[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / Analysis / ValueTracking.cpp
blob02d071717f046b9bd6b91a851fbcf806a4401e16
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CallSite.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
80 const unsigned MaxDepth = 6;
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85 cl::Hidden, cl::init(20));
87 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 /// returns the element type's bitwidth.
89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90 if (unsigned BitWidth = Ty->getScalarSizeInBits())
91 return BitWidth;
93 return DL.getIndexTypeSizeInBits(Ty);
96 namespace {
98 // Simplifying using an assume can only be done in a particular control-flow
99 // context (the context instruction provides that context). If an assume and
100 // the context instruction are not in the same block then the DT helps in
101 // figuring out if we can use it.
102 struct Query {
103 const DataLayout &DL;
104 AssumptionCache *AC;
105 const Instruction *CxtI;
106 const DominatorTree *DT;
108 // Unlike the other analyses, this may be a nullptr because not all clients
109 // provide it currently.
110 OptimizationRemarkEmitter *ORE;
112 /// Set of assumptions that should be excluded from further queries.
113 /// This is because of the potential for mutual recursion to cause
114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115 /// classic case of this is assume(x = y), which will attempt to determine
116 /// bits in x from bits in y, which will attempt to determine bits in y from
117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119 /// (all of which can call computeKnownBits), and so on.
120 std::array<const Value *, MaxDepth> Excluded;
122 /// If true, it is safe to use metadata during simplification.
123 InstrInfoQuery IIQ;
125 unsigned NumExcluded = 0;
127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
128 const DominatorTree *DT, bool UseInstrInfo,
129 OptimizationRemarkEmitter *ORE = nullptr)
130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
132 Query(const Query &Q, const Value *NewExcl)
133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
134 NumExcluded(Q.NumExcluded) {
135 Excluded = Q.Excluded;
136 Excluded[NumExcluded++] = NewExcl;
137 assert(NumExcluded <= Excluded.size());
140 bool isExcluded(const Value *Value) const {
141 if (NumExcluded == 0)
142 return false;
143 auto End = Excluded.begin() + NumExcluded;
144 return std::find(Excluded.begin(), End, Value) != End;
148 } // end anonymous namespace
150 // Given the provided Value and, potentially, a context instruction, return
151 // the preferred context instruction (if any).
152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153 // If we've been provided with a context instruction, then use that (provided
154 // it has been inserted).
155 if (CxtI && CxtI->getParent())
156 return CxtI;
158 // If the value is really an already-inserted instruction, then use that.
159 CxtI = dyn_cast<Instruction>(V);
160 if (CxtI && CxtI->getParent())
161 return CxtI;
163 return nullptr;
166 static void computeKnownBits(const Value *V, KnownBits &Known,
167 unsigned Depth, const Query &Q);
169 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
170 const DataLayout &DL, unsigned Depth,
171 AssumptionCache *AC, const Instruction *CxtI,
172 const DominatorTree *DT,
173 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
174 ::computeKnownBits(V, Known, Depth,
175 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
178 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
179 const Query &Q);
181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
182 unsigned Depth, AssumptionCache *AC,
183 const Instruction *CxtI,
184 const DominatorTree *DT,
185 OptimizationRemarkEmitter *ORE,
186 bool UseInstrInfo) {
187 return ::computeKnownBits(
188 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192 const DataLayout &DL, AssumptionCache *AC,
193 const Instruction *CxtI, const DominatorTree *DT,
194 bool UseInstrInfo) {
195 assert(LHS->getType() == RHS->getType() &&
196 "LHS and RHS should have the same type");
197 assert(LHS->getType()->isIntOrIntVectorTy() &&
198 "LHS and RHS should be integers");
199 // Look for an inverted mask: (X & ~M) op (Y & M).
200 Value *M;
201 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
202 match(RHS, m_c_And(m_Specific(M), m_Value())))
203 return true;
204 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
205 match(LHS, m_c_And(m_Specific(M), m_Value())))
206 return true;
207 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
208 KnownBits LHSKnown(IT->getBitWidth());
209 KnownBits RHSKnown(IT->getBitWidth());
210 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
212 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
216 for (const User *U : CxtI->users()) {
217 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
218 if (IC->isEquality())
219 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
220 if (C->isNullValue())
221 continue;
222 return false;
224 return true;
227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
228 const Query &Q);
230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
231 bool OrZero, unsigned Depth,
232 AssumptionCache *AC, const Instruction *CxtI,
233 const DominatorTree *DT, bool UseInstrInfo) {
234 return ::isKnownToBeAPowerOfTwo(
235 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
241 AssumptionCache *AC, const Instruction *CxtI,
242 const DominatorTree *DT, bool UseInstrInfo) {
243 return ::isKnownNonZero(V, Depth,
244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
248 unsigned Depth, AssumptionCache *AC,
249 const Instruction *CxtI, const DominatorTree *DT,
250 bool UseInstrInfo) {
251 KnownBits Known =
252 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
253 return Known.isNonNegative();
256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
257 AssumptionCache *AC, const Instruction *CxtI,
258 const DominatorTree *DT, bool UseInstrInfo) {
259 if (auto *CI = dyn_cast<ConstantInt>(V))
260 return CI->getValue().isStrictlyPositive();
262 // TODO: We'd doing two recursive queries here. We should factor this such
263 // that only a single query is needed.
264 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
265 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
269 AssumptionCache *AC, const Instruction *CxtI,
270 const DominatorTree *DT, bool UseInstrInfo) {
271 KnownBits Known =
272 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
273 return Known.isNegative();
276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
279 const DataLayout &DL, AssumptionCache *AC,
280 const Instruction *CxtI, const DominatorTree *DT,
281 bool UseInstrInfo) {
282 return ::isKnownNonEqual(V1, V2,
283 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
284 UseInstrInfo, /*ORE=*/nullptr));
287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
288 const Query &Q);
290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
291 const DataLayout &DL, unsigned Depth,
292 AssumptionCache *AC, const Instruction *CxtI,
293 const DominatorTree *DT, bool UseInstrInfo) {
294 return ::MaskedValueIsZero(
295 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
299 const Query &Q);
301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
302 unsigned Depth, AssumptionCache *AC,
303 const Instruction *CxtI,
304 const DominatorTree *DT, bool UseInstrInfo) {
305 return ::ComputeNumSignBits(
306 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
310 bool NSW,
311 KnownBits &KnownOut, KnownBits &Known2,
312 unsigned Depth, const Query &Q) {
313 unsigned BitWidth = KnownOut.getBitWidth();
315 // If an initial sequence of bits in the result is not needed, the
316 // corresponding bits in the operands are not needed.
317 KnownBits LHSKnown(BitWidth);
318 computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
319 computeKnownBits(Op1, Known2, Depth + 1, Q);
321 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
325 KnownBits &Known, KnownBits &Known2,
326 unsigned Depth, const Query &Q) {
327 unsigned BitWidth = Known.getBitWidth();
328 computeKnownBits(Op1, Known, Depth + 1, Q);
329 computeKnownBits(Op0, Known2, Depth + 1, Q);
331 bool isKnownNegative = false;
332 bool isKnownNonNegative = false;
333 // If the multiplication is known not to overflow, compute the sign bit.
334 if (NSW) {
335 if (Op0 == Op1) {
336 // The product of a number with itself is non-negative.
337 isKnownNonNegative = true;
338 } else {
339 bool isKnownNonNegativeOp1 = Known.isNonNegative();
340 bool isKnownNonNegativeOp0 = Known2.isNonNegative();
341 bool isKnownNegativeOp1 = Known.isNegative();
342 bool isKnownNegativeOp0 = Known2.isNegative();
343 // The product of two numbers with the same sign is non-negative.
344 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
345 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
346 // The product of a negative number and a non-negative number is either
347 // negative or zero.
348 if (!isKnownNonNegative)
349 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
350 isKnownNonZero(Op0, Depth, Q)) ||
351 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
352 isKnownNonZero(Op1, Depth, Q));
356 assert(!Known.hasConflict() && !Known2.hasConflict());
357 // Compute a conservative estimate for high known-0 bits.
358 unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
359 Known2.countMinLeadingZeros(),
360 BitWidth) - BitWidth;
361 LeadZ = std::min(LeadZ, BitWidth);
363 // The result of the bottom bits of an integer multiply can be
364 // inferred by looking at the bottom bits of both operands and
365 // multiplying them together.
366 // We can infer at least the minimum number of known trailing bits
367 // of both operands. Depending on number of trailing zeros, we can
368 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
369 // a and b are divisible by m and n respectively.
370 // We then calculate how many of those bits are inferrable and set
371 // the output. For example, the i8 mul:
372 // a = XXXX1100 (12)
373 // b = XXXX1110 (14)
374 // We know the bottom 3 bits are zero since the first can be divided by
375 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
376 // Applying the multiplication to the trimmed arguments gets:
377 // XX11 (3)
378 // X111 (7)
379 // -------
380 // XX11
381 // XX11
382 // XX11
383 // XX11
384 // -------
385 // XXXXX01
386 // Which allows us to infer the 2 LSBs. Since we're multiplying the result
387 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
388 // The proof for this can be described as:
389 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
390 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
391 // umin(countTrailingZeros(C2), C6) +
392 // umin(C5 - umin(countTrailingZeros(C1), C5),
393 // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
394 // %aa = shl i8 %a, C5
395 // %bb = shl i8 %b, C6
396 // %aaa = or i8 %aa, C1
397 // %bbb = or i8 %bb, C2
398 // %mul = mul i8 %aaa, %bbb
399 // %mask = and i8 %mul, C7
400 // =>
401 // %mask = i8 ((C1*C2)&C7)
402 // Where C5, C6 describe the known bits of %a, %b
403 // C1, C2 describe the known bottom bits of %a, %b.
404 // C7 describes the mask of the known bits of the result.
405 APInt Bottom0 = Known.One;
406 APInt Bottom1 = Known2.One;
408 // How many times we'd be able to divide each argument by 2 (shr by 1).
409 // This gives us the number of trailing zeros on the multiplication result.
410 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
411 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
412 unsigned TrailZero0 = Known.countMinTrailingZeros();
413 unsigned TrailZero1 = Known2.countMinTrailingZeros();
414 unsigned TrailZ = TrailZero0 + TrailZero1;
416 // Figure out the fewest known-bits operand.
417 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
418 TrailBitsKnown1 - TrailZero1);
419 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
421 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
422 Bottom1.getLoBits(TrailBitsKnown1);
424 Known.resetAll();
425 Known.Zero.setHighBits(LeadZ);
426 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
427 Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
429 // Only make use of no-wrap flags if we failed to compute the sign bit
430 // directly. This matters if the multiplication always overflows, in
431 // which case we prefer to follow the result of the direct computation,
432 // though as the program is invoking undefined behaviour we can choose
433 // whatever we like here.
434 if (isKnownNonNegative && !Known.isNegative())
435 Known.makeNonNegative();
436 else if (isKnownNegative && !Known.isNonNegative())
437 Known.makeNegative();
440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
441 KnownBits &Known) {
442 unsigned BitWidth = Known.getBitWidth();
443 unsigned NumRanges = Ranges.getNumOperands() / 2;
444 assert(NumRanges >= 1);
446 Known.Zero.setAllBits();
447 Known.One.setAllBits();
449 for (unsigned i = 0; i < NumRanges; ++i) {
450 ConstantInt *Lower =
451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
452 ConstantInt *Upper =
453 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
454 ConstantRange Range(Lower->getValue(), Upper->getValue());
456 // The first CommonPrefixBits of all values in Range are equal.
457 unsigned CommonPrefixBits =
458 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
460 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
461 Known.One &= Range.getUnsignedMax() & Mask;
462 Known.Zero &= ~Range.getUnsignedMax() & Mask;
466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
467 SmallVector<const Value *, 16> WorkSet(1, I);
468 SmallPtrSet<const Value *, 32> Visited;
469 SmallPtrSet<const Value *, 16> EphValues;
471 // The instruction defining an assumption's condition itself is always
472 // considered ephemeral to that assumption (even if it has other
473 // non-ephemeral users). See r246696's test case for an example.
474 if (is_contained(I->operands(), E))
475 return true;
477 while (!WorkSet.empty()) {
478 const Value *V = WorkSet.pop_back_val();
479 if (!Visited.insert(V).second)
480 continue;
482 // If all uses of this value are ephemeral, then so is this value.
483 if (llvm::all_of(V->users(), [&](const User *U) {
484 return EphValues.count(U);
485 })) {
486 if (V == E)
487 return true;
489 if (V == I || isSafeToSpeculativelyExecute(V)) {
490 EphValues.insert(V);
491 if (const User *U = dyn_cast<User>(V))
492 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
493 J != JE; ++J)
494 WorkSet.push_back(*J);
499 return false;
502 // Is this an intrinsic that cannot be speculated but also cannot trap?
503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
504 if (const CallInst *CI = dyn_cast<CallInst>(I))
505 if (Function *F = CI->getCalledFunction())
506 switch (F->getIntrinsicID()) {
507 default: break;
508 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
509 case Intrinsic::assume:
510 case Intrinsic::sideeffect:
511 case Intrinsic::dbg_declare:
512 case Intrinsic::dbg_value:
513 case Intrinsic::dbg_label:
514 case Intrinsic::invariant_start:
515 case Intrinsic::invariant_end:
516 case Intrinsic::lifetime_start:
517 case Intrinsic::lifetime_end:
518 case Intrinsic::objectsize:
519 case Intrinsic::ptr_annotation:
520 case Intrinsic::var_annotation:
521 return true;
524 return false;
527 bool llvm::isValidAssumeForContext(const Instruction *Inv,
528 const Instruction *CxtI,
529 const DominatorTree *DT) {
530 // There are two restrictions on the use of an assume:
531 // 1. The assume must dominate the context (or the control flow must
532 // reach the assume whenever it reaches the context).
533 // 2. The context must not be in the assume's set of ephemeral values
534 // (otherwise we will use the assume to prove that the condition
535 // feeding the assume is trivially true, thus causing the removal of
536 // the assume).
538 if (DT) {
539 if (DT->dominates(Inv, CxtI))
540 return true;
541 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
542 // We don't have a DT, but this trivially dominates.
543 return true;
546 // With or without a DT, the only remaining case we will check is if the
547 // instructions are in the same BB. Give up if that is not the case.
548 if (Inv->getParent() != CxtI->getParent())
549 return false;
551 // If we have a dom tree, then we now know that the assume doesn't dominate
552 // the other instruction. If we don't have a dom tree then we can check if
553 // the assume is first in the BB.
554 if (!DT) {
555 // Search forward from the assume until we reach the context (or the end
556 // of the block); the common case is that the assume will come first.
557 for (auto I = std::next(BasicBlock::const_iterator(Inv)),
558 IE = Inv->getParent()->end(); I != IE; ++I)
559 if (&*I == CxtI)
560 return true;
563 // The context comes first, but they're both in the same block. Make sure
564 // there is nothing in between that might interrupt the control flow.
565 for (BasicBlock::const_iterator I =
566 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
567 I != IE; ++I)
568 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
569 return false;
571 return !isEphemeralValueOf(Inv, CxtI);
574 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
575 unsigned Depth, const Query &Q) {
576 // Use of assumptions is context-sensitive. If we don't have a context, we
577 // cannot use them!
578 if (!Q.AC || !Q.CxtI)
579 return;
581 unsigned BitWidth = Known.getBitWidth();
583 // Note that the patterns below need to be kept in sync with the code
584 // in AssumptionCache::updateAffectedValues.
586 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
587 if (!AssumeVH)
588 continue;
589 CallInst *I = cast<CallInst>(AssumeVH);
590 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
591 "Got assumption for the wrong function!");
592 if (Q.isExcluded(I))
593 continue;
595 // Warning: This loop can end up being somewhat performance sensitive.
596 // We're running this loop for once for each value queried resulting in a
597 // runtime of ~O(#assumes * #values).
599 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
600 "must be an assume intrinsic");
602 Value *Arg = I->getArgOperand(0);
604 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605 assert(BitWidth == 1 && "assume operand is not i1?");
606 Known.setAllOnes();
607 return;
609 if (match(Arg, m_Not(m_Specific(V))) &&
610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
611 assert(BitWidth == 1 && "assume operand is not i1?");
612 Known.setAllZero();
613 return;
616 // The remaining tests are all recursive, so bail out if we hit the limit.
617 if (Depth == MaxDepth)
618 continue;
620 Value *A, *B;
621 auto m_V = m_CombineOr(m_Specific(V),
622 m_CombineOr(m_PtrToInt(m_Specific(V)),
623 m_BitCast(m_Specific(V))));
625 CmpInst::Predicate Pred;
626 uint64_t C;
627 // assume(v = a)
628 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
630 KnownBits RHSKnown(BitWidth);
631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632 Known.Zero |= RHSKnown.Zero;
633 Known.One |= RHSKnown.One;
634 // assume(v & b = a)
635 } else if (match(Arg,
636 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
637 Pred == ICmpInst::ICMP_EQ &&
638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
639 KnownBits RHSKnown(BitWidth);
640 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
641 KnownBits MaskKnown(BitWidth);
642 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
644 // For those bits in the mask that are known to be one, we can propagate
645 // known bits from the RHS to V.
646 Known.Zero |= RHSKnown.Zero & MaskKnown.One;
647 Known.One |= RHSKnown.One & MaskKnown.One;
648 // assume(~(v & b) = a)
649 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
650 m_Value(A))) &&
651 Pred == ICmpInst::ICMP_EQ &&
652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
653 KnownBits RHSKnown(BitWidth);
654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
655 KnownBits MaskKnown(BitWidth);
656 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
658 // For those bits in the mask that are known to be one, we can propagate
659 // inverted known bits from the RHS to V.
660 Known.Zero |= RHSKnown.One & MaskKnown.One;
661 Known.One |= RHSKnown.Zero & MaskKnown.One;
662 // assume(v | b = a)
663 } else if (match(Arg,
664 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667 KnownBits RHSKnown(BitWidth);
668 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
669 KnownBits BKnown(BitWidth);
670 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
672 // For those bits in B that are known to be zero, we can propagate known
673 // bits from the RHS to V.
674 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
675 Known.One |= RHSKnown.One & BKnown.Zero;
676 // assume(~(v | b) = a)
677 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
678 m_Value(A))) &&
679 Pred == ICmpInst::ICMP_EQ &&
680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681 KnownBits RHSKnown(BitWidth);
682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
683 KnownBits BKnown(BitWidth);
684 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
686 // For those bits in B that are known to be zero, we can propagate
687 // inverted known bits from the RHS to V.
688 Known.Zero |= RHSKnown.One & BKnown.Zero;
689 Known.One |= RHSKnown.Zero & BKnown.Zero;
690 // assume(v ^ b = a)
691 } else if (match(Arg,
692 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
693 Pred == ICmpInst::ICMP_EQ &&
694 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695 KnownBits RHSKnown(BitWidth);
696 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697 KnownBits BKnown(BitWidth);
698 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
700 // For those bits in B that are known to be zero, we can propagate known
701 // bits from the RHS to V. For those bits in B that are known to be one,
702 // we can propagate inverted known bits from the RHS to V.
703 Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704 Known.One |= RHSKnown.One & BKnown.Zero;
705 Known.Zero |= RHSKnown.One & BKnown.One;
706 Known.One |= RHSKnown.Zero & BKnown.One;
707 // assume(~(v ^ b) = a)
708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709 m_Value(A))) &&
710 Pred == ICmpInst::ICMP_EQ &&
711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
712 KnownBits RHSKnown(BitWidth);
713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
714 KnownBits BKnown(BitWidth);
715 computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
717 // For those bits in B that are known to be zero, we can propagate
718 // inverted known bits from the RHS to V. For those bits in B that are
719 // known to be one, we can propagate known bits from the RHS to V.
720 Known.Zero |= RHSKnown.One & BKnown.Zero;
721 Known.One |= RHSKnown.Zero & BKnown.Zero;
722 Known.Zero |= RHSKnown.Zero & BKnown.One;
723 Known.One |= RHSKnown.One & BKnown.One;
724 // assume(v << c = a)
725 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
726 m_Value(A))) &&
727 Pred == ICmpInst::ICMP_EQ &&
728 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
729 C < BitWidth) {
730 KnownBits RHSKnown(BitWidth);
731 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
732 // For those bits in RHS that are known, we can propagate them to known
733 // bits in V shifted to the right by C.
734 RHSKnown.Zero.lshrInPlace(C);
735 Known.Zero |= RHSKnown.Zero;
736 RHSKnown.One.lshrInPlace(C);
737 Known.One |= RHSKnown.One;
738 // assume(~(v << c) = a)
739 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
740 m_Value(A))) &&
741 Pred == ICmpInst::ICMP_EQ &&
742 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
743 C < BitWidth) {
744 KnownBits RHSKnown(BitWidth);
745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746 // For those bits in RHS that are known, we can propagate them inverted
747 // to known bits in V shifted to the right by C.
748 RHSKnown.One.lshrInPlace(C);
749 Known.Zero |= RHSKnown.One;
750 RHSKnown.Zero.lshrInPlace(C);
751 Known.One |= RHSKnown.Zero;
752 // assume(v >> c = a)
753 } else if (match(Arg,
754 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
755 m_Value(A))) &&
756 Pred == ICmpInst::ICMP_EQ &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
758 C < BitWidth) {
759 KnownBits RHSKnown(BitWidth);
760 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
761 // For those bits in RHS that are known, we can propagate them to known
762 // bits in V shifted to the right by C.
763 Known.Zero |= RHSKnown.Zero << C;
764 Known.One |= RHSKnown.One << C;
765 // assume(~(v >> c) = a)
766 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
767 m_Value(A))) &&
768 Pred == ICmpInst::ICMP_EQ &&
769 isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
770 C < BitWidth) {
771 KnownBits RHSKnown(BitWidth);
772 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
773 // For those bits in RHS that are known, we can propagate them inverted
774 // to known bits in V shifted to the right by C.
775 Known.Zero |= RHSKnown.One << C;
776 Known.One |= RHSKnown.Zero << C;
777 // assume(v >=_s c) where c is non-negative
778 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
779 Pred == ICmpInst::ICMP_SGE &&
780 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
781 KnownBits RHSKnown(BitWidth);
782 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
784 if (RHSKnown.isNonNegative()) {
785 // We know that the sign bit is zero.
786 Known.makeNonNegative();
788 // assume(v >_s c) where c is at least -1.
789 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
790 Pred == ICmpInst::ICMP_SGT &&
791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792 KnownBits RHSKnown(BitWidth);
793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
795 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
796 // We know that the sign bit is zero.
797 Known.makeNonNegative();
799 // assume(v <=_s c) where c is negative
800 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
801 Pred == ICmpInst::ICMP_SLE &&
802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803 KnownBits RHSKnown(BitWidth);
804 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
806 if (RHSKnown.isNegative()) {
807 // We know that the sign bit is one.
808 Known.makeNegative();
810 // assume(v <_s c) where c is non-positive
811 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
812 Pred == ICmpInst::ICMP_SLT &&
813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814 KnownBits RHSKnown(BitWidth);
815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
817 if (RHSKnown.isZero() || RHSKnown.isNegative()) {
818 // We know that the sign bit is one.
819 Known.makeNegative();
821 // assume(v <=_u c)
822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
823 Pred == ICmpInst::ICMP_ULE &&
824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
825 KnownBits RHSKnown(BitWidth);
826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
828 // Whatever high bits in c are zero are known to be zero.
829 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830 // assume(v <_u c)
831 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
832 Pred == ICmpInst::ICMP_ULT &&
833 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
834 KnownBits RHSKnown(BitWidth);
835 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
837 // If the RHS is known zero, then this assumption must be wrong (nothing
838 // is unsigned less than zero). Signal a conflict and get out of here.
839 if (RHSKnown.isZero()) {
840 Known.Zero.setAllBits();
841 Known.One.setAllBits();
842 break;
845 // Whatever high bits in c are zero are known to be zero (if c is a power
846 // of 2, then one more).
847 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
848 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
849 else
850 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
854 // If assumptions conflict with each other or previous known bits, then we
855 // have a logical fallacy. It's possible that the assumption is not reachable,
856 // so this isn't a real bug. On the other hand, the program may have undefined
857 // behavior, or we might have a bug in the compiler. We can't assert/crash, so
858 // clear out the known bits, try to warn the user, and hope for the best.
859 if (Known.Zero.intersects(Known.One)) {
860 Known.resetAll();
862 if (Q.ORE)
863 Q.ORE->emit([&]() {
864 auto *CxtI = const_cast<Instruction *>(Q.CxtI);
865 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
866 CxtI)
867 << "Detected conflicting code assumptions. Program may "
868 "have undefined behavior, or compiler may have "
869 "internal error.";
874 /// Compute known bits from a shift operator, including those with a
875 /// non-constant shift amount. Known is the output of this function. Known2 is a
876 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
877 /// operator-specific functions that, given the known-zero or known-one bits
878 /// respectively, and a shift amount, compute the implied known-zero or
879 /// known-one bits of the shift operator's result respectively for that shift
880 /// amount. The results from calling KZF and KOF are conservatively combined for
881 /// all permitted shift amounts.
882 static void computeKnownBitsFromShiftOperator(
883 const Operator *I, KnownBits &Known, KnownBits &Known2,
884 unsigned Depth, const Query &Q,
885 function_ref<APInt(const APInt &, unsigned)> KZF,
886 function_ref<APInt(const APInt &, unsigned)> KOF) {
887 unsigned BitWidth = Known.getBitWidth();
889 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
890 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
892 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
893 Known.Zero = KZF(Known.Zero, ShiftAmt);
894 Known.One = KOF(Known.One, ShiftAmt);
895 // If the known bits conflict, this must be an overflowing left shift, so
896 // the shift result is poison. We can return anything we want. Choose 0 for
897 // the best folding opportunity.
898 if (Known.hasConflict())
899 Known.setAllZero();
901 return;
904 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
906 // If the shift amount could be greater than or equal to the bit-width of the
907 // LHS, the value could be poison, but bail out because the check below is
908 // expensive. TODO: Should we just carry on?
909 if ((~Known.Zero).uge(BitWidth)) {
910 Known.resetAll();
911 return;
914 // Note: We cannot use Known.Zero.getLimitedValue() here, because if
915 // BitWidth > 64 and any upper bits are known, we'll end up returning the
916 // limit value (which implies all bits are known).
917 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
918 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
920 // It would be more-clearly correct to use the two temporaries for this
921 // calculation. Reusing the APInts here to prevent unnecessary allocations.
922 Known.resetAll();
924 // If we know the shifter operand is nonzero, we can sometimes infer more
925 // known bits. However this is expensive to compute, so be lazy about it and
926 // only compute it when absolutely necessary.
927 Optional<bool> ShifterOperandIsNonZero;
929 // Early exit if we can't constrain any well-defined shift amount.
930 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
931 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
932 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
933 if (!*ShifterOperandIsNonZero)
934 return;
937 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
939 Known.Zero.setAllBits();
940 Known.One.setAllBits();
941 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
942 // Combine the shifted known input bits only for those shift amounts
943 // compatible with its known constraints.
944 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
945 continue;
946 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
947 continue;
948 // If we know the shifter is nonzero, we may be able to infer more known
949 // bits. This check is sunk down as far as possible to avoid the expensive
950 // call to isKnownNonZero if the cheaper checks above fail.
951 if (ShiftAmt == 0) {
952 if (!ShifterOperandIsNonZero.hasValue())
953 ShifterOperandIsNonZero =
954 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
955 if (*ShifterOperandIsNonZero)
956 continue;
959 Known.Zero &= KZF(Known2.Zero, ShiftAmt);
960 Known.One &= KOF(Known2.One, ShiftAmt);
963 // If the known bits conflict, the result is poison. Return a 0 and hope the
964 // caller can further optimize that.
965 if (Known.hasConflict())
966 Known.setAllZero();
969 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
970 unsigned Depth, const Query &Q) {
971 unsigned BitWidth = Known.getBitWidth();
973 KnownBits Known2(Known);
974 switch (I->getOpcode()) {
975 default: break;
976 case Instruction::Load:
977 if (MDNode *MD =
978 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
979 computeKnownBitsFromRangeMetadata(*MD, Known);
980 break;
981 case Instruction::And: {
982 // If either the LHS or the RHS are Zero, the result is zero.
983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
986 // Output known-1 bits are only known if set in both the LHS & RHS.
987 Known.One &= Known2.One;
988 // Output known-0 are known to be clear if zero in either the LHS | RHS.
989 Known.Zero |= Known2.Zero;
991 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
992 // here we handle the more general case of adding any odd number by
993 // matching the form add(x, add(x, y)) where y is odd.
994 // TODO: This could be generalized to clearing any bit set in y where the
995 // following bit is known to be unset in y.
996 Value *X = nullptr, *Y = nullptr;
997 if (!Known.Zero[0] && !Known.One[0] &&
998 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
999 Known2.resetAll();
1000 computeKnownBits(Y, Known2, Depth + 1, Q);
1001 if (Known2.countMinTrailingOnes() > 0)
1002 Known.Zero.setBit(0);
1004 break;
1006 case Instruction::Or:
1007 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1008 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1010 // Output known-0 bits are only known if clear in both the LHS & RHS.
1011 Known.Zero &= Known2.Zero;
1012 // Output known-1 are known to be set if set in either the LHS | RHS.
1013 Known.One |= Known2.One;
1014 break;
1015 case Instruction::Xor: {
1016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1019 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1020 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1021 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1022 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1023 Known.Zero = std::move(KnownZeroOut);
1024 break;
1026 case Instruction::Mul: {
1027 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1028 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1029 Known2, Depth, Q);
1030 break;
1032 case Instruction::UDiv: {
1033 // For the purposes of computing leading zeros we can conservatively
1034 // treat a udiv as a logical right shift by the power of 2 known to
1035 // be less than the denominator.
1036 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1037 unsigned LeadZ = Known2.countMinLeadingZeros();
1039 Known2.resetAll();
1040 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1041 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1042 if (RHSMaxLeadingZeros != BitWidth)
1043 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1045 Known.Zero.setHighBits(LeadZ);
1046 break;
1048 case Instruction::Select: {
1049 const Value *LHS, *RHS;
1050 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1051 if (SelectPatternResult::isMinOrMax(SPF)) {
1052 computeKnownBits(RHS, Known, Depth + 1, Q);
1053 computeKnownBits(LHS, Known2, Depth + 1, Q);
1054 } else {
1055 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1056 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1059 unsigned MaxHighOnes = 0;
1060 unsigned MaxHighZeros = 0;
1061 if (SPF == SPF_SMAX) {
1062 // If both sides are negative, the result is negative.
1063 if (Known.isNegative() && Known2.isNegative())
1064 // We can derive a lower bound on the result by taking the max of the
1065 // leading one bits.
1066 MaxHighOnes =
1067 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1068 // If either side is non-negative, the result is non-negative.
1069 else if (Known.isNonNegative() || Known2.isNonNegative())
1070 MaxHighZeros = 1;
1071 } else if (SPF == SPF_SMIN) {
1072 // If both sides are non-negative, the result is non-negative.
1073 if (Known.isNonNegative() && Known2.isNonNegative())
1074 // We can derive an upper bound on the result by taking the max of the
1075 // leading zero bits.
1076 MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1077 Known2.countMinLeadingZeros());
1078 // If either side is negative, the result is negative.
1079 else if (Known.isNegative() || Known2.isNegative())
1080 MaxHighOnes = 1;
1081 } else if (SPF == SPF_UMAX) {
1082 // We can derive a lower bound on the result by taking the max of the
1083 // leading one bits.
1084 MaxHighOnes =
1085 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1086 } else if (SPF == SPF_UMIN) {
1087 // We can derive an upper bound on the result by taking the max of the
1088 // leading zero bits.
1089 MaxHighZeros =
1090 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1091 } else if (SPF == SPF_ABS) {
1092 // RHS from matchSelectPattern returns the negation part of abs pattern.
1093 // If the negate has an NSW flag we can assume the sign bit of the result
1094 // will be 0 because that makes abs(INT_MIN) undefined.
1095 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1096 MaxHighZeros = 1;
1099 // Only known if known in both the LHS and RHS.
1100 Known.One &= Known2.One;
1101 Known.Zero &= Known2.Zero;
1102 if (MaxHighOnes > 0)
1103 Known.One.setHighBits(MaxHighOnes);
1104 if (MaxHighZeros > 0)
1105 Known.Zero.setHighBits(MaxHighZeros);
1106 break;
1108 case Instruction::FPTrunc:
1109 case Instruction::FPExt:
1110 case Instruction::FPToUI:
1111 case Instruction::FPToSI:
1112 case Instruction::SIToFP:
1113 case Instruction::UIToFP:
1114 break; // Can't work with floating point.
1115 case Instruction::PtrToInt:
1116 case Instruction::IntToPtr:
1117 // Fall through and handle them the same as zext/trunc.
1118 LLVM_FALLTHROUGH;
1119 case Instruction::ZExt:
1120 case Instruction::Trunc: {
1121 Type *SrcTy = I->getOperand(0)->getType();
1123 unsigned SrcBitWidth;
1124 // Note that we handle pointer operands here because of inttoptr/ptrtoint
1125 // which fall through here.
1126 Type *ScalarTy = SrcTy->getScalarType();
1127 SrcBitWidth = ScalarTy->isPointerTy() ?
1128 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1129 Q.DL.getTypeSizeInBits(ScalarTy);
1131 assert(SrcBitWidth && "SrcBitWidth can't be zero");
1132 Known = Known.zextOrTrunc(SrcBitWidth);
1133 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1134 Known = Known.zextOrTrunc(BitWidth);
1135 // Any top bits are known to be zero.
1136 if (BitWidth > SrcBitWidth)
1137 Known.Zero.setBitsFrom(SrcBitWidth);
1138 break;
1140 case Instruction::BitCast: {
1141 Type *SrcTy = I->getOperand(0)->getType();
1142 if (SrcTy->isIntOrPtrTy() &&
1143 // TODO: For now, not handling conversions like:
1144 // (bitcast i64 %x to <2 x i32>)
1145 !I->getType()->isVectorTy()) {
1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147 break;
1149 break;
1151 case Instruction::SExt: {
1152 // Compute the bits in the result that are not present in the input.
1153 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1155 Known = Known.trunc(SrcBitWidth);
1156 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1157 // If the sign bit of the input is known set or clear, then we know the
1158 // top bits of the result.
1159 Known = Known.sext(BitWidth);
1160 break;
1162 case Instruction::Shl: {
1163 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1164 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1165 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1166 APInt KZResult = KnownZero << ShiftAmt;
1167 KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1168 // If this shift has "nsw" keyword, then the result is either a poison
1169 // value or has the same sign bit as the first operand.
1170 if (NSW && KnownZero.isSignBitSet())
1171 KZResult.setSignBit();
1172 return KZResult;
1175 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1176 APInt KOResult = KnownOne << ShiftAmt;
1177 if (NSW && KnownOne.isSignBitSet())
1178 KOResult.setSignBit();
1179 return KOResult;
1182 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1183 break;
1185 case Instruction::LShr: {
1186 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1187 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1188 APInt KZResult = KnownZero.lshr(ShiftAmt);
1189 // High bits known zero.
1190 KZResult.setHighBits(ShiftAmt);
1191 return KZResult;
1194 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1195 return KnownOne.lshr(ShiftAmt);
1198 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1199 break;
1201 case Instruction::AShr: {
1202 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1203 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1204 return KnownZero.ashr(ShiftAmt);
1207 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1208 return KnownOne.ashr(ShiftAmt);
1211 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1212 break;
1214 case Instruction::Sub: {
1215 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1216 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1217 Known, Known2, Depth, Q);
1218 break;
1220 case Instruction::Add: {
1221 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1222 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1223 Known, Known2, Depth, Q);
1224 break;
1226 case Instruction::SRem:
1227 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1228 APInt RA = Rem->getValue().abs();
1229 if (RA.isPowerOf2()) {
1230 APInt LowBits = RA - 1;
1231 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1233 // The low bits of the first operand are unchanged by the srem.
1234 Known.Zero = Known2.Zero & LowBits;
1235 Known.One = Known2.One & LowBits;
1237 // If the first operand is non-negative or has all low bits zero, then
1238 // the upper bits are all zero.
1239 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1240 Known.Zero |= ~LowBits;
1242 // If the first operand is negative and not all low bits are zero, then
1243 // the upper bits are all one.
1244 if (Known2.isNegative() && LowBits.intersects(Known2.One))
1245 Known.One |= ~LowBits;
1247 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1248 break;
1252 // The sign bit is the LHS's sign bit, except when the result of the
1253 // remainder is zero.
1254 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1255 // If it's known zero, our sign bit is also zero.
1256 if (Known2.isNonNegative())
1257 Known.makeNonNegative();
1259 break;
1260 case Instruction::URem: {
1261 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1262 const APInt &RA = Rem->getValue();
1263 if (RA.isPowerOf2()) {
1264 APInt LowBits = (RA - 1);
1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266 Known.Zero |= ~LowBits;
1267 Known.One &= LowBits;
1268 break;
1272 // Since the result is less than or equal to either operand, any leading
1273 // zero bits in either operand must also exist in the result.
1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1277 unsigned Leaders =
1278 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1279 Known.resetAll();
1280 Known.Zero.setHighBits(Leaders);
1281 break;
1284 case Instruction::Alloca: {
1285 const AllocaInst *AI = cast<AllocaInst>(I);
1286 unsigned Align = AI->getAlignment();
1287 if (Align == 0)
1288 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1290 if (Align > 0)
1291 Known.Zero.setLowBits(countTrailingZeros(Align));
1292 break;
1294 case Instruction::GetElementPtr: {
1295 // Analyze all of the subscripts of this getelementptr instruction
1296 // to determine if we can prove known low zero bits.
1297 KnownBits LocalKnown(BitWidth);
1298 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1299 unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1301 gep_type_iterator GTI = gep_type_begin(I);
1302 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1303 Value *Index = I->getOperand(i);
1304 if (StructType *STy = GTI.getStructTypeOrNull()) {
1305 // Handle struct member offset arithmetic.
1307 // Handle case when index is vector zeroinitializer
1308 Constant *CIndex = cast<Constant>(Index);
1309 if (CIndex->isZeroValue())
1310 continue;
1312 if (CIndex->getType()->isVectorTy())
1313 Index = CIndex->getSplatValue();
1315 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1316 const StructLayout *SL = Q.DL.getStructLayout(STy);
1317 uint64_t Offset = SL->getElementOffset(Idx);
1318 TrailZ = std::min<unsigned>(TrailZ,
1319 countTrailingZeros(Offset));
1320 } else {
1321 // Handle array index arithmetic.
1322 Type *IndexedTy = GTI.getIndexedType();
1323 if (!IndexedTy->isSized()) {
1324 TrailZ = 0;
1325 break;
1327 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1328 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1329 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1330 computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1331 TrailZ = std::min(TrailZ,
1332 unsigned(countTrailingZeros(TypeSize) +
1333 LocalKnown.countMinTrailingZeros()));
1337 Known.Zero.setLowBits(TrailZ);
1338 break;
1340 case Instruction::PHI: {
1341 const PHINode *P = cast<PHINode>(I);
1342 // Handle the case of a simple two-predecessor recurrence PHI.
1343 // There's a lot more that could theoretically be done here, but
1344 // this is sufficient to catch some interesting cases.
1345 if (P->getNumIncomingValues() == 2) {
1346 for (unsigned i = 0; i != 2; ++i) {
1347 Value *L = P->getIncomingValue(i);
1348 Value *R = P->getIncomingValue(!i);
1349 Operator *LU = dyn_cast<Operator>(L);
1350 if (!LU)
1351 continue;
1352 unsigned Opcode = LU->getOpcode();
1353 // Check for operations that have the property that if
1354 // both their operands have low zero bits, the result
1355 // will have low zero bits.
1356 if (Opcode == Instruction::Add ||
1357 Opcode == Instruction::Sub ||
1358 Opcode == Instruction::And ||
1359 Opcode == Instruction::Or ||
1360 Opcode == Instruction::Mul) {
1361 Value *LL = LU->getOperand(0);
1362 Value *LR = LU->getOperand(1);
1363 // Find a recurrence.
1364 if (LL == I)
1365 L = LR;
1366 else if (LR == I)
1367 L = LL;
1368 else
1369 break;
1370 // Ok, we have a PHI of the form L op= R. Check for low
1371 // zero bits.
1372 computeKnownBits(R, Known2, Depth + 1, Q);
1374 // We need to take the minimum number of known bits
1375 KnownBits Known3(Known);
1376 computeKnownBits(L, Known3, Depth + 1, Q);
1378 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1379 Known3.countMinTrailingZeros()));
1381 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1382 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1383 // If initial value of recurrence is nonnegative, and we are adding
1384 // a nonnegative number with nsw, the result can only be nonnegative
1385 // or poison value regardless of the number of times we execute the
1386 // add in phi recurrence. If initial value is negative and we are
1387 // adding a negative number with nsw, the result can only be
1388 // negative or poison value. Similar arguments apply to sub and mul.
1390 // (add non-negative, non-negative) --> non-negative
1391 // (add negative, negative) --> negative
1392 if (Opcode == Instruction::Add) {
1393 if (Known2.isNonNegative() && Known3.isNonNegative())
1394 Known.makeNonNegative();
1395 else if (Known2.isNegative() && Known3.isNegative())
1396 Known.makeNegative();
1399 // (sub nsw non-negative, negative) --> non-negative
1400 // (sub nsw negative, non-negative) --> negative
1401 else if (Opcode == Instruction::Sub && LL == I) {
1402 if (Known2.isNonNegative() && Known3.isNegative())
1403 Known.makeNonNegative();
1404 else if (Known2.isNegative() && Known3.isNonNegative())
1405 Known.makeNegative();
1408 // (mul nsw non-negative, non-negative) --> non-negative
1409 else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1410 Known3.isNonNegative())
1411 Known.makeNonNegative();
1414 break;
1419 // Unreachable blocks may have zero-operand PHI nodes.
1420 if (P->getNumIncomingValues() == 0)
1421 break;
1423 // Otherwise take the unions of the known bit sets of the operands,
1424 // taking conservative care to avoid excessive recursion.
1425 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1426 // Skip if every incoming value references to ourself.
1427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1428 break;
1430 Known.Zero.setAllBits();
1431 Known.One.setAllBits();
1432 for (Value *IncValue : P->incoming_values()) {
1433 // Skip direct self references.
1434 if (IncValue == P) continue;
1436 Known2 = KnownBits(BitWidth);
1437 // Recurse, but cap the recursion to one level, because we don't
1438 // want to waste time spinning around in loops.
1439 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1440 Known.Zero &= Known2.Zero;
1441 Known.One &= Known2.One;
1442 // If all bits have been ruled out, there's no need to check
1443 // more operands.
1444 if (!Known.Zero && !Known.One)
1445 break;
1448 break;
1450 case Instruction::Call:
1451 case Instruction::Invoke:
1452 // If range metadata is attached to this call, set known bits from that,
1453 // and then intersect with known bits based on other properties of the
1454 // function.
1455 if (MDNode *MD =
1456 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1457 computeKnownBitsFromRangeMetadata(*MD, Known);
1458 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1459 computeKnownBits(RV, Known2, Depth + 1, Q);
1460 Known.Zero |= Known2.Zero;
1461 Known.One |= Known2.One;
1463 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1464 switch (II->getIntrinsicID()) {
1465 default: break;
1466 case Intrinsic::bitreverse:
1467 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1468 Known.Zero |= Known2.Zero.reverseBits();
1469 Known.One |= Known2.One.reverseBits();
1470 break;
1471 case Intrinsic::bswap:
1472 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1473 Known.Zero |= Known2.Zero.byteSwap();
1474 Known.One |= Known2.One.byteSwap();
1475 break;
1476 case Intrinsic::ctlz: {
1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478 // If we have a known 1, its position is our upper bound.
1479 unsigned PossibleLZ = Known2.One.countLeadingZeros();
1480 // If this call is undefined for 0, the result will be less than 2^n.
1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1482 PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1483 unsigned LowBits = Log2_32(PossibleLZ)+1;
1484 Known.Zero.setBitsFrom(LowBits);
1485 break;
1487 case Intrinsic::cttz: {
1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1489 // If we have a known 1, its position is our upper bound.
1490 unsigned PossibleTZ = Known2.One.countTrailingZeros();
1491 // If this call is undefined for 0, the result will be less than 2^n.
1492 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1493 PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1494 unsigned LowBits = Log2_32(PossibleTZ)+1;
1495 Known.Zero.setBitsFrom(LowBits);
1496 break;
1498 case Intrinsic::ctpop: {
1499 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1500 // We can bound the space the count needs. Also, bits known to be zero
1501 // can't contribute to the population.
1502 unsigned BitsPossiblySet = Known2.countMaxPopulation();
1503 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1504 Known.Zero.setBitsFrom(LowBits);
1505 // TODO: we could bound KnownOne using the lower bound on the number
1506 // of bits which might be set provided by popcnt KnownOne2.
1507 break;
1509 case Intrinsic::x86_sse42_crc32_64_64:
1510 Known.Zero.setBitsFrom(32);
1511 break;
1514 break;
1515 case Instruction::ExtractElement:
1516 // Look through extract element. At the moment we keep this simple and skip
1517 // tracking the specific element. But at least we might find information
1518 // valid for all elements of the vector (for example if vector is sign
1519 // extended, shifted, etc).
1520 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1521 break;
1522 case Instruction::ExtractValue:
1523 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1524 const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1525 if (EVI->getNumIndices() != 1) break;
1526 if (EVI->getIndices()[0] == 0) {
1527 switch (II->getIntrinsicID()) {
1528 default: break;
1529 case Intrinsic::uadd_with_overflow:
1530 case Intrinsic::sadd_with_overflow:
1531 computeKnownBitsAddSub(true, II->getArgOperand(0),
1532 II->getArgOperand(1), false, Known, Known2,
1533 Depth, Q);
1534 break;
1535 case Intrinsic::usub_with_overflow:
1536 case Intrinsic::ssub_with_overflow:
1537 computeKnownBitsAddSub(false, II->getArgOperand(0),
1538 II->getArgOperand(1), false, Known, Known2,
1539 Depth, Q);
1540 break;
1541 case Intrinsic::umul_with_overflow:
1542 case Intrinsic::smul_with_overflow:
1543 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1544 Known, Known2, Depth, Q);
1545 break;
1552 /// Determine which bits of V are known to be either zero or one and return
1553 /// them.
1554 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1555 KnownBits Known(getBitWidth(V->getType(), Q.DL));
1556 computeKnownBits(V, Known, Depth, Q);
1557 return Known;
1560 /// Determine which bits of V are known to be either zero or one and return
1561 /// them in the Known bit set.
1563 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1564 /// we cannot optimize based on the assumption that it is zero without changing
1565 /// it to be an explicit zero. If we don't change it to zero, other code could
1566 /// optimized based on the contradictory assumption that it is non-zero.
1567 /// Because instcombine aggressively folds operations with undef args anyway,
1568 /// this won't lose us code quality.
1570 /// This function is defined on values with integer type, values with pointer
1571 /// type, and vectors of integers. In the case
1572 /// where V is a vector, known zero, and known one values are the
1573 /// same width as the vector element, and the bit is set only if it is true
1574 /// for all of the elements in the vector.
1575 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1576 const Query &Q) {
1577 assert(V && "No Value?");
1578 assert(Depth <= MaxDepth && "Limit Search Depth");
1579 unsigned BitWidth = Known.getBitWidth();
1581 assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1582 V->getType()->isPtrOrPtrVectorTy()) &&
1583 "Not integer or pointer type!");
1585 Type *ScalarTy = V->getType()->getScalarType();
1586 unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1587 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1588 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1589 (void)BitWidth;
1590 (void)ExpectedWidth;
1592 const APInt *C;
1593 if (match(V, m_APInt(C))) {
1594 // We know all of the bits for a scalar constant or a splat vector constant!
1595 Known.One = *C;
1596 Known.Zero = ~Known.One;
1597 return;
1599 // Null and aggregate-zero are all-zeros.
1600 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1601 Known.setAllZero();
1602 return;
1604 // Handle a constant vector by taking the intersection of the known bits of
1605 // each element.
1606 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1607 // We know that CDS must be a vector of integers. Take the intersection of
1608 // each element.
1609 Known.Zero.setAllBits(); Known.One.setAllBits();
1610 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1611 APInt Elt = CDS->getElementAsAPInt(i);
1612 Known.Zero &= ~Elt;
1613 Known.One &= Elt;
1615 return;
1618 if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1619 // We know that CV must be a vector of integers. Take the intersection of
1620 // each element.
1621 Known.Zero.setAllBits(); Known.One.setAllBits();
1622 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1623 Constant *Element = CV->getAggregateElement(i);
1624 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1625 if (!ElementCI) {
1626 Known.resetAll();
1627 return;
1629 const APInt &Elt = ElementCI->getValue();
1630 Known.Zero &= ~Elt;
1631 Known.One &= Elt;
1633 return;
1636 // Start out not knowing anything.
1637 Known.resetAll();
1639 // We can't imply anything about undefs.
1640 if (isa<UndefValue>(V))
1641 return;
1643 // There's no point in looking through other users of ConstantData for
1644 // assumptions. Confirm that we've handled them all.
1645 assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1647 // Limit search depth.
1648 // All recursive calls that increase depth must come after this.
1649 if (Depth == MaxDepth)
1650 return;
1652 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1653 // the bits of its aliasee.
1654 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1655 if (!GA->isInterposable())
1656 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1657 return;
1660 if (const Operator *I = dyn_cast<Operator>(V))
1661 computeKnownBitsFromOperator(I, Known, Depth, Q);
1663 // Aligned pointers have trailing zeros - refine Known.Zero set
1664 if (V->getType()->isPointerTy()) {
1665 unsigned Align = V->getPointerAlignment(Q.DL);
1666 if (Align)
1667 Known.Zero.setLowBits(countTrailingZeros(Align));
1670 // computeKnownBitsFromAssume strictly refines Known.
1671 // Therefore, we run them after computeKnownBitsFromOperator.
1673 // Check whether a nearby assume intrinsic can determine some known bits.
1674 computeKnownBitsFromAssume(V, Known, Depth, Q);
1676 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1679 /// Return true if the given value is known to have exactly one
1680 /// bit set when defined. For vectors return true if every element is known to
1681 /// be a power of two when defined. Supports values with integer or pointer
1682 /// types and vectors of integers.
1683 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1684 const Query &Q) {
1685 assert(Depth <= MaxDepth && "Limit Search Depth");
1687 // Attempt to match against constants.
1688 if (OrZero && match(V, m_Power2OrZero()))
1689 return true;
1690 if (match(V, m_Power2()))
1691 return true;
1693 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1694 // it is shifted off the end then the result is undefined.
1695 if (match(V, m_Shl(m_One(), m_Value())))
1696 return true;
1698 // (signmask) >>l X is clearly a power of two if the one is not shifted off
1699 // the bottom. If it is shifted off the bottom then the result is undefined.
1700 if (match(V, m_LShr(m_SignMask(), m_Value())))
1701 return true;
1703 // The remaining tests are all recursive, so bail out if we hit the limit.
1704 if (Depth++ == MaxDepth)
1705 return false;
1707 Value *X = nullptr, *Y = nullptr;
1708 // A shift left or a logical shift right of a power of two is a power of two
1709 // or zero.
1710 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1711 match(V, m_LShr(m_Value(X), m_Value()))))
1712 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1714 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1715 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1717 if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1718 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1719 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1721 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1722 // A power of two and'd with anything is a power of two or zero.
1723 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1724 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1725 return true;
1726 // X & (-X) is always a power of two or zero.
1727 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1728 return true;
1729 return false;
1732 // Adding a power-of-two or zero to the same power-of-two or zero yields
1733 // either the original power-of-two, a larger power-of-two or zero.
1734 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1735 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1736 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1737 Q.IIQ.hasNoSignedWrap(VOBO)) {
1738 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1739 match(X, m_And(m_Value(), m_Specific(Y))))
1740 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1741 return true;
1742 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1743 match(Y, m_And(m_Value(), m_Specific(X))))
1744 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1745 return true;
1747 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1748 KnownBits LHSBits(BitWidth);
1749 computeKnownBits(X, LHSBits, Depth, Q);
1751 KnownBits RHSBits(BitWidth);
1752 computeKnownBits(Y, RHSBits, Depth, Q);
1753 // If i8 V is a power of two or zero:
1754 // ZeroBits: 1 1 1 0 1 1 1 1
1755 // ~ZeroBits: 0 0 0 1 0 0 0 0
1756 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1757 // If OrZero isn't set, we cannot give back a zero result.
1758 // Make sure either the LHS or RHS has a bit set.
1759 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1760 return true;
1764 // An exact divide or right shift can only shift off zero bits, so the result
1765 // is a power of two only if the first operand is a power of two and not
1766 // copying a sign bit (sdiv int_min, 2).
1767 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1768 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1769 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1770 Depth, Q);
1773 return false;
1776 /// Test whether a GEP's result is known to be non-null.
1778 /// Uses properties inherent in a GEP to try to determine whether it is known
1779 /// to be non-null.
1781 /// Currently this routine does not support vector GEPs.
1782 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1783 const Query &Q) {
1784 const Function *F = nullptr;
1785 if (const Instruction *I = dyn_cast<Instruction>(GEP))
1786 F = I->getFunction();
1788 if (!GEP->isInBounds() ||
1789 NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1790 return false;
1792 // FIXME: Support vector-GEPs.
1793 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1795 // If the base pointer is non-null, we cannot walk to a null address with an
1796 // inbounds GEP in address space zero.
1797 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1798 return true;
1800 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1801 // If so, then the GEP cannot produce a null pointer, as doing so would
1802 // inherently violate the inbounds contract within address space zero.
1803 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1804 GTI != GTE; ++GTI) {
1805 // Struct types are easy -- they must always be indexed by a constant.
1806 if (StructType *STy = GTI.getStructTypeOrNull()) {
1807 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1808 unsigned ElementIdx = OpC->getZExtValue();
1809 const StructLayout *SL = Q.DL.getStructLayout(STy);
1810 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1811 if (ElementOffset > 0)
1812 return true;
1813 continue;
1816 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1817 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1818 continue;
1820 // Fast path the constant operand case both for efficiency and so we don't
1821 // increment Depth when just zipping down an all-constant GEP.
1822 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1823 if (!OpC->isZero())
1824 return true;
1825 continue;
1828 // We post-increment Depth here because while isKnownNonZero increments it
1829 // as well, when we pop back up that increment won't persist. We don't want
1830 // to recurse 10k times just because we have 10k GEP operands. We don't
1831 // bail completely out because we want to handle constant GEPs regardless
1832 // of depth.
1833 if (Depth++ >= MaxDepth)
1834 continue;
1836 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1837 return true;
1840 return false;
1843 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1844 const Instruction *CtxI,
1845 const DominatorTree *DT) {
1846 assert(V->getType()->isPointerTy() && "V must be pointer type");
1847 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1849 if (!CtxI || !DT)
1850 return false;
1852 unsigned NumUsesExplored = 0;
1853 for (auto *U : V->users()) {
1854 // Avoid massive lists
1855 if (NumUsesExplored >= DomConditionsMaxUses)
1856 break;
1857 NumUsesExplored++;
1859 // If the value is used as an argument to a call or invoke, then argument
1860 // attributes may provide an answer about null-ness.
1861 if (auto CS = ImmutableCallSite(U))
1862 if (auto *CalledFunc = CS.getCalledFunction())
1863 for (const Argument &Arg : CalledFunc->args())
1864 if (CS.getArgOperand(Arg.getArgNo()) == V &&
1865 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1866 return true;
1868 // Consider only compare instructions uniquely controlling a branch
1869 CmpInst::Predicate Pred;
1870 if (!match(const_cast<User *>(U),
1871 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1872 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1873 continue;
1875 SmallVector<const User *, 4> WorkList;
1876 SmallPtrSet<const User *, 4> Visited;
1877 for (auto *CmpU : U->users()) {
1878 assert(WorkList.empty() && "Should be!");
1879 if (Visited.insert(CmpU).second)
1880 WorkList.push_back(CmpU);
1882 while (!WorkList.empty()) {
1883 auto *Curr = WorkList.pop_back_val();
1885 // If a user is an AND, add all its users to the work list. We only
1886 // propagate "pred != null" condition through AND because it is only
1887 // correct to assume that all conditions of AND are met in true branch.
1888 // TODO: Support similar logic of OR and EQ predicate?
1889 if (Pred == ICmpInst::ICMP_NE)
1890 if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1891 if (BO->getOpcode() == Instruction::And) {
1892 for (auto *BOU : BO->users())
1893 if (Visited.insert(BOU).second)
1894 WorkList.push_back(BOU);
1895 continue;
1898 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1899 assert(BI->isConditional() && "uses a comparison!");
1901 BasicBlock *NonNullSuccessor =
1902 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1903 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1904 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1905 return true;
1906 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1907 DT->dominates(cast<Instruction>(Curr), CtxI)) {
1908 return true;
1914 return false;
1917 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1918 /// ensure that the value it's attached to is never Value? 'RangeType' is
1919 /// is the type of the value described by the range.
1920 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1921 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1922 assert(NumRanges >= 1);
1923 for (unsigned i = 0; i < NumRanges; ++i) {
1924 ConstantInt *Lower =
1925 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1926 ConstantInt *Upper =
1927 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1928 ConstantRange Range(Lower->getValue(), Upper->getValue());
1929 if (Range.contains(Value))
1930 return false;
1932 return true;
1935 /// Return true if the given value is known to be non-zero when defined. For
1936 /// vectors, return true if every element is known to be non-zero when
1937 /// defined. For pointers, if the context instruction and dominator tree are
1938 /// specified, perform context-sensitive analysis and return true if the
1939 /// pointer couldn't possibly be null at the specified instruction.
1940 /// Supports values with integer or pointer type and vectors of integers.
1941 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1942 if (auto *C = dyn_cast<Constant>(V)) {
1943 if (C->isNullValue())
1944 return false;
1945 if (isa<ConstantInt>(C))
1946 // Must be non-zero due to null test above.
1947 return true;
1949 // For constant vectors, check that all elements are undefined or known
1950 // non-zero to determine that the whole vector is known non-zero.
1951 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1952 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1953 Constant *Elt = C->getAggregateElement(i);
1954 if (!Elt || Elt->isNullValue())
1955 return false;
1956 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1957 return false;
1959 return true;
1962 // A global variable in address space 0 is non null unless extern weak
1963 // or an absolute symbol reference. Other address spaces may have null as a
1964 // valid address for a global, so we can't assume anything.
1965 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1966 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1967 GV->getType()->getAddressSpace() == 0)
1968 return true;
1969 } else
1970 return false;
1973 if (auto *I = dyn_cast<Instruction>(V)) {
1974 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1975 // If the possible ranges don't contain zero, then the value is
1976 // definitely non-zero.
1977 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1978 const APInt ZeroValue(Ty->getBitWidth(), 0);
1979 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1980 return true;
1985 // Some of the tests below are recursive, so bail out if we hit the limit.
1986 if (Depth++ >= MaxDepth)
1987 return false;
1989 // Check for pointer simplifications.
1990 if (V->getType()->isPointerTy()) {
1991 // Alloca never returns null, malloc might.
1992 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1993 return true;
1995 // A byval, inalloca, or nonnull argument is never null.
1996 if (const Argument *A = dyn_cast<Argument>(V))
1997 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1998 return true;
2000 // A Load tagged with nonnull metadata is never null.
2001 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2002 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2003 return true;
2005 if (auto CS = ImmutableCallSite(V)) {
2006 if (CS.isReturnNonNull())
2007 return true;
2008 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
2009 return isKnownNonZero(RP, Depth, Q);
2014 // Check for recursive pointer simplifications.
2015 if (V->getType()->isPointerTy()) {
2016 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2017 return true;
2019 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2020 if (isGEPKnownNonNull(GEP, Depth, Q))
2021 return true;
2024 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2026 // X | Y != 0 if X != 0 or Y != 0.
2027 Value *X = nullptr, *Y = nullptr;
2028 if (match(V, m_Or(m_Value(X), m_Value(Y))))
2029 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2031 // ext X != 0 if X != 0.
2032 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2033 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2035 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
2036 // if the lowest bit is shifted off the end.
2037 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2038 // shl nuw can't remove any non-zero bits.
2039 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2040 if (Q.IIQ.hasNoUnsignedWrap(BO))
2041 return isKnownNonZero(X, Depth, Q);
2043 KnownBits Known(BitWidth);
2044 computeKnownBits(X, Known, Depth, Q);
2045 if (Known.One[0])
2046 return true;
2048 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
2049 // defined if the sign bit is shifted off the end.
2050 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2051 // shr exact can only shift out zero bits.
2052 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2053 if (BO->isExact())
2054 return isKnownNonZero(X, Depth, Q);
2056 KnownBits Known = computeKnownBits(X, Depth, Q);
2057 if (Known.isNegative())
2058 return true;
2060 // If the shifter operand is a constant, and all of the bits shifted
2061 // out are known to be zero, and X is known non-zero then at least one
2062 // non-zero bit must remain.
2063 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2064 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2065 // Is there a known one in the portion not shifted out?
2066 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2067 return true;
2068 // Are all the bits to be shifted out known zero?
2069 if (Known.countMinTrailingZeros() >= ShiftVal)
2070 return isKnownNonZero(X, Depth, Q);
2073 // div exact can only produce a zero if the dividend is zero.
2074 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2075 return isKnownNonZero(X, Depth, Q);
2077 // X + Y.
2078 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2079 KnownBits XKnown = computeKnownBits(X, Depth, Q);
2080 KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2082 // If X and Y are both non-negative (as signed values) then their sum is not
2083 // zero unless both X and Y are zero.
2084 if (XKnown.isNonNegative() && YKnown.isNonNegative())
2085 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2086 return true;
2088 // If X and Y are both negative (as signed values) then their sum is not
2089 // zero unless both X and Y equal INT_MIN.
2090 if (XKnown.isNegative() && YKnown.isNegative()) {
2091 APInt Mask = APInt::getSignedMaxValue(BitWidth);
2092 // The sign bit of X is set. If some other bit is set then X is not equal
2093 // to INT_MIN.
2094 if (XKnown.One.intersects(Mask))
2095 return true;
2096 // The sign bit of Y is set. If some other bit is set then Y is not equal
2097 // to INT_MIN.
2098 if (YKnown.One.intersects(Mask))
2099 return true;
2102 // The sum of a non-negative number and a power of two is not zero.
2103 if (XKnown.isNonNegative() &&
2104 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2105 return true;
2106 if (YKnown.isNonNegative() &&
2107 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2108 return true;
2110 // X * Y.
2111 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2112 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2113 // If X and Y are non-zero then so is X * Y as long as the multiplication
2114 // does not overflow.
2115 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2116 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2117 return true;
2119 // (C ? X : Y) != 0 if X != 0 and Y != 0.
2120 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2121 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2122 isKnownNonZero(SI->getFalseValue(), Depth, Q))
2123 return true;
2125 // PHI
2126 else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2127 // Try and detect a recurrence that monotonically increases from a
2128 // starting value, as these are common as induction variables.
2129 if (PN->getNumIncomingValues() == 2) {
2130 Value *Start = PN->getIncomingValue(0);
2131 Value *Induction = PN->getIncomingValue(1);
2132 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2133 std::swap(Start, Induction);
2134 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2135 if (!C->isZero() && !C->isNegative()) {
2136 ConstantInt *X;
2137 if (Q.IIQ.UseInstrInfo &&
2138 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2139 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2140 !X->isNegative())
2141 return true;
2145 // Check if all incoming values are non-zero constant.
2146 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2147 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2149 if (AllNonZeroConstants)
2150 return true;
2153 KnownBits Known(BitWidth);
2154 computeKnownBits(V, Known, Depth, Q);
2155 return Known.One != 0;
2158 /// Return true if V2 == V1 + X, where X is known non-zero.
2159 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2160 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2161 if (!BO || BO->getOpcode() != Instruction::Add)
2162 return false;
2163 Value *Op = nullptr;
2164 if (V2 == BO->getOperand(0))
2165 Op = BO->getOperand(1);
2166 else if (V2 == BO->getOperand(1))
2167 Op = BO->getOperand(0);
2168 else
2169 return false;
2170 return isKnownNonZero(Op, 0, Q);
2173 /// Return true if it is known that V1 != V2.
2174 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2175 if (V1 == V2)
2176 return false;
2177 if (V1->getType() != V2->getType())
2178 // We can't look through casts yet.
2179 return false;
2180 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2181 return true;
2183 if (V1->getType()->isIntOrIntVectorTy()) {
2184 // Are any known bits in V1 contradictory to known bits in V2? If V1
2185 // has a known zero where V2 has a known one, they must not be equal.
2186 KnownBits Known1 = computeKnownBits(V1, 0, Q);
2187 KnownBits Known2 = computeKnownBits(V2, 0, Q);
2189 if (Known1.Zero.intersects(Known2.One) ||
2190 Known2.Zero.intersects(Known1.One))
2191 return true;
2193 return false;
2196 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
2197 /// simplify operations downstream. Mask is known to be zero for bits that V
2198 /// cannot have.
2200 /// This function is defined on values with integer type, values with pointer
2201 /// type, and vectors of integers. In the case
2202 /// where V is a vector, the mask, known zero, and known one values are the
2203 /// same width as the vector element, and the bit is set only if it is true
2204 /// for all of the elements in the vector.
2205 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2206 const Query &Q) {
2207 KnownBits Known(Mask.getBitWidth());
2208 computeKnownBits(V, Known, Depth, Q);
2209 return Mask.isSubsetOf(Known.Zero);
2212 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2213 // Returns the input and lower/upper bounds.
2214 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2215 const APInt *&CLow, const APInt *&CHigh) {
2216 assert(isa<Operator>(Select) &&
2217 cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2218 "Input should be a Select!");
2220 const Value *LHS, *RHS, *LHS2, *RHS2;
2221 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2222 if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2223 return false;
2225 if (!match(RHS, m_APInt(CLow)))
2226 return false;
2228 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2229 if (getInverseMinMaxFlavor(SPF) != SPF2)
2230 return false;
2232 if (!match(RHS2, m_APInt(CHigh)))
2233 return false;
2235 if (SPF == SPF_SMIN)
2236 std::swap(CLow, CHigh);
2238 In = LHS2;
2239 return CLow->sle(*CHigh);
2242 /// For vector constants, loop over the elements and find the constant with the
2243 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2244 /// or if any element was not analyzed; otherwise, return the count for the
2245 /// element with the minimum number of sign bits.
2246 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2247 unsigned TyBits) {
2248 const auto *CV = dyn_cast<Constant>(V);
2249 if (!CV || !CV->getType()->isVectorTy())
2250 return 0;
2252 unsigned MinSignBits = TyBits;
2253 unsigned NumElts = CV->getType()->getVectorNumElements();
2254 for (unsigned i = 0; i != NumElts; ++i) {
2255 // If we find a non-ConstantInt, bail out.
2256 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2257 if (!Elt)
2258 return 0;
2260 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2263 return MinSignBits;
2266 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2267 const Query &Q);
2269 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2270 const Query &Q) {
2271 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2272 assert(Result > 0 && "At least one sign bit needs to be present!");
2273 return Result;
2276 /// Return the number of times the sign bit of the register is replicated into
2277 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2278 /// (itself), but other cases can give us information. For example, immediately
2279 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2280 /// other, so we return 3. For vectors, return the number of sign bits for the
2281 /// vector element with the minimum number of known sign bits.
2282 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2283 const Query &Q) {
2284 assert(Depth <= MaxDepth && "Limit Search Depth");
2286 // We return the minimum number of sign bits that are guaranteed to be present
2287 // in V, so for undef we have to conservatively return 1. We don't have the
2288 // same behavior for poison though -- that's a FIXME today.
2290 Type *ScalarTy = V->getType()->getScalarType();
2291 unsigned TyBits = ScalarTy->isPointerTy() ?
2292 Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2293 Q.DL.getTypeSizeInBits(ScalarTy);
2295 unsigned Tmp, Tmp2;
2296 unsigned FirstAnswer = 1;
2298 // Note that ConstantInt is handled by the general computeKnownBits case
2299 // below.
2301 if (Depth == MaxDepth)
2302 return 1; // Limit search depth.
2304 const Operator *U = dyn_cast<Operator>(V);
2305 switch (Operator::getOpcode(V)) {
2306 default: break;
2307 case Instruction::SExt:
2308 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2309 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2311 case Instruction::SDiv: {
2312 const APInt *Denominator;
2313 // sdiv X, C -> adds log(C) sign bits.
2314 if (match(U->getOperand(1), m_APInt(Denominator))) {
2316 // Ignore non-positive denominator.
2317 if (!Denominator->isStrictlyPositive())
2318 break;
2320 // Calculate the incoming numerator bits.
2321 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2323 // Add floor(log(C)) bits to the numerator bits.
2324 return std::min(TyBits, NumBits + Denominator->logBase2());
2326 break;
2329 case Instruction::SRem: {
2330 const APInt *Denominator;
2331 // srem X, C -> we know that the result is within [-C+1,C) when C is a
2332 // positive constant. This let us put a lower bound on the number of sign
2333 // bits.
2334 if (match(U->getOperand(1), m_APInt(Denominator))) {
2336 // Ignore non-positive denominator.
2337 if (!Denominator->isStrictlyPositive())
2338 break;
2340 // Calculate the incoming numerator bits. SRem by a positive constant
2341 // can't lower the number of sign bits.
2342 unsigned NumrBits =
2343 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2345 // Calculate the leading sign bit constraints by examining the
2346 // denominator. Given that the denominator is positive, there are two
2347 // cases:
2349 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2350 // (1 << ceilLogBase2(C)).
2352 // 2. the numerator is negative. Then the result range is (-C,0] and
2353 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2355 // Thus a lower bound on the number of sign bits is `TyBits -
2356 // ceilLogBase2(C)`.
2358 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2359 return std::max(NumrBits, ResBits);
2361 break;
2364 case Instruction::AShr: {
2365 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2366 // ashr X, C -> adds C sign bits. Vectors too.
2367 const APInt *ShAmt;
2368 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2369 if (ShAmt->uge(TyBits))
2370 break; // Bad shift.
2371 unsigned ShAmtLimited = ShAmt->getZExtValue();
2372 Tmp += ShAmtLimited;
2373 if (Tmp > TyBits) Tmp = TyBits;
2375 return Tmp;
2377 case Instruction::Shl: {
2378 const APInt *ShAmt;
2379 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2380 // shl destroys sign bits.
2381 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2382 if (ShAmt->uge(TyBits) || // Bad shift.
2383 ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2384 Tmp2 = ShAmt->getZExtValue();
2385 return Tmp - Tmp2;
2387 break;
2389 case Instruction::And:
2390 case Instruction::Or:
2391 case Instruction::Xor: // NOT is handled here.
2392 // Logical binary ops preserve the number of sign bits at the worst.
2393 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2394 if (Tmp != 1) {
2395 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2396 FirstAnswer = std::min(Tmp, Tmp2);
2397 // We computed what we know about the sign bits as our first
2398 // answer. Now proceed to the generic code that uses
2399 // computeKnownBits, and pick whichever answer is better.
2401 break;
2403 case Instruction::Select: {
2404 // If we have a clamp pattern, we know that the number of sign bits will be
2405 // the minimum of the clamp min/max range.
2406 const Value *X;
2407 const APInt *CLow, *CHigh;
2408 if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2409 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2411 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2412 if (Tmp == 1) break;
2413 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2414 return std::min(Tmp, Tmp2);
2417 case Instruction::Add:
2418 // Add can have at most one carry bit. Thus we know that the output
2419 // is, at worst, one more bit than the inputs.
2420 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2421 if (Tmp == 1) break;
2423 // Special case decrementing a value (ADD X, -1):
2424 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2425 if (CRHS->isAllOnesValue()) {
2426 KnownBits Known(TyBits);
2427 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2429 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2430 // sign bits set.
2431 if ((Known.Zero | 1).isAllOnesValue())
2432 return TyBits;
2434 // If we are subtracting one from a positive number, there is no carry
2435 // out of the result.
2436 if (Known.isNonNegative())
2437 return Tmp;
2440 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2441 if (Tmp2 == 1) break;
2442 return std::min(Tmp, Tmp2)-1;
2444 case Instruction::Sub:
2445 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2446 if (Tmp2 == 1) break;
2448 // Handle NEG.
2449 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2450 if (CLHS->isNullValue()) {
2451 KnownBits Known(TyBits);
2452 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2453 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2454 // sign bits set.
2455 if ((Known.Zero | 1).isAllOnesValue())
2456 return TyBits;
2458 // If the input is known to be positive (the sign bit is known clear),
2459 // the output of the NEG has the same number of sign bits as the input.
2460 if (Known.isNonNegative())
2461 return Tmp2;
2463 // Otherwise, we treat this like a SUB.
2466 // Sub can have at most one carry bit. Thus we know that the output
2467 // is, at worst, one more bit than the inputs.
2468 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2469 if (Tmp == 1) break;
2470 return std::min(Tmp, Tmp2)-1;
2472 case Instruction::Mul: {
2473 // The output of the Mul can be at most twice the valid bits in the inputs.
2474 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2475 if (SignBitsOp0 == 1) break;
2476 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2477 if (SignBitsOp1 == 1) break;
2478 unsigned OutValidBits =
2479 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2480 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2483 case Instruction::PHI: {
2484 const PHINode *PN = cast<PHINode>(U);
2485 unsigned NumIncomingValues = PN->getNumIncomingValues();
2486 // Don't analyze large in-degree PHIs.
2487 if (NumIncomingValues > 4) break;
2488 // Unreachable blocks may have zero-operand PHI nodes.
2489 if (NumIncomingValues == 0) break;
2491 // Take the minimum of all incoming values. This can't infinitely loop
2492 // because of our depth threshold.
2493 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2494 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2495 if (Tmp == 1) return Tmp;
2496 Tmp = std::min(
2497 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2499 return Tmp;
2502 case Instruction::Trunc:
2503 // FIXME: it's tricky to do anything useful for this, but it is an important
2504 // case for targets like X86.
2505 break;
2507 case Instruction::ExtractElement:
2508 // Look through extract element. At the moment we keep this simple and skip
2509 // tracking the specific element. But at least we might find information
2510 // valid for all elements of the vector (for example if vector is sign
2511 // extended, shifted, etc).
2512 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2515 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2516 // use this information.
2518 // If we can examine all elements of a vector constant successfully, we're
2519 // done (we can't do any better than that). If not, keep trying.
2520 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2521 return VecSignBits;
2523 KnownBits Known(TyBits);
2524 computeKnownBits(V, Known, Depth, Q);
2526 // If we know that the sign bit is either zero or one, determine the number of
2527 // identical bits in the top of the input value.
2528 return std::max(FirstAnswer, Known.countMinSignBits());
2531 /// This function computes the integer multiple of Base that equals V.
2532 /// If successful, it returns true and returns the multiple in
2533 /// Multiple. If unsuccessful, it returns false. It looks
2534 /// through SExt instructions only if LookThroughSExt is true.
2535 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2536 bool LookThroughSExt, unsigned Depth) {
2537 const unsigned MaxDepth = 6;
2539 assert(V && "No Value?");
2540 assert(Depth <= MaxDepth && "Limit Search Depth");
2541 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2543 Type *T = V->getType();
2545 ConstantInt *CI = dyn_cast<ConstantInt>(V);
2547 if (Base == 0)
2548 return false;
2550 if (Base == 1) {
2551 Multiple = V;
2552 return true;
2555 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2556 Constant *BaseVal = ConstantInt::get(T, Base);
2557 if (CO && CO == BaseVal) {
2558 // Multiple is 1.
2559 Multiple = ConstantInt::get(T, 1);
2560 return true;
2563 if (CI && CI->getZExtValue() % Base == 0) {
2564 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2565 return true;
2568 if (Depth == MaxDepth) return false; // Limit search depth.
2570 Operator *I = dyn_cast<Operator>(V);
2571 if (!I) return false;
2573 switch (I->getOpcode()) {
2574 default: break;
2575 case Instruction::SExt:
2576 if (!LookThroughSExt) return false;
2577 // otherwise fall through to ZExt
2578 LLVM_FALLTHROUGH;
2579 case Instruction::ZExt:
2580 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2581 LookThroughSExt, Depth+1);
2582 case Instruction::Shl:
2583 case Instruction::Mul: {
2584 Value *Op0 = I->getOperand(0);
2585 Value *Op1 = I->getOperand(1);
2587 if (I->getOpcode() == Instruction::Shl) {
2588 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2589 if (!Op1CI) return false;
2590 // Turn Op0 << Op1 into Op0 * 2^Op1
2591 APInt Op1Int = Op1CI->getValue();
2592 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2593 APInt API(Op1Int.getBitWidth(), 0);
2594 API.setBit(BitToSet);
2595 Op1 = ConstantInt::get(V->getContext(), API);
2598 Value *Mul0 = nullptr;
2599 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2600 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2601 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2602 if (Op1C->getType()->getPrimitiveSizeInBits() <
2603 MulC->getType()->getPrimitiveSizeInBits())
2604 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2605 if (Op1C->getType()->getPrimitiveSizeInBits() >
2606 MulC->getType()->getPrimitiveSizeInBits())
2607 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2609 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2610 Multiple = ConstantExpr::getMul(MulC, Op1C);
2611 return true;
2614 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2615 if (Mul0CI->getValue() == 1) {
2616 // V == Base * Op1, so return Op1
2617 Multiple = Op1;
2618 return true;
2622 Value *Mul1 = nullptr;
2623 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2624 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2625 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2626 if (Op0C->getType()->getPrimitiveSizeInBits() <
2627 MulC->getType()->getPrimitiveSizeInBits())
2628 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2629 if (Op0C->getType()->getPrimitiveSizeInBits() >
2630 MulC->getType()->getPrimitiveSizeInBits())
2631 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2633 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2634 Multiple = ConstantExpr::getMul(MulC, Op0C);
2635 return true;
2638 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2639 if (Mul1CI->getValue() == 1) {
2640 // V == Base * Op0, so return Op0
2641 Multiple = Op0;
2642 return true;
2648 // We could not determine if V is a multiple of Base.
2649 return false;
2652 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2653 const TargetLibraryInfo *TLI) {
2654 const Function *F = ICS.getCalledFunction();
2655 if (!F)
2656 return Intrinsic::not_intrinsic;
2658 if (F->isIntrinsic())
2659 return F->getIntrinsicID();
2661 if (!TLI)
2662 return Intrinsic::not_intrinsic;
2664 LibFunc Func;
2665 // We're going to make assumptions on the semantics of the functions, check
2666 // that the target knows that it's available in this environment and it does
2667 // not have local linkage.
2668 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2669 return Intrinsic::not_intrinsic;
2671 if (!ICS.onlyReadsMemory())
2672 return Intrinsic::not_intrinsic;
2674 // Otherwise check if we have a call to a function that can be turned into a
2675 // vector intrinsic.
2676 switch (Func) {
2677 default:
2678 break;
2679 case LibFunc_sin:
2680 case LibFunc_sinf:
2681 case LibFunc_sinl:
2682 return Intrinsic::sin;
2683 case LibFunc_cos:
2684 case LibFunc_cosf:
2685 case LibFunc_cosl:
2686 return Intrinsic::cos;
2687 case LibFunc_exp:
2688 case LibFunc_expf:
2689 case LibFunc_expl:
2690 return Intrinsic::exp;
2691 case LibFunc_exp2:
2692 case LibFunc_exp2f:
2693 case LibFunc_exp2l:
2694 return Intrinsic::exp2;
2695 case LibFunc_log:
2696 case LibFunc_logf:
2697 case LibFunc_logl:
2698 return Intrinsic::log;
2699 case LibFunc_log10:
2700 case LibFunc_log10f:
2701 case LibFunc_log10l:
2702 return Intrinsic::log10;
2703 case LibFunc_log2:
2704 case LibFunc_log2f:
2705 case LibFunc_log2l:
2706 return Intrinsic::log2;
2707 case LibFunc_fabs:
2708 case LibFunc_fabsf:
2709 case LibFunc_fabsl:
2710 return Intrinsic::fabs;
2711 case LibFunc_fmin:
2712 case LibFunc_fminf:
2713 case LibFunc_fminl:
2714 return Intrinsic::minnum;
2715 case LibFunc_fmax:
2716 case LibFunc_fmaxf:
2717 case LibFunc_fmaxl:
2718 return Intrinsic::maxnum;
2719 case LibFunc_copysign:
2720 case LibFunc_copysignf:
2721 case LibFunc_copysignl:
2722 return Intrinsic::copysign;
2723 case LibFunc_floor:
2724 case LibFunc_floorf:
2725 case LibFunc_floorl:
2726 return Intrinsic::floor;
2727 case LibFunc_ceil:
2728 case LibFunc_ceilf:
2729 case LibFunc_ceill:
2730 return Intrinsic::ceil;
2731 case LibFunc_trunc:
2732 case LibFunc_truncf:
2733 case LibFunc_truncl:
2734 return Intrinsic::trunc;
2735 case LibFunc_rint:
2736 case LibFunc_rintf:
2737 case LibFunc_rintl:
2738 return Intrinsic::rint;
2739 case LibFunc_nearbyint:
2740 case LibFunc_nearbyintf:
2741 case LibFunc_nearbyintl:
2742 return Intrinsic::nearbyint;
2743 case LibFunc_round:
2744 case LibFunc_roundf:
2745 case LibFunc_roundl:
2746 return Intrinsic::round;
2747 case LibFunc_pow:
2748 case LibFunc_powf:
2749 case LibFunc_powl:
2750 return Intrinsic::pow;
2751 case LibFunc_sqrt:
2752 case LibFunc_sqrtf:
2753 case LibFunc_sqrtl:
2754 return Intrinsic::sqrt;
2757 return Intrinsic::not_intrinsic;
2760 /// Return true if we can prove that the specified FP value is never equal to
2761 /// -0.0.
2763 /// NOTE: this function will need to be revisited when we support non-default
2764 /// rounding modes!
2765 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2766 unsigned Depth) {
2767 if (auto *CFP = dyn_cast<ConstantFP>(V))
2768 return !CFP->getValueAPF().isNegZero();
2770 // Limit search depth.
2771 if (Depth == MaxDepth)
2772 return false;
2774 auto *Op = dyn_cast<Operator>(V);
2775 if (!Op)
2776 return false;
2778 // Check if the nsz fast-math flag is set.
2779 if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2780 if (FPO->hasNoSignedZeros())
2781 return true;
2783 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2784 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2785 return true;
2787 // sitofp and uitofp turn into +0.0 for zero.
2788 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2789 return true;
2791 if (auto *Call = dyn_cast<CallInst>(Op)) {
2792 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2793 switch (IID) {
2794 default:
2795 break;
2796 // sqrt(-0.0) = -0.0, no other negative results are possible.
2797 case Intrinsic::sqrt:
2798 case Intrinsic::canonicalize:
2799 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2800 // fabs(x) != -0.0
2801 case Intrinsic::fabs:
2802 return true;
2806 return false;
2809 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2810 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2811 /// bit despite comparing equal.
2812 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2813 const TargetLibraryInfo *TLI,
2814 bool SignBitOnly,
2815 unsigned Depth) {
2816 // TODO: This function does not do the right thing when SignBitOnly is true
2817 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2818 // which flips the sign bits of NaNs. See
2819 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2822 return !CFP->getValueAPF().isNegative() ||
2823 (!SignBitOnly && CFP->getValueAPF().isZero());
2826 // Handle vector of constants.
2827 if (auto *CV = dyn_cast<Constant>(V)) {
2828 if (CV->getType()->isVectorTy()) {
2829 unsigned NumElts = CV->getType()->getVectorNumElements();
2830 for (unsigned i = 0; i != NumElts; ++i) {
2831 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2832 if (!CFP)
2833 return false;
2834 if (CFP->getValueAPF().isNegative() &&
2835 (SignBitOnly || !CFP->getValueAPF().isZero()))
2836 return false;
2839 // All non-negative ConstantFPs.
2840 return true;
2844 if (Depth == MaxDepth)
2845 return false; // Limit search depth.
2847 const Operator *I = dyn_cast<Operator>(V);
2848 if (!I)
2849 return false;
2851 switch (I->getOpcode()) {
2852 default:
2853 break;
2854 // Unsigned integers are always nonnegative.
2855 case Instruction::UIToFP:
2856 return true;
2857 case Instruction::FMul:
2858 // x*x is always non-negative or a NaN.
2859 if (I->getOperand(0) == I->getOperand(1) &&
2860 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2861 return true;
2863 LLVM_FALLTHROUGH;
2864 case Instruction::FAdd:
2865 case Instruction::FDiv:
2866 case Instruction::FRem:
2867 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2868 Depth + 1) &&
2869 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2870 Depth + 1);
2871 case Instruction::Select:
2872 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2873 Depth + 1) &&
2874 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2875 Depth + 1);
2876 case Instruction::FPExt:
2877 case Instruction::FPTrunc:
2878 // Widening/narrowing never change sign.
2879 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2880 Depth + 1);
2881 case Instruction::ExtractElement:
2882 // Look through extract element. At the moment we keep this simple and skip
2883 // tracking the specific element. But at least we might find information
2884 // valid for all elements of the vector.
2885 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2886 Depth + 1);
2887 case Instruction::Call:
2888 const auto *CI = cast<CallInst>(I);
2889 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2890 switch (IID) {
2891 default:
2892 break;
2893 case Intrinsic::maxnum:
2894 return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2895 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2896 SignBitOnly, Depth + 1)) ||
2897 (isKnownNeverNaN(I->getOperand(1), TLI) &&
2898 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2899 SignBitOnly, Depth + 1));
2901 case Intrinsic::minnum:
2902 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2903 Depth + 1) &&
2904 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2905 Depth + 1);
2906 case Intrinsic::exp:
2907 case Intrinsic::exp2:
2908 case Intrinsic::fabs:
2909 return true;
2911 case Intrinsic::sqrt:
2912 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
2913 if (!SignBitOnly)
2914 return true;
2915 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2916 CannotBeNegativeZero(CI->getOperand(0), TLI));
2918 case Intrinsic::powi:
2919 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2920 // powi(x,n) is non-negative if n is even.
2921 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2922 return true;
2924 // TODO: This is not correct. Given that exp is an integer, here are the
2925 // ways that pow can return a negative value:
2927 // pow(x, exp) --> negative if exp is odd and x is negative.
2928 // pow(-0, exp) --> -inf if exp is negative odd.
2929 // pow(-0, exp) --> -0 if exp is positive odd.
2930 // pow(-inf, exp) --> -0 if exp is negative odd.
2931 // pow(-inf, exp) --> -inf if exp is positive odd.
2933 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2934 // but we must return false if x == -0. Unfortunately we do not currently
2935 // have a way of expressing this constraint. See details in
2936 // https://llvm.org/bugs/show_bug.cgi?id=31702.
2937 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938 Depth + 1);
2940 case Intrinsic::fma:
2941 case Intrinsic::fmuladd:
2942 // x*x+y is non-negative if y is non-negative.
2943 return I->getOperand(0) == I->getOperand(1) &&
2944 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2945 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2946 Depth + 1);
2948 break;
2950 return false;
2953 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2954 const TargetLibraryInfo *TLI) {
2955 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2958 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2959 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2962 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
2963 unsigned Depth) {
2964 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2966 // If we're told that NaNs won't happen, assume they won't.
2967 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2968 if (FPMathOp->hasNoNaNs())
2969 return true;
2971 // Handle scalar constants.
2972 if (auto *CFP = dyn_cast<ConstantFP>(V))
2973 return !CFP->isNaN();
2975 if (Depth == MaxDepth)
2976 return false;
2978 if (auto *Inst = dyn_cast<Instruction>(V)) {
2979 switch (Inst->getOpcode()) {
2980 case Instruction::FAdd:
2981 case Instruction::FMul:
2982 case Instruction::FSub:
2983 case Instruction::FDiv:
2984 case Instruction::FRem: {
2985 // TODO: Need isKnownNeverInfinity
2986 return false;
2988 case Instruction::Select: {
2989 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
2990 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
2992 case Instruction::SIToFP:
2993 case Instruction::UIToFP:
2994 return true;
2995 case Instruction::FPTrunc:
2996 case Instruction::FPExt:
2997 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
2998 default:
2999 break;
3003 if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3004 switch (II->getIntrinsicID()) {
3005 case Intrinsic::canonicalize:
3006 case Intrinsic::fabs:
3007 case Intrinsic::copysign:
3008 case Intrinsic::exp:
3009 case Intrinsic::exp2:
3010 case Intrinsic::floor:
3011 case Intrinsic::ceil:
3012 case Intrinsic::trunc:
3013 case Intrinsic::rint:
3014 case Intrinsic::nearbyint:
3015 case Intrinsic::round:
3016 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3017 case Intrinsic::sqrt:
3018 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3019 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3020 default:
3021 return false;
3025 // Bail out for constant expressions, but try to handle vector constants.
3026 if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3027 return false;
3029 // For vectors, verify that each element is not NaN.
3030 unsigned NumElts = V->getType()->getVectorNumElements();
3031 for (unsigned i = 0; i != NumElts; ++i) {
3032 Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3033 if (!Elt)
3034 return false;
3035 if (isa<UndefValue>(Elt))
3036 continue;
3037 auto *CElt = dyn_cast<ConstantFP>(Elt);
3038 if (!CElt || CElt->isNaN())
3039 return false;
3041 // All elements were confirmed not-NaN or undefined.
3042 return true;
3045 Value *llvm::isBytewiseValue(Value *V) {
3047 // All byte-wide stores are splatable, even of arbitrary variables.
3048 if (V->getType()->isIntegerTy(8))
3049 return V;
3051 LLVMContext &Ctx = V->getContext();
3053 // Undef don't care.
3054 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3055 if (isa<UndefValue>(V))
3056 return UndefInt8;
3058 Constant *C = dyn_cast<Constant>(V);
3059 if (!C) {
3060 // Conceptually, we could handle things like:
3061 // %a = zext i8 %X to i16
3062 // %b = shl i16 %a, 8
3063 // %c = or i16 %a, %b
3064 // but until there is an example that actually needs this, it doesn't seem
3065 // worth worrying about.
3066 return nullptr;
3069 // Handle 'null' ConstantArrayZero etc.
3070 if (C->isNullValue())
3071 return Constant::getNullValue(Type::getInt8Ty(Ctx));
3073 // Constant floating-point values can be handled as integer values if the
3074 // corresponding integer value is "byteable". An important case is 0.0.
3075 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3076 Type *Ty = nullptr;
3077 if (CFP->getType()->isHalfTy())
3078 Ty = Type::getInt16Ty(Ctx);
3079 else if (CFP->getType()->isFloatTy())
3080 Ty = Type::getInt32Ty(Ctx);
3081 else if (CFP->getType()->isDoubleTy())
3082 Ty = Type::getInt64Ty(Ctx);
3083 // Don't handle long double formats, which have strange constraints.
3084 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3087 // We can handle constant integers that are multiple of 8 bits.
3088 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3089 if (CI->getBitWidth() % 8 == 0) {
3090 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3091 if (!CI->getValue().isSplat(8))
3092 return nullptr;
3093 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3097 auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3098 if (LHS == RHS)
3099 return LHS;
3100 if (!LHS || !RHS)
3101 return nullptr;
3102 if (LHS == UndefInt8)
3103 return RHS;
3104 if (RHS == UndefInt8)
3105 return LHS;
3106 return nullptr;
3109 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3110 Value *Val = UndefInt8;
3111 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3112 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3113 return nullptr;
3114 return Val;
3117 if (isa<ConstantVector>(C)) {
3118 Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3119 return Splat ? isBytewiseValue(Splat) : nullptr;
3122 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3123 Value *Val = UndefInt8;
3124 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3125 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3126 return nullptr;
3127 return Val;
3130 // Don't try to handle the handful of other constants.
3131 return nullptr;
3134 // This is the recursive version of BuildSubAggregate. It takes a few different
3135 // arguments. Idxs is the index within the nested struct From that we are
3136 // looking at now (which is of type IndexedType). IdxSkip is the number of
3137 // indices from Idxs that should be left out when inserting into the resulting
3138 // struct. To is the result struct built so far, new insertvalue instructions
3139 // build on that.
3140 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3141 SmallVectorImpl<unsigned> &Idxs,
3142 unsigned IdxSkip,
3143 Instruction *InsertBefore) {
3144 StructType *STy = dyn_cast<StructType>(IndexedType);
3145 if (STy) {
3146 // Save the original To argument so we can modify it
3147 Value *OrigTo = To;
3148 // General case, the type indexed by Idxs is a struct
3149 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3150 // Process each struct element recursively
3151 Idxs.push_back(i);
3152 Value *PrevTo = To;
3153 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3154 InsertBefore);
3155 Idxs.pop_back();
3156 if (!To) {
3157 // Couldn't find any inserted value for this index? Cleanup
3158 while (PrevTo != OrigTo) {
3159 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3160 PrevTo = Del->getAggregateOperand();
3161 Del->eraseFromParent();
3163 // Stop processing elements
3164 break;
3167 // If we successfully found a value for each of our subaggregates
3168 if (To)
3169 return To;
3171 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3172 // the struct's elements had a value that was inserted directly. In the latter
3173 // case, perhaps we can't determine each of the subelements individually, but
3174 // we might be able to find the complete struct somewhere.
3176 // Find the value that is at that particular spot
3177 Value *V = FindInsertedValue(From, Idxs);
3179 if (!V)
3180 return nullptr;
3182 // Insert the value in the new (sub) aggregate
3183 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3184 "tmp", InsertBefore);
3187 // This helper takes a nested struct and extracts a part of it (which is again a
3188 // struct) into a new value. For example, given the struct:
3189 // { a, { b, { c, d }, e } }
3190 // and the indices "1, 1" this returns
3191 // { c, d }.
3193 // It does this by inserting an insertvalue for each element in the resulting
3194 // struct, as opposed to just inserting a single struct. This will only work if
3195 // each of the elements of the substruct are known (ie, inserted into From by an
3196 // insertvalue instruction somewhere).
3198 // All inserted insertvalue instructions are inserted before InsertBefore
3199 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3200 Instruction *InsertBefore) {
3201 assert(InsertBefore && "Must have someplace to insert!");
3202 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3203 idx_range);
3204 Value *To = UndefValue::get(IndexedType);
3205 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3206 unsigned IdxSkip = Idxs.size();
3208 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3211 /// Given an aggregate and a sequence of indices, see if the scalar value
3212 /// indexed is already around as a register, for example if it was inserted
3213 /// directly into the aggregate.
3215 /// If InsertBefore is not null, this function will duplicate (modified)
3216 /// insertvalues when a part of a nested struct is extracted.
3217 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3218 Instruction *InsertBefore) {
3219 // Nothing to index? Just return V then (this is useful at the end of our
3220 // recursion).
3221 if (idx_range.empty())
3222 return V;
3223 // We have indices, so V should have an indexable type.
3224 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3225 "Not looking at a struct or array?");
3226 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3227 "Invalid indices for type?");
3229 if (Constant *C = dyn_cast<Constant>(V)) {
3230 C = C->getAggregateElement(idx_range[0]);
3231 if (!C) return nullptr;
3232 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3235 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3236 // Loop the indices for the insertvalue instruction in parallel with the
3237 // requested indices
3238 const unsigned *req_idx = idx_range.begin();
3239 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3240 i != e; ++i, ++req_idx) {
3241 if (req_idx == idx_range.end()) {
3242 // We can't handle this without inserting insertvalues
3243 if (!InsertBefore)
3244 return nullptr;
3246 // The requested index identifies a part of a nested aggregate. Handle
3247 // this specially. For example,
3248 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3249 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3250 // %C = extractvalue {i32, { i32, i32 } } %B, 1
3251 // This can be changed into
3252 // %A = insertvalue {i32, i32 } undef, i32 10, 0
3253 // %C = insertvalue {i32, i32 } %A, i32 11, 1
3254 // which allows the unused 0,0 element from the nested struct to be
3255 // removed.
3256 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3257 InsertBefore);
3260 // This insert value inserts something else than what we are looking for.
3261 // See if the (aggregate) value inserted into has the value we are
3262 // looking for, then.
3263 if (*req_idx != *i)
3264 return FindInsertedValue(I->getAggregateOperand(), idx_range,
3265 InsertBefore);
3267 // If we end up here, the indices of the insertvalue match with those
3268 // requested (though possibly only partially). Now we recursively look at
3269 // the inserted value, passing any remaining indices.
3270 return FindInsertedValue(I->getInsertedValueOperand(),
3271 makeArrayRef(req_idx, idx_range.end()),
3272 InsertBefore);
3275 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3276 // If we're extracting a value from an aggregate that was extracted from
3277 // something else, we can extract from that something else directly instead.
3278 // However, we will need to chain I's indices with the requested indices.
3280 // Calculate the number of indices required
3281 unsigned size = I->getNumIndices() + idx_range.size();
3282 // Allocate some space to put the new indices in
3283 SmallVector<unsigned, 5> Idxs;
3284 Idxs.reserve(size);
3285 // Add indices from the extract value instruction
3286 Idxs.append(I->idx_begin(), I->idx_end());
3288 // Add requested indices
3289 Idxs.append(idx_range.begin(), idx_range.end());
3291 assert(Idxs.size() == size
3292 && "Number of indices added not correct?");
3294 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3296 // Otherwise, we don't know (such as, extracting from a function return value
3297 // or load instruction)
3298 return nullptr;
3301 /// Analyze the specified pointer to see if it can be expressed as a base
3302 /// pointer plus a constant offset. Return the base and offset to the caller.
3303 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3304 const DataLayout &DL) {
3305 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3306 APInt ByteOffset(BitWidth, 0);
3308 // We walk up the defs but use a visited set to handle unreachable code. In
3309 // that case, we stop after accumulating the cycle once (not that it
3310 // matters).
3311 SmallPtrSet<Value *, 16> Visited;
3312 while (Visited.insert(Ptr).second) {
3313 if (Ptr->getType()->isVectorTy())
3314 break;
3316 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3317 // If one of the values we have visited is an addrspacecast, then
3318 // the pointer type of this GEP may be different from the type
3319 // of the Ptr parameter which was passed to this function. This
3320 // means when we construct GEPOffset, we need to use the size
3321 // of GEP's pointer type rather than the size of the original
3322 // pointer type.
3323 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3324 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3325 break;
3327 ByteOffset += GEPOffset.getSExtValue();
3329 Ptr = GEP->getPointerOperand();
3330 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3331 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3332 Ptr = cast<Operator>(Ptr)->getOperand(0);
3333 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3334 if (GA->isInterposable())
3335 break;
3336 Ptr = GA->getAliasee();
3337 } else {
3338 break;
3341 Offset = ByteOffset.getSExtValue();
3342 return Ptr;
3345 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3346 unsigned CharSize) {
3347 // Make sure the GEP has exactly three arguments.
3348 if (GEP->getNumOperands() != 3)
3349 return false;
3351 // Make sure the index-ee is a pointer to array of \p CharSize integers.
3352 // CharSize.
3353 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3354 if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3355 return false;
3357 // Check to make sure that the first operand of the GEP is an integer and
3358 // has value 0 so that we are sure we're indexing into the initializer.
3359 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3360 if (!FirstIdx || !FirstIdx->isZero())
3361 return false;
3363 return true;
3366 bool llvm::getConstantDataArrayInfo(const Value *V,
3367 ConstantDataArraySlice &Slice,
3368 unsigned ElementSize, uint64_t Offset) {
3369 assert(V);
3371 // Look through bitcast instructions and geps.
3372 V = V->stripPointerCasts();
3374 // If the value is a GEP instruction or constant expression, treat it as an
3375 // offset.
3376 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3377 // The GEP operator should be based on a pointer to string constant, and is
3378 // indexing into the string constant.
3379 if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3380 return false;
3382 // If the second index isn't a ConstantInt, then this is a variable index
3383 // into the array. If this occurs, we can't say anything meaningful about
3384 // the string.
3385 uint64_t StartIdx = 0;
3386 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3387 StartIdx = CI->getZExtValue();
3388 else
3389 return false;
3390 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3391 StartIdx + Offset);
3394 // The GEP instruction, constant or instruction, must reference a global
3395 // variable that is a constant and is initialized. The referenced constant
3396 // initializer is the array that we'll use for optimization.
3397 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3398 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3399 return false;
3401 const ConstantDataArray *Array;
3402 ArrayType *ArrayTy;
3403 if (GV->getInitializer()->isNullValue()) {
3404 Type *GVTy = GV->getValueType();
3405 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3406 // A zeroinitializer for the array; there is no ConstantDataArray.
3407 Array = nullptr;
3408 } else {
3409 const DataLayout &DL = GV->getParent()->getDataLayout();
3410 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3411 uint64_t Length = SizeInBytes / (ElementSize / 8);
3412 if (Length <= Offset)
3413 return false;
3415 Slice.Array = nullptr;
3416 Slice.Offset = 0;
3417 Slice.Length = Length - Offset;
3418 return true;
3420 } else {
3421 // This must be a ConstantDataArray.
3422 Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3423 if (!Array)
3424 return false;
3425 ArrayTy = Array->getType();
3427 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3428 return false;
3430 uint64_t NumElts = ArrayTy->getArrayNumElements();
3431 if (Offset > NumElts)
3432 return false;
3434 Slice.Array = Array;
3435 Slice.Offset = Offset;
3436 Slice.Length = NumElts - Offset;
3437 return true;
3440 /// This function computes the length of a null-terminated C string pointed to
3441 /// by V. If successful, it returns true and returns the string in Str.
3442 /// If unsuccessful, it returns false.
3443 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3444 uint64_t Offset, bool TrimAtNul) {
3445 ConstantDataArraySlice Slice;
3446 if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3447 return false;
3449 if (Slice.Array == nullptr) {
3450 if (TrimAtNul) {
3451 Str = StringRef();
3452 return true;
3454 if (Slice.Length == 1) {
3455 Str = StringRef("", 1);
3456 return true;
3458 // We cannot instantiate a StringRef as we do not have an appropriate string
3459 // of 0s at hand.
3460 return false;
3463 // Start out with the entire array in the StringRef.
3464 Str = Slice.Array->getAsString();
3465 // Skip over 'offset' bytes.
3466 Str = Str.substr(Slice.Offset);
3468 if (TrimAtNul) {
3469 // Trim off the \0 and anything after it. If the array is not nul
3470 // terminated, we just return the whole end of string. The client may know
3471 // some other way that the string is length-bound.
3472 Str = Str.substr(0, Str.find('\0'));
3474 return true;
3477 // These next two are very similar to the above, but also look through PHI
3478 // nodes.
3479 // TODO: See if we can integrate these two together.
3481 /// If we can compute the length of the string pointed to by
3482 /// the specified pointer, return 'len+1'. If we can't, return 0.
3483 static uint64_t GetStringLengthH(const Value *V,
3484 SmallPtrSetImpl<const PHINode*> &PHIs,
3485 unsigned CharSize) {
3486 // Look through noop bitcast instructions.
3487 V = V->stripPointerCasts();
3489 // If this is a PHI node, there are two cases: either we have already seen it
3490 // or we haven't.
3491 if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3492 if (!PHIs.insert(PN).second)
3493 return ~0ULL; // already in the set.
3495 // If it was new, see if all the input strings are the same length.
3496 uint64_t LenSoFar = ~0ULL;
3497 for (Value *IncValue : PN->incoming_values()) {
3498 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3499 if (Len == 0) return 0; // Unknown length -> unknown.
3501 if (Len == ~0ULL) continue;
3503 if (Len != LenSoFar && LenSoFar != ~0ULL)
3504 return 0; // Disagree -> unknown.
3505 LenSoFar = Len;
3508 // Success, all agree.
3509 return LenSoFar;
3512 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3513 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3514 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3515 if (Len1 == 0) return 0;
3516 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3517 if (Len2 == 0) return 0;
3518 if (Len1 == ~0ULL) return Len2;
3519 if (Len2 == ~0ULL) return Len1;
3520 if (Len1 != Len2) return 0;
3521 return Len1;
3524 // Otherwise, see if we can read the string.
3525 ConstantDataArraySlice Slice;
3526 if (!getConstantDataArrayInfo(V, Slice, CharSize))
3527 return 0;
3529 if (Slice.Array == nullptr)
3530 return 1;
3532 // Search for nul characters
3533 unsigned NullIndex = 0;
3534 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3535 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3536 break;
3539 return NullIndex + 1;
3542 /// If we can compute the length of the string pointed to by
3543 /// the specified pointer, return 'len+1'. If we can't, return 0.
3544 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3545 if (!V->getType()->isPointerTy())
3546 return 0;
3548 SmallPtrSet<const PHINode*, 32> PHIs;
3549 uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3550 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3551 // an empty string as a length.
3552 return Len == ~0ULL ? 1 : Len;
3555 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3556 assert(CS &&
3557 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3558 if (const Value *RV = CS.getReturnedArgOperand())
3559 return RV;
3560 // This can be used only as a aliasing property.
3561 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3562 return CS.getArgOperand(0);
3563 return nullptr;
3566 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3567 ImmutableCallSite CS) {
3568 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3569 CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
3572 /// \p PN defines a loop-variant pointer to an object. Check if the
3573 /// previous iteration of the loop was referring to the same object as \p PN.
3574 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3575 const LoopInfo *LI) {
3576 // Find the loop-defined value.
3577 Loop *L = LI->getLoopFor(PN->getParent());
3578 if (PN->getNumIncomingValues() != 2)
3579 return true;
3581 // Find the value from previous iteration.
3582 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3583 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3584 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3585 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3586 return true;
3588 // If a new pointer is loaded in the loop, the pointer references a different
3589 // object in every iteration. E.g.:
3590 // for (i)
3591 // int *p = a[i];
3592 // ...
3593 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3594 if (!L->isLoopInvariant(Load->getPointerOperand()))
3595 return false;
3596 return true;
3599 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3600 unsigned MaxLookup) {
3601 if (!V->getType()->isPointerTy())
3602 return V;
3603 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3604 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3605 V = GEP->getPointerOperand();
3606 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3607 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3608 V = cast<Operator>(V)->getOperand(0);
3609 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3610 if (GA->isInterposable())
3611 return V;
3612 V = GA->getAliasee();
3613 } else if (isa<AllocaInst>(V)) {
3614 // An alloca can't be further simplified.
3615 return V;
3616 } else {
3617 if (auto CS = CallSite(V)) {
3618 // CaptureTracking can know about special capturing properties of some
3619 // intrinsics like launder.invariant.group, that can't be expressed with
3620 // the attributes, but have properties like returning aliasing pointer.
3621 // Because some analysis may assume that nocaptured pointer is not
3622 // returned from some special intrinsic (because function would have to
3623 // be marked with returns attribute), it is crucial to use this function
3624 // because it should be in sync with CaptureTracking. Not using it may
3625 // cause weird miscompilations where 2 aliasing pointers are assumed to
3626 // noalias.
3627 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3628 V = RP;
3629 continue;
3633 // See if InstructionSimplify knows any relevant tricks.
3634 if (Instruction *I = dyn_cast<Instruction>(V))
3635 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3636 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3637 V = Simplified;
3638 continue;
3641 return V;
3643 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3645 return V;
3648 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3649 const DataLayout &DL, LoopInfo *LI,
3650 unsigned MaxLookup) {
3651 SmallPtrSet<Value *, 4> Visited;
3652 SmallVector<Value *, 4> Worklist;
3653 Worklist.push_back(V);
3654 do {
3655 Value *P = Worklist.pop_back_val();
3656 P = GetUnderlyingObject(P, DL, MaxLookup);
3658 if (!Visited.insert(P).second)
3659 continue;
3661 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3662 Worklist.push_back(SI->getTrueValue());
3663 Worklist.push_back(SI->getFalseValue());
3664 continue;
3667 if (PHINode *PN = dyn_cast<PHINode>(P)) {
3668 // If this PHI changes the underlying object in every iteration of the
3669 // loop, don't look through it. Consider:
3670 // int **A;
3671 // for (i) {
3672 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3673 // Curr = A[i];
3674 // *Prev, *Curr;
3676 // Prev is tracking Curr one iteration behind so they refer to different
3677 // underlying objects.
3678 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3679 isSameUnderlyingObjectInLoop(PN, LI))
3680 for (Value *IncValue : PN->incoming_values())
3681 Worklist.push_back(IncValue);
3682 continue;
3685 Objects.push_back(P);
3686 } while (!Worklist.empty());
3689 /// This is the function that does the work of looking through basic
3690 /// ptrtoint+arithmetic+inttoptr sequences.
3691 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3692 do {
3693 if (const Operator *U = dyn_cast<Operator>(V)) {
3694 // If we find a ptrtoint, we can transfer control back to the
3695 // regular getUnderlyingObjectFromInt.
3696 if (U->getOpcode() == Instruction::PtrToInt)
3697 return U->getOperand(0);
3698 // If we find an add of a constant, a multiplied value, or a phi, it's
3699 // likely that the other operand will lead us to the base
3700 // object. We don't have to worry about the case where the
3701 // object address is somehow being computed by the multiply,
3702 // because our callers only care when the result is an
3703 // identifiable object.
3704 if (U->getOpcode() != Instruction::Add ||
3705 (!isa<ConstantInt>(U->getOperand(1)) &&
3706 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3707 !isa<PHINode>(U->getOperand(1))))
3708 return V;
3709 V = U->getOperand(0);
3710 } else {
3711 return V;
3713 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3714 } while (true);
3717 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3718 /// ptrtoint+arithmetic+inttoptr sequences.
3719 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3720 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3721 SmallVectorImpl<Value *> &Objects,
3722 const DataLayout &DL) {
3723 SmallPtrSet<const Value *, 16> Visited;
3724 SmallVector<const Value *, 4> Working(1, V);
3725 do {
3726 V = Working.pop_back_val();
3728 SmallVector<Value *, 4> Objs;
3729 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3731 for (Value *V : Objs) {
3732 if (!Visited.insert(V).second)
3733 continue;
3734 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3735 const Value *O =
3736 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3737 if (O->getType()->isPointerTy()) {
3738 Working.push_back(O);
3739 continue;
3742 // If GetUnderlyingObjects fails to find an identifiable object,
3743 // getUnderlyingObjectsForCodeGen also fails for safety.
3744 if (!isIdentifiedObject(V)) {
3745 Objects.clear();
3746 return false;
3748 Objects.push_back(const_cast<Value *>(V));
3750 } while (!Working.empty());
3751 return true;
3754 /// Return true if the only users of this pointer are lifetime markers.
3755 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3756 for (const User *U : V->users()) {
3757 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3758 if (!II) return false;
3760 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3761 II->getIntrinsicID() != Intrinsic::lifetime_end)
3762 return false;
3764 return true;
3767 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3768 const Instruction *CtxI,
3769 const DominatorTree *DT) {
3770 const Operator *Inst = dyn_cast<Operator>(V);
3771 if (!Inst)
3772 return false;
3774 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3775 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3776 if (C->canTrap())
3777 return false;
3779 switch (Inst->getOpcode()) {
3780 default:
3781 return true;
3782 case Instruction::UDiv:
3783 case Instruction::URem: {
3784 // x / y is undefined if y == 0.
3785 const APInt *V;
3786 if (match(Inst->getOperand(1), m_APInt(V)))
3787 return *V != 0;
3788 return false;
3790 case Instruction::SDiv:
3791 case Instruction::SRem: {
3792 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3793 const APInt *Numerator, *Denominator;
3794 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3795 return false;
3796 // We cannot hoist this division if the denominator is 0.
3797 if (*Denominator == 0)
3798 return false;
3799 // It's safe to hoist if the denominator is not 0 or -1.
3800 if (*Denominator != -1)
3801 return true;
3802 // At this point we know that the denominator is -1. It is safe to hoist as
3803 // long we know that the numerator is not INT_MIN.
3804 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3805 return !Numerator->isMinSignedValue();
3806 // The numerator *might* be MinSignedValue.
3807 return false;
3809 case Instruction::Load: {
3810 const LoadInst *LI = cast<LoadInst>(Inst);
3811 if (!LI->isUnordered() ||
3812 // Speculative load may create a race that did not exist in the source.
3813 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3814 // Speculative load may load data from dirty regions.
3815 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3816 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3817 return false;
3818 const DataLayout &DL = LI->getModule()->getDataLayout();
3819 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3820 LI->getAlignment(), DL, CtxI, DT);
3822 case Instruction::Call: {
3823 auto *CI = cast<const CallInst>(Inst);
3824 const Function *Callee = CI->getCalledFunction();
3826 // The called function could have undefined behavior or side-effects, even
3827 // if marked readnone nounwind.
3828 return Callee && Callee->isSpeculatable();
3830 case Instruction::VAArg:
3831 case Instruction::Alloca:
3832 case Instruction::Invoke:
3833 case Instruction::PHI:
3834 case Instruction::Store:
3835 case Instruction::Ret:
3836 case Instruction::Br:
3837 case Instruction::IndirectBr:
3838 case Instruction::Switch:
3839 case Instruction::Unreachable:
3840 case Instruction::Fence:
3841 case Instruction::AtomicRMW:
3842 case Instruction::AtomicCmpXchg:
3843 case Instruction::LandingPad:
3844 case Instruction::Resume:
3845 case Instruction::CatchSwitch:
3846 case Instruction::CatchPad:
3847 case Instruction::CatchRet:
3848 case Instruction::CleanupPad:
3849 case Instruction::CleanupRet:
3850 return false; // Misc instructions which have effects
3854 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3855 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3858 OverflowResult llvm::computeOverflowForUnsignedMul(
3859 const Value *LHS, const Value *RHS, const DataLayout &DL,
3860 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3861 bool UseInstrInfo) {
3862 // Multiplying n * m significant bits yields a result of n + m significant
3863 // bits. If the total number of significant bits does not exceed the
3864 // result bit width (minus 1), there is no overflow.
3865 // This means if we have enough leading zero bits in the operands
3866 // we can guarantee that the result does not overflow.
3867 // Ref: "Hacker's Delight" by Henry Warren
3868 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3869 KnownBits LHSKnown(BitWidth);
3870 KnownBits RHSKnown(BitWidth);
3871 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3872 UseInstrInfo);
3873 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3874 UseInstrInfo);
3875 // Note that underestimating the number of zero bits gives a more
3876 // conservative answer.
3877 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3878 RHSKnown.countMinLeadingZeros();
3879 // First handle the easy case: if we have enough zero bits there's
3880 // definitely no overflow.
3881 if (ZeroBits >= BitWidth)
3882 return OverflowResult::NeverOverflows;
3884 // Get the largest possible values for each operand.
3885 APInt LHSMax = ~LHSKnown.Zero;
3886 APInt RHSMax = ~RHSKnown.Zero;
3888 // We know the multiply operation doesn't overflow if the maximum values for
3889 // each operand will not overflow after we multiply them together.
3890 bool MaxOverflow;
3891 (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3892 if (!MaxOverflow)
3893 return OverflowResult::NeverOverflows;
3895 // We know it always overflows if multiplying the smallest possible values for
3896 // the operands also results in overflow.
3897 bool MinOverflow;
3898 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3899 if (MinOverflow)
3900 return OverflowResult::AlwaysOverflows;
3902 return OverflowResult::MayOverflow;
3905 OverflowResult
3906 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3907 const DataLayout &DL, AssumptionCache *AC,
3908 const Instruction *CxtI,
3909 const DominatorTree *DT, bool UseInstrInfo) {
3910 // Multiplying n * m significant bits yields a result of n + m significant
3911 // bits. If the total number of significant bits does not exceed the
3912 // result bit width (minus 1), there is no overflow.
3913 // This means if we have enough leading sign bits in the operands
3914 // we can guarantee that the result does not overflow.
3915 // Ref: "Hacker's Delight" by Henry Warren
3916 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3918 // Note that underestimating the number of sign bits gives a more
3919 // conservative answer.
3920 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3921 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3923 // First handle the easy case: if we have enough sign bits there's
3924 // definitely no overflow.
3925 if (SignBits > BitWidth + 1)
3926 return OverflowResult::NeverOverflows;
3928 // There are two ambiguous cases where there can be no overflow:
3929 // SignBits == BitWidth + 1 and
3930 // SignBits == BitWidth
3931 // The second case is difficult to check, therefore we only handle the
3932 // first case.
3933 if (SignBits == BitWidth + 1) {
3934 // It overflows only when both arguments are negative and the true
3935 // product is exactly the minimum negative number.
3936 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
3937 // For simplicity we just check if at least one side is not negative.
3938 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3939 nullptr, UseInstrInfo);
3940 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3941 nullptr, UseInstrInfo);
3942 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
3943 return OverflowResult::NeverOverflows;
3945 return OverflowResult::MayOverflow;
3948 OverflowResult llvm::computeOverflowForUnsignedAdd(
3949 const Value *LHS, const Value *RHS, const DataLayout &DL,
3950 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3951 bool UseInstrInfo) {
3952 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3953 nullptr, UseInstrInfo);
3954 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3955 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3956 nullptr, UseInstrInfo);
3958 if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
3959 // The sign bit is set in both cases: this MUST overflow.
3960 // Create a simple add instruction, and insert it into the struct.
3961 return OverflowResult::AlwaysOverflows;
3964 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
3965 // The sign bit is clear in both cases: this CANNOT overflow.
3966 // Create a simple add instruction, and insert it into the struct.
3967 return OverflowResult::NeverOverflows;
3971 return OverflowResult::MayOverflow;
3974 /// Return true if we can prove that adding the two values of the
3975 /// knownbits will not overflow.
3976 /// Otherwise return false.
3977 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3978 const KnownBits &RHSKnown) {
3979 // Addition of two 2's complement numbers having opposite signs will never
3980 // overflow.
3981 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3982 (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3983 return true;
3985 // If either of the values is known to be non-negative, adding them can only
3986 // overflow if the second is also non-negative, so we can assume that.
3987 // Two non-negative numbers will only overflow if there is a carry to the
3988 // sign bit, so we can check if even when the values are as big as possible
3989 // there is no overflow to the sign bit.
3990 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3991 APInt MaxLHS = ~LHSKnown.Zero;
3992 MaxLHS.clearSignBit();
3993 APInt MaxRHS = ~RHSKnown.Zero;
3994 MaxRHS.clearSignBit();
3995 APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3996 return Result.isSignBitClear();
3999 // If either of the values is known to be negative, adding them can only
4000 // overflow if the second is also negative, so we can assume that.
4001 // Two negative number will only overflow if there is no carry to the sign
4002 // bit, so we can check if even when the values are as small as possible
4003 // there is overflow to the sign bit.
4004 if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4005 APInt MinLHS = LHSKnown.One;
4006 MinLHS.clearSignBit();
4007 APInt MinRHS = RHSKnown.One;
4008 MinRHS.clearSignBit();
4009 APInt Result = std::move(MinLHS) + std::move(MinRHS);
4010 return Result.isSignBitSet();
4013 // If we reached here it means that we know nothing about the sign bits.
4014 // In this case we can't know if there will be an overflow, since by
4015 // changing the sign bits any two values can be made to overflow.
4016 return false;
4019 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4020 const Value *RHS,
4021 const AddOperator *Add,
4022 const DataLayout &DL,
4023 AssumptionCache *AC,
4024 const Instruction *CxtI,
4025 const DominatorTree *DT) {
4026 if (Add && Add->hasNoSignedWrap()) {
4027 return OverflowResult::NeverOverflows;
4030 // If LHS and RHS each have at least two sign bits, the addition will look
4031 // like
4033 // XX..... +
4034 // YY.....
4036 // If the carry into the most significant position is 0, X and Y can't both
4037 // be 1 and therefore the carry out of the addition is also 0.
4039 // If the carry into the most significant position is 1, X and Y can't both
4040 // be 0 and therefore the carry out of the addition is also 1.
4042 // Since the carry into the most significant position is always equal to
4043 // the carry out of the addition, there is no signed overflow.
4044 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4045 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4046 return OverflowResult::NeverOverflows;
4048 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4049 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4051 if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4052 return OverflowResult::NeverOverflows;
4054 // The remaining code needs Add to be available. Early returns if not so.
4055 if (!Add)
4056 return OverflowResult::MayOverflow;
4058 // If the sign of Add is the same as at least one of the operands, this add
4059 // CANNOT overflow. This is particularly useful when the sum is
4060 // @llvm.assume'ed non-negative rather than proved so from analyzing its
4061 // operands.
4062 bool LHSOrRHSKnownNonNegative =
4063 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4064 bool LHSOrRHSKnownNegative =
4065 (LHSKnown.isNegative() || RHSKnown.isNegative());
4066 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4067 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4068 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4069 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4070 return OverflowResult::NeverOverflows;
4074 return OverflowResult::MayOverflow;
4077 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4078 const Value *RHS,
4079 const DataLayout &DL,
4080 AssumptionCache *AC,
4081 const Instruction *CxtI,
4082 const DominatorTree *DT) {
4083 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4084 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4085 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4086 if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4087 return OverflowResult::NeverOverflows;
4089 return OverflowResult::MayOverflow;
4092 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4093 const Value *RHS,
4094 const DataLayout &DL,
4095 AssumptionCache *AC,
4096 const Instruction *CxtI,
4097 const DominatorTree *DT) {
4098 // If LHS and RHS each have at least two sign bits, the subtraction
4099 // cannot overflow.
4100 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4101 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4102 return OverflowResult::NeverOverflows;
4104 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4106 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4108 // Subtraction of two 2's complement numbers having identical signs will
4109 // never overflow.
4110 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4111 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4112 return OverflowResult::NeverOverflows;
4114 // TODO: implement logic similar to checkRippleForAdd
4115 return OverflowResult::MayOverflow;
4118 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4119 const DominatorTree &DT) {
4120 #ifndef NDEBUG
4121 auto IID = II->getIntrinsicID();
4122 assert((IID == Intrinsic::sadd_with_overflow ||
4123 IID == Intrinsic::uadd_with_overflow ||
4124 IID == Intrinsic::ssub_with_overflow ||
4125 IID == Intrinsic::usub_with_overflow ||
4126 IID == Intrinsic::smul_with_overflow ||
4127 IID == Intrinsic::umul_with_overflow) &&
4128 "Not an overflow intrinsic!");
4129 #endif
4131 SmallVector<const BranchInst *, 2> GuardingBranches;
4132 SmallVector<const ExtractValueInst *, 2> Results;
4134 for (const User *U : II->users()) {
4135 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4136 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4138 if (EVI->getIndices()[0] == 0)
4139 Results.push_back(EVI);
4140 else {
4141 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4143 for (const auto *U : EVI->users())
4144 if (const auto *B = dyn_cast<BranchInst>(U)) {
4145 assert(B->isConditional() && "How else is it using an i1?");
4146 GuardingBranches.push_back(B);
4149 } else {
4150 // We are using the aggregate directly in a way we don't want to analyze
4151 // here (storing it to a global, say).
4152 return false;
4156 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4157 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4158 if (!NoWrapEdge.isSingleEdge())
4159 return false;
4161 // Check if all users of the add are provably no-wrap.
4162 for (const auto *Result : Results) {
4163 // If the extractvalue itself is not executed on overflow, the we don't
4164 // need to check each use separately, since domination is transitive.
4165 if (DT.dominates(NoWrapEdge, Result->getParent()))
4166 continue;
4168 for (auto &RU : Result->uses())
4169 if (!DT.dominates(NoWrapEdge, RU))
4170 return false;
4173 return true;
4176 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4180 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4181 const DataLayout &DL,
4182 AssumptionCache *AC,
4183 const Instruction *CxtI,
4184 const DominatorTree *DT) {
4185 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4186 Add, DL, AC, CxtI, DT);
4189 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4190 const Value *RHS,
4191 const DataLayout &DL,
4192 AssumptionCache *AC,
4193 const Instruction *CxtI,
4194 const DominatorTree *DT) {
4195 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4198 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4199 // A memory operation returns normally if it isn't volatile. A volatile
4200 // operation is allowed to trap.
4202 // An atomic operation isn't guaranteed to return in a reasonable amount of
4203 // time because it's possible for another thread to interfere with it for an
4204 // arbitrary length of time, but programs aren't allowed to rely on that.
4205 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4206 return !LI->isVolatile();
4207 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4208 return !SI->isVolatile();
4209 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4210 return !CXI->isVolatile();
4211 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4212 return !RMWI->isVolatile();
4213 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4214 return !MII->isVolatile();
4216 // If there is no successor, then execution can't transfer to it.
4217 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4218 return !CRI->unwindsToCaller();
4219 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4220 return !CatchSwitch->unwindsToCaller();
4221 if (isa<ResumeInst>(I))
4222 return false;
4223 if (isa<ReturnInst>(I))
4224 return false;
4225 if (isa<UnreachableInst>(I))
4226 return false;
4228 // Calls can throw, or contain an infinite loop, or kill the process.
4229 if (auto CS = ImmutableCallSite(I)) {
4230 // Call sites that throw have implicit non-local control flow.
4231 if (!CS.doesNotThrow())
4232 return false;
4234 // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4235 // etc. and thus not return. However, LLVM already assumes that
4237 // - Thread exiting actions are modeled as writes to memory invisible to
4238 // the program.
4240 // - Loops that don't have side effects (side effects are volatile/atomic
4241 // stores and IO) always terminate (see http://llvm.org/PR965).
4242 // Furthermore IO itself is also modeled as writes to memory invisible to
4243 // the program.
4245 // We rely on those assumptions here, and use the memory effects of the call
4246 // target as a proxy for checking that it always returns.
4248 // FIXME: This isn't aggressive enough; a call which only writes to a global
4249 // is guaranteed to return.
4250 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4251 match(I, m_Intrinsic<Intrinsic::assume>()) ||
4252 match(I, m_Intrinsic<Intrinsic::sideeffect>());
4255 // Other instructions return normally.
4256 return true;
4259 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4260 // TODO: This is slightly consdervative for invoke instruction since exiting
4261 // via an exception *is* normal control for them.
4262 for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4263 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4264 return false;
4265 return true;
4268 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4269 const Loop *L) {
4270 // The loop header is guaranteed to be executed for every iteration.
4272 // FIXME: Relax this constraint to cover all basic blocks that are
4273 // guaranteed to be executed at every iteration.
4274 if (I->getParent() != L->getHeader()) return false;
4276 for (const Instruction &LI : *L->getHeader()) {
4277 if (&LI == I) return true;
4278 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4280 llvm_unreachable("Instruction not contained in its own parent basic block.");
4283 bool llvm::propagatesFullPoison(const Instruction *I) {
4284 switch (I->getOpcode()) {
4285 case Instruction::Add:
4286 case Instruction::Sub:
4287 case Instruction::Xor:
4288 case Instruction::Trunc:
4289 case Instruction::BitCast:
4290 case Instruction::AddrSpaceCast:
4291 case Instruction::Mul:
4292 case Instruction::Shl:
4293 case Instruction::GetElementPtr:
4294 // These operations all propagate poison unconditionally. Note that poison
4295 // is not any particular value, so xor or subtraction of poison with
4296 // itself still yields poison, not zero.
4297 return true;
4299 case Instruction::AShr:
4300 case Instruction::SExt:
4301 // For these operations, one bit of the input is replicated across
4302 // multiple output bits. A replicated poison bit is still poison.
4303 return true;
4305 case Instruction::ICmp:
4306 // Comparing poison with any value yields poison. This is why, for
4307 // instance, x s< (x +nsw 1) can be folded to true.
4308 return true;
4310 default:
4311 return false;
4315 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4316 switch (I->getOpcode()) {
4317 case Instruction::Store:
4318 return cast<StoreInst>(I)->getPointerOperand();
4320 case Instruction::Load:
4321 return cast<LoadInst>(I)->getPointerOperand();
4323 case Instruction::AtomicCmpXchg:
4324 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4326 case Instruction::AtomicRMW:
4327 return cast<AtomicRMWInst>(I)->getPointerOperand();
4329 case Instruction::UDiv:
4330 case Instruction::SDiv:
4331 case Instruction::URem:
4332 case Instruction::SRem:
4333 return I->getOperand(1);
4335 default:
4336 return nullptr;
4340 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4341 // We currently only look for uses of poison values within the same basic
4342 // block, as that makes it easier to guarantee that the uses will be
4343 // executed given that PoisonI is executed.
4345 // FIXME: Expand this to consider uses beyond the same basic block. To do
4346 // this, look out for the distinction between post-dominance and strong
4347 // post-dominance.
4348 const BasicBlock *BB = PoisonI->getParent();
4350 // Set of instructions that we have proved will yield poison if PoisonI
4351 // does.
4352 SmallSet<const Value *, 16> YieldsPoison;
4353 SmallSet<const BasicBlock *, 4> Visited;
4354 YieldsPoison.insert(PoisonI);
4355 Visited.insert(PoisonI->getParent());
4357 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4359 unsigned Iter = 0;
4360 while (Iter++ < MaxDepth) {
4361 for (auto &I : make_range(Begin, End)) {
4362 if (&I != PoisonI) {
4363 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4364 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4365 return true;
4366 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4367 return false;
4370 // Mark poison that propagates from I through uses of I.
4371 if (YieldsPoison.count(&I)) {
4372 for (const User *User : I.users()) {
4373 const Instruction *UserI = cast<Instruction>(User);
4374 if (propagatesFullPoison(UserI))
4375 YieldsPoison.insert(User);
4380 if (auto *NextBB = BB->getSingleSuccessor()) {
4381 if (Visited.insert(NextBB).second) {
4382 BB = NextBB;
4383 Begin = BB->getFirstNonPHI()->getIterator();
4384 End = BB->end();
4385 continue;
4389 break;
4391 return false;
4394 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4395 if (FMF.noNaNs())
4396 return true;
4398 if (auto *C = dyn_cast<ConstantFP>(V))
4399 return !C->isNaN();
4401 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4402 if (!C->getElementType()->isFloatingPointTy())
4403 return false;
4404 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4405 if (C->getElementAsAPFloat(I).isNaN())
4406 return false;
4408 return true;
4411 return false;
4414 static bool isKnownNonZero(const Value *V) {
4415 if (auto *C = dyn_cast<ConstantFP>(V))
4416 return !C->isZero();
4418 if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4419 if (!C->getElementType()->isFloatingPointTy())
4420 return false;
4421 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4422 if (C->getElementAsAPFloat(I).isZero())
4423 return false;
4425 return true;
4428 return false;
4431 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4432 /// Given non-min/max outer cmp/select from the clamp pattern this
4433 /// function recognizes if it can be substitued by a "canonical" min/max
4434 /// pattern.
4435 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4436 Value *CmpLHS, Value *CmpRHS,
4437 Value *TrueVal, Value *FalseVal,
4438 Value *&LHS, Value *&RHS) {
4439 // Try to match
4440 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4441 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4442 // and return description of the outer Max/Min.
4444 // First, check if select has inverse order:
4445 if (CmpRHS == FalseVal) {
4446 std::swap(TrueVal, FalseVal);
4447 Pred = CmpInst::getInversePredicate(Pred);
4450 // Assume success now. If there's no match, callers should not use these anyway.
4451 LHS = TrueVal;
4452 RHS = FalseVal;
4454 const APFloat *FC1;
4455 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4456 return {SPF_UNKNOWN, SPNB_NA, false};
4458 const APFloat *FC2;
4459 switch (Pred) {
4460 case CmpInst::FCMP_OLT:
4461 case CmpInst::FCMP_OLE:
4462 case CmpInst::FCMP_ULT:
4463 case CmpInst::FCMP_ULE:
4464 if (match(FalseVal,
4465 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4466 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4467 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4468 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4469 break;
4470 case CmpInst::FCMP_OGT:
4471 case CmpInst::FCMP_OGE:
4472 case CmpInst::FCMP_UGT:
4473 case CmpInst::FCMP_UGE:
4474 if (match(FalseVal,
4475 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4476 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4477 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4478 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4479 break;
4480 default:
4481 break;
4484 return {SPF_UNKNOWN, SPNB_NA, false};
4487 /// Recognize variations of:
4488 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4489 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4490 Value *CmpLHS, Value *CmpRHS,
4491 Value *TrueVal, Value *FalseVal) {
4492 // Swap the select operands and predicate to match the patterns below.
4493 if (CmpRHS != TrueVal) {
4494 Pred = ICmpInst::getSwappedPredicate(Pred);
4495 std::swap(TrueVal, FalseVal);
4497 const APInt *C1;
4498 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4499 const APInt *C2;
4500 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4501 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4502 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4503 return {SPF_SMAX, SPNB_NA, false};
4505 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4506 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4507 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4508 return {SPF_SMIN, SPNB_NA, false};
4510 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4511 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4512 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4513 return {SPF_UMAX, SPNB_NA, false};
4515 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4516 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4517 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4518 return {SPF_UMIN, SPNB_NA, false};
4520 return {SPF_UNKNOWN, SPNB_NA, false};
4523 /// Recognize variations of:
4524 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4525 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4526 Value *CmpLHS, Value *CmpRHS,
4527 Value *TVal, Value *FVal,
4528 unsigned Depth) {
4529 // TODO: Allow FP min/max with nnan/nsz.
4530 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4532 Value *A, *B;
4533 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4534 if (!SelectPatternResult::isMinOrMax(L.Flavor))
4535 return {SPF_UNKNOWN, SPNB_NA, false};
4537 Value *C, *D;
4538 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4539 if (L.Flavor != R.Flavor)
4540 return {SPF_UNKNOWN, SPNB_NA, false};
4542 // We have something like: x Pred y ? min(a, b) : min(c, d).
4543 // Try to match the compare to the min/max operations of the select operands.
4544 // First, make sure we have the right compare predicate.
4545 switch (L.Flavor) {
4546 case SPF_SMIN:
4547 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4548 Pred = ICmpInst::getSwappedPredicate(Pred);
4549 std::swap(CmpLHS, CmpRHS);
4551 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4552 break;
4553 return {SPF_UNKNOWN, SPNB_NA, false};
4554 case SPF_SMAX:
4555 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4556 Pred = ICmpInst::getSwappedPredicate(Pred);
4557 std::swap(CmpLHS, CmpRHS);
4559 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4560 break;
4561 return {SPF_UNKNOWN, SPNB_NA, false};
4562 case SPF_UMIN:
4563 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4564 Pred = ICmpInst::getSwappedPredicate(Pred);
4565 std::swap(CmpLHS, CmpRHS);
4567 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4568 break;
4569 return {SPF_UNKNOWN, SPNB_NA, false};
4570 case SPF_UMAX:
4571 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4572 Pred = ICmpInst::getSwappedPredicate(Pred);
4573 std::swap(CmpLHS, CmpRHS);
4575 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4576 break;
4577 return {SPF_UNKNOWN, SPNB_NA, false};
4578 default:
4579 return {SPF_UNKNOWN, SPNB_NA, false};
4582 // If there is a common operand in the already matched min/max and the other
4583 // min/max operands match the compare operands (either directly or inverted),
4584 // then this is min/max of the same flavor.
4586 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4587 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4588 if (D == B) {
4589 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4590 match(A, m_Not(m_Specific(CmpRHS)))))
4591 return {L.Flavor, SPNB_NA, false};
4593 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4594 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4595 if (C == B) {
4596 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4597 match(A, m_Not(m_Specific(CmpRHS)))))
4598 return {L.Flavor, SPNB_NA, false};
4600 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4601 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4602 if (D == A) {
4603 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4604 match(B, m_Not(m_Specific(CmpRHS)))))
4605 return {L.Flavor, SPNB_NA, false};
4607 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4608 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4609 if (C == A) {
4610 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4611 match(B, m_Not(m_Specific(CmpRHS)))))
4612 return {L.Flavor, SPNB_NA, false};
4615 return {SPF_UNKNOWN, SPNB_NA, false};
4618 /// Match non-obvious integer minimum and maximum sequences.
4619 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4620 Value *CmpLHS, Value *CmpRHS,
4621 Value *TrueVal, Value *FalseVal,
4622 Value *&LHS, Value *&RHS,
4623 unsigned Depth) {
4624 // Assume success. If there's no match, callers should not use these anyway.
4625 LHS = TrueVal;
4626 RHS = FalseVal;
4628 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4629 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4630 return SPR;
4632 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4633 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4634 return SPR;
4636 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4637 return {SPF_UNKNOWN, SPNB_NA, false};
4639 // Z = X -nsw Y
4640 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4641 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4642 if (match(TrueVal, m_Zero()) &&
4643 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4644 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4646 // Z = X -nsw Y
4647 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4648 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4649 if (match(FalseVal, m_Zero()) &&
4650 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4651 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4653 const APInt *C1;
4654 if (!match(CmpRHS, m_APInt(C1)))
4655 return {SPF_UNKNOWN, SPNB_NA, false};
4657 // An unsigned min/max can be written with a signed compare.
4658 const APInt *C2;
4659 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4660 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4661 // Is the sign bit set?
4662 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4663 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4664 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4665 C2->isMaxSignedValue())
4666 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4668 // Is the sign bit clear?
4669 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4670 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4671 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4672 C2->isMinSignedValue())
4673 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4676 // Look through 'not' ops to find disguised signed min/max.
4677 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4678 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4679 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4680 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4681 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4683 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4684 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4685 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4686 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4687 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4689 return {SPF_UNKNOWN, SPNB_NA, false};
4692 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4693 assert(X && Y && "Invalid operand");
4695 // X = sub (0, Y) || X = sub nsw (0, Y)
4696 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4697 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4698 return true;
4700 // Y = sub (0, X) || Y = sub nsw (0, X)
4701 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4702 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4703 return true;
4705 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4706 Value *A, *B;
4707 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4708 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4709 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4710 match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4713 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4714 FastMathFlags FMF,
4715 Value *CmpLHS, Value *CmpRHS,
4716 Value *TrueVal, Value *FalseVal,
4717 Value *&LHS, Value *&RHS,
4718 unsigned Depth) {
4719 LHS = CmpLHS;
4720 RHS = CmpRHS;
4722 // Signed zero may return inconsistent results between implementations.
4723 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4724 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4725 // Therefore, we behave conservatively and only proceed if at least one of the
4726 // operands is known to not be zero or if we don't care about signed zero.
4727 switch (Pred) {
4728 default: break;
4729 // FIXME: Include OGT/OLT/UGT/ULT.
4730 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4731 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4732 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4733 !isKnownNonZero(CmpRHS))
4734 return {SPF_UNKNOWN, SPNB_NA, false};
4737 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4738 bool Ordered = false;
4740 // When given one NaN and one non-NaN input:
4741 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4742 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4743 // ordered comparison fails), which could be NaN or non-NaN.
4744 // so here we discover exactly what NaN behavior is required/accepted.
4745 if (CmpInst::isFPPredicate(Pred)) {
4746 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4747 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4749 if (LHSSafe && RHSSafe) {
4750 // Both operands are known non-NaN.
4751 NaNBehavior = SPNB_RETURNS_ANY;
4752 } else if (CmpInst::isOrdered(Pred)) {
4753 // An ordered comparison will return false when given a NaN, so it
4754 // returns the RHS.
4755 Ordered = true;
4756 if (LHSSafe)
4757 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4758 NaNBehavior = SPNB_RETURNS_NAN;
4759 else if (RHSSafe)
4760 NaNBehavior = SPNB_RETURNS_OTHER;
4761 else
4762 // Completely unsafe.
4763 return {SPF_UNKNOWN, SPNB_NA, false};
4764 } else {
4765 Ordered = false;
4766 // An unordered comparison will return true when given a NaN, so it
4767 // returns the LHS.
4768 if (LHSSafe)
4769 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4770 NaNBehavior = SPNB_RETURNS_OTHER;
4771 else if (RHSSafe)
4772 NaNBehavior = SPNB_RETURNS_NAN;
4773 else
4774 // Completely unsafe.
4775 return {SPF_UNKNOWN, SPNB_NA, false};
4779 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4780 std::swap(CmpLHS, CmpRHS);
4781 Pred = CmpInst::getSwappedPredicate(Pred);
4782 if (NaNBehavior == SPNB_RETURNS_NAN)
4783 NaNBehavior = SPNB_RETURNS_OTHER;
4784 else if (NaNBehavior == SPNB_RETURNS_OTHER)
4785 NaNBehavior = SPNB_RETURNS_NAN;
4786 Ordered = !Ordered;
4789 // ([if]cmp X, Y) ? X : Y
4790 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4791 switch (Pred) {
4792 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4793 case ICmpInst::ICMP_UGT:
4794 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4795 case ICmpInst::ICMP_SGT:
4796 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4797 case ICmpInst::ICMP_ULT:
4798 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4799 case ICmpInst::ICMP_SLT:
4800 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4801 case FCmpInst::FCMP_UGT:
4802 case FCmpInst::FCMP_UGE:
4803 case FCmpInst::FCMP_OGT:
4804 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4805 case FCmpInst::FCMP_ULT:
4806 case FCmpInst::FCMP_ULE:
4807 case FCmpInst::FCMP_OLT:
4808 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4812 if (isKnownNegation(TrueVal, FalseVal)) {
4813 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4814 // match against either LHS or sext(LHS).
4815 auto MaybeSExtCmpLHS =
4816 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4817 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4818 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4819 if (match(TrueVal, MaybeSExtCmpLHS)) {
4820 // Set the return values. If the compare uses the negated value (-X >s 0),
4821 // swap the return values because the negated value is always 'RHS'.
4822 LHS = TrueVal;
4823 RHS = FalseVal;
4824 if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4825 std::swap(LHS, RHS);
4827 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4828 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4829 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4830 return {SPF_ABS, SPNB_NA, false};
4832 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4833 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4834 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4835 return {SPF_NABS, SPNB_NA, false};
4837 else if (match(FalseVal, MaybeSExtCmpLHS)) {
4838 // Set the return values. If the compare uses the negated value (-X >s 0),
4839 // swap the return values because the negated value is always 'RHS'.
4840 LHS = FalseVal;
4841 RHS = TrueVal;
4842 if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4843 std::swap(LHS, RHS);
4845 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4846 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4847 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4848 return {SPF_NABS, SPNB_NA, false};
4850 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4851 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4852 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4853 return {SPF_ABS, SPNB_NA, false};
4857 if (CmpInst::isIntPredicate(Pred))
4858 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4860 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4861 // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4862 // semantics than minNum. Be conservative in such case.
4863 if (NaNBehavior != SPNB_RETURNS_ANY ||
4864 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4865 !isKnownNonZero(CmpRHS)))
4866 return {SPF_UNKNOWN, SPNB_NA, false};
4868 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4871 /// Helps to match a select pattern in case of a type mismatch.
4873 /// The function processes the case when type of true and false values of a
4874 /// select instruction differs from type of the cmp instruction operands because
4875 /// of a cast instruction. The function checks if it is legal to move the cast
4876 /// operation after "select". If yes, it returns the new second value of
4877 /// "select" (with the assumption that cast is moved):
4878 /// 1. As operand of cast instruction when both values of "select" are same cast
4879 /// instructions.
4880 /// 2. As restored constant (by applying reverse cast operation) when the first
4881 /// value of the "select" is a cast operation and the second value is a
4882 /// constant.
4883 /// NOTE: We return only the new second value because the first value could be
4884 /// accessed as operand of cast instruction.
4885 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4886 Instruction::CastOps *CastOp) {
4887 auto *Cast1 = dyn_cast<CastInst>(V1);
4888 if (!Cast1)
4889 return nullptr;
4891 *CastOp = Cast1->getOpcode();
4892 Type *SrcTy = Cast1->getSrcTy();
4893 if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4894 // If V1 and V2 are both the same cast from the same type, look through V1.
4895 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4896 return Cast2->getOperand(0);
4897 return nullptr;
4900 auto *C = dyn_cast<Constant>(V2);
4901 if (!C)
4902 return nullptr;
4904 Constant *CastedTo = nullptr;
4905 switch (*CastOp) {
4906 case Instruction::ZExt:
4907 if (CmpI->isUnsigned())
4908 CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4909 break;
4910 case Instruction::SExt:
4911 if (CmpI->isSigned())
4912 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4913 break;
4914 case Instruction::Trunc:
4915 Constant *CmpConst;
4916 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4917 CmpConst->getType() == SrcTy) {
4918 // Here we have the following case:
4920 // %cond = cmp iN %x, CmpConst
4921 // %tr = trunc iN %x to iK
4922 // %narrowsel = select i1 %cond, iK %t, iK C
4924 // We can always move trunc after select operation:
4926 // %cond = cmp iN %x, CmpConst
4927 // %widesel = select i1 %cond, iN %x, iN CmpConst
4928 // %tr = trunc iN %widesel to iK
4930 // Note that C could be extended in any way because we don't care about
4931 // upper bits after truncation. It can't be abs pattern, because it would
4932 // look like:
4934 // select i1 %cond, x, -x.
4936 // So only min/max pattern could be matched. Such match requires widened C
4937 // == CmpConst. That is why set widened C = CmpConst, condition trunc
4938 // CmpConst == C is checked below.
4939 CastedTo = CmpConst;
4940 } else {
4941 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4943 break;
4944 case Instruction::FPTrunc:
4945 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4946 break;
4947 case Instruction::FPExt:
4948 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4949 break;
4950 case Instruction::FPToUI:
4951 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4952 break;
4953 case Instruction::FPToSI:
4954 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4955 break;
4956 case Instruction::UIToFP:
4957 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4958 break;
4959 case Instruction::SIToFP:
4960 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4961 break;
4962 default:
4963 break;
4966 if (!CastedTo)
4967 return nullptr;
4969 // Make sure the cast doesn't lose any information.
4970 Constant *CastedBack =
4971 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4972 if (CastedBack != C)
4973 return nullptr;
4975 return CastedTo;
4978 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4979 Instruction::CastOps *CastOp,
4980 unsigned Depth) {
4981 if (Depth >= MaxDepth)
4982 return {SPF_UNKNOWN, SPNB_NA, false};
4984 SelectInst *SI = dyn_cast<SelectInst>(V);
4985 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4987 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4988 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4990 CmpInst::Predicate Pred = CmpI->getPredicate();
4991 Value *CmpLHS = CmpI->getOperand(0);
4992 Value *CmpRHS = CmpI->getOperand(1);
4993 Value *TrueVal = SI->getTrueValue();
4994 Value *FalseVal = SI->getFalseValue();
4995 FastMathFlags FMF;
4996 if (isa<FPMathOperator>(CmpI))
4997 FMF = CmpI->getFastMathFlags();
4999 // Bail out early.
5000 if (CmpI->isEquality())
5001 return {SPF_UNKNOWN, SPNB_NA, false};
5003 // Deal with type mismatches.
5004 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5005 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5006 // If this is a potential fmin/fmax with a cast to integer, then ignore
5007 // -0.0 because there is no corresponding integer value.
5008 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5009 FMF.setNoSignedZeros();
5010 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5011 cast<CastInst>(TrueVal)->getOperand(0), C,
5012 LHS, RHS, Depth);
5014 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5015 // If this is a potential fmin/fmax with a cast to integer, then ignore
5016 // -0.0 because there is no corresponding integer value.
5017 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5018 FMF.setNoSignedZeros();
5019 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5020 C, cast<CastInst>(FalseVal)->getOperand(0),
5021 LHS, RHS, Depth);
5024 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5025 LHS, RHS, Depth);
5028 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5029 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5030 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5031 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5032 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5033 if (SPF == SPF_FMINNUM)
5034 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5035 if (SPF == SPF_FMAXNUM)
5036 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5037 llvm_unreachable("unhandled!");
5040 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5041 if (SPF == SPF_SMIN) return SPF_SMAX;
5042 if (SPF == SPF_UMIN) return SPF_UMAX;
5043 if (SPF == SPF_SMAX) return SPF_SMIN;
5044 if (SPF == SPF_UMAX) return SPF_UMIN;
5045 llvm_unreachable("unhandled!");
5048 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5049 return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5052 /// Return true if "icmp Pred LHS RHS" is always true.
5053 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5054 const Value *RHS, const DataLayout &DL,
5055 unsigned Depth) {
5056 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5057 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5058 return true;
5060 switch (Pred) {
5061 default:
5062 return false;
5064 case CmpInst::ICMP_SLE: {
5065 const APInt *C;
5067 // LHS s<= LHS +_{nsw} C if C >= 0
5068 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5069 return !C->isNegative();
5070 return false;
5073 case CmpInst::ICMP_ULE: {
5074 const APInt *C;
5076 // LHS u<= LHS +_{nuw} C for any C
5077 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5078 return true;
5080 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5081 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5082 const Value *&X,
5083 const APInt *&CA, const APInt *&CB) {
5084 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5085 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5086 return true;
5088 // If X & C == 0 then (X | C) == X +_{nuw} C
5089 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5090 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5091 KnownBits Known(CA->getBitWidth());
5092 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5093 /*CxtI*/ nullptr, /*DT*/ nullptr);
5094 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5095 return true;
5098 return false;
5101 const Value *X;
5102 const APInt *CLHS, *CRHS;
5103 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5104 return CLHS->ule(*CRHS);
5106 return false;
5111 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5112 /// ALHS ARHS" is true. Otherwise, return None.
5113 static Optional<bool>
5114 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5115 const Value *ARHS, const Value *BLHS, const Value *BRHS,
5116 const DataLayout &DL, unsigned Depth) {
5117 switch (Pred) {
5118 default:
5119 return None;
5121 case CmpInst::ICMP_SLT:
5122 case CmpInst::ICMP_SLE:
5123 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5124 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5125 return true;
5126 return None;
5128 case CmpInst::ICMP_ULT:
5129 case CmpInst::ICMP_ULE:
5130 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5131 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5132 return true;
5133 return None;
5137 /// Return true if the operands of the two compares match. IsSwappedOps is true
5138 /// when the operands match, but are swapped.
5139 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5140 const Value *BLHS, const Value *BRHS,
5141 bool &IsSwappedOps) {
5143 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5144 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5145 return IsMatchingOps || IsSwappedOps;
5148 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
5149 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
5150 /// BRHS" is false. Otherwise, return None if we can't infer anything.
5151 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5152 const Value *ALHS,
5153 const Value *ARHS,
5154 CmpInst::Predicate BPred,
5155 const Value *BLHS,
5156 const Value *BRHS,
5157 bool IsSwappedOps) {
5158 // Canonicalize the operands so they're matching.
5159 if (IsSwappedOps) {
5160 std::swap(BLHS, BRHS);
5161 BPred = ICmpInst::getSwappedPredicate(BPred);
5163 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5164 return true;
5165 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5166 return false;
5168 return None;
5171 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
5172 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
5173 /// C2" is false. Otherwise, return None if we can't infer anything.
5174 static Optional<bool>
5175 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
5176 const ConstantInt *C1,
5177 CmpInst::Predicate BPred,
5178 const Value *BLHS, const ConstantInt *C2) {
5179 assert(ALHS == BLHS && "LHS operands must match.");
5180 ConstantRange DomCR =
5181 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5182 ConstantRange CR =
5183 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5184 ConstantRange Intersection = DomCR.intersectWith(CR);
5185 ConstantRange Difference = DomCR.difference(CR);
5186 if (Intersection.isEmptySet())
5187 return false;
5188 if (Difference.isEmptySet())
5189 return true;
5190 return None;
5193 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5194 /// false. Otherwise, return None if we can't infer anything.
5195 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5196 const ICmpInst *RHS,
5197 const DataLayout &DL, bool LHSIsTrue,
5198 unsigned Depth) {
5199 Value *ALHS = LHS->getOperand(0);
5200 Value *ARHS = LHS->getOperand(1);
5201 // The rest of the logic assumes the LHS condition is true. If that's not the
5202 // case, invert the predicate to make it so.
5203 ICmpInst::Predicate APred =
5204 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5206 Value *BLHS = RHS->getOperand(0);
5207 Value *BRHS = RHS->getOperand(1);
5208 ICmpInst::Predicate BPred = RHS->getPredicate();
5210 // Can we infer anything when the two compares have matching operands?
5211 bool IsSwappedOps;
5212 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
5213 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5214 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
5215 return Implication;
5216 // No amount of additional analysis will infer the second condition, so
5217 // early exit.
5218 return None;
5221 // Can we infer anything when the LHS operands match and the RHS operands are
5222 // constants (not necessarily matching)?
5223 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5224 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5225 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
5226 cast<ConstantInt>(BRHS)))
5227 return Implication;
5228 // No amount of additional analysis will infer the second condition, so
5229 // early exit.
5230 return None;
5233 if (APred == BPred)
5234 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5235 return None;
5238 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
5239 /// false. Otherwise, return None if we can't infer anything. We expect the
5240 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5241 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5242 const ICmpInst *RHS,
5243 const DataLayout &DL, bool LHSIsTrue,
5244 unsigned Depth) {
5245 // The LHS must be an 'or' or an 'and' instruction.
5246 assert((LHS->getOpcode() == Instruction::And ||
5247 LHS->getOpcode() == Instruction::Or) &&
5248 "Expected LHS to be 'and' or 'or'.");
5250 assert(Depth <= MaxDepth && "Hit recursion limit");
5252 // If the result of an 'or' is false, then we know both legs of the 'or' are
5253 // false. Similarly, if the result of an 'and' is true, then we know both
5254 // legs of the 'and' are true.
5255 Value *ALHS, *ARHS;
5256 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5257 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5258 // FIXME: Make this non-recursion.
5259 if (Optional<bool> Implication =
5260 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5261 return Implication;
5262 if (Optional<bool> Implication =
5263 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5264 return Implication;
5265 return None;
5267 return None;
5270 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5271 const DataLayout &DL, bool LHSIsTrue,
5272 unsigned Depth) {
5273 // Bail out when we hit the limit.
5274 if (Depth == MaxDepth)
5275 return None;
5277 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5278 // example.
5279 if (LHS->getType() != RHS->getType())
5280 return None;
5282 Type *OpTy = LHS->getType();
5283 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5285 // LHS ==> RHS by definition
5286 if (LHS == RHS)
5287 return LHSIsTrue;
5289 // FIXME: Extending the code below to handle vectors.
5290 if (OpTy->isVectorTy())
5291 return None;
5293 assert(OpTy->isIntegerTy(1) && "implied by above");
5295 // Both LHS and RHS are icmps.
5296 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5297 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5298 if (LHSCmp && RHSCmp)
5299 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5301 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
5302 // an icmp. FIXME: Add support for and/or on the RHS.
5303 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5304 if (LHSBO && RHSCmp) {
5305 if ((LHSBO->getOpcode() == Instruction::And ||
5306 LHSBO->getOpcode() == Instruction::Or))
5307 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5309 return None;