[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / docs / tutorial / LangImpl04.rst
blob8927a912cc20e4d069990a21749bc2d90869d455
1 ==============================================
2 Kaleidoscope: Adding JIT and Optimizer Support
3 ==============================================
5 .. contents::
6    :local:
8 Chapter 4 Introduction
9 ======================
11 Welcome to Chapter 4 of the "`Implementing a language with
12 LLVM <index.html>`_" tutorial. Chapters 1-3 described the implementation
13 of a simple language and added support for generating LLVM IR. This
14 chapter describes two new techniques: adding optimizer support to your
15 language, and adding JIT compiler support. These additions will
16 demonstrate how to get nice, efficient code for the Kaleidoscope
17 language.
19 Trivial Constant Folding
20 ========================
22 Our demonstration for Chapter 3 is elegant and easy to extend.
23 Unfortunately, it does not produce wonderful code. The IRBuilder,
24 however, does give us obvious optimizations when compiling simple code:
28     ready> def test(x) 1+2+x;
29     Read function definition:
30     define double @test(double %x) {
31     entry:
32             %addtmp = fadd double 3.000000e+00, %x
33             ret double %addtmp
34     }
36 This code is not a literal transcription of the AST built by parsing the
37 input. That would be:
41     ready> def test(x) 1+2+x;
42     Read function definition:
43     define double @test(double %x) {
44     entry:
45             %addtmp = fadd double 2.000000e+00, 1.000000e+00
46             %addtmp1 = fadd double %addtmp, %x
47             ret double %addtmp1
48     }
50 Constant folding, as seen above, in particular, is a very common and
51 very important optimization: so much so that many language implementors
52 implement constant folding support in their AST representation.
54 With LLVM, you don't need this support in the AST. Since all calls to
55 build LLVM IR go through the LLVM IR builder, the builder itself checked
56 to see if there was a constant folding opportunity when you call it. If
57 so, it just does the constant fold and return the constant instead of
58 creating an instruction.
60 Well, that was easy :). In practice, we recommend always using
61 ``IRBuilder`` when generating code like this. It has no "syntactic
62 overhead" for its use (you don't have to uglify your compiler with
63 constant checks everywhere) and it can dramatically reduce the amount of
64 LLVM IR that is generated in some cases (particular for languages with a
65 macro preprocessor or that use a lot of constants).
67 On the other hand, the ``IRBuilder`` is limited by the fact that it does
68 all of its analysis inline with the code as it is built. If you take a
69 slightly more complex example:
73     ready> def test(x) (1+2+x)*(x+(1+2));
74     ready> Read function definition:
75     define double @test(double %x) {
76     entry:
77             %addtmp = fadd double 3.000000e+00, %x
78             %addtmp1 = fadd double %x, 3.000000e+00
79             %multmp = fmul double %addtmp, %addtmp1
80             ret double %multmp
81     }
83 In this case, the LHS and RHS of the multiplication are the same value.
84 We'd really like to see this generate "``tmp = x+3; result = tmp*tmp;``"
85 instead of computing "``x+3``" twice.
87 Unfortunately, no amount of local analysis will be able to detect and
88 correct this. This requires two transformations: reassociation of
89 expressions (to make the add's lexically identical) and Common
90 Subexpression Elimination (CSE) to delete the redundant add instruction.
91 Fortunately, LLVM provides a broad range of optimizations that you can
92 use, in the form of "passes".
94 LLVM Optimization Passes
95 ========================
97 LLVM provides many optimization passes, which do many different sorts of
98 things and have different tradeoffs. Unlike other systems, LLVM doesn't
99 hold to the mistaken notion that one set of optimizations is right for
100 all languages and for all situations. LLVM allows a compiler implementor
101 to make complete decisions about what optimizations to use, in which
102 order, and in what situation.
104 As a concrete example, LLVM supports both "whole module" passes, which
105 look across as large of body of code as they can (often a whole file,
106 but if run at link time, this can be a substantial portion of the whole
107 program). It also supports and includes "per-function" passes which just
108 operate on a single function at a time, without looking at other
109 functions. For more information on passes and how they are run, see the
110 `How to Write a Pass <../WritingAnLLVMPass.html>`_ document and the
111 `List of LLVM Passes <../Passes.html>`_.
113 For Kaleidoscope, we are currently generating functions on the fly, one
114 at a time, as the user types them in. We aren't shooting for the
115 ultimate optimization experience in this setting, but we also want to
116 catch the easy and quick stuff where possible. As such, we will choose
117 to run a few per-function optimizations as the user types the function
118 in. If we wanted to make a "static Kaleidoscope compiler", we would use
119 exactly the code we have now, except that we would defer running the
120 optimizer until the entire file has been parsed.
122 In order to get per-function optimizations going, we need to set up a
123 `FunctionPassManager <../WritingAnLLVMPass.html#what-passmanager-doesr>`_ to hold
124 and organize the LLVM optimizations that we want to run. Once we have
125 that, we can add a set of optimizations to run. We'll need a new
126 FunctionPassManager for each module that we want to optimize, so we'll
127 write a function to create and initialize both the module and pass manager
128 for us:
130 .. code-block:: c++
132     void InitializeModuleAndPassManager(void) {
133       // Open a new module.
134       TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
136       // Create a new pass manager attached to it.
137       TheFPM = llvm::make_unique<FunctionPassManager>(TheModule.get());
139       // Do simple "peephole" optimizations and bit-twiddling optzns.
140       TheFPM->add(createInstructionCombiningPass());
141       // Reassociate expressions.
142       TheFPM->add(createReassociatePass());
143       // Eliminate Common SubExpressions.
144       TheFPM->add(createGVNPass());
145       // Simplify the control flow graph (deleting unreachable blocks, etc).
146       TheFPM->add(createCFGSimplificationPass());
148       TheFPM->doInitialization();
149     }
151 This code initializes the global module ``TheModule``, and the function pass
152 manager ``TheFPM``, which is attached to ``TheModule``. Once the pass manager is
153 set up, we use a series of "add" calls to add a bunch of LLVM passes.
155 In this case, we choose to add four optimization passes.
156 The passes we choose here are a pretty standard set
157 of "cleanup" optimizations that are useful for a wide variety of code. I won't
158 delve into what they do but, believe me, they are a good starting place :).
160 Once the PassManager is set up, we need to make use of it. We do this by
161 running it after our newly created function is constructed (in
162 ``FunctionAST::codegen()``), but before it is returned to the client:
164 .. code-block:: c++
166       if (Value *RetVal = Body->codegen()) {
167         // Finish off the function.
168         Builder.CreateRet(RetVal);
170         // Validate the generated code, checking for consistency.
171         verifyFunction(*TheFunction);
173         // Optimize the function.
174         TheFPM->run(*TheFunction);
176         return TheFunction;
177       }
179 As you can see, this is pretty straightforward. The
180 ``FunctionPassManager`` optimizes and updates the LLVM Function\* in
181 place, improving (hopefully) its body. With this in place, we can try
182 our test above again:
186     ready> def test(x) (1+2+x)*(x+(1+2));
187     ready> Read function definition:
188     define double @test(double %x) {
189     entry:
190             %addtmp = fadd double %x, 3.000000e+00
191             %multmp = fmul double %addtmp, %addtmp
192             ret double %multmp
193     }
195 As expected, we now get our nicely optimized code, saving a floating
196 point add instruction from every execution of this function.
198 LLVM provides a wide variety of optimizations that can be used in
199 certain circumstances. Some `documentation about the various
200 passes <../Passes.html>`_ is available, but it isn't very complete.
201 Another good source of ideas can come from looking at the passes that
202 ``Clang`` runs to get started. The "``opt``" tool allows you to
203 experiment with passes from the command line, so you can see if they do
204 anything.
206 Now that we have reasonable code coming out of our front-end, let's talk
207 about executing it!
209 Adding a JIT Compiler
210 =====================
212 Code that is available in LLVM IR can have a wide variety of tools
213 applied to it. For example, you can run optimizations on it (as we did
214 above), you can dump it out in textual or binary forms, you can compile
215 the code to an assembly file (.s) for some target, or you can JIT
216 compile it. The nice thing about the LLVM IR representation is that it
217 is the "common currency" between many different parts of the compiler.
219 In this section, we'll add JIT compiler support to our interpreter. The
220 basic idea that we want for Kaleidoscope is to have the user enter
221 function bodies as they do now, but immediately evaluate the top-level
222 expressions they type in. For example, if they type in "1 + 2;", we
223 should evaluate and print out 3. If they define a function, they should
224 be able to call it from the command line.
226 In order to do this, we first prepare the environment to create code for
227 the current native target and declare and initialize the JIT. This is
228 done by calling some ``InitializeNativeTarget\*`` functions and
229 adding a global variable ``TheJIT``, and initializing it in
230 ``main``:
232 .. code-block:: c++
234     static std::unique_ptr<KaleidoscopeJIT> TheJIT;
235     ...
236     int main() {
237       InitializeNativeTarget();
238       InitializeNativeTargetAsmPrinter();
239       InitializeNativeTargetAsmParser();
241       // Install standard binary operators.
242       // 1 is lowest precedence.
243       BinopPrecedence['<'] = 10;
244       BinopPrecedence['+'] = 20;
245       BinopPrecedence['-'] = 20;
246       BinopPrecedence['*'] = 40; // highest.
248       // Prime the first token.
249       fprintf(stderr, "ready> ");
250       getNextToken();
252       TheJIT = llvm::make_unique<KaleidoscopeJIT>();
254       // Run the main "interpreter loop" now.
255       MainLoop();
257       return 0;
258     }
260 We also need to setup the data layout for the JIT:
262 .. code-block:: c++
264     void InitializeModuleAndPassManager(void) {
265       // Open a new module.
266       TheModule = llvm::make_unique<Module>("my cool jit", TheContext);
267       TheModule->setDataLayout(TheJIT->getTargetMachine().createDataLayout());
269       // Create a new pass manager attached to it.
270       TheFPM = llvm::make_unique<FunctionPassManager>(TheModule.get());
271       ...
273 The KaleidoscopeJIT class is a simple JIT built specifically for these
274 tutorials, available inside the LLVM source code
275 at llvm-src/examples/Kaleidoscope/include/KaleidoscopeJIT.h.
276 In later chapters we will look at how it works and extend it with
277 new features, but for now we will take it as given. Its API is very simple:
278 ``addModule`` adds an LLVM IR module to the JIT, making its functions
279 available for execution; ``removeModule`` removes a module, freeing any
280 memory associated with the code in that module; and ``findSymbol`` allows us
281 to look up pointers to the compiled code.
283 We can take this simple API and change our code that parses top-level expressions to
284 look like this:
286 .. code-block:: c++
288     static void HandleTopLevelExpression() {
289       // Evaluate a top-level expression into an anonymous function.
290       if (auto FnAST = ParseTopLevelExpr()) {
291         if (FnAST->codegen()) {
293           // JIT the module containing the anonymous expression, keeping a handle so
294           // we can free it later.
295           auto H = TheJIT->addModule(std::move(TheModule));
296           InitializeModuleAndPassManager();
298           // Search the JIT for the __anon_expr symbol.
299           auto ExprSymbol = TheJIT->findSymbol("__anon_expr");
300           assert(ExprSymbol && "Function not found");
302           // Get the symbol's address and cast it to the right type (takes no
303           // arguments, returns a double) so we can call it as a native function.
304           double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
305           fprintf(stderr, "Evaluated to %f\n", FP());
307           // Delete the anonymous expression module from the JIT.
308           TheJIT->removeModule(H);
309         }
311 If parsing and codegen succeeed, the next step is to add the module containing
312 the top-level expression to the JIT. We do this by calling addModule, which
313 triggers code generation for all the functions in the module, and returns a
314 handle that can be used to remove the module from the JIT later. Once the module
315 has been added to the JIT it can no longer be modified, so we also open a new
316 module to hold subsequent code by calling ``InitializeModuleAndPassManager()``.
318 Once we've added the module to the JIT we need to get a pointer to the final
319 generated code. We do this by calling the JIT's findSymbol method, and passing
320 the name of the top-level expression function: ``__anon_expr``. Since we just
321 added this function, we assert that findSymbol returned a result.
323 Next, we get the in-memory address of the ``__anon_expr`` function by calling
324 ``getAddress()`` on the symbol. Recall that we compile top-level expressions
325 into a self-contained LLVM function that takes no arguments and returns the
326 computed double. Because the LLVM JIT compiler matches the native platform ABI,
327 this means that you can just cast the result pointer to a function pointer of
328 that type and call it directly. This means, there is no difference between JIT
329 compiled code and native machine code that is statically linked into your
330 application.
332 Finally, since we don't support re-evaluation of top-level expressions, we
333 remove the module from the JIT when we're done to free the associated memory.
334 Recall, however, that the module we created a few lines earlier (via
335 ``InitializeModuleAndPassManager``) is still open and waiting for new code to be
336 added.
338 With just these two changes, let's see how Kaleidoscope works now!
342     ready> 4+5;
343     Read top-level expression:
344     define double @0() {
345     entry:
346       ret double 9.000000e+00
347     }
349     Evaluated to 9.000000
351 Well this looks like it is basically working. The dump of the function
352 shows the "no argument function that always returns double" that we
353 synthesize for each top-level expression that is typed in. This
354 demonstrates very basic functionality, but can we do more?
358     ready> def testfunc(x y) x + y*2;
359     Read function definition:
360     define double @testfunc(double %x, double %y) {
361     entry:
362       %multmp = fmul double %y, 2.000000e+00
363       %addtmp = fadd double %multmp, %x
364       ret double %addtmp
365     }
367     ready> testfunc(4, 10);
368     Read top-level expression:
369     define double @1() {
370     entry:
371       %calltmp = call double @testfunc(double 4.000000e+00, double 1.000000e+01)
372       ret double %calltmp
373     }
375     Evaluated to 24.000000
377     ready> testfunc(5, 10);
378     ready> LLVM ERROR: Program used external function 'testfunc' which could not be resolved!
381 Function definitions and calls also work, but something went very wrong on that
382 last line. The call looks valid, so what happened? As you may have guessed from
383 the API a Module is a unit of allocation for the JIT, and testfunc was part
384 of the same module that contained anonymous expression. When we removed that
385 module from the JIT to free the memory for the anonymous expression, we deleted
386 the definition of ``testfunc`` along with it. Then, when we tried to call
387 testfunc a second time, the JIT could no longer find it.
389 The easiest way to fix this is to put the anonymous expression in a separate
390 module from the rest of the function definitions. The JIT will happily resolve
391 function calls across module boundaries, as long as each of the functions called
392 has a prototype, and is added to the JIT before it is called. By putting the
393 anonymous expression in a different module we can delete it without affecting
394 the rest of the functions.
396 In fact, we're going to go a step further and put every function in its own
397 module. Doing so allows us to exploit a useful property of the KaleidoscopeJIT
398 that will make our environment more REPL-like: Functions can be added to the
399 JIT more than once (unlike a module where every function must have a unique
400 definition). When you look up a symbol in KaleidoscopeJIT it will always return
401 the most recent definition:
405     ready> def foo(x) x + 1;
406     Read function definition:
407     define double @foo(double %x) {
408     entry:
409       %addtmp = fadd double %x, 1.000000e+00
410       ret double %addtmp
411     }
413     ready> foo(2);
414     Evaluated to 3.000000
416     ready> def foo(x) x + 2;
417     define double @foo(double %x) {
418     entry:
419       %addtmp = fadd double %x, 2.000000e+00
420       ret double %addtmp
421     }
423     ready> foo(2);
424     Evaluated to 4.000000
427 To allow each function to live in its own module we'll need a way to
428 re-generate previous function declarations into each new module we open:
430 .. code-block:: c++
432     static std::unique_ptr<KaleidoscopeJIT> TheJIT;
434     ...
436     Function *getFunction(std::string Name) {
437       // First, see if the function has already been added to the current module.
438       if (auto *F = TheModule->getFunction(Name))
439         return F;
441       // If not, check whether we can codegen the declaration from some existing
442       // prototype.
443       auto FI = FunctionProtos.find(Name);
444       if (FI != FunctionProtos.end())
445         return FI->second->codegen();
447       // If no existing prototype exists, return null.
448       return nullptr;
449     }
451     ...
453     Value *CallExprAST::codegen() {
454       // Look up the name in the global module table.
455       Function *CalleeF = getFunction(Callee);
457     ...
459     Function *FunctionAST::codegen() {
460       // Transfer ownership of the prototype to the FunctionProtos map, but keep a
461       // reference to it for use below.
462       auto &P = *Proto;
463       FunctionProtos[Proto->getName()] = std::move(Proto);
464       Function *TheFunction = getFunction(P.getName());
465       if (!TheFunction)
466         return nullptr;
469 To enable this, we'll start by adding a new global, ``FunctionProtos``, that
470 holds the most recent prototype for each function. We'll also add a convenience
471 method, ``getFunction()``, to replace calls to ``TheModule->getFunction()``.
472 Our convenience method searches ``TheModule`` for an existing function
473 declaration, falling back to generating a new declaration from FunctionProtos if
474 it doesn't find one. In ``CallExprAST::codegen()`` we just need to replace the
475 call to ``TheModule->getFunction()``. In ``FunctionAST::codegen()`` we need to
476 update the FunctionProtos map first, then call ``getFunction()``. With this
477 done, we can always obtain a function declaration in the current module for any
478 previously declared function.
480 We also need to update HandleDefinition and HandleExtern:
482 .. code-block:: c++
484     static void HandleDefinition() {
485       if (auto FnAST = ParseDefinition()) {
486         if (auto *FnIR = FnAST->codegen()) {
487           fprintf(stderr, "Read function definition:");
488           FnIR->print(errs());
489           fprintf(stderr, "\n");
490           TheJIT->addModule(std::move(TheModule));
491           InitializeModuleAndPassManager();
492         }
493       } else {
494         // Skip token for error recovery.
495          getNextToken();
496       }
497     }
499     static void HandleExtern() {
500       if (auto ProtoAST = ParseExtern()) {
501         if (auto *FnIR = ProtoAST->codegen()) {
502           fprintf(stderr, "Read extern: ");
503           FnIR->print(errs());
504           fprintf(stderr, "\n");
505           FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
506         }
507       } else {
508         // Skip token for error recovery.
509         getNextToken();
510       }
511     }
513 In HandleDefinition, we add two lines to transfer the newly defined function to
514 the JIT and open a new module. In HandleExtern, we just need to add one line to
515 add the prototype to FunctionProtos.
517 With these changes made, let's try our REPL again (I removed the dump of the
518 anonymous functions this time, you should get the idea by now :) :
522     ready> def foo(x) x + 1;
523     ready> foo(2);
524     Evaluated to 3.000000
526     ready> def foo(x) x + 2;
527     ready> foo(2);
528     Evaluated to 4.000000
530 It works!
532 Even with this simple code, we get some surprisingly powerful capabilities -
533 check this out:
537     ready> extern sin(x);
538     Read extern:
539     declare double @sin(double)
541     ready> extern cos(x);
542     Read extern:
543     declare double @cos(double)
545     ready> sin(1.0);
546     Read top-level expression:
547     define double @2() {
548     entry:
549       ret double 0x3FEAED548F090CEE
550     }
552     Evaluated to 0.841471
554     ready> def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
555     Read function definition:
556     define double @foo(double %x) {
557     entry:
558       %calltmp = call double @sin(double %x)
559       %multmp = fmul double %calltmp, %calltmp
560       %calltmp2 = call double @cos(double %x)
561       %multmp4 = fmul double %calltmp2, %calltmp2
562       %addtmp = fadd double %multmp, %multmp4
563       ret double %addtmp
564     }
566     ready> foo(4.0);
567     Read top-level expression:
568     define double @3() {
569     entry:
570       %calltmp = call double @foo(double 4.000000e+00)
571       ret double %calltmp
572     }
574     Evaluated to 1.000000
576 Whoa, how does the JIT know about sin and cos? The answer is surprisingly
577 simple: The KaleidoscopeJIT has a straightforward symbol resolution rule that
578 it uses to find symbols that aren't available in any given module: First
579 it searches all the modules that have already been added to the JIT, from the
580 most recent to the oldest, to find the newest definition. If no definition is
581 found inside the JIT, it falls back to calling "``dlsym("sin")``" on the
582 Kaleidoscope process itself. Since "``sin``" is defined within the JIT's
583 address space, it simply patches up calls in the module to call the libm
584 version of ``sin`` directly. But in some cases this even goes further:
585 as sin and cos are names of standard math functions, the constant folder
586 will directly evaluate the function calls to the correct result when called
587 with constants like in the "``sin(1.0)``" above.
589 In the future we'll see how tweaking this symbol resolution rule can be used to
590 enable all sorts of useful features, from security (restricting the set of
591 symbols available to JIT'd code), to dynamic code generation based on symbol
592 names, and even lazy compilation.
594 One immediate benefit of the symbol resolution rule is that we can now extend
595 the language by writing arbitrary C++ code to implement operations. For example,
596 if we add:
598 .. code-block:: c++
600     #ifdef _WIN32
601     #define DLLEXPORT __declspec(dllexport)
602     #else
603     #define DLLEXPORT
604     #endif
606     /// putchard - putchar that takes a double and returns 0.
607     extern "C" DLLEXPORT double putchard(double X) {
608       fputc((char)X, stderr);
609       return 0;
610     }
612 Note, that for Windows we need to actually export the functions because
613 the dynamic symbol loader will use GetProcAddress to find the symbols.
615 Now we can produce simple output to the console by using things like:
616 "``extern putchard(x); putchard(120);``", which prints a lowercase 'x'
617 on the console (120 is the ASCII code for 'x'). Similar code could be
618 used to implement file I/O, console input, and many other capabilities
619 in Kaleidoscope.
621 This completes the JIT and optimizer chapter of the Kaleidoscope
622 tutorial. At this point, we can compile a non-Turing-complete
623 programming language, optimize and JIT compile it in a user-driven way.
624 Next up we'll look into `extending the language with control flow
625 constructs <LangImpl05.html>`_, tackling some interesting LLVM IR issues
626 along the way.
628 Full Code Listing
629 =================
631 Here is the complete code listing for our running example, enhanced with
632 the LLVM JIT and optimizer. To build this example, use:
634 .. code-block:: bash
636     # Compile
637     clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core mcjit native` -O3 -o toy
638     # Run
639     ./toy
641 If you are compiling this on Linux, make sure to add the "-rdynamic"
642 option as well. This makes sure that the external functions are resolved
643 properly at runtime.
645 Here is the code:
647 .. literalinclude:: ../../examples/Kaleidoscope/Chapter4/toy.cpp
648    :language: c++
650 `Next: Extending the language: control flow <LangImpl05.html>`_