[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Analysis / AliasAnalysis.cpp
blob937437791d18d8fac87d51ba0b25723831c6964e
1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified. This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation. Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
25 //===----------------------------------------------------------------------===//
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
58 using namespace llvm;
60 /// Allow disabling BasicAA from the AA results. This is particularly useful
61 /// when testing to isolate a single AA implementation.
62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
63 cl::init(false));
65 AAResults::AAResults(AAResults &&Arg)
66 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
67 for (auto &AA : AAs)
68 AA->setAAResults(this);
71 AAResults::~AAResults() {
72 // FIXME; It would be nice to at least clear out the pointers back to this
73 // aggregation here, but we end up with non-nesting lifetimes in the legacy
74 // pass manager that prevent this from working. In the legacy pass manager
75 // we'll end up with dangling references here in some cases.
76 #if 0
77 for (auto &AA : AAs)
78 AA->setAAResults(nullptr);
79 #endif
82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
83 FunctionAnalysisManager::Invalidator &Inv) {
84 // Check if the AA manager itself has been invalidated.
85 auto PAC = PA.getChecker<AAManager>();
86 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
87 return true; // The manager needs to be blown away, clear everything.
89 // Check all of the dependencies registered.
90 for (AnalysisKey *ID : AADeps)
91 if (Inv.invalidate(ID, F, PA))
92 return true;
94 // Everything we depend on is still fine, so are we. Nothing to invalidate.
95 return false;
98 //===----------------------------------------------------------------------===//
99 // Default chaining methods
100 //===----------------------------------------------------------------------===//
102 AliasResult AAResults::alias(const MemoryLocation &LocA,
103 const MemoryLocation &LocB) {
104 for (const auto &AA : AAs) {
105 auto Result = AA->alias(LocA, LocB);
106 if (Result != MayAlias)
107 return Result;
109 return MayAlias;
112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
113 bool OrLocal) {
114 for (const auto &AA : AAs)
115 if (AA->pointsToConstantMemory(Loc, OrLocal))
116 return true;
118 return false;
121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
122 ModRefInfo Result = ModRefInfo::ModRef;
124 for (const auto &AA : AAs) {
125 Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx));
127 // Early-exit the moment we reach the bottom of the lattice.
128 if (isNoModRef(Result))
129 return ModRefInfo::NoModRef;
132 return Result;
135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
136 // We may have two calls.
137 if (auto CS = ImmutableCallSite(I)) {
138 // Check if the two calls modify the same memory.
139 return getModRefInfo(CS, Call);
140 } else if (I->isFenceLike()) {
141 // If this is a fence, just return ModRef.
142 return ModRefInfo::ModRef;
143 } else {
144 // Otherwise, check if the call modifies or references the
145 // location this memory access defines. The best we can say
146 // is that if the call references what this instruction
147 // defines, it must be clobbered by this location.
148 const MemoryLocation DefLoc = MemoryLocation::get(I);
149 ModRefInfo MR = getModRefInfo(Call, DefLoc);
150 if (isModOrRefSet(MR))
151 return setModAndRef(MR);
153 return ModRefInfo::NoModRef;
156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
157 const MemoryLocation &Loc) {
158 ModRefInfo Result = ModRefInfo::ModRef;
160 for (const auto &AA : AAs) {
161 Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc));
163 // Early-exit the moment we reach the bottom of the lattice.
164 if (isNoModRef(Result))
165 return ModRefInfo::NoModRef;
168 // Try to refine the mod-ref info further using other API entry points to the
169 // aggregate set of AA results.
170 auto MRB = getModRefBehavior(CS);
171 if (MRB == FMRB_DoesNotAccessMemory ||
172 MRB == FMRB_OnlyAccessesInaccessibleMem)
173 return ModRefInfo::NoModRef;
175 if (onlyReadsMemory(MRB))
176 Result = clearMod(Result);
177 else if (doesNotReadMemory(MRB))
178 Result = clearRef(Result);
180 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
181 bool IsMustAlias = true;
182 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
183 if (doesAccessArgPointees(MRB)) {
184 for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
185 const Value *Arg = *AI;
186 if (!Arg->getType()->isPointerTy())
187 continue;
188 unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
189 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
190 AliasResult ArgAlias = alias(ArgLoc, Loc);
191 if (ArgAlias != NoAlias) {
192 ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
193 AllArgsMask = unionModRef(AllArgsMask, ArgMask);
195 // Conservatively clear IsMustAlias unless only MustAlias is found.
196 IsMustAlias &= (ArgAlias == MustAlias);
199 // Return NoModRef if no alias found with any argument.
200 if (isNoModRef(AllArgsMask))
201 return ModRefInfo::NoModRef;
202 // Logical & between other AA analyses and argument analysis.
203 Result = intersectModRef(Result, AllArgsMask);
204 // If only MustAlias found above, set Must bit.
205 Result = IsMustAlias ? setMust(Result) : clearMust(Result);
208 // If Loc is a constant memory location, the call definitely could not
209 // modify the memory location.
210 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
211 Result = clearMod(Result);
213 return Result;
216 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
217 ImmutableCallSite CS2) {
218 ModRefInfo Result = ModRefInfo::ModRef;
220 for (const auto &AA : AAs) {
221 Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2));
223 // Early-exit the moment we reach the bottom of the lattice.
224 if (isNoModRef(Result))
225 return ModRefInfo::NoModRef;
228 // Try to refine the mod-ref info further using other API entry points to the
229 // aggregate set of AA results.
231 // If CS1 or CS2 are readnone, they don't interact.
232 auto CS1B = getModRefBehavior(CS1);
233 if (CS1B == FMRB_DoesNotAccessMemory)
234 return ModRefInfo::NoModRef;
236 auto CS2B = getModRefBehavior(CS2);
237 if (CS2B == FMRB_DoesNotAccessMemory)
238 return ModRefInfo::NoModRef;
240 // If they both only read from memory, there is no dependence.
241 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
242 return ModRefInfo::NoModRef;
244 // If CS1 only reads memory, the only dependence on CS2 can be
245 // from CS1 reading memory written by CS2.
246 if (onlyReadsMemory(CS1B))
247 Result = clearMod(Result);
248 else if (doesNotReadMemory(CS1B))
249 Result = clearRef(Result);
251 // If CS2 only access memory through arguments, accumulate the mod/ref
252 // information from CS1's references to the memory referenced by
253 // CS2's arguments.
254 if (onlyAccessesArgPointees(CS2B)) {
255 if (!doesAccessArgPointees(CS2B))
256 return ModRefInfo::NoModRef;
257 ModRefInfo R = ModRefInfo::NoModRef;
258 bool IsMustAlias = true;
259 for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
260 const Value *Arg = *I;
261 if (!Arg->getType()->isPointerTy())
262 continue;
263 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
264 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
266 // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
267 // dependence of CS1 on that location is the inverse:
268 // - If CS2 modifies location, dependence exists if CS1 reads or writes.
269 // - If CS2 only reads location, dependence exists if CS1 writes.
270 ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx);
271 ModRefInfo ArgMask = ModRefInfo::NoModRef;
272 if (isModSet(ArgModRefCS2))
273 ArgMask = ModRefInfo::ModRef;
274 else if (isRefSet(ArgModRefCS2))
275 ArgMask = ModRefInfo::Mod;
277 // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
278 // above ArgMask to update dependence info.
279 ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc);
280 ArgMask = intersectModRef(ArgMask, ModRefCS1);
282 // Conservatively clear IsMustAlias unless only MustAlias is found.
283 IsMustAlias &= isMustSet(ModRefCS1);
285 R = intersectModRef(unionModRef(R, ArgMask), Result);
286 if (R == Result) {
287 // On early exit, not all args were checked, cannot set Must.
288 if (I + 1 != E)
289 IsMustAlias = false;
290 break;
294 if (isNoModRef(R))
295 return ModRefInfo::NoModRef;
297 // If MustAlias found above, set Must bit.
298 return IsMustAlias ? setMust(R) : clearMust(R);
301 // If CS1 only accesses memory through arguments, check if CS2 references
302 // any of the memory referenced by CS1's arguments. If not, return NoModRef.
303 if (onlyAccessesArgPointees(CS1B)) {
304 if (!doesAccessArgPointees(CS1B))
305 return ModRefInfo::NoModRef;
306 ModRefInfo R = ModRefInfo::NoModRef;
307 bool IsMustAlias = true;
308 for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
309 const Value *Arg = *I;
310 if (!Arg->getType()->isPointerTy())
311 continue;
312 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
313 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
315 // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
316 // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
317 // CS1 might Ref, then we care only about a Mod by CS2.
318 ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx);
319 ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc);
320 if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) ||
321 (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2)))
322 R = intersectModRef(unionModRef(R, ArgModRefCS1), Result);
324 // Conservatively clear IsMustAlias unless only MustAlias is found.
325 IsMustAlias &= isMustSet(ModRefCS2);
327 if (R == Result) {
328 // On early exit, not all args were checked, cannot set Must.
329 if (I + 1 != E)
330 IsMustAlias = false;
331 break;
335 if (isNoModRef(R))
336 return ModRefInfo::NoModRef;
338 // If MustAlias found above, set Must bit.
339 return IsMustAlias ? setMust(R) : clearMust(R);
342 return Result;
345 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
346 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
348 for (const auto &AA : AAs) {
349 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
351 // Early-exit the moment we reach the bottom of the lattice.
352 if (Result == FMRB_DoesNotAccessMemory)
353 return Result;
356 return Result;
359 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
360 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
362 for (const auto &AA : AAs) {
363 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
365 // Early-exit the moment we reach the bottom of the lattice.
366 if (Result == FMRB_DoesNotAccessMemory)
367 return Result;
370 return Result;
373 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
374 switch (AR) {
375 case NoAlias:
376 OS << "NoAlias";
377 break;
378 case MustAlias:
379 OS << "MustAlias";
380 break;
381 case MayAlias:
382 OS << "MayAlias";
383 break;
384 case PartialAlias:
385 OS << "PartialAlias";
386 break;
388 return OS;
391 //===----------------------------------------------------------------------===//
392 // Helper method implementation
393 //===----------------------------------------------------------------------===//
395 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
396 const MemoryLocation &Loc) {
397 // Be conservative in the face of atomic.
398 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
399 return ModRefInfo::ModRef;
401 // If the load address doesn't alias the given address, it doesn't read
402 // or write the specified memory.
403 if (Loc.Ptr) {
404 AliasResult AR = alias(MemoryLocation::get(L), Loc);
405 if (AR == NoAlias)
406 return ModRefInfo::NoModRef;
407 if (AR == MustAlias)
408 return ModRefInfo::MustRef;
410 // Otherwise, a load just reads.
411 return ModRefInfo::Ref;
414 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
415 const MemoryLocation &Loc) {
416 // Be conservative in the face of atomic.
417 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
418 return ModRefInfo::ModRef;
420 if (Loc.Ptr) {
421 AliasResult AR = alias(MemoryLocation::get(S), Loc);
422 // If the store address cannot alias the pointer in question, then the
423 // specified memory cannot be modified by the store.
424 if (AR == NoAlias)
425 return ModRefInfo::NoModRef;
427 // If the pointer is a pointer to constant memory, then it could not have
428 // been modified by this store.
429 if (pointsToConstantMemory(Loc))
430 return ModRefInfo::NoModRef;
432 // If the store address aliases the pointer as must alias, set Must.
433 if (AR == MustAlias)
434 return ModRefInfo::MustMod;
437 // Otherwise, a store just writes.
438 return ModRefInfo::Mod;
441 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
442 // If we know that the location is a constant memory location, the fence
443 // cannot modify this location.
444 if (Loc.Ptr && pointsToConstantMemory(Loc))
445 return ModRefInfo::Ref;
446 return ModRefInfo::ModRef;
449 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
450 const MemoryLocation &Loc) {
451 if (Loc.Ptr) {
452 AliasResult AR = alias(MemoryLocation::get(V), Loc);
453 // If the va_arg address cannot alias the pointer in question, then the
454 // specified memory cannot be accessed by the va_arg.
455 if (AR == NoAlias)
456 return ModRefInfo::NoModRef;
458 // If the pointer is a pointer to constant memory, then it could not have
459 // been modified by this va_arg.
460 if (pointsToConstantMemory(Loc))
461 return ModRefInfo::NoModRef;
463 // If the va_arg aliases the pointer as must alias, set Must.
464 if (AR == MustAlias)
465 return ModRefInfo::MustModRef;
468 // Otherwise, a va_arg reads and writes.
469 return ModRefInfo::ModRef;
472 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
473 const MemoryLocation &Loc) {
474 if (Loc.Ptr) {
475 // If the pointer is a pointer to constant memory,
476 // then it could not have been modified by this catchpad.
477 if (pointsToConstantMemory(Loc))
478 return ModRefInfo::NoModRef;
481 // Otherwise, a catchpad reads and writes.
482 return ModRefInfo::ModRef;
485 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
486 const MemoryLocation &Loc) {
487 if (Loc.Ptr) {
488 // If the pointer is a pointer to constant memory,
489 // then it could not have been modified by this catchpad.
490 if (pointsToConstantMemory(Loc))
491 return ModRefInfo::NoModRef;
494 // Otherwise, a catchret reads and writes.
495 return ModRefInfo::ModRef;
498 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
499 const MemoryLocation &Loc) {
500 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
501 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
502 return ModRefInfo::ModRef;
504 if (Loc.Ptr) {
505 AliasResult AR = alias(MemoryLocation::get(CX), Loc);
506 // If the cmpxchg address does not alias the location, it does not access
507 // it.
508 if (AR == NoAlias)
509 return ModRefInfo::NoModRef;
511 // If the cmpxchg address aliases the pointer as must alias, set Must.
512 if (AR == MustAlias)
513 return ModRefInfo::MustModRef;
516 return ModRefInfo::ModRef;
519 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
520 const MemoryLocation &Loc) {
521 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
522 if (isStrongerThanMonotonic(RMW->getOrdering()))
523 return ModRefInfo::ModRef;
525 if (Loc.Ptr) {
526 AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
527 // If the atomicrmw address does not alias the location, it does not access
528 // it.
529 if (AR == NoAlias)
530 return ModRefInfo::NoModRef;
532 // If the atomicrmw address aliases the pointer as must alias, set Must.
533 if (AR == MustAlias)
534 return ModRefInfo::MustModRef;
537 return ModRefInfo::ModRef;
540 /// Return information about whether a particular call site modifies
541 /// or reads the specified memory location \p MemLoc before instruction \p I
542 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
543 /// instruction-ordering queries inside the BasicBlock containing \p I.
544 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
545 /// BasicAA isn't willing to spend linear time determining whether an alloca
546 /// was captured before or after this particular call, while we are. However,
547 /// with a smarter AA in place, this test is just wasting compile time.
548 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
549 const MemoryLocation &MemLoc,
550 DominatorTree *DT,
551 OrderedBasicBlock *OBB) {
552 if (!DT)
553 return ModRefInfo::ModRef;
555 const Value *Object =
556 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
557 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
558 isa<Constant>(Object))
559 return ModRefInfo::ModRef;
561 ImmutableCallSite CS(I);
562 if (!CS.getInstruction() || CS.getInstruction() == Object)
563 return ModRefInfo::ModRef;
565 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
566 /* StoreCaptures */ true, I, DT,
567 /* include Object */ true,
568 /* OrderedBasicBlock */ OBB))
569 return ModRefInfo::ModRef;
571 unsigned ArgNo = 0;
572 ModRefInfo R = ModRefInfo::NoModRef;
573 bool IsMustAlias = true;
574 // Set flag only if no May found and all operands processed.
575 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
576 CI != CE; ++CI, ++ArgNo) {
577 // Only look at the no-capture or byval pointer arguments. If this
578 // pointer were passed to arguments that were neither of these, then it
579 // couldn't be no-capture.
580 if (!(*CI)->getType()->isPointerTy() ||
581 (!CS.doesNotCapture(ArgNo) &&
582 ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
583 continue;
585 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
586 // If this is a no-capture pointer argument, see if we can tell that it
587 // is impossible to alias the pointer we're checking. If not, we have to
588 // assume that the call could touch the pointer, even though it doesn't
589 // escape.
590 if (AR != MustAlias)
591 IsMustAlias = false;
592 if (AR == NoAlias)
593 continue;
594 if (CS.doesNotAccessMemory(ArgNo))
595 continue;
596 if (CS.onlyReadsMemory(ArgNo)) {
597 R = ModRefInfo::Ref;
598 continue;
600 // Not returning MustModRef since we have not seen all the arguments.
601 return ModRefInfo::ModRef;
603 return IsMustAlias ? setMust(R) : clearMust(R);
606 /// canBasicBlockModify - Return true if it is possible for execution of the
607 /// specified basic block to modify the location Loc.
609 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
610 const MemoryLocation &Loc) {
611 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
614 /// canInstructionRangeModRef - Return true if it is possible for the
615 /// execution of the specified instructions to mod\ref (according to the
616 /// mode) the location Loc. The instructions to consider are all
617 /// of the instructions in the range of [I1,I2] INCLUSIVE.
618 /// I1 and I2 must be in the same basic block.
619 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
620 const Instruction &I2,
621 const MemoryLocation &Loc,
622 const ModRefInfo Mode) {
623 assert(I1.getParent() == I2.getParent() &&
624 "Instructions not in same basic block!");
625 BasicBlock::const_iterator I = I1.getIterator();
626 BasicBlock::const_iterator E = I2.getIterator();
627 ++E; // Convert from inclusive to exclusive range.
629 for (; I != E; ++I) // Check every instruction in range
630 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
631 return true;
632 return false;
635 // Provide a definition for the root virtual destructor.
636 AAResults::Concept::~Concept() = default;
638 // Provide a definition for the static object used to identify passes.
639 AnalysisKey AAManager::Key;
641 namespace {
643 /// A wrapper pass for external alias analyses. This just squirrels away the
644 /// callback used to run any analyses and register their results.
645 struct ExternalAAWrapperPass : ImmutablePass {
646 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
648 CallbackT CB;
650 static char ID;
652 ExternalAAWrapperPass() : ImmutablePass(ID) {
653 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
656 explicit ExternalAAWrapperPass(CallbackT CB)
657 : ImmutablePass(ID), CB(std::move(CB)) {
658 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
661 void getAnalysisUsage(AnalysisUsage &AU) const override {
662 AU.setPreservesAll();
666 } // end anonymous namespace
668 char ExternalAAWrapperPass::ID = 0;
670 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
671 false, true)
673 ImmutablePass *
674 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
675 return new ExternalAAWrapperPass(std::move(Callback));
678 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
679 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
682 char AAResultsWrapperPass::ID = 0;
684 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
685 "Function Alias Analysis Results", false, true)
686 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
687 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
688 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
689 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
690 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
691 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
692 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
693 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
694 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
695 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
696 "Function Alias Analysis Results", false, true)
698 FunctionPass *llvm::createAAResultsWrapperPass() {
699 return new AAResultsWrapperPass();
702 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
704 /// This is the legacy pass manager's interface to the new-style AA results
705 /// aggregation object. Because this is somewhat shoe-horned into the legacy
706 /// pass manager, we hard code all the specific alias analyses available into
707 /// it. While the particular set enabled is configured via commandline flags,
708 /// adding a new alias analysis to LLVM will require adding support for it to
709 /// this list.
710 bool AAResultsWrapperPass::runOnFunction(Function &F) {
711 // NB! This *must* be reset before adding new AA results to the new
712 // AAResults object because in the legacy pass manager, each instance
713 // of these will refer to the *same* immutable analyses, registering and
714 // unregistering themselves with them. We need to carefully tear down the
715 // previous object first, in this case replacing it with an empty one, before
716 // registering new results.
717 AAR.reset(
718 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
720 // BasicAA is always available for function analyses. Also, we add it first
721 // so that it can trump TBAA results when it proves MustAlias.
722 // FIXME: TBAA should have an explicit mode to support this and then we
723 // should reconsider the ordering here.
724 if (!DisableBasicAA)
725 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
727 // Populate the results with the currently available AAs.
728 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
729 AAR->addAAResult(WrapperPass->getResult());
730 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
731 AAR->addAAResult(WrapperPass->getResult());
732 if (auto *WrapperPass =
733 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
734 AAR->addAAResult(WrapperPass->getResult());
735 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
736 AAR->addAAResult(WrapperPass->getResult());
737 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
738 AAR->addAAResult(WrapperPass->getResult());
739 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
740 AAR->addAAResult(WrapperPass->getResult());
741 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
742 AAR->addAAResult(WrapperPass->getResult());
744 // If available, run an external AA providing callback over the results as
745 // well.
746 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
747 if (WrapperPass->CB)
748 WrapperPass->CB(*this, F, *AAR);
750 // Analyses don't mutate the IR, so return false.
751 return false;
754 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
755 AU.setPreservesAll();
756 AU.addRequired<BasicAAWrapperPass>();
757 AU.addRequired<TargetLibraryInfoWrapperPass>();
759 // We also need to mark all the alias analysis passes we will potentially
760 // probe in runOnFunction as used here to ensure the legacy pass manager
761 // preserves them. This hard coding of lists of alias analyses is specific to
762 // the legacy pass manager.
763 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
764 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
765 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
766 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
767 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
768 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
769 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
772 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
773 BasicAAResult &BAR) {
774 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
776 // Add in our explicitly constructed BasicAA results.
777 if (!DisableBasicAA)
778 AAR.addAAResult(BAR);
780 // Populate the results with the other currently available AAs.
781 if (auto *WrapperPass =
782 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
783 AAR.addAAResult(WrapperPass->getResult());
784 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
785 AAR.addAAResult(WrapperPass->getResult());
786 if (auto *WrapperPass =
787 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
788 AAR.addAAResult(WrapperPass->getResult());
789 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
790 AAR.addAAResult(WrapperPass->getResult());
791 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
792 AAR.addAAResult(WrapperPass->getResult());
793 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
794 AAR.addAAResult(WrapperPass->getResult());
796 return AAR;
799 bool llvm::isNoAliasCall(const Value *V) {
800 if (auto CS = ImmutableCallSite(V))
801 return CS.hasRetAttr(Attribute::NoAlias);
802 return false;
805 bool llvm::isNoAliasArgument(const Value *V) {
806 if (const Argument *A = dyn_cast<Argument>(V))
807 return A->hasNoAliasAttr();
808 return false;
811 bool llvm::isIdentifiedObject(const Value *V) {
812 if (isa<AllocaInst>(V))
813 return true;
814 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
815 return true;
816 if (isNoAliasCall(V))
817 return true;
818 if (const Argument *A = dyn_cast<Argument>(V))
819 return A->hasNoAliasAttr() || A->hasByValAttr();
820 return false;
823 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
824 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
827 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
828 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
829 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
830 // to be added here also.
831 AU.addRequired<TargetLibraryInfoWrapperPass>();
832 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
833 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
834 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
835 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
836 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
837 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();