[Alignment][NFC] migrate DataLayout internal struct to llvm::Align
[llvm-core.git] / lib / Target / Hexagon / HexagonISelLoweringHVX.cpp
blobbc8a9959c917a670f00e67e6d4857e46c34eae71
1 //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "HexagonISelLowering.h"
10 #include "HexagonRegisterInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "llvm/Support/CommandLine.h"
14 using namespace llvm;
16 static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
17 static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
18 static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
19 static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
22 void
23 HexagonTargetLowering::initializeHVXLowering() {
24 if (Subtarget.useHVX64BOps()) {
25 addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass);
26 addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
27 addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
28 addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
29 addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
30 addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
31 // These "short" boolean vector types should be legal because
32 // they will appear as results of vector compares. If they were
33 // not legal, type legalization would try to make them legal
34 // and that would require using operations that do not use or
35 // produce such types. That, in turn, would imply using custom
36 // nodes, which would be unoptimizable by the DAG combiner.
37 // The idea is to rely on target-independent operations as much
38 // as possible.
39 addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
40 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
41 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
42 addRegisterClass(MVT::v512i1, &Hexagon::HvxQRRegClass);
43 } else if (Subtarget.useHVX128BOps()) {
44 addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass);
45 addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass);
46 addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass);
47 addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass);
48 addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
49 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
50 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
51 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
52 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
53 addRegisterClass(MVT::v1024i1, &Hexagon::HvxQRRegClass);
56 // Set up operation actions.
58 bool Use64b = Subtarget.useHVX64BOps();
59 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
60 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
61 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
62 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
64 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
65 setOperationAction(Opc, FromTy, Promote);
66 AddPromotedToType(Opc, FromTy, ToTy);
69 setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
70 setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
72 for (MVT T : LegalV) {
73 setIndexedLoadAction(ISD::POST_INC, T, Legal);
74 setIndexedStoreAction(ISD::POST_INC, T, Legal);
76 setOperationAction(ISD::AND, T, Legal);
77 setOperationAction(ISD::OR, T, Legal);
78 setOperationAction(ISD::XOR, T, Legal);
79 setOperationAction(ISD::ADD, T, Legal);
80 setOperationAction(ISD::SUB, T, Legal);
81 setOperationAction(ISD::CTPOP, T, Legal);
82 setOperationAction(ISD::CTLZ, T, Legal);
83 if (T != ByteV) {
84 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
85 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
86 setOperationAction(ISD::BSWAP, T, Legal);
89 setOperationAction(ISD::CTTZ, T, Custom);
90 setOperationAction(ISD::LOAD, T, Custom);
91 setOperationAction(ISD::MUL, T, Custom);
92 setOperationAction(ISD::MULHS, T, Custom);
93 setOperationAction(ISD::MULHU, T, Custom);
94 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
95 // Make concat-vectors custom to handle concats of more than 2 vectors.
96 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
97 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
98 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
99 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
100 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
101 setOperationAction(ISD::ANY_EXTEND, T, Custom);
102 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
103 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
104 if (T != ByteV) {
105 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
106 // HVX only has shifts of words and halfwords.
107 setOperationAction(ISD::SRA, T, Custom);
108 setOperationAction(ISD::SHL, T, Custom);
109 setOperationAction(ISD::SRL, T, Custom);
111 // Promote all shuffles to operate on vectors of bytes.
112 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
115 setCondCodeAction(ISD::SETNE, T, Expand);
116 setCondCodeAction(ISD::SETLE, T, Expand);
117 setCondCodeAction(ISD::SETGE, T, Expand);
118 setCondCodeAction(ISD::SETLT, T, Expand);
119 setCondCodeAction(ISD::SETULE, T, Expand);
120 setCondCodeAction(ISD::SETUGE, T, Expand);
121 setCondCodeAction(ISD::SETULT, T, Expand);
124 for (MVT T : LegalW) {
125 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
126 // independent) handling of it would convert it to a load, which is
127 // not always the optimal choice.
128 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
129 // Make concat-vectors custom to handle concats of more than 2 vectors.
130 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
132 // Custom-lower these operations for pairs. Expand them into a concat
133 // of the corresponding operations on individual vectors.
134 setOperationAction(ISD::ANY_EXTEND, T, Custom);
135 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
136 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
137 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
138 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
139 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
140 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
142 setOperationAction(ISD::LOAD, T, Custom);
143 setOperationAction(ISD::STORE, T, Custom);
144 setOperationAction(ISD::CTLZ, T, Custom);
145 setOperationAction(ISD::CTTZ, T, Custom);
146 setOperationAction(ISD::CTPOP, T, Custom);
148 setOperationAction(ISD::ADD, T, Legal);
149 setOperationAction(ISD::SUB, T, Legal);
150 setOperationAction(ISD::MUL, T, Custom);
151 setOperationAction(ISD::MULHS, T, Custom);
152 setOperationAction(ISD::MULHU, T, Custom);
153 setOperationAction(ISD::AND, T, Custom);
154 setOperationAction(ISD::OR, T, Custom);
155 setOperationAction(ISD::XOR, T, Custom);
156 setOperationAction(ISD::SETCC, T, Custom);
157 setOperationAction(ISD::VSELECT, T, Custom);
158 if (T != ByteW) {
159 setOperationAction(ISD::SRA, T, Custom);
160 setOperationAction(ISD::SHL, T, Custom);
161 setOperationAction(ISD::SRL, T, Custom);
163 // Promote all shuffles to operate on vectors of bytes.
164 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
168 // Boolean vectors.
170 for (MVT T : LegalW) {
171 // Boolean types for vector pairs will overlap with the boolean
172 // types for single vectors, e.g.
173 // v64i8 -> v64i1 (single)
174 // v64i16 -> v64i1 (pair)
175 // Set these actions first, and allow the single actions to overwrite
176 // any duplicates.
177 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
178 setOperationAction(ISD::SETCC, BoolW, Custom);
179 setOperationAction(ISD::AND, BoolW, Custom);
180 setOperationAction(ISD::OR, BoolW, Custom);
181 setOperationAction(ISD::XOR, BoolW, Custom);
184 for (MVT T : LegalV) {
185 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
186 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
187 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
188 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
189 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
190 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
191 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
192 setOperationAction(ISD::AND, BoolV, Legal);
193 setOperationAction(ISD::OR, BoolV, Legal);
194 setOperationAction(ISD::XOR, BoolV, Legal);
197 setTargetDAGCombine(ISD::VSELECT);
200 SDValue
201 HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
202 const SDLoc &dl, SelectionDAG &DAG) const {
203 SmallVector<SDValue,4> IntOps;
204 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
205 for (const SDValue &Op : Ops)
206 IntOps.push_back(Op);
207 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
211 HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
212 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
214 MVT ElemTy = Tys.first.getVectorElementType();
215 return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
216 Tys.second.getVectorNumElements());
219 HexagonTargetLowering::TypePair
220 HexagonTargetLowering::typeSplit(MVT VecTy) const {
221 assert(VecTy.isVector());
222 unsigned NumElem = VecTy.getVectorNumElements();
223 assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
224 MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
225 return { HalfTy, HalfTy };
229 HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
230 MVT ElemTy = VecTy.getVectorElementType();
231 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
232 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
236 HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
237 MVT ElemTy = VecTy.getVectorElementType();
238 MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
239 return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
242 SDValue
243 HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
244 SelectionDAG &DAG) const {
245 if (ty(Vec).getVectorElementType() == ElemTy)
246 return Vec;
247 MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
248 return DAG.getBitcast(CastTy, Vec);
251 SDValue
252 HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
253 SelectionDAG &DAG) const {
254 return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
255 Ops.second, Ops.first);
258 HexagonTargetLowering::VectorPair
259 HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
260 SelectionDAG &DAG) const {
261 TypePair Tys = typeSplit(ty(Vec));
262 if (Vec.getOpcode() == HexagonISD::QCAT)
263 return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
264 return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
267 bool
268 HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
269 return Subtarget.isHVXVectorType(Ty) &&
270 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
273 bool
274 HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
275 return Subtarget.isHVXVectorType(Ty) &&
276 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
279 SDValue
280 HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
281 SelectionDAG &DAG) const {
282 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
283 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
285 unsigned ElemWidth = ElemTy.getSizeInBits();
286 if (ElemWidth == 8)
287 return ElemIdx;
289 unsigned L = Log2_32(ElemWidth/8);
290 const SDLoc &dl(ElemIdx);
291 return DAG.getNode(ISD::SHL, dl, MVT::i32,
292 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
295 SDValue
296 HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
297 SelectionDAG &DAG) const {
298 unsigned ElemWidth = ElemTy.getSizeInBits();
299 assert(ElemWidth >= 8 && ElemWidth <= 32);
300 if (ElemWidth == 32)
301 return Idx;
303 if (ty(Idx) != MVT::i32)
304 Idx = DAG.getBitcast(MVT::i32, Idx);
305 const SDLoc &dl(Idx);
306 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
307 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
308 return SubIdx;
311 SDValue
312 HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
313 SDValue Op1, ArrayRef<int> Mask,
314 SelectionDAG &DAG) const {
315 MVT OpTy = ty(Op0);
316 assert(OpTy == ty(Op1));
318 MVT ElemTy = OpTy.getVectorElementType();
319 if (ElemTy == MVT::i8)
320 return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
321 assert(ElemTy.getSizeInBits() >= 8);
323 MVT ResTy = tyVector(OpTy, MVT::i8);
324 unsigned ElemSize = ElemTy.getSizeInBits() / 8;
326 SmallVector<int,128> ByteMask;
327 for (int M : Mask) {
328 if (M < 0) {
329 for (unsigned I = 0; I != ElemSize; ++I)
330 ByteMask.push_back(-1);
331 } else {
332 int NewM = M*ElemSize;
333 for (unsigned I = 0; I != ElemSize; ++I)
334 ByteMask.push_back(NewM+I);
337 assert(ResTy.getVectorNumElements() == ByteMask.size());
338 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
339 opCastElem(Op1, MVT::i8, DAG), ByteMask);
342 SDValue
343 HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
344 const SDLoc &dl, MVT VecTy,
345 SelectionDAG &DAG) const {
346 unsigned VecLen = Values.size();
347 MachineFunction &MF = DAG.getMachineFunction();
348 MVT ElemTy = VecTy.getVectorElementType();
349 unsigned ElemWidth = ElemTy.getSizeInBits();
350 unsigned HwLen = Subtarget.getVectorLength();
352 unsigned ElemSize = ElemWidth / 8;
353 assert(ElemSize*VecLen == HwLen);
354 SmallVector<SDValue,32> Words;
356 if (VecTy.getVectorElementType() != MVT::i32) {
357 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
358 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
359 MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
360 for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
361 SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
362 Words.push_back(DAG.getBitcast(MVT::i32, W));
364 } else {
365 Words.assign(Values.begin(), Values.end());
368 unsigned NumWords = Words.size();
369 bool IsSplat = true, IsUndef = true;
370 SDValue SplatV;
371 for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
372 if (isUndef(Words[i]))
373 continue;
374 IsUndef = false;
375 if (!SplatV.getNode())
376 SplatV = Words[i];
377 else if (SplatV != Words[i])
378 IsSplat = false;
380 if (IsUndef)
381 return DAG.getUNDEF(VecTy);
382 if (IsSplat) {
383 assert(SplatV.getNode());
384 auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
385 if (IdxN && IdxN->isNullValue())
386 return getZero(dl, VecTy, DAG);
387 return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
390 // Delay recognizing constant vectors until here, so that we can generate
391 // a vsplat.
392 SmallVector<ConstantInt*, 128> Consts(VecLen);
393 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
394 if (AllConst) {
395 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
396 (Constant**)Consts.end());
397 Constant *CV = ConstantVector::get(Tmp);
398 unsigned Align = HwLen;
399 SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
400 return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
401 MachinePointerInfo::getConstantPool(MF), Align);
404 // A special case is a situation where the vector is built entirely from
405 // elements extracted from another vector. This could be done via a shuffle
406 // more efficiently, but typically, the size of the source vector will not
407 // match the size of the vector being built (which precludes the use of a
408 // shuffle directly).
409 // This only handles a single source vector, and the vector being built
410 // should be of a sub-vector type of the source vector type.
411 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
412 SmallVectorImpl<int> &SrcIdx) {
413 SDValue Vec;
414 for (SDValue V : Values) {
415 if (isUndef(V)) {
416 SrcIdx.push_back(-1);
417 continue;
419 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
420 return false;
421 // All extracts should come from the same vector.
422 SDValue T = V.getOperand(0);
423 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
424 return false;
425 Vec = T;
426 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
427 if (C == nullptr)
428 return false;
429 int I = C->getSExtValue();
430 assert(I >= 0 && "Negative element index");
431 SrcIdx.push_back(I);
433 SrcVec = Vec;
434 return true;
437 SmallVector<int,128> ExtIdx;
438 SDValue ExtVec;
439 if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
440 MVT ExtTy = ty(ExtVec);
441 unsigned ExtLen = ExtTy.getVectorNumElements();
442 if (ExtLen == VecLen || ExtLen == 2*VecLen) {
443 // Construct a new shuffle mask that will produce a vector with the same
444 // number of elements as the input vector, and such that the vector we
445 // want will be the initial subvector of it.
446 SmallVector<int,128> Mask;
447 BitVector Used(ExtLen);
449 for (int M : ExtIdx) {
450 Mask.push_back(M);
451 if (M >= 0)
452 Used.set(M);
454 // Fill the rest of the mask with the unused elements of ExtVec in hopes
455 // that it will result in a permutation of ExtVec's elements. It's still
456 // fine if it doesn't (e.g. if undefs are present, or elements are
457 // repeated), but permutations can always be done efficiently via vdelta
458 // and vrdelta.
459 for (unsigned I = 0; I != ExtLen; ++I) {
460 if (Mask.size() == ExtLen)
461 break;
462 if (!Used.test(I))
463 Mask.push_back(I);
466 SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
467 DAG.getUNDEF(ExtTy), Mask);
468 if (ExtLen == VecLen)
469 return S;
470 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
474 // Construct two halves in parallel, then or them together.
475 assert(4*Words.size() == Subtarget.getVectorLength());
476 SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
477 SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
478 SDValue S = DAG.getConstant(4, dl, MVT::i32);
479 for (unsigned i = 0; i != NumWords/2; ++i) {
480 SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
481 {HalfV0, Words[i]});
482 SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
483 {HalfV1, Words[i+NumWords/2]});
484 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
485 HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
488 HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
489 {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
490 SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
491 return DstV;
494 SDValue
495 HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
496 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
497 MVT PredTy = ty(PredV);
498 unsigned HwLen = Subtarget.getVectorLength();
499 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
501 if (Subtarget.isHVXVectorType(PredTy, true)) {
502 // Move the vector predicate SubV to a vector register, and scale it
503 // down to match the representation (bytes per type element) that VecV
504 // uses. The scaling down will pick every 2nd or 4th (every Scale-th
505 // in general) element and put them at the front of the resulting
506 // vector. This subvector will then be inserted into the Q2V of VecV.
507 // To avoid having an operation that generates an illegal type (short
508 // vector), generate a full size vector.
510 SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
511 SmallVector<int,128> Mask(HwLen);
512 // Scale = BitBytes(PredV) / Given BitBytes.
513 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
514 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
516 for (unsigned i = 0; i != HwLen; ++i) {
517 unsigned Num = i % Scale;
518 unsigned Off = i / Scale;
519 Mask[BlockLen*Num + Off] = i;
521 SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
522 if (!ZeroFill)
523 return S;
524 // Fill the bytes beyond BlockLen with 0s.
525 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
526 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
527 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
528 SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
529 return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
532 // Make sure that this is a valid scalar predicate.
533 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
535 unsigned Bytes = 8 / PredTy.getVectorNumElements();
536 SmallVector<SDValue,4> Words[2];
537 unsigned IdxW = 0;
539 auto Lo32 = [&DAG, &dl] (SDValue P) {
540 return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
542 auto Hi32 = [&DAG, &dl] (SDValue P) {
543 return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
546 SDValue W0 = isUndef(PredV)
547 ? DAG.getUNDEF(MVT::i64)
548 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
549 Words[IdxW].push_back(Hi32(W0));
550 Words[IdxW].push_back(Lo32(W0));
552 while (Bytes < BitBytes) {
553 IdxW ^= 1;
554 Words[IdxW].clear();
556 if (Bytes < 4) {
557 for (const SDValue &W : Words[IdxW ^ 1]) {
558 SDValue T = expandPredicate(W, dl, DAG);
559 Words[IdxW].push_back(Hi32(T));
560 Words[IdxW].push_back(Lo32(T));
562 } else {
563 for (const SDValue &W : Words[IdxW ^ 1]) {
564 Words[IdxW].push_back(W);
565 Words[IdxW].push_back(W);
568 Bytes *= 2;
571 assert(Bytes == BitBytes);
573 SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
574 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
575 for (const SDValue &W : Words[IdxW]) {
576 Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
577 Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
580 return Vec;
583 SDValue
584 HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
585 const SDLoc &dl, MVT VecTy,
586 SelectionDAG &DAG) const {
587 // Construct a vector V of bytes, such that a comparison V >u 0 would
588 // produce the required vector predicate.
589 unsigned VecLen = Values.size();
590 unsigned HwLen = Subtarget.getVectorLength();
591 assert(VecLen <= HwLen || VecLen == 8*HwLen);
592 SmallVector<SDValue,128> Bytes;
593 bool AllT = true, AllF = true;
595 auto IsTrue = [] (SDValue V) {
596 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
597 return !N->isNullValue();
598 return false;
600 auto IsFalse = [] (SDValue V) {
601 if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
602 return N->isNullValue();
603 return false;
606 if (VecLen <= HwLen) {
607 // In the hardware, each bit of a vector predicate corresponds to a byte
608 // of a vector register. Calculate how many bytes does a bit of VecTy
609 // correspond to.
610 assert(HwLen % VecLen == 0);
611 unsigned BitBytes = HwLen / VecLen;
612 for (SDValue V : Values) {
613 AllT &= IsTrue(V);
614 AllF &= IsFalse(V);
616 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
617 : DAG.getUNDEF(MVT::i8);
618 for (unsigned B = 0; B != BitBytes; ++B)
619 Bytes.push_back(Ext);
621 } else {
622 // There are as many i1 values, as there are bits in a vector register.
623 // Divide the values into groups of 8 and check that each group consists
624 // of the same value (ignoring undefs).
625 for (unsigned I = 0; I != VecLen; I += 8) {
626 unsigned B = 0;
627 // Find the first non-undef value in this group.
628 for (; B != 8; ++B) {
629 if (!Values[I+B].isUndef())
630 break;
632 SDValue F = Values[I+B];
633 AllT &= IsTrue(F);
634 AllF &= IsFalse(F);
636 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
637 : DAG.getUNDEF(MVT::i8);
638 Bytes.push_back(Ext);
639 // Verify that the rest of values in the group are the same as the
640 // first.
641 for (; B != 8; ++B)
642 assert(Values[I+B].isUndef() || Values[I+B] == F);
646 if (AllT)
647 return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
648 if (AllF)
649 return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
651 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
652 SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
653 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
656 SDValue
657 HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
658 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
659 MVT ElemTy = ty(VecV).getVectorElementType();
661 unsigned ElemWidth = ElemTy.getSizeInBits();
662 assert(ElemWidth >= 8 && ElemWidth <= 32);
663 (void)ElemWidth;
665 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
666 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
667 {VecV, ByteIdx});
668 if (ElemTy == MVT::i32)
669 return ExWord;
671 // Have an extracted word, need to extract the smaller element out of it.
672 // 1. Extract the bits of (the original) IdxV that correspond to the index
673 // of the desired element in the 32-bit word.
674 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
675 // 2. Extract the element from the word.
676 SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
677 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
680 SDValue
681 HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
682 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
683 // Implement other return types if necessary.
684 assert(ResTy == MVT::i1);
686 unsigned HwLen = Subtarget.getVectorLength();
687 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
688 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
690 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
691 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
692 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
694 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
695 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
696 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
699 SDValue
700 HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
701 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
702 MVT ElemTy = ty(VecV).getVectorElementType();
704 unsigned ElemWidth = ElemTy.getSizeInBits();
705 assert(ElemWidth >= 8 && ElemWidth <= 32);
706 (void)ElemWidth;
708 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
709 SDValue ByteIdxV) {
710 MVT VecTy = ty(VecV);
711 unsigned HwLen = Subtarget.getVectorLength();
712 SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
713 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
714 SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
715 SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
716 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
717 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
718 SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
719 return TorV;
722 SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
723 if (ElemTy == MVT::i32)
724 return InsertWord(VecV, ValV, ByteIdx);
726 // If this is not inserting a 32-bit word, convert it into such a thing.
727 // 1. Extract the existing word from the target vector.
728 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
729 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
730 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
731 dl, MVT::i32, DAG);
733 // 2. Treating the extracted word as a 32-bit vector, insert the given
734 // value into it.
735 SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
736 MVT SubVecTy = tyVector(ty(Ext), ElemTy);
737 SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
738 ValV, SubIdx, dl, ElemTy, DAG);
740 // 3. Insert the 32-bit word back into the original vector.
741 return InsertWord(VecV, Ins, ByteIdx);
744 SDValue
745 HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
746 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
747 unsigned HwLen = Subtarget.getVectorLength();
748 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
749 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
751 unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
752 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
753 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
754 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
756 SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
757 return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
760 SDValue
761 HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
762 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
763 MVT VecTy = ty(VecV);
764 unsigned HwLen = Subtarget.getVectorLength();
765 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
766 MVT ElemTy = VecTy.getVectorElementType();
767 unsigned ElemWidth = ElemTy.getSizeInBits();
769 // If the source vector is a vector pair, get the single vector containing
770 // the subvector of interest. The subvector will never overlap two single
771 // vectors.
772 if (isHvxPairTy(VecTy)) {
773 unsigned SubIdx;
774 if (Idx * ElemWidth >= 8*HwLen) {
775 SubIdx = Hexagon::vsub_hi;
776 Idx -= VecTy.getVectorNumElements() / 2;
777 } else {
778 SubIdx = Hexagon::vsub_lo;
780 VecTy = typeSplit(VecTy).first;
781 VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
782 if (VecTy == ResTy)
783 return VecV;
786 // The only meaningful subvectors of a single HVX vector are those that
787 // fit in a scalar register.
788 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
790 MVT WordTy = tyVector(VecTy, MVT::i32);
791 SDValue WordVec = DAG.getBitcast(WordTy, VecV);
792 unsigned WordIdx = (Idx*ElemWidth) / 32;
794 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
795 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
796 if (ResTy.getSizeInBits() == 32)
797 return DAG.getBitcast(ResTy, W0);
799 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
800 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
801 SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
802 return DAG.getBitcast(ResTy, WW);
805 SDValue
806 HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
807 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
808 MVT VecTy = ty(VecV);
809 unsigned HwLen = Subtarget.getVectorLength();
810 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
811 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
812 // IdxV is required to be a constant.
813 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
815 unsigned ResLen = ResTy.getVectorNumElements();
816 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
817 unsigned Offset = Idx * BitBytes;
818 SDValue Undef = DAG.getUNDEF(ByteTy);
819 SmallVector<int,128> Mask;
821 if (Subtarget.isHVXVectorType(ResTy, true)) {
822 // Converting between two vector predicates. Since the result is shorter
823 // than the source, it will correspond to a vector predicate with the
824 // relevant bits replicated. The replication count is the ratio of the
825 // source and target vector lengths.
826 unsigned Rep = VecTy.getVectorNumElements() / ResLen;
827 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
828 for (unsigned i = 0; i != HwLen/Rep; ++i) {
829 for (unsigned j = 0; j != Rep; ++j)
830 Mask.push_back(i + Offset);
832 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
833 return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
836 // Converting between a vector predicate and a scalar predicate. In the
837 // vector predicate, a group of BitBytes bits will correspond to a single
838 // i1 element of the source vector type. Those bits will all have the same
839 // value. The same will be true for ByteVec, where each byte corresponds
840 // to a bit in the vector predicate.
841 // The algorithm is to traverse the ByteVec, going over the i1 values from
842 // the source vector, and generate the corresponding representation in an
843 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
844 // elements so that the interesting 8 bytes will be in the low end of the
845 // vector.
846 unsigned Rep = 8 / ResLen;
847 // Make sure the output fill the entire vector register, so repeat the
848 // 8-byte groups as many times as necessary.
849 for (unsigned r = 0; r != HwLen/ResLen; ++r) {
850 // This will generate the indexes of the 8 interesting bytes.
851 for (unsigned i = 0; i != ResLen; ++i) {
852 for (unsigned j = 0; j != Rep; ++j)
853 Mask.push_back(Offset + i*BitBytes);
857 SDValue Zero = getZero(dl, MVT::i32, DAG);
858 SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
859 // Combine the two low words from ShuffV into a v8i8, and byte-compare
860 // them against 0.
861 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
862 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
863 {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
864 SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
865 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
866 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
869 SDValue
870 HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
871 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
872 MVT VecTy = ty(VecV);
873 MVT SubTy = ty(SubV);
874 unsigned HwLen = Subtarget.getVectorLength();
875 MVT ElemTy = VecTy.getVectorElementType();
876 unsigned ElemWidth = ElemTy.getSizeInBits();
878 bool IsPair = isHvxPairTy(VecTy);
879 MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
880 // The two single vectors that VecV consists of, if it's a pair.
881 SDValue V0, V1;
882 SDValue SingleV = VecV;
883 SDValue PickHi;
885 if (IsPair) {
886 V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
887 V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
889 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
890 dl, MVT::i32);
891 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
892 if (isHvxSingleTy(SubTy)) {
893 if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
894 unsigned Idx = CN->getZExtValue();
895 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
896 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
897 return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
899 // If IdxV is not a constant, generate the two variants: with the
900 // SubV as the high and as the low subregister, and select the right
901 // pair based on the IdxV.
902 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
903 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
904 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
906 // The subvector being inserted must be entirely contained in one of
907 // the vectors V0 or V1. Set SingleV to the correct one, and update
908 // IdxV to be the index relative to the beginning of that vector.
909 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
910 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
911 SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
914 // The only meaningful subvectors of a single HVX vector are those that
915 // fit in a scalar register.
916 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
917 // Convert IdxV to be index in bytes.
918 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
919 if (!IdxN || !IdxN->isNullValue()) {
920 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
921 DAG.getConstant(ElemWidth/8, dl, MVT::i32));
922 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
924 // When inserting a single word, the rotation back to the original position
925 // would be by HwLen-Idx, but if two words are inserted, it will need to be
926 // by (HwLen-4)-Idx.
927 unsigned RolBase = HwLen;
928 if (VecTy.getSizeInBits() == 32) {
929 SDValue V = DAG.getBitcast(MVT::i32, SubV);
930 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
931 } else {
932 SDValue V = DAG.getBitcast(MVT::i64, SubV);
933 SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
934 SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
935 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
936 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
937 DAG.getConstant(4, dl, MVT::i32));
938 SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
939 RolBase = HwLen-4;
941 // If the vector wasn't ror'ed, don't ror it back.
942 if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
943 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
944 DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
945 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
948 if (IsPair) {
949 SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
950 SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
951 return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
953 return SingleV;
956 SDValue
957 HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
958 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
959 MVT VecTy = ty(VecV);
960 MVT SubTy = ty(SubV);
961 assert(Subtarget.isHVXVectorType(VecTy, true));
962 // VecV is an HVX vector predicate. SubV may be either an HVX vector
963 // predicate as well, or it can be a scalar predicate.
965 unsigned VecLen = VecTy.getVectorNumElements();
966 unsigned HwLen = Subtarget.getVectorLength();
967 assert(HwLen % VecLen == 0 && "Unexpected vector type");
969 unsigned Scale = VecLen / SubTy.getVectorNumElements();
970 unsigned BitBytes = HwLen / VecLen;
971 unsigned BlockLen = HwLen / Scale;
973 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
974 SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
975 SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
976 SDValue ByteIdx;
978 auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
979 if (!IdxN || !IdxN->isNullValue()) {
980 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
981 DAG.getConstant(BitBytes, dl, MVT::i32));
982 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
985 // ByteVec is the target vector VecV rotated in such a way that the
986 // subvector should be inserted at index 0. Generate a predicate mask
987 // and use vmux to do the insertion.
988 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
989 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
990 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
991 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
992 // Rotate ByteVec back, and convert to a vector predicate.
993 if (!IdxN || !IdxN->isNullValue()) {
994 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
995 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
996 ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
998 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
1001 SDValue
1002 HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1003 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1004 // Sign- and any-extending of a vector predicate to a vector register is
1005 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1006 // a vector of 1s (where the 1s are of type matching the vector type).
1007 assert(Subtarget.isHVXVectorType(ResTy));
1008 if (!ZeroExt)
1009 return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
1011 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1012 SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
1013 DAG.getConstant(1, dl, MVT::i32));
1014 SDValue False = getZero(dl, ResTy, DAG);
1015 return DAG.getSelect(dl, ResTy, VecV, True, False);
1018 SDValue
1019 HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1020 const {
1021 const SDLoc &dl(Op);
1022 MVT VecTy = ty(Op);
1024 unsigned Size = Op.getNumOperands();
1025 SmallVector<SDValue,128> Ops;
1026 for (unsigned i = 0; i != Size; ++i)
1027 Ops.push_back(Op.getOperand(i));
1029 if (VecTy.getVectorElementType() == MVT::i1)
1030 return buildHvxVectorPred(Ops, dl, VecTy, DAG);
1032 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1033 ArrayRef<SDValue> A(Ops);
1034 MVT SingleTy = typeSplit(VecTy).first;
1035 SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
1036 SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
1037 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
1040 return buildHvxVectorReg(Ops, dl, VecTy, DAG);
1043 SDValue
1044 HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1045 const {
1046 // Vector concatenation of two integer (non-bool) vectors does not need
1047 // special lowering. Custom-lower concats of bool vectors and expand
1048 // concats of more than 2 vectors.
1049 MVT VecTy = ty(Op);
1050 const SDLoc &dl(Op);
1051 unsigned NumOp = Op.getNumOperands();
1052 if (VecTy.getVectorElementType() != MVT::i1) {
1053 if (NumOp == 2)
1054 return Op;
1055 // Expand the other cases into a build-vector.
1056 SmallVector<SDValue,8> Elems;
1057 for (SDValue V : Op.getNode()->ops())
1058 DAG.ExtractVectorElements(V, Elems);
1059 // A vector of i16 will be broken up into a build_vector of i16's.
1060 // This is a problem, since at the time of operation legalization,
1061 // all operations are expected to be type-legalized, and i16 is not
1062 // a legal type. If any of the extracted elements is not of a valid
1063 // type, sign-extend it to a valid one.
1064 for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1065 SDValue V = Elems[i];
1066 MVT Ty = ty(V);
1067 if (!isTypeLegal(Ty)) {
1068 EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
1069 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1070 Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
1071 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
1072 V.getOperand(0), V.getOperand(1)),
1073 DAG.getValueType(Ty));
1074 continue;
1076 // A few less complicated cases.
1077 if (V.getOpcode() == ISD::Constant)
1078 Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
1079 else if (V.isUndef())
1080 Elems[i] = DAG.getUNDEF(NTy);
1081 else
1082 llvm_unreachable("Unexpected vector element");
1085 return DAG.getBuildVector(VecTy, dl, Elems);
1088 assert(VecTy.getVectorElementType() == MVT::i1);
1089 unsigned HwLen = Subtarget.getVectorLength();
1090 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1092 SDValue Op0 = Op.getOperand(0);
1094 // If the operands are HVX types (i.e. not scalar predicates), then
1095 // defer the concatenation, and create QCAT instead.
1096 if (Subtarget.isHVXVectorType(ty(Op0), true)) {
1097 if (NumOp == 2)
1098 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
1100 ArrayRef<SDUse> U(Op.getNode()->ops());
1101 SmallVector<SDValue,4> SV(U.begin(), U.end());
1102 ArrayRef<SDValue> Ops(SV);
1104 MVT HalfTy = typeSplit(VecTy).first;
1105 SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1106 Ops.take_front(NumOp/2));
1107 SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
1108 Ops.take_back(NumOp/2));
1109 return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
1112 // Count how many bytes (in a vector register) each bit in VecTy
1113 // corresponds to.
1114 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1116 SmallVector<SDValue,8> Prefixes;
1117 for (SDValue V : Op.getNode()->op_values()) {
1118 SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
1119 Prefixes.push_back(P);
1122 unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
1123 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1124 SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1125 SDValue Res = getZero(dl, ByteTy, DAG);
1126 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1127 Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
1128 Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
1130 return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
1133 SDValue
1134 HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1135 const {
1136 // Change the type of the extracted element to i32.
1137 SDValue VecV = Op.getOperand(0);
1138 MVT ElemTy = ty(VecV).getVectorElementType();
1139 const SDLoc &dl(Op);
1140 SDValue IdxV = Op.getOperand(1);
1141 if (ElemTy == MVT::i1)
1142 return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
1144 return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
1147 SDValue
1148 HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1149 const {
1150 const SDLoc &dl(Op);
1151 SDValue VecV = Op.getOperand(0);
1152 SDValue ValV = Op.getOperand(1);
1153 SDValue IdxV = Op.getOperand(2);
1154 MVT ElemTy = ty(VecV).getVectorElementType();
1155 if (ElemTy == MVT::i1)
1156 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1158 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1161 SDValue
1162 HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1163 const {
1164 SDValue SrcV = Op.getOperand(0);
1165 MVT SrcTy = ty(SrcV);
1166 MVT DstTy = ty(Op);
1167 SDValue IdxV = Op.getOperand(1);
1168 unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
1169 assert(Idx % DstTy.getVectorNumElements() == 0);
1170 (void)Idx;
1171 const SDLoc &dl(Op);
1173 MVT ElemTy = SrcTy.getVectorElementType();
1174 if (ElemTy == MVT::i1)
1175 return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
1177 return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
1180 SDValue
1181 HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1182 const {
1183 // Idx does not need to be a constant.
1184 SDValue VecV = Op.getOperand(0);
1185 SDValue ValV = Op.getOperand(1);
1186 SDValue IdxV = Op.getOperand(2);
1188 const SDLoc &dl(Op);
1189 MVT VecTy = ty(VecV);
1190 MVT ElemTy = VecTy.getVectorElementType();
1191 if (ElemTy == MVT::i1)
1192 return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
1194 return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
1197 SDValue
1198 HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1199 // Lower any-extends of boolean vectors to sign-extends, since they
1200 // translate directly to Q2V. Zero-extending could also be done equally
1201 // fast, but Q2V is used/recognized in more places.
1202 // For all other vectors, use zero-extend.
1203 MVT ResTy = ty(Op);
1204 SDValue InpV = Op.getOperand(0);
1205 MVT ElemTy = ty(InpV).getVectorElementType();
1206 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1207 return LowerHvxSignExt(Op, DAG);
1208 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
1211 SDValue
1212 HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1213 MVT ResTy = ty(Op);
1214 SDValue InpV = Op.getOperand(0);
1215 MVT ElemTy = ty(InpV).getVectorElementType();
1216 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1217 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
1218 return Op;
1221 SDValue
1222 HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1223 MVT ResTy = ty(Op);
1224 SDValue InpV = Op.getOperand(0);
1225 MVT ElemTy = ty(InpV).getVectorElementType();
1226 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1227 return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
1228 return Op;
1231 SDValue
1232 HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1233 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1234 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1235 const SDLoc &dl(Op);
1236 MVT ResTy = ty(Op);
1237 SDValue InpV = Op.getOperand(0);
1238 assert(ResTy == ty(InpV));
1240 // Calculate the vectors of 1 and bitwidth(x).
1241 MVT ElemTy = ty(InpV).getVectorElementType();
1242 unsigned ElemWidth = ElemTy.getSizeInBits();
1243 // Using uint64_t because a shift by 32 can happen.
1244 uint64_t Splat1 = 0, SplatW = 0;
1245 assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
1246 for (unsigned i = 0; i != 32/ElemWidth; ++i) {
1247 Splat1 = (Splat1 << ElemWidth) | 1;
1248 SplatW = (SplatW << ElemWidth) | ElemWidth;
1250 SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1251 DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
1252 SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1253 DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
1254 SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
1255 DAG.getConstant(-1, dl, MVT::i32));
1256 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1257 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1258 // it separately in custom combine or selection).
1259 SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
1260 {DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
1261 DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
1262 return DAG.getNode(ISD::SUB, dl, ResTy,
1263 {VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
1266 SDValue
1267 HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
1268 MVT ResTy = ty(Op);
1269 assert(ResTy.isVector() && isHvxSingleTy(ResTy));
1270 const SDLoc &dl(Op);
1271 SmallVector<int,256> ShuffMask;
1273 MVT ElemTy = ResTy.getVectorElementType();
1274 unsigned VecLen = ResTy.getVectorNumElements();
1275 SDValue Vs = Op.getOperand(0);
1276 SDValue Vt = Op.getOperand(1);
1278 switch (ElemTy.SimpleTy) {
1279 case MVT::i8: {
1280 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1281 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1282 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1283 MVT ExtTy = typeExtElem(ResTy, 2);
1284 unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
1285 : Hexagon::V6_vmpyhv;
1286 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1288 // Discard high halves of the resulting values, collect the low halves.
1289 for (unsigned I = 0; I < VecLen; I += 2) {
1290 ShuffMask.push_back(I); // Pick even element.
1291 ShuffMask.push_back(I+VecLen); // Pick odd element.
1293 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1294 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1295 return DAG.getBitcast(ResTy, BS);
1297 case MVT::i16:
1298 // For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
1299 // (There is also V6_vmpyhv, which behaves in an analogous way to
1300 // V6_vmpybv.)
1301 return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
1302 case MVT::i32: {
1303 // Use the following sequence for signed word multiply:
1304 // T0 = V6_vmpyiowh Vs, Vt
1305 // T1 = V6_vaslw T0, 16
1306 // T2 = V6_vmpyiewuh_acc T1, Vs, Vt
1307 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1308 SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
1309 SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
1310 SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1311 {T1, Vs, Vt}, DAG);
1312 return T2;
1314 default:
1315 break;
1317 return SDValue();
1320 SDValue
1321 HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1322 MVT ResTy = ty(Op);
1323 assert(ResTy.isVector());
1324 const SDLoc &dl(Op);
1325 SmallVector<int,256> ShuffMask;
1327 MVT ElemTy = ResTy.getVectorElementType();
1328 unsigned VecLen = ResTy.getVectorNumElements();
1329 SDValue Vs = Op.getOperand(0);
1330 SDValue Vt = Op.getOperand(1);
1331 bool IsSigned = Op.getOpcode() == ISD::MULHS;
1333 if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
1334 // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
1335 // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
1336 // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
1337 // For i16, use V6_vmpyhv, which behaves in an analogous way to
1338 // V6_vmpybv: results Lo and Hi are products of even/odd elements
1339 // respectively.
1340 MVT ExtTy = typeExtElem(ResTy, 2);
1341 unsigned MpyOpc = ElemTy == MVT::i8
1342 ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
1343 : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
1344 SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
1346 // Discard low halves of the resulting values, collect the high halves.
1347 for (unsigned I = 0; I < VecLen; I += 2) {
1348 ShuffMask.push_back(I+1); // Pick even element.
1349 ShuffMask.push_back(I+VecLen+1); // Pick odd element.
1351 VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
1352 SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
1353 return DAG.getBitcast(ResTy, BS);
1356 assert(ElemTy == MVT::i32);
1357 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
1359 if (IsSigned) {
1360 // mulhs(Vs,Vt) =
1361 // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1362 // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
1363 // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
1364 // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
1365 // + Lo(Vs) *us Vt] >> 32
1366 // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
1367 // anything, so it cannot produce any carry over to higher bits),
1368 // so everything in [] can be shifted by 16 without loss of precision.
1369 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
1370 // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
1371 // Denote Hi(Vs) = Vs':
1372 // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
1373 // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
1374 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
1375 // Get Vs':
1376 SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
1377 SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
1378 {T0, S0, Vt}, DAG);
1379 // Shift by 16:
1380 SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
1381 // Get Vs'*Hi(Vt):
1382 SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
1383 // Add:
1384 SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
1385 return T3;
1388 // Unsigned mulhw. (Would expansion using signed mulhw be better?)
1390 auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
1391 return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
1393 auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
1394 return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
1397 MVT PairTy = typeJoin({ResTy, ResTy});
1398 SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
1399 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
1400 // Multiply-unsigned halfwords:
1401 // LoVec = Vs.uh[2i] * Vt.uh[2i],
1402 // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
1403 SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
1404 // The low halves in the LoVec of the pair can be discarded. They are
1405 // not added to anything (in the full-precision product), so they cannot
1406 // produce a carry into the higher bits.
1407 SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
1408 // Swap low and high halves in Vt, and do the halfword multiplication
1409 // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
1410 SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
1411 SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
1412 // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
1413 // These products are words, but cannot be added directly because the
1414 // sums could overflow. Add these products, by halfwords, where each sum
1415 // of a pair of halfwords gives a word.
1416 SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
1417 {LoVec(T2), HiVec(T2)}, DAG);
1418 // Add the high halfwords from the products of the low halfwords.
1419 SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
1420 SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
1421 SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
1422 SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
1423 return T7;
1426 SDValue
1427 HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
1428 // Sign- and zero-extends are legal.
1429 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
1430 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
1431 Op.getOperand(0));
1434 SDValue
1435 HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
1436 if (SDValue S = getVectorShiftByInt(Op, DAG))
1437 return S;
1438 return Op;
1441 SDValue
1442 HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
1443 assert(!Op.isMachineOpcode());
1444 SmallVector<SDValue,2> OpsL, OpsH;
1445 const SDLoc &dl(Op);
1447 auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
1448 MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
1449 SDValue TV = DAG.getValueType(Ty);
1450 return std::make_pair(TV, TV);
1453 for (SDValue A : Op.getNode()->ops()) {
1454 VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
1455 ? opSplit(A, dl, DAG)
1456 : std::make_pair(A, A);
1457 // Special case for type operand.
1458 if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1459 if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
1460 P = SplitVTNode(N);
1462 OpsL.push_back(P.first);
1463 OpsH.push_back(P.second);
1466 MVT ResTy = ty(Op);
1467 MVT HalfTy = typeSplit(ResTy).first;
1468 SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
1469 SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
1470 SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
1471 return S;
1474 SDValue
1475 HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
1476 LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
1477 assert(BN->isUnindexed());
1478 MVT MemTy = BN->getMemoryVT().getSimpleVT();
1479 if (!isHvxPairTy(MemTy))
1480 return Op;
1482 const SDLoc &dl(Op);
1483 unsigned HwLen = Subtarget.getVectorLength();
1484 MVT SingleTy = typeSplit(MemTy).first;
1485 SDValue Chain = BN->getChain();
1486 SDValue Base0 = BN->getBasePtr();
1487 SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
1489 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
1490 if (MachineMemOperand *MMO = BN->getMemOperand()) {
1491 MachineFunction &MF = DAG.getMachineFunction();
1492 MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
1493 MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
1496 unsigned MemOpc = BN->getOpcode();
1497 SDValue NewOp;
1499 if (MemOpc == ISD::LOAD) {
1500 SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
1501 SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
1502 NewOp = DAG.getMergeValues(
1503 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
1504 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1505 Load0.getValue(1), Load1.getValue(1)) }, dl);
1506 } else {
1507 assert(MemOpc == ISD::STORE);
1508 VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
1509 SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
1510 SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
1511 NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
1514 return NewOp;
1517 SDValue
1518 HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
1519 unsigned Opc = Op.getOpcode();
1520 bool IsPairOp = isHvxPairTy(ty(Op)) ||
1521 llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
1522 return isHvxPairTy(ty(V));
1525 if (IsPairOp) {
1526 switch (Opc) {
1527 default:
1528 break;
1529 case ISD::LOAD:
1530 case ISD::STORE:
1531 return SplitHvxMemOp(Op, DAG);
1532 case ISD::CTPOP:
1533 case ISD::CTLZ:
1534 case ISD::CTTZ:
1535 case ISD::MUL:
1536 case ISD::MULHS:
1537 case ISD::MULHU:
1538 case ISD::AND:
1539 case ISD::OR:
1540 case ISD::XOR:
1541 case ISD::SRA:
1542 case ISD::SHL:
1543 case ISD::SRL:
1544 case ISD::SETCC:
1545 case ISD::VSELECT:
1546 case ISD::SIGN_EXTEND:
1547 case ISD::ZERO_EXTEND:
1548 case ISD::SIGN_EXTEND_INREG:
1549 return SplitHvxPairOp(Op, DAG);
1553 switch (Opc) {
1554 default:
1555 break;
1556 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
1557 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
1558 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
1559 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
1560 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
1561 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
1563 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
1564 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
1565 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
1566 case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
1567 case ISD::SRA:
1568 case ISD::SHL:
1569 case ISD::SRL: return LowerHvxShift(Op, DAG);
1570 case ISD::MUL: return LowerHvxMul(Op, DAG);
1571 case ISD::MULHS:
1572 case ISD::MULHU: return LowerHvxMulh(Op, DAG);
1573 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
1574 case ISD::SETCC:
1575 case ISD::INTRINSIC_VOID: return Op;
1576 // Unaligned loads will be handled by the default lowering.
1577 case ISD::LOAD: return SDValue();
1579 #ifndef NDEBUG
1580 Op.dumpr(&DAG);
1581 #endif
1582 llvm_unreachable("Unhandled HVX operation");
1585 SDValue
1586 HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
1587 const {
1588 const SDLoc &dl(N);
1589 SDValue Op(N, 0);
1591 unsigned Opc = Op.getOpcode();
1592 if (Opc == ISD::VSELECT) {
1593 // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
1594 SDValue Cond = Op.getOperand(0);
1595 if (Cond->getOpcode() == ISD::XOR) {
1596 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
1597 if (C1->getOpcode() == HexagonISD::QTRUE) {
1598 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
1599 Op.getOperand(2), Op.getOperand(1));
1600 return VSel;
1604 return SDValue();
1607 bool
1608 HexagonTargetLowering::isHvxOperation(SDValue Op) const {
1609 // If the type of the result, or any operand type are HVX vector types,
1610 // this is an HVX operation.
1611 return Subtarget.isHVXVectorType(ty(Op), true) ||
1612 llvm::any_of(Op.getNode()->ops(),
1613 [this] (SDValue V) {
1614 return Subtarget.isHVXVectorType(ty(V), true);