1 //===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonInstrInfo.h"
15 #include "HexagonFrameLowering.h"
16 #include "HexagonHazardRecognizer.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/CodeGen/DFAPacketizer.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/ScheduleDAG.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/MC/MCRegisterInfo.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
64 #define DEBUG_TYPE "hexagon-instrinfo"
66 #define GET_INSTRINFO_CTOR_DTOR
67 #define GET_INSTRMAP_INFO
68 #include "HexagonDepTimingClasses.h"
69 #include "HexagonGenDFAPacketizer.inc"
70 #include "HexagonGenInstrInfo.inc"
72 cl::opt
<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden
,
73 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
74 "packetization boundary."));
76 static cl::opt
<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
77 cl::Hidden
, cl::init(true), cl::desc("Enable branch prediction"));
79 static cl::opt
<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
80 cl::Hidden
, cl::ZeroOrMore
, cl::init(false),
81 cl::desc("Disable schedule adjustment for new value stores."));
83 static cl::opt
<bool> EnableTimingClassLatency(
84 "enable-timing-class-latency", cl::Hidden
, cl::init(false),
85 cl::desc("Enable timing class latency"));
87 static cl::opt
<bool> EnableALUForwarding(
88 "enable-alu-forwarding", cl::Hidden
, cl::init(true),
89 cl::desc("Enable vec alu forwarding"));
91 static cl::opt
<bool> EnableACCForwarding(
92 "enable-acc-forwarding", cl::Hidden
, cl::init(true),
93 cl::desc("Enable vec acc forwarding"));
95 static cl::opt
<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
96 cl::init(true), cl::Hidden
, cl::ZeroOrMore
, cl::desc("branch relax asm"));
98 static cl::opt
<bool> UseDFAHazardRec("dfa-hazard-rec",
99 cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
100 cl::desc("Use the DFA based hazard recognizer."));
102 /// Constants for Hexagon instructions.
103 const int Hexagon_MEMW_OFFSET_MAX
= 4095;
104 const int Hexagon_MEMW_OFFSET_MIN
= -4096;
105 const int Hexagon_MEMD_OFFSET_MAX
= 8191;
106 const int Hexagon_MEMD_OFFSET_MIN
= -8192;
107 const int Hexagon_MEMH_OFFSET_MAX
= 2047;
108 const int Hexagon_MEMH_OFFSET_MIN
= -2048;
109 const int Hexagon_MEMB_OFFSET_MAX
= 1023;
110 const int Hexagon_MEMB_OFFSET_MIN
= -1024;
111 const int Hexagon_ADDI_OFFSET_MAX
= 32767;
112 const int Hexagon_ADDI_OFFSET_MIN
= -32768;
114 // Pin the vtable to this file.
115 void HexagonInstrInfo::anchor() {}
117 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget
&ST
)
118 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN
, Hexagon::ADJCALLSTACKUP
),
121 static bool isIntRegForSubInst(unsigned Reg
) {
122 return (Reg
>= Hexagon::R0
&& Reg
<= Hexagon::R7
) ||
123 (Reg
>= Hexagon::R16
&& Reg
<= Hexagon::R23
);
126 static bool isDblRegForSubInst(unsigned Reg
, const HexagonRegisterInfo
&HRI
) {
127 return isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_lo
)) &&
128 isIntRegForSubInst(HRI
.getSubReg(Reg
, Hexagon::isub_hi
));
131 /// Calculate number of instructions excluding the debug instructions.
132 static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB
,
133 MachineBasicBlock::const_instr_iterator MIE
) {
135 for (; MIB
!= MIE
; ++MIB
) {
136 if (!MIB
->isDebugInstr())
142 /// Find the hardware loop instruction used to set-up the specified loop.
143 /// On Hexagon, we have two instructions used to set-up the hardware loop
144 /// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
145 /// to indicate the end of a loop.
146 MachineInstr
*HexagonInstrInfo::findLoopInstr(MachineBasicBlock
*BB
,
147 unsigned EndLoopOp
, MachineBasicBlock
*TargetBB
,
148 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const {
151 if (EndLoopOp
== Hexagon::ENDLOOP0
) {
152 LOOPi
= Hexagon::J2_loop0i
;
153 LOOPr
= Hexagon::J2_loop0r
;
154 } else { // EndLoopOp == Hexagon::EndLOOP1
155 LOOPi
= Hexagon::J2_loop1i
;
156 LOOPr
= Hexagon::J2_loop1r
;
159 // The loop set-up instruction will be in a predecessor block
160 for (MachineBasicBlock
*PB
: BB
->predecessors()) {
161 // If this has been visited, already skip it.
162 if (!Visited
.insert(PB
).second
)
166 for (auto I
= PB
->instr_rbegin(), E
= PB
->instr_rend(); I
!= E
; ++I
) {
167 unsigned Opc
= I
->getOpcode();
168 if (Opc
== LOOPi
|| Opc
== LOOPr
)
170 // We've reached a different loop, which means the loop01 has been
172 if (Opc
== EndLoopOp
&& I
->getOperand(0).getMBB() != TargetBB
)
175 // Check the predecessors for the LOOP instruction.
176 if (MachineInstr
*Loop
= findLoopInstr(PB
, EndLoopOp
, TargetBB
, Visited
))
182 /// Gather register def/uses from MI.
183 /// This treats possible (predicated) defs as actually happening ones
184 /// (conservatively).
185 static inline void parseOperands(const MachineInstr
&MI
,
186 SmallVector
<unsigned, 4> &Defs
, SmallVector
<unsigned, 8> &Uses
) {
190 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
191 const MachineOperand
&MO
= MI
.getOperand(i
);
196 Register Reg
= MO
.getReg();
201 Uses
.push_back(MO
.getReg());
204 Defs
.push_back(MO
.getReg());
208 // Position dependent, so check twice for swap.
209 static bool isDuplexPairMatch(unsigned Ga
, unsigned Gb
) {
211 case HexagonII::HSIG_None
:
214 case HexagonII::HSIG_L1
:
215 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_A
);
216 case HexagonII::HSIG_L2
:
217 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
218 Gb
== HexagonII::HSIG_A
);
219 case HexagonII::HSIG_S1
:
220 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
221 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_A
);
222 case HexagonII::HSIG_S2
:
223 return (Gb
== HexagonII::HSIG_L1
|| Gb
== HexagonII::HSIG_L2
||
224 Gb
== HexagonII::HSIG_S1
|| Gb
== HexagonII::HSIG_S2
||
225 Gb
== HexagonII::HSIG_A
);
226 case HexagonII::HSIG_A
:
227 return (Gb
== HexagonII::HSIG_A
);
228 case HexagonII::HSIG_Compound
:
229 return (Gb
== HexagonII::HSIG_Compound
);
234 /// isLoadFromStackSlot - If the specified machine instruction is a direct
235 /// load from a stack slot, return the virtual or physical register number of
236 /// the destination along with the FrameIndex of the loaded stack slot. If
237 /// not, return 0. This predicate must return 0 if the instruction has
238 /// any side effects other than loading from the stack slot.
239 unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
240 int &FrameIndex
) const {
241 switch (MI
.getOpcode()) {
244 case Hexagon::L2_loadri_io
:
245 case Hexagon::L2_loadrd_io
:
246 case Hexagon::V6_vL32b_ai
:
247 case Hexagon::V6_vL32b_nt_ai
:
248 case Hexagon::V6_vL32Ub_ai
:
249 case Hexagon::LDriw_pred
:
250 case Hexagon::LDriw_ctr
:
251 case Hexagon::PS_vloadrq_ai
:
252 case Hexagon::PS_vloadrw_ai
:
253 case Hexagon::PS_vloadrw_nt_ai
: {
254 const MachineOperand OpFI
= MI
.getOperand(1);
257 const MachineOperand OpOff
= MI
.getOperand(2);
258 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
260 FrameIndex
= OpFI
.getIndex();
261 return MI
.getOperand(0).getReg();
264 case Hexagon::L2_ploadrit_io
:
265 case Hexagon::L2_ploadrif_io
:
266 case Hexagon::L2_ploadrdt_io
:
267 case Hexagon::L2_ploadrdf_io
: {
268 const MachineOperand OpFI
= MI
.getOperand(2);
271 const MachineOperand OpOff
= MI
.getOperand(3);
272 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
274 FrameIndex
= OpFI
.getIndex();
275 return MI
.getOperand(0).getReg();
282 /// isStoreToStackSlot - If the specified machine instruction is a direct
283 /// store to a stack slot, return the virtual or physical register number of
284 /// the source reg along with the FrameIndex of the loaded stack slot. If
285 /// not, return 0. This predicate must return 0 if the instruction has
286 /// any side effects other than storing to the stack slot.
287 unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
288 int &FrameIndex
) const {
289 switch (MI
.getOpcode()) {
292 case Hexagon::S2_storerb_io
:
293 case Hexagon::S2_storerh_io
:
294 case Hexagon::S2_storeri_io
:
295 case Hexagon::S2_storerd_io
:
296 case Hexagon::V6_vS32b_ai
:
297 case Hexagon::V6_vS32Ub_ai
:
298 case Hexagon::STriw_pred
:
299 case Hexagon::STriw_ctr
:
300 case Hexagon::PS_vstorerq_ai
:
301 case Hexagon::PS_vstorerw_ai
: {
302 const MachineOperand
&OpFI
= MI
.getOperand(0);
305 const MachineOperand
&OpOff
= MI
.getOperand(1);
306 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
308 FrameIndex
= OpFI
.getIndex();
309 return MI
.getOperand(2).getReg();
312 case Hexagon::S2_pstorerbt_io
:
313 case Hexagon::S2_pstorerbf_io
:
314 case Hexagon::S2_pstorerht_io
:
315 case Hexagon::S2_pstorerhf_io
:
316 case Hexagon::S2_pstorerit_io
:
317 case Hexagon::S2_pstorerif_io
:
318 case Hexagon::S2_pstorerdt_io
:
319 case Hexagon::S2_pstorerdf_io
: {
320 const MachineOperand
&OpFI
= MI
.getOperand(1);
323 const MachineOperand
&OpOff
= MI
.getOperand(2);
324 if (!OpOff
.isImm() || OpOff
.getImm() != 0)
326 FrameIndex
= OpFI
.getIndex();
327 return MI
.getOperand(3).getReg();
334 /// This function checks if the instruction or bundle of instructions
335 /// has load from stack slot and returns frameindex and machine memory
336 /// operand of that instruction if true.
337 bool HexagonInstrInfo::hasLoadFromStackSlot(
338 const MachineInstr
&MI
,
339 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
341 const MachineBasicBlock
*MBB
= MI
.getParent();
342 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
343 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
344 if (TargetInstrInfo::hasLoadFromStackSlot(*MII
, Accesses
))
349 return TargetInstrInfo::hasLoadFromStackSlot(MI
, Accesses
);
352 /// This function checks if the instruction or bundle of instructions
353 /// has store to stack slot and returns frameindex and machine memory
354 /// operand of that instruction if true.
355 bool HexagonInstrInfo::hasStoreToStackSlot(
356 const MachineInstr
&MI
,
357 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
359 const MachineBasicBlock
*MBB
= MI
.getParent();
360 MachineBasicBlock::const_instr_iterator MII
= MI
.getIterator();
361 for (++MII
; MII
!= MBB
->instr_end() && MII
->isInsideBundle(); ++MII
)
362 if (TargetInstrInfo::hasStoreToStackSlot(*MII
, Accesses
))
367 return TargetInstrInfo::hasStoreToStackSlot(MI
, Accesses
);
370 /// This function can analyze one/two way branching only and should (mostly) be
371 /// called by target independent side.
372 /// First entry is always the opcode of the branching instruction, except when
373 /// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
374 /// BB with only unconditional jump. Subsequent entries depend upon the opcode,
375 /// e.g. Jump_c p will have
379 /// Cond[0] = ENDLOOP
382 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
385 bool HexagonInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
386 MachineBasicBlock
*&TBB
,
387 MachineBasicBlock
*&FBB
,
388 SmallVectorImpl
<MachineOperand
> &Cond
,
389 bool AllowModify
) const {
394 // If the block has no terminators, it just falls into the block after it.
395 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
396 if (I
== MBB
.instr_begin())
399 // A basic block may looks like this:
409 // It has two succs but does not have a terminator
410 // Don't know how to handle it.
414 // Don't analyze EH branches.
416 } while (I
!= MBB
.instr_begin());
421 while (I
->isDebugInstr()) {
422 if (I
== MBB
.instr_begin())
427 bool JumpToBlock
= I
->getOpcode() == Hexagon::J2_jump
&&
428 I
->getOperand(0).isMBB();
429 // Delete the J2_jump if it's equivalent to a fall-through.
430 if (AllowModify
&& JumpToBlock
&&
431 MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
432 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
433 I
->eraseFromParent();
435 if (I
== MBB
.instr_begin())
439 if (!isUnpredicatedTerminator(*I
))
442 // Get the last instruction in the block.
443 MachineInstr
*LastInst
= &*I
;
444 MachineInstr
*SecondLastInst
= nullptr;
445 // Find one more terminator if present.
447 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
449 SecondLastInst
= &*I
;
451 // This is a third branch.
454 if (I
== MBB
.instr_begin())
459 int LastOpcode
= LastInst
->getOpcode();
460 int SecLastOpcode
= SecondLastInst
? SecondLastInst
->getOpcode() : 0;
461 // If the branch target is not a basic block, it could be a tail call.
462 // (It is, if the target is a function.)
463 if (LastOpcode
== Hexagon::J2_jump
&& !LastInst
->getOperand(0).isMBB())
465 if (SecLastOpcode
== Hexagon::J2_jump
&&
466 !SecondLastInst
->getOperand(0).isMBB())
469 bool LastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(LastOpcode
);
470 bool LastOpcodeHasNVJump
= isNewValueJump(*LastInst
);
472 if (LastOpcodeHasJMP_c
&& !LastInst
->getOperand(1).isMBB())
475 // If there is only one terminator instruction, process it.
476 if (LastInst
&& !SecondLastInst
) {
477 if (LastOpcode
== Hexagon::J2_jump
) {
478 TBB
= LastInst
->getOperand(0).getMBB();
481 if (isEndLoopN(LastOpcode
)) {
482 TBB
= LastInst
->getOperand(0).getMBB();
483 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
484 Cond
.push_back(LastInst
->getOperand(0));
487 if (LastOpcodeHasJMP_c
) {
488 TBB
= LastInst
->getOperand(1).getMBB();
489 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
490 Cond
.push_back(LastInst
->getOperand(0));
493 // Only supporting rr/ri versions of new-value jumps.
494 if (LastOpcodeHasNVJump
&& (LastInst
->getNumExplicitOperands() == 3)) {
495 TBB
= LastInst
->getOperand(2).getMBB();
496 Cond
.push_back(MachineOperand::CreateImm(LastInst
->getOpcode()));
497 Cond
.push_back(LastInst
->getOperand(0));
498 Cond
.push_back(LastInst
->getOperand(1));
501 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
502 << " with one jump\n";);
503 // Otherwise, don't know what this is.
507 bool SecLastOpcodeHasJMP_c
= PredOpcodeHasJMP_c(SecLastOpcode
);
508 bool SecLastOpcodeHasNVJump
= isNewValueJump(*SecondLastInst
);
509 if (SecLastOpcodeHasJMP_c
&& (LastOpcode
== Hexagon::J2_jump
)) {
510 if (!SecondLastInst
->getOperand(1).isMBB())
512 TBB
= SecondLastInst
->getOperand(1).getMBB();
513 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
514 Cond
.push_back(SecondLastInst
->getOperand(0));
515 FBB
= LastInst
->getOperand(0).getMBB();
519 // Only supporting rr/ri versions of new-value jumps.
520 if (SecLastOpcodeHasNVJump
&&
521 (SecondLastInst
->getNumExplicitOperands() == 3) &&
522 (LastOpcode
== Hexagon::J2_jump
)) {
523 TBB
= SecondLastInst
->getOperand(2).getMBB();
524 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
525 Cond
.push_back(SecondLastInst
->getOperand(0));
526 Cond
.push_back(SecondLastInst
->getOperand(1));
527 FBB
= LastInst
->getOperand(0).getMBB();
531 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
532 // executed, so remove it.
533 if (SecLastOpcode
== Hexagon::J2_jump
&& LastOpcode
== Hexagon::J2_jump
) {
534 TBB
= SecondLastInst
->getOperand(0).getMBB();
535 I
= LastInst
->getIterator();
537 I
->eraseFromParent();
541 // If the block ends with an ENDLOOP, and J2_jump, handle it.
542 if (isEndLoopN(SecLastOpcode
) && LastOpcode
== Hexagon::J2_jump
) {
543 TBB
= SecondLastInst
->getOperand(0).getMBB();
544 Cond
.push_back(MachineOperand::CreateImm(SecondLastInst
->getOpcode()));
545 Cond
.push_back(SecondLastInst
->getOperand(0));
546 FBB
= LastInst
->getOperand(0).getMBB();
549 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB
)
550 << " with two jumps";);
551 // Otherwise, can't handle this.
555 unsigned HexagonInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
556 int *BytesRemoved
) const {
557 assert(!BytesRemoved
&& "code size not handled");
559 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB
));
560 MachineBasicBlock::iterator I
= MBB
.end();
562 while (I
!= MBB
.begin()) {
564 if (I
->isDebugInstr())
566 // Only removing branches from end of MBB.
569 if (Count
&& (I
->getOpcode() == Hexagon::J2_jump
))
570 llvm_unreachable("Malformed basic block: unconditional branch not last");
571 MBB
.erase(&MBB
.back());
578 unsigned HexagonInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
579 MachineBasicBlock
*TBB
,
580 MachineBasicBlock
*FBB
,
581 ArrayRef
<MachineOperand
> Cond
,
583 int *BytesAdded
) const {
584 unsigned BOpc
= Hexagon::J2_jump
;
585 unsigned BccOpc
= Hexagon::J2_jumpt
;
586 assert(validateBranchCond(Cond
) && "Invalid branching condition");
587 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
588 assert(!BytesAdded
&& "code size not handled");
590 // Check if reverseBranchCondition has asked to reverse this branch
591 // If we want to reverse the branch an odd number of times, we want
593 if (!Cond
.empty() && Cond
[0].isImm())
594 BccOpc
= Cond
[0].getImm();
598 // Due to a bug in TailMerging/CFG Optimization, we need to add a
599 // special case handling of a predicated jump followed by an
600 // unconditional jump. If not, Tail Merging and CFG Optimization go
601 // into an infinite loop.
602 MachineBasicBlock
*NewTBB
, *NewFBB
;
603 SmallVector
<MachineOperand
, 4> Cond
;
604 auto Term
= MBB
.getFirstTerminator();
605 if (Term
!= MBB
.end() && isPredicated(*Term
) &&
606 !analyzeBranch(MBB
, NewTBB
, NewFBB
, Cond
, false) &&
607 MachineFunction::iterator(NewTBB
) == ++MBB
.getIterator()) {
608 reverseBranchCondition(Cond
);
610 return insertBranch(MBB
, TBB
, nullptr, Cond
, DL
);
612 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
613 } else if (isEndLoopN(Cond
[0].getImm())) {
614 int EndLoopOp
= Cond
[0].getImm();
615 assert(Cond
[1].isMBB());
616 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
617 // Check for it, and change the BB target if needed.
618 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
619 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
621 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
622 Loop
->getOperand(0).setMBB(TBB
);
623 // Add the ENDLOOP after the finding the LOOP0.
624 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
625 } else if (isNewValueJump(Cond
[0].getImm())) {
626 assert((Cond
.size() == 3) && "Only supporting rr/ri version of nvjump");
628 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
629 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
630 unsigned Flags1
= getUndefRegState(Cond
[1].isUndef());
631 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
632 << printMBBReference(MBB
););
633 if (Cond
[2].isReg()) {
634 unsigned Flags2
= getUndefRegState(Cond
[2].isUndef());
635 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
636 addReg(Cond
[2].getReg(), Flags2
).addMBB(TBB
);
637 } else if(Cond
[2].isImm()) {
638 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(Cond
[1].getReg(), Flags1
).
639 addImm(Cond
[2].getImm()).addMBB(TBB
);
641 llvm_unreachable("Invalid condition for branching");
643 assert((Cond
.size() == 2) && "Malformed cond vector");
644 const MachineOperand
&RO
= Cond
[1];
645 unsigned Flags
= getUndefRegState(RO
.isUndef());
646 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
650 assert((!Cond
.empty()) &&
651 "Cond. cannot be empty when multiple branchings are required");
652 assert((!isNewValueJump(Cond
[0].getImm())) &&
653 "NV-jump cannot be inserted with another branch");
654 // Special case for hardware loops. The condition is a basic block.
655 if (isEndLoopN(Cond
[0].getImm())) {
656 int EndLoopOp
= Cond
[0].getImm();
657 assert(Cond
[1].isMBB());
658 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
659 // Check for it, and change the BB target if needed.
660 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
661 MachineInstr
*Loop
= findLoopInstr(TBB
, EndLoopOp
, Cond
[1].getMBB(),
663 assert(Loop
!= nullptr && "Inserting an ENDLOOP without a LOOP");
664 Loop
->getOperand(0).setMBB(TBB
);
665 // Add the ENDLOOP after the finding the LOOP0.
666 BuildMI(&MBB
, DL
, get(EndLoopOp
)).addMBB(TBB
);
668 const MachineOperand
&RO
= Cond
[1];
669 unsigned Flags
= getUndefRegState(RO
.isUndef());
670 BuildMI(&MBB
, DL
, get(BccOpc
)).addReg(RO
.getReg(), Flags
).addMBB(TBB
);
672 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
677 class HexagonPipelinerLoopInfo
: public TargetInstrInfo::PipelinerLoopInfo
{
678 MachineInstr
*Loop
, *EndLoop
;
680 const HexagonInstrInfo
*TII
;
683 HexagonPipelinerLoopInfo(MachineInstr
*Loop
, MachineInstr
*EndLoop
)
684 : Loop(Loop
), EndLoop(EndLoop
), MF(Loop
->getParent()->getParent()),
685 TII(MF
->getSubtarget
<HexagonSubtarget
>().getInstrInfo()) {}
687 bool shouldIgnoreForPipelining(const MachineInstr
*MI
) const override
{
688 // Only ignore the terminator.
689 return MI
== EndLoop
;
693 createTripCountGreaterCondition(int TC
, MachineBasicBlock
&MBB
,
694 SmallVectorImpl
<MachineOperand
> &Cond
) override
{
695 if (Loop
->getOpcode() == Hexagon::J2_loop0r
) {
696 Register LoopCount
= Loop
->getOperand(1).getReg();
697 // Check if we're done with the loop.
698 unsigned Done
= TII
->createVR(MF
, MVT::i1
);
699 MachineInstr
*NewCmp
= BuildMI(&MBB
, Loop
->getDebugLoc(),
700 TII
->get(Hexagon::C2_cmpgtui
), Done
)
703 Cond
.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf
));
704 Cond
.push_back(NewCmp
->getOperand(0));
708 int64_t TripCount
= Loop
->getOperand(1).getImm();
709 return TripCount
> TC
;
712 void setPreheader(MachineBasicBlock
*NewPreheader
) override
{
713 NewPreheader
->splice(NewPreheader
->getFirstTerminator(), Loop
->getParent(),
717 void adjustTripCount(int TripCountAdjust
) override
{
718 // If the loop trip count is a compile-time value, then just change the
720 if (Loop
->getOpcode() == Hexagon::J2_loop0i
||
721 Loop
->getOpcode() == Hexagon::J2_loop1i
) {
722 int64_t TripCount
= Loop
->getOperand(1).getImm() + TripCountAdjust
;
723 assert(TripCount
> 0 && "Can't create an empty or negative loop!");
724 Loop
->getOperand(1).setImm(TripCount
);
728 // The loop trip count is a run-time value. We generate code to subtract
729 // one from the trip count, and update the loop instruction.
730 Register LoopCount
= Loop
->getOperand(1).getReg();
731 Register NewLoopCount
= TII
->createVR(MF
, MVT::i32
);
732 BuildMI(*Loop
->getParent(), Loop
, Loop
->getDebugLoc(),
733 TII
->get(Hexagon::A2_addi
), NewLoopCount
)
735 .addImm(TripCountAdjust
);
736 Loop
->getOperand(1).setReg(NewLoopCount
);
739 void disposed() override
{ Loop
->eraseFromParent(); }
742 std::unique_ptr
<TargetInstrInfo::PipelinerLoopInfo
>
743 HexagonInstrInfo::analyzeLoopForPipelining(MachineBasicBlock
*LoopBB
) const {
744 // We really "analyze" only hardware loops right now.
745 MachineBasicBlock::iterator I
= LoopBB
->getFirstTerminator();
747 if (I
!= LoopBB
->end() && isEndLoopN(I
->getOpcode())) {
748 SmallPtrSet
<MachineBasicBlock
*, 8> VisitedBBs
;
749 MachineInstr
*LoopInst
= findLoopInstr(
750 LoopBB
, I
->getOpcode(), I
->getOperand(0).getMBB(), VisitedBBs
);
752 return std::make_unique
<HexagonPipelinerLoopInfo
>(LoopInst
, &*I
);
757 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&MBB
,
758 unsigned NumCycles
, unsigned ExtraPredCycles
,
759 BranchProbability Probability
) const {
760 return nonDbgBBSize(&MBB
) <= 3;
763 bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
764 unsigned NumTCycles
, unsigned ExtraTCycles
, MachineBasicBlock
&FMBB
,
765 unsigned NumFCycles
, unsigned ExtraFCycles
, BranchProbability Probability
)
767 return nonDbgBBSize(&TMBB
) <= 3 && nonDbgBBSize(&FMBB
) <= 3;
770 bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
771 unsigned NumInstrs
, BranchProbability Probability
) const {
772 return NumInstrs
<= 4;
775 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
776 MachineBasicBlock::iterator I
,
777 const DebugLoc
&DL
, unsigned DestReg
,
778 unsigned SrcReg
, bool KillSrc
) const {
779 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
780 unsigned KillFlag
= getKillRegState(KillSrc
);
782 if (Hexagon::IntRegsRegClass
.contains(SrcReg
, DestReg
)) {
783 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfr
), DestReg
)
784 .addReg(SrcReg
, KillFlag
);
787 if (Hexagon::DoubleRegsRegClass
.contains(SrcReg
, DestReg
)) {
788 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrp
), DestReg
)
789 .addReg(SrcReg
, KillFlag
);
792 if (Hexagon::PredRegsRegClass
.contains(SrcReg
, DestReg
)) {
793 // Map Pd = Ps to Pd = or(Ps, Ps).
794 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_or
), DestReg
)
795 .addReg(SrcReg
).addReg(SrcReg
, KillFlag
);
798 if (Hexagon::CtrRegsRegClass
.contains(DestReg
) &&
799 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
800 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
801 .addReg(SrcReg
, KillFlag
);
804 if (Hexagon::IntRegsRegClass
.contains(DestReg
) &&
805 Hexagon::CtrRegsRegClass
.contains(SrcReg
)) {
806 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrcrr
), DestReg
)
807 .addReg(SrcReg
, KillFlag
);
810 if (Hexagon::ModRegsRegClass
.contains(DestReg
) &&
811 Hexagon::IntRegsRegClass
.contains(SrcReg
)) {
812 BuildMI(MBB
, I
, DL
, get(Hexagon::A2_tfrrcr
), DestReg
)
813 .addReg(SrcReg
, KillFlag
);
816 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
817 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
818 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
819 .addReg(SrcReg
, KillFlag
);
822 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
823 Hexagon::PredRegsRegClass
.contains(DestReg
)) {
824 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrrp
), DestReg
)
825 .addReg(SrcReg
, KillFlag
);
828 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
829 Hexagon::IntRegsRegClass
.contains(DestReg
)) {
830 BuildMI(MBB
, I
, DL
, get(Hexagon::C2_tfrpr
), DestReg
)
831 .addReg(SrcReg
, KillFlag
);
834 if (Hexagon::HvxVRRegClass
.contains(SrcReg
, DestReg
)) {
835 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vassign
), DestReg
).
836 addReg(SrcReg
, KillFlag
);
839 if (Hexagon::HvxWRRegClass
.contains(SrcReg
, DestReg
)) {
840 Register LoSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
841 Register HiSrc
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
842 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_vcombine
), DestReg
)
843 .addReg(HiSrc
, KillFlag
)
844 .addReg(LoSrc
, KillFlag
);
847 if (Hexagon::HvxQRRegClass
.contains(SrcReg
, DestReg
)) {
848 BuildMI(MBB
, I
, DL
, get(Hexagon::V6_pred_and
), DestReg
)
850 .addReg(SrcReg
, KillFlag
);
853 if (Hexagon::HvxQRRegClass
.contains(SrcReg
) &&
854 Hexagon::HvxVRRegClass
.contains(DestReg
)) {
855 llvm_unreachable("Unimplemented pred to vec");
858 if (Hexagon::HvxQRRegClass
.contains(DestReg
) &&
859 Hexagon::HvxVRRegClass
.contains(SrcReg
)) {
860 llvm_unreachable("Unimplemented vec to pred");
865 // Show the invalid registers to ease debugging.
866 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB
) << ": "
867 << printReg(DestReg
, &HRI
) << " = " << printReg(SrcReg
, &HRI
) << '\n';
869 llvm_unreachable("Unimplemented");
872 void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock
&MBB
,
873 MachineBasicBlock::iterator I
, unsigned SrcReg
, bool isKill
, int FI
,
874 const TargetRegisterClass
*RC
, const TargetRegisterInfo
*TRI
) const {
875 DebugLoc DL
= MBB
.findDebugLoc(I
);
876 MachineFunction
&MF
= *MBB
.getParent();
877 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
878 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
879 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
880 unsigned KillFlag
= getKillRegState(isKill
);
881 bool HasAlloca
= MFI
.hasVarSizedObjects();
882 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
884 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
885 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
886 MFI
.getObjectSize(FI
), SlotAlign
);
888 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
889 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storeri_io
))
890 .addFrameIndex(FI
).addImm(0)
891 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
892 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
893 BuildMI(MBB
, I
, DL
, get(Hexagon::S2_storerd_io
))
894 .addFrameIndex(FI
).addImm(0)
895 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
896 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
897 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_pred
))
898 .addFrameIndex(FI
).addImm(0)
899 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
900 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
901 BuildMI(MBB
, I
, DL
, get(Hexagon::STriw_ctr
))
902 .addFrameIndex(FI
).addImm(0)
903 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
904 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
905 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vstorerq_ai
))
906 .addFrameIndex(FI
).addImm(0)
907 .addReg(SrcReg
, KillFlag
).addMemOperand(MMO
);
908 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
909 // If there are variable-sized objects, spills will not be aligned.
911 SlotAlign
= HFI
.getStackAlignment();
912 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vS32Ub_ai
913 : Hexagon::V6_vS32b_ai
;
914 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
915 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
916 MFI
.getObjectSize(FI
), SlotAlign
);
917 BuildMI(MBB
, I
, DL
, get(Opc
))
918 .addFrameIndex(FI
).addImm(0)
919 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
920 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
921 // If there are variable-sized objects, spills will not be aligned.
923 SlotAlign
= HFI
.getStackAlignment();
924 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vstorerwu_ai
925 : Hexagon::PS_vstorerw_ai
;
926 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
927 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
928 MFI
.getObjectSize(FI
), SlotAlign
);
929 BuildMI(MBB
, I
, DL
, get(Opc
))
930 .addFrameIndex(FI
).addImm(0)
931 .addReg(SrcReg
, KillFlag
).addMemOperand(MMOA
);
933 llvm_unreachable("Unimplemented");
937 void HexagonInstrInfo::loadRegFromStackSlot(
938 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
, unsigned DestReg
,
939 int FI
, const TargetRegisterClass
*RC
,
940 const TargetRegisterInfo
*TRI
) const {
941 DebugLoc DL
= MBB
.findDebugLoc(I
);
942 MachineFunction
&MF
= *MBB
.getParent();
943 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
944 unsigned SlotAlign
= MFI
.getObjectAlignment(FI
);
945 unsigned RegAlign
= TRI
->getSpillAlignment(*RC
);
946 bool HasAlloca
= MFI
.hasVarSizedObjects();
947 const HexagonFrameLowering
&HFI
= *Subtarget
.getFrameLowering();
949 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
950 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
951 MFI
.getObjectSize(FI
), SlotAlign
);
953 if (Hexagon::IntRegsRegClass
.hasSubClassEq(RC
)) {
954 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadri_io
), DestReg
)
955 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
956 } else if (Hexagon::DoubleRegsRegClass
.hasSubClassEq(RC
)) {
957 BuildMI(MBB
, I
, DL
, get(Hexagon::L2_loadrd_io
), DestReg
)
958 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
959 } else if (Hexagon::PredRegsRegClass
.hasSubClassEq(RC
)) {
960 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_pred
), DestReg
)
961 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
962 } else if (Hexagon::ModRegsRegClass
.hasSubClassEq(RC
)) {
963 BuildMI(MBB
, I
, DL
, get(Hexagon::LDriw_ctr
), DestReg
)
964 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
965 } else if (Hexagon::HvxQRRegClass
.hasSubClassEq(RC
)) {
966 BuildMI(MBB
, I
, DL
, get(Hexagon::PS_vloadrq_ai
), DestReg
)
967 .addFrameIndex(FI
).addImm(0).addMemOperand(MMO
);
968 } else if (Hexagon::HvxVRRegClass
.hasSubClassEq(RC
)) {
969 // If there are variable-sized objects, spills will not be aligned.
971 SlotAlign
= HFI
.getStackAlignment();
972 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::V6_vL32Ub_ai
973 : Hexagon::V6_vL32b_ai
;
974 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
975 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
976 MFI
.getObjectSize(FI
), SlotAlign
);
977 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
978 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
979 } else if (Hexagon::HvxWRRegClass
.hasSubClassEq(RC
)) {
980 // If there are variable-sized objects, spills will not be aligned.
982 SlotAlign
= HFI
.getStackAlignment();
983 unsigned Opc
= SlotAlign
< RegAlign
? Hexagon::PS_vloadrwu_ai
984 : Hexagon::PS_vloadrw_ai
;
985 MachineMemOperand
*MMOA
= MF
.getMachineMemOperand(
986 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
987 MFI
.getObjectSize(FI
), SlotAlign
);
988 BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
)
989 .addFrameIndex(FI
).addImm(0).addMemOperand(MMOA
);
991 llvm_unreachable("Can't store this register to stack slot");
995 static void getLiveRegsAt(LivePhysRegs
&Regs
, const MachineInstr
&MI
) {
996 const MachineBasicBlock
&B
= *MI
.getParent();
998 auto E
= ++MachineBasicBlock::const_iterator(MI
.getIterator()).getReverse();
999 for (auto I
= B
.rbegin(); I
!= E
; ++I
)
1000 Regs
.stepBackward(*I
);
1003 /// expandPostRAPseudo - This function is called for all pseudo instructions
1004 /// that remain after register allocation. Many pseudo instructions are
1005 /// created to help register allocation. This is the place to convert them
1006 /// into real instructions. The target can edit MI in place, or it can insert
1007 /// new instructions and erase MI. The function should return true if
1008 /// anything was changed.
1009 bool HexagonInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1010 MachineBasicBlock
&MBB
= *MI
.getParent();
1011 MachineFunction
&MF
= *MBB
.getParent();
1012 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1013 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1014 DebugLoc DL
= MI
.getDebugLoc();
1015 unsigned Opc
= MI
.getOpcode();
1017 auto RealCirc
= [&](unsigned Opc
, bool HasImm
, unsigned MxOp
) {
1018 Register Mx
= MI
.getOperand(MxOp
).getReg();
1019 unsigned CSx
= (Mx
== Hexagon::M0
? Hexagon::CS0
: Hexagon::CS1
);
1020 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrrcr
), CSx
)
1021 .add(MI
.getOperand((HasImm
? 5 : 4)));
1022 auto MIB
= BuildMI(MBB
, MI
, DL
, get(Opc
)).add(MI
.getOperand(0))
1023 .add(MI
.getOperand(1)).add(MI
.getOperand(2)).add(MI
.getOperand(3));
1025 MIB
.add(MI
.getOperand(4));
1026 MIB
.addReg(CSx
, RegState::Implicit
);
1032 case TargetOpcode::COPY
: {
1033 MachineOperand
&MD
= MI
.getOperand(0);
1034 MachineOperand
&MS
= MI
.getOperand(1);
1035 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1036 if (MD
.getReg() != MS
.getReg() && !MS
.isUndef()) {
1037 copyPhysReg(MBB
, MI
, DL
, MD
.getReg(), MS
.getReg(), MS
.isKill());
1038 std::prev(MBBI
)->copyImplicitOps(*MBB
.getParent(), MI
);
1043 case Hexagon::PS_aligna
:
1044 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_andir
), MI
.getOperand(0).getReg())
1045 .addReg(HRI
.getFrameRegister())
1046 .addImm(-MI
.getOperand(1).getImm());
1049 case Hexagon::V6_vassignp
: {
1050 Register SrcReg
= MI
.getOperand(1).getReg();
1051 Register DstReg
= MI
.getOperand(0).getReg();
1052 unsigned Kill
= getKillRegState(MI
.getOperand(1).isKill());
1053 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcombine
), DstReg
)
1054 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
), Kill
)
1055 .addReg(HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
), Kill
);
1059 case Hexagon::V6_lo
: {
1060 Register SrcReg
= MI
.getOperand(1).getReg();
1061 Register DstReg
= MI
.getOperand(0).getReg();
1062 Register SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1063 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubLo
, MI
.getOperand(1).isKill());
1065 MRI
.clearKillFlags(SrcSubLo
);
1068 case Hexagon::V6_hi
: {
1069 Register SrcReg
= MI
.getOperand(1).getReg();
1070 Register DstReg
= MI
.getOperand(0).getReg();
1071 Register SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1072 copyPhysReg(MBB
, MI
, DL
, DstReg
, SrcSubHi
, MI
.getOperand(1).isKill());
1074 MRI
.clearKillFlags(SrcSubHi
);
1077 case Hexagon::PS_vstorerw_ai
:
1078 case Hexagon::PS_vstorerwu_ai
: {
1079 bool Aligned
= Opc
== Hexagon::PS_vstorerw_ai
;
1080 Register SrcReg
= MI
.getOperand(2).getReg();
1081 Register SrcSubHi
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_hi
);
1082 Register SrcSubLo
= HRI
.getSubReg(SrcReg
, Hexagon::vsub_lo
);
1083 unsigned NewOpc
= Aligned
? Hexagon::V6_vS32b_ai
: Hexagon::V6_vS32Ub_ai
;
1084 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1086 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1087 .add(MI
.getOperand(0))
1088 .addImm(MI
.getOperand(1).getImm())
1091 MI1New
->getOperand(0).setIsKill(false);
1092 BuildMI(MBB
, MI
, DL
, get(NewOpc
))
1093 .add(MI
.getOperand(0))
1094 // The Vectors are indexed in multiples of vector size.
1095 .addImm(MI
.getOperand(1).getImm() + Offset
)
1101 case Hexagon::PS_vloadrw_ai
:
1102 case Hexagon::PS_vloadrwu_ai
: {
1103 bool Aligned
= Opc
== Hexagon::PS_vloadrw_ai
;
1104 Register DstReg
= MI
.getOperand(0).getReg();
1105 unsigned NewOpc
= Aligned
? Hexagon::V6_vL32b_ai
: Hexagon::V6_vL32Ub_ai
;
1106 unsigned Offset
= HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
1108 MachineInstr
*MI1New
= BuildMI(MBB
, MI
, DL
, get(NewOpc
),
1109 HRI
.getSubReg(DstReg
, Hexagon::vsub_lo
))
1110 .add(MI
.getOperand(1))
1111 .addImm(MI
.getOperand(2).getImm())
1113 MI1New
->getOperand(1).setIsKill(false);
1114 BuildMI(MBB
, MI
, DL
, get(NewOpc
), HRI
.getSubReg(DstReg
, Hexagon::vsub_hi
))
1115 .add(MI
.getOperand(1))
1116 // The Vectors are indexed in multiples of vector size.
1117 .addImm(MI
.getOperand(2).getImm() + Offset
)
1122 case Hexagon::PS_true
: {
1123 Register Reg
= MI
.getOperand(0).getReg();
1124 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_orn
), Reg
)
1125 .addReg(Reg
, RegState::Undef
)
1126 .addReg(Reg
, RegState::Undef
);
1130 case Hexagon::PS_false
: {
1131 Register Reg
= MI
.getOperand(0).getReg();
1132 BuildMI(MBB
, MI
, DL
, get(Hexagon::C2_andn
), Reg
)
1133 .addReg(Reg
, RegState::Undef
)
1134 .addReg(Reg
, RegState::Undef
);
1138 case Hexagon::PS_qtrue
: {
1139 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_veqw
), MI
.getOperand(0).getReg())
1140 .addReg(Hexagon::V0
, RegState::Undef
)
1141 .addReg(Hexagon::V0
, RegState::Undef
);
1145 case Hexagon::PS_qfalse
: {
1146 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgtw
), MI
.getOperand(0).getReg())
1147 .addReg(Hexagon::V0
, RegState::Undef
)
1148 .addReg(Hexagon::V0
, RegState::Undef
);
1152 case Hexagon::PS_vdd0
: {
1153 Register Vd
= MI
.getOperand(0).getReg();
1154 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vsubw_dv
), Vd
)
1155 .addReg(Vd
, RegState::Undef
)
1156 .addReg(Vd
, RegState::Undef
);
1160 case Hexagon::PS_vmulw
: {
1161 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1162 Register DstReg
= MI
.getOperand(0).getReg();
1163 Register Src1Reg
= MI
.getOperand(1).getReg();
1164 Register Src2Reg
= MI
.getOperand(2).getReg();
1165 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1166 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1167 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1168 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1169 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1170 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1173 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_mpyi
),
1174 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1178 MRI
.clearKillFlags(Src1SubHi
);
1179 MRI
.clearKillFlags(Src1SubLo
);
1180 MRI
.clearKillFlags(Src2SubHi
);
1181 MRI
.clearKillFlags(Src2SubLo
);
1184 case Hexagon::PS_vmulw_acc
: {
1185 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1186 Register DstReg
= MI
.getOperand(0).getReg();
1187 Register Src1Reg
= MI
.getOperand(1).getReg();
1188 Register Src2Reg
= MI
.getOperand(2).getReg();
1189 Register Src3Reg
= MI
.getOperand(3).getReg();
1190 Register Src1SubHi
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_hi
);
1191 Register Src1SubLo
= HRI
.getSubReg(Src1Reg
, Hexagon::isub_lo
);
1192 Register Src2SubHi
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_hi
);
1193 Register Src2SubLo
= HRI
.getSubReg(Src2Reg
, Hexagon::isub_lo
);
1194 Register Src3SubHi
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_hi
);
1195 Register Src3SubLo
= HRI
.getSubReg(Src3Reg
, Hexagon::isub_lo
);
1196 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1197 HRI
.getSubReg(DstReg
, Hexagon::isub_hi
))
1201 BuildMI(MBB
, MI
, MI
.getDebugLoc(), get(Hexagon::M2_maci
),
1202 HRI
.getSubReg(DstReg
, Hexagon::isub_lo
))
1207 MRI
.clearKillFlags(Src1SubHi
);
1208 MRI
.clearKillFlags(Src1SubLo
);
1209 MRI
.clearKillFlags(Src2SubHi
);
1210 MRI
.clearKillFlags(Src2SubLo
);
1211 MRI
.clearKillFlags(Src3SubHi
);
1212 MRI
.clearKillFlags(Src3SubLo
);
1215 case Hexagon::PS_pselect
: {
1216 const MachineOperand
&Op0
= MI
.getOperand(0);
1217 const MachineOperand
&Op1
= MI
.getOperand(1);
1218 const MachineOperand
&Op2
= MI
.getOperand(2);
1219 const MachineOperand
&Op3
= MI
.getOperand(3);
1220 Register Rd
= Op0
.getReg();
1221 Register Pu
= Op1
.getReg();
1222 Register Rs
= Op2
.getReg();
1223 Register Rt
= Op3
.getReg();
1224 DebugLoc DL
= MI
.getDebugLoc();
1225 unsigned K1
= getKillRegState(Op1
.isKill());
1226 unsigned K2
= getKillRegState(Op2
.isKill());
1227 unsigned K3
= getKillRegState(Op3
.isKill());
1229 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpt
), Rd
)
1230 .addReg(Pu
, (Rd
== Rt
) ? K1
: 0)
1233 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_tfrpf
), Rd
)
1239 case Hexagon::PS_vselect
: {
1240 const MachineOperand
&Op0
= MI
.getOperand(0);
1241 const MachineOperand
&Op1
= MI
.getOperand(1);
1242 const MachineOperand
&Op2
= MI
.getOperand(2);
1243 const MachineOperand
&Op3
= MI
.getOperand(3);
1244 LivePhysRegs
LiveAtMI(HRI
);
1245 getLiveRegsAt(LiveAtMI
, MI
);
1246 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1247 Register PReg
= Op1
.getReg();
1248 assert(Op1
.getSubReg() == 0);
1249 unsigned PState
= getRegState(Op1
);
1251 if (Op0
.getReg() != Op2
.getReg()) {
1252 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1254 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vcmov
))
1259 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1262 if (Op0
.getReg() != Op3
.getReg()) {
1263 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vncmov
))
1265 .addReg(PReg
, PState
)
1268 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1273 case Hexagon::PS_wselect
: {
1274 MachineOperand
&Op0
= MI
.getOperand(0);
1275 MachineOperand
&Op1
= MI
.getOperand(1);
1276 MachineOperand
&Op2
= MI
.getOperand(2);
1277 MachineOperand
&Op3
= MI
.getOperand(3);
1278 LivePhysRegs
LiveAtMI(HRI
);
1279 getLiveRegsAt(LiveAtMI
, MI
);
1280 bool IsDestLive
= !LiveAtMI
.available(MRI
, Op0
.getReg());
1281 Register PReg
= Op1
.getReg();
1282 assert(Op1
.getSubReg() == 0);
1283 unsigned PState
= getRegState(Op1
);
1285 if (Op0
.getReg() != Op2
.getReg()) {
1286 unsigned S
= Op0
.getReg() != Op3
.getReg() ? PState
& ~RegState::Kill
1288 Register SrcLo
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_lo
);
1289 Register SrcHi
= HRI
.getSubReg(Op2
.getReg(), Hexagon::vsub_hi
);
1290 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vccombine
))
1296 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1299 if (Op0
.getReg() != Op3
.getReg()) {
1300 Register SrcLo
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_lo
);
1301 Register SrcHi
= HRI
.getSubReg(Op3
.getReg(), Hexagon::vsub_hi
);
1302 auto T
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vnccombine
))
1304 .addReg(PReg
, PState
)
1308 T
.addReg(Op0
.getReg(), RegState::Implicit
);
1314 case Hexagon::PS_crash
: {
1315 // Generate a misaligned load that is guaranteed to cause a crash.
1316 class CrashPseudoSourceValue
: public PseudoSourceValue
{
1318 CrashPseudoSourceValue(const TargetInstrInfo
&TII
)
1319 : PseudoSourceValue(TargetCustom
, TII
) {}
1321 bool isConstant(const MachineFrameInfo
*) const override
{
1324 bool isAliased(const MachineFrameInfo
*) const override
{
1327 bool mayAlias(const MachineFrameInfo
*) const override
{
1330 void printCustom(raw_ostream
&OS
) const override
{
1331 OS
<< "MisalignedCrash";
1335 static const CrashPseudoSourceValue
CrashPSV(*this);
1336 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1337 MachinePointerInfo(&CrashPSV
),
1338 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 8, 1);
1339 BuildMI(MBB
, MI
, DL
, get(Hexagon::PS_loadrdabs
), Hexagon::D13
)
1340 .addImm(0xBADC0FEE) // Misaligned load.
1341 .addMemOperand(MMO
);
1346 case Hexagon::PS_tailcall_i
:
1347 MI
.setDesc(get(Hexagon::J2_jump
));
1349 case Hexagon::PS_tailcall_r
:
1350 case Hexagon::PS_jmpret
:
1351 MI
.setDesc(get(Hexagon::J2_jumpr
));
1353 case Hexagon::PS_jmprett
:
1354 MI
.setDesc(get(Hexagon::J2_jumprt
));
1356 case Hexagon::PS_jmpretf
:
1357 MI
.setDesc(get(Hexagon::J2_jumprf
));
1359 case Hexagon::PS_jmprettnewpt
:
1360 MI
.setDesc(get(Hexagon::J2_jumprtnewpt
));
1362 case Hexagon::PS_jmpretfnewpt
:
1363 MI
.setDesc(get(Hexagon::J2_jumprfnewpt
));
1365 case Hexagon::PS_jmprettnew
:
1366 MI
.setDesc(get(Hexagon::J2_jumprtnew
));
1368 case Hexagon::PS_jmpretfnew
:
1369 MI
.setDesc(get(Hexagon::J2_jumprfnew
));
1372 case Hexagon::PS_loadrub_pci
:
1373 return RealCirc(Hexagon::L2_loadrub_pci
, /*HasImm*/true, /*MxOp*/4);
1374 case Hexagon::PS_loadrb_pci
:
1375 return RealCirc(Hexagon::L2_loadrb_pci
, /*HasImm*/true, /*MxOp*/4);
1376 case Hexagon::PS_loadruh_pci
:
1377 return RealCirc(Hexagon::L2_loadruh_pci
, /*HasImm*/true, /*MxOp*/4);
1378 case Hexagon::PS_loadrh_pci
:
1379 return RealCirc(Hexagon::L2_loadrh_pci
, /*HasImm*/true, /*MxOp*/4);
1380 case Hexagon::PS_loadri_pci
:
1381 return RealCirc(Hexagon::L2_loadri_pci
, /*HasImm*/true, /*MxOp*/4);
1382 case Hexagon::PS_loadrd_pci
:
1383 return RealCirc(Hexagon::L2_loadrd_pci
, /*HasImm*/true, /*MxOp*/4);
1384 case Hexagon::PS_loadrub_pcr
:
1385 return RealCirc(Hexagon::L2_loadrub_pcr
, /*HasImm*/false, /*MxOp*/3);
1386 case Hexagon::PS_loadrb_pcr
:
1387 return RealCirc(Hexagon::L2_loadrb_pcr
, /*HasImm*/false, /*MxOp*/3);
1388 case Hexagon::PS_loadruh_pcr
:
1389 return RealCirc(Hexagon::L2_loadruh_pcr
, /*HasImm*/false, /*MxOp*/3);
1390 case Hexagon::PS_loadrh_pcr
:
1391 return RealCirc(Hexagon::L2_loadrh_pcr
, /*HasImm*/false, /*MxOp*/3);
1392 case Hexagon::PS_loadri_pcr
:
1393 return RealCirc(Hexagon::L2_loadri_pcr
, /*HasImm*/false, /*MxOp*/3);
1394 case Hexagon::PS_loadrd_pcr
:
1395 return RealCirc(Hexagon::L2_loadrd_pcr
, /*HasImm*/false, /*MxOp*/3);
1396 case Hexagon::PS_storerb_pci
:
1397 return RealCirc(Hexagon::S2_storerb_pci
, /*HasImm*/true, /*MxOp*/3);
1398 case Hexagon::PS_storerh_pci
:
1399 return RealCirc(Hexagon::S2_storerh_pci
, /*HasImm*/true, /*MxOp*/3);
1400 case Hexagon::PS_storerf_pci
:
1401 return RealCirc(Hexagon::S2_storerf_pci
, /*HasImm*/true, /*MxOp*/3);
1402 case Hexagon::PS_storeri_pci
:
1403 return RealCirc(Hexagon::S2_storeri_pci
, /*HasImm*/true, /*MxOp*/3);
1404 case Hexagon::PS_storerd_pci
:
1405 return RealCirc(Hexagon::S2_storerd_pci
, /*HasImm*/true, /*MxOp*/3);
1406 case Hexagon::PS_storerb_pcr
:
1407 return RealCirc(Hexagon::S2_storerb_pcr
, /*HasImm*/false, /*MxOp*/2);
1408 case Hexagon::PS_storerh_pcr
:
1409 return RealCirc(Hexagon::S2_storerh_pcr
, /*HasImm*/false, /*MxOp*/2);
1410 case Hexagon::PS_storerf_pcr
:
1411 return RealCirc(Hexagon::S2_storerf_pcr
, /*HasImm*/false, /*MxOp*/2);
1412 case Hexagon::PS_storeri_pcr
:
1413 return RealCirc(Hexagon::S2_storeri_pcr
, /*HasImm*/false, /*MxOp*/2);
1414 case Hexagon::PS_storerd_pcr
:
1415 return RealCirc(Hexagon::S2_storerd_pcr
, /*HasImm*/false, /*MxOp*/2);
1421 MachineBasicBlock::instr_iterator
1422 HexagonInstrInfo::expandVGatherPseudo(MachineInstr
&MI
) const {
1423 MachineBasicBlock
&MBB
= *MI
.getParent();
1424 const DebugLoc
&DL
= MI
.getDebugLoc();
1425 unsigned Opc
= MI
.getOpcode();
1426 MachineBasicBlock::iterator First
;
1429 case Hexagon::V6_vgathermh_pseudo
:
1430 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermh
))
1431 .add(MI
.getOperand(1))
1432 .add(MI
.getOperand(2))
1433 .add(MI
.getOperand(3));
1434 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1435 .add(MI
.getOperand(0))
1437 .addReg(Hexagon::VTMP
);
1439 return First
.getInstrIterator();
1441 case Hexagon::V6_vgathermw_pseudo
:
1442 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermw
))
1443 .add(MI
.getOperand(1))
1444 .add(MI
.getOperand(2))
1445 .add(MI
.getOperand(3));
1446 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1447 .add(MI
.getOperand(0))
1449 .addReg(Hexagon::VTMP
);
1451 return First
.getInstrIterator();
1453 case Hexagon::V6_vgathermhw_pseudo
:
1454 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhw
))
1455 .add(MI
.getOperand(1))
1456 .add(MI
.getOperand(2))
1457 .add(MI
.getOperand(3));
1458 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1459 .add(MI
.getOperand(0))
1461 .addReg(Hexagon::VTMP
);
1463 return First
.getInstrIterator();
1465 case Hexagon::V6_vgathermhq_pseudo
:
1466 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhq
))
1467 .add(MI
.getOperand(1))
1468 .add(MI
.getOperand(2))
1469 .add(MI
.getOperand(3))
1470 .add(MI
.getOperand(4));
1471 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1472 .add(MI
.getOperand(0))
1474 .addReg(Hexagon::VTMP
);
1476 return First
.getInstrIterator();
1478 case Hexagon::V6_vgathermwq_pseudo
:
1479 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermwq
))
1480 .add(MI
.getOperand(1))
1481 .add(MI
.getOperand(2))
1482 .add(MI
.getOperand(3))
1483 .add(MI
.getOperand(4));
1484 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1485 .add(MI
.getOperand(0))
1487 .addReg(Hexagon::VTMP
);
1489 return First
.getInstrIterator();
1491 case Hexagon::V6_vgathermhwq_pseudo
:
1492 First
= BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vgathermhwq
))
1493 .add(MI
.getOperand(1))
1494 .add(MI
.getOperand(2))
1495 .add(MI
.getOperand(3))
1496 .add(MI
.getOperand(4));
1497 BuildMI(MBB
, MI
, DL
, get(Hexagon::V6_vS32b_new_ai
))
1498 .add(MI
.getOperand(0))
1500 .addReg(Hexagon::VTMP
);
1502 return First
.getInstrIterator();
1505 return MI
.getIterator();
1508 // We indicate that we want to reverse the branch by
1509 // inserting the reversed branching opcode.
1510 bool HexagonInstrInfo::reverseBranchCondition(
1511 SmallVectorImpl
<MachineOperand
> &Cond
) const {
1514 assert(Cond
[0].isImm() && "First entry in the cond vector not imm-val");
1515 unsigned opcode
= Cond
[0].getImm();
1517 assert(get(opcode
).isBranch() && "Should be a branching condition.");
1518 if (isEndLoopN(opcode
))
1520 unsigned NewOpcode
= getInvertedPredicatedOpcode(opcode
);
1521 Cond
[0].setImm(NewOpcode
);
1525 void HexagonInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
1526 MachineBasicBlock::iterator MI
) const {
1528 BuildMI(MBB
, MI
, DL
, get(Hexagon::A2_nop
));
1531 bool HexagonInstrInfo::isPostIncrement(const MachineInstr
&MI
) const {
1532 return getAddrMode(MI
) == HexagonII::PostInc
;
1535 // Returns true if an instruction is predicated irrespective of the predicate
1536 // sense. For example, all of the following will return true.
1537 // if (p0) R1 = add(R2, R3)
1538 // if (!p0) R1 = add(R2, R3)
1539 // if (p0.new) R1 = add(R2, R3)
1540 // if (!p0.new) R1 = add(R2, R3)
1541 // Note: New-value stores are not included here as in the current
1542 // implementation, we don't need to check their predicate sense.
1543 bool HexagonInstrInfo::isPredicated(const MachineInstr
&MI
) const {
1544 const uint64_t F
= MI
.getDesc().TSFlags
;
1545 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
1548 bool HexagonInstrInfo::PredicateInstruction(
1549 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Cond
) const {
1550 if (Cond
.empty() || isNewValueJump(Cond
[0].getImm()) ||
1551 isEndLoopN(Cond
[0].getImm())) {
1552 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI
.dump(););
1555 int Opc
= MI
.getOpcode();
1556 assert (isPredicable(MI
) && "Expected predicable instruction");
1557 bool invertJump
= predOpcodeHasNot(Cond
);
1559 // We have to predicate MI "in place", i.e. after this function returns,
1560 // MI will need to be transformed into a predicated form. To avoid com-
1561 // plicated manipulations with the operands (handling tied operands,
1562 // etc.), build a new temporary instruction, then overwrite MI with it.
1564 MachineBasicBlock
&B
= *MI
.getParent();
1565 DebugLoc DL
= MI
.getDebugLoc();
1566 unsigned PredOpc
= getCondOpcode(Opc
, invertJump
);
1567 MachineInstrBuilder T
= BuildMI(B
, MI
, DL
, get(PredOpc
));
1568 unsigned NOp
= 0, NumOps
= MI
.getNumOperands();
1569 while (NOp
< NumOps
) {
1570 MachineOperand
&Op
= MI
.getOperand(NOp
);
1571 if (!Op
.isReg() || !Op
.isDef() || Op
.isImplicit())
1577 unsigned PredReg
, PredRegPos
, PredRegFlags
;
1578 bool GotPredReg
= getPredReg(Cond
, PredReg
, PredRegPos
, PredRegFlags
);
1581 T
.addReg(PredReg
, PredRegFlags
);
1582 while (NOp
< NumOps
)
1583 T
.add(MI
.getOperand(NOp
++));
1585 MI
.setDesc(get(PredOpc
));
1586 while (unsigned n
= MI
.getNumOperands())
1587 MI
.RemoveOperand(n
-1);
1588 for (unsigned i
= 0, n
= T
->getNumOperands(); i
< n
; ++i
)
1589 MI
.addOperand(T
->getOperand(i
));
1591 MachineBasicBlock::instr_iterator TI
= T
->getIterator();
1594 MachineRegisterInfo
&MRI
= B
.getParent()->getRegInfo();
1595 MRI
.clearKillFlags(PredReg
);
1599 bool HexagonInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1600 ArrayRef
<MachineOperand
> Pred2
) const {
1605 bool HexagonInstrInfo::DefinesPredicate(MachineInstr
&MI
,
1606 std::vector
<MachineOperand
> &Pred
) const {
1607 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
1609 for (unsigned oper
= 0; oper
< MI
.getNumOperands(); ++oper
) {
1610 MachineOperand MO
= MI
.getOperand(oper
);
1614 const TargetRegisterClass
* RC
= HRI
.getMinimalPhysRegClass(MO
.getReg());
1615 if (RC
== &Hexagon::PredRegsRegClass
) {
1620 } else if (MO
.isRegMask()) {
1621 for (unsigned PR
: Hexagon::PredRegsRegClass
) {
1622 if (!MI
.modifiesRegister(PR
, &HRI
))
1632 bool HexagonInstrInfo::isPredicable(const MachineInstr
&MI
) const {
1633 if (!MI
.getDesc().isPredicable())
1636 if (MI
.isCall() || isTailCall(MI
)) {
1637 if (!Subtarget
.usePredicatedCalls())
1641 // HVX loads are not predicable on v60, but are on v62.
1642 if (!Subtarget
.hasV62Ops()) {
1643 switch (MI
.getOpcode()) {
1644 case Hexagon::V6_vL32b_ai
:
1645 case Hexagon::V6_vL32b_pi
:
1646 case Hexagon::V6_vL32b_ppu
:
1647 case Hexagon::V6_vL32b_cur_ai
:
1648 case Hexagon::V6_vL32b_cur_pi
:
1649 case Hexagon::V6_vL32b_cur_ppu
:
1650 case Hexagon::V6_vL32b_nt_ai
:
1651 case Hexagon::V6_vL32b_nt_pi
:
1652 case Hexagon::V6_vL32b_nt_ppu
:
1653 case Hexagon::V6_vL32b_tmp_ai
:
1654 case Hexagon::V6_vL32b_tmp_pi
:
1655 case Hexagon::V6_vL32b_tmp_ppu
:
1656 case Hexagon::V6_vL32b_nt_cur_ai
:
1657 case Hexagon::V6_vL32b_nt_cur_pi
:
1658 case Hexagon::V6_vL32b_nt_cur_ppu
:
1659 case Hexagon::V6_vL32b_nt_tmp_ai
:
1660 case Hexagon::V6_vL32b_nt_tmp_pi
:
1661 case Hexagon::V6_vL32b_nt_tmp_ppu
:
1668 bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1669 const MachineBasicBlock
*MBB
,
1670 const MachineFunction
&MF
) const {
1671 // Debug info is never a scheduling boundary. It's necessary to be explicit
1672 // due to the special treatment of IT instructions below, otherwise a
1673 // dbg_value followed by an IT will result in the IT instruction being
1674 // considered a scheduling hazard, which is wrong. It should be the actual
1675 // instruction preceding the dbg_value instruction(s), just like it is
1676 // when debug info is not present.
1677 if (MI
.isDebugInstr())
1680 // Throwing call is a boundary.
1682 // Don't mess around with no return calls.
1683 if (doesNotReturn(MI
))
1685 // If any of the block's successors is a landing pad, this could be a
1687 for (auto I
: MBB
->successors())
1692 // Terminators and labels can't be scheduled around.
1693 if (MI
.getDesc().isTerminator() || MI
.isPosition())
1696 if (MI
.isInlineAsm() && !ScheduleInlineAsm
)
1702 /// Measure the specified inline asm to determine an approximation of its
1704 /// Comments (which run till the next SeparatorString or newline) do not
1705 /// count as an instruction.
1706 /// Any other non-whitespace text is considered an instruction, with
1707 /// multiple instructions separated by SeparatorString or newlines.
1708 /// Variable-length instructions are not handled here; this function
1709 /// may be overloaded in the target code to do that.
1710 /// Hexagon counts the number of ##'s and adjust for that many
1711 /// constant exenders.
1712 unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str
,
1713 const MCAsmInfo
&MAI
,
1714 const TargetSubtargetInfo
*STI
) const {
1715 StringRef
AStr(Str
);
1716 // Count the number of instructions in the asm.
1717 bool atInsnStart
= true;
1718 unsigned Length
= 0;
1719 const unsigned MaxInstLength
= MAI
.getMaxInstLength(STI
);
1720 for (; *Str
; ++Str
) {
1721 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
1722 strlen(MAI
.getSeparatorString())) == 0)
1724 if (atInsnStart
&& !std::isspace(static_cast<unsigned char>(*Str
))) {
1725 Length
+= MaxInstLength
;
1726 atInsnStart
= false;
1728 if (atInsnStart
&& strncmp(Str
, MAI
.getCommentString().data(),
1729 MAI
.getCommentString().size()) == 0)
1730 atInsnStart
= false;
1733 // Add to size number of constant extenders seen * 4.
1734 StringRef
Occ("##");
1735 Length
+= AStr
.count(Occ
)*4;
1739 ScheduleHazardRecognizer
*
1740 HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1741 const InstrItineraryData
*II
, const ScheduleDAG
*DAG
) const {
1742 if (UseDFAHazardRec
)
1743 return new HexagonHazardRecognizer(II
, this, Subtarget
);
1744 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
1747 /// For a comparison instruction, return the source registers in
1748 /// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1749 /// compares against in CmpValue. Return true if the comparison instruction
1750 /// can be analyzed.
1751 bool HexagonInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1752 unsigned &SrcReg2
, int &Mask
,
1754 unsigned Opc
= MI
.getOpcode();
1756 // Set mask and the first source register.
1758 case Hexagon::C2_cmpeq
:
1759 case Hexagon::C2_cmpeqp
:
1760 case Hexagon::C2_cmpgt
:
1761 case Hexagon::C2_cmpgtp
:
1762 case Hexagon::C2_cmpgtu
:
1763 case Hexagon::C2_cmpgtup
:
1764 case Hexagon::C4_cmpneq
:
1765 case Hexagon::C4_cmplte
:
1766 case Hexagon::C4_cmplteu
:
1767 case Hexagon::C2_cmpeqi
:
1768 case Hexagon::C2_cmpgti
:
1769 case Hexagon::C2_cmpgtui
:
1770 case Hexagon::C4_cmpneqi
:
1771 case Hexagon::C4_cmplteui
:
1772 case Hexagon::C4_cmpltei
:
1773 SrcReg
= MI
.getOperand(1).getReg();
1776 case Hexagon::A4_cmpbeq
:
1777 case Hexagon::A4_cmpbgt
:
1778 case Hexagon::A4_cmpbgtu
:
1779 case Hexagon::A4_cmpbeqi
:
1780 case Hexagon::A4_cmpbgti
:
1781 case Hexagon::A4_cmpbgtui
:
1782 SrcReg
= MI
.getOperand(1).getReg();
1785 case Hexagon::A4_cmpheq
:
1786 case Hexagon::A4_cmphgt
:
1787 case Hexagon::A4_cmphgtu
:
1788 case Hexagon::A4_cmpheqi
:
1789 case Hexagon::A4_cmphgti
:
1790 case Hexagon::A4_cmphgtui
:
1791 SrcReg
= MI
.getOperand(1).getReg();
1796 // Set the value/second source register.
1798 case Hexagon::C2_cmpeq
:
1799 case Hexagon::C2_cmpeqp
:
1800 case Hexagon::C2_cmpgt
:
1801 case Hexagon::C2_cmpgtp
:
1802 case Hexagon::C2_cmpgtu
:
1803 case Hexagon::C2_cmpgtup
:
1804 case Hexagon::A4_cmpbeq
:
1805 case Hexagon::A4_cmpbgt
:
1806 case Hexagon::A4_cmpbgtu
:
1807 case Hexagon::A4_cmpheq
:
1808 case Hexagon::A4_cmphgt
:
1809 case Hexagon::A4_cmphgtu
:
1810 case Hexagon::C4_cmpneq
:
1811 case Hexagon::C4_cmplte
:
1812 case Hexagon::C4_cmplteu
:
1813 SrcReg2
= MI
.getOperand(2).getReg();
1816 case Hexagon::C2_cmpeqi
:
1817 case Hexagon::C2_cmpgtui
:
1818 case Hexagon::C2_cmpgti
:
1819 case Hexagon::C4_cmpneqi
:
1820 case Hexagon::C4_cmplteui
:
1821 case Hexagon::C4_cmpltei
:
1822 case Hexagon::A4_cmpbeqi
:
1823 case Hexagon::A4_cmpbgti
:
1824 case Hexagon::A4_cmpbgtui
:
1825 case Hexagon::A4_cmpheqi
:
1826 case Hexagon::A4_cmphgti
:
1827 case Hexagon::A4_cmphgtui
: {
1829 const MachineOperand
&Op2
= MI
.getOperand(2);
1832 Value
= MI
.getOperand(2).getImm();
1840 unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1841 const MachineInstr
&MI
,
1842 unsigned *PredCost
) const {
1843 return getInstrTimingClassLatency(ItinData
, MI
);
1846 DFAPacketizer
*HexagonInstrInfo::CreateTargetScheduleState(
1847 const TargetSubtargetInfo
&STI
) const {
1848 const InstrItineraryData
*II
= STI
.getInstrItineraryData();
1849 return static_cast<const HexagonSubtarget
&>(STI
).createDFAPacketizer(II
);
1852 // Inspired by this pair:
1853 // %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1854 // S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1855 // Currently AA considers the addresses in these instructions to be aliasing.
1856 bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(
1857 const MachineInstr
&MIa
, const MachineInstr
&MIb
,
1858 AliasAnalysis
*AA
) const {
1859 if (MIa
.hasUnmodeledSideEffects() || MIb
.hasUnmodeledSideEffects() ||
1860 MIa
.hasOrderedMemoryRef() || MIb
.hasOrderedMemoryRef())
1863 // Instructions that are pure loads, not loads and stores like memops are not
1865 if (MIa
.mayLoad() && !isMemOp(MIa
) && MIb
.mayLoad() && !isMemOp(MIb
))
1868 // Get the base register in MIa.
1869 unsigned BasePosA
, OffsetPosA
;
1870 if (!getBaseAndOffsetPosition(MIa
, BasePosA
, OffsetPosA
))
1872 const MachineOperand
&BaseA
= MIa
.getOperand(BasePosA
);
1873 Register BaseRegA
= BaseA
.getReg();
1874 unsigned BaseSubA
= BaseA
.getSubReg();
1876 // Get the base register in MIb.
1877 unsigned BasePosB
, OffsetPosB
;
1878 if (!getBaseAndOffsetPosition(MIb
, BasePosB
, OffsetPosB
))
1880 const MachineOperand
&BaseB
= MIb
.getOperand(BasePosB
);
1881 Register BaseRegB
= BaseB
.getReg();
1882 unsigned BaseSubB
= BaseB
.getSubReg();
1884 if (BaseRegA
!= BaseRegB
|| BaseSubA
!= BaseSubB
)
1887 // Get the access sizes.
1888 unsigned SizeA
= getMemAccessSize(MIa
);
1889 unsigned SizeB
= getMemAccessSize(MIb
);
1891 // Get the offsets. Handle immediates only for now.
1892 const MachineOperand
&OffA
= MIa
.getOperand(OffsetPosA
);
1893 const MachineOperand
&OffB
= MIb
.getOperand(OffsetPosB
);
1894 if (!MIa
.getOperand(OffsetPosA
).isImm() ||
1895 !MIb
.getOperand(OffsetPosB
).isImm())
1897 int OffsetA
= isPostIncrement(MIa
) ? 0 : OffA
.getImm();
1898 int OffsetB
= isPostIncrement(MIb
) ? 0 : OffB
.getImm();
1900 // This is a mem access with the same base register and known offsets from it.
1902 if (OffsetA
> OffsetB
) {
1903 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetA
- (int64_t)OffsetB
);
1904 return SizeB
<= OffDiff
;
1906 if (OffsetA
< OffsetB
) {
1907 uint64_t OffDiff
= (uint64_t)((int64_t)OffsetB
- (int64_t)OffsetA
);
1908 return SizeA
<= OffDiff
;
1914 /// If the instruction is an increment of a constant value, return the amount.
1915 bool HexagonInstrInfo::getIncrementValue(const MachineInstr
&MI
,
1917 if (isPostIncrement(MI
)) {
1918 unsigned BasePos
= 0, OffsetPos
= 0;
1919 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
1921 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
1922 if (OffsetOp
.isImm()) {
1923 Value
= OffsetOp
.getImm();
1926 } else if (MI
.getOpcode() == Hexagon::A2_addi
) {
1927 const MachineOperand
&AddOp
= MI
.getOperand(2);
1928 if (AddOp
.isImm()) {
1929 Value
= AddOp
.getImm();
1937 std::pair
<unsigned, unsigned>
1938 HexagonInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
1939 return std::make_pair(TF
& ~HexagonII::MO_Bitmasks
,
1940 TF
& HexagonII::MO_Bitmasks
);
1943 ArrayRef
<std::pair
<unsigned, const char*>>
1944 HexagonInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
1945 using namespace HexagonII
;
1947 static const std::pair
<unsigned, const char*> Flags
[] = {
1948 {MO_PCREL
, "hexagon-pcrel"},
1949 {MO_GOT
, "hexagon-got"},
1950 {MO_LO16
, "hexagon-lo16"},
1951 {MO_HI16
, "hexagon-hi16"},
1952 {MO_GPREL
, "hexagon-gprel"},
1953 {MO_GDGOT
, "hexagon-gdgot"},
1954 {MO_GDPLT
, "hexagon-gdplt"},
1955 {MO_IE
, "hexagon-ie"},
1956 {MO_IEGOT
, "hexagon-iegot"},
1957 {MO_TPREL
, "hexagon-tprel"}
1959 return makeArrayRef(Flags
);
1962 ArrayRef
<std::pair
<unsigned, const char*>>
1963 HexagonInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
1964 using namespace HexagonII
;
1966 static const std::pair
<unsigned, const char*> Flags
[] = {
1967 {HMOTF_ConstExtended
, "hexagon-ext"}
1969 return makeArrayRef(Flags
);
1972 unsigned HexagonInstrInfo::createVR(MachineFunction
*MF
, MVT VT
) const {
1973 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1974 const TargetRegisterClass
*TRC
;
1975 if (VT
== MVT::i1
) {
1976 TRC
= &Hexagon::PredRegsRegClass
;
1977 } else if (VT
== MVT::i32
|| VT
== MVT::f32
) {
1978 TRC
= &Hexagon::IntRegsRegClass
;
1979 } else if (VT
== MVT::i64
|| VT
== MVT::f64
) {
1980 TRC
= &Hexagon::DoubleRegsRegClass
;
1982 llvm_unreachable("Cannot handle this register class");
1985 Register NewReg
= MRI
.createVirtualRegister(TRC
);
1989 bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr
&MI
) const {
1990 return (getAddrMode(MI
) == HexagonII::AbsoluteSet
);
1993 bool HexagonInstrInfo::isAccumulator(const MachineInstr
&MI
) const {
1994 const uint64_t F
= MI
.getDesc().TSFlags
;
1995 return((F
>> HexagonII::AccumulatorPos
) & HexagonII::AccumulatorMask
);
1998 bool HexagonInstrInfo::isBaseImmOffset(const MachineInstr
&MI
) const {
1999 return getAddrMode(MI
) == HexagonII::BaseImmOffset
;
2002 bool HexagonInstrInfo::isComplex(const MachineInstr
&MI
) const {
2003 return !isTC1(MI
) && !isTC2Early(MI
) && !MI
.getDesc().mayLoad() &&
2004 !MI
.getDesc().mayStore() &&
2005 MI
.getDesc().getOpcode() != Hexagon::S2_allocframe
&&
2006 MI
.getDesc().getOpcode() != Hexagon::L2_deallocframe
&&
2007 !isMemOp(MI
) && !MI
.isBranch() && !MI
.isReturn() && !MI
.isCall();
2010 // Return true if the instruction is a compund branch instruction.
2011 bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr
&MI
) const {
2012 return getType(MI
) == HexagonII::TypeCJ
&& MI
.isBranch();
2015 // TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2016 // isFPImm and later getFPImm as well.
2017 bool HexagonInstrInfo::isConstExtended(const MachineInstr
&MI
) const {
2018 const uint64_t F
= MI
.getDesc().TSFlags
;
2019 unsigned isExtended
= (F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
;
2020 if (isExtended
) // Instruction must be extended.
2023 unsigned isExtendable
=
2024 (F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
;
2031 short ExtOpNum
= getCExtOpNum(MI
);
2032 const MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
2033 // Use MO operand flags to determine if MO
2034 // has the HMOTF_ConstExtended flag set.
2035 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2037 // If this is a Machine BB address we are talking about, and it is
2038 // not marked as extended, say so.
2042 // We could be using an instruction with an extendable immediate and shoehorn
2043 // a global address into it. If it is a global address it will be constant
2044 // extended. We do this for COMBINE.
2045 if (MO
.isGlobal() || MO
.isSymbol() || MO
.isBlockAddress() ||
2046 MO
.isJTI() || MO
.isCPI() || MO
.isFPImm())
2049 // If the extendable operand is not 'Immediate' type, the instruction should
2050 // have 'isExtended' flag set.
2051 assert(MO
.isImm() && "Extendable operand must be Immediate type");
2053 int MinValue
= getMinValue(MI
);
2054 int MaxValue
= getMaxValue(MI
);
2055 int ImmValue
= MO
.getImm();
2057 return (ImmValue
< MinValue
|| ImmValue
> MaxValue
);
2060 bool HexagonInstrInfo::isDeallocRet(const MachineInstr
&MI
) const {
2061 switch (MI
.getOpcode()) {
2062 case Hexagon::L4_return
:
2063 case Hexagon::L4_return_t
:
2064 case Hexagon::L4_return_f
:
2065 case Hexagon::L4_return_tnew_pnt
:
2066 case Hexagon::L4_return_fnew_pnt
:
2067 case Hexagon::L4_return_tnew_pt
:
2068 case Hexagon::L4_return_fnew_pt
:
2074 // Return true when ConsMI uses a register defined by ProdMI.
2075 bool HexagonInstrInfo::isDependent(const MachineInstr
&ProdMI
,
2076 const MachineInstr
&ConsMI
) const {
2077 if (!ProdMI
.getDesc().getNumDefs())
2079 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
2081 SmallVector
<unsigned, 4> DefsA
;
2082 SmallVector
<unsigned, 4> DefsB
;
2083 SmallVector
<unsigned, 8> UsesA
;
2084 SmallVector
<unsigned, 8> UsesB
;
2086 parseOperands(ProdMI
, DefsA
, UsesA
);
2087 parseOperands(ConsMI
, DefsB
, UsesB
);
2089 for (auto &RegA
: DefsA
)
2090 for (auto &RegB
: UsesB
) {
2091 // True data dependency.
2095 if (Register::isPhysicalRegister(RegA
))
2096 for (MCSubRegIterator
SubRegs(RegA
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2097 if (RegB
== *SubRegs
)
2100 if (Register::isPhysicalRegister(RegB
))
2101 for (MCSubRegIterator
SubRegs(RegB
, &HRI
); SubRegs
.isValid(); ++SubRegs
)
2102 if (RegA
== *SubRegs
)
2109 // Returns true if the instruction is alread a .cur.
2110 bool HexagonInstrInfo::isDotCurInst(const MachineInstr
&MI
) const {
2111 switch (MI
.getOpcode()) {
2112 case Hexagon::V6_vL32b_cur_pi
:
2113 case Hexagon::V6_vL32b_cur_ai
:
2119 // Returns true, if any one of the operands is a dot new
2120 // insn, whether it is predicated dot new or register dot new.
2121 bool HexagonInstrInfo::isDotNewInst(const MachineInstr
&MI
) const {
2122 if (isNewValueInst(MI
) || (isPredicated(MI
) && isPredicatedNew(MI
)))
2128 /// Symmetrical. See if these two instructions are fit for duplex pair.
2129 bool HexagonInstrInfo::isDuplexPair(const MachineInstr
&MIa
,
2130 const MachineInstr
&MIb
) const {
2131 HexagonII::SubInstructionGroup MIaG
= getDuplexCandidateGroup(MIa
);
2132 HexagonII::SubInstructionGroup MIbG
= getDuplexCandidateGroup(MIb
);
2133 return (isDuplexPairMatch(MIaG
, MIbG
) || isDuplexPairMatch(MIbG
, MIaG
));
2136 bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr
&MI
) const {
2137 if (MI
.mayLoad() || MI
.mayStore() || MI
.isCompare())
2141 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2142 return is_TC4x(SchedClass
) || is_TC3x(SchedClass
);
2145 bool HexagonInstrInfo::isEndLoopN(unsigned Opcode
) const {
2146 return (Opcode
== Hexagon::ENDLOOP0
||
2147 Opcode
== Hexagon::ENDLOOP1
);
2150 bool HexagonInstrInfo::isExpr(unsigned OpType
) const {
2152 case MachineOperand::MO_MachineBasicBlock
:
2153 case MachineOperand::MO_GlobalAddress
:
2154 case MachineOperand::MO_ExternalSymbol
:
2155 case MachineOperand::MO_JumpTableIndex
:
2156 case MachineOperand::MO_ConstantPoolIndex
:
2157 case MachineOperand::MO_BlockAddress
:
2164 bool HexagonInstrInfo::isExtendable(const MachineInstr
&MI
) const {
2165 const MCInstrDesc
&MID
= MI
.getDesc();
2166 const uint64_t F
= MID
.TSFlags
;
2167 if ((F
>> HexagonII::ExtendablePos
) & HexagonII::ExtendableMask
)
2170 // TODO: This is largely obsolete now. Will need to be removed
2171 // in consecutive patches.
2172 switch (MI
.getOpcode()) {
2173 // PS_fi and PS_fia remain special cases.
2174 case Hexagon::PS_fi
:
2175 case Hexagon::PS_fia
:
2183 // This returns true in two cases:
2184 // - The OP code itself indicates that this is an extended instruction.
2185 // - One of MOs has been marked with HMOTF_ConstExtended flag.
2186 bool HexagonInstrInfo::isExtended(const MachineInstr
&MI
) const {
2187 // First check if this is permanently extended op code.
2188 const uint64_t F
= MI
.getDesc().TSFlags
;
2189 if ((F
>> HexagonII::ExtendedPos
) & HexagonII::ExtendedMask
)
2191 // Use MO operand flags to determine if one of MI's operands
2192 // has HMOTF_ConstExtended flag set.
2193 for (const MachineOperand
&MO
: MI
.operands())
2194 if (MO
.getTargetFlags() & HexagonII::HMOTF_ConstExtended
)
2199 bool HexagonInstrInfo::isFloat(const MachineInstr
&MI
) const {
2200 unsigned Opcode
= MI
.getOpcode();
2201 const uint64_t F
= get(Opcode
).TSFlags
;
2202 return (F
>> HexagonII::FPPos
) & HexagonII::FPMask
;
2205 // No V60 HVX VMEM with A_INDIRECT.
2206 bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr
&I
,
2207 const MachineInstr
&J
) const {
2210 if (!I
.mayLoad() && !I
.mayStore())
2212 return J
.isIndirectBranch() || isIndirectCall(J
) || isIndirectL4Return(J
);
2215 bool HexagonInstrInfo::isIndirectCall(const MachineInstr
&MI
) const {
2216 switch (MI
.getOpcode()) {
2217 case Hexagon::J2_callr
:
2218 case Hexagon::J2_callrf
:
2219 case Hexagon::J2_callrt
:
2220 case Hexagon::PS_call_nr
:
2226 bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr
&MI
) const {
2227 switch (MI
.getOpcode()) {
2228 case Hexagon::L4_return
:
2229 case Hexagon::L4_return_t
:
2230 case Hexagon::L4_return_f
:
2231 case Hexagon::L4_return_fnew_pnt
:
2232 case Hexagon::L4_return_fnew_pt
:
2233 case Hexagon::L4_return_tnew_pnt
:
2234 case Hexagon::L4_return_tnew_pt
:
2240 bool HexagonInstrInfo::isJumpR(const MachineInstr
&MI
) const {
2241 switch (MI
.getOpcode()) {
2242 case Hexagon::J2_jumpr
:
2243 case Hexagon::J2_jumprt
:
2244 case Hexagon::J2_jumprf
:
2245 case Hexagon::J2_jumprtnewpt
:
2246 case Hexagon::J2_jumprfnewpt
:
2247 case Hexagon::J2_jumprtnew
:
2248 case Hexagon::J2_jumprfnew
:
2254 // Return true if a given MI can accommodate given offset.
2255 // Use abs estimate as oppose to the exact number.
2256 // TODO: This will need to be changed to use MC level
2257 // definition of instruction extendable field size.
2258 bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr
&MI
,
2259 unsigned offset
) const {
2260 // This selection of jump instructions matches to that what
2261 // analyzeBranch can parse, plus NVJ.
2262 if (isNewValueJump(MI
)) // r9:2
2263 return isInt
<11>(offset
);
2265 switch (MI
.getOpcode()) {
2266 // Still missing Jump to address condition on register value.
2269 case Hexagon::J2_jump
: // bits<24> dst; // r22:2
2270 case Hexagon::J2_call
:
2271 case Hexagon::PS_call_nr
:
2272 return isInt
<24>(offset
);
2273 case Hexagon::J2_jumpt
: //bits<17> dst; // r15:2
2274 case Hexagon::J2_jumpf
:
2275 case Hexagon::J2_jumptnew
:
2276 case Hexagon::J2_jumptnewpt
:
2277 case Hexagon::J2_jumpfnew
:
2278 case Hexagon::J2_jumpfnewpt
:
2279 case Hexagon::J2_callt
:
2280 case Hexagon::J2_callf
:
2281 return isInt
<17>(offset
);
2282 case Hexagon::J2_loop0i
:
2283 case Hexagon::J2_loop0iext
:
2284 case Hexagon::J2_loop0r
:
2285 case Hexagon::J2_loop0rext
:
2286 case Hexagon::J2_loop1i
:
2287 case Hexagon::J2_loop1iext
:
2288 case Hexagon::J2_loop1r
:
2289 case Hexagon::J2_loop1rext
:
2290 return isInt
<9>(offset
);
2291 // TODO: Add all the compound branches here. Can we do this in Relation model?
2292 case Hexagon::J4_cmpeqi_tp0_jump_nt
:
2293 case Hexagon::J4_cmpeqi_tp1_jump_nt
:
2294 case Hexagon::J4_cmpeqn1_tp0_jump_nt
:
2295 case Hexagon::J4_cmpeqn1_tp1_jump_nt
:
2296 return isInt
<11>(offset
);
2300 bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr
&LRMI
,
2301 const MachineInstr
&ESMI
) const {
2302 bool isLate
= isLateResultInstr(LRMI
);
2303 bool isEarly
= isEarlySourceInstr(ESMI
);
2305 LLVM_DEBUG(dbgs() << "V60" << (isLate
? "-LR " : " -- "));
2306 LLVM_DEBUG(LRMI
.dump());
2307 LLVM_DEBUG(dbgs() << "V60" << (isEarly
? "-ES " : " -- "));
2308 LLVM_DEBUG(ESMI
.dump());
2310 if (isLate
&& isEarly
) {
2311 LLVM_DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
2318 bool HexagonInstrInfo::isLateResultInstr(const MachineInstr
&MI
) const {
2319 switch (MI
.getOpcode()) {
2320 case TargetOpcode::EXTRACT_SUBREG
:
2321 case TargetOpcode::INSERT_SUBREG
:
2322 case TargetOpcode::SUBREG_TO_REG
:
2323 case TargetOpcode::REG_SEQUENCE
:
2324 case TargetOpcode::IMPLICIT_DEF
:
2325 case TargetOpcode::COPY
:
2326 case TargetOpcode::INLINEASM
:
2327 case TargetOpcode::PHI
:
2333 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2334 return !is_TC1(SchedClass
);
2337 bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr
&MI
) const {
2338 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2339 // resource, but all operands can be received late like an ALU instruction.
2340 return getType(MI
) == HexagonII::TypeCVI_VX_LATE
;
2343 bool HexagonInstrInfo::isLoopN(const MachineInstr
&MI
) const {
2344 unsigned Opcode
= MI
.getOpcode();
2345 return Opcode
== Hexagon::J2_loop0i
||
2346 Opcode
== Hexagon::J2_loop0r
||
2347 Opcode
== Hexagon::J2_loop0iext
||
2348 Opcode
== Hexagon::J2_loop0rext
||
2349 Opcode
== Hexagon::J2_loop1i
||
2350 Opcode
== Hexagon::J2_loop1r
||
2351 Opcode
== Hexagon::J2_loop1iext
||
2352 Opcode
== Hexagon::J2_loop1rext
;
2355 bool HexagonInstrInfo::isMemOp(const MachineInstr
&MI
) const {
2356 switch (MI
.getOpcode()) {
2357 default: return false;
2358 case Hexagon::L4_iadd_memopw_io
:
2359 case Hexagon::L4_isub_memopw_io
:
2360 case Hexagon::L4_add_memopw_io
:
2361 case Hexagon::L4_sub_memopw_io
:
2362 case Hexagon::L4_and_memopw_io
:
2363 case Hexagon::L4_or_memopw_io
:
2364 case Hexagon::L4_iadd_memoph_io
:
2365 case Hexagon::L4_isub_memoph_io
:
2366 case Hexagon::L4_add_memoph_io
:
2367 case Hexagon::L4_sub_memoph_io
:
2368 case Hexagon::L4_and_memoph_io
:
2369 case Hexagon::L4_or_memoph_io
:
2370 case Hexagon::L4_iadd_memopb_io
:
2371 case Hexagon::L4_isub_memopb_io
:
2372 case Hexagon::L4_add_memopb_io
:
2373 case Hexagon::L4_sub_memopb_io
:
2374 case Hexagon::L4_and_memopb_io
:
2375 case Hexagon::L4_or_memopb_io
:
2376 case Hexagon::L4_ior_memopb_io
:
2377 case Hexagon::L4_ior_memoph_io
:
2378 case Hexagon::L4_ior_memopw_io
:
2379 case Hexagon::L4_iand_memopb_io
:
2380 case Hexagon::L4_iand_memoph_io
:
2381 case Hexagon::L4_iand_memopw_io
:
2387 bool HexagonInstrInfo::isNewValue(const MachineInstr
&MI
) const {
2388 const uint64_t F
= MI
.getDesc().TSFlags
;
2389 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2392 bool HexagonInstrInfo::isNewValue(unsigned Opcode
) const {
2393 const uint64_t F
= get(Opcode
).TSFlags
;
2394 return (F
>> HexagonII::NewValuePos
) & HexagonII::NewValueMask
;
2397 bool HexagonInstrInfo::isNewValueInst(const MachineInstr
&MI
) const {
2398 return isNewValueJump(MI
) || isNewValueStore(MI
);
2401 bool HexagonInstrInfo::isNewValueJump(const MachineInstr
&MI
) const {
2402 return isNewValue(MI
) && MI
.isBranch();
2405 bool HexagonInstrInfo::isNewValueJump(unsigned Opcode
) const {
2406 return isNewValue(Opcode
) && get(Opcode
).isBranch() && isPredicated(Opcode
);
2409 bool HexagonInstrInfo::isNewValueStore(const MachineInstr
&MI
) const {
2410 const uint64_t F
= MI
.getDesc().TSFlags
;
2411 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2414 bool HexagonInstrInfo::isNewValueStore(unsigned Opcode
) const {
2415 const uint64_t F
= get(Opcode
).TSFlags
;
2416 return (F
>> HexagonII::NVStorePos
) & HexagonII::NVStoreMask
;
2419 // Returns true if a particular operand is extendable for an instruction.
2420 bool HexagonInstrInfo::isOperandExtended(const MachineInstr
&MI
,
2421 unsigned OperandNum
) const {
2422 const uint64_t F
= MI
.getDesc().TSFlags
;
2423 return ((F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
)
2427 bool HexagonInstrInfo::isPredicatedNew(const MachineInstr
&MI
) const {
2428 const uint64_t F
= MI
.getDesc().TSFlags
;
2429 assert(isPredicated(MI
));
2430 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2433 bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode
) const {
2434 const uint64_t F
= get(Opcode
).TSFlags
;
2435 assert(isPredicated(Opcode
));
2436 return (F
>> HexagonII::PredicatedNewPos
) & HexagonII::PredicatedNewMask
;
2439 bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr
&MI
) const {
2440 const uint64_t F
= MI
.getDesc().TSFlags
;
2441 return !((F
>> HexagonII::PredicatedFalsePos
) &
2442 HexagonII::PredicatedFalseMask
);
2445 bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode
) const {
2446 const uint64_t F
= get(Opcode
).TSFlags
;
2447 // Make sure that the instruction is predicated.
2448 assert((F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
);
2449 return !((F
>> HexagonII::PredicatedFalsePos
) &
2450 HexagonII::PredicatedFalseMask
);
2453 bool HexagonInstrInfo::isPredicated(unsigned Opcode
) const {
2454 const uint64_t F
= get(Opcode
).TSFlags
;
2455 return (F
>> HexagonII::PredicatedPos
) & HexagonII::PredicatedMask
;
2458 bool HexagonInstrInfo::isPredicateLate(unsigned Opcode
) const {
2459 const uint64_t F
= get(Opcode
).TSFlags
;
2460 return (F
>> HexagonII::PredicateLatePos
) & HexagonII::PredicateLateMask
;
2463 bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode
) const {
2464 const uint64_t F
= get(Opcode
).TSFlags
;
2465 assert(get(Opcode
).isBranch() &&
2466 (isPredicatedNew(Opcode
) || isNewValue(Opcode
)));
2467 return (F
>> HexagonII::TakenPos
) & HexagonII::TakenMask
;
2470 bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr
&MI
) const {
2471 return MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4
||
2472 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT
||
2473 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC
||
2474 MI
.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
;
2477 bool HexagonInstrInfo::isSignExtendingLoad(const MachineInstr
&MI
) const {
2478 switch (MI
.getOpcode()) {
2480 case Hexagon::L2_loadrb_io
:
2481 case Hexagon::L4_loadrb_ur
:
2482 case Hexagon::L4_loadrb_ap
:
2483 case Hexagon::L2_loadrb_pr
:
2484 case Hexagon::L2_loadrb_pbr
:
2485 case Hexagon::L2_loadrb_pi
:
2486 case Hexagon::L2_loadrb_pci
:
2487 case Hexagon::L2_loadrb_pcr
:
2488 case Hexagon::L2_loadbsw2_io
:
2489 case Hexagon::L4_loadbsw2_ur
:
2490 case Hexagon::L4_loadbsw2_ap
:
2491 case Hexagon::L2_loadbsw2_pr
:
2492 case Hexagon::L2_loadbsw2_pbr
:
2493 case Hexagon::L2_loadbsw2_pi
:
2494 case Hexagon::L2_loadbsw2_pci
:
2495 case Hexagon::L2_loadbsw2_pcr
:
2496 case Hexagon::L2_loadbsw4_io
:
2497 case Hexagon::L4_loadbsw4_ur
:
2498 case Hexagon::L4_loadbsw4_ap
:
2499 case Hexagon::L2_loadbsw4_pr
:
2500 case Hexagon::L2_loadbsw4_pbr
:
2501 case Hexagon::L2_loadbsw4_pi
:
2502 case Hexagon::L2_loadbsw4_pci
:
2503 case Hexagon::L2_loadbsw4_pcr
:
2504 case Hexagon::L4_loadrb_rr
:
2505 case Hexagon::L2_ploadrbt_io
:
2506 case Hexagon::L2_ploadrbt_pi
:
2507 case Hexagon::L2_ploadrbf_io
:
2508 case Hexagon::L2_ploadrbf_pi
:
2509 case Hexagon::L2_ploadrbtnew_io
:
2510 case Hexagon::L2_ploadrbfnew_io
:
2511 case Hexagon::L4_ploadrbt_rr
:
2512 case Hexagon::L4_ploadrbf_rr
:
2513 case Hexagon::L4_ploadrbtnew_rr
:
2514 case Hexagon::L4_ploadrbfnew_rr
:
2515 case Hexagon::L2_ploadrbtnew_pi
:
2516 case Hexagon::L2_ploadrbfnew_pi
:
2517 case Hexagon::L4_ploadrbt_abs
:
2518 case Hexagon::L4_ploadrbf_abs
:
2519 case Hexagon::L4_ploadrbtnew_abs
:
2520 case Hexagon::L4_ploadrbfnew_abs
:
2521 case Hexagon::L2_loadrbgp
:
2523 case Hexagon::L2_loadrh_io
:
2524 case Hexagon::L4_loadrh_ur
:
2525 case Hexagon::L4_loadrh_ap
:
2526 case Hexagon::L2_loadrh_pr
:
2527 case Hexagon::L2_loadrh_pbr
:
2528 case Hexagon::L2_loadrh_pi
:
2529 case Hexagon::L2_loadrh_pci
:
2530 case Hexagon::L2_loadrh_pcr
:
2531 case Hexagon::L4_loadrh_rr
:
2532 case Hexagon::L2_ploadrht_io
:
2533 case Hexagon::L2_ploadrht_pi
:
2534 case Hexagon::L2_ploadrhf_io
:
2535 case Hexagon::L2_ploadrhf_pi
:
2536 case Hexagon::L2_ploadrhtnew_io
:
2537 case Hexagon::L2_ploadrhfnew_io
:
2538 case Hexagon::L4_ploadrht_rr
:
2539 case Hexagon::L4_ploadrhf_rr
:
2540 case Hexagon::L4_ploadrhtnew_rr
:
2541 case Hexagon::L4_ploadrhfnew_rr
:
2542 case Hexagon::L2_ploadrhtnew_pi
:
2543 case Hexagon::L2_ploadrhfnew_pi
:
2544 case Hexagon::L4_ploadrht_abs
:
2545 case Hexagon::L4_ploadrhf_abs
:
2546 case Hexagon::L4_ploadrhtnew_abs
:
2547 case Hexagon::L4_ploadrhfnew_abs
:
2548 case Hexagon::L2_loadrhgp
:
2555 bool HexagonInstrInfo::isSolo(const MachineInstr
&MI
) const {
2556 const uint64_t F
= MI
.getDesc().TSFlags
;
2557 return (F
>> HexagonII::SoloPos
) & HexagonII::SoloMask
;
2560 bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr
&MI
) const {
2561 switch (MI
.getOpcode()) {
2562 case Hexagon::STriw_pred
:
2563 case Hexagon::LDriw_pred
:
2570 bool HexagonInstrInfo::isTailCall(const MachineInstr
&MI
) const {
2574 for (auto &Op
: MI
.operands())
2575 if (Op
.isGlobal() || Op
.isSymbol())
2580 // Returns true when SU has a timing class TC1.
2581 bool HexagonInstrInfo::isTC1(const MachineInstr
&MI
) const {
2582 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2583 return is_TC1(SchedClass
);
2586 bool HexagonInstrInfo::isTC2(const MachineInstr
&MI
) const {
2587 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2588 return is_TC2(SchedClass
);
2591 bool HexagonInstrInfo::isTC2Early(const MachineInstr
&MI
) const {
2592 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2593 return is_TC2early(SchedClass
);
2596 bool HexagonInstrInfo::isTC4x(const MachineInstr
&MI
) const {
2597 unsigned SchedClass
= MI
.getDesc().getSchedClass();
2598 return is_TC4x(SchedClass
);
2601 // Schedule this ASAP.
2602 bool HexagonInstrInfo::isToBeScheduledASAP(const MachineInstr
&MI1
,
2603 const MachineInstr
&MI2
) const {
2604 if (mayBeCurLoad(MI1
)) {
2605 // if (result of SU is used in Next) return true;
2606 Register DstReg
= MI1
.getOperand(0).getReg();
2607 int N
= MI2
.getNumOperands();
2608 for (int I
= 0; I
< N
; I
++)
2609 if (MI2
.getOperand(I
).isReg() && DstReg
== MI2
.getOperand(I
).getReg())
2612 if (mayBeNewStore(MI2
))
2613 if (MI2
.getOpcode() == Hexagon::V6_vS32b_pi
)
2614 if (MI1
.getOperand(0).isReg() && MI2
.getOperand(3).isReg() &&
2615 MI1
.getOperand(0).getReg() == MI2
.getOperand(3).getReg())
2620 bool HexagonInstrInfo::isHVXVec(const MachineInstr
&MI
) const {
2621 const uint64_t V
= getType(MI
);
2622 return HexagonII::TypeCVI_FIRST
<= V
&& V
<= HexagonII::TypeCVI_LAST
;
2625 // Check if the Offset is a valid auto-inc imm by Load/Store Type.
2626 bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT
, int Offset
) const {
2627 int Size
= VT
.getSizeInBits() / 8;
2628 if (Offset
% Size
!= 0)
2630 int Count
= Offset
/ Size
;
2632 switch (VT
.getSimpleVT().SimpleTy
) {
2633 // For scalars the auto-inc is s4
2645 return isInt
<4>(Count
);
2646 // For HVX vectors the auto-inc is s3
2655 return isInt
<3>(Count
);
2660 llvm_unreachable("Not an valid type!");
2663 bool HexagonInstrInfo::isValidOffset(unsigned Opcode
, int Offset
,
2664 const TargetRegisterInfo
*TRI
, bool Extend
) const {
2665 // This function is to check whether the "Offset" is in the correct range of
2666 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2667 // inserted to calculate the final address. Due to this reason, the function
2668 // assumes that the "Offset" has correct alignment.
2669 // We used to assert if the offset was not properly aligned, however,
2670 // there are cases where a misaligned pointer recast can cause this
2671 // problem, and we need to allow for it. The front end warns of such
2672 // misaligns with respect to load size.
2674 case Hexagon::PS_vstorerq_ai
:
2675 case Hexagon::PS_vstorerw_ai
:
2676 case Hexagon::PS_vstorerw_nt_ai
:
2677 case Hexagon::PS_vloadrq_ai
:
2678 case Hexagon::PS_vloadrw_ai
:
2679 case Hexagon::PS_vloadrw_nt_ai
:
2680 case Hexagon::V6_vL32b_ai
:
2681 case Hexagon::V6_vS32b_ai
:
2682 case Hexagon::V6_vL32b_nt_ai
:
2683 case Hexagon::V6_vS32b_nt_ai
:
2684 case Hexagon::V6_vL32Ub_ai
:
2685 case Hexagon::V6_vS32Ub_ai
: {
2686 unsigned VectorSize
= TRI
->getSpillSize(Hexagon::HvxVRRegClass
);
2687 assert(isPowerOf2_32(VectorSize
));
2688 if (Offset
& (VectorSize
-1))
2690 return isInt
<4>(Offset
>> Log2_32(VectorSize
));
2693 case Hexagon::J2_loop0i
:
2694 case Hexagon::J2_loop1i
:
2695 return isUInt
<10>(Offset
);
2697 case Hexagon::S4_storeirb_io
:
2698 case Hexagon::S4_storeirbt_io
:
2699 case Hexagon::S4_storeirbf_io
:
2700 return isUInt
<6>(Offset
);
2702 case Hexagon::S4_storeirh_io
:
2703 case Hexagon::S4_storeirht_io
:
2704 case Hexagon::S4_storeirhf_io
:
2705 return isShiftedUInt
<6,1>(Offset
);
2707 case Hexagon::S4_storeiri_io
:
2708 case Hexagon::S4_storeirit_io
:
2709 case Hexagon::S4_storeirif_io
:
2710 return isShiftedUInt
<6,2>(Offset
);
2717 case Hexagon::L2_loadri_io
:
2718 case Hexagon::S2_storeri_io
:
2719 return (Offset
>= Hexagon_MEMW_OFFSET_MIN
) &&
2720 (Offset
<= Hexagon_MEMW_OFFSET_MAX
);
2722 case Hexagon::L2_loadrd_io
:
2723 case Hexagon::S2_storerd_io
:
2724 return (Offset
>= Hexagon_MEMD_OFFSET_MIN
) &&
2725 (Offset
<= Hexagon_MEMD_OFFSET_MAX
);
2727 case Hexagon::L2_loadrh_io
:
2728 case Hexagon::L2_loadruh_io
:
2729 case Hexagon::S2_storerh_io
:
2730 case Hexagon::S2_storerf_io
:
2731 return (Offset
>= Hexagon_MEMH_OFFSET_MIN
) &&
2732 (Offset
<= Hexagon_MEMH_OFFSET_MAX
);
2734 case Hexagon::L2_loadrb_io
:
2735 case Hexagon::L2_loadrub_io
:
2736 case Hexagon::S2_storerb_io
:
2737 return (Offset
>= Hexagon_MEMB_OFFSET_MIN
) &&
2738 (Offset
<= Hexagon_MEMB_OFFSET_MAX
);
2740 case Hexagon::A2_addi
:
2741 return (Offset
>= Hexagon_ADDI_OFFSET_MIN
) &&
2742 (Offset
<= Hexagon_ADDI_OFFSET_MAX
);
2744 case Hexagon::L4_iadd_memopw_io
:
2745 case Hexagon::L4_isub_memopw_io
:
2746 case Hexagon::L4_add_memopw_io
:
2747 case Hexagon::L4_sub_memopw_io
:
2748 case Hexagon::L4_and_memopw_io
:
2749 case Hexagon::L4_or_memopw_io
:
2750 return (0 <= Offset
&& Offset
<= 255);
2752 case Hexagon::L4_iadd_memoph_io
:
2753 case Hexagon::L4_isub_memoph_io
:
2754 case Hexagon::L4_add_memoph_io
:
2755 case Hexagon::L4_sub_memoph_io
:
2756 case Hexagon::L4_and_memoph_io
:
2757 case Hexagon::L4_or_memoph_io
:
2758 return (0 <= Offset
&& Offset
<= 127);
2760 case Hexagon::L4_iadd_memopb_io
:
2761 case Hexagon::L4_isub_memopb_io
:
2762 case Hexagon::L4_add_memopb_io
:
2763 case Hexagon::L4_sub_memopb_io
:
2764 case Hexagon::L4_and_memopb_io
:
2765 case Hexagon::L4_or_memopb_io
:
2766 return (0 <= Offset
&& Offset
<= 63);
2768 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2769 // any size. Later pass knows how to handle it.
2770 case Hexagon::STriw_pred
:
2771 case Hexagon::LDriw_pred
:
2772 case Hexagon::STriw_ctr
:
2773 case Hexagon::LDriw_ctr
:
2776 case Hexagon::PS_fi
:
2777 case Hexagon::PS_fia
:
2778 case Hexagon::INLINEASM
:
2781 case Hexagon::L2_ploadrbt_io
:
2782 case Hexagon::L2_ploadrbf_io
:
2783 case Hexagon::L2_ploadrubt_io
:
2784 case Hexagon::L2_ploadrubf_io
:
2785 case Hexagon::S2_pstorerbt_io
:
2786 case Hexagon::S2_pstorerbf_io
:
2787 return isUInt
<6>(Offset
);
2789 case Hexagon::L2_ploadrht_io
:
2790 case Hexagon::L2_ploadrhf_io
:
2791 case Hexagon::L2_ploadruht_io
:
2792 case Hexagon::L2_ploadruhf_io
:
2793 case Hexagon::S2_pstorerht_io
:
2794 case Hexagon::S2_pstorerhf_io
:
2795 return isShiftedUInt
<6,1>(Offset
);
2797 case Hexagon::L2_ploadrit_io
:
2798 case Hexagon::L2_ploadrif_io
:
2799 case Hexagon::S2_pstorerit_io
:
2800 case Hexagon::S2_pstorerif_io
:
2801 return isShiftedUInt
<6,2>(Offset
);
2803 case Hexagon::L2_ploadrdt_io
:
2804 case Hexagon::L2_ploadrdf_io
:
2805 case Hexagon::S2_pstorerdt_io
:
2806 case Hexagon::S2_pstorerdf_io
:
2807 return isShiftedUInt
<6,3>(Offset
);
2810 llvm_unreachable("No offset range is defined for this opcode. "
2811 "Please define it in the above switch statement!");
2814 bool HexagonInstrInfo::isVecAcc(const MachineInstr
&MI
) const {
2815 return isHVXVec(MI
) && isAccumulator(MI
);
2818 bool HexagonInstrInfo::isVecALU(const MachineInstr
&MI
) const {
2819 const uint64_t F
= get(MI
.getOpcode()).TSFlags
;
2820 const uint64_t V
= ((F
>> HexagonII::TypePos
) & HexagonII::TypeMask
);
2822 V
== HexagonII::TypeCVI_VA
||
2823 V
== HexagonII::TypeCVI_VA_DV
;
2826 bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr
&ProdMI
,
2827 const MachineInstr
&ConsMI
) const {
2828 if (EnableACCForwarding
&& isVecAcc(ProdMI
) && isVecAcc(ConsMI
))
2831 if (EnableALUForwarding
&& (isVecALU(ConsMI
) || isLateSourceInstr(ConsMI
)))
2834 if (mayBeNewStore(ConsMI
))
2840 bool HexagonInstrInfo::isZeroExtendingLoad(const MachineInstr
&MI
) const {
2841 switch (MI
.getOpcode()) {
2843 case Hexagon::L2_loadrub_io
:
2844 case Hexagon::L4_loadrub_ur
:
2845 case Hexagon::L4_loadrub_ap
:
2846 case Hexagon::L2_loadrub_pr
:
2847 case Hexagon::L2_loadrub_pbr
:
2848 case Hexagon::L2_loadrub_pi
:
2849 case Hexagon::L2_loadrub_pci
:
2850 case Hexagon::L2_loadrub_pcr
:
2851 case Hexagon::L2_loadbzw2_io
:
2852 case Hexagon::L4_loadbzw2_ur
:
2853 case Hexagon::L4_loadbzw2_ap
:
2854 case Hexagon::L2_loadbzw2_pr
:
2855 case Hexagon::L2_loadbzw2_pbr
:
2856 case Hexagon::L2_loadbzw2_pi
:
2857 case Hexagon::L2_loadbzw2_pci
:
2858 case Hexagon::L2_loadbzw2_pcr
:
2859 case Hexagon::L2_loadbzw4_io
:
2860 case Hexagon::L4_loadbzw4_ur
:
2861 case Hexagon::L4_loadbzw4_ap
:
2862 case Hexagon::L2_loadbzw4_pr
:
2863 case Hexagon::L2_loadbzw4_pbr
:
2864 case Hexagon::L2_loadbzw4_pi
:
2865 case Hexagon::L2_loadbzw4_pci
:
2866 case Hexagon::L2_loadbzw4_pcr
:
2867 case Hexagon::L4_loadrub_rr
:
2868 case Hexagon::L2_ploadrubt_io
:
2869 case Hexagon::L2_ploadrubt_pi
:
2870 case Hexagon::L2_ploadrubf_io
:
2871 case Hexagon::L2_ploadrubf_pi
:
2872 case Hexagon::L2_ploadrubtnew_io
:
2873 case Hexagon::L2_ploadrubfnew_io
:
2874 case Hexagon::L4_ploadrubt_rr
:
2875 case Hexagon::L4_ploadrubf_rr
:
2876 case Hexagon::L4_ploadrubtnew_rr
:
2877 case Hexagon::L4_ploadrubfnew_rr
:
2878 case Hexagon::L2_ploadrubtnew_pi
:
2879 case Hexagon::L2_ploadrubfnew_pi
:
2880 case Hexagon::L4_ploadrubt_abs
:
2881 case Hexagon::L4_ploadrubf_abs
:
2882 case Hexagon::L4_ploadrubtnew_abs
:
2883 case Hexagon::L4_ploadrubfnew_abs
:
2884 case Hexagon::L2_loadrubgp
:
2886 case Hexagon::L2_loadruh_io
:
2887 case Hexagon::L4_loadruh_ur
:
2888 case Hexagon::L4_loadruh_ap
:
2889 case Hexagon::L2_loadruh_pr
:
2890 case Hexagon::L2_loadruh_pbr
:
2891 case Hexagon::L2_loadruh_pi
:
2892 case Hexagon::L2_loadruh_pci
:
2893 case Hexagon::L2_loadruh_pcr
:
2894 case Hexagon::L4_loadruh_rr
:
2895 case Hexagon::L2_ploadruht_io
:
2896 case Hexagon::L2_ploadruht_pi
:
2897 case Hexagon::L2_ploadruhf_io
:
2898 case Hexagon::L2_ploadruhf_pi
:
2899 case Hexagon::L2_ploadruhtnew_io
:
2900 case Hexagon::L2_ploadruhfnew_io
:
2901 case Hexagon::L4_ploadruht_rr
:
2902 case Hexagon::L4_ploadruhf_rr
:
2903 case Hexagon::L4_ploadruhtnew_rr
:
2904 case Hexagon::L4_ploadruhfnew_rr
:
2905 case Hexagon::L2_ploadruhtnew_pi
:
2906 case Hexagon::L2_ploadruhfnew_pi
:
2907 case Hexagon::L4_ploadruht_abs
:
2908 case Hexagon::L4_ploadruhf_abs
:
2909 case Hexagon::L4_ploadruhtnew_abs
:
2910 case Hexagon::L4_ploadruhfnew_abs
:
2911 case Hexagon::L2_loadruhgp
:
2918 // Add latency to instruction.
2919 bool HexagonInstrInfo::addLatencyToSchedule(const MachineInstr
&MI1
,
2920 const MachineInstr
&MI2
) const {
2921 if (isHVXVec(MI1
) && isHVXVec(MI2
))
2922 if (!isVecUsableNextPacket(MI1
, MI2
))
2927 /// Get the base register and byte offset of a load/store instr.
2928 bool HexagonInstrInfo::getMemOperandWithOffset(
2929 const MachineInstr
&LdSt
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
2930 const TargetRegisterInfo
*TRI
) const {
2931 unsigned AccessSize
= 0;
2932 BaseOp
= getBaseAndOffset(LdSt
, Offset
, AccessSize
);
2933 assert((!BaseOp
|| BaseOp
->isReg()) &&
2934 "getMemOperandWithOffset only supports base "
2935 "operands of type register.");
2936 return BaseOp
!= nullptr;
2939 /// Can these instructions execute at the same time in a bundle.
2940 bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr
&First
,
2941 const MachineInstr
&Second
) const {
2942 if (Second
.mayStore() && First
.getOpcode() == Hexagon::S2_allocframe
) {
2943 const MachineOperand
&Op
= Second
.getOperand(0);
2944 if (Op
.isReg() && Op
.isUse() && Op
.getReg() == Hexagon::R29
)
2947 if (DisableNVSchedule
)
2949 if (mayBeNewStore(Second
)) {
2950 // Make sure the definition of the first instruction is the value being
2952 const MachineOperand
&Stored
=
2953 Second
.getOperand(Second
.getNumOperands() - 1);
2954 if (!Stored
.isReg())
2956 for (unsigned i
= 0, e
= First
.getNumOperands(); i
< e
; ++i
) {
2957 const MachineOperand
&Op
= First
.getOperand(i
);
2958 if (Op
.isReg() && Op
.isDef() && Op
.getReg() == Stored
.getReg())
2965 bool HexagonInstrInfo::doesNotReturn(const MachineInstr
&CallMI
) const {
2966 unsigned Opc
= CallMI
.getOpcode();
2967 return Opc
== Hexagon::PS_call_nr
|| Opc
== Hexagon::PS_callr_nr
;
2970 bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock
*B
) const {
2977 // Returns true if an instruction can be converted into a non-extended
2978 // equivalent instruction.
2979 bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr
&MI
) const {
2981 // Check if the instruction has a register form that uses register in place
2982 // of the extended operand, if so return that as the non-extended form.
2983 if (Hexagon::getRegForm(MI
.getOpcode()) >= 0)
2986 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
2987 // Check addressing mode and retrieve non-ext equivalent instruction.
2989 switch (getAddrMode(MI
)) {
2990 case HexagonII::Absolute
:
2991 // Load/store with absolute addressing mode can be converted into
2992 // base+offset mode.
2993 NonExtOpcode
= Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
2995 case HexagonII::BaseImmOffset
:
2996 // Load/store with base+offset addressing mode can be converted into
2997 // base+register offset addressing mode. However left shift operand should
2999 NonExtOpcode
= Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
3001 case HexagonII::BaseLongOffset
:
3002 NonExtOpcode
= Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
3007 if (NonExtOpcode
< 0)
3014 bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr
&MI
) const {
3015 return Hexagon::getRealHWInstr(MI
.getOpcode(),
3016 Hexagon::InstrType_Pseudo
) >= 0;
3019 bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock
*B
)
3021 MachineBasicBlock::const_iterator I
= B
->getFirstTerminator(), E
= B
->end();
3030 // Returns true, if a LD insn can be promoted to a cur load.
3031 bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr
&MI
) const {
3032 const uint64_t F
= MI
.getDesc().TSFlags
;
3033 return ((F
>> HexagonII::mayCVLoadPos
) & HexagonII::mayCVLoadMask
) &&
3034 Subtarget
.hasV60Ops();
3037 // Returns true, if a ST insn can be promoted to a new-value store.
3038 bool HexagonInstrInfo::mayBeNewStore(const MachineInstr
&MI
) const {
3039 if (MI
.mayStore() && !Subtarget
.useNewValueStores())
3042 const uint64_t F
= MI
.getDesc().TSFlags
;
3043 return (F
>> HexagonII::mayNVStorePos
) & HexagonII::mayNVStoreMask
;
3046 bool HexagonInstrInfo::producesStall(const MachineInstr
&ProdMI
,
3047 const MachineInstr
&ConsMI
) const {
3048 // There is no stall when ProdMI is not a V60 vector.
3049 if (!isHVXVec(ProdMI
))
3052 // There is no stall when ProdMI and ConsMI are not dependent.
3053 if (!isDependent(ProdMI
, ConsMI
))
3056 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3057 // are scheduled in consecutive packets.
3058 if (isVecUsableNextPacket(ProdMI
, ConsMI
))
3064 bool HexagonInstrInfo::producesStall(const MachineInstr
&MI
,
3065 MachineBasicBlock::const_instr_iterator BII
) const {
3066 // There is no stall when I is not a V60 vector.
3070 MachineBasicBlock::const_instr_iterator MII
= BII
;
3071 MachineBasicBlock::const_instr_iterator MIE
= MII
->getParent()->instr_end();
3073 if (!MII
->isBundle())
3074 return producesStall(*MII
, MI
);
3076 for (++MII
; MII
!= MIE
&& MII
->isInsideBundle(); ++MII
) {
3077 const MachineInstr
&J
= *MII
;
3078 if (producesStall(J
, MI
))
3084 bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr
&MI
,
3085 unsigned PredReg
) const {
3086 for (const MachineOperand
&MO
: MI
.operands()) {
3087 // Predicate register must be explicitly defined.
3088 if (MO
.isRegMask() && MO
.clobbersPhysReg(PredReg
))
3090 if (MO
.isReg() && MO
.isDef() && MO
.isImplicit() && (MO
.getReg() == PredReg
))
3094 // Instruction that produce late predicate cannot be used as sources of
3096 switch (MI
.getOpcode()) {
3097 case Hexagon::A4_addp_c
:
3098 case Hexagon::A4_subp_c
:
3099 case Hexagon::A4_tlbmatch
:
3100 case Hexagon::A5_ACS
:
3101 case Hexagon::F2_sfinvsqrta
:
3102 case Hexagon::F2_sfrecipa
:
3103 case Hexagon::J2_endloop0
:
3104 case Hexagon::J2_endloop01
:
3105 case Hexagon::J2_ploop1si
:
3106 case Hexagon::J2_ploop1sr
:
3107 case Hexagon::J2_ploop2si
:
3108 case Hexagon::J2_ploop2sr
:
3109 case Hexagon::J2_ploop3si
:
3110 case Hexagon::J2_ploop3sr
:
3111 case Hexagon::S2_cabacdecbin
:
3112 case Hexagon::S2_storew_locked
:
3113 case Hexagon::S4_stored_locked
:
3119 bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode
) const {
3120 return Opcode
== Hexagon::J2_jumpt
||
3121 Opcode
== Hexagon::J2_jumptpt
||
3122 Opcode
== Hexagon::J2_jumpf
||
3123 Opcode
== Hexagon::J2_jumpfpt
||
3124 Opcode
== Hexagon::J2_jumptnew
||
3125 Opcode
== Hexagon::J2_jumpfnew
||
3126 Opcode
== Hexagon::J2_jumptnewpt
||
3127 Opcode
== Hexagon::J2_jumpfnewpt
;
3130 bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef
<MachineOperand
> Cond
) const {
3131 if (Cond
.empty() || !isPredicated(Cond
[0].getImm()))
3133 return !isPredicatedTrue(Cond
[0].getImm());
3136 unsigned HexagonInstrInfo::getAddrMode(const MachineInstr
&MI
) const {
3137 const uint64_t F
= MI
.getDesc().TSFlags
;
3138 return (F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
;
3141 // Returns the base register in a memory access (load/store). The offset is
3142 // returned in Offset and the access size is returned in AccessSize.
3143 // If the base operand has a subregister or the offset field does not contain
3144 // an immediate value, return nullptr.
3145 MachineOperand
*HexagonInstrInfo::getBaseAndOffset(const MachineInstr
&MI
,
3147 unsigned &AccessSize
) const {
3148 // Return if it is not a base+offset type instruction or a MemOp.
3149 if (getAddrMode(MI
) != HexagonII::BaseImmOffset
&&
3150 getAddrMode(MI
) != HexagonII::BaseLongOffset
&&
3151 !isMemOp(MI
) && !isPostIncrement(MI
))
3154 AccessSize
= getMemAccessSize(MI
);
3156 unsigned BasePos
= 0, OffsetPos
= 0;
3157 if (!getBaseAndOffsetPosition(MI
, BasePos
, OffsetPos
))
3160 // Post increment updates its EA after the mem access,
3161 // so we need to treat its offset as zero.
3162 if (isPostIncrement(MI
)) {
3165 const MachineOperand
&OffsetOp
= MI
.getOperand(OffsetPos
);
3166 if (!OffsetOp
.isImm())
3168 Offset
= OffsetOp
.getImm();
3171 const MachineOperand
&BaseOp
= MI
.getOperand(BasePos
);
3172 if (BaseOp
.getSubReg() != 0)
3174 return &const_cast<MachineOperand
&>(BaseOp
);
3177 /// Return the position of the base and offset operands for this instruction.
3178 bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr
&MI
,
3179 unsigned &BasePos
, unsigned &OffsetPos
) const {
3180 if (!isAddrModeWithOffset(MI
) && !isPostIncrement(MI
))
3183 // Deal with memops first.
3187 } else if (MI
.mayStore()) {
3190 } else if (MI
.mayLoad()) {
3196 if (isPredicated(MI
)) {
3200 if (isPostIncrement(MI
)) {
3205 if (!MI
.getOperand(BasePos
).isReg() || !MI
.getOperand(OffsetPos
).isImm())
3211 // Inserts branching instructions in reverse order of their occurrence.
3212 // e.g. jump_t t1 (i1)
3214 // Jumpers = {i2, i1}
3215 SmallVector
<MachineInstr
*, 2> HexagonInstrInfo::getBranchingInstrs(
3216 MachineBasicBlock
& MBB
) const {
3217 SmallVector
<MachineInstr
*, 2> Jumpers
;
3218 // If the block has no terminators, it just falls into the block after it.
3219 MachineBasicBlock::instr_iterator I
= MBB
.instr_end();
3220 if (I
== MBB
.instr_begin())
3223 // A basic block may looks like this:
3233 // It has two succs but does not have a terminator
3234 // Don't know how to handle it.
3239 } while (I
!= MBB
.instr_begin());
3241 I
= MBB
.instr_end();
3244 while (I
->isDebugInstr()) {
3245 if (I
== MBB
.instr_begin())
3249 if (!isUnpredicatedTerminator(*I
))
3252 // Get the last instruction in the block.
3253 MachineInstr
*LastInst
= &*I
;
3254 Jumpers
.push_back(LastInst
);
3255 MachineInstr
*SecondLastInst
= nullptr;
3256 // Find one more terminator if present.
3258 if (&*I
!= LastInst
&& !I
->isBundle() && isUnpredicatedTerminator(*I
)) {
3259 if (!SecondLastInst
) {
3260 SecondLastInst
= &*I
;
3261 Jumpers
.push_back(SecondLastInst
);
3262 } else // This is a third branch.
3265 if (I
== MBB
.instr_begin())
3272 // Returns Operand Index for the constant extended instruction.
3273 unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr
&MI
) const {
3274 const uint64_t F
= MI
.getDesc().TSFlags
;
3275 return (F
>> HexagonII::ExtendableOpPos
) & HexagonII::ExtendableOpMask
;
3278 // See if instruction could potentially be a duplex candidate.
3279 // If so, return its group. Zero otherwise.
3280 HexagonII::CompoundGroup
HexagonInstrInfo::getCompoundCandidateGroup(
3281 const MachineInstr
&MI
) const {
3282 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3284 switch (MI
.getOpcode()) {
3286 return HexagonII::HCG_None
;
3289 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3290 // "Rd16=#U6 ; jump #r9:2"
3291 // "Rd16=Rs16 ; jump #r9:2"
3293 case Hexagon::C2_cmpeq
:
3294 case Hexagon::C2_cmpgt
:
3295 case Hexagon::C2_cmpgtu
:
3296 DstReg
= MI
.getOperand(0).getReg();
3297 Src1Reg
= MI
.getOperand(1).getReg();
3298 Src2Reg
= MI
.getOperand(2).getReg();
3299 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3300 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3301 isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
))
3302 return HexagonII::HCG_A
;
3304 case Hexagon::C2_cmpeqi
:
3305 case Hexagon::C2_cmpgti
:
3306 case Hexagon::C2_cmpgtui
:
3307 // P0 = cmp.eq(Rs,#u2)
3308 DstReg
= MI
.getOperand(0).getReg();
3309 SrcReg
= MI
.getOperand(1).getReg();
3310 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3311 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3312 isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3313 ((isUInt
<5>(MI
.getOperand(2).getImm())) ||
3314 (MI
.getOperand(2).getImm() == -1)))
3315 return HexagonII::HCG_A
;
3317 case Hexagon::A2_tfr
:
3319 DstReg
= MI
.getOperand(0).getReg();
3320 SrcReg
= MI
.getOperand(1).getReg();
3321 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3322 return HexagonII::HCG_A
;
3324 case Hexagon::A2_tfrsi
:
3326 // Do not test for #u6 size since the const is getting extended
3327 // regardless and compound could be formed.
3328 DstReg
= MI
.getOperand(0).getReg();
3329 if (isIntRegForSubInst(DstReg
))
3330 return HexagonII::HCG_A
;
3332 case Hexagon::S2_tstbit_i
:
3333 DstReg
= MI
.getOperand(0).getReg();
3334 Src1Reg
= MI
.getOperand(1).getReg();
3335 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
3336 (Hexagon::P0
== DstReg
|| Hexagon::P1
== DstReg
) &&
3337 MI
.getOperand(2).isImm() &&
3338 isIntRegForSubInst(Src1Reg
) && (MI
.getOperand(2).getImm() == 0))
3339 return HexagonII::HCG_A
;
3341 // The fact that .new form is used pretty much guarantees
3342 // that predicate register will match. Nevertheless,
3343 // there could be some false positives without additional
3345 case Hexagon::J2_jumptnew
:
3346 case Hexagon::J2_jumpfnew
:
3347 case Hexagon::J2_jumptnewpt
:
3348 case Hexagon::J2_jumpfnewpt
:
3349 Src1Reg
= MI
.getOperand(0).getReg();
3350 if (Hexagon::PredRegsRegClass
.contains(Src1Reg
) &&
3351 (Hexagon::P0
== Src1Reg
|| Hexagon::P1
== Src1Reg
))
3352 return HexagonII::HCG_B
;
3354 // Transfer and jump:
3355 // Rd=#U6 ; jump #r9:2
3356 // Rd=Rs ; jump #r9:2
3357 // Do not test for jump range here.
3358 case Hexagon::J2_jump
:
3359 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3360 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3361 return HexagonII::HCG_C
;
3364 return HexagonII::HCG_None
;
3367 // Returns -1 when there is no opcode found.
3368 unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr
&GA
,
3369 const MachineInstr
&GB
) const {
3370 assert(getCompoundCandidateGroup(GA
) == HexagonII::HCG_A
);
3371 assert(getCompoundCandidateGroup(GB
) == HexagonII::HCG_B
);
3372 if ((GA
.getOpcode() != Hexagon::C2_cmpeqi
) ||
3373 (GB
.getOpcode() != Hexagon::J2_jumptnew
))
3375 Register DestReg
= GA
.getOperand(0).getReg();
3376 if (!GB
.readsRegister(DestReg
))
3378 if (DestReg
!= Hexagon::P0
&& DestReg
!= Hexagon::P1
)
3380 // The value compared against must be either u5 or -1.
3381 const MachineOperand
&CmpOp
= GA
.getOperand(2);
3384 int V
= CmpOp
.getImm();
3386 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqn1_tp0_jump_nt
3387 : Hexagon::J4_cmpeqn1_tp1_jump_nt
;
3390 return DestReg
== Hexagon::P0
? Hexagon::J4_cmpeqi_tp0_jump_nt
3391 : Hexagon::J4_cmpeqi_tp1_jump_nt
;
3394 int HexagonInstrInfo::getCondOpcode(int Opc
, bool invertPredicate
) const {
3395 enum Hexagon::PredSense inPredSense
;
3396 inPredSense
= invertPredicate
? Hexagon::PredSense_false
:
3397 Hexagon::PredSense_true
;
3398 int CondOpcode
= Hexagon::getPredOpcode(Opc
, inPredSense
);
3399 if (CondOpcode
>= 0) // Valid Conditional opcode/instruction
3402 llvm_unreachable("Unexpected predicable instruction");
3405 // Return the cur value instruction for a given store.
3406 int HexagonInstrInfo::getDotCurOp(const MachineInstr
&MI
) const {
3407 switch (MI
.getOpcode()) {
3408 default: llvm_unreachable("Unknown .cur type");
3409 case Hexagon::V6_vL32b_pi
:
3410 return Hexagon::V6_vL32b_cur_pi
;
3411 case Hexagon::V6_vL32b_ai
:
3412 return Hexagon::V6_vL32b_cur_ai
;
3413 case Hexagon::V6_vL32b_nt_pi
:
3414 return Hexagon::V6_vL32b_nt_cur_pi
;
3415 case Hexagon::V6_vL32b_nt_ai
:
3416 return Hexagon::V6_vL32b_nt_cur_ai
;
3421 // Return the regular version of the .cur instruction.
3422 int HexagonInstrInfo::getNonDotCurOp(const MachineInstr
&MI
) const {
3423 switch (MI
.getOpcode()) {
3424 default: llvm_unreachable("Unknown .cur type");
3425 case Hexagon::V6_vL32b_cur_pi
:
3426 return Hexagon::V6_vL32b_pi
;
3427 case Hexagon::V6_vL32b_cur_ai
:
3428 return Hexagon::V6_vL32b_ai
;
3429 case Hexagon::V6_vL32b_nt_cur_pi
:
3430 return Hexagon::V6_vL32b_nt_pi
;
3431 case Hexagon::V6_vL32b_nt_cur_ai
:
3432 return Hexagon::V6_vL32b_nt_ai
;
3437 // The diagram below shows the steps involved in the conversion of a predicated
3438 // store instruction to its .new predicated new-value form.
3440 // Note: It doesn't include conditional new-value stores as they can't be
3441 // converted to .new predicate.
3443 // p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3445 // / \ (not OK. it will cause new-value store to be
3446 // / X conditional on p0.new while R2 producer is
3449 // p.new store p.old NV store
3450 // [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3456 // [if (p0)memw(R0+#0)=R2]
3458 // The following set of instructions further explains the scenario where
3459 // conditional new-value store becomes invalid when promoted to .new predicate
3462 // { 1) if (p0) r0 = add(r1, r2)
3463 // 2) p0 = cmp.eq(r3, #0) }
3465 // 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3466 // the first two instructions because in instr 1, r0 is conditional on old value
3467 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3468 // is not valid for new-value stores.
3469 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3470 // from the "Conditional Store" list. Because a predicated new value store
3471 // would NOT be promoted to a double dot new store. See diagram below:
3472 // This function returns yes for those stores that are predicated but not
3473 // yet promoted to predicate dot new instructions.
3475 // +---------------------+
3476 // /-----| if (p0) memw(..)=r0 |---------\~
3477 // || +---------------------+ ||
3478 // promote || /\ /\ || promote
3480 // \||/ demote || \||/
3482 // +-------------------------+ || +-------------------------+
3483 // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3484 // +-------------------------+ || +-------------------------+
3487 // promote || \/ NOT possible
3491 // +-----------------------------+
3492 // | if (p0.new) memw(..)=r0.new |
3493 // +-----------------------------+
3494 // Double Dot New Store
3496 // Returns the most basic instruction for the .new predicated instructions and
3497 // new-value stores.
3498 // For example, all of the following instructions will be converted back to the
3499 // same instruction:
3500 // 1) if (p0.new) memw(R0+#0) = R1.new --->
3501 // 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3502 // 3) if (p0.new) memw(R0+#0) = R1 --->
3504 // To understand the translation of instruction 1 to its original form, consider
3505 // a packet with 3 instructions.
3506 // { p0 = cmp.eq(R0,R1)
3507 // if (p0.new) R2 = add(R3, R4)
3508 // R5 = add (R3, R1)
3510 // if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3512 // This instruction can be part of the previous packet only if both p0 and R2
3513 // are promoted to .new values. This promotion happens in steps, first
3514 // predicate register is promoted to .new and in the next iteration R2 is
3515 // promoted. Therefore, in case of dependence check failure (due to R5) during
3516 // next iteration, it should be converted back to its most basic form.
3518 // Return the new value instruction for a given store.
3519 int HexagonInstrInfo::getDotNewOp(const MachineInstr
&MI
) const {
3520 int NVOpcode
= Hexagon::getNewValueOpcode(MI
.getOpcode());
3521 if (NVOpcode
>= 0) // Valid new-value store instruction.
3524 switch (MI
.getOpcode()) {
3526 report_fatal_error(std::string("Unknown .new type: ") +
3527 std::to_string(MI
.getOpcode()));
3528 case Hexagon::S4_storerb_ur
:
3529 return Hexagon::S4_storerbnew_ur
;
3531 case Hexagon::S2_storerb_pci
:
3532 return Hexagon::S2_storerb_pci
;
3534 case Hexagon::S2_storeri_pci
:
3535 return Hexagon::S2_storeri_pci
;
3537 case Hexagon::S2_storerh_pci
:
3538 return Hexagon::S2_storerh_pci
;
3540 case Hexagon::S2_storerd_pci
:
3541 return Hexagon::S2_storerd_pci
;
3543 case Hexagon::S2_storerf_pci
:
3544 return Hexagon::S2_storerf_pci
;
3546 case Hexagon::V6_vS32b_ai
:
3547 return Hexagon::V6_vS32b_new_ai
;
3549 case Hexagon::V6_vS32b_pi
:
3550 return Hexagon::V6_vS32b_new_pi
;
3555 // Returns the opcode to use when converting MI, which is a conditional jump,
3556 // into a conditional instruction which uses the .new value of the predicate.
3557 // We also use branch probabilities to add a hint to the jump.
3558 // If MBPI is null, all edges will be treated as equally likely for the
3559 // purposes of establishing a predication hint.
3560 int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr
&MI
,
3561 const MachineBranchProbabilityInfo
*MBPI
) const {
3562 // We assume that block can have at most two successors.
3563 const MachineBasicBlock
*Src
= MI
.getParent();
3564 const MachineOperand
&BrTarget
= MI
.getOperand(1);
3566 const BranchProbability
OneHalf(1, 2);
3568 auto getEdgeProbability
= [MBPI
] (const MachineBasicBlock
*Src
,
3569 const MachineBasicBlock
*Dst
) {
3571 return MBPI
->getEdgeProbability(Src
, Dst
);
3572 return BranchProbability(1, Src
->succ_size());
3575 if (BrTarget
.isMBB()) {
3576 const MachineBasicBlock
*Dst
= BrTarget
.getMBB();
3577 Taken
= getEdgeProbability(Src
, Dst
) >= OneHalf
;
3579 // The branch target is not a basic block (most likely a function).
3580 // Since BPI only gives probabilities for targets that are basic blocks,
3581 // try to identify another target of this branch (potentially a fall-
3582 // -through) and check the probability of that target.
3584 // The only handled branch combinations are:
3585 // - one conditional branch,
3586 // - one conditional branch followed by one unconditional branch.
3587 // Otherwise, assume not-taken.
3588 assert(MI
.isConditionalBranch());
3589 const MachineBasicBlock
&B
= *MI
.getParent();
3590 bool SawCond
= false, Bad
= false;
3591 for (const MachineInstr
&I
: B
) {
3594 if (I
.isConditionalBranch()) {
3601 if (I
.isUnconditionalBranch() && !SawCond
) {
3607 MachineBasicBlock::const_instr_iterator
It(MI
);
3608 MachineBasicBlock::const_instr_iterator NextIt
= std::next(It
);
3609 if (NextIt
== B
.instr_end()) {
3610 // If this branch is the last, look for the fall-through block.
3611 for (const MachineBasicBlock
*SB
: B
.successors()) {
3612 if (!B
.isLayoutSuccessor(SB
))
3614 Taken
= getEdgeProbability(Src
, SB
) < OneHalf
;
3618 assert(NextIt
->isUnconditionalBranch());
3619 // Find the first MBB operand and assume it's the target.
3620 const MachineBasicBlock
*BT
= nullptr;
3621 for (const MachineOperand
&Op
: NextIt
->operands()) {
3627 Taken
= BT
&& getEdgeProbability(Src
, BT
) < OneHalf
;
3632 // The Taken flag should be set to something reasonable by this point.
3634 switch (MI
.getOpcode()) {
3635 case Hexagon::J2_jumpt
:
3636 return Taken
? Hexagon::J2_jumptnewpt
: Hexagon::J2_jumptnew
;
3637 case Hexagon::J2_jumpf
:
3638 return Taken
? Hexagon::J2_jumpfnewpt
: Hexagon::J2_jumpfnew
;
3641 llvm_unreachable("Unexpected jump instruction.");
3645 // Return .new predicate version for an instruction.
3646 int HexagonInstrInfo::getDotNewPredOp(const MachineInstr
&MI
,
3647 const MachineBranchProbabilityInfo
*MBPI
) const {
3648 switch (MI
.getOpcode()) {
3650 case Hexagon::J2_jumpt
:
3651 case Hexagon::J2_jumpf
:
3652 return getDotNewPredJumpOp(MI
, MBPI
);
3655 int NewOpcode
= Hexagon::getPredNewOpcode(MI
.getOpcode());
3661 int HexagonInstrInfo::getDotOldOp(const MachineInstr
&MI
) const {
3662 int NewOp
= MI
.getOpcode();
3663 if (isPredicated(NewOp
) && isPredicatedNew(NewOp
)) { // Get predicate old form
3664 NewOp
= Hexagon::getPredOldOpcode(NewOp
);
3665 // All Hexagon architectures have prediction bits on dot-new branches,
3666 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3667 // to pick the right opcode when converting back to dot-old.
3668 if (!Subtarget
.getFeatureBits()[Hexagon::ArchV60
]) {
3670 case Hexagon::J2_jumptpt
:
3671 NewOp
= Hexagon::J2_jumpt
;
3673 case Hexagon::J2_jumpfpt
:
3674 NewOp
= Hexagon::J2_jumpf
;
3676 case Hexagon::J2_jumprtpt
:
3677 NewOp
= Hexagon::J2_jumprt
;
3679 case Hexagon::J2_jumprfpt
:
3680 NewOp
= Hexagon::J2_jumprf
;
3684 assert(NewOp
>= 0 &&
3685 "Couldn't change predicate new instruction to its old form.");
3688 if (isNewValueStore(NewOp
)) { // Convert into non-new-value format
3689 NewOp
= Hexagon::getNonNVStore(NewOp
);
3690 assert(NewOp
>= 0 && "Couldn't change new-value store to its old form.");
3693 if (Subtarget
.hasV60Ops())
3696 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3698 case Hexagon::J2_jumpfpt
:
3699 return Hexagon::J2_jumpf
;
3700 case Hexagon::J2_jumptpt
:
3701 return Hexagon::J2_jumpt
;
3702 case Hexagon::J2_jumprfpt
:
3703 return Hexagon::J2_jumprf
;
3704 case Hexagon::J2_jumprtpt
:
3705 return Hexagon::J2_jumprt
;
3710 // See if instruction could potentially be a duplex candidate.
3711 // If so, return its group. Zero otherwise.
3712 HexagonII::SubInstructionGroup
HexagonInstrInfo::getDuplexCandidateGroup(
3713 const MachineInstr
&MI
) const {
3714 unsigned DstReg
, SrcReg
, Src1Reg
, Src2Reg
;
3715 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
3717 switch (MI
.getOpcode()) {
3719 return HexagonII::HSIG_None
;
3723 // Rd = memw(Rs+#u4:2)
3724 // Rd = memub(Rs+#u4:0)
3725 case Hexagon::L2_loadri_io
:
3726 DstReg
= MI
.getOperand(0).getReg();
3727 SrcReg
= MI
.getOperand(1).getReg();
3728 // Special case this one from Group L2.
3729 // Rd = memw(r29+#u5:2)
3730 if (isIntRegForSubInst(DstReg
)) {
3731 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3732 HRI
.getStackRegister() == SrcReg
&&
3733 MI
.getOperand(2).isImm() &&
3734 isShiftedUInt
<5,2>(MI
.getOperand(2).getImm()))
3735 return HexagonII::HSIG_L2
;
3736 // Rd = memw(Rs+#u4:2)
3737 if (isIntRegForSubInst(SrcReg
) &&
3738 (MI
.getOperand(2).isImm() &&
3739 isShiftedUInt
<4,2>(MI
.getOperand(2).getImm())))
3740 return HexagonII::HSIG_L1
;
3743 case Hexagon::L2_loadrub_io
:
3744 // Rd = memub(Rs+#u4:0)
3745 DstReg
= MI
.getOperand(0).getReg();
3746 SrcReg
= MI
.getOperand(1).getReg();
3747 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3748 MI
.getOperand(2).isImm() && isUInt
<4>(MI
.getOperand(2).getImm()))
3749 return HexagonII::HSIG_L1
;
3754 // Rd = memh/memuh(Rs+#u3:1)
3755 // Rd = memb(Rs+#u3:0)
3756 // Rd = memw(r29+#u5:2) - Handled above.
3757 // Rdd = memd(r29+#u5:3)
3759 // [if ([!]p0[.new])] dealloc_return
3760 // [if ([!]p0[.new])] jumpr r31
3761 case Hexagon::L2_loadrh_io
:
3762 case Hexagon::L2_loadruh_io
:
3763 // Rd = memh/memuh(Rs+#u3:1)
3764 DstReg
= MI
.getOperand(0).getReg();
3765 SrcReg
= MI
.getOperand(1).getReg();
3766 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3767 MI
.getOperand(2).isImm() &&
3768 isShiftedUInt
<3,1>(MI
.getOperand(2).getImm()))
3769 return HexagonII::HSIG_L2
;
3771 case Hexagon::L2_loadrb_io
:
3772 // Rd = memb(Rs+#u3:0)
3773 DstReg
= MI
.getOperand(0).getReg();
3774 SrcReg
= MI
.getOperand(1).getReg();
3775 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3776 MI
.getOperand(2).isImm() &&
3777 isUInt
<3>(MI
.getOperand(2).getImm()))
3778 return HexagonII::HSIG_L2
;
3780 case Hexagon::L2_loadrd_io
:
3781 // Rdd = memd(r29+#u5:3)
3782 DstReg
= MI
.getOperand(0).getReg();
3783 SrcReg
= MI
.getOperand(1).getReg();
3784 if (isDblRegForSubInst(DstReg
, HRI
) &&
3785 Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3786 HRI
.getStackRegister() == SrcReg
&&
3787 MI
.getOperand(2).isImm() &&
3788 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3789 return HexagonII::HSIG_L2
;
3791 // dealloc_return is not documented in Hexagon Manual, but marked
3792 // with A_SUBINSN attribute in iset_v4classic.py.
3793 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4
:
3794 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
:
3795 case Hexagon::L4_return
:
3796 case Hexagon::L2_deallocframe
:
3797 return HexagonII::HSIG_L2
;
3798 case Hexagon::EH_RETURN_JMPR
:
3799 case Hexagon::PS_jmpret
:
3800 case Hexagon::SL2_jumpr31
:
3802 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
3803 DstReg
= MI
.getOperand(0).getReg();
3804 if (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
))
3805 return HexagonII::HSIG_L2
;
3807 case Hexagon::PS_jmprett
:
3808 case Hexagon::PS_jmpretf
:
3809 case Hexagon::PS_jmprettnewpt
:
3810 case Hexagon::PS_jmpretfnewpt
:
3811 case Hexagon::PS_jmprettnew
:
3812 case Hexagon::PS_jmpretfnew
:
3813 case Hexagon::SL2_jumpr31_t
:
3814 case Hexagon::SL2_jumpr31_f
:
3815 case Hexagon::SL2_jumpr31_tnew
:
3816 DstReg
= MI
.getOperand(1).getReg();
3817 SrcReg
= MI
.getOperand(0).getReg();
3818 // [if ([!]p0[.new])] jumpr r31
3819 if ((Hexagon::PredRegsRegClass
.contains(SrcReg
) &&
3820 (Hexagon::P0
== SrcReg
)) &&
3821 (Hexagon::IntRegsRegClass
.contains(DstReg
) && (Hexagon::R31
== DstReg
)))
3822 return HexagonII::HSIG_L2
;
3824 case Hexagon::L4_return_t
:
3825 case Hexagon::L4_return_f
:
3826 case Hexagon::L4_return_tnew_pnt
:
3827 case Hexagon::L4_return_fnew_pnt
:
3828 case Hexagon::L4_return_tnew_pt
:
3829 case Hexagon::L4_return_fnew_pt
:
3830 // [if ([!]p0[.new])] dealloc_return
3831 SrcReg
= MI
.getOperand(0).getReg();
3832 if (Hexagon::PredRegsRegClass
.contains(SrcReg
) && (Hexagon::P0
== SrcReg
))
3833 return HexagonII::HSIG_L2
;
3838 // memw(Rs+#u4:2) = Rt
3839 // memb(Rs+#u4:0) = Rt
3840 case Hexagon::S2_storeri_io
:
3841 // Special case this one from Group S2.
3842 // memw(r29+#u5:2) = Rt
3843 Src1Reg
= MI
.getOperand(0).getReg();
3844 Src2Reg
= MI
.getOperand(2).getReg();
3845 if (Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3846 isIntRegForSubInst(Src2Reg
) &&
3847 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3848 isShiftedUInt
<5,2>(MI
.getOperand(1).getImm()))
3849 return HexagonII::HSIG_S2
;
3850 // memw(Rs+#u4:2) = Rt
3851 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3852 MI
.getOperand(1).isImm() &&
3853 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()))
3854 return HexagonII::HSIG_S1
;
3856 case Hexagon::S2_storerb_io
:
3857 // memb(Rs+#u4:0) = Rt
3858 Src1Reg
= MI
.getOperand(0).getReg();
3859 Src2Reg
= MI
.getOperand(2).getReg();
3860 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3861 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()))
3862 return HexagonII::HSIG_S1
;
3867 // memh(Rs+#u3:1) = Rt
3868 // memw(r29+#u5:2) = Rt
3869 // memd(r29+#s6:3) = Rtt
3870 // memw(Rs+#u4:2) = #U1
3871 // memb(Rs+#u4) = #U1
3872 // allocframe(#u5:3)
3873 case Hexagon::S2_storerh_io
:
3874 // memh(Rs+#u3:1) = Rt
3875 Src1Reg
= MI
.getOperand(0).getReg();
3876 Src2Reg
= MI
.getOperand(2).getReg();
3877 if (isIntRegForSubInst(Src1Reg
) && isIntRegForSubInst(Src2Reg
) &&
3878 MI
.getOperand(1).isImm() &&
3879 isShiftedUInt
<3,1>(MI
.getOperand(1).getImm()))
3880 return HexagonII::HSIG_S1
;
3882 case Hexagon::S2_storerd_io
:
3883 // memd(r29+#s6:3) = Rtt
3884 Src1Reg
= MI
.getOperand(0).getReg();
3885 Src2Reg
= MI
.getOperand(2).getReg();
3886 if (isDblRegForSubInst(Src2Reg
, HRI
) &&
3887 Hexagon::IntRegsRegClass
.contains(Src1Reg
) &&
3888 HRI
.getStackRegister() == Src1Reg
&& MI
.getOperand(1).isImm() &&
3889 isShiftedInt
<6,3>(MI
.getOperand(1).getImm()))
3890 return HexagonII::HSIG_S2
;
3892 case Hexagon::S4_storeiri_io
:
3893 // memw(Rs+#u4:2) = #U1
3894 Src1Reg
= MI
.getOperand(0).getReg();
3895 if (isIntRegForSubInst(Src1Reg
) && MI
.getOperand(1).isImm() &&
3896 isShiftedUInt
<4,2>(MI
.getOperand(1).getImm()) &&
3897 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3898 return HexagonII::HSIG_S2
;
3900 case Hexagon::S4_storeirb_io
:
3901 // memb(Rs+#u4) = #U1
3902 Src1Reg
= MI
.getOperand(0).getReg();
3903 if (isIntRegForSubInst(Src1Reg
) &&
3904 MI
.getOperand(1).isImm() && isUInt
<4>(MI
.getOperand(1).getImm()) &&
3905 MI
.getOperand(2).isImm() && isUInt
<1>(MI
.getOperand(2).getImm()))
3906 return HexagonII::HSIG_S2
;
3908 case Hexagon::S2_allocframe
:
3909 if (MI
.getOperand(2).isImm() &&
3910 isShiftedUInt
<5,3>(MI
.getOperand(2).getImm()))
3911 return HexagonII::HSIG_S1
;
3920 // if ([!]P0[.new]) Rd = #0
3921 // Rd = add(r29,#u6:2)
3923 // P0 = cmp.eq(Rs,#u2)
3924 // Rdd = combine(#0,Rs)
3925 // Rdd = combine(Rs,#0)
3926 // Rdd = combine(#u2,#U2)
3929 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3931 case Hexagon::A2_addi
:
3932 DstReg
= MI
.getOperand(0).getReg();
3933 SrcReg
= MI
.getOperand(1).getReg();
3934 if (isIntRegForSubInst(DstReg
)) {
3935 // Rd = add(r29,#u6:2)
3936 if (Hexagon::IntRegsRegClass
.contains(SrcReg
) &&
3937 HRI
.getStackRegister() == SrcReg
&& MI
.getOperand(2).isImm() &&
3938 isShiftedUInt
<6,2>(MI
.getOperand(2).getImm()))
3939 return HexagonII::HSIG_A
;
3941 if ((DstReg
== SrcReg
) && MI
.getOperand(2).isImm() &&
3942 isInt
<7>(MI
.getOperand(2).getImm()))
3943 return HexagonII::HSIG_A
;
3946 if (isIntRegForSubInst(SrcReg
) && MI
.getOperand(2).isImm() &&
3947 ((MI
.getOperand(2).getImm() == 1) ||
3948 (MI
.getOperand(2).getImm() == -1)))
3949 return HexagonII::HSIG_A
;
3952 case Hexagon::A2_add
:
3954 DstReg
= MI
.getOperand(0).getReg();
3955 Src1Reg
= MI
.getOperand(1).getReg();
3956 Src2Reg
= MI
.getOperand(2).getReg();
3957 if (isIntRegForSubInst(DstReg
) && (DstReg
== Src1Reg
) &&
3958 isIntRegForSubInst(Src2Reg
))
3959 return HexagonII::HSIG_A
;
3961 case Hexagon::A2_andir
:
3963 // Rd16=and(Rs16,#255)
3964 // Rd16=and(Rs16,#1)
3965 DstReg
= MI
.getOperand(0).getReg();
3966 SrcReg
= MI
.getOperand(1).getReg();
3967 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
) &&
3968 MI
.getOperand(2).isImm() &&
3969 ((MI
.getOperand(2).getImm() == 1) ||
3970 (MI
.getOperand(2).getImm() == 255)))
3971 return HexagonII::HSIG_A
;
3973 case Hexagon::A2_tfr
:
3975 DstReg
= MI
.getOperand(0).getReg();
3976 SrcReg
= MI
.getOperand(1).getReg();
3977 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
3978 return HexagonII::HSIG_A
;
3980 case Hexagon::A2_tfrsi
:
3982 // Do not test for #u6 size since the const is getting extended
3983 // regardless and compound could be formed.
3985 DstReg
= MI
.getOperand(0).getReg();
3986 if (isIntRegForSubInst(DstReg
))
3987 return HexagonII::HSIG_A
;
3989 case Hexagon::C2_cmoveit
:
3990 case Hexagon::C2_cmovenewit
:
3991 case Hexagon::C2_cmoveif
:
3992 case Hexagon::C2_cmovenewif
:
3993 // if ([!]P0[.new]) Rd = #0
3995 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
3996 DstReg
= MI
.getOperand(0).getReg();
3997 SrcReg
= MI
.getOperand(1).getReg();
3998 if (isIntRegForSubInst(DstReg
) &&
3999 Hexagon::PredRegsRegClass
.contains(SrcReg
) && Hexagon::P0
== SrcReg
&&
4000 MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0)
4001 return HexagonII::HSIG_A
;
4003 case Hexagon::C2_cmpeqi
:
4004 // P0 = cmp.eq(Rs,#u2)
4005 DstReg
= MI
.getOperand(0).getReg();
4006 SrcReg
= MI
.getOperand(1).getReg();
4007 if (Hexagon::PredRegsRegClass
.contains(DstReg
) &&
4008 Hexagon::P0
== DstReg
&& isIntRegForSubInst(SrcReg
) &&
4009 MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm()))
4010 return HexagonII::HSIG_A
;
4012 case Hexagon::A2_combineii
:
4013 case Hexagon::A4_combineii
:
4014 // Rdd = combine(#u2,#U2)
4015 DstReg
= MI
.getOperand(0).getReg();
4016 if (isDblRegForSubInst(DstReg
, HRI
) &&
4017 ((MI
.getOperand(1).isImm() && isUInt
<2>(MI
.getOperand(1).getImm())) ||
4018 (MI
.getOperand(1).isGlobal() &&
4019 isUInt
<2>(MI
.getOperand(1).getOffset()))) &&
4020 ((MI
.getOperand(2).isImm() && isUInt
<2>(MI
.getOperand(2).getImm())) ||
4021 (MI
.getOperand(2).isGlobal() &&
4022 isUInt
<2>(MI
.getOperand(2).getOffset()))))
4023 return HexagonII::HSIG_A
;
4025 case Hexagon::A4_combineri
:
4026 // Rdd = combine(Rs,#0)
4027 DstReg
= MI
.getOperand(0).getReg();
4028 SrcReg
= MI
.getOperand(1).getReg();
4029 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4030 ((MI
.getOperand(2).isImm() && MI
.getOperand(2).getImm() == 0) ||
4031 (MI
.getOperand(2).isGlobal() && MI
.getOperand(2).getOffset() == 0)))
4032 return HexagonII::HSIG_A
;
4034 case Hexagon::A4_combineir
:
4035 // Rdd = combine(#0,Rs)
4036 DstReg
= MI
.getOperand(0).getReg();
4037 SrcReg
= MI
.getOperand(2).getReg();
4038 if (isDblRegForSubInst(DstReg
, HRI
) && isIntRegForSubInst(SrcReg
) &&
4039 ((MI
.getOperand(1).isImm() && MI
.getOperand(1).getImm() == 0) ||
4040 (MI
.getOperand(1).isGlobal() && MI
.getOperand(1).getOffset() == 0)))
4041 return HexagonII::HSIG_A
;
4043 case Hexagon::A2_sxtb
:
4044 case Hexagon::A2_sxth
:
4045 case Hexagon::A2_zxtb
:
4046 case Hexagon::A2_zxth
:
4047 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4048 DstReg
= MI
.getOperand(0).getReg();
4049 SrcReg
= MI
.getOperand(1).getReg();
4050 if (isIntRegForSubInst(DstReg
) && isIntRegForSubInst(SrcReg
))
4051 return HexagonII::HSIG_A
;
4055 return HexagonII::HSIG_None
;
4058 short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr
&MI
) const {
4059 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Real
);
4062 unsigned HexagonInstrInfo::getInstrTimingClassLatency(
4063 const InstrItineraryData
*ItinData
, const MachineInstr
&MI
) const {
4064 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4065 // still have a MinLatency property, which getStageLatency checks.
4067 return getInstrLatency(ItinData
, MI
);
4069 if (MI
.isTransient())
4071 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
4074 /// getOperandLatency - Compute and return the use operand latency of a given
4075 /// pair of def and use.
4076 /// In most cases, the static scheduling itinerary was enough to determine the
4077 /// operand latency. But it may not be possible for instructions with variable
4078 /// number of defs / uses.
4080 /// This is a raw interface to the itinerary that may be directly overriden by
4081 /// a target. Use computeOperandLatency to get the best estimate of latency.
4082 int HexagonInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4083 const MachineInstr
&DefMI
,
4085 const MachineInstr
&UseMI
,
4086 unsigned UseIdx
) const {
4087 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4089 // Get DefIdx and UseIdx for super registers.
4090 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4092 if (DefMO
.isReg() && Register::isPhysicalRegister(DefMO
.getReg())) {
4093 if (DefMO
.isImplicit()) {
4094 for (MCSuperRegIterator
SR(DefMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4095 int Idx
= DefMI
.findRegisterDefOperandIdx(*SR
, false, false, &HRI
);
4103 const MachineOperand
&UseMO
= UseMI
.getOperand(UseIdx
);
4104 if (UseMO
.isImplicit()) {
4105 for (MCSuperRegIterator
SR(UseMO
.getReg(), &HRI
); SR
.isValid(); ++SR
) {
4106 int Idx
= UseMI
.findRegisterUseOperandIdx(*SR
, false, &HRI
);
4115 int Latency
= TargetInstrInfo::getOperandLatency(ItinData
, DefMI
, DefIdx
,
4118 // We should never have 0 cycle latency between two instructions unless
4119 // they can be packetized together. However, this decision can't be made
4125 // inverts the predication logic.
4128 bool HexagonInstrInfo::getInvertedPredSense(
4129 SmallVectorImpl
<MachineOperand
> &Cond
) const {
4132 unsigned Opc
= getInvertedPredicatedOpcode(Cond
[0].getImm());
4133 Cond
[0].setImm(Opc
);
4137 unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc
) const {
4139 InvPredOpcode
= isPredicatedTrue(Opc
) ? Hexagon::getFalsePredOpcode(Opc
)
4140 : Hexagon::getTruePredOpcode(Opc
);
4141 if (InvPredOpcode
>= 0) // Valid instruction with the inverted predicate.
4142 return InvPredOpcode
;
4144 llvm_unreachable("Unexpected predicated instruction");
4147 // Returns the max value that doesn't need to be extended.
4148 int HexagonInstrInfo::getMaxValue(const MachineInstr
&MI
) const {
4149 const uint64_t F
= MI
.getDesc().TSFlags
;
4150 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4151 & HexagonII::ExtentSignedMask
;
4152 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4153 & HexagonII::ExtentBitsMask
;
4155 if (isSigned
) // if value is signed
4156 return ~(-1U << (bits
- 1));
4158 return ~(-1U << bits
);
4162 bool HexagonInstrInfo::isAddrModeWithOffset(const MachineInstr
&MI
) const {
4163 switch (MI
.getOpcode()) {
4164 case Hexagon::L2_loadrbgp
:
4165 case Hexagon::L2_loadrdgp
:
4166 case Hexagon::L2_loadrhgp
:
4167 case Hexagon::L2_loadrigp
:
4168 case Hexagon::L2_loadrubgp
:
4169 case Hexagon::L2_loadruhgp
:
4170 case Hexagon::S2_storerbgp
:
4171 case Hexagon::S2_storerbnewgp
:
4172 case Hexagon::S2_storerhgp
:
4173 case Hexagon::S2_storerhnewgp
:
4174 case Hexagon::S2_storerigp
:
4175 case Hexagon::S2_storerinewgp
:
4176 case Hexagon::S2_storerdgp
:
4177 case Hexagon::S2_storerfgp
:
4180 const uint64_t F
= MI
.getDesc().TSFlags
;
4182 ((F
>> HexagonII::AddrModePos
) & HexagonII::AddrModeMask
);
4183 // Disallow any base+offset instruction. The assembler does not yet reorder
4184 // based up any zero offset instruction.
4185 return (addrMode
== HexagonII::BaseRegOffset
||
4186 addrMode
== HexagonII::BaseImmOffset
||
4187 addrMode
== HexagonII::BaseLongOffset
);
4190 unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr
&MI
) const {
4191 using namespace HexagonII
;
4193 const uint64_t F
= MI
.getDesc().TSFlags
;
4194 unsigned S
= (F
>> MemAccessSizePos
) & MemAccesSizeMask
;
4195 unsigned Size
= getMemAccessSizeInBytes(MemAccessSize(S
));
4199 // Handle vector access sizes.
4200 const HexagonRegisterInfo
&HRI
= *Subtarget
.getRegisterInfo();
4202 case HexagonII::HVXVectorAccess
:
4203 return HRI
.getSpillSize(Hexagon::HvxVRRegClass
);
4205 llvm_unreachable("Unexpected instruction");
4209 // Returns the min value that doesn't need to be extended.
4210 int HexagonInstrInfo::getMinValue(const MachineInstr
&MI
) const {
4211 const uint64_t F
= MI
.getDesc().TSFlags
;
4212 unsigned isSigned
= (F
>> HexagonII::ExtentSignedPos
)
4213 & HexagonII::ExtentSignedMask
;
4214 unsigned bits
= (F
>> HexagonII::ExtentBitsPos
)
4215 & HexagonII::ExtentBitsMask
;
4217 if (isSigned
) // if value is signed
4218 return -1U << (bits
- 1);
4223 // Returns opcode of the non-extended equivalent instruction.
4224 short HexagonInstrInfo::getNonExtOpcode(const MachineInstr
&MI
) const {
4225 // Check if the instruction has a register form that uses register in place
4226 // of the extended operand, if so return that as the non-extended form.
4227 short NonExtOpcode
= Hexagon::getRegForm(MI
.getOpcode());
4228 if (NonExtOpcode
>= 0)
4229 return NonExtOpcode
;
4231 if (MI
.getDesc().mayLoad() || MI
.getDesc().mayStore()) {
4232 // Check addressing mode and retrieve non-ext equivalent instruction.
4233 switch (getAddrMode(MI
)) {
4234 case HexagonII::Absolute
:
4235 return Hexagon::changeAddrMode_abs_io(MI
.getOpcode());
4236 case HexagonII::BaseImmOffset
:
4237 return Hexagon::changeAddrMode_io_rr(MI
.getOpcode());
4238 case HexagonII::BaseLongOffset
:
4239 return Hexagon::changeAddrMode_ur_rr(MI
.getOpcode());
4248 bool HexagonInstrInfo::getPredReg(ArrayRef
<MachineOperand
> Cond
,
4249 unsigned &PredReg
, unsigned &PredRegPos
, unsigned &PredRegFlags
) const {
4252 assert(Cond
.size() == 2);
4253 if (isNewValueJump(Cond
[0].getImm()) || Cond
[1].isMBB()) {
4254 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4257 PredReg
= Cond
[1].getReg();
4259 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4261 if (Cond
[1].isImplicit())
4262 PredRegFlags
= RegState::Implicit
;
4263 if (Cond
[1].isUndef())
4264 PredRegFlags
|= RegState::Undef
;
4268 short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr
&MI
) const {
4269 return Hexagon::getRealHWInstr(MI
.getOpcode(), Hexagon::InstrType_Pseudo
);
4272 short HexagonInstrInfo::getRegForm(const MachineInstr
&MI
) const {
4273 return Hexagon::getRegForm(MI
.getOpcode());
4276 // Return the number of bytes required to encode the instruction.
4277 // Hexagon instructions are fixed length, 4 bytes, unless they
4278 // use a constant extender, which requires another 4 bytes.
4279 // For debug instructions and prolog labels, return 0.
4280 unsigned HexagonInstrInfo::getSize(const MachineInstr
&MI
) const {
4281 if (MI
.isDebugInstr() || MI
.isPosition())
4284 unsigned Size
= MI
.getDesc().getSize();
4286 // Assume the default insn size in case it cannot be determined
4287 // for whatever reason.
4288 Size
= HEXAGON_INSTR_SIZE
;
4290 if (isConstExtended(MI
) || isExtended(MI
))
4291 Size
+= HEXAGON_INSTR_SIZE
;
4293 // Try and compute number of instructions in asm.
4294 if (BranchRelaxAsmLarge
&& MI
.getOpcode() == Hexagon::INLINEASM
) {
4295 const MachineBasicBlock
&MBB
= *MI
.getParent();
4296 const MachineFunction
*MF
= MBB
.getParent();
4297 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
4299 // Count the number of register definitions to find the asm string.
4300 unsigned NumDefs
= 0;
4301 for (; MI
.getOperand(NumDefs
).isReg() && MI
.getOperand(NumDefs
).isDef();
4303 assert(NumDefs
!= MI
.getNumOperands()-2 && "No asm string?");
4305 assert(MI
.getOperand(NumDefs
).isSymbol() && "No asm string?");
4306 // Disassemble the AsmStr and approximate number of instructions.
4307 const char *AsmStr
= MI
.getOperand(NumDefs
).getSymbolName();
4308 Size
= getInlineAsmLength(AsmStr
, *MAI
);
4314 uint64_t HexagonInstrInfo::getType(const MachineInstr
&MI
) const {
4315 const uint64_t F
= MI
.getDesc().TSFlags
;
4316 return (F
>> HexagonII::TypePos
) & HexagonII::TypeMask
;
4319 unsigned HexagonInstrInfo::getUnits(const MachineInstr
&MI
) const {
4320 const InstrItineraryData
&II
= *Subtarget
.getInstrItineraryData();
4321 const InstrStage
&IS
= *II
.beginStage(MI
.getDesc().getSchedClass());
4323 return IS
.getUnits();
4326 // Calculate size of the basic block without debug instructions.
4327 unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock
*BB
) const {
4328 return nonDbgMICount(BB
->instr_begin(), BB
->instr_end());
4331 unsigned HexagonInstrInfo::nonDbgBundleSize(
4332 MachineBasicBlock::const_iterator BundleHead
) const {
4333 assert(BundleHead
->isBundle() && "Not a bundle header");
4334 auto MII
= BundleHead
.getInstrIterator();
4335 // Skip the bundle header.
4336 return nonDbgMICount(++MII
, getBundleEnd(BundleHead
.getInstrIterator()));
4339 /// immediateExtend - Changes the instruction in place to one using an immediate
4341 void HexagonInstrInfo::immediateExtend(MachineInstr
&MI
) const {
4342 assert((isExtendable(MI
)||isConstExtended(MI
)) &&
4343 "Instruction must be extendable");
4344 // Find which operand is extendable.
4345 short ExtOpNum
= getCExtOpNum(MI
);
4346 MachineOperand
&MO
= MI
.getOperand(ExtOpNum
);
4347 // This needs to be something we understand.
4348 assert((MO
.isMBB() || MO
.isImm()) &&
4349 "Branch with unknown extendable field type");
4350 // Mark given operand as extended.
4351 MO
.addTargetFlag(HexagonII::HMOTF_ConstExtended
);
4354 bool HexagonInstrInfo::invertAndChangeJumpTarget(
4355 MachineInstr
&MI
, MachineBasicBlock
*NewTarget
) const {
4356 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4357 << printMBBReference(*NewTarget
);
4359 assert(MI
.isBranch());
4360 unsigned NewOpcode
= getInvertedPredicatedOpcode(MI
.getOpcode());
4361 int TargetPos
= MI
.getNumOperands() - 1;
4362 // In general branch target is the last operand,
4363 // but some implicit defs added at the end might change it.
4364 while ((TargetPos
> -1) && !MI
.getOperand(TargetPos
).isMBB())
4366 assert((TargetPos
>= 0) && MI
.getOperand(TargetPos
).isMBB());
4367 MI
.getOperand(TargetPos
).setMBB(NewTarget
);
4368 if (EnableBranchPrediction
&& isPredicatedNew(MI
)) {
4369 NewOpcode
= reversePrediction(NewOpcode
);
4371 MI
.setDesc(get(NewOpcode
));
4375 void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction
&MF
) const {
4376 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4377 MachineFunction::iterator A
= MF
.begin();
4378 MachineBasicBlock
&B
= *A
;
4379 MachineBasicBlock::iterator I
= B
.begin();
4380 DebugLoc DL
= I
->getDebugLoc();
4381 MachineInstr
*NewMI
;
4383 for (unsigned insn
= TargetOpcode::GENERIC_OP_END
+1;
4384 insn
< Hexagon::INSTRUCTION_LIST_END
; ++insn
) {
4385 NewMI
= BuildMI(B
, I
, DL
, get(insn
));
4386 LLVM_DEBUG(dbgs() << "\n"
4387 << getName(NewMI
->getOpcode())
4388 << " Class: " << NewMI
->getDesc().getSchedClass());
4389 NewMI
->eraseFromParent();
4391 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4394 // inverts the predication logic.
4397 bool HexagonInstrInfo::reversePredSense(MachineInstr
&MI
) const {
4398 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI
.dump());
4399 MI
.setDesc(get(getInvertedPredicatedOpcode(MI
.getOpcode())));
4403 // Reverse the branch prediction.
4404 unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode
) const {
4405 int PredRevOpcode
= -1;
4406 if (isPredictedTaken(Opcode
))
4407 PredRevOpcode
= Hexagon::notTakenBranchPrediction(Opcode
);
4409 PredRevOpcode
= Hexagon::takenBranchPrediction(Opcode
);
4410 assert(PredRevOpcode
> 0);
4411 return PredRevOpcode
;
4414 // TODO: Add more rigorous validation.
4415 bool HexagonInstrInfo::validateBranchCond(const ArrayRef
<MachineOperand
> &Cond
)
4417 return Cond
.empty() || (Cond
[0].isImm() && (Cond
.size() != 1));
4420 void HexagonInstrInfo::
4421 setBundleNoShuf(MachineBasicBlock::instr_iterator MIB
) const {
4422 assert(MIB
->isBundle());
4423 MachineOperand
&Operand
= MIB
->getOperand(0);
4424 if (Operand
.isImm())
4425 Operand
.setImm(Operand
.getImm() | memShufDisabledMask
);
4427 MIB
->addOperand(MachineOperand::CreateImm(memShufDisabledMask
));
4430 bool HexagonInstrInfo::getBundleNoShuf(const MachineInstr
&MIB
) const {
4431 assert(MIB
.isBundle());
4432 const MachineOperand
&Operand
= MIB
.getOperand(0);
4433 return (Operand
.isImm() && (Operand
.getImm() & memShufDisabledMask
) != 0);
4436 // Addressing mode relations.
4437 short HexagonInstrInfo::changeAddrMode_abs_io(short Opc
) const {
4438 return Opc
>= 0 ? Hexagon::changeAddrMode_abs_io(Opc
) : Opc
;
4441 short HexagonInstrInfo::changeAddrMode_io_abs(short Opc
) const {
4442 return Opc
>= 0 ? Hexagon::changeAddrMode_io_abs(Opc
) : Opc
;
4445 short HexagonInstrInfo::changeAddrMode_io_pi(short Opc
) const {
4446 return Opc
>= 0 ? Hexagon::changeAddrMode_io_pi(Opc
) : Opc
;
4449 short HexagonInstrInfo::changeAddrMode_io_rr(short Opc
) const {
4450 return Opc
>= 0 ? Hexagon::changeAddrMode_io_rr(Opc
) : Opc
;
4453 short HexagonInstrInfo::changeAddrMode_pi_io(short Opc
) const {
4454 return Opc
>= 0 ? Hexagon::changeAddrMode_pi_io(Opc
) : Opc
;
4457 short HexagonInstrInfo::changeAddrMode_rr_io(short Opc
) const {
4458 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_io(Opc
) : Opc
;
4461 short HexagonInstrInfo::changeAddrMode_rr_ur(short Opc
) const {
4462 return Opc
>= 0 ? Hexagon::changeAddrMode_rr_ur(Opc
) : Opc
;
4465 short HexagonInstrInfo::changeAddrMode_ur_rr(short Opc
) const {
4466 return Opc
>= 0 ? Hexagon::changeAddrMode_ur_rr(Opc
) : Opc
;