1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass forwards branches to unconditional branches to make them branch
11 // directly to the target block. This pass often results in dead MBB's, which
14 // Note that this pass must be run after register allocation, it cannot handle
15 // SSA form. It also must handle virtual registers for targets that emit virtual
18 //===----------------------------------------------------------------------===//
20 #include "BranchFolding.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/Analysis.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineModuleInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetPassConfig.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/MC/LaneBitmask.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
68 #define DEBUG_TYPE "branch-folder"
70 STATISTIC(NumDeadBlocks
, "Number of dead blocks removed");
71 STATISTIC(NumBranchOpts
, "Number of branches optimized");
72 STATISTIC(NumTailMerge
, "Number of block tails merged");
73 STATISTIC(NumHoist
, "Number of times common instructions are hoisted");
74 STATISTIC(NumTailCalls
, "Number of tail calls optimized");
76 static cl::opt
<cl::boolOrDefault
> FlagEnableTailMerge("enable-tail-merge",
77 cl::init(cl::BOU_UNSET
), cl::Hidden
);
79 // Throttle for huge numbers of predecessors (compile speed problems)
80 static cl::opt
<unsigned>
81 TailMergeThreshold("tail-merge-threshold",
82 cl::desc("Max number of predecessors to consider tail merging"),
83 cl::init(150), cl::Hidden
);
85 // Heuristic for tail merging (and, inversely, tail duplication).
86 // TODO: This should be replaced with a target query.
87 static cl::opt
<unsigned>
88 TailMergeSize("tail-merge-size",
89 cl::desc("Min number of instructions to consider tail merging"),
90 cl::init(3), cl::Hidden
);
94 /// BranchFolderPass - Wrap branch folder in a machine function pass.
95 class BranchFolderPass
: public MachineFunctionPass
{
99 explicit BranchFolderPass(): MachineFunctionPass(ID
) {}
101 bool runOnMachineFunction(MachineFunction
&MF
) override
;
103 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
104 AU
.addRequired
<MachineBlockFrequencyInfo
>();
105 AU
.addRequired
<MachineBranchProbabilityInfo
>();
106 AU
.addRequired
<TargetPassConfig
>();
107 MachineFunctionPass::getAnalysisUsage(AU
);
111 } // end anonymous namespace
113 char BranchFolderPass::ID
= 0;
115 char &llvm::BranchFolderPassID
= BranchFolderPass::ID
;
117 INITIALIZE_PASS(BranchFolderPass
, DEBUG_TYPE
,
118 "Control Flow Optimizer", false, false)
120 bool BranchFolderPass::runOnMachineFunction(MachineFunction
&MF
) {
121 if (skipFunction(MF
.getFunction()))
124 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
125 // TailMerge can create jump into if branches that make CFG irreducible for
126 // HW that requires structurized CFG.
127 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
128 PassConfig
->getEnableTailMerge();
129 BranchFolder::MBFIWrapper
MBBFreqInfo(
130 getAnalysis
<MachineBlockFrequencyInfo
>());
131 BranchFolder
Folder(EnableTailMerge
, /*CommonHoist=*/true, MBBFreqInfo
,
132 getAnalysis
<MachineBranchProbabilityInfo
>());
133 return Folder
.OptimizeFunction(MF
, MF
.getSubtarget().getInstrInfo(),
134 MF
.getSubtarget().getRegisterInfo(),
135 getAnalysisIfAvailable
<MachineModuleInfo
>());
138 BranchFolder::BranchFolder(bool defaultEnableTailMerge
, bool CommonHoist
,
139 MBFIWrapper
&FreqInfo
,
140 const MachineBranchProbabilityInfo
&ProbInfo
,
141 unsigned MinTailLength
)
142 : EnableHoistCommonCode(CommonHoist
), MinCommonTailLength(MinTailLength
),
143 MBBFreqInfo(FreqInfo
), MBPI(ProbInfo
) {
144 if (MinCommonTailLength
== 0)
145 MinCommonTailLength
= TailMergeSize
;
146 switch (FlagEnableTailMerge
) {
147 case cl::BOU_UNSET
: EnableTailMerge
= defaultEnableTailMerge
; break;
148 case cl::BOU_TRUE
: EnableTailMerge
= true; break;
149 case cl::BOU_FALSE
: EnableTailMerge
= false; break;
153 void BranchFolder::RemoveDeadBlock(MachineBasicBlock
*MBB
) {
154 assert(MBB
->pred_empty() && "MBB must be dead!");
155 LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB
);
157 MachineFunction
*MF
= MBB
->getParent();
158 // drop all successors.
159 while (!MBB
->succ_empty())
160 MBB
->removeSuccessor(MBB
->succ_end()-1);
162 // Avoid matching if this pointer gets reused.
163 TriedMerging
.erase(MBB
);
167 EHScopeMembership
.erase(MBB
);
169 MLI
->removeBlock(MBB
);
172 bool BranchFolder::OptimizeFunction(MachineFunction
&MF
,
173 const TargetInstrInfo
*tii
,
174 const TargetRegisterInfo
*tri
,
175 MachineModuleInfo
*mmi
,
176 MachineLoopInfo
*mli
, bool AfterPlacement
) {
177 if (!tii
) return false;
179 TriedMerging
.clear();
181 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
182 AfterBlockPlacement
= AfterPlacement
;
189 UpdateLiveIns
= MRI
.tracksLiveness() && TRI
->trackLivenessAfterRegAlloc(MF
);
191 MRI
.invalidateLiveness();
193 // Fix CFG. The later algorithms expect it to be right.
194 bool MadeChange
= false;
195 for (MachineBasicBlock
&MBB
: MF
) {
196 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
197 SmallVector
<MachineOperand
, 4> Cond
;
198 if (!TII
->analyzeBranch(MBB
, TBB
, FBB
, Cond
, true))
199 MadeChange
|= MBB
.CorrectExtraCFGEdges(TBB
, FBB
, !Cond
.empty());
202 // Recalculate EH scope membership.
203 EHScopeMembership
= getEHScopeMembership(MF
);
205 bool MadeChangeThisIteration
= true;
206 while (MadeChangeThisIteration
) {
207 MadeChangeThisIteration
= TailMergeBlocks(MF
);
208 // No need to clean up if tail merging does not change anything after the
210 if (!AfterBlockPlacement
|| MadeChangeThisIteration
)
211 MadeChangeThisIteration
|= OptimizeBranches(MF
);
212 if (EnableHoistCommonCode
)
213 MadeChangeThisIteration
|= HoistCommonCode(MF
);
214 MadeChange
|= MadeChangeThisIteration
;
217 // See if any jump tables have become dead as the code generator
219 MachineJumpTableInfo
*JTI
= MF
.getJumpTableInfo();
223 // Walk the function to find jump tables that are live.
224 BitVector
JTIsLive(JTI
->getJumpTables().size());
225 for (const MachineBasicBlock
&BB
: MF
) {
226 for (const MachineInstr
&I
: BB
)
227 for (const MachineOperand
&Op
: I
.operands()) {
228 if (!Op
.isJTI()) continue;
230 // Remember that this JT is live.
231 JTIsLive
.set(Op
.getIndex());
235 // Finally, remove dead jump tables. This happens when the
236 // indirect jump was unreachable (and thus deleted).
237 for (unsigned i
= 0, e
= JTIsLive
.size(); i
!= e
; ++i
)
238 if (!JTIsLive
.test(i
)) {
239 JTI
->RemoveJumpTable(i
);
246 //===----------------------------------------------------------------------===//
247 // Tail Merging of Blocks
248 //===----------------------------------------------------------------------===//
250 /// HashMachineInstr - Compute a hash value for MI and its operands.
251 static unsigned HashMachineInstr(const MachineInstr
&MI
) {
252 unsigned Hash
= MI
.getOpcode();
253 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
254 const MachineOperand
&Op
= MI
.getOperand(i
);
256 // Merge in bits from the operand if easy. We can't use MachineOperand's
257 // hash_code here because it's not deterministic and we sort by hash value
259 unsigned OperandHash
= 0;
260 switch (Op
.getType()) {
261 case MachineOperand::MO_Register
:
262 OperandHash
= Op
.getReg();
264 case MachineOperand::MO_Immediate
:
265 OperandHash
= Op
.getImm();
267 case MachineOperand::MO_MachineBasicBlock
:
268 OperandHash
= Op
.getMBB()->getNumber();
270 case MachineOperand::MO_FrameIndex
:
271 case MachineOperand::MO_ConstantPoolIndex
:
272 case MachineOperand::MO_JumpTableIndex
:
273 OperandHash
= Op
.getIndex();
275 case MachineOperand::MO_GlobalAddress
:
276 case MachineOperand::MO_ExternalSymbol
:
277 // Global address / external symbol are too hard, don't bother, but do
278 // pull in the offset.
279 OperandHash
= Op
.getOffset();
285 Hash
+= ((OperandHash
<< 3) | Op
.getType()) << (i
& 31);
290 /// HashEndOfMBB - Hash the last instruction in the MBB.
291 static unsigned HashEndOfMBB(const MachineBasicBlock
&MBB
) {
292 MachineBasicBlock::const_iterator I
= MBB
.getLastNonDebugInstr();
296 return HashMachineInstr(*I
);
299 /// Whether MI should be counted as an instruction when calculating common tail.
300 static bool countsAsInstruction(const MachineInstr
&MI
) {
301 return !(MI
.isDebugValue() || MI
.isCFIInstruction());
304 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
305 /// of instructions they actually have in common together at their end. Return
306 /// iterators for the first shared instruction in each block.
307 static unsigned ComputeCommonTailLength(MachineBasicBlock
*MBB1
,
308 MachineBasicBlock
*MBB2
,
309 MachineBasicBlock::iterator
&I1
,
310 MachineBasicBlock::iterator
&I2
) {
314 unsigned TailLen
= 0;
315 while (I1
!= MBB1
->begin() && I2
!= MBB2
->begin()) {
317 // Skip debugging pseudos; necessary to avoid changing the code.
318 while (!countsAsInstruction(*I1
)) {
319 if (I1
==MBB1
->begin()) {
320 while (!countsAsInstruction(*I2
)) {
321 if (I2
==MBB2
->begin()) {
322 // I1==DBG at begin; I2==DBG at begin
323 goto SkipTopCFIAndReturn
;
328 // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
329 goto SkipTopCFIAndReturn
;
333 // I1==first (untested) non-DBG preceding known match
334 while (!countsAsInstruction(*I2
)) {
335 if (I2
==MBB2
->begin()) {
337 // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
338 goto SkipTopCFIAndReturn
;
342 // I1, I2==first (untested) non-DBGs preceding known match
343 if (!I1
->isIdenticalTo(*I2
) ||
344 // FIXME: This check is dubious. It's used to get around a problem where
345 // people incorrectly expect inline asm directives to remain in the same
346 // relative order. This is untenable because normal compiler
347 // optimizations (like this one) may reorder and/or merge these
355 // Back past possible debugging pseudos at beginning of block. This matters
356 // when one block differs from the other only by whether debugging pseudos
357 // are present at the beginning. (This way, the various checks later for
358 // I1==MBB1->begin() work as expected.)
359 if (I1
== MBB1
->begin() && I2
!= MBB2
->begin()) {
361 while (I2
->isDebugInstr()) {
362 if (I2
== MBB2
->begin())
368 if (I2
== MBB2
->begin() && I1
!= MBB1
->begin()) {
370 while (I1
->isDebugInstr()) {
371 if (I1
== MBB1
->begin())
379 // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
380 // I1 and I2 are non-identical when compared and then one or both of them ends
381 // up pointing to a CFI instruction after being incremented. For example:
386 ADD32ri8 <- last common instruction
392 ADD32ri8 <- last common instruction
395 // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
396 // incrementing the iterators, I1 will point to ADD, however I2 will point to
397 // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
398 // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
400 while (I1
!= MBB1
->end() && I1
->isCFIInstruction()) {
404 while (I2
!= MBB2
->end() && I2
->isCFIInstruction()) {
411 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst
,
412 MachineBasicBlock
&NewDest
) {
414 // OldInst should always point to an instruction.
415 MachineBasicBlock
&OldMBB
= *OldInst
->getParent();
417 LiveRegs
.addLiveOuts(OldMBB
);
418 // Move backward to the place where will insert the jump.
419 MachineBasicBlock::iterator I
= OldMBB
.end();
422 LiveRegs
.stepBackward(*I
);
423 } while (I
!= OldInst
);
425 // Merging the tails may have switched some undef operand to non-undef ones.
426 // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
428 for (MachineBasicBlock::RegisterMaskPair P
: NewDest
.liveins()) {
429 // We computed the liveins with computeLiveIn earlier and should only see
431 assert(P
.LaneMask
== LaneBitmask::getAll() &&
432 "Can only handle full register.");
433 MCPhysReg Reg
= P
.PhysReg
;
434 if (!LiveRegs
.available(*MRI
, Reg
))
437 BuildMI(OldMBB
, OldInst
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
), Reg
);
441 TII
->ReplaceTailWithBranchTo(OldInst
, &NewDest
);
445 MachineBasicBlock
*BranchFolder::SplitMBBAt(MachineBasicBlock
&CurMBB
,
446 MachineBasicBlock::iterator BBI1
,
447 const BasicBlock
*BB
) {
448 if (!TII
->isLegalToSplitMBBAt(CurMBB
, BBI1
))
451 MachineFunction
&MF
= *CurMBB
.getParent();
453 // Create the fall-through block.
454 MachineFunction::iterator MBBI
= CurMBB
.getIterator();
455 MachineBasicBlock
*NewMBB
= MF
.CreateMachineBasicBlock(BB
);
456 CurMBB
.getParent()->insert(++MBBI
, NewMBB
);
458 // Move all the successors of this block to the specified block.
459 NewMBB
->transferSuccessors(&CurMBB
);
461 // Add an edge from CurMBB to NewMBB for the fall-through.
462 CurMBB
.addSuccessor(NewMBB
);
464 // Splice the code over.
465 NewMBB
->splice(NewMBB
->end(), &CurMBB
, BBI1
, CurMBB
.end());
467 // NewMBB belongs to the same loop as CurMBB.
469 if (MachineLoop
*ML
= MLI
->getLoopFor(&CurMBB
))
470 ML
->addBasicBlockToLoop(NewMBB
, MLI
->getBase());
472 // NewMBB inherits CurMBB's block frequency.
473 MBBFreqInfo
.setBlockFreq(NewMBB
, MBBFreqInfo
.getBlockFreq(&CurMBB
));
476 computeAndAddLiveIns(LiveRegs
, *NewMBB
);
478 // Add the new block to the EH scope.
479 const auto &EHScopeI
= EHScopeMembership
.find(&CurMBB
);
480 if (EHScopeI
!= EHScopeMembership
.end()) {
481 auto n
= EHScopeI
->second
;
482 EHScopeMembership
[NewMBB
] = n
;
488 /// EstimateRuntime - Make a rough estimate for how long it will take to run
489 /// the specified code.
490 static unsigned EstimateRuntime(MachineBasicBlock::iterator I
,
491 MachineBasicBlock::iterator E
) {
493 for (; I
!= E
; ++I
) {
494 if (!countsAsInstruction(*I
))
498 else if (I
->mayLoad() || I
->mayStore())
506 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
507 // branches temporarily for tail merging). In the case where CurMBB ends
508 // with a conditional branch to the next block, optimize by reversing the
509 // test and conditionally branching to SuccMBB instead.
510 static void FixTail(MachineBasicBlock
*CurMBB
, MachineBasicBlock
*SuccBB
,
511 const TargetInstrInfo
*TII
) {
512 MachineFunction
*MF
= CurMBB
->getParent();
513 MachineFunction::iterator I
= std::next(MachineFunction::iterator(CurMBB
));
514 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
515 SmallVector
<MachineOperand
, 4> Cond
;
516 DebugLoc dl
= CurMBB
->findBranchDebugLoc();
517 if (I
!= MF
->end() && !TII
->analyzeBranch(*CurMBB
, TBB
, FBB
, Cond
, true)) {
518 MachineBasicBlock
*NextBB
= &*I
;
519 if (TBB
== NextBB
&& !Cond
.empty() && !FBB
) {
520 if (!TII
->reverseBranchCondition(Cond
)) {
521 TII
->removeBranch(*CurMBB
);
522 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr, Cond
, dl
);
527 TII
->insertBranch(*CurMBB
, SuccBB
, nullptr,
528 SmallVector
<MachineOperand
, 0>(), dl
);
532 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt
&o
) const {
533 if (getHash() < o
.getHash())
535 if (getHash() > o
.getHash())
537 if (getBlock()->getNumber() < o
.getBlock()->getNumber())
539 if (getBlock()->getNumber() > o
.getBlock()->getNumber())
541 // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
542 // an object with itself.
543 #ifndef _GLIBCXX_DEBUG
544 llvm_unreachable("Predecessor appears twice");
551 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock
*MBB
) const {
552 auto I
= MergedBBFreq
.find(MBB
);
554 if (I
!= MergedBBFreq
.end())
557 return MBFI
.getBlockFreq(MBB
);
560 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock
*MBB
,
562 MergedBBFreq
[MBB
] = F
;
566 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
567 const MachineBasicBlock
*MBB
) const {
568 return MBFI
.printBlockFreq(OS
, getBlockFreq(MBB
));
572 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream
&OS
,
573 const BlockFrequency Freq
) const {
574 return MBFI
.printBlockFreq(OS
, Freq
);
577 void BranchFolder::MBFIWrapper::view(const Twine
&Name
, bool isSimple
) {
578 MBFI
.view(Name
, isSimple
);
582 BranchFolder::MBFIWrapper::getEntryFreq() const {
583 return MBFI
.getEntryFreq();
586 /// CountTerminators - Count the number of terminators in the given
587 /// block and set I to the position of the first non-terminator, if there
588 /// is one, or MBB->end() otherwise.
589 static unsigned CountTerminators(MachineBasicBlock
*MBB
,
590 MachineBasicBlock::iterator
&I
) {
592 unsigned NumTerms
= 0;
594 if (I
== MBB
->begin()) {
599 if (!I
->isTerminator()) break;
605 /// A no successor, non-return block probably ends in unreachable and is cold.
606 /// Also consider a block that ends in an indirect branch to be a return block,
607 /// since many targets use plain indirect branches to return.
608 static bool blockEndsInUnreachable(const MachineBasicBlock
*MBB
) {
609 if (!MBB
->succ_empty())
613 return !(MBB
->back().isReturn() || MBB
->back().isIndirectBranch());
616 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
617 /// and decide if it would be profitable to merge those tails. Return the
618 /// length of the common tail and iterators to the first common instruction
620 /// MBB1, MBB2 The blocks to check
621 /// MinCommonTailLength Minimum size of tail block to be merged.
622 /// CommonTailLen Out parameter to record the size of the shared tail between
624 /// I1, I2 Iterator references that will be changed to point to the first
625 /// instruction in the common tail shared by MBB1,MBB2
626 /// SuccBB A common successor of MBB1, MBB2 which are in a canonical form
627 /// relative to SuccBB
628 /// PredBB The layout predecessor of SuccBB, if any.
629 /// EHScopeMembership map from block to EH scope #.
630 /// AfterPlacement True if we are merging blocks after layout. Stricter
631 /// thresholds apply to prevent undoing tail-duplication.
633 ProfitableToMerge(MachineBasicBlock
*MBB1
, MachineBasicBlock
*MBB2
,
634 unsigned MinCommonTailLength
, unsigned &CommonTailLen
,
635 MachineBasicBlock::iterator
&I1
,
636 MachineBasicBlock::iterator
&I2
, MachineBasicBlock
*SuccBB
,
637 MachineBasicBlock
*PredBB
,
638 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
,
639 bool AfterPlacement
) {
640 // It is never profitable to tail-merge blocks from two different EH scopes.
641 if (!EHScopeMembership
.empty()) {
642 auto EHScope1
= EHScopeMembership
.find(MBB1
);
643 assert(EHScope1
!= EHScopeMembership
.end());
644 auto EHScope2
= EHScopeMembership
.find(MBB2
);
645 assert(EHScope2
!= EHScopeMembership
.end());
646 if (EHScope1
->second
!= EHScope2
->second
)
650 CommonTailLen
= ComputeCommonTailLength(MBB1
, MBB2
, I1
, I2
);
651 if (CommonTailLen
== 0)
653 LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1
)
654 << " and " << printMBBReference(*MBB2
) << " is "
655 << CommonTailLen
<< '\n');
657 // It's almost always profitable to merge any number of non-terminator
658 // instructions with the block that falls through into the common successor.
659 // This is true only for a single successor. For multiple successors, we are
660 // trading a conditional branch for an unconditional one.
661 // TODO: Re-visit successor size for non-layout tail merging.
662 if ((MBB1
== PredBB
|| MBB2
== PredBB
) &&
663 (!AfterPlacement
|| MBB1
->succ_size() == 1)) {
664 MachineBasicBlock::iterator I
;
665 unsigned NumTerms
= CountTerminators(MBB1
== PredBB
? MBB2
: MBB1
, I
);
666 if (CommonTailLen
> NumTerms
)
670 // If these are identical non-return blocks with no successors, merge them.
671 // Such blocks are typically cold calls to noreturn functions like abort, and
672 // are unlikely to become a fallthrough target after machine block placement.
673 // Tail merging these blocks is unlikely to create additional unconditional
674 // branches, and will reduce the size of this cold code.
675 if (I1
== MBB1
->begin() && I2
== MBB2
->begin() &&
676 blockEndsInUnreachable(MBB1
) && blockEndsInUnreachable(MBB2
))
679 // If one of the blocks can be completely merged and happens to be in
680 // a position where the other could fall through into it, merge any number
681 // of instructions, because it can be done without a branch.
682 // TODO: If the blocks are not adjacent, move one of them so that they are?
683 if (MBB1
->isLayoutSuccessor(MBB2
) && I2
== MBB2
->begin())
685 if (MBB2
->isLayoutSuccessor(MBB1
) && I1
== MBB1
->begin())
688 // If both blocks are identical and end in a branch, merge them unless they
689 // both have a fallthrough predecessor and successor.
690 // We can only do this after block placement because it depends on whether
691 // there are fallthroughs, and we don't know until after layout.
692 if (AfterPlacement
&& I1
== MBB1
->begin() && I2
== MBB2
->begin()) {
693 auto BothFallThrough
= [](MachineBasicBlock
*MBB
) {
694 if (MBB
->succ_size() != 0 && !MBB
->canFallThrough())
696 MachineFunction::iterator
I(MBB
);
697 MachineFunction
*MF
= MBB
->getParent();
698 return (MBB
!= &*MF
->begin()) && std::prev(I
)->canFallThrough();
700 if (!BothFallThrough(MBB1
) || !BothFallThrough(MBB2
))
704 // If both blocks have an unconditional branch temporarily stripped out,
705 // count that as an additional common instruction for the following
706 // heuristics. This heuristic is only accurate for single-succ blocks, so to
707 // make sure that during layout merging and duplicating don't crash, we check
708 // for that when merging during layout.
709 unsigned EffectiveTailLen
= CommonTailLen
;
710 if (SuccBB
&& MBB1
!= PredBB
&& MBB2
!= PredBB
&&
711 (MBB1
->succ_size() == 1 || !AfterPlacement
) &&
712 !MBB1
->back().isBarrier() &&
713 !MBB2
->back().isBarrier())
716 // Check if the common tail is long enough to be worthwhile.
717 if (EffectiveTailLen
>= MinCommonTailLength
)
720 // If we are optimizing for code size, 2 instructions in common is enough if
721 // we don't have to split a block. At worst we will be introducing 1 new
722 // branch instruction, which is likely to be smaller than the 2
723 // instructions that would be deleted in the merge.
724 MachineFunction
*MF
= MBB1
->getParent();
725 return EffectiveTailLen
>= 2 && MF
->getFunction().optForSize() &&
726 (I1
== MBB1
->begin() || I2
== MBB2
->begin());
729 unsigned BranchFolder::ComputeSameTails(unsigned CurHash
,
730 unsigned MinCommonTailLength
,
731 MachineBasicBlock
*SuccBB
,
732 MachineBasicBlock
*PredBB
) {
733 unsigned maxCommonTailLength
= 0U;
735 MachineBasicBlock::iterator TrialBBI1
, TrialBBI2
;
736 MPIterator HighestMPIter
= std::prev(MergePotentials
.end());
737 for (MPIterator CurMPIter
= std::prev(MergePotentials
.end()),
738 B
= MergePotentials
.begin();
739 CurMPIter
!= B
&& CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
740 for (MPIterator I
= std::prev(CurMPIter
); I
->getHash() == CurHash
; --I
) {
741 unsigned CommonTailLen
;
742 if (ProfitableToMerge(CurMPIter
->getBlock(), I
->getBlock(),
744 CommonTailLen
, TrialBBI1
, TrialBBI2
,
747 AfterBlockPlacement
)) {
748 if (CommonTailLen
> maxCommonTailLength
) {
750 maxCommonTailLength
= CommonTailLen
;
751 HighestMPIter
= CurMPIter
;
752 SameTails
.push_back(SameTailElt(CurMPIter
, TrialBBI1
));
754 if (HighestMPIter
== CurMPIter
&&
755 CommonTailLen
== maxCommonTailLength
)
756 SameTails
.push_back(SameTailElt(I
, TrialBBI2
));
762 return maxCommonTailLength
;
765 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash
,
766 MachineBasicBlock
*SuccBB
,
767 MachineBasicBlock
*PredBB
) {
768 MPIterator CurMPIter
, B
;
769 for (CurMPIter
= std::prev(MergePotentials
.end()),
770 B
= MergePotentials
.begin();
771 CurMPIter
->getHash() == CurHash
; --CurMPIter
) {
772 // Put the unconditional branch back, if we need one.
773 MachineBasicBlock
*CurMBB
= CurMPIter
->getBlock();
774 if (SuccBB
&& CurMBB
!= PredBB
)
775 FixTail(CurMBB
, SuccBB
, TII
);
779 if (CurMPIter
->getHash() != CurHash
)
781 MergePotentials
.erase(CurMPIter
, MergePotentials
.end());
784 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock
*&PredBB
,
785 MachineBasicBlock
*SuccBB
,
786 unsigned maxCommonTailLength
,
787 unsigned &commonTailIndex
) {
789 unsigned TimeEstimate
= ~0U;
790 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
791 // Use PredBB if possible; that doesn't require a new branch.
792 if (SameTails
[i
].getBlock() == PredBB
) {
796 // Otherwise, make a (fairly bogus) choice based on estimate of
797 // how long it will take the various blocks to execute.
798 unsigned t
= EstimateRuntime(SameTails
[i
].getBlock()->begin(),
799 SameTails
[i
].getTailStartPos());
800 if (t
<= TimeEstimate
) {
806 MachineBasicBlock::iterator BBI
=
807 SameTails
[commonTailIndex
].getTailStartPos();
808 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
810 LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB
) << ", size "
811 << maxCommonTailLength
);
813 // If the split block unconditionally falls-thru to SuccBB, it will be
814 // merged. In control flow terms it should then take SuccBB's name. e.g. If
815 // SuccBB is an inner loop, the common tail is still part of the inner loop.
816 const BasicBlock
*BB
= (SuccBB
&& MBB
->succ_size() == 1) ?
817 SuccBB
->getBasicBlock() : MBB
->getBasicBlock();
818 MachineBasicBlock
*newMBB
= SplitMBBAt(*MBB
, BBI
, BB
);
820 LLVM_DEBUG(dbgs() << "... failed!");
824 SameTails
[commonTailIndex
].setBlock(newMBB
);
825 SameTails
[commonTailIndex
].setTailStartPos(newMBB
->begin());
827 // If we split PredBB, newMBB is the new predecessor.
835 mergeOperations(MachineBasicBlock::iterator MBBIStartPos
,
836 MachineBasicBlock
&MBBCommon
) {
837 MachineBasicBlock
*MBB
= MBBIStartPos
->getParent();
838 // Note CommonTailLen does not necessarily matches the size of
839 // the common BB nor all its instructions because of debug
840 // instructions differences.
841 unsigned CommonTailLen
= 0;
842 for (auto E
= MBB
->end(); MBBIStartPos
!= E
; ++MBBIStartPos
)
845 MachineBasicBlock::reverse_iterator MBBI
= MBB
->rbegin();
846 MachineBasicBlock::reverse_iterator MBBIE
= MBB
->rend();
847 MachineBasicBlock::reverse_iterator MBBICommon
= MBBCommon
.rbegin();
848 MachineBasicBlock::reverse_iterator MBBIECommon
= MBBCommon
.rend();
850 while (CommonTailLen
--) {
851 assert(MBBI
!= MBBIE
&& "Reached BB end within common tail length!");
854 if (!countsAsInstruction(*MBBI
)) {
859 while ((MBBICommon
!= MBBIECommon
) && !countsAsInstruction(*MBBICommon
))
862 assert(MBBICommon
!= MBBIECommon
&&
863 "Reached BB end within common tail length!");
864 assert(MBBICommon
->isIdenticalTo(*MBBI
) && "Expected matching MIIs!");
866 // Merge MMOs from memory operations in the common block.
867 if (MBBICommon
->mayLoad() || MBBICommon
->mayStore())
868 MBBICommon
->cloneMergedMemRefs(*MBB
->getParent(), {&*MBBICommon
, &*MBBI
});
869 // Drop undef flags if they aren't present in all merged instructions.
870 for (unsigned I
= 0, E
= MBBICommon
->getNumOperands(); I
!= E
; ++I
) {
871 MachineOperand
&MO
= MBBICommon
->getOperand(I
);
872 if (MO
.isReg() && MO
.isUndef()) {
873 const MachineOperand
&OtherMO
= MBBI
->getOperand(I
);
874 if (!OtherMO
.isUndef())
875 MO
.setIsUndef(false);
884 void BranchFolder::mergeCommonTails(unsigned commonTailIndex
) {
885 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
887 std::vector
<MachineBasicBlock::iterator
> NextCommonInsts(SameTails
.size());
888 for (unsigned int i
= 0 ; i
!= SameTails
.size() ; ++i
) {
889 if (i
!= commonTailIndex
) {
890 NextCommonInsts
[i
] = SameTails
[i
].getTailStartPos();
891 mergeOperations(SameTails
[i
].getTailStartPos(), *MBB
);
893 assert(SameTails
[i
].getTailStartPos() == MBB
->begin() &&
894 "MBB is not a common tail only block");
898 for (auto &MI
: *MBB
) {
899 if (!countsAsInstruction(MI
))
901 DebugLoc DL
= MI
.getDebugLoc();
902 for (unsigned int i
= 0 ; i
< NextCommonInsts
.size() ; i
++) {
903 if (i
== commonTailIndex
)
906 auto &Pos
= NextCommonInsts
[i
];
907 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
908 "Reached BB end within common tail");
909 while (!countsAsInstruction(*Pos
)) {
911 assert(Pos
!= SameTails
[i
].getBlock()->end() &&
912 "Reached BB end within common tail");
914 assert(MI
.isIdenticalTo(*Pos
) && "Expected matching MIIs!");
915 DL
= DILocation::getMergedLocation(DL
, Pos
->getDebugLoc());
916 NextCommonInsts
[i
] = ++Pos
;
922 LivePhysRegs
NewLiveIns(*TRI
);
923 computeLiveIns(NewLiveIns
, *MBB
);
926 // The flag merging may lead to some register uses no longer using the
927 // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
928 for (MachineBasicBlock
*Pred
: MBB
->predecessors()) {
930 LiveRegs
.addLiveOuts(*Pred
);
931 MachineBasicBlock::iterator InsertBefore
= Pred
->getFirstTerminator();
932 for (unsigned Reg
: NewLiveIns
) {
933 if (!LiveRegs
.available(*MRI
, Reg
))
936 BuildMI(*Pred
, InsertBefore
, DL
, TII
->get(TargetOpcode::IMPLICIT_DEF
),
942 addLiveIns(*MBB
, NewLiveIns
);
946 // See if any of the blocks in MergePotentials (which all have SuccBB as a
947 // successor, or all have no successor if it is null) can be tail-merged.
948 // If there is a successor, any blocks in MergePotentials that are not
949 // tail-merged and are not immediately before Succ must have an unconditional
950 // branch to Succ added (but the predecessor/successor lists need no
951 // adjustment). The lone predecessor of Succ that falls through into Succ,
952 // if any, is given in PredBB.
953 // MinCommonTailLength - Except for the special cases below, tail-merge if
954 // there are at least this many instructions in common.
955 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock
*SuccBB
,
956 MachineBasicBlock
*PredBB
,
957 unsigned MinCommonTailLength
) {
958 bool MadeChange
= false;
961 dbgs() << "\nTryTailMergeBlocks: ";
962 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
) dbgs()
963 << printMBBReference(*MergePotentials
[i
].getBlock())
964 << (i
== e
- 1 ? "" : ", ");
965 dbgs() << "\n"; if (SuccBB
) {
966 dbgs() << " with successor " << printMBBReference(*SuccBB
) << '\n';
968 dbgs() << " which has fall-through from "
969 << printMBBReference(*PredBB
) << "\n";
970 } dbgs() << "Looking for common tails of at least "
971 << MinCommonTailLength
<< " instruction"
972 << (MinCommonTailLength
== 1 ? "" : "s") << '\n';);
974 // Sort by hash value so that blocks with identical end sequences sort
976 array_pod_sort(MergePotentials
.begin(), MergePotentials
.end());
978 // Walk through equivalence sets looking for actual exact matches.
979 while (MergePotentials
.size() > 1) {
980 unsigned CurHash
= MergePotentials
.back().getHash();
982 // Build SameTails, identifying the set of blocks with this hash code
983 // and with the maximum number of instructions in common.
984 unsigned maxCommonTailLength
= ComputeSameTails(CurHash
,
988 // If we didn't find any pair that has at least MinCommonTailLength
989 // instructions in common, remove all blocks with this hash code and retry.
990 if (SameTails
.empty()) {
991 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
995 // If one of the blocks is the entire common tail (and not the entry
996 // block, which we can't jump to), we can treat all blocks with this same
997 // tail at once. Use PredBB if that is one of the possibilities, as that
998 // will not introduce any extra branches.
999 MachineBasicBlock
*EntryBB
=
1000 &MergePotentials
.front().getBlock()->getParent()->front();
1001 unsigned commonTailIndex
= SameTails
.size();
1002 // If there are two blocks, check to see if one can be made to fall through
1004 if (SameTails
.size() == 2 &&
1005 SameTails
[0].getBlock()->isLayoutSuccessor(SameTails
[1].getBlock()) &&
1006 SameTails
[1].tailIsWholeBlock())
1007 commonTailIndex
= 1;
1008 else if (SameTails
.size() == 2 &&
1009 SameTails
[1].getBlock()->isLayoutSuccessor(
1010 SameTails
[0].getBlock()) &&
1011 SameTails
[0].tailIsWholeBlock())
1012 commonTailIndex
= 0;
1014 // Otherwise just pick one, favoring the fall-through predecessor if
1016 for (unsigned i
= 0, e
= SameTails
.size(); i
!= e
; ++i
) {
1017 MachineBasicBlock
*MBB
= SameTails
[i
].getBlock();
1018 if (MBB
== EntryBB
&& SameTails
[i
].tailIsWholeBlock())
1020 if (MBB
== PredBB
) {
1021 commonTailIndex
= i
;
1024 if (SameTails
[i
].tailIsWholeBlock())
1025 commonTailIndex
= i
;
1029 if (commonTailIndex
== SameTails
.size() ||
1030 (SameTails
[commonTailIndex
].getBlock() == PredBB
&&
1031 !SameTails
[commonTailIndex
].tailIsWholeBlock())) {
1032 // None of the blocks consist entirely of the common tail.
1033 // Split a block so that one does.
1034 if (!CreateCommonTailOnlyBlock(PredBB
, SuccBB
,
1035 maxCommonTailLength
, commonTailIndex
)) {
1036 RemoveBlocksWithHash(CurHash
, SuccBB
, PredBB
);
1041 MachineBasicBlock
*MBB
= SameTails
[commonTailIndex
].getBlock();
1043 // Recompute common tail MBB's edge weights and block frequency.
1044 setCommonTailEdgeWeights(*MBB
);
1046 // Merge debug locations, MMOs and undef flags across identical instructions
1048 mergeCommonTails(commonTailIndex
);
1050 // MBB is common tail. Adjust all other BB's to jump to this one.
1051 // Traversal must be forwards so erases work.
1052 LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB
)
1054 for (unsigned int i
=0, e
= SameTails
.size(); i
!= e
; ++i
) {
1055 if (commonTailIndex
== i
)
1057 LLVM_DEBUG(dbgs() << printMBBReference(*SameTails
[i
].getBlock())
1058 << (i
== e
- 1 ? "" : ", "));
1059 // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1060 replaceTailWithBranchTo(SameTails
[i
].getTailStartPos(), *MBB
);
1061 // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1062 MergePotentials
.erase(SameTails
[i
].getMPIter());
1064 LLVM_DEBUG(dbgs() << "\n");
1065 // We leave commonTailIndex in the worklist in case there are other blocks
1066 // that match it with a smaller number of instructions.
1072 bool BranchFolder::TailMergeBlocks(MachineFunction
&MF
) {
1073 bool MadeChange
= false;
1074 if (!EnableTailMerge
) return MadeChange
;
1076 // First find blocks with no successors.
1077 // Block placement does not create new tail merging opportunities for these
1079 if (!AfterBlockPlacement
) {
1080 MergePotentials
.clear();
1081 for (MachineBasicBlock
&MBB
: MF
) {
1082 if (MergePotentials
.size() == TailMergeThreshold
)
1084 if (!TriedMerging
.count(&MBB
) && MBB
.succ_empty())
1085 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(MBB
), &MBB
));
1088 // If this is a large problem, avoid visiting the same basic blocks
1090 if (MergePotentials
.size() == TailMergeThreshold
)
1091 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1092 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1094 // See if we can do any tail merging on those.
1095 if (MergePotentials
.size() >= 2)
1096 MadeChange
|= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength
);
1099 // Look at blocks (IBB) with multiple predecessors (PBB).
1100 // We change each predecessor to a canonical form, by
1101 // (1) temporarily removing any unconditional branch from the predecessor
1103 // (2) alter conditional branches so they branch to the other block
1104 // not IBB; this may require adding back an unconditional branch to IBB
1105 // later, where there wasn't one coming in. E.g.
1107 // fallthrough to QBB
1110 // with a conceptual B to IBB after that, which never actually exists.
1111 // With those changes, we see whether the predecessors' tails match,
1112 // and merge them if so. We change things out of canonical form and
1113 // back to the way they were later in the process. (OptimizeBranches
1114 // would undo some of this, but we can't use it, because we'd get into
1115 // a compile-time infinite loop repeatedly doing and undoing the same
1116 // transformations.)
1118 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1120 if (I
->pred_size() < 2) continue;
1121 SmallPtrSet
<MachineBasicBlock
*, 8> UniquePreds
;
1122 MachineBasicBlock
*IBB
= &*I
;
1123 MachineBasicBlock
*PredBB
= &*std::prev(I
);
1124 MergePotentials
.clear();
1127 // Bail if merging after placement and IBB is the loop header because
1128 // -- If merging predecessors that belong to the same loop as IBB, the
1129 // common tail of merged predecessors may become the loop top if block
1130 // placement is called again and the predecessors may branch to this common
1131 // tail and require more branches. This can be relaxed if
1132 // MachineBlockPlacement::findBestLoopTop is more flexible.
1133 // --If merging predecessors that do not belong to the same loop as IBB, the
1134 // loop info of IBB's loop and the other loops may be affected. Calling the
1135 // block placement again may make big change to the layout and eliminate the
1136 // reason to do tail merging here.
1137 if (AfterBlockPlacement
&& MLI
) {
1138 ML
= MLI
->getLoopFor(IBB
);
1139 if (ML
&& IBB
== ML
->getHeader())
1143 for (MachineBasicBlock
*PBB
: I
->predecessors()) {
1144 if (MergePotentials
.size() == TailMergeThreshold
)
1147 if (TriedMerging
.count(PBB
))
1150 // Skip blocks that loop to themselves, can't tail merge these.
1154 // Visit each predecessor only once.
1155 if (!UniquePreds
.insert(PBB
).second
)
1158 // Skip blocks which may jump to a landing pad. Can't tail merge these.
1159 if (PBB
->hasEHPadSuccessor())
1162 // After block placement, only consider predecessors that belong to the
1163 // same loop as IBB. The reason is the same as above when skipping loop
1165 if (AfterBlockPlacement
&& MLI
)
1166 if (ML
!= MLI
->getLoopFor(PBB
))
1169 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1170 SmallVector
<MachineOperand
, 4> Cond
;
1171 if (!TII
->analyzeBranch(*PBB
, TBB
, FBB
, Cond
, true)) {
1172 // Failing case: IBB is the target of a cbr, and we cannot reverse the
1174 SmallVector
<MachineOperand
, 4> NewCond(Cond
);
1175 if (!Cond
.empty() && TBB
== IBB
) {
1176 if (TII
->reverseBranchCondition(NewCond
))
1178 // This is the QBB case described above
1180 auto Next
= ++PBB
->getIterator();
1181 if (Next
!= MF
.end())
1186 // Failing case: the only way IBB can be reached from PBB is via
1187 // exception handling. Happens for landing pads. Would be nice to have
1188 // a bit in the edge so we didn't have to do all this.
1189 if (IBB
->isEHPad()) {
1190 MachineFunction::iterator IP
= ++PBB
->getIterator();
1191 MachineBasicBlock
*PredNextBB
= nullptr;
1195 if (IBB
!= PredNextBB
) // fallthrough
1198 if (TBB
!= IBB
&& FBB
!= IBB
) // cbr then ubr
1200 } else if (Cond
.empty()) {
1201 if (TBB
!= IBB
) // ubr
1204 if (TBB
!= IBB
&& IBB
!= PredNextBB
) // cbr
1209 // Remove the unconditional branch at the end, if any.
1210 if (TBB
&& (Cond
.empty() || FBB
)) {
1211 DebugLoc dl
= PBB
->findBranchDebugLoc();
1212 TII
->removeBranch(*PBB
);
1214 // reinsert conditional branch only, for now
1215 TII
->insertBranch(*PBB
, (TBB
== IBB
) ? FBB
: TBB
, nullptr,
1219 MergePotentials
.push_back(MergePotentialsElt(HashEndOfMBB(*PBB
), PBB
));
1223 // If this is a large problem, avoid visiting the same basic blocks multiple
1225 if (MergePotentials
.size() == TailMergeThreshold
)
1226 for (unsigned i
= 0, e
= MergePotentials
.size(); i
!= e
; ++i
)
1227 TriedMerging
.insert(MergePotentials
[i
].getBlock());
1229 if (MergePotentials
.size() >= 2)
1230 MadeChange
|= TryTailMergeBlocks(IBB
, PredBB
, MinCommonTailLength
);
1232 // Reinsert an unconditional branch if needed. The 1 below can occur as a
1233 // result of removing blocks in TryTailMergeBlocks.
1234 PredBB
= &*std::prev(I
); // this may have been changed in TryTailMergeBlocks
1235 if (MergePotentials
.size() == 1 &&
1236 MergePotentials
.begin()->getBlock() != PredBB
)
1237 FixTail(MergePotentials
.begin()->getBlock(), IBB
, TII
);
1243 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock
&TailMBB
) {
1244 SmallVector
<BlockFrequency
, 2> EdgeFreqLs(TailMBB
.succ_size());
1245 BlockFrequency AccumulatedMBBFreq
;
1247 // Aggregate edge frequency of successor edge j:
1248 // edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1249 // where bb is a basic block that is in SameTails.
1250 for (const auto &Src
: SameTails
) {
1251 const MachineBasicBlock
*SrcMBB
= Src
.getBlock();
1252 BlockFrequency BlockFreq
= MBBFreqInfo
.getBlockFreq(SrcMBB
);
1253 AccumulatedMBBFreq
+= BlockFreq
;
1255 // It is not necessary to recompute edge weights if TailBB has less than two
1257 if (TailMBB
.succ_size() <= 1)
1260 auto EdgeFreq
= EdgeFreqLs
.begin();
1262 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1263 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
)
1264 *EdgeFreq
+= BlockFreq
* MBPI
.getEdgeProbability(SrcMBB
, *SuccI
);
1267 MBBFreqInfo
.setBlockFreq(&TailMBB
, AccumulatedMBBFreq
);
1269 if (TailMBB
.succ_size() <= 1)
1273 std::accumulate(EdgeFreqLs
.begin(), EdgeFreqLs
.end(), BlockFrequency(0))
1275 auto EdgeFreq
= EdgeFreqLs
.begin();
1277 if (SumEdgeFreq
> 0) {
1278 for (auto SuccI
= TailMBB
.succ_begin(), SuccE
= TailMBB
.succ_end();
1279 SuccI
!= SuccE
; ++SuccI
, ++EdgeFreq
) {
1280 auto Prob
= BranchProbability::getBranchProbability(
1281 EdgeFreq
->getFrequency(), SumEdgeFreq
);
1282 TailMBB
.setSuccProbability(SuccI
, Prob
);
1287 //===----------------------------------------------------------------------===//
1288 // Branch Optimization
1289 //===----------------------------------------------------------------------===//
1291 bool BranchFolder::OptimizeBranches(MachineFunction
&MF
) {
1292 bool MadeChange
= false;
1294 // Make sure blocks are numbered in order
1295 MF
.RenumberBlocks();
1296 // Renumbering blocks alters EH scope membership, recalculate it.
1297 EHScopeMembership
= getEHScopeMembership(MF
);
1299 for (MachineFunction::iterator I
= std::next(MF
.begin()), E
= MF
.end();
1301 MachineBasicBlock
*MBB
= &*I
++;
1302 MadeChange
|= OptimizeBlock(MBB
);
1304 // If it is dead, remove it.
1305 if (MBB
->pred_empty()) {
1306 RemoveDeadBlock(MBB
);
1315 // Blocks should be considered empty if they contain only debug info;
1316 // else the debug info would affect codegen.
1317 static bool IsEmptyBlock(MachineBasicBlock
*MBB
) {
1318 return MBB
->getFirstNonDebugInstr() == MBB
->end();
1321 // Blocks with only debug info and branches should be considered the same
1322 // as blocks with only branches.
1323 static bool IsBranchOnlyBlock(MachineBasicBlock
*MBB
) {
1324 MachineBasicBlock::iterator I
= MBB
->getFirstNonDebugInstr();
1325 assert(I
!= MBB
->end() && "empty block!");
1326 return I
->isBranch();
1329 /// IsBetterFallthrough - Return true if it would be clearly better to
1330 /// fall-through to MBB1 than to fall through into MBB2. This has to return
1331 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1332 /// result in infinite loops.
1333 static bool IsBetterFallthrough(MachineBasicBlock
*MBB1
,
1334 MachineBasicBlock
*MBB2
) {
1335 // Right now, we use a simple heuristic. If MBB2 ends with a call, and
1336 // MBB1 doesn't, we prefer to fall through into MBB1. This allows us to
1337 // optimize branches that branch to either a return block or an assert block
1338 // into a fallthrough to the return.
1339 MachineBasicBlock::iterator MBB1I
= MBB1
->getLastNonDebugInstr();
1340 MachineBasicBlock::iterator MBB2I
= MBB2
->getLastNonDebugInstr();
1341 if (MBB1I
== MBB1
->end() || MBB2I
== MBB2
->end())
1344 // If there is a clear successor ordering we make sure that one block
1345 // will fall through to the next
1346 if (MBB1
->isSuccessor(MBB2
)) return true;
1347 if (MBB2
->isSuccessor(MBB1
)) return false;
1349 return MBB2I
->isCall() && !MBB1I
->isCall();
1352 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1353 /// instructions on the block.
1354 static DebugLoc
getBranchDebugLoc(MachineBasicBlock
&MBB
) {
1355 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
1356 if (I
!= MBB
.end() && I
->isBranch())
1357 return I
->getDebugLoc();
1361 static void copyDebugInfoToPredecessor(const TargetInstrInfo
*TII
,
1362 MachineBasicBlock
&MBB
,
1363 MachineBasicBlock
&PredMBB
) {
1364 auto InsertBefore
= PredMBB
.getFirstTerminator();
1365 for (MachineInstr
&MI
: MBB
.instrs())
1366 if (MI
.isDebugValue()) {
1367 TII
->duplicate(PredMBB
, InsertBefore
, MI
);
1368 LLVM_DEBUG(dbgs() << "Copied debug value from empty block to pred: "
1373 static void copyDebugInfoToSuccessor(const TargetInstrInfo
*TII
,
1374 MachineBasicBlock
&MBB
,
1375 MachineBasicBlock
&SuccMBB
) {
1376 auto InsertBefore
= SuccMBB
.SkipPHIsAndLabels(SuccMBB
.begin());
1377 for (MachineInstr
&MI
: MBB
.instrs())
1378 if (MI
.isDebugValue()) {
1379 TII
->duplicate(SuccMBB
, InsertBefore
, MI
);
1380 LLVM_DEBUG(dbgs() << "Copied debug value from empty block to succ: "
1385 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1386 // a basic block is removed we would lose the debug information unless we have
1387 // copied the information to a predecessor/successor.
1389 // TODO: This function only handles some simple cases. An alternative would be
1390 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1392 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo
*TII
,
1393 MachineBasicBlock
&MBB
) {
1394 assert(IsEmptyBlock(&MBB
) && "Expected an empty block (except debug info).");
1395 // If this MBB is the only predecessor of a successor it is legal to copy
1396 // DBG_VALUE instructions to the beginning of the successor.
1397 for (MachineBasicBlock
*SuccBB
: MBB
.successors())
1398 if (SuccBB
->pred_size() == 1)
1399 copyDebugInfoToSuccessor(TII
, MBB
, *SuccBB
);
1400 // If this MBB is the only successor of a predecessor it is legal to copy the
1401 // DBG_VALUE instructions to the end of the predecessor (just before the
1402 // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1403 for (MachineBasicBlock
*PredBB
: MBB
.predecessors())
1404 if (PredBB
->succ_size() == 1)
1405 copyDebugInfoToPredecessor(TII
, MBB
, *PredBB
);
1408 bool BranchFolder::OptimizeBlock(MachineBasicBlock
*MBB
) {
1409 bool MadeChange
= false;
1410 MachineFunction
&MF
= *MBB
->getParent();
1413 MachineFunction::iterator FallThrough
= MBB
->getIterator();
1416 // Make sure MBB and FallThrough belong to the same EH scope.
1417 bool SameEHScope
= true;
1418 if (!EHScopeMembership
.empty() && FallThrough
!= MF
.end()) {
1419 auto MBBEHScope
= EHScopeMembership
.find(MBB
);
1420 assert(MBBEHScope
!= EHScopeMembership
.end());
1421 auto FallThroughEHScope
= EHScopeMembership
.find(&*FallThrough
);
1422 assert(FallThroughEHScope
!= EHScopeMembership
.end());
1423 SameEHScope
= MBBEHScope
->second
== FallThroughEHScope
->second
;
1426 // If this block is empty, make everyone use its fall-through, not the block
1427 // explicitly. Landing pads should not do this since the landing-pad table
1428 // points to this block. Blocks with their addresses taken shouldn't be
1430 if (IsEmptyBlock(MBB
) && !MBB
->isEHPad() && !MBB
->hasAddressTaken() &&
1432 salvageDebugInfoFromEmptyBlock(TII
, *MBB
);
1433 // Dead block? Leave for cleanup later.
1434 if (MBB
->pred_empty()) return MadeChange
;
1436 if (FallThrough
== MF
.end()) {
1437 // TODO: Simplify preds to not branch here if possible!
1438 } else if (FallThrough
->isEHPad()) {
1439 // Don't rewrite to a landing pad fallthough. That could lead to the case
1440 // where a BB jumps to more than one landing pad.
1441 // TODO: Is it ever worth rewriting predecessors which don't already
1442 // jump to a landing pad, and so can safely jump to the fallthrough?
1443 } else if (MBB
->isSuccessor(&*FallThrough
)) {
1444 // Rewrite all predecessors of the old block to go to the fallthrough
1446 while (!MBB
->pred_empty()) {
1447 MachineBasicBlock
*Pred
= *(MBB
->pred_end()-1);
1448 Pred
->ReplaceUsesOfBlockWith(MBB
, &*FallThrough
);
1450 // If MBB was the target of a jump table, update jump tables to go to the
1451 // fallthrough instead.
1452 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1453 MJTI
->ReplaceMBBInJumpTables(MBB
, &*FallThrough
);
1459 // Check to see if we can simplify the terminator of the block before this
1461 MachineBasicBlock
&PrevBB
= *std::prev(MachineFunction::iterator(MBB
));
1463 MachineBasicBlock
*PriorTBB
= nullptr, *PriorFBB
= nullptr;
1464 SmallVector
<MachineOperand
, 4> PriorCond
;
1465 bool PriorUnAnalyzable
=
1466 TII
->analyzeBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, true);
1467 if (!PriorUnAnalyzable
) {
1468 // If the CFG for the prior block has extra edges, remove them.
1469 MadeChange
|= PrevBB
.CorrectExtraCFGEdges(PriorTBB
, PriorFBB
,
1470 !PriorCond
.empty());
1472 // If the previous branch is conditional and both conditions go to the same
1473 // destination, remove the branch, replacing it with an unconditional one or
1475 if (PriorTBB
&& PriorTBB
== PriorFBB
) {
1476 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1477 TII
->removeBranch(PrevBB
);
1479 if (PriorTBB
!= MBB
)
1480 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1483 goto ReoptimizeBlock
;
1486 // If the previous block unconditionally falls through to this block and
1487 // this block has no other predecessors, move the contents of this block
1488 // into the prior block. This doesn't usually happen when SimplifyCFG
1489 // has been used, but it can happen if tail merging splits a fall-through
1490 // predecessor of a block.
1491 // This has to check PrevBB->succ_size() because EH edges are ignored by
1493 if (PriorCond
.empty() && !PriorTBB
&& MBB
->pred_size() == 1 &&
1494 PrevBB
.succ_size() == 1 &&
1495 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1496 LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1497 << "From MBB: " << *MBB
);
1498 // Remove redundant DBG_VALUEs first.
1499 if (PrevBB
.begin() != PrevBB
.end()) {
1500 MachineBasicBlock::iterator PrevBBIter
= PrevBB
.end();
1502 MachineBasicBlock::iterator MBBIter
= MBB
->begin();
1503 // Check if DBG_VALUE at the end of PrevBB is identical to the
1504 // DBG_VALUE at the beginning of MBB.
1505 while (PrevBBIter
!= PrevBB
.begin() && MBBIter
!= MBB
->end()
1506 && PrevBBIter
->isDebugInstr() && MBBIter
->isDebugInstr()) {
1507 if (!MBBIter
->isIdenticalTo(*PrevBBIter
))
1509 MachineInstr
&DuplicateDbg
= *MBBIter
;
1510 ++MBBIter
; -- PrevBBIter
;
1511 DuplicateDbg
.eraseFromParent();
1514 PrevBB
.splice(PrevBB
.end(), MBB
, MBB
->begin(), MBB
->end());
1515 PrevBB
.removeSuccessor(PrevBB
.succ_begin());
1516 assert(PrevBB
.succ_empty());
1517 PrevBB
.transferSuccessors(MBB
);
1522 // If the previous branch *only* branches to *this* block (conditional or
1523 // not) remove the branch.
1524 if (PriorTBB
== MBB
&& !PriorFBB
) {
1525 TII
->removeBranch(PrevBB
);
1528 goto ReoptimizeBlock
;
1531 // If the prior block branches somewhere else on the condition and here if
1532 // the condition is false, remove the uncond second branch.
1533 if (PriorFBB
== MBB
) {
1534 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1535 TII
->removeBranch(PrevBB
);
1536 TII
->insertBranch(PrevBB
, PriorTBB
, nullptr, PriorCond
, dl
);
1539 goto ReoptimizeBlock
;
1542 // If the prior block branches here on true and somewhere else on false, and
1543 // if the branch condition is reversible, reverse the branch to create a
1545 if (PriorTBB
== MBB
) {
1546 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1547 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1548 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1549 TII
->removeBranch(PrevBB
);
1550 TII
->insertBranch(PrevBB
, PriorFBB
, nullptr, NewPriorCond
, dl
);
1553 goto ReoptimizeBlock
;
1557 // If this block has no successors (e.g. it is a return block or ends with
1558 // a call to a no-return function like abort or __cxa_throw) and if the pred
1559 // falls through into this block, and if it would otherwise fall through
1560 // into the block after this, move this block to the end of the function.
1562 // We consider it more likely that execution will stay in the function (e.g.
1563 // due to loops) than it is to exit it. This asserts in loops etc, moving
1564 // the assert condition out of the loop body.
1565 if (MBB
->succ_empty() && !PriorCond
.empty() && !PriorFBB
&&
1566 MachineFunction::iterator(PriorTBB
) == FallThrough
&&
1567 !MBB
->canFallThrough()) {
1568 bool DoTransform
= true;
1570 // We have to be careful that the succs of PredBB aren't both no-successor
1571 // blocks. If neither have successors and if PredBB is the second from
1572 // last block in the function, we'd just keep swapping the two blocks for
1573 // last. Only do the swap if one is clearly better to fall through than
1575 if (FallThrough
== --MF
.end() &&
1576 !IsBetterFallthrough(PriorTBB
, MBB
))
1577 DoTransform
= false;
1580 // Reverse the branch so we will fall through on the previous true cond.
1581 SmallVector
<MachineOperand
, 4> NewPriorCond(PriorCond
);
1582 if (!TII
->reverseBranchCondition(NewPriorCond
)) {
1583 LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1584 << "To make fallthrough to: " << *PriorTBB
<< "\n");
1586 DebugLoc dl
= getBranchDebugLoc(PrevBB
);
1587 TII
->removeBranch(PrevBB
);
1588 TII
->insertBranch(PrevBB
, MBB
, nullptr, NewPriorCond
, dl
);
1590 // Move this block to the end of the function.
1591 MBB
->moveAfter(&MF
.back());
1600 if (!IsEmptyBlock(MBB
) && MBB
->pred_size() == 1 &&
1601 MF
.getFunction().optForSize()) {
1602 // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1603 // direction, thereby defeating careful block placement and regressing
1604 // performance. Therefore, only consider this for optsize functions.
1605 MachineInstr
&TailCall
= *MBB
->getFirstNonDebugInstr();
1606 if (TII
->isUnconditionalTailCall(TailCall
)) {
1607 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1608 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1609 SmallVector
<MachineOperand
, 4> PredCond
;
1610 bool PredAnalyzable
=
1611 !TII
->analyzeBranch(*Pred
, PredTBB
, PredFBB
, PredCond
, true);
1613 if (PredAnalyzable
&& !PredCond
.empty() && PredTBB
== MBB
&&
1614 PredTBB
!= PredFBB
) {
1615 // The predecessor has a conditional branch to this block which consists
1616 // of only a tail call. Try to fold the tail call into the conditional
1618 if (TII
->canMakeTailCallConditional(PredCond
, TailCall
)) {
1619 // TODO: It would be nice if analyzeBranch() could provide a pointer
1620 // to the branch instruction so replaceBranchWithTailCall() doesn't
1621 // have to search for it.
1622 TII
->replaceBranchWithTailCall(*Pred
, PredCond
, TailCall
);
1624 Pred
->removeSuccessor(MBB
);
1629 // If the predecessor is falling through to this block, we could reverse
1630 // the branch condition and fold the tail call into that. However, after
1631 // that we might have to re-arrange the CFG to fall through to the other
1632 // block and there is a high risk of regressing code size rather than
1637 // Analyze the branch in the current block.
1638 MachineBasicBlock
*CurTBB
= nullptr, *CurFBB
= nullptr;
1639 SmallVector
<MachineOperand
, 4> CurCond
;
1640 bool CurUnAnalyzable
=
1641 TII
->analyzeBranch(*MBB
, CurTBB
, CurFBB
, CurCond
, true);
1642 if (!CurUnAnalyzable
) {
1643 // If the CFG for the prior block has extra edges, remove them.
1644 MadeChange
|= MBB
->CorrectExtraCFGEdges(CurTBB
, CurFBB
, !CurCond
.empty());
1646 // If this is a two-way branch, and the FBB branches to this block, reverse
1647 // the condition so the single-basic-block loop is faster. Instead of:
1648 // Loop: xxx; jcc Out; jmp Loop
1650 // Loop: xxx; jncc Loop; jmp Out
1651 if (CurTBB
&& CurFBB
&& CurFBB
== MBB
&& CurTBB
!= MBB
) {
1652 SmallVector
<MachineOperand
, 4> NewCond(CurCond
);
1653 if (!TII
->reverseBranchCondition(NewCond
)) {
1654 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1655 TII
->removeBranch(*MBB
);
1656 TII
->insertBranch(*MBB
, CurFBB
, CurTBB
, NewCond
, dl
);
1659 goto ReoptimizeBlock
;
1663 // If this branch is the only thing in its block, see if we can forward
1664 // other blocks across it.
1665 if (CurTBB
&& CurCond
.empty() && !CurFBB
&&
1666 IsBranchOnlyBlock(MBB
) && CurTBB
!= MBB
&&
1667 !MBB
->hasAddressTaken() && !MBB
->isEHPad()) {
1668 DebugLoc dl
= getBranchDebugLoc(*MBB
);
1669 // This block may contain just an unconditional branch. Because there can
1670 // be 'non-branch terminators' in the block, try removing the branch and
1671 // then seeing if the block is empty.
1672 TII
->removeBranch(*MBB
);
1673 // If the only things remaining in the block are debug info, remove these
1674 // as well, so this will behave the same as an empty block in non-debug
1676 if (IsEmptyBlock(MBB
)) {
1677 // Make the block empty, losing the debug info (we could probably
1678 // improve this in some cases.)
1679 MBB
->erase(MBB
->begin(), MBB
->end());
1681 // If this block is just an unconditional branch to CurTBB, we can
1682 // usually completely eliminate the block. The only case we cannot
1683 // completely eliminate the block is when the block before this one
1684 // falls through into MBB and we can't understand the prior block's branch
1687 bool PredHasNoFallThrough
= !PrevBB
.canFallThrough();
1688 if (PredHasNoFallThrough
|| !PriorUnAnalyzable
||
1689 !PrevBB
.isSuccessor(MBB
)) {
1690 // If the prior block falls through into us, turn it into an
1691 // explicit branch to us to make updates simpler.
1692 if (!PredHasNoFallThrough
&& PrevBB
.isSuccessor(MBB
) &&
1693 PriorTBB
!= MBB
&& PriorFBB
!= MBB
) {
1695 assert(PriorCond
.empty() && !PriorFBB
&&
1696 "Bad branch analysis");
1699 assert(!PriorFBB
&& "Machine CFG out of date!");
1702 DebugLoc pdl
= getBranchDebugLoc(PrevBB
);
1703 TII
->removeBranch(PrevBB
);
1704 TII
->insertBranch(PrevBB
, PriorTBB
, PriorFBB
, PriorCond
, pdl
);
1707 // Iterate through all the predecessors, revectoring each in-turn.
1709 bool DidChange
= false;
1710 bool HasBranchToSelf
= false;
1711 while(PI
!= MBB
->pred_size()) {
1712 MachineBasicBlock
*PMBB
= *(MBB
->pred_begin() + PI
);
1714 // If this block has an uncond branch to itself, leave it.
1716 HasBranchToSelf
= true;
1719 PMBB
->ReplaceUsesOfBlockWith(MBB
, CurTBB
);
1720 // If this change resulted in PMBB ending in a conditional
1721 // branch where both conditions go to the same destination,
1722 // change this to an unconditional branch (and fix the CFG).
1723 MachineBasicBlock
*NewCurTBB
= nullptr, *NewCurFBB
= nullptr;
1724 SmallVector
<MachineOperand
, 4> NewCurCond
;
1725 bool NewCurUnAnalyzable
= TII
->analyzeBranch(
1726 *PMBB
, NewCurTBB
, NewCurFBB
, NewCurCond
, true);
1727 if (!NewCurUnAnalyzable
&& NewCurTBB
&& NewCurTBB
== NewCurFBB
) {
1728 DebugLoc pdl
= getBranchDebugLoc(*PMBB
);
1729 TII
->removeBranch(*PMBB
);
1731 TII
->insertBranch(*PMBB
, NewCurTBB
, nullptr, NewCurCond
, pdl
);
1734 PMBB
->CorrectExtraCFGEdges(NewCurTBB
, nullptr, false);
1739 // Change any jumptables to go to the new MBB.
1740 if (MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo())
1741 MJTI
->ReplaceMBBInJumpTables(MBB
, CurTBB
);
1745 if (!HasBranchToSelf
) return MadeChange
;
1750 // Add the branch back if the block is more than just an uncond branch.
1751 TII
->insertBranch(*MBB
, CurTBB
, nullptr, CurCond
, dl
);
1755 // If the prior block doesn't fall through into this block, and if this
1756 // block doesn't fall through into some other block, see if we can find a
1757 // place to move this block where a fall-through will happen.
1758 if (!PrevBB
.canFallThrough()) {
1759 // Now we know that there was no fall-through into this block, check to
1760 // see if it has a fall-through into its successor.
1761 bool CurFallsThru
= MBB
->canFallThrough();
1763 if (!MBB
->isEHPad()) {
1764 // Check all the predecessors of this block. If one of them has no fall
1765 // throughs, move this block right after it.
1766 for (MachineBasicBlock
*PredBB
: MBB
->predecessors()) {
1767 // Analyze the branch at the end of the pred.
1768 MachineBasicBlock
*PredTBB
= nullptr, *PredFBB
= nullptr;
1769 SmallVector
<MachineOperand
, 4> PredCond
;
1770 if (PredBB
!= MBB
&& !PredBB
->canFallThrough() &&
1771 !TII
->analyzeBranch(*PredBB
, PredTBB
, PredFBB
, PredCond
, true) &&
1772 (!CurFallsThru
|| !CurTBB
|| !CurFBB
) &&
1773 (!CurFallsThru
|| MBB
->getNumber() >= PredBB
->getNumber())) {
1774 // If the current block doesn't fall through, just move it.
1775 // If the current block can fall through and does not end with a
1776 // conditional branch, we need to append an unconditional jump to
1777 // the (current) next block. To avoid a possible compile-time
1778 // infinite loop, move blocks only backward in this case.
1779 // Also, if there are already 2 branches here, we cannot add a third;
1780 // this means we have the case
1785 MachineBasicBlock
*NextBB
= &*std::next(MBB
->getIterator());
1787 TII
->insertBranch(*MBB
, NextBB
, nullptr, CurCond
, DebugLoc());
1789 MBB
->moveAfter(PredBB
);
1791 goto ReoptimizeBlock
;
1796 if (!CurFallsThru
) {
1797 // Check all successors to see if we can move this block before it.
1798 for (MachineBasicBlock
*SuccBB
: MBB
->successors()) {
1799 // Analyze the branch at the end of the block before the succ.
1800 MachineFunction::iterator SuccPrev
= --SuccBB
->getIterator();
1802 // If this block doesn't already fall-through to that successor, and if
1803 // the succ doesn't already have a block that can fall through into it,
1804 // and if the successor isn't an EH destination, we can arrange for the
1805 // fallthrough to happen.
1806 if (SuccBB
!= MBB
&& &*SuccPrev
!= MBB
&&
1807 !SuccPrev
->canFallThrough() && !CurUnAnalyzable
&&
1808 !SuccBB
->isEHPad()) {
1809 MBB
->moveBefore(SuccBB
);
1811 goto ReoptimizeBlock
;
1815 // Okay, there is no really great place to put this block. If, however,
1816 // the block before this one would be a fall-through if this block were
1817 // removed, move this block to the end of the function. There is no real
1818 // advantage in "falling through" to an EH block, so we don't want to
1819 // perform this transformation for that case.
1821 // Also, Windows EH introduced the possibility of an arbitrary number of
1822 // successors to a given block. The analyzeBranch call does not consider
1823 // exception handling and so we can get in a state where a block
1824 // containing a call is followed by multiple EH blocks that would be
1825 // rotated infinitely at the end of the function if the transformation
1826 // below were performed for EH "FallThrough" blocks. Therefore, even if
1827 // that appears not to be happening anymore, we should assume that it is
1828 // possible and not remove the "!FallThrough()->isEHPad" condition below.
1829 MachineBasicBlock
*PrevTBB
= nullptr, *PrevFBB
= nullptr;
1830 SmallVector
<MachineOperand
, 4> PrevCond
;
1831 if (FallThrough
!= MF
.end() &&
1832 !FallThrough
->isEHPad() &&
1833 !TII
->analyzeBranch(PrevBB
, PrevTBB
, PrevFBB
, PrevCond
, true) &&
1834 PrevBB
.isSuccessor(&*FallThrough
)) {
1835 MBB
->moveAfter(&MF
.back());
1845 //===----------------------------------------------------------------------===//
1846 // Hoist Common Code
1847 //===----------------------------------------------------------------------===//
1849 bool BranchFolder::HoistCommonCode(MachineFunction
&MF
) {
1850 bool MadeChange
= false;
1851 for (MachineFunction::iterator I
= MF
.begin(), E
= MF
.end(); I
!= E
; ) {
1852 MachineBasicBlock
*MBB
= &*I
++;
1853 MadeChange
|= HoistCommonCodeInSuccs(MBB
);
1859 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1860 /// its 'true' successor.
1861 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
1862 MachineBasicBlock
*TrueBB
) {
1863 for (MachineBasicBlock
*SuccBB
: BB
->successors())
1864 if (SuccBB
!= TrueBB
)
1869 template <class Container
>
1870 static void addRegAndItsAliases(unsigned Reg
, const TargetRegisterInfo
*TRI
,
1872 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
1873 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
1880 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1881 /// in successors to. The location is usually just before the terminator,
1882 /// however if the terminator is a conditional branch and its previous
1883 /// instruction is the flag setting instruction, the previous instruction is
1884 /// the preferred location. This function also gathers uses and defs of the
1885 /// instructions from the insertion point to the end of the block. The data is
1886 /// used by HoistCommonCodeInSuccs to ensure safety.
1888 MachineBasicBlock::iterator
findHoistingInsertPosAndDeps(MachineBasicBlock
*MBB
,
1889 const TargetInstrInfo
*TII
,
1890 const TargetRegisterInfo
*TRI
,
1891 SmallSet
<unsigned,4> &Uses
,
1892 SmallSet
<unsigned,4> &Defs
) {
1893 MachineBasicBlock::iterator Loc
= MBB
->getFirstTerminator();
1894 if (!TII
->isUnpredicatedTerminator(*Loc
))
1897 for (const MachineOperand
&MO
: Loc
->operands()) {
1900 unsigned Reg
= MO
.getReg();
1904 addRegAndItsAliases(Reg
, TRI
, Uses
);
1907 // Don't try to hoist code in the rare case the terminator defines a
1908 // register that is later used.
1911 // If the terminator defines a register, make sure we don't hoist
1912 // the instruction whose def might be clobbered by the terminator.
1913 addRegAndItsAliases(Reg
, TRI
, Defs
);
1919 // If the terminator is the only instruction in the block and Uses is not
1920 // empty (or we would have returned above), we can still safely hoist
1921 // instructions just before the terminator as long as the Defs/Uses are not
1922 // violated (which is checked in HoistCommonCodeInSuccs).
1923 if (Loc
== MBB
->begin())
1926 // The terminator is probably a conditional branch, try not to separate the
1927 // branch from condition setting instruction.
1928 MachineBasicBlock::iterator PI
=
1929 skipDebugInstructionsBackward(std::prev(Loc
), MBB
->begin());
1932 for (const MachineOperand
&MO
: PI
->operands()) {
1933 // If PI has a regmask operand, it is probably a call. Separate away.
1936 if (!MO
.isReg() || MO
.isUse())
1938 unsigned Reg
= MO
.getReg();
1941 if (Uses
.count(Reg
)) {
1947 // The condition setting instruction is not just before the conditional
1951 // Be conservative, don't insert instruction above something that may have
1952 // side-effects. And since it's potentially bad to separate flag setting
1953 // instruction from the conditional branch, just abort the optimization
1955 // Also avoid moving code above predicated instruction since it's hard to
1956 // reason about register liveness with predicated instruction.
1957 bool DontMoveAcrossStore
= true;
1958 if (!PI
->isSafeToMove(nullptr, DontMoveAcrossStore
) || TII
->isPredicated(*PI
))
1961 // Find out what registers are live. Note this routine is ignoring other live
1962 // registers which are only used by instructions in successor blocks.
1963 for (const MachineOperand
&MO
: PI
->operands()) {
1966 unsigned Reg
= MO
.getReg();
1970 addRegAndItsAliases(Reg
, TRI
, Uses
);
1972 if (Uses
.erase(Reg
)) {
1973 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
1974 for (MCSubRegIterator
SubRegs(Reg
, TRI
); SubRegs
.isValid(); ++SubRegs
)
1975 Uses
.erase(*SubRegs
); // Use sub-registers to be conservative
1978 addRegAndItsAliases(Reg
, TRI
, Defs
);
1985 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock
*MBB
) {
1986 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1987 SmallVector
<MachineOperand
, 4> Cond
;
1988 if (TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
, true) || !TBB
|| Cond
.empty())
1991 if (!FBB
) FBB
= findFalseBlock(MBB
, TBB
);
1993 // Malformed bcc? True and false blocks are the same?
1996 // Restrict the optimization to cases where MBB is the only predecessor,
1997 // it is an obvious win.
1998 if (TBB
->pred_size() > 1 || FBB
->pred_size() > 1)
2001 // Find a suitable position to hoist the common instructions to. Also figure
2002 // out which registers are used or defined by instructions from the insertion
2003 // point to the end of the block.
2004 SmallSet
<unsigned, 4> Uses
, Defs
;
2005 MachineBasicBlock::iterator Loc
=
2006 findHoistingInsertPosAndDeps(MBB
, TII
, TRI
, Uses
, Defs
);
2007 if (Loc
== MBB
->end())
2010 bool HasDups
= false;
2011 SmallSet
<unsigned, 4> ActiveDefsSet
, AllDefsSet
;
2012 MachineBasicBlock::iterator TIB
= TBB
->begin();
2013 MachineBasicBlock::iterator FIB
= FBB
->begin();
2014 MachineBasicBlock::iterator TIE
= TBB
->end();
2015 MachineBasicBlock::iterator FIE
= FBB
->end();
2016 while (TIB
!= TIE
&& FIB
!= FIE
) {
2017 // Skip dbg_value instructions. These do not count.
2018 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
2019 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
2020 if (TIB
== TIE
|| FIB
== FIE
)
2023 if (!TIB
->isIdenticalTo(*FIB
, MachineInstr::CheckKillDead
))
2026 if (TII
->isPredicated(*TIB
))
2027 // Hard to reason about register liveness with predicated instruction.
2031 for (MachineOperand
&MO
: TIB
->operands()) {
2032 // Don't attempt to hoist instructions with register masks.
2033 if (MO
.isRegMask()) {
2039 unsigned Reg
= MO
.getReg();
2043 if (Uses
.count(Reg
)) {
2044 // Avoid clobbering a register that's used by the instruction at
2045 // the point of insertion.
2050 if (Defs
.count(Reg
) && !MO
.isDead()) {
2051 // Don't hoist the instruction if the def would be clobber by the
2052 // instruction at the point insertion. FIXME: This is overly
2053 // conservative. It should be possible to hoist the instructions
2054 // in BB2 in the following example:
2056 // r1, eflag = op1 r2, r3
2065 } else if (!ActiveDefsSet
.count(Reg
)) {
2066 if (Defs
.count(Reg
)) {
2067 // Use is defined by the instruction at the point of insertion.
2072 if (MO
.isKill() && Uses
.count(Reg
))
2073 // Kills a register that's read by the instruction at the point of
2074 // insertion. Remove the kill marker.
2075 MO
.setIsKill(false);
2081 bool DontMoveAcrossStore
= true;
2082 if (!TIB
->isSafeToMove(nullptr, DontMoveAcrossStore
))
2085 // Remove kills from ActiveDefsSet, these registers had short live ranges.
2086 for (const MachineOperand
&MO
: TIB
->operands()) {
2087 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
2089 unsigned Reg
= MO
.getReg();
2092 if (!AllDefsSet
.count(Reg
)) {
2095 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
2096 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
2097 ActiveDefsSet
.erase(*AI
);
2099 ActiveDefsSet
.erase(Reg
);
2103 // Track local defs so we can update liveins.
2104 for (const MachineOperand
&MO
: TIB
->operands()) {
2105 if (!MO
.isReg() || !MO
.isDef() || MO
.isDead())
2107 unsigned Reg
= MO
.getReg();
2108 if (!Reg
|| TargetRegisterInfo::isVirtualRegister(Reg
))
2110 addRegAndItsAliases(Reg
, TRI
, ActiveDefsSet
);
2111 addRegAndItsAliases(Reg
, TRI
, AllDefsSet
);
2122 MBB
->splice(Loc
, TBB
, TBB
->begin(), TIB
);
2123 FBB
->erase(FBB
->begin(), FIB
);
2125 if (UpdateLiveIns
) {
2126 recomputeLiveIns(*TBB
);
2127 recomputeLiveIns(*FBB
);