[Alignment][NFC] migrate DataLayout internal struct to llvm::Align
[llvm-core.git] / lib / Target / Hexagon / RDFRegisters.cpp
blobb5675784e34b8b443a9c5262248f4403c2e61f0d
1 //===- RDFRegisters.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "RDFRegisters.h"
10 #include "llvm/ADT/BitVector.h"
11 #include "llvm/CodeGen/MachineFunction.h"
12 #include "llvm/CodeGen/MachineInstr.h"
13 #include "llvm/CodeGen/MachineOperand.h"
14 #include "llvm/CodeGen/TargetRegisterInfo.h"
15 #include "llvm/MC/LaneBitmask.h"
16 #include "llvm/MC/MCRegisterInfo.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include <cassert>
20 #include <cstdint>
21 #include <set>
22 #include <utility>
24 using namespace llvm;
25 using namespace rdf;
27 PhysicalRegisterInfo::PhysicalRegisterInfo(const TargetRegisterInfo &tri,
28 const MachineFunction &mf)
29 : TRI(tri) {
30 RegInfos.resize(TRI.getNumRegs());
32 BitVector BadRC(TRI.getNumRegs());
33 for (const TargetRegisterClass *RC : TRI.regclasses()) {
34 for (MCPhysReg R : *RC) {
35 RegInfo &RI = RegInfos[R];
36 if (RI.RegClass != nullptr && !BadRC[R]) {
37 if (RC->LaneMask != RI.RegClass->LaneMask) {
38 BadRC.set(R);
39 RI.RegClass = nullptr;
41 } else
42 RI.RegClass = RC;
46 UnitInfos.resize(TRI.getNumRegUnits());
48 for (uint32_t U = 0, NU = TRI.getNumRegUnits(); U != NU; ++U) {
49 if (UnitInfos[U].Reg != 0)
50 continue;
51 MCRegUnitRootIterator R(U, &TRI);
52 assert(R.isValid());
53 RegisterId F = *R;
54 ++R;
55 if (R.isValid()) {
56 UnitInfos[U].Mask = LaneBitmask::getAll();
57 UnitInfos[U].Reg = F;
58 } else {
59 for (MCRegUnitMaskIterator I(F, &TRI); I.isValid(); ++I) {
60 std::pair<uint32_t,LaneBitmask> P = *I;
61 UnitInfo &UI = UnitInfos[P.first];
62 UI.Reg = F;
63 if (P.second.any()) {
64 UI.Mask = P.second;
65 } else {
66 if (const TargetRegisterClass *RC = RegInfos[F].RegClass)
67 UI.Mask = RC->LaneMask;
68 else
69 UI.Mask = LaneBitmask::getAll();
75 for (const uint32_t *RM : TRI.getRegMasks())
76 RegMasks.insert(RM);
77 for (const MachineBasicBlock &B : mf)
78 for (const MachineInstr &In : B)
79 for (const MachineOperand &Op : In.operands())
80 if (Op.isRegMask())
81 RegMasks.insert(Op.getRegMask());
83 MaskInfos.resize(RegMasks.size()+1);
84 for (uint32_t M = 1, NM = RegMasks.size(); M <= NM; ++M) {
85 BitVector PU(TRI.getNumRegUnits());
86 const uint32_t *MB = RegMasks.get(M);
87 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
88 if (!(MB[i/32] & (1u << (i%32))))
89 continue;
90 for (MCRegUnitIterator U(i, &TRI); U.isValid(); ++U)
91 PU.set(*U);
93 MaskInfos[M].Units = PU.flip();
97 RegisterRef PhysicalRegisterInfo::normalize(RegisterRef RR) const {
98 return RR;
101 std::set<RegisterId> PhysicalRegisterInfo::getAliasSet(RegisterId Reg) const {
102 // Do not include RR in the alias set.
103 std::set<RegisterId> AS;
104 assert(isRegMaskId(Reg) || Register::isPhysicalRegister(Reg));
105 if (isRegMaskId(Reg)) {
106 // XXX SLOW
107 const uint32_t *MB = getRegMaskBits(Reg);
108 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
109 if (MB[i/32] & (1u << (i%32)))
110 continue;
111 AS.insert(i);
113 for (const uint32_t *RM : RegMasks) {
114 RegisterId MI = getRegMaskId(RM);
115 if (MI != Reg && aliasMM(RegisterRef(Reg), RegisterRef(MI)))
116 AS.insert(MI);
118 return AS;
121 for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
122 AS.insert(*AI);
123 for (const uint32_t *RM : RegMasks) {
124 RegisterId MI = getRegMaskId(RM);
125 if (aliasRM(RegisterRef(Reg), RegisterRef(MI)))
126 AS.insert(MI);
128 return AS;
131 bool PhysicalRegisterInfo::aliasRR(RegisterRef RA, RegisterRef RB) const {
132 assert(Register::isPhysicalRegister(RA.Reg));
133 assert(Register::isPhysicalRegister(RB.Reg));
135 MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
136 MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
137 // Reg units are returned in the numerical order.
138 while (UMA.isValid() && UMB.isValid()) {
139 // Skip units that are masked off in RA.
140 std::pair<RegisterId,LaneBitmask> PA = *UMA;
141 if (PA.second.any() && (PA.second & RA.Mask).none()) {
142 ++UMA;
143 continue;
145 // Skip units that are masked off in RB.
146 std::pair<RegisterId,LaneBitmask> PB = *UMB;
147 if (PB.second.any() && (PB.second & RB.Mask).none()) {
148 ++UMB;
149 continue;
152 if (PA.first == PB.first)
153 return true;
154 if (PA.first < PB.first)
155 ++UMA;
156 else if (PB.first < PA.first)
157 ++UMB;
159 return false;
162 bool PhysicalRegisterInfo::aliasRM(RegisterRef RR, RegisterRef RM) const {
163 assert(Register::isPhysicalRegister(RR.Reg) && isRegMaskId(RM.Reg));
164 const uint32_t *MB = getRegMaskBits(RM.Reg);
165 bool Preserved = MB[RR.Reg/32] & (1u << (RR.Reg%32));
166 // If the lane mask information is "full", e.g. when the given lane mask
167 // is a superset of the lane mask from the register class, check the regmask
168 // bit directly.
169 if (RR.Mask == LaneBitmask::getAll())
170 return !Preserved;
171 const TargetRegisterClass *RC = RegInfos[RR.Reg].RegClass;
172 if (RC != nullptr && (RR.Mask & RC->LaneMask) == RC->LaneMask)
173 return !Preserved;
175 // Otherwise, check all subregisters whose lane mask overlaps the given
176 // mask. For each such register, if it is preserved by the regmask, then
177 // clear the corresponding bits in the given mask. If at the end, all
178 // bits have been cleared, the register does not alias the regmask (i.e.
179 // is it preserved by it).
180 LaneBitmask M = RR.Mask;
181 for (MCSubRegIndexIterator SI(RR.Reg, &TRI); SI.isValid(); ++SI) {
182 LaneBitmask SM = TRI.getSubRegIndexLaneMask(SI.getSubRegIndex());
183 if ((SM & RR.Mask).none())
184 continue;
185 unsigned SR = SI.getSubReg();
186 if (!(MB[SR/32] & (1u << (SR%32))))
187 continue;
188 // The subregister SR is preserved.
189 M &= ~SM;
190 if (M.none())
191 return false;
194 return true;
197 bool PhysicalRegisterInfo::aliasMM(RegisterRef RM, RegisterRef RN) const {
198 assert(isRegMaskId(RM.Reg) && isRegMaskId(RN.Reg));
199 unsigned NumRegs = TRI.getNumRegs();
200 const uint32_t *BM = getRegMaskBits(RM.Reg);
201 const uint32_t *BN = getRegMaskBits(RN.Reg);
203 for (unsigned w = 0, nw = NumRegs/32; w != nw; ++w) {
204 // Intersect the negations of both words. Disregard reg=0,
205 // i.e. 0th bit in the 0th word.
206 uint32_t C = ~BM[w] & ~BN[w];
207 if (w == 0)
208 C &= ~1;
209 if (C)
210 return true;
213 // Check the remaining registers in the last word.
214 unsigned TailRegs = NumRegs % 32;
215 if (TailRegs == 0)
216 return false;
217 unsigned TW = NumRegs / 32;
218 uint32_t TailMask = (1u << TailRegs) - 1;
219 if (~BM[TW] & ~BN[TW] & TailMask)
220 return true;
222 return false;
225 RegisterRef PhysicalRegisterInfo::mapTo(RegisterRef RR, unsigned R) const {
226 if (RR.Reg == R)
227 return RR;
228 if (unsigned Idx = TRI.getSubRegIndex(R, RR.Reg))
229 return RegisterRef(R, TRI.composeSubRegIndexLaneMask(Idx, RR.Mask));
230 if (unsigned Idx = TRI.getSubRegIndex(RR.Reg, R)) {
231 const RegInfo &RI = RegInfos[R];
232 LaneBitmask RCM = RI.RegClass ? RI.RegClass->LaneMask
233 : LaneBitmask::getAll();
234 LaneBitmask M = TRI.reverseComposeSubRegIndexLaneMask(Idx, RR.Mask);
235 return RegisterRef(R, M & RCM);
237 llvm_unreachable("Invalid arguments: unrelated registers?");
240 bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
241 if (PhysicalRegisterInfo::isRegMaskId(RR.Reg))
242 return Units.anyCommon(PRI.getMaskUnits(RR.Reg));
244 for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
245 std::pair<uint32_t,LaneBitmask> P = *U;
246 if (P.second.none() || (P.second & RR.Mask).any())
247 if (Units.test(P.first))
248 return true;
250 return false;
253 bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
254 if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
255 BitVector T(PRI.getMaskUnits(RR.Reg));
256 return T.reset(Units).none();
259 for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
260 std::pair<uint32_t,LaneBitmask> P = *U;
261 if (P.second.none() || (P.second & RR.Mask).any())
262 if (!Units.test(P.first))
263 return false;
265 return true;
268 RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
269 if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
270 Units |= PRI.getMaskUnits(RR.Reg);
271 return *this;
274 for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
275 std::pair<uint32_t,LaneBitmask> P = *U;
276 if (P.second.none() || (P.second & RR.Mask).any())
277 Units.set(P.first);
279 return *this;
282 RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
283 Units |= RG.Units;
284 return *this;
287 RegisterAggr &RegisterAggr::intersect(RegisterRef RR) {
288 return intersect(RegisterAggr(PRI).insert(RR));
291 RegisterAggr &RegisterAggr::intersect(const RegisterAggr &RG) {
292 Units &= RG.Units;
293 return *this;
296 RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
297 return clear(RegisterAggr(PRI).insert(RR));
300 RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) {
301 Units.reset(RG.Units);
302 return *this;
305 RegisterRef RegisterAggr::intersectWith(RegisterRef RR) const {
306 RegisterAggr T(PRI);
307 T.insert(RR).intersect(*this);
308 if (T.empty())
309 return RegisterRef();
310 RegisterRef NR = T.makeRegRef();
311 assert(NR);
312 return NR;
315 RegisterRef RegisterAggr::clearIn(RegisterRef RR) const {
316 return RegisterAggr(PRI).insert(RR).clear(*this).makeRegRef();
319 RegisterRef RegisterAggr::makeRegRef() const {
320 int U = Units.find_first();
321 if (U < 0)
322 return RegisterRef();
324 auto AliasedRegs = [this] (uint32_t Unit, BitVector &Regs) {
325 for (MCRegUnitRootIterator R(Unit, &PRI.getTRI()); R.isValid(); ++R)
326 for (MCSuperRegIterator S(*R, &PRI.getTRI(), true); S.isValid(); ++S)
327 Regs.set(*S);
330 // Find the set of all registers that are aliased to all the units
331 // in this aggregate.
333 // Get all the registers aliased to the first unit in the bit vector.
334 BitVector Regs(PRI.getTRI().getNumRegs());
335 AliasedRegs(U, Regs);
336 U = Units.find_next(U);
338 // For each other unit, intersect it with the set of all registers
339 // aliased that unit.
340 while (U >= 0) {
341 BitVector AR(PRI.getTRI().getNumRegs());
342 AliasedRegs(U, AR);
343 Regs &= AR;
344 U = Units.find_next(U);
347 // If there is at least one register remaining, pick the first one,
348 // and consolidate the masks of all of its units contained in this
349 // aggregate.
351 int F = Regs.find_first();
352 if (F <= 0)
353 return RegisterRef();
355 LaneBitmask M;
356 for (MCRegUnitMaskIterator I(F, &PRI.getTRI()); I.isValid(); ++I) {
357 std::pair<uint32_t,LaneBitmask> P = *I;
358 if (Units.test(P.first))
359 M |= P.second.none() ? LaneBitmask::getAll() : P.second;
361 return RegisterRef(F, M);
364 void RegisterAggr::print(raw_ostream &OS) const {
365 OS << '{';
366 for (int U = Units.find_first(); U >= 0; U = Units.find_next(U))
367 OS << ' ' << printRegUnit(U, &PRI.getTRI());
368 OS << " }";
371 RegisterAggr::rr_iterator::rr_iterator(const RegisterAggr &RG,
372 bool End)
373 : Owner(&RG) {
374 for (int U = RG.Units.find_first(); U >= 0; U = RG.Units.find_next(U)) {
375 RegisterRef R = RG.PRI.getRefForUnit(U);
376 Masks[R.Reg] |= R.Mask;
378 Pos = End ? Masks.end() : Masks.begin();
379 Index = End ? Masks.size() : 0;