);
2003 Outputs.update(DefR.Reg, RC);
2004 break;
2007 case Hexagon::A2_and:
2008 case Hexagon::A2_andir:
2009 case Hexagon::A2_andp:
2010 case Hexagon::A2_or:
2011 case Hexagon::A2_orir:
2012 case Hexagon::A2_orp:
2013 case Hexagon::A2_xor:
2014 case Hexagon::A2_xorp:
2016 bool Eval = evaluateHexLogical(MI, Inputs, Outputs);
2017 if (!Eval)
2018 return false;
2019 break;
2022 case Hexagon::A2_combineii: // combine(#s8Ext, #s8)
2023 case Hexagon::A4_combineii: // combine(#s8, #u6Ext)
2025 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm())
2026 return false;
2027 uint64_t Hi = MI.getOperand(1).getImm();
2028 uint64_t Lo = MI.getOperand(2).getImm();
2029 uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF);
2030 IntegerType *Ty = Type::getInt64Ty(CX);
2031 const ConstantInt *CI = ConstantInt::get(Ty, Res, false);
2032 LatticeCell RC = Outputs.get(DefR.Reg);
2033 RC.add(CI);
2034 Outputs.update(DefR.Reg, RC);
2035 break;
2038 case Hexagon::S2_setbit_i:
2040 int64_t B = MI.getOperand(2).getImm();
2041 assert(B >=0 && B < 32);
2042 APInt A(32, (1ull << B), false);
2043 RegisterSubReg R(MI.getOperand(1));
2044 LatticeCell RC = Outputs.get(DefR.Reg);
2045 bool Eval = evaluateORri(R, A, Inputs, RC);
2046 if (!Eval)
2047 return false;
2048 Outputs.update(DefR.Reg, RC);
2049 break;
2052 case Hexagon::C2_mux:
2053 case Hexagon::C2_muxir:
2054 case Hexagon::C2_muxri:
2055 case Hexagon::C2_muxii:
2057 bool Eval = evaluateHexCondMove(MI, Inputs, Outputs);
2058 if (!Eval)
2059 return false;
2060 break;
2063 case Hexagon::A2_sxtb:
2064 case Hexagon::A2_sxth:
2065 case Hexagon::A2_sxtw:
2066 case Hexagon::A2_zxtb:
2067 case Hexagon::A2_zxth:
2069 bool Eval = evaluateHexExt(MI, Inputs, Outputs);
2070 if (!Eval)
2071 return false;
2072 break;
2075 case Hexagon::S2_ct0:
2076 case Hexagon::S2_ct0p:
2077 case Hexagon::S2_ct1:
2078 case Hexagon::S2_ct1p:
2080 using namespace Hexagon;
2082 bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p);
2083 RegisterSubReg R1(MI.getOperand(1));
2084 assert(Inputs.has(R1.Reg));
2085 LatticeCell T;
2086 bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T);
2087 if (!Eval)
2088 return false;
2089 // All of these instructions return a 32-bit value. The evaluate
2090 // will generate the same type as the operand, so truncate the
2091 // result if necessary.
2092 APInt C;
2093 LatticeCell RC = Outputs.get(DefR.Reg);
2094 for (unsigned i = 0; i < T.size(); ++i) {
2095 const Constant *CI = T.Values[i];
2096 if (constToInt(CI, C) && C.getBitWidth() > 32)
2097 CI = intToConst(C.trunc(32));
2098 RC.add(CI);
2100 Outputs.update(DefR.Reg, RC);
2101 break;
2104 case Hexagon::S2_cl0:
2105 case Hexagon::S2_cl0p:
2106 case Hexagon::S2_cl1:
2107 case Hexagon::S2_cl1p:
2108 case Hexagon::S2_clb:
2109 case Hexagon::S2_clbp:
2111 using namespace Hexagon;
2113 bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p);
2114 bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p);
2115 RegisterSubReg R1(MI.getOperand(1));
2116 assert(Inputs.has(R1.Reg));
2117 LatticeCell T;
2118 bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T);
2119 if (!Eval)
2120 return false;
2121 // All of these instructions return a 32-bit value. The evaluate
2122 // will generate the same type as the operand, so truncate the
2123 // result if necessary.
2124 APInt C;
2125 LatticeCell RC = Outputs.get(DefR.Reg);
2126 for (unsigned i = 0; i < T.size(); ++i) {
2127 const Constant *CI = T.Values[i];
2128 if (constToInt(CI, C) && C.getBitWidth() > 32)
2129 CI = intToConst(C.trunc(32));
2130 RC.add(CI);
2132 Outputs.update(DefR.Reg, RC);
2133 break;
2136 case Hexagon::S4_extract:
2137 case Hexagon::S4_extractp:
2138 case Hexagon::S2_extractu:
2139 case Hexagon::S2_extractup:
2141 bool Signed = (Opc == Hexagon::S4_extract) ||
2142 (Opc == Hexagon::S4_extractp);
2143 RegisterSubReg R1(MI.getOperand(1));
2144 unsigned BW = getRegBitWidth(R1.Reg);
2145 unsigned Bits = MI.getOperand(2).getImm();
2146 unsigned Offset = MI.getOperand(3).getImm();
2147 LatticeCell RC = Outputs.get(DefR.Reg);
2148 if (Offset >= BW) {
2149 APInt Zero(BW, 0, false);
2150 RC.add(intToConst(Zero));
2151 break;
2153 if (Offset+Bits > BW) {
2154 // If the requested bitfield extends beyond the most significant bit,
2155 // the extra bits are treated as 0s. To emulate this behavior, reduce
2156 // the number of requested bits, and make the extract unsigned.
2157 Bits = BW-Offset;
2158 Signed = false;
2160 bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC);
2161 if (!Eval)
2162 return false;
2163 Outputs.update(DefR.Reg, RC);
2164 break;
2167 case Hexagon::S2_vsplatrb:
2168 case Hexagon::S2_vsplatrh:
2169 // vabsh, vabsh:sat
2170 // vabsw, vabsw:sat
2171 // vconj:sat
2172 // vrndwh, vrndwh:sat
2173 // vsathb, vsathub, vsatwuh
2174 // vsxtbh, vsxthw
2175 // vtrunehb, vtrunohb
2176 // vzxtbh, vzxthw
2178 bool Eval = evaluateHexVector1(MI, Inputs, Outputs);
2179 if (!Eval)
2180 return false;
2181 break;
2184 // TODO:
2185 // A2_vaddh
2186 // A2_vaddhs
2187 // A2_vaddw
2188 // A2_vaddws
2191 return true;
2194 bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R,
2195 const LatticeCell &Input, LatticeCell &Result) {
2196 if (!R.SubReg) {
2197 Result = Input;
2198 return true;
2200 const TargetRegisterClass *RC = MRI->getRegClass(R.Reg);
2201 if (RC != &Hexagon::DoubleRegsRegClass)
2202 return false;
2203 if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi)
2204 return false;
2206 assert(!Input.isTop());
2207 if (Input.isBottom())
2208 return false;
2210 using P = ConstantProperties;
2212 if (Input.isProperty()) {
2213 uint32_t Ps = Input.properties();
2214 if (Ps & (P::Zero|P::NaN)) {
2215 uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties));
2216 Result.add(Ns);
2217 return true;
2219 if (R.SubReg == Hexagon::isub_hi) {
2220 uint32_t Ns = (Ps & P::SignProperties);
2221 Result.add(Ns);
2222 return true;
2224 return false;
2227 // The Input cell contains some known values. Pick the word corresponding
2228 // to the subregister.
2229 APInt A;
2230 for (unsigned i = 0; i < Input.size(); ++i) {
2231 const Constant *C = Input.Values[i];
2232 if (!constToInt(C, A))
2233 return false;
2234 if (!A.isIntN(64))
2235 return false;
2236 uint64_t U = A.getZExtValue();
2237 if (R.SubReg == Hexagon::isub_hi)
2238 U >>= 32;
2239 U &= 0xFFFFFFFFULL;
2240 uint32_t U32 = Lo_32(U);
2241 int32_t V32;
2242 memcpy(&V32, &U32, sizeof V32);
2243 IntegerType *Ty = Type::getInt32Ty(CX);
2244 const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32));
2245 Result.add(C32);
2247 return true;
2250 bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI,
2251 const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets,
2252 bool &FallsThru) {
2253 // We need to evaluate one branch at a time. TII::analyzeBranch checks
2254 // all the branches in a basic block at once, so we cannot use it.
2255 unsigned Opc = BrI.getOpcode();
2256 bool SimpleBranch = false;
2257 bool Negated = false;
2258 switch (Opc) {
2259 case Hexagon::J2_jumpf:
2260 case Hexagon::J2_jumpfnew:
2261 case Hexagon::J2_jumpfnewpt:
2262 Negated = true;
2263 LLVM_FALLTHROUGH;
2264 case Hexagon::J2_jumpt:
2265 case Hexagon::J2_jumptnew:
2266 case Hexagon::J2_jumptnewpt:
2267 // Simple branch: if([!]Pn) jump ...
2268 // i.e. Op0 = predicate, Op1 = branch target.
2269 SimpleBranch = true;
2270 break;
2271 case Hexagon::J2_jump:
2272 Targets.insert(BrI.getOperand(0).getMBB());
2273 FallsThru = false;
2274 return true;
2275 default:
2276 Undetermined:
2277 // If the branch is of unknown type, assume that all successors are
2278 // executable.
2279 FallsThru = !BrI.isUnconditionalBranch();
2280 return false;
2283 if (SimpleBranch) {
2284 const MachineOperand &MD = BrI.getOperand(0);
2285 RegisterSubReg PR(MD);
2286 // If the condition operand has a subregister, this is not something
2287 // we currently recognize.
2288 if (PR.SubReg)
2289 goto Undetermined;
2290 assert(Inputs.has(PR.Reg));
2291 const LatticeCell &PredC = Inputs.get(PR.Reg);
2292 if (PredC.isBottom())
2293 goto Undetermined;
2295 uint32_t Props = PredC.properties();
2296 bool CTrue = false, CFalse = false;
2297 if (Props & ConstantProperties::Zero)
2298 CFalse = true;
2299 else if (Props & ConstantProperties::NonZero)
2300 CTrue = true;
2301 // If the condition is not known to be either, bail out.
2302 if (!CTrue && !CFalse)
2303 goto Undetermined;
2305 const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB();
2307 FallsThru = false;
2308 if ((!Negated && CTrue) || (Negated && CFalse))
2309 Targets.insert(BranchTarget);
2310 else if ((!Negated && CFalse) || (Negated && CTrue))
2311 FallsThru = true;
2312 else
2313 goto Undetermined;
2316 return true;
2319 bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) {
2320 if (MI.isBranch())
2321 return rewriteHexBranch(MI, Inputs);
2323 unsigned Opc = MI.getOpcode();
2324 switch (Opc) {
2325 default:
2326 break;
2327 case Hexagon::A2_tfrsi:
2328 case Hexagon::A2_tfrpi:
2329 case Hexagon::CONST32:
2330 case Hexagon::CONST64:
2331 case Hexagon::PS_true:
2332 case Hexagon::PS_false:
2333 return false;
2336 unsigned NumOp = MI.getNumOperands();
2337 if (NumOp == 0)
2338 return false;
2340 bool AllDefs, Changed;
2341 Changed = rewriteHexConstDefs(MI, Inputs, AllDefs);
2342 // If not all defs have been rewritten (i.e. the instruction defines
2343 // a register that is not compile-time constant), then try to rewrite
2344 // register operands that are known to be constant with immediates.
2345 if (!AllDefs)
2346 Changed |= rewriteHexConstUses(MI, Inputs);
2348 return Changed;
2351 unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const {
2352 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2353 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC))
2354 return 32;
2355 if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC))
2356 return 64;
2357 if (Hexagon::PredRegsRegClass.hasSubClassEq(RC))
2358 return 8;
2359 llvm_unreachable("Invalid register");
2360 return 0;
2363 uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) {
2364 switch (Opc) {
2365 case Hexagon::C2_cmpeq:
2366 case Hexagon::C2_cmpeqp:
2367 case Hexagon::A4_cmpbeq:
2368 case Hexagon::A4_cmpheq:
2369 case Hexagon::A4_cmpbeqi:
2370 case Hexagon::A4_cmpheqi:
2371 case Hexagon::C2_cmpeqi:
2372 case Hexagon::J4_cmpeqn1_t_jumpnv_nt:
2373 case Hexagon::J4_cmpeqn1_t_jumpnv_t:
2374 case Hexagon::J4_cmpeqi_t_jumpnv_nt:
2375 case Hexagon::J4_cmpeqi_t_jumpnv_t:
2376 case Hexagon::J4_cmpeq_t_jumpnv_nt:
2377 case Hexagon::J4_cmpeq_t_jumpnv_t:
2378 return Comparison::EQ;
2380 case Hexagon::C4_cmpneq:
2381 case Hexagon::C4_cmpneqi:
2382 case Hexagon::J4_cmpeqn1_f_jumpnv_nt:
2383 case Hexagon::J4_cmpeqn1_f_jumpnv_t:
2384 case Hexagon::J4_cmpeqi_f_jumpnv_nt:
2385 case Hexagon::J4_cmpeqi_f_jumpnv_t:
2386 case Hexagon::J4_cmpeq_f_jumpnv_nt:
2387 case Hexagon::J4_cmpeq_f_jumpnv_t:
2388 return Comparison::NE;
2390 case Hexagon::C2_cmpgt:
2391 case Hexagon::C2_cmpgtp:
2392 case Hexagon::A4_cmpbgt:
2393 case Hexagon::A4_cmphgt:
2394 case Hexagon::A4_cmpbgti:
2395 case Hexagon::A4_cmphgti:
2396 case Hexagon::C2_cmpgti:
2397 case Hexagon::J4_cmpgtn1_t_jumpnv_nt:
2398 case Hexagon::J4_cmpgtn1_t_jumpnv_t:
2399 case Hexagon::J4_cmpgti_t_jumpnv_nt:
2400 case Hexagon::J4_cmpgti_t_jumpnv_t:
2401 case Hexagon::J4_cmpgt_t_jumpnv_nt:
2402 case Hexagon::J4_cmpgt_t_jumpnv_t:
2403 return Comparison::GTs;
2405 case Hexagon::C4_cmplte:
2406 case Hexagon::C4_cmpltei:
2407 case Hexagon::J4_cmpgtn1_f_jumpnv_nt:
2408 case Hexagon::J4_cmpgtn1_f_jumpnv_t:
2409 case Hexagon::J4_cmpgti_f_jumpnv_nt:
2410 case Hexagon::J4_cmpgti_f_jumpnv_t:
2411 case Hexagon::J4_cmpgt_f_jumpnv_nt:
2412 case Hexagon::J4_cmpgt_f_jumpnv_t:
2413 return Comparison::LEs;
2415 case Hexagon::C2_cmpgtu:
2416 case Hexagon::C2_cmpgtup:
2417 case Hexagon::A4_cmpbgtu:
2418 case Hexagon::A4_cmpbgtui:
2419 case Hexagon::A4_cmphgtu:
2420 case Hexagon::A4_cmphgtui:
2421 case Hexagon::C2_cmpgtui:
2422 case Hexagon::J4_cmpgtui_t_jumpnv_nt:
2423 case Hexagon::J4_cmpgtui_t_jumpnv_t:
2424 case Hexagon::J4_cmpgtu_t_jumpnv_nt:
2425 case Hexagon::J4_cmpgtu_t_jumpnv_t:
2426 return Comparison::GTu;
2428 case Hexagon::J4_cmpltu_f_jumpnv_nt:
2429 case Hexagon::J4_cmpltu_f_jumpnv_t:
2430 return Comparison::GEu;
2432 case Hexagon::J4_cmpltu_t_jumpnv_nt:
2433 case Hexagon::J4_cmpltu_t_jumpnv_t:
2434 return Comparison::LTu;
2436 case Hexagon::J4_cmplt_f_jumpnv_nt:
2437 case Hexagon::J4_cmplt_f_jumpnv_t:
2438 return Comparison::GEs;
2440 case Hexagon::C4_cmplteu:
2441 case Hexagon::C4_cmplteui:
2442 case Hexagon::J4_cmpgtui_f_jumpnv_nt:
2443 case Hexagon::J4_cmpgtui_f_jumpnv_t:
2444 case Hexagon::J4_cmpgtu_f_jumpnv_nt:
2445 case Hexagon::J4_cmpgtu_f_jumpnv_t:
2446 return Comparison::LEu;
2448 case Hexagon::J4_cmplt_t_jumpnv_nt:
2449 case Hexagon::J4_cmplt_t_jumpnv_t:
2450 return Comparison::LTs;
2452 default:
2453 break;
2455 return Comparison::Unk;
2458 APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX,
2459 const MachineOperand &MO) {
2460 bool Signed = false;
2461 switch (Opc) {
2462 case Hexagon::A4_cmpbgtui: // u7
2463 case Hexagon::A4_cmphgtui: // u7
2464 break;
2465 case Hexagon::A4_cmpheqi: // s8
2466 case Hexagon::C4_cmpneqi: // s8
2467 Signed = true;
2468 break;
2469 case Hexagon::A4_cmpbeqi: // u8
2470 break;
2471 case Hexagon::C2_cmpgtui: // u9
2472 case Hexagon::C4_cmplteui: // u9
2473 break;
2474 case Hexagon::C2_cmpeqi: // s10
2475 case Hexagon::C2_cmpgti: // s10
2476 case Hexagon::C4_cmpltei: // s10
2477 Signed = true;
2478 break;
2479 case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5
2480 case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5
2481 case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5
2482 case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5
2483 case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5
2484 case Hexagon::J4_cmpgti_f_jumpnv_t: // u5
2485 case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5
2486 case Hexagon::J4_cmpgti_t_jumpnv_t: // u5
2487 case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5
2488 case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5
2489 case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5
2490 case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5
2491 break;
2492 default:
2493 llvm_unreachable("Unhandled instruction");
2494 break;
2497 uint64_t Val = MO.getImm();
2498 return APInt(32, Val, Signed);
2501 void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) {
2502 MI.setDesc(HII.get(Hexagon::A2_nop));
2503 while (MI.getNumOperands() > 0)
2504 MI.RemoveOperand(0);
2507 bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH,
2508 const CellMap &Inputs, LatticeCell &Result) {
2509 assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg));
2510 LatticeCell LSL, LSH;
2511 if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH))
2512 return false;
2513 if (LSL.isProperty() || LSH.isProperty())
2514 return false;
2516 unsigned LN = LSL.size(), HN = LSH.size();
2517 SmallVector<APInt,4> LoVs(LN), HiVs(HN);
2518 for (unsigned i = 0; i < LN; ++i) {
2519 bool Eval = constToInt(LSL.Values[i], LoVs[i]);
2520 if (!Eval)
2521 return false;
2522 assert(LoVs[i].getBitWidth() == 32);
2524 for (unsigned i = 0; i < HN; ++i) {
2525 bool Eval = constToInt(LSH.Values[i], HiVs[i]);
2526 if (!Eval)
2527 return false;
2528 assert(HiVs[i].getBitWidth() == 32);
2531 for (unsigned i = 0; i < HiVs.size(); ++i) {
2532 APInt HV = HiVs[i].zextOrSelf(64) << 32;
2533 for (unsigned j = 0; j < LoVs.size(); ++j) {
2534 APInt LV = LoVs[j].zextOrSelf(64);
2535 const Constant *C = intToConst(HV | LV);
2536 Result.add(C);
2537 if (Result.isBottom())
2538 return false;
2541 return !Result.isBottom();
2544 bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI,
2545 const CellMap &Inputs, CellMap &Outputs) {
2546 unsigned Opc = MI.getOpcode();
2547 bool Classic = false;
2548 switch (Opc) {
2549 case Hexagon::C2_cmpeq:
2550 case Hexagon::C2_cmpeqp:
2551 case Hexagon::C2_cmpgt:
2552 case Hexagon::C2_cmpgtp:
2553 case Hexagon::C2_cmpgtu:
2554 case Hexagon::C2_cmpgtup:
2555 case Hexagon::C2_cmpeqi:
2556 case Hexagon::C2_cmpgti:
2557 case Hexagon::C2_cmpgtui:
2558 // Classic compare: Dst0 = CMP Src1, Src2
2559 Classic = true;
2560 break;
2561 default:
2562 // Not handling other compare instructions now.
2563 return false;
2566 if (Classic) {
2567 const MachineOperand &Src1 = MI.getOperand(1);
2568 const MachineOperand &Src2 = MI.getOperand(2);
2570 bool Result;
2571 unsigned Opc = MI.getOpcode();
2572 bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result);
2573 if (Computed) {
2574 // Only create a zero/non-zero cell. At this time there isn't really
2575 // much need for specific values.
2576 RegisterSubReg DefR(MI.getOperand(0));
2577 LatticeCell L = Outputs.get(DefR.Reg);
2578 uint32_t P = Result ? ConstantProperties::NonZero
2579 : ConstantProperties::Zero;
2580 L.add(P);
2581 Outputs.update(DefR.Reg, L);
2582 return true;
2586 return false;
2589 bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc,
2590 const MachineOperand &Src1, const MachineOperand &Src2,
2591 const CellMap &Inputs, bool &Result) {
2592 uint32_t Cmp = getCmp(Opc);
2593 bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg();
2594 bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm();
2595 if (Reg1) {
2596 RegisterSubReg R1(Src1);
2597 if (Reg2) {
2598 RegisterSubReg R2(Src2);
2599 return evaluateCMPrr(Cmp, R1, R2, Inputs, Result);
2600 } else if (Imm2) {
2601 APInt A2 = getCmpImm(Opc, 2, Src2);
2602 return evaluateCMPri(Cmp, R1, A2, Inputs, Result);
2604 } else if (Imm1) {
2605 APInt A1 = getCmpImm(Opc, 1, Src1);
2606 if (Reg2) {
2607 RegisterSubReg R2(Src2);
2608 uint32_t NegCmp = Comparison::negate(Cmp);
2609 return evaluateCMPri(NegCmp, R2, A1, Inputs, Result);
2610 } else if (Imm2) {
2611 APInt A2 = getCmpImm(Opc, 2, Src2);
2612 return evaluateCMPii(Cmp, A1, A2, Result);
2615 // Unknown kind of comparison.
2616 return false;
2619 bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI,
2620 const CellMap &Inputs, CellMap &Outputs) {
2621 unsigned Opc = MI.getOpcode();
2622 if (MI.getNumOperands() != 3)
2623 return false;
2624 const MachineOperand &Src1 = MI.getOperand(1);
2625 const MachineOperand &Src2 = MI.getOperand(2);
2626 RegisterSubReg R1(Src1);
2627 bool Eval = false;
2628 LatticeCell RC;
2629 switch (Opc) {
2630 default:
2631 return false;
2632 case Hexagon::A2_and:
2633 case Hexagon::A2_andp:
2634 Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC);
2635 break;
2636 case Hexagon::A2_andir: {
2637 if (!Src2.isImm())
2638 return false;
2639 APInt A(32, Src2.getImm(), true);
2640 Eval = evaluateANDri(R1, A, Inputs, RC);
2641 break;
2643 case Hexagon::A2_or:
2644 case Hexagon::A2_orp:
2645 Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2646 break;
2647 case Hexagon::A2_orir: {
2648 if (!Src2.isImm())
2649 return false;
2650 APInt A(32, Src2.getImm(), true);
2651 Eval = evaluateORri(R1, A, Inputs, RC);
2652 break;
2654 case Hexagon::A2_xor:
2655 case Hexagon::A2_xorp:
2656 Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC);
2657 break;
2659 if (Eval) {
2660 RegisterSubReg DefR(MI.getOperand(0));
2661 Outputs.update(DefR.Reg, RC);
2663 return Eval;
2666 bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI,
2667 const CellMap &Inputs, CellMap &Outputs) {
2668 // Dst0 = Cond1 ? Src2 : Src3
2669 RegisterSubReg CR(MI.getOperand(1));
2670 assert(Inputs.has(CR.Reg));
2671 LatticeCell LS;
2672 if (!getCell(CR, Inputs, LS))
2673 return false;
2674 uint32_t Ps = LS.properties();
2675 unsigned TakeOp;
2676 if (Ps & ConstantProperties::Zero)
2677 TakeOp = 3;
2678 else if (Ps & ConstantProperties::NonZero)
2679 TakeOp = 2;
2680 else
2681 return false;
2683 const MachineOperand &ValOp = MI.getOperand(TakeOp);
2684 RegisterSubReg DefR(MI.getOperand(0));
2685 LatticeCell RC = Outputs.get(DefR.Reg);
2687 if (ValOp.isImm()) {
2688 int64_t V = ValOp.getImm();
2689 unsigned W = getRegBitWidth(DefR.Reg);
2690 APInt A(W, V, true);
2691 const Constant *C = intToConst(A);
2692 RC.add(C);
2693 Outputs.update(DefR.Reg, RC);
2694 return true;
2696 if (ValOp.isReg()) {
2697 RegisterSubReg R(ValOp);
2698 const LatticeCell &LR = Inputs.get(R.Reg);
2699 LatticeCell LSR;
2700 if (!evaluate(R, LR, LSR))
2701 return false;
2702 RC.meet(LSR);
2703 Outputs.update(DefR.Reg, RC);
2704 return true;
2706 return false;
2709 bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI,
2710 const CellMap &Inputs, CellMap &Outputs) {
2711 // Dst0 = ext R1
2712 RegisterSubReg R1(MI.getOperand(1));
2713 assert(Inputs.has(R1.Reg));
2715 unsigned Opc = MI.getOpcode();
2716 unsigned Bits;
2717 switch (Opc) {
2718 case Hexagon::A2_sxtb:
2719 case Hexagon::A2_zxtb:
2720 Bits = 8;
2721 break;
2722 case Hexagon::A2_sxth:
2723 case Hexagon::A2_zxth:
2724 Bits = 16;
2725 break;
2726 case Hexagon::A2_sxtw:
2727 Bits = 32;
2728 break;
2729 default:
2730 llvm_unreachable("Unhandled extension opcode");
2733 bool Signed = false;
2734 switch (Opc) {
2735 case Hexagon::A2_sxtb:
2736 case Hexagon::A2_sxth:
2737 case Hexagon::A2_sxtw:
2738 Signed = true;
2739 break;
2742 RegisterSubReg DefR(MI.getOperand(0));
2743 unsigned BW = getRegBitWidth(DefR.Reg);
2744 LatticeCell RC = Outputs.get(DefR.Reg);
2745 bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC)
2746 : evaluateZEXTr(R1, BW, Bits, Inputs, RC);
2747 if (!Eval)
2748 return false;
2749 Outputs.update(DefR.Reg, RC);
2750 return true;
2753 bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI,
2754 const CellMap &Inputs, CellMap &Outputs) {
2755 // DefR = op R1
2756 RegisterSubReg DefR(MI.getOperand(0));
2757 RegisterSubReg R1(MI.getOperand(1));
2758 assert(Inputs.has(R1.Reg));
2759 LatticeCell RC = Outputs.get(DefR.Reg);
2760 bool Eval;
2762 unsigned Opc = MI.getOpcode();
2763 switch (Opc) {
2764 case Hexagon::S2_vsplatrb:
2765 // Rd = 4 times Rs:0..7
2766 Eval = evaluateSplatr(R1, 8, 4, Inputs, RC);
2767 break;
2768 case Hexagon::S2_vsplatrh:
2769 // Rdd = 4 times Rs:0..15
2770 Eval = evaluateSplatr(R1, 16, 4, Inputs, RC);
2771 break;
2772 default:
2773 return false;
2776 if (!Eval)
2777 return false;
2778 Outputs.update(DefR.Reg, RC);
2779 return true;
2782 bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI,
2783 const CellMap &Inputs, bool &AllDefs) {
2784 AllDefs = false;
2786 // Some diagnostics.
2787 // LLVM_DEBUG({...}) gets confused with all this code as an argument.
2788 #ifndef NDEBUG
2789 bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE);
2790 if (Debugging) {
2791 bool Const = true, HasUse = false;
2792 for (const MachineOperand &MO : MI.operands()) {
2793 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2794 continue;
2795 RegisterSubReg R(MO);
2796 if (!Register::isVirtualRegister(R.Reg))
2797 continue;
2798 HasUse = true;
2799 // PHIs can legitimately have "top" cells after propagation.
2800 if (!MI.isPHI() && !Inputs.has(R.Reg)) {
2801 dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg)
2802 << " in MI: " << MI;
2803 continue;
2805 const LatticeCell &L = Inputs.get(R.Reg);
2806 Const &= L.isSingle();
2807 if (!Const)
2808 break;
2810 if (HasUse && Const) {
2811 if (!MI.isCopy()) {
2812 dbgs() << "CONST: " << MI;
2813 for (const MachineOperand &MO : MI.operands()) {
2814 if (!MO.isReg() || !MO.isUse() || MO.isImplicit())
2815 continue;
2816 Register R = MO.getReg();
2817 dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n";
2822 #endif
2824 // Avoid generating TFRIs for register transfers---this will keep the
2825 // coalescing opportunities.
2826 if (MI.isCopy())
2827 return false;
2829 // Collect all virtual register-def operands.
2830 SmallVector<unsigned,2> DefRegs;
2831 for (const MachineOperand &MO : MI.operands()) {
2832 if (!MO.isReg() || !MO.isDef())
2833 continue;
2834 Register R = MO.getReg();
2835 if (!Register::isVirtualRegister(R))
2836 continue;
2837 assert(!MO.getSubReg());
2838 assert(Inputs.has(R));
2839 DefRegs.push_back(R);
2842 MachineBasicBlock &B = *MI.getParent();
2843 const DebugLoc &DL = MI.getDebugLoc();
2844 unsigned ChangedNum = 0;
2845 #ifndef NDEBUG
2846 SmallVector<const MachineInstr*,4> NewInstrs;
2847 #endif
2849 // For each defined register, if it is a constant, create an instruction
2850 // NewR = const
2851 // and replace all uses of the defined register with NewR.
2852 for (unsigned i = 0, n = DefRegs.size(); i < n; ++i) {
2853 unsigned R = DefRegs[i];
2854 const LatticeCell &L = Inputs.get(R);
2855 if (L.isBottom())
2856 continue;
2857 const TargetRegisterClass *RC = MRI->getRegClass(R);
2858 MachineBasicBlock::iterator At = MI.getIterator();
2860 if (!L.isSingle()) {
2861 // If this a zero/non-zero cell, we can fold a definition
2862 // of a predicate register.
2863 using P = ConstantProperties;
2865 uint64_t Ps = L.properties();
2866 if (!(Ps & (P::Zero|P::NonZero)))
2867 continue;
2868 const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass;
2869 if (RC != PredRC)
2870 continue;
2871 const MCInstrDesc *NewD = (Ps & P::Zero) ?
2872 &HII.get(Hexagon::PS_false) :
2873 &HII.get(Hexagon::PS_true);
2874 Register NewR = MRI->createVirtualRegister(PredRC);
2875 const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR);
2876 (void)MIB;
2877 #ifndef NDEBUG
2878 NewInstrs.push_back(&*MIB);
2879 #endif
2880 replaceAllRegUsesWith(R, NewR);
2881 } else {
2882 // This cell has a single value.
2883 APInt A;
2884 if (!constToInt(L.Value, A) || !A.isSignedIntN(64))
2885 continue;
2886 const TargetRegisterClass *NewRC;
2887 const MCInstrDesc *NewD;
2889 unsigned W = getRegBitWidth(R);
2890 int64_t V = A.getSExtValue();
2891 assert(W == 32 || W == 64);
2892 if (W == 32)
2893 NewRC = &Hexagon::IntRegsRegClass;
2894 else
2895 NewRC = &Hexagon::DoubleRegsRegClass;
2896 Register NewR = MRI->createVirtualRegister(NewRC);
2897 const MachineInstr *NewMI;
2899 if (W == 32) {
2900 NewD = &HII.get(Hexagon::A2_tfrsi);
2901 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2902 .addImm(V);
2903 } else {
2904 if (A.isSignedIntN(8)) {
2905 NewD = &HII.get(Hexagon::A2_tfrpi);
2906 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2907 .addImm(V);
2908 } else {
2909 int32_t Hi = V >> 32;
2910 int32_t Lo = V & 0xFFFFFFFFLL;
2911 if (isInt<8>(Hi) && isInt<8>(Lo)) {
2912 NewD = &HII.get(Hexagon::A2_combineii);
2913 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2914 .addImm(Hi)
2915 .addImm(Lo);
2916 } else {
2917 NewD = &HII.get(Hexagon::CONST64);
2918 NewMI = BuildMI(B, At, DL, *NewD, NewR)
2919 .addImm(V);
2923 (void)NewMI;
2924 #ifndef NDEBUG
2925 NewInstrs.push_back(NewMI);
2926 #endif
2927 replaceAllRegUsesWith(R, NewR);
2929 ChangedNum++;
2932 LLVM_DEBUG({
2933 if (!NewInstrs.empty()) {
2934 MachineFunction &MF = *MI.getParent()->getParent();
2935 dbgs() << "In function: " << MF.getName() << "\n";
2936 dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0];
2937 for (unsigned i = 1; i < NewInstrs.size(); ++i)
2938 dbgs() << " " << *NewInstrs[i];
2942 AllDefs = (ChangedNum == DefRegs.size());
2943 return ChangedNum > 0;
2946 bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI,
2947 const CellMap &Inputs) {
2948 bool Changed = false;
2949 unsigned Opc = MI.getOpcode();
2950 MachineBasicBlock &B = *MI.getParent();
2951 const DebugLoc &DL = MI.getDebugLoc();
2952 MachineBasicBlock::iterator At = MI.getIterator();
2953 MachineInstr *NewMI = nullptr;
2955 switch (Opc) {
2956 case Hexagon::M2_maci:
2957 // Convert DefR += mpyi(R2, R3)
2958 // to DefR += mpyi(R, #imm),
2959 // or DefR -= mpyi(R, #imm).
2961 RegisterSubReg DefR(MI.getOperand(0));
2962 assert(!DefR.SubReg);
2963 RegisterSubReg R2(MI.getOperand(2));
2964 RegisterSubReg R3(MI.getOperand(3));
2965 assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg));
2966 LatticeCell LS2, LS3;
2967 // It is enough to get one of the input cells, since we will only try
2968 // to replace one argument---whichever happens to be a single constant.
2969 bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3);
2970 if (!HasC2 && !HasC3)
2971 return false;
2972 bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) ||
2973 (HasC3 && (LS3.properties() & ConstantProperties::Zero)));
2974 // If one of the operands is zero, eliminate the multiplication.
2975 if (Zero) {
2976 // DefR == R1 (tied operands).
2977 MachineOperand &Acc = MI.getOperand(1);
2978 RegisterSubReg R1(Acc);
2979 unsigned NewR = R1.Reg;
2980 if (R1.SubReg) {
2981 // Generate COPY. FIXME: Replace with the register:subregister.
2982 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
2983 NewR = MRI->createVirtualRegister(RC);
2984 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
2985 .addReg(R1.Reg, getRegState(Acc), R1.SubReg);
2987 replaceAllRegUsesWith(DefR.Reg, NewR);
2988 MRI->clearKillFlags(NewR);
2989 Changed = true;
2990 break;
2993 bool Swap = false;
2994 if (!LS3.isSingle()) {
2995 if (!LS2.isSingle())
2996 return false;
2997 Swap = true;
2999 const LatticeCell &LI = Swap ? LS2 : LS3;
3000 const MachineOperand &OpR2 = Swap ? MI.getOperand(3)
3001 : MI.getOperand(2);
3002 // LI is single here.
3003 APInt A;
3004 if (!constToInt(LI.Value, A) || !A.isSignedIntN(8))
3005 return false;
3006 int64_t V = A.getSExtValue();
3007 const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip)
3008 : HII.get(Hexagon::M2_macsin);
3009 if (V < 0)
3010 V = -V;
3011 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3012 Register NewR = MRI->createVirtualRegister(RC);
3013 const MachineOperand &Src1 = MI.getOperand(1);
3014 NewMI = BuildMI(B, At, DL, D, NewR)
3015 .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg())
3016 .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg())
3017 .addImm(V);
3018 replaceAllRegUsesWith(DefR.Reg, NewR);
3019 Changed = true;
3020 break;
3023 case Hexagon::A2_and:
3025 RegisterSubReg R1(MI.getOperand(1));
3026 RegisterSubReg R2(MI.getOperand(2));
3027 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3028 LatticeCell LS1, LS2;
3029 unsigned CopyOf = 0;
3030 // Check if any of the operands is -1 (i.e. all bits set).
3031 if (getCell(R1, Inputs, LS1) && LS1.isSingle()) {
3032 APInt M1;
3033 if (constToInt(LS1.Value, M1) && !~M1)
3034 CopyOf = 2;
3036 else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) {
3037 APInt M1;
3038 if (constToInt(LS2.Value, M1) && !~M1)
3039 CopyOf = 1;
3041 if (!CopyOf)
3042 return false;
3043 MachineOperand &SO = MI.getOperand(CopyOf);
3044 RegisterSubReg SR(SO);
3045 RegisterSubReg DefR(MI.getOperand(0));
3046 unsigned NewR = SR.Reg;
3047 if (SR.SubReg) {
3048 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3049 NewR = MRI->createVirtualRegister(RC);
3050 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3051 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3053 replaceAllRegUsesWith(DefR.Reg, NewR);
3054 MRI->clearKillFlags(NewR);
3055 Changed = true;
3057 break;
3059 case Hexagon::A2_or:
3061 RegisterSubReg R1(MI.getOperand(1));
3062 RegisterSubReg R2(MI.getOperand(2));
3063 assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg));
3064 LatticeCell LS1, LS2;
3065 unsigned CopyOf = 0;
3067 using P = ConstantProperties;
3069 if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero))
3070 CopyOf = 2;
3071 else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero))
3072 CopyOf = 1;
3073 if (!CopyOf)
3074 return false;
3075 MachineOperand &SO = MI.getOperand(CopyOf);
3076 RegisterSubReg SR(SO);
3077 RegisterSubReg DefR(MI.getOperand(0));
3078 unsigned NewR = SR.Reg;
3079 if (SR.SubReg) {
3080 const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg);
3081 NewR = MRI->createVirtualRegister(RC);
3082 NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
3083 .addReg(SR.Reg, getRegState(SO), SR.SubReg);
3085 replaceAllRegUsesWith(DefR.Reg, NewR);
3086 MRI->clearKillFlags(NewR);
3087 Changed = true;
3089 break;
3092 if (NewMI) {
3093 // clear all the kill flags of this new instruction.
3094 for (MachineOperand &MO : NewMI->operands())
3095 if (MO.isReg() && MO.isUse())
3096 MO.setIsKill(false);
3099 LLVM_DEBUG({
3100 if (NewMI) {
3101 dbgs() << "Rewrite: for " << MI;
3102 if (NewMI != &MI)
3103 dbgs() << " created " << *NewMI;
3104 else
3105 dbgs() << " modified the instruction itself and created:" << *NewMI;
3109 return Changed;
3112 void HexagonConstEvaluator::replaceAllRegUsesWith(unsigned FromReg,
3113 unsigned ToReg) {
3114 assert(Register::isVirtualRegister(FromReg));
3115 assert(Register::isVirtualRegister(ToReg));
3116 for (auto I = MRI->use_begin(FromReg), E = MRI->use_end(); I != E;) {
3117 MachineOperand &O = *I;
3118 ++I;
3119 O.setReg(ToReg);
3123 bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI,
3124 const CellMap &Inputs) {
3125 MachineBasicBlock &B = *BrI.getParent();
3126 unsigned NumOp = BrI.getNumOperands();
3127 if (!NumOp)
3128 return false;
3130 bool FallsThru;
3131 SetVector<const MachineBasicBlock*> Targets;
3132 bool Eval = evaluate(BrI, Inputs, Targets, FallsThru);
3133 unsigned NumTargets = Targets.size();
3134 if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru))
3135 return false;
3136 if (BrI.getOpcode() == Hexagon::J2_jump)
3137 return false;
3139 LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI);
3140 bool Rewritten = false;
3141 if (NumTargets > 0) {
3142 assert(!FallsThru && "This should have been checked before");
3143 // MIB.addMBB needs non-const pointer.
3144 MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]);
3145 bool Moot = B.isLayoutSuccessor(TargetB);
3146 if (!Moot) {
3147 // If we build a branch here, we must make sure that it won't be
3148 // erased as "non-executable". We can't mark any new instructions
3149 // as executable here, so we need to overwrite the BrI, which we
3150 // know is executable.
3151 const MCInstrDesc &JD = HII.get(Hexagon::J2_jump);
3152 auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD)
3153 .addMBB(TargetB);
3154 BrI.setDesc(JD);
3155 while (BrI.getNumOperands() > 0)
3156 BrI.RemoveOperand(0);
3157 // This ensures that all implicit operands (e.g. implicit-def %r31, etc)
3158 // are present in the rewritten branch.
3159 for (auto &Op : NI->operands())
3160 BrI.addOperand(Op);
3161 NI->eraseFromParent();
3162 Rewritten = true;
3166 // Do not erase instructions. A newly created instruction could get
3167 // the same address as an instruction marked as executable during the
3168 // propagation.
3169 if (!Rewritten)
3170 replaceWithNop(BrI);
3171 return true;
3174 FunctionPass *llvm::createHexagonConstPropagationPass() {
3175 return new HexagonConstPropagation();