1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
100 using namespace llvm
;
101 using namespace llvm::PatternMatch
;
103 #define DEBUG_TYPE "codegenprepare"
105 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
110 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
112 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
113 "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated
,
115 "Number of phis created when address "
116 "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated
,
118 "Number of select created when address "
119 "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded
,
123 "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
130 static cl::opt
<bool> DisableBranchOpts(
131 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
132 cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
136 cl::desc("Disable GC optimizations in CodeGenPrepare"));
138 static cl::opt
<bool> DisableSelectToBranch(
139 "disable-cgp-select2branch", cl::Hidden
, cl::init(false),
140 cl::desc("Disable select to branch conversion."));
142 static cl::opt
<bool> AddrSinkUsingGEPs(
143 "addr-sink-using-gep", cl::Hidden
, cl::init(true),
144 cl::desc("Address sinking in CGP using GEPs."));
146 static cl::opt
<bool> EnableAndCmpSinking(
147 "enable-andcmp-sinking", cl::Hidden
, cl::init(true),
148 cl::desc("Enable sinkinig and/cmp into branches."));
150 static cl::opt
<bool> DisableStoreExtract(
151 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
154 static cl::opt
<bool> StressStoreExtract(
155 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
158 static cl::opt
<bool> DisableExtLdPromotion(
159 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163 static cl::opt
<bool> StressExtLdPromotion(
164 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166 "optimization in CodeGenPrepare"));
168 static cl::opt
<bool> DisablePreheaderProtect(
169 "disable-preheader-prot", cl::Hidden
, cl::init(false),
170 cl::desc("Disable protection against removing loop preheaders"));
172 static cl::opt
<bool> ProfileGuidedSectionPrefix(
173 "profile-guided-section-prefix", cl::Hidden
, cl::init(true), cl::ZeroOrMore
,
174 cl::desc("Use profile info to add section prefix for hot/cold functions"));
176 static cl::opt
<unsigned> FreqRatioToSkipMerge(
177 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
178 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179 "(frequency of destination block) is greater than this ratio"));
181 static cl::opt
<bool> ForceSplitStore(
182 "force-split-store", cl::Hidden
, cl::init(false),
183 cl::desc("Force store splitting no matter what the target query says."));
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden
,
187 cl::desc("Enable merging of redundant sexts when one is dominating"
188 " the other."), cl::init(true));
190 static cl::opt
<bool> DisableComplexAddrModes(
191 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
192 cl::desc("Disables combining addressing modes with different parts "
193 "in optimizeMemoryInst."));
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
197 cl::desc("Allow creation of Phis in Address sinking."));
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden
, cl::init(true),
201 cl::desc("Allow creation of selects in Address sinking."));
203 static cl::opt
<bool> AddrSinkCombineBaseReg(
204 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
205 cl::desc("Allow combining of BaseReg field in Address sinking."));
207 static cl::opt
<bool> AddrSinkCombineBaseGV(
208 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
209 cl::desc("Allow combining of BaseGV field in Address sinking."));
211 static cl::opt
<bool> AddrSinkCombineBaseOffs(
212 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
213 cl::desc("Allow combining of BaseOffs field in Address sinking."));
215 static cl::opt
<bool> AddrSinkCombineScaledReg(
216 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
217 cl::desc("Allow combining of ScaledReg field in Address sinking."));
220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
222 cl::desc("Enable splitting large offset of GEP."));
227 ZeroExtension
, // Zero extension has been seen.
228 SignExtension
, // Sign extension has been seen.
229 BothExtension
// This extension type is used if we saw sext after
230 // ZeroExtension had been set, or if we saw zext after
231 // SignExtension had been set. It makes the type
232 // information of a promoted instruction invalid.
235 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
236 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
237 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
238 using SExts
= SmallVector
<Instruction
*, 16>;
239 using ValueToSExts
= DenseMap
<Value
*, SExts
>;
241 class TypePromotionTransaction
;
243 class CodeGenPrepare
: public FunctionPass
{
244 const TargetMachine
*TM
= nullptr;
245 const TargetSubtargetInfo
*SubtargetInfo
;
246 const TargetLowering
*TLI
= nullptr;
247 const TargetRegisterInfo
*TRI
;
248 const TargetTransformInfo
*TTI
= nullptr;
249 const TargetLibraryInfo
*TLInfo
;
251 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
252 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
254 /// As we scan instructions optimizing them, this is the next instruction
255 /// to optimize. Transforms that can invalidate this should update it.
256 BasicBlock::iterator CurInstIterator
;
258 /// Keeps track of non-local addresses that have been sunk into a block.
259 /// This allows us to avoid inserting duplicate code for blocks with
260 /// multiple load/stores of the same address. The usage of WeakTrackingVH
261 /// enables SunkAddrs to be treated as a cache whose entries can be
262 /// invalidated if a sunken address computation has been erased.
263 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
265 /// Keeps track of all instructions inserted for the current function.
266 SetOfInstrs InsertedInsts
;
268 /// Keeps track of the type of the related instruction before their
269 /// promotion for the current function.
270 InstrToOrigTy PromotedInsts
;
272 /// Keep track of instructions removed during promotion.
273 SetOfInstrs RemovedInsts
;
275 /// Keep track of sext chains based on their initial value.
276 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
278 /// Keep track of GEPs accessing the same data structures such as structs or
279 /// arrays that are candidates to be split later because of their large
283 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
286 /// Keep track of new GEP base after splitting the GEPs having large offset.
287 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
289 /// Map serial numbers to Large offset GEPs.
290 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
292 /// Keep track of SExt promoted.
293 ValueToSExts ValToSExtendedUses
;
295 /// True if CFG is modified in any way.
298 /// True if optimizing for size.
301 /// DataLayout for the Function being processed.
302 const DataLayout
*DL
= nullptr;
305 static char ID
; // Pass identification, replacement for typeid
307 CodeGenPrepare() : FunctionPass(ID
) {
308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
311 bool runOnFunction(Function
&F
) override
;
313 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
315 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
316 // FIXME: When we can selectively preserve passes, preserve the domtree.
317 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
318 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
319 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
320 AU
.addRequired
<LoopInfoWrapperPass
>();
324 bool eliminateFallThrough(Function
&F
);
325 bool eliminateMostlyEmptyBlocks(Function
&F
);
326 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
327 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
328 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
329 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
331 bool optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
);
332 bool optimizeInst(Instruction
*I
, bool &ModifiedDT
);
333 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
334 Type
*AccessTy
, unsigned AddrSpace
);
335 bool optimizeInlineAsmInst(CallInst
*CS
);
336 bool optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
);
337 bool optimizeExt(Instruction
*&I
);
338 bool optimizeExtUses(Instruction
*I
);
339 bool optimizeLoadExt(LoadInst
*Load
);
340 bool optimizeSelectInst(SelectInst
*SI
);
341 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
342 bool optimizeSwitchInst(SwitchInst
*SI
);
343 bool optimizeExtractElementInst(Instruction
*Inst
);
344 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
);
345 bool placeDbgValues(Function
&F
);
346 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
347 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
348 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
349 const SmallVectorImpl
<Instruction
*> &Exts
,
350 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
351 unsigned CreatedInstsCost
= 0);
352 bool mergeSExts(Function
&F
);
353 bool splitLargeGEPOffsets();
354 bool performAddressTypePromotion(
356 bool AllowPromotionWithoutCommonHeader
,
357 bool HasPromoted
, TypePromotionTransaction
&TPT
,
358 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
359 bool splitBranchCondition(Function
&F
);
360 bool simplifyOffsetableRelocate(Instruction
&I
);
363 } // end anonymous namespace
365 char CodeGenPrepare::ID
= 0;
367 INITIALIZE_PASS_BEGIN(CodeGenPrepare
, DEBUG_TYPE
,
368 "Optimize for code generation", false, false)
369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
370 INITIALIZE_PASS_END(CodeGenPrepare
, DEBUG_TYPE
,
371 "Optimize for code generation", false, false)
373 FunctionPass
*llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
375 bool CodeGenPrepare::runOnFunction(Function
&F
) {
379 DL
= &F
.getParent()->getDataLayout();
381 bool EverMadeChange
= false;
382 // Clear per function information.
383 InsertedInsts
.clear();
384 PromotedInsts
.clear();
387 if (auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>()) {
388 TM
= &TPC
->getTM
<TargetMachine
>();
389 SubtargetInfo
= TM
->getSubtargetImpl(F
);
390 TLI
= SubtargetInfo
->getTargetLowering();
391 TRI
= SubtargetInfo
->getRegisterInfo();
393 TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
394 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
395 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
396 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
397 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
398 OptSize
= F
.optForSize();
400 ProfileSummaryInfo
*PSI
=
401 getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
402 if (ProfileGuidedSectionPrefix
) {
403 if (PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
404 F
.setSectionPrefix(".hot");
405 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
))
406 F
.setSectionPrefix(".unlikely");
409 /// This optimization identifies DIV instructions that can be
410 /// profitably bypassed and carried out with a shorter, faster divide.
411 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
&&
412 TLI
->isSlowDivBypassed()) {
413 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
414 TLI
->getBypassSlowDivWidths();
415 BasicBlock
* BB
= &*F
.begin();
416 while (BB
!= nullptr) {
417 // bypassSlowDivision may create new BBs, but we don't want to reapply the
418 // optimization to those blocks.
419 BasicBlock
* Next
= BB
->getNextNode();
420 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
425 // Eliminate blocks that contain only PHI nodes and an
426 // unconditional branch.
427 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
429 if (!DisableBranchOpts
)
430 EverMadeChange
|= splitBranchCondition(F
);
432 // Split some critical edges where one of the sources is an indirect branch,
433 // to help generate sane code for PHIs involving such edges.
434 EverMadeChange
|= SplitIndirectBrCriticalEdges(F
);
436 bool MadeChange
= true;
439 SeenChainsForSExt
.clear();
440 ValToSExtendedUses
.clear();
441 RemovedInsts
.clear();
442 LargeOffsetGEPMap
.clear();
443 LargeOffsetGEPID
.clear();
444 for (Function::iterator I
= F
.begin(); I
!= F
.end(); ) {
445 BasicBlock
*BB
= &*I
++;
446 bool ModifiedDTOnIteration
= false;
447 MadeChange
|= optimizeBlock(*BB
, ModifiedDTOnIteration
);
449 // Restart BB iteration if the dominator tree of the Function was changed
450 if (ModifiedDTOnIteration
)
453 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
454 MadeChange
|= mergeSExts(F
);
455 if (!LargeOffsetGEPMap
.empty())
456 MadeChange
|= splitLargeGEPOffsets();
458 // Really free removed instructions during promotion.
459 for (Instruction
*I
: RemovedInsts
)
462 EverMadeChange
|= MadeChange
;
467 if (!DisableBranchOpts
) {
469 // Use a set vector to get deterministic iteration order. The order the
470 // blocks are removed may affect whether or not PHI nodes in successors
472 SmallSetVector
<BasicBlock
*, 8> WorkList
;
473 for (BasicBlock
&BB
: F
) {
474 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(&BB
), succ_end(&BB
));
475 MadeChange
|= ConstantFoldTerminator(&BB
, true);
476 if (!MadeChange
) continue;
478 for (SmallVectorImpl
<BasicBlock
*>::iterator
479 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
480 if (pred_begin(*II
) == pred_end(*II
))
481 WorkList
.insert(*II
);
484 // Delete the dead blocks and any of their dead successors.
485 MadeChange
|= !WorkList
.empty();
486 while (!WorkList
.empty()) {
487 BasicBlock
*BB
= WorkList
.pop_back_val();
488 SmallVector
<BasicBlock
*, 2> Successors(succ_begin(BB
), succ_end(BB
));
492 for (SmallVectorImpl
<BasicBlock
*>::iterator
493 II
= Successors
.begin(), IE
= Successors
.end(); II
!= IE
; ++II
)
494 if (pred_begin(*II
) == pred_end(*II
))
495 WorkList
.insert(*II
);
498 // Merge pairs of basic blocks with unconditional branches, connected by
500 if (EverMadeChange
|| MadeChange
)
501 MadeChange
|= eliminateFallThrough(F
);
503 EverMadeChange
|= MadeChange
;
506 if (!DisableGCOpts
) {
507 SmallVector
<Instruction
*, 2> Statepoints
;
508 for (BasicBlock
&BB
: F
)
509 for (Instruction
&I
: BB
)
511 Statepoints
.push_back(&I
);
512 for (auto &I
: Statepoints
)
513 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
516 // Do this last to clean up use-before-def scenarios introduced by other
517 // preparatory transforms.
518 EverMadeChange
|= placeDbgValues(F
);
520 return EverMadeChange
;
523 /// Merge basic blocks which are connected by a single edge, where one of the
524 /// basic blocks has a single successor pointing to the other basic block,
525 /// which has a single predecessor.
526 bool CodeGenPrepare::eliminateFallThrough(Function
&F
) {
527 bool Changed
= false;
528 // Scan all of the blocks in the function, except for the entry block.
529 // Use a temporary array to avoid iterator being invalidated when
531 SmallVector
<WeakTrackingVH
, 16> Blocks
;
532 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
533 Blocks
.push_back(&Block
);
535 for (auto &Block
: Blocks
) {
536 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
539 // If the destination block has a single pred, then this is a trivial
540 // edge, just collapse it.
541 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
543 // Don't merge if BB's address is taken.
544 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken()) continue;
546 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
547 if (Term
&& !Term
->isConditional()) {
549 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
551 // Merge BB into SinglePred and delete it.
552 MergeBlockIntoPredecessor(BB
);
558 /// Find a destination block from BB if BB is mergeable empty block.
559 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
560 // If this block doesn't end with an uncond branch, ignore it.
561 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
562 if (!BI
|| !BI
->isUnconditional())
565 // If the instruction before the branch (skipping debug info) isn't a phi
566 // node, then other stuff is happening here.
567 BasicBlock::iterator BBI
= BI
->getIterator();
568 if (BBI
!= BB
->begin()) {
570 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
571 if (BBI
== BB
->begin())
575 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
579 // Do not break infinite loops.
580 BasicBlock
*DestBB
= BI
->getSuccessor(0);
584 if (!canMergeBlocks(BB
, DestBB
))
590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
592 /// edges in ways that are non-optimal for isel. Start by eliminating these
593 /// blocks so we can split them the way we want them.
594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
595 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
596 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
597 while (!LoopList
.empty()) {
598 Loop
*L
= LoopList
.pop_back_val();
599 LoopList
.insert(LoopList
.end(), L
->begin(), L
->end());
600 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
601 Preheaders
.insert(Preheader
);
604 bool MadeChange
= false;
605 // Copy blocks into a temporary array to avoid iterator invalidation issues
606 // as we remove them.
607 // Note that this intentionally skips the entry block.
608 SmallVector
<WeakTrackingVH
, 16> Blocks
;
609 for (auto &Block
: llvm::make_range(std::next(F
.begin()), F
.end()))
610 Blocks
.push_back(&Block
);
612 for (auto &Block
: Blocks
) {
613 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
616 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
618 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
621 eliminateMostlyEmptyBlock(BB
);
627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
630 // Do not delete loop preheaders if doing so would create a critical edge.
631 // Loop preheaders can be good locations to spill registers. If the
632 // preheader is deleted and we create a critical edge, registers may be
633 // spilled in the loop body instead.
634 if (!DisablePreheaderProtect
&& isPreheader
&&
635 !(BB
->getSinglePredecessor() &&
636 BB
->getSinglePredecessor()->getSingleSuccessor()))
639 // Try to skip merging if the unique predecessor of BB is terminated by a
640 // switch or indirect branch instruction, and BB is used as an incoming block
641 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
642 // add COPY instructions in the predecessor of BB instead of BB (if it is not
643 // merged). Note that the critical edge created by merging such blocks wont be
644 // split in MachineSink because the jump table is not analyzable. By keeping
645 // such empty block (BB), ISel will place COPY instructions in BB, not in the
646 // predecessor of BB.
647 BasicBlock
*Pred
= BB
->getUniquePredecessor();
649 !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
650 isa
<IndirectBrInst
>(Pred
->getTerminator())))
653 if (BB
->getTerminator() != BB
->getFirstNonPHIOrDbg())
656 // We use a simple cost heuristic which determine skipping merging is
657 // profitable if the cost of skipping merging is less than the cost of
658 // merging : Cost(skipping merging) < Cost(merging BB), where the
659 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
660 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
661 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
662 // Freq(Pred) / Freq(BB) > 2.
663 // Note that if there are multiple empty blocks sharing the same incoming
664 // value for the PHIs in the DestBB, we consider them together. In such
665 // case, Cost(merging BB) will be the sum of their frequencies.
667 if (!isa
<PHINode
>(DestBB
->begin()))
670 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
672 // Find all other incoming blocks from which incoming values of all PHIs in
673 // DestBB are the same as the ones from BB.
674 for (pred_iterator PI
= pred_begin(DestBB
), E
= pred_end(DestBB
); PI
!= E
;
676 BasicBlock
*DestBBPred
= *PI
;
677 if (DestBBPred
== BB
)
680 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
681 return DestPN
.getIncomingValueForBlock(BB
) ==
682 DestPN
.getIncomingValueForBlock(DestBBPred
);
684 SameIncomingValueBBs
.insert(DestBBPred
);
687 // See if all BB's incoming values are same as the value from Pred. In this
688 // case, no reason to skip merging because COPYs are expected to be place in
690 if (SameIncomingValueBBs
.count(Pred
))
693 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
694 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
696 for (auto SameValueBB
: SameIncomingValueBBs
)
697 if (SameValueBB
->getUniquePredecessor() == Pred
&&
698 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
699 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
701 return PredFreq
.getFrequency() <=
702 BBFreq
.getFrequency() * FreqRatioToSkipMerge
;
705 /// Return true if we can merge BB into DestBB if there is a single
706 /// unconditional branch between them, and BB contains no other non-phi
708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
709 const BasicBlock
*DestBB
) const {
710 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
711 // the successor. If there are more complex condition (e.g. preheaders),
712 // don't mess around with them.
713 for (const PHINode
&PN
: BB
->phis()) {
714 for (const User
*U
: PN
.users()) {
715 const Instruction
*UI
= cast
<Instruction
>(U
);
716 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
718 // If User is inside DestBB block and it is a PHINode then check
719 // incoming value. If incoming value is not from BB then this is
720 // a complex condition (e.g. preheaders) we want to avoid here.
721 if (UI
->getParent() == DestBB
) {
722 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
723 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
724 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
725 if (Insn
&& Insn
->getParent() == BB
&&
726 Insn
->getParent() != UPN
->getIncomingBlock(I
))
733 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
734 // and DestBB may have conflicting incoming values for the block. If so, we
735 // can't merge the block.
736 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
737 if (!DestBBPN
) return true; // no conflict.
739 // Collect the preds of BB.
740 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
741 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
742 // It is faster to get preds from a PHI than with pred_iterator.
743 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
744 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
746 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
749 // Walk the preds of DestBB.
750 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
751 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
752 if (BBPreds
.count(Pred
)) { // Common predecessor?
753 for (const PHINode
&PN
: DestBB
->phis()) {
754 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
755 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
757 // If V2 is a phi node in BB, look up what the mapped value will be.
758 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
759 if (V2PN
->getParent() == BB
)
760 V2
= V2PN
->getIncomingValueForBlock(Pred
);
762 // If there is a conflict, bail out.
763 if (V1
!= V2
) return false;
771 /// Eliminate a basic block that has only phi's and an unconditional branch in
773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
774 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
775 BasicBlock
*DestBB
= BI
->getSuccessor(0);
777 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
780 // If the destination block has a single pred, then this is a trivial edge,
782 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
783 if (SinglePred
!= DestBB
) {
784 assert(SinglePred
== BB
&&
785 "Single predecessor not the same as predecessor");
786 // Merge DestBB into SinglePred/BB and delete it.
787 MergeBlockIntoPredecessor(DestBB
);
788 // Note: BB(=SinglePred) will not be deleted on this path.
789 // DestBB(=its single successor) is the one that was deleted.
790 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
795 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
796 // to handle the new incoming edges it is about to have.
797 for (PHINode
&PN
: DestBB
->phis()) {
798 // Remove the incoming value for BB, and remember it.
799 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
801 // Two options: either the InVal is a phi node defined in BB or it is some
802 // value that dominates BB.
803 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
804 if (InValPhi
&& InValPhi
->getParent() == BB
) {
805 // Add all of the input values of the input PHI as inputs of this phi.
806 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
807 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
808 InValPhi
->getIncomingBlock(i
));
810 // Otherwise, add one instance of the dominating value for each edge that
811 // we will be adding.
812 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
813 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
814 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
816 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
817 PN
.addIncoming(InVal
, *PI
);
822 // The PHIs are now updated, change everything that refers to BB to use
823 // DestBB and remove BB.
824 BB
->replaceAllUsesWith(DestBB
);
825 BB
->eraseFromParent();
828 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
831 // Computes a map of base pointer relocation instructions to corresponding
832 // derived pointer relocation instructions given a vector of all relocate calls
833 static void computeBaseDerivedRelocateMap(
834 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
835 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>>
837 // Collect information in two maps: one primarily for locating the base object
838 // while filling the second map; the second map is the final structure holding
839 // a mapping between Base and corresponding Derived relocate calls
840 DenseMap
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
841 for (auto *ThisRelocate
: AllRelocateCalls
) {
842 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
843 ThisRelocate
->getDerivedPtrIndex());
844 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
846 for (auto &Item
: RelocateIdxMap
) {
847 std::pair
<unsigned, unsigned> Key
= Item
.first
;
848 if (Key
.first
== Key
.second
)
849 // Base relocation: nothing to insert
852 GCRelocateInst
*I
= Item
.second
;
853 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
855 // We're iterating over RelocateIdxMap so we cannot modify it.
856 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
857 if (MaybeBase
== RelocateIdxMap
.end())
858 // TODO: We might want to insert a new base object relocate and gep off
859 // that, if there are enough derived object relocates.
862 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
866 // Accepts a GEP and extracts the operands into a vector provided they're all
867 // small integer constants
868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
869 SmallVectorImpl
<Value
*> &OffsetV
) {
870 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
871 // Only accept small constant integer operands
872 auto Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
873 if (!Op
|| Op
->getZExtValue() > 20)
877 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
878 OffsetV
.push_back(GEP
->getOperand(i
));
882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
883 // replace, computes a replacement, and affects it.
885 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
886 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
887 bool MadeChange
= false;
888 // We must ensure the relocation of derived pointer is defined after
889 // relocation of base pointer. If we find a relocation corresponding to base
890 // defined earlier than relocation of base then we move relocation of base
891 // right before found relocation. We consider only relocation in the same
892 // basic block as relocation of base. Relocations from other basic block will
893 // be skipped by optimization and we do not care about them.
894 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
895 &*R
!= RelocatedBase
; ++R
)
896 if (auto RI
= dyn_cast
<GCRelocateInst
>(R
))
897 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
898 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
899 RelocatedBase
->moveBefore(RI
);
903 for (GCRelocateInst
*ToReplace
: Targets
) {
904 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
905 "Not relocating a derived object of the original base object");
906 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
907 // A duplicate relocate call. TODO: coalesce duplicates.
911 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
912 // Base and derived relocates are in different basic blocks.
913 // In this case transform is only valid when base dominates derived
914 // relocate. However it would be too expensive to check dominance
915 // for each such relocate, so we skip the whole transformation.
919 Value
*Base
= ToReplace
->getBasePtr();
920 auto Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
921 if (!Derived
|| Derived
->getPointerOperand() != Base
)
924 SmallVector
<Value
*, 2> OffsetV
;
925 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
928 // Create a Builder and replace the target callsite with a gep
929 assert(RelocatedBase
->getNextNode() &&
930 "Should always have one since it's not a terminator");
932 // Insert after RelocatedBase
933 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
934 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
936 // If gc_relocate does not match the actual type, cast it to the right type.
937 // In theory, there must be a bitcast after gc_relocate if the type does not
938 // match, and we should reuse it to get the derived pointer. But it could be
942 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
947 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
951 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
952 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
954 // In this case, we can not find the bitcast any more. So we insert a new bitcast
955 // no matter there is already one or not. In this way, we can handle all cases, and
956 // the extra bitcast should be optimized away in later passes.
957 Value
*ActualRelocatedBase
= RelocatedBase
;
958 if (RelocatedBase
->getType() != Base
->getType()) {
959 ActualRelocatedBase
=
960 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
962 Value
*Replacement
= Builder
.CreateGEP(
963 Derived
->getSourceElementType(), ActualRelocatedBase
, makeArrayRef(OffsetV
));
964 Replacement
->takeName(ToReplace
);
965 // If the newly generated derived pointer's type does not match the original derived
966 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
967 Value
*ActualReplacement
= Replacement
;
968 if (Replacement
->getType() != ToReplace
->getType()) {
970 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
972 ToReplace
->replaceAllUsesWith(ActualReplacement
);
973 ToReplace
->eraseFromParent();
983 // %ptr = gep %base + 15
984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
985 // %base' = relocate(%tok, i32 4, i32 4)
986 // %ptr' = relocate(%tok, i32 4, i32 5)
992 // %ptr = gep %base + 15
993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
994 // %base' = gc.relocate(%tok, i32 4, i32 4)
995 // %ptr' = gep %base' + 15
997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction
&I
) {
998 bool MadeChange
= false;
999 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1001 for (auto *U
: I
.users())
1002 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1003 // Collect all the relocate calls associated with a statepoint
1004 AllRelocateCalls
.push_back(Relocate
);
1006 // We need atleast one base pointer relocation + one derived pointer
1007 // relocation to mangle
1008 if (AllRelocateCalls
.size() < 2)
1011 // RelocateInstMap is a mapping from the base relocate instruction to the
1012 // corresponding derived relocate instructions
1013 DenseMap
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 2>> RelocateInstMap
;
1014 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1015 if (RelocateInstMap
.empty())
1018 for (auto &Item
: RelocateInstMap
)
1019 // Item.first is the RelocatedBase to offset against
1020 // Item.second is the vector of Targets to replace
1021 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1025 /// SinkCast - Sink the specified cast instruction into its user blocks
1026 static bool SinkCast(CastInst
*CI
) {
1027 BasicBlock
*DefBB
= CI
->getParent();
1029 /// InsertedCasts - Only insert a cast in each block once.
1030 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1032 bool MadeChange
= false;
1033 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1035 Use
&TheUse
= UI
.getUse();
1036 Instruction
*User
= cast
<Instruction
>(*UI
);
1038 // Figure out which BB this cast is used in. For PHI's this is the
1039 // appropriate predecessor block.
1040 BasicBlock
*UserBB
= User
->getParent();
1041 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1042 UserBB
= PN
->getIncomingBlock(TheUse
);
1045 // Preincrement use iterator so we don't invalidate it.
1048 // The first insertion point of a block containing an EH pad is after the
1049 // pad. If the pad is the user, we cannot sink the cast past the pad.
1050 if (User
->isEHPad())
1053 // If the block selected to receive the cast is an EH pad that does not
1054 // allow non-PHI instructions before the terminator, we can't sink the
1056 if (UserBB
->getTerminator()->isEHPad())
1059 // If this user is in the same block as the cast, don't change the cast.
1060 if (UserBB
== DefBB
) continue;
1062 // If we have already inserted a cast into this block, use it.
1063 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1065 if (!InsertedCast
) {
1066 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1067 assert(InsertPt
!= UserBB
->end());
1068 InsertedCast
= CastInst::Create(CI
->getOpcode(), CI
->getOperand(0),
1069 CI
->getType(), "", &*InsertPt
);
1070 InsertedCast
->setDebugLoc(CI
->getDebugLoc());
1073 // Replace a use of the cast with a use of the new cast.
1074 TheUse
= InsertedCast
;
1079 // If we removed all uses, nuke the cast.
1080 if (CI
->use_empty()) {
1081 salvageDebugInfo(*CI
);
1082 CI
->eraseFromParent();
1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1091 /// reduce the number of virtual registers that must be created and coalesced.
1093 /// Return true if any changes are made.
1094 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1095 const DataLayout
&DL
) {
1096 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1097 // than sinking only nop casts, but is helpful on some platforms.
1098 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1099 if (!TLI
.isCheapAddrSpaceCast(ASC
->getSrcAddressSpace(),
1100 ASC
->getDestAddressSpace()))
1104 // If this is a noop copy,
1105 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1106 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1108 // This is an fp<->int conversion?
1109 if (SrcVT
.isInteger() != DstVT
.isInteger())
1112 // If this is an extension, it will be a zero or sign extension, which
1114 if (SrcVT
.bitsLT(DstVT
)) return false;
1116 // If these values will be promoted, find out what they will be promoted
1117 // to. This helps us consider truncates on PPC as noop copies when they
1119 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1120 TargetLowering::TypePromoteInteger
)
1121 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1122 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1123 TargetLowering::TypePromoteInteger
)
1124 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1126 // If, after promotion, these are the same types, this is a noop copy.
1130 return SinkCast(CI
);
1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1136 /// Return true if any changes were made.
1137 static bool CombineUAddWithOverflow(CmpInst
*CI
) {
1141 m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_Instruction(AddI
))))
1144 Type
*Ty
= AddI
->getType();
1145 if (!isa
<IntegerType
>(Ty
))
1148 // We don't want to move around uses of condition values this late, so we we
1149 // check if it is legal to create the call to the intrinsic in the basic
1150 // block containing the icmp:
1152 if (AddI
->getParent() != CI
->getParent() && !AddI
->hasOneUse())
1156 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1158 if (AddI
->hasOneUse())
1159 assert(*AddI
->user_begin() == CI
&& "expected!");
1162 Module
*M
= CI
->getModule();
1163 Value
*F
= Intrinsic::getDeclaration(M
, Intrinsic::uadd_with_overflow
, Ty
);
1165 auto *InsertPt
= AddI
->hasOneUse() ? CI
: AddI
;
1167 DebugLoc Loc
= CI
->getDebugLoc();
1168 auto *UAddWithOverflow
=
1169 CallInst::Create(F
, {A
, B
}, "uadd.overflow", InsertPt
);
1170 UAddWithOverflow
->setDebugLoc(Loc
);
1171 auto *UAdd
= ExtractValueInst::Create(UAddWithOverflow
, 0, "uadd", InsertPt
);
1172 UAdd
->setDebugLoc(Loc
);
1174 ExtractValueInst::Create(UAddWithOverflow
, 1, "overflow", InsertPt
);
1175 Overflow
->setDebugLoc(Loc
);
1177 CI
->replaceAllUsesWith(Overflow
);
1178 AddI
->replaceAllUsesWith(UAdd
);
1179 CI
->eraseFromParent();
1180 AddI
->eraseFromParent();
1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1185 /// registers that must be created and coalesced. This is a clear win except on
1186 /// targets with multiple condition code registers (PowerPC), where it might
1187 /// lose; some adjustment may be wanted there.
1189 /// Return true if any changes are made.
1190 static bool SinkCmpExpression(CmpInst
*CI
, const TargetLowering
*TLI
) {
1191 BasicBlock
*DefBB
= CI
->getParent();
1193 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1194 if (TLI
&& TLI
->useSoftFloat() && isa
<FCmpInst
>(CI
))
1197 // Only insert a cmp in each block once.
1198 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1200 bool MadeChange
= false;
1201 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1203 Use
&TheUse
= UI
.getUse();
1204 Instruction
*User
= cast
<Instruction
>(*UI
);
1206 // Preincrement use iterator so we don't invalidate it.
1209 // Don't bother for PHI nodes.
1210 if (isa
<PHINode
>(User
))
1213 // Figure out which BB this cmp is used in.
1214 BasicBlock
*UserBB
= User
->getParent();
1216 // If this user is in the same block as the cmp, don't change the cmp.
1217 if (UserBB
== DefBB
) continue;
1219 // If we have already inserted a cmp into this block, use it.
1220 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1223 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1224 assert(InsertPt
!= UserBB
->end());
1226 CmpInst::Create(CI
->getOpcode(), CI
->getPredicate(),
1227 CI
->getOperand(0), CI
->getOperand(1), "", &*InsertPt
);
1228 // Propagate the debug info.
1229 InsertedCmp
->setDebugLoc(CI
->getDebugLoc());
1232 // Replace a use of the cmp with a use of the new cmp.
1233 TheUse
= InsertedCmp
;
1238 // If we removed all uses, nuke the cmp.
1239 if (CI
->use_empty()) {
1240 CI
->eraseFromParent();
1247 static bool OptimizeCmpExpression(CmpInst
*CI
, const TargetLowering
*TLI
) {
1248 if (SinkCmpExpression(CI
, TLI
))
1251 if (CombineUAddWithOverflow(CI
))
1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1258 /// used in a compare to allow isel to generate better code for targets where
1259 /// this operation can be combined.
1261 /// Return true if any changes are made.
1262 static bool sinkAndCmp0Expression(Instruction
*AndI
,
1263 const TargetLowering
&TLI
,
1264 SetOfInstrs
&InsertedInsts
) {
1265 // Double-check that we're not trying to optimize an instruction that was
1266 // already optimized by some other part of this pass.
1267 assert(!InsertedInsts
.count(AndI
) &&
1268 "Attempting to optimize already optimized and instruction");
1269 (void) InsertedInsts
;
1271 // Nothing to do for single use in same basic block.
1272 if (AndI
->hasOneUse() &&
1273 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
1276 // Try to avoid cases where sinking/duplicating is likely to increase register
1278 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
1279 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
1280 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
1283 for (auto *U
: AndI
->users()) {
1284 Instruction
*User
= cast
<Instruction
>(U
);
1286 // Only sink for and mask feeding icmp with 0.
1287 if (!isa
<ICmpInst
>(User
))
1290 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
1291 if (!CmpC
|| !CmpC
->isZero())
1295 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
1298 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1299 LLVM_DEBUG(AndI
->getParent()->dump());
1301 // Push the 'and' into the same block as the icmp 0. There should only be
1302 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1303 // others, so we don't need to keep track of which BBs we insert into.
1304 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
1306 Use
&TheUse
= UI
.getUse();
1307 Instruction
*User
= cast
<Instruction
>(*UI
);
1309 // Preincrement use iterator so we don't invalidate it.
1312 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
1314 // Keep the 'and' in the same place if the use is already in the same block.
1315 Instruction
*InsertPt
=
1316 User
->getParent() == AndI
->getParent() ? AndI
: User
;
1317 Instruction
*InsertedAnd
=
1318 BinaryOperator::Create(Instruction::And
, AndI
->getOperand(0),
1319 AndI
->getOperand(1), "", InsertPt
);
1320 // Propagate the debug info.
1321 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
1323 // Replace a use of the 'and' with a use of the new 'and'.
1324 TheUse
= InsertedAnd
;
1326 LLVM_DEBUG(User
->getParent()->dump());
1329 // We removed all uses, nuke the and.
1330 AndI
->eraseFromParent();
1334 /// Check if the candidates could be combined with a shift instruction, which
1336 /// 1. Truncate instruction
1337 /// 2. And instruction and the imm is a mask of the low bits:
1338 /// imm & (imm+1) == 0
1339 static bool isExtractBitsCandidateUse(Instruction
*User
) {
1340 if (!isa
<TruncInst
>(User
)) {
1341 if (User
->getOpcode() != Instruction::And
||
1342 !isa
<ConstantInt
>(User
->getOperand(1)))
1345 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
1347 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
1353 /// Sink both shift and truncate instruction to the use of truncate's BB.
1355 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
1356 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
1357 const TargetLowering
&TLI
, const DataLayout
&DL
) {
1358 BasicBlock
*UserBB
= User
->getParent();
1359 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
1360 TruncInst
*TruncI
= dyn_cast
<TruncInst
>(User
);
1361 bool MadeChange
= false;
1363 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
1364 TruncE
= TruncI
->user_end();
1365 TruncUI
!= TruncE
;) {
1367 Use
&TruncTheUse
= TruncUI
.getUse();
1368 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
1369 // Preincrement use iterator so we don't invalidate it.
1373 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
1377 // If the use is actually a legal node, there will not be an
1378 // implicit truncate.
1379 // FIXME: always querying the result type is just an
1380 // approximation; some nodes' legality is determined by the
1381 // operand or other means. There's no good way to find out though.
1382 if (TLI
.isOperationLegalOrCustom(
1383 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
1386 // Don't bother for PHI nodes.
1387 if (isa
<PHINode
>(TruncUser
))
1390 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
1392 if (UserBB
== TruncUserBB
)
1395 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
1396 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
1398 if (!InsertedShift
&& !InsertedTrunc
) {
1399 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
1400 assert(InsertPt
!= TruncUserBB
->end());
1402 if (ShiftI
->getOpcode() == Instruction::AShr
)
1403 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1406 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1408 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1411 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
1413 assert(TruncInsertPt
!= TruncUserBB
->end());
1415 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
1416 TruncI
->getType(), "", &*TruncInsertPt
);
1417 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
1421 TruncTheUse
= InsertedTrunc
;
1427 /// Sink the shift *right* instruction into user blocks if the uses could
1428 /// potentially be combined with this shift instruction and generate BitExtract
1429 /// instruction. It will only be applied if the architecture supports BitExtract
1430 /// instruction. Here is an example:
1432 /// %x.extract.shift = lshr i64 %arg1, 32
1434 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1438 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1439 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1441 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1443 /// Return true if any changes are made.
1444 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
1445 const TargetLowering
&TLI
,
1446 const DataLayout
&DL
) {
1447 BasicBlock
*DefBB
= ShiftI
->getParent();
1449 /// Only insert instructions in each block once.
1450 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
1452 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
1454 bool MadeChange
= false;
1455 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
1457 Use
&TheUse
= UI
.getUse();
1458 Instruction
*User
= cast
<Instruction
>(*UI
);
1459 // Preincrement use iterator so we don't invalidate it.
1462 // Don't bother for PHI nodes.
1463 if (isa
<PHINode
>(User
))
1466 if (!isExtractBitsCandidateUse(User
))
1469 BasicBlock
*UserBB
= User
->getParent();
1471 if (UserBB
== DefBB
) {
1472 // If the shift and truncate instruction are in the same BB. The use of
1473 // the truncate(TruncUse) may still introduce another truncate if not
1474 // legal. In this case, we would like to sink both shift and truncate
1475 // instruction to the BB of TruncUse.
1478 // i64 shift.result = lshr i64 opnd, imm
1479 // trunc.result = trunc shift.result to i16
1482 // ----> We will have an implicit truncate here if the architecture does
1483 // not have i16 compare.
1484 // cmp i16 trunc.result, opnd2
1486 if (isa
<TruncInst
>(User
) && shiftIsLegal
1487 // If the type of the truncate is legal, no truncate will be
1488 // introduced in other basic blocks.
1490 (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
1492 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
1496 // If we have already inserted a shift into this block, use it.
1497 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
1499 if (!InsertedShift
) {
1500 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1501 assert(InsertPt
!= UserBB
->end());
1503 if (ShiftI
->getOpcode() == Instruction::AShr
)
1504 InsertedShift
= BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
,
1507 InsertedShift
= BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
,
1509 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
1514 // Replace a use of the shift with a use of the new shift.
1515 TheUse
= InsertedShift
;
1518 // If we removed all uses, nuke the shift.
1519 if (ShiftI
->use_empty()) {
1520 salvageDebugInfo(*ShiftI
);
1521 ShiftI
->eraseFromParent();
1527 /// If counting leading or trailing zeros is an expensive operation and a zero
1528 /// input is defined, add a check for zero to avoid calling the intrinsic.
1530 /// We want to transform:
1531 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1535 /// %cmpz = icmp eq i64 %A, 0
1536 /// br i1 %cmpz, label %cond.end, label %cond.false
1538 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1539 /// br label %cond.end
1541 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1543 /// If the transform is performed, return true and set ModifiedDT to true.
1544 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
1545 const TargetLowering
*TLI
,
1546 const DataLayout
*DL
,
1551 // If a zero input is undefined, it doesn't make sense to despeculate that.
1552 if (match(CountZeros
->getOperand(1), m_One()))
1555 // If it's cheap to speculate, there's nothing to do.
1556 auto IntrinsicID
= CountZeros
->getIntrinsicID();
1557 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz()) ||
1558 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz()))
1561 // Only handle legal scalar cases. Anything else requires too much work.
1562 Type
*Ty
= CountZeros
->getType();
1563 unsigned SizeInBits
= Ty
->getPrimitiveSizeInBits();
1564 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
1567 // The intrinsic will be sunk behind a compare against zero and branch.
1568 BasicBlock
*StartBlock
= CountZeros
->getParent();
1569 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
1571 // Create another block after the count zero intrinsic. A PHI will be added
1572 // in this block to select the result of the intrinsic or the bit-width
1573 // constant if the input to the intrinsic is zero.
1574 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(CountZeros
));
1575 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
1577 // Set up a builder to create a compare, conditional branch, and PHI.
1578 IRBuilder
<> Builder(CountZeros
->getContext());
1579 Builder
.SetInsertPoint(StartBlock
->getTerminator());
1580 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
1582 // Replace the unconditional branch that was created by the first split with
1583 // a compare against zero and a conditional branch.
1584 Value
*Zero
= Constant::getNullValue(Ty
);
1585 Value
*Cmp
= Builder
.CreateICmpEQ(CountZeros
->getOperand(0), Zero
, "cmpz");
1586 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
1587 StartBlock
->getTerminator()->eraseFromParent();
1589 // Create a PHI in the end block to select either the output of the intrinsic
1590 // or the bit width of the operand.
1591 Builder
.SetInsertPoint(&EndBlock
->front());
1592 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
1593 CountZeros
->replaceAllUsesWith(PN
);
1594 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
1595 PN
->addIncoming(BitWidth
, StartBlock
);
1596 PN
->addIncoming(CountZeros
, CallBlock
);
1598 // We are explicitly handling the zero case, so we can set the intrinsic's
1599 // undefined zero argument to 'true'. This will also prevent reprocessing the
1600 // intrinsic; we only despeculate when a zero input is defined.
1601 CountZeros
->setArgOperand(1, Builder
.getTrue());
1606 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, bool &ModifiedDT
) {
1607 BasicBlock
*BB
= CI
->getParent();
1609 // Lower inline assembly if we can.
1610 // If we found an inline asm expession, and if the target knows how to
1611 // lower it to normal LLVM code, do so now.
1612 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
1613 if (TLI
->ExpandInlineAsm(CI
)) {
1614 // Avoid invalidating the iterator.
1615 CurInstIterator
= BB
->begin();
1616 // Avoid processing instructions out of order, which could cause
1617 // reuse before a value is defined.
1621 // Sink address computing for memory operands into the block.
1622 if (optimizeInlineAsmInst(CI
))
1626 // Align the pointer arguments to this call if the target thinks it's a good
1628 unsigned MinSize
, PrefAlign
;
1629 if (TLI
&& TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
1630 for (auto &Arg
: CI
->arg_operands()) {
1631 // We want to align both objects whose address is used directly and
1632 // objects whose address is used in casts and GEPs, though it only makes
1633 // sense for GEPs if the offset is a multiple of the desired alignment and
1634 // if size - offset meets the size threshold.
1635 if (!Arg
->getType()->isPointerTy())
1637 APInt
Offset(DL
->getIndexSizeInBits(
1638 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
1640 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
1641 uint64_t Offset2
= Offset
.getLimitedValue();
1642 if ((Offset2
& (PrefAlign
-1)) != 0)
1645 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlignment() < PrefAlign
&&
1646 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
1647 AI
->setAlignment(PrefAlign
);
1648 // Global variables can only be aligned if they are defined in this
1649 // object (i.e. they are uniquely initialized in this object), and
1650 // over-aligning global variables that have an explicit section is
1653 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
1654 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
1655 DL
->getTypeAllocSize(GV
->getValueType()) >=
1657 GV
->setAlignment(PrefAlign
);
1659 // If this is a memcpy (or similar) then we may be able to improve the
1661 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
1662 unsigned DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
1663 if (DestAlign
> MI
->getDestAlignment())
1664 MI
->setDestAlignment(DestAlign
);
1665 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
1666 unsigned SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
1667 if (SrcAlign
> MTI
->getSourceAlignment())
1668 MTI
->setSourceAlignment(SrcAlign
);
1673 // If we have a cold call site, try to sink addressing computation into the
1674 // cold block. This interacts with our handling for loads and stores to
1675 // ensure that we can fold all uses of a potential addressing computation
1676 // into their uses. TODO: generalize this to work over profiling data
1677 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
1678 for (auto &Arg
: CI
->arg_operands()) {
1679 if (!Arg
->getType()->isPointerTy())
1681 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
1682 return optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
);
1685 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
1687 switch (II
->getIntrinsicID()) {
1689 case Intrinsic::objectsize
: {
1690 // Lower all uses of llvm.objectsize.*
1691 ConstantInt
*RetVal
=
1692 lowerObjectSizeCall(II
, *DL
, TLInfo
, /*MustSucceed=*/true);
1693 // Substituting this can cause recursive simplifications, which can
1694 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case
1697 Value
*CurValue
= &*CurInstIterator
;
1698 WeakTrackingVH
IterHandle(CurValue
);
1700 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
1702 // If the iterator instruction was recursively deleted, start over at the
1703 // start of the block.
1704 if (IterHandle
!= CurValue
) {
1705 CurInstIterator
= BB
->begin();
1710 case Intrinsic::aarch64_stlxr
:
1711 case Intrinsic::aarch64_stxr
: {
1712 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
1713 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
1714 ExtVal
->getParent() == CI
->getParent())
1716 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1717 ExtVal
->moveBefore(CI
);
1718 // Mark this instruction as "inserted by CGP", so that other
1719 // optimizations don't touch it.
1720 InsertedInsts
.insert(ExtVal
);
1723 case Intrinsic::launder_invariant_group
:
1724 case Intrinsic::strip_invariant_group
:
1725 II
->replaceAllUsesWith(II
->getArgOperand(0));
1726 II
->eraseFromParent();
1729 case Intrinsic::cttz
:
1730 case Intrinsic::ctlz
:
1731 // If counting zeros is expensive, try to avoid it.
1732 return despeculateCountZeros(II
, TLI
, DL
, ModifiedDT
);
1736 SmallVector
<Value
*, 2> PtrOps
;
1738 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
1739 while (!PtrOps
.empty()) {
1740 Value
*PtrVal
= PtrOps
.pop_back_val();
1741 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
1742 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
1748 // From here on out we're working with named functions.
1749 if (!CI
->getCalledFunction()) return false;
1751 // Lower all default uses of _chk calls. This is very similar
1752 // to what InstCombineCalls does, but here we are only lowering calls
1753 // to fortified library functions (e.g. __memcpy_chk) that have the default
1754 // "don't know" as the objectsize. Anything else should be left alone.
1755 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
1756 if (Value
*V
= Simplifier
.optimizeCall(CI
)) {
1757 CI
->replaceAllUsesWith(V
);
1758 CI
->eraseFromParent();
1765 /// Look for opportunities to duplicate return instructions to the predecessor
1766 /// to enable tail call optimizations. The case it is currently looking for is:
1769 /// %tmp0 = tail call i32 @f0()
1770 /// br label %return
1772 /// %tmp1 = tail call i32 @f1()
1773 /// br label %return
1775 /// %tmp2 = tail call i32 @f2()
1776 /// br label %return
1778 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1786 /// %tmp0 = tail call i32 @f0()
1789 /// %tmp1 = tail call i32 @f1()
1792 /// %tmp2 = tail call i32 @f2()
1795 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
) {
1799 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
1803 PHINode
*PN
= nullptr;
1804 BitCastInst
*BCI
= nullptr;
1805 Value
*V
= RetI
->getReturnValue();
1807 BCI
= dyn_cast
<BitCastInst
>(V
);
1809 V
= BCI
->getOperand(0);
1811 PN
= dyn_cast
<PHINode
>(V
);
1816 if (PN
&& PN
->getParent() != BB
)
1819 // Make sure there are no instructions between the PHI and return, or that the
1820 // return is the first instruction in the block.
1822 BasicBlock::iterator BI
= BB
->begin();
1823 do { ++BI
; } while (isa
<DbgInfoIntrinsic
>(BI
));
1825 // Also skip over the bitcast.
1830 BasicBlock::iterator BI
= BB
->begin();
1831 while (isa
<DbgInfoIntrinsic
>(BI
)) ++BI
;
1836 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1838 const Function
*F
= BB
->getParent();
1839 SmallVector
<CallInst
*, 4> TailCalls
;
1841 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
1842 CallInst
*CI
= dyn_cast
<CallInst
>(PN
->getIncomingValue(I
));
1843 // Make sure the phi value is indeed produced by the tail call.
1844 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PN
->getIncomingBlock(I
) &&
1845 TLI
->mayBeEmittedAsTailCall(CI
) &&
1846 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1847 TailCalls
.push_back(CI
);
1850 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
1851 for (pred_iterator PI
= pred_begin(BB
), PE
= pred_end(BB
); PI
!= PE
; ++PI
) {
1852 if (!VisitedBBs
.insert(*PI
).second
)
1855 BasicBlock::InstListType
&InstList
= (*PI
)->getInstList();
1856 BasicBlock::InstListType::reverse_iterator RI
= InstList
.rbegin();
1857 BasicBlock::InstListType::reverse_iterator RE
= InstList
.rend();
1858 do { ++RI
; } while (RI
!= RE
&& isa
<DbgInfoIntrinsic
>(&*RI
));
1862 CallInst
*CI
= dyn_cast
<CallInst
>(&*RI
);
1863 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
1864 attributesPermitTailCall(F
, CI
, RetI
, *TLI
))
1865 TailCalls
.push_back(CI
);
1869 bool Changed
= false;
1870 for (unsigned i
= 0, e
= TailCalls
.size(); i
!= e
; ++i
) {
1871 CallInst
*CI
= TailCalls
[i
];
1874 // Make sure the call instruction is followed by an unconditional branch to
1875 // the return block.
1876 BasicBlock
*CallBB
= CI
->getParent();
1877 BranchInst
*BI
= dyn_cast
<BranchInst
>(CallBB
->getTerminator());
1878 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
1881 // Duplicate the return into CallBB.
1882 (void)FoldReturnIntoUncondBranch(RetI
, BB
, CallBB
);
1883 ModifiedDT
= Changed
= true;
1887 // If we eliminated all predecessors of the block, delete the block now.
1888 if (Changed
&& !BB
->hasAddressTaken() && pred_begin(BB
) == pred_end(BB
))
1889 BB
->eraseFromParent();
1894 //===----------------------------------------------------------------------===//
1895 // Memory Optimization
1896 //===----------------------------------------------------------------------===//
1900 /// This is an extended version of TargetLowering::AddrMode
1901 /// which holds actual Value*'s for register values.
1902 struct ExtAddrMode
: public TargetLowering::AddrMode
{
1903 Value
*BaseReg
= nullptr;
1904 Value
*ScaledReg
= nullptr;
1905 Value
*OriginalValue
= nullptr;
1909 BaseRegField
= 0x01,
1911 BaseOffsField
= 0x04,
1912 ScaledRegField
= 0x08,
1914 MultipleFields
= 0xff
1917 ExtAddrMode() = default;
1919 void print(raw_ostream
&OS
) const;
1922 FieldName
compare(const ExtAddrMode
&other
) {
1923 // First check that the types are the same on each field, as differing types
1924 // is something we can't cope with later on.
1925 if (BaseReg
&& other
.BaseReg
&&
1926 BaseReg
->getType() != other
.BaseReg
->getType())
1927 return MultipleFields
;
1928 if (BaseGV
&& other
.BaseGV
&&
1929 BaseGV
->getType() != other
.BaseGV
->getType())
1930 return MultipleFields
;
1931 if (ScaledReg
&& other
.ScaledReg
&&
1932 ScaledReg
->getType() != other
.ScaledReg
->getType())
1933 return MultipleFields
;
1935 // Check each field to see if it differs.
1936 unsigned Result
= NoField
;
1937 if (BaseReg
!= other
.BaseReg
)
1938 Result
|= BaseRegField
;
1939 if (BaseGV
!= other
.BaseGV
)
1940 Result
|= BaseGVField
;
1941 if (BaseOffs
!= other
.BaseOffs
)
1942 Result
|= BaseOffsField
;
1943 if (ScaledReg
!= other
.ScaledReg
)
1944 Result
|= ScaledRegField
;
1945 // Don't count 0 as being a different scale, because that actually means
1946 // unscaled (which will already be counted by having no ScaledReg).
1947 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
1948 Result
|= ScaleField
;
1950 if (countPopulation(Result
) > 1)
1951 return MultipleFields
;
1953 return static_cast<FieldName
>(Result
);
1956 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1959 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1960 // trivial if at most one of these terms is nonzero, except that BaseGV and
1961 // BaseReg both being zero actually means a null pointer value, which we
1962 // consider to be 'non-zero' here.
1963 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
1966 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
1974 case ScaledRegField
:
1977 return ConstantInt::get(IntPtrTy
, BaseOffs
);
1981 void SetCombinedField(FieldName Field
, Value
*V
,
1982 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
1985 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1987 case ExtAddrMode::BaseRegField
:
1990 case ExtAddrMode::BaseGVField
:
1991 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
1992 // in the BaseReg field.
1993 assert(BaseReg
== nullptr);
1997 case ExtAddrMode::ScaledRegField
:
1999 // If we have a mix of scaled and unscaled addrmodes then we want scale
2000 // to be the scale and not zero.
2002 for (const ExtAddrMode
&AM
: AddrModes
)
2008 case ExtAddrMode::BaseOffsField
:
2009 // The offset is no longer a constant, so it goes in ScaledReg with a
2011 assert(ScaledReg
== nullptr);
2020 } // end anonymous namespace
2023 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
2029 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2030 void ExtAddrMode::print(raw_ostream
&OS
) const {
2031 bool NeedPlus
= false;
2034 OS
<< (NeedPlus
? " + " : "")
2036 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
2041 OS
<< (NeedPlus
? " + " : "")
2047 OS
<< (NeedPlus
? " + " : "")
2049 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
2053 OS
<< (NeedPlus
? " + " : "")
2055 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
2061 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
2069 /// This class provides transaction based operation on the IR.
2070 /// Every change made through this class is recorded in the internal state and
2071 /// can be undone (rollback) until commit is called.
2072 class TypePromotionTransaction
{
2073 /// This represents the common interface of the individual transaction.
2074 /// Each class implements the logic for doing one specific modification on
2075 /// the IR via the TypePromotionTransaction.
2076 class TypePromotionAction
{
2078 /// The Instruction modified.
2082 /// Constructor of the action.
2083 /// The constructor performs the related action on the IR.
2084 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
2086 virtual ~TypePromotionAction() = default;
2088 /// Undo the modification done by this action.
2089 /// When this method is called, the IR must be in the same state as it was
2090 /// before this action was applied.
2091 /// \pre Undoing the action works if and only if the IR is in the exact same
2092 /// state as it was directly after this action was applied.
2093 virtual void undo() = 0;
2095 /// Advocate every change made by this action.
2096 /// When the results on the IR of the action are to be kept, it is important
2097 /// to call this function, otherwise hidden information may be kept forever.
2098 virtual void commit() {
2099 // Nothing to be done, this action is not doing anything.
2103 /// Utility to remember the position of an instruction.
2104 class InsertionHandler
{
2105 /// Position of an instruction.
2106 /// Either an instruction:
2107 /// - Is the first in a basic block: BB is used.
2108 /// - Has a previous instruction: PrevInst is used.
2110 Instruction
*PrevInst
;
2114 /// Remember whether or not the instruction had a previous instruction.
2115 bool HasPrevInstruction
;
2118 /// Record the position of \p Inst.
2119 InsertionHandler(Instruction
*Inst
) {
2120 BasicBlock::iterator It
= Inst
->getIterator();
2121 HasPrevInstruction
= (It
!= (Inst
->getParent()->begin()));
2122 if (HasPrevInstruction
)
2123 Point
.PrevInst
= &*--It
;
2125 Point
.BB
= Inst
->getParent();
2128 /// Insert \p Inst at the recorded position.
2129 void insert(Instruction
*Inst
) {
2130 if (HasPrevInstruction
) {
2131 if (Inst
->getParent())
2132 Inst
->removeFromParent();
2133 Inst
->insertAfter(Point
.PrevInst
);
2135 Instruction
*Position
= &*Point
.BB
->getFirstInsertionPt();
2136 if (Inst
->getParent())
2137 Inst
->moveBefore(Position
);
2139 Inst
->insertBefore(Position
);
2144 /// Move an instruction before another.
2145 class InstructionMoveBefore
: public TypePromotionAction
{
2146 /// Original position of the instruction.
2147 InsertionHandler Position
;
2150 /// Move \p Inst before \p Before.
2151 InstructionMoveBefore(Instruction
*Inst
, Instruction
*Before
)
2152 : TypePromotionAction(Inst
), Position(Inst
) {
2153 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
2155 Inst
->moveBefore(Before
);
2158 /// Move the instruction back to its original position.
2159 void undo() override
{
2160 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
2161 Position
.insert(Inst
);
2165 /// Set the operand of an instruction with a new value.
2166 class OperandSetter
: public TypePromotionAction
{
2167 /// Original operand of the instruction.
2170 /// Index of the modified instruction.
2174 /// Set \p Idx operand of \p Inst with \p NewVal.
2175 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
2176 : TypePromotionAction(Inst
), Idx(Idx
) {
2177 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
2178 << "for:" << *Inst
<< "\n"
2179 << "with:" << *NewVal
<< "\n");
2180 Origin
= Inst
->getOperand(Idx
);
2181 Inst
->setOperand(Idx
, NewVal
);
2184 /// Restore the original value of the instruction.
2185 void undo() override
{
2186 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
2187 << "for: " << *Inst
<< "\n"
2188 << "with: " << *Origin
<< "\n");
2189 Inst
->setOperand(Idx
, Origin
);
2193 /// Hide the operands of an instruction.
2194 /// Do as if this instruction was not using any of its operands.
2195 class OperandsHider
: public TypePromotionAction
{
2196 /// The list of original operands.
2197 SmallVector
<Value
*, 4> OriginalValues
;
2200 /// Remove \p Inst from the uses of the operands of \p Inst.
2201 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
2202 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
2203 unsigned NumOpnds
= Inst
->getNumOperands();
2204 OriginalValues
.reserve(NumOpnds
);
2205 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
2206 // Save the current operand.
2207 Value
*Val
= Inst
->getOperand(It
);
2208 OriginalValues
.push_back(Val
);
2210 // We could use OperandSetter here, but that would imply an overhead
2211 // that we are not willing to pay.
2212 Inst
->setOperand(It
, UndefValue::get(Val
->getType()));
2216 /// Restore the original list of uses.
2217 void undo() override
{
2218 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
2219 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
2220 Inst
->setOperand(It
, OriginalValues
[It
]);
2224 /// Build a truncate instruction.
2225 class TruncBuilder
: public TypePromotionAction
{
2229 /// Build a truncate instruction of \p Opnd producing a \p Ty
2231 /// trunc Opnd to Ty.
2232 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
2233 IRBuilder
<> Builder(Opnd
);
2234 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
2235 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
2238 /// Get the built value.
2239 Value
*getBuiltValue() { return Val
; }
2241 /// Remove the built instruction.
2242 void undo() override
{
2243 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
2244 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2245 IVal
->eraseFromParent();
2249 /// Build a sign extension instruction.
2250 class SExtBuilder
: public TypePromotionAction
{
2254 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2256 /// sext Opnd to Ty.
2257 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2258 : TypePromotionAction(InsertPt
) {
2259 IRBuilder
<> Builder(InsertPt
);
2260 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
2261 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
2264 /// Get the built value.
2265 Value
*getBuiltValue() { return Val
; }
2267 /// Remove the built instruction.
2268 void undo() override
{
2269 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
2270 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2271 IVal
->eraseFromParent();
2275 /// Build a zero extension instruction.
2276 class ZExtBuilder
: public TypePromotionAction
{
2280 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2282 /// zext Opnd to Ty.
2283 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
2284 : TypePromotionAction(InsertPt
) {
2285 IRBuilder
<> Builder(InsertPt
);
2286 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
2287 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
2290 /// Get the built value.
2291 Value
*getBuiltValue() { return Val
; }
2293 /// Remove the built instruction.
2294 void undo() override
{
2295 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
2296 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
2297 IVal
->eraseFromParent();
2301 /// Mutate an instruction to another type.
2302 class TypeMutator
: public TypePromotionAction
{
2303 /// Record the original type.
2307 /// Mutate the type of \p Inst into \p NewTy.
2308 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
2309 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
2310 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
2312 Inst
->mutateType(NewTy
);
2315 /// Mutate the instruction back to its original type.
2316 void undo() override
{
2317 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
2319 Inst
->mutateType(OrigTy
);
2323 /// Replace the uses of an instruction by another instruction.
2324 class UsesReplacer
: public TypePromotionAction
{
2325 /// Helper structure to keep track of the replaced uses.
2326 struct InstructionAndIdx
{
2327 /// The instruction using the instruction.
2330 /// The index where this instruction is used for Inst.
2333 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
2334 : Inst(Inst
), Idx(Idx
) {}
2337 /// Keep track of the original uses (pair Instruction, Index).
2338 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
2340 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
2343 /// Replace all the use of \p Inst by \p New.
2344 UsesReplacer(Instruction
*Inst
, Value
*New
) : TypePromotionAction(Inst
) {
2345 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
2347 // Record the original uses.
2348 for (Use
&U
: Inst
->uses()) {
2349 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
2350 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
2352 // Now, we can replace the uses.
2353 Inst
->replaceAllUsesWith(New
);
2356 /// Reassign the original uses of Inst to Inst.
2357 void undo() override
{
2358 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
2359 for (use_iterator UseIt
= OriginalUses
.begin(),
2360 EndIt
= OriginalUses
.end();
2361 UseIt
!= EndIt
; ++UseIt
) {
2362 UseIt
->Inst
->setOperand(UseIt
->Idx
, Inst
);
2367 /// Remove an instruction from the IR.
2368 class InstructionRemover
: public TypePromotionAction
{
2369 /// Original position of the instruction.
2370 InsertionHandler Inserter
;
2372 /// Helper structure to hide all the link to the instruction. In other
2373 /// words, this helps to do as if the instruction was removed.
2374 OperandsHider Hider
;
2376 /// Keep track of the uses replaced, if any.
2377 UsesReplacer
*Replacer
= nullptr;
2379 /// Keep track of instructions removed.
2380 SetOfInstrs
&RemovedInsts
;
2383 /// Remove all reference of \p Inst and optionally replace all its
2385 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2386 /// \pre If !Inst->use_empty(), then New != nullptr
2387 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
2388 Value
*New
= nullptr)
2389 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
2390 RemovedInsts(RemovedInsts
) {
2392 Replacer
= new UsesReplacer(Inst
, New
);
2393 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
2394 RemovedInsts
.insert(Inst
);
2395 /// The instructions removed here will be freed after completing
2396 /// optimizeBlock() for all blocks as we need to keep track of the
2397 /// removed instructions during promotion.
2398 Inst
->removeFromParent();
2401 ~InstructionRemover() override
{ delete Replacer
; }
2403 /// Resurrect the instruction and reassign it to the proper uses if
2404 /// new value was provided when build this action.
2405 void undo() override
{
2406 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
2407 Inserter
.insert(Inst
);
2411 RemovedInsts
.erase(Inst
);
2416 /// Restoration point.
2417 /// The restoration point is a pointer to an action instead of an iterator
2418 /// because the iterator may be invalidated but not the pointer.
2419 using ConstRestorationPt
= const TypePromotionAction
*;
2421 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
2422 : RemovedInsts(RemovedInsts
) {}
2424 /// Advocate every changes made in that transaction.
2427 /// Undo all the changes made after the given point.
2428 void rollback(ConstRestorationPt Point
);
2430 /// Get the current restoration point.
2431 ConstRestorationPt
getRestorationPoint() const;
2433 /// \name API for IR modification with state keeping to support rollback.
2435 /// Same as Instruction::setOperand.
2436 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
2438 /// Same as Instruction::eraseFromParent.
2439 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
2441 /// Same as Value::replaceAllUsesWith.
2442 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
2444 /// Same as Value::mutateType.
2445 void mutateType(Instruction
*Inst
, Type
*NewTy
);
2447 /// Same as IRBuilder::createTrunc.
2448 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
2450 /// Same as IRBuilder::createSExt.
2451 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2453 /// Same as IRBuilder::createZExt.
2454 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
2456 /// Same as Instruction::moveBefore.
2457 void moveBefore(Instruction
*Inst
, Instruction
*Before
);
2461 /// The ordered list of actions made so far.
2462 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
2464 using CommitPt
= SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
2466 SetOfInstrs
&RemovedInsts
;
2469 } // end anonymous namespace
2471 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
2473 Actions
.push_back(llvm::make_unique
<TypePromotionTransaction::OperandSetter
>(
2474 Inst
, Idx
, NewVal
));
2477 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
2480 llvm::make_unique
<TypePromotionTransaction::InstructionRemover
>(
2481 Inst
, RemovedInsts
, NewVal
));
2484 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
2487 llvm::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
2490 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
2492 llvm::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
2495 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
,
2497 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
2498 Value
*Val
= Ptr
->getBuiltValue();
2499 Actions
.push_back(std::move(Ptr
));
2503 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
,
2504 Value
*Opnd
, Type
*Ty
) {
2505 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
2506 Value
*Val
= Ptr
->getBuiltValue();
2507 Actions
.push_back(std::move(Ptr
));
2511 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
,
2512 Value
*Opnd
, Type
*Ty
) {
2513 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
2514 Value
*Val
= Ptr
->getBuiltValue();
2515 Actions
.push_back(std::move(Ptr
));
2519 void TypePromotionTransaction::moveBefore(Instruction
*Inst
,
2520 Instruction
*Before
) {
2522 llvm::make_unique
<TypePromotionTransaction::InstructionMoveBefore
>(
2526 TypePromotionTransaction::ConstRestorationPt
2527 TypePromotionTransaction::getRestorationPoint() const {
2528 return !Actions
.empty() ? Actions
.back().get() : nullptr;
2531 void TypePromotionTransaction::commit() {
2532 for (CommitPt It
= Actions
.begin(), EndIt
= Actions
.end(); It
!= EndIt
;
2538 void TypePromotionTransaction::rollback(
2539 TypePromotionTransaction::ConstRestorationPt Point
) {
2540 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
2541 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
2548 /// A helper class for matching addressing modes.
2550 /// This encapsulates the logic for matching the target-legal addressing modes.
2551 class AddressingModeMatcher
{
2552 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
2553 const TargetLowering
&TLI
;
2554 const TargetRegisterInfo
&TRI
;
2555 const DataLayout
&DL
;
2557 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2558 /// the memory instruction that we're computing this address for.
2561 Instruction
*MemoryInst
;
2563 /// This is the addressing mode that we're building up. This is
2564 /// part of the return value of this addressing mode matching stuff.
2565 ExtAddrMode
&AddrMode
;
2567 /// The instructions inserted by other CodeGenPrepare optimizations.
2568 const SetOfInstrs
&InsertedInsts
;
2570 /// A map from the instructions to their type before promotion.
2571 InstrToOrigTy
&PromotedInsts
;
2573 /// The ongoing transaction where every action should be registered.
2574 TypePromotionTransaction
&TPT
;
2576 // A GEP which has too large offset to be folded into the addressing mode.
2577 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
2579 /// This is set to true when we should not do profitability checks.
2580 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2581 bool IgnoreProfitability
;
2583 AddressingModeMatcher(
2584 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
2585 const TargetRegisterInfo
&TRI
, Type
*AT
, unsigned AS
, Instruction
*MI
,
2586 ExtAddrMode
&AM
, const SetOfInstrs
&InsertedInsts
,
2587 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
2588 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
)
2589 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
2590 DL(MI
->getModule()->getDataLayout()), AccessTy(AT
), AddrSpace(AS
),
2591 MemoryInst(MI
), AddrMode(AM
), InsertedInsts(InsertedInsts
),
2592 PromotedInsts(PromotedInsts
), TPT(TPT
), LargeOffsetGEP(LargeOffsetGEP
) {
2593 IgnoreProfitability
= false;
2597 /// Find the maximal addressing mode that a load/store of V can fold,
2598 /// give an access type of AccessTy. This returns a list of involved
2599 /// instructions in AddrModeInsts.
2600 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2602 /// \p PromotedInsts maps the instructions to their type before promotion.
2603 /// \p The ongoing transaction where every action should be registered.
2605 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
2606 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
2607 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
,
2608 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
2609 TypePromotionTransaction
&TPT
,
2610 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
) {
2613 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, AccessTy
, AS
,
2614 MemoryInst
, Result
, InsertedInsts
,
2615 PromotedInsts
, TPT
, LargeOffsetGEP
)
2617 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
2622 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
2623 bool matchAddr(Value
*Addr
, unsigned Depth
);
2624 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
2625 bool *MovedAway
= nullptr);
2626 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
2627 ExtAddrMode
&AMBefore
,
2628 ExtAddrMode
&AMAfter
);
2629 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
2630 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
2631 Value
*PromotedOperand
) const;
2634 /// Keep track of simplification of Phi nodes.
2635 /// Accept the set of all phi nodes and erase phi node from this set
2636 /// if it is simplified.
2637 class SimplificationTracker
{
2638 DenseMap
<Value
*, Value
*> Storage
;
2639 const SimplifyQuery
&SQ
;
2640 // Tracks newly created Phi nodes. We use a SetVector to get deterministic
2641 // order when iterating over the set in MatchPhiSet.
2642 SmallSetVector
<PHINode
*, 32> AllPhiNodes
;
2643 // Tracks newly created Select nodes.
2644 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
2647 SimplificationTracker(const SimplifyQuery
&sq
)
2650 Value
*Get(Value
*V
) {
2652 auto SV
= Storage
.find(V
);
2653 if (SV
== Storage
.end())
2659 Value
*Simplify(Value
*Val
) {
2660 SmallVector
<Value
*, 32> WorkList
;
2661 SmallPtrSet
<Value
*, 32> Visited
;
2662 WorkList
.push_back(Val
);
2663 while (!WorkList
.empty()) {
2664 auto P
= WorkList
.pop_back_val();
2665 if (!Visited
.insert(P
).second
)
2667 if (auto *PI
= dyn_cast
<Instruction
>(P
))
2668 if (Value
*V
= SimplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
2669 for (auto *U
: PI
->users())
2670 WorkList
.push_back(cast
<Value
>(U
));
2672 PI
->replaceAllUsesWith(V
);
2673 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
2674 AllPhiNodes
.remove(PHI
);
2675 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
2676 AllSelectNodes
.erase(Select
);
2677 PI
->eraseFromParent();
2683 void Put(Value
*From
, Value
*To
) {
2684 Storage
.insert({ From
, To
});
2687 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
2688 Value
* OldReplacement
= Get(From
);
2689 while (OldReplacement
!= From
) {
2691 To
= dyn_cast
<PHINode
>(OldReplacement
);
2692 OldReplacement
= Get(From
);
2694 assert(Get(To
) == To
&& "Replacement PHI node is already replaced.");
2696 From
->replaceAllUsesWith(To
);
2697 AllPhiNodes
.remove(From
);
2698 From
->eraseFromParent();
2701 SmallSetVector
<PHINode
*, 32>& newPhiNodes() { return AllPhiNodes
; }
2703 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
2705 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
2707 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
2709 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
2711 void destroyNewNodes(Type
*CommonType
) {
2712 // For safe erasing, replace the uses with dummy value first.
2713 auto Dummy
= UndefValue::get(CommonType
);
2714 for (auto I
: AllPhiNodes
) {
2715 I
->replaceAllUsesWith(Dummy
);
2716 I
->eraseFromParent();
2718 AllPhiNodes
.clear();
2719 for (auto I
: AllSelectNodes
) {
2720 I
->replaceAllUsesWith(Dummy
);
2721 I
->eraseFromParent();
2723 AllSelectNodes
.clear();
2727 /// A helper class for combining addressing modes.
2728 class AddressingModeCombiner
{
2729 typedef std::pair
<Value
*, BasicBlock
*> ValueInBB
;
2730 typedef DenseMap
<ValueInBB
, Value
*> FoldAddrToValueMapping
;
2731 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
2734 /// The addressing modes we've collected.
2735 SmallVector
<ExtAddrMode
, 16> AddrModes
;
2737 /// The field in which the AddrModes differ, when we have more than one.
2738 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
2740 /// Are the AddrModes that we have all just equal to their original values?
2741 bool AllAddrModesTrivial
= true;
2743 /// Common Type for all different fields in addressing modes.
2746 /// SimplifyQuery for simplifyInstruction utility.
2747 const SimplifyQuery
&SQ
;
2749 /// Original Address.
2753 AddressingModeCombiner(const SimplifyQuery
&_SQ
, ValueInBB OriginalValue
)
2754 : CommonType(nullptr), SQ(_SQ
), Original(OriginalValue
) {}
2756 /// Get the combined AddrMode
2757 const ExtAddrMode
&getAddrMode() const {
2758 return AddrModes
[0];
2761 /// Add a new AddrMode if it's compatible with the AddrModes we already
2763 /// \return True iff we succeeded in doing so.
2764 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
2765 // Take note of if we have any non-trivial AddrModes, as we need to detect
2766 // when all AddrModes are trivial as then we would introduce a phi or select
2767 // which just duplicates what's already there.
2768 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
2770 // If this is the first addrmode then everything is fine.
2771 if (AddrModes
.empty()) {
2772 AddrModes
.emplace_back(NewAddrMode
);
2776 // Figure out how different this is from the other address modes, which we
2777 // can do just by comparing against the first one given that we only care
2778 // about the cumulative difference.
2779 ExtAddrMode::FieldName ThisDifferentField
=
2780 AddrModes
[0].compare(NewAddrMode
);
2781 if (DifferentField
== ExtAddrMode::NoField
)
2782 DifferentField
= ThisDifferentField
;
2783 else if (DifferentField
!= ThisDifferentField
)
2784 DifferentField
= ExtAddrMode::MultipleFields
;
2786 // If NewAddrMode differs in more than one dimension we cannot handle it.
2787 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
2789 // If Scale Field is different then we reject.
2790 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
2792 // We also must reject the case when base offset is different and
2793 // scale reg is not null, we cannot handle this case due to merge of
2794 // different offsets will be used as ScaleReg.
2795 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
2796 !NewAddrMode
.ScaledReg
);
2798 // We also must reject the case when GV is different and BaseReg installed
2799 // due to we want to use base reg as a merge of GV values.
2800 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
2801 !NewAddrMode
.HasBaseReg
);
2803 // Even if NewAddMode is the same we still need to collect it due to
2804 // original value is different. And later we will need all original values
2805 // as anchors during finding the common Phi node.
2807 AddrModes
.emplace_back(NewAddrMode
);
2814 /// Combine the addressing modes we've collected into a single
2815 /// addressing mode.
2816 /// \return True iff we successfully combined them or we only had one so
2817 /// didn't need to combine them anyway.
2818 bool combineAddrModes() {
2819 // If we have no AddrModes then they can't be combined.
2820 if (AddrModes
.size() == 0)
2823 // A single AddrMode can trivially be combined.
2824 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
2827 // If the AddrModes we collected are all just equal to the value they are
2828 // derived from then combining them wouldn't do anything useful.
2829 if (AllAddrModesTrivial
)
2832 if (!addrModeCombiningAllowed())
2835 // Build a map between <original value, basic block where we saw it> to
2836 // value of base register.
2837 // Bail out if there is no common type.
2838 FoldAddrToValueMapping Map
;
2839 if (!initializeMap(Map
))
2842 Value
*CommonValue
= findCommon(Map
);
2844 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
2845 return CommonValue
!= nullptr;
2849 /// Initialize Map with anchor values. For address seen in some BB
2850 /// we set the value of different field saw in this address.
2851 /// If address is not an instruction than basic block is set to null.
2852 /// At the same time we find a common type for different field we will
2853 /// use to create new Phi/Select nodes. Keep it in CommonType field.
2854 /// Return false if there is no common type found.
2855 bool initializeMap(FoldAddrToValueMapping
&Map
) {
2856 // Keep track of keys where the value is null. We will need to replace it
2857 // with constant null when we know the common type.
2858 SmallVector
<ValueInBB
, 2> NullValue
;
2859 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
2860 for (auto &AM
: AddrModes
) {
2861 BasicBlock
*BB
= nullptr;
2862 if (Instruction
*I
= dyn_cast
<Instruction
>(AM
.OriginalValue
))
2863 BB
= I
->getParent();
2865 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
2867 auto *Type
= DV
->getType();
2868 if (CommonType
&& CommonType
!= Type
)
2871 Map
[{ AM
.OriginalValue
, BB
}] = DV
;
2873 NullValue
.push_back({ AM
.OriginalValue
, BB
});
2876 assert(CommonType
&& "At least one non-null value must be!");
2877 for (auto VIBB
: NullValue
)
2878 Map
[VIBB
] = Constant::getNullValue(CommonType
);
2882 /// We have mapping between value A and basic block where value A
2883 /// seen to other value B where B was a field in addressing mode represented
2884 /// by A. Also we have an original value C representing an address in some
2885 /// basic block. Traversing from C through phi and selects we ended up with
2886 /// A's in a map. This utility function tries to find a value V which is a
2887 /// field in addressing mode C and traversing through phi nodes and selects
2888 /// we will end up in corresponded values B in a map.
2889 /// The utility will create a new Phi/Selects if needed.
2890 // The simple example looks as follows:
2898 // p = phi [p1, BB1], [p2, BB2]
2905 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2906 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
2907 // Tracks the simplification of newly created phi nodes. The reason we use
2908 // this mapping is because we will add new created Phi nodes in AddrToBase.
2909 // Simplification of Phi nodes is recursive, so some Phi node may
2910 // be simplified after we added it to AddrToBase.
2911 // Using this mapping we can find the current value in AddrToBase.
2912 SimplificationTracker
ST(SQ
);
2914 // First step, DFS to create PHI nodes for all intermediate blocks.
2915 // Also fill traverse order for the second step.
2916 SmallVector
<ValueInBB
, 32> TraverseOrder
;
2917 InsertPlaceholders(Map
, TraverseOrder
, ST
);
2919 // Second Step, fill new nodes by merged values and simplify if possible.
2920 FillPlaceholders(Map
, TraverseOrder
, ST
);
2922 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
2923 ST
.destroyNewNodes(CommonType
);
2927 // Now we'd like to match New Phi nodes to existed ones.
2928 unsigned PhiNotMatchedCount
= 0;
2929 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
2930 ST
.destroyNewNodes(CommonType
);
2934 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
2936 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
2937 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
2942 /// Try to match PHI node to Candidate.
2943 /// Matcher tracks the matched Phi nodes.
2944 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
2945 SmallSetVector
<PHIPair
, 8> &Matcher
,
2946 SmallSetVector
<PHINode
*, 32> &PhiNodesToMatch
) {
2947 SmallVector
<PHIPair
, 8> WorkList
;
2948 Matcher
.insert({ PHI
, Candidate
});
2949 WorkList
.push_back({ PHI
, Candidate
});
2950 SmallSet
<PHIPair
, 8> Visited
;
2951 while (!WorkList
.empty()) {
2952 auto Item
= WorkList
.pop_back_val();
2953 if (!Visited
.insert(Item
).second
)
2955 // We iterate over all incoming values to Phi to compare them.
2956 // If values are different and both of them Phi and the first one is a
2957 // Phi we added (subject to match) and both of them is in the same basic
2958 // block then we can match our pair if values match. So we state that
2959 // these values match and add it to work list to verify that.
2960 for (auto B
: Item
.first
->blocks()) {
2961 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
2962 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
2963 if (FirstValue
== SecondValue
)
2966 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
2967 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
2969 // One of them is not Phi or
2970 // The first one is not Phi node from the set we'd like to match or
2971 // Phi nodes from different basic blocks then
2972 // we will not be able to match.
2973 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
2974 FirstPhi
->getParent() != SecondPhi
->getParent())
2977 // If we already matched them then continue.
2978 if (Matcher
.count({ FirstPhi
, SecondPhi
}))
2980 // So the values are different and does not match. So we need them to
2982 Matcher
.insert({ FirstPhi
, SecondPhi
});
2983 // But me must check it.
2984 WorkList
.push_back({ FirstPhi
, SecondPhi
});
2990 /// For the given set of PHI nodes (in the SimplificationTracker) try
2991 /// to find their equivalents.
2992 /// Returns false if this matching fails and creation of new Phi is disabled.
2993 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
2994 unsigned &PhiNotMatchedCount
) {
2995 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi)
2996 // in a deterministic order below.
2997 SmallSetVector
<PHIPair
, 8> Matched
;
2998 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
2999 SmallSetVector
<PHINode
*, 32> &PhiNodesToMatch
= ST
.newPhiNodes();
3000 while (PhiNodesToMatch
.size()) {
3001 PHINode
*PHI
= *PhiNodesToMatch
.begin();
3003 // Add us, if no Phi nodes in the basic block we do not match.
3004 WillNotMatch
.clear();
3005 WillNotMatch
.insert(PHI
);
3007 // Traverse all Phis until we found equivalent or fail to do that.
3008 bool IsMatched
= false;
3009 for (auto &P
: PHI
->getParent()->phis()) {
3012 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
3014 // If it does not match, collect all Phi nodes from matcher.
3015 // if we end up with no match, them all these Phi nodes will not match
3017 for (auto M
: Matched
)
3018 WillNotMatch
.insert(M
.first
);
3022 // Replace all matched values and erase them.
3023 for (auto MV
: Matched
)
3024 ST
.ReplacePhi(MV
.first
, MV
.second
);
3028 // If we are not allowed to create new nodes then bail out.
3029 if (!AllowNewPhiNodes
)
3031 // Just remove all seen values in matcher. They will not match anything.
3032 PhiNotMatchedCount
+= WillNotMatch
.size();
3033 for (auto *P
: WillNotMatch
)
3034 PhiNodesToMatch
.remove(P
);
3038 /// Fill the placeholder with values from predecessors and simplify it.
3039 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
3040 SmallVectorImpl
<ValueInBB
> &TraverseOrder
,
3041 SimplificationTracker
&ST
) {
3042 while (!TraverseOrder
.empty()) {
3043 auto Current
= TraverseOrder
.pop_back_val();
3044 assert(Map
.find(Current
) != Map
.end() && "No node to fill!!!");
3045 Value
*CurrentValue
= Current
.first
;
3046 BasicBlock
*CurrentBlock
= Current
.second
;
3047 Value
*V
= Map
[Current
];
3049 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
3050 // CurrentValue also must be Select.
3051 auto *CurrentSelect
= cast
<SelectInst
>(CurrentValue
);
3052 auto *TrueValue
= CurrentSelect
->getTrueValue();
3053 ValueInBB TrueItem
= { TrueValue
, isa
<Instruction
>(TrueValue
)
3056 assert(Map
.find(TrueItem
) != Map
.end() && "No True Value!");
3057 Select
->setTrueValue(ST
.Get(Map
[TrueItem
]));
3058 auto *FalseValue
= CurrentSelect
->getFalseValue();
3059 ValueInBB FalseItem
= { FalseValue
, isa
<Instruction
>(FalseValue
)
3062 assert(Map
.find(FalseItem
) != Map
.end() && "No False Value!");
3063 Select
->setFalseValue(ST
.Get(Map
[FalseItem
]));
3065 // Must be a Phi node then.
3066 PHINode
*PHI
= cast
<PHINode
>(V
);
3067 // Fill the Phi node with values from predecessors.
3068 bool IsDefinedInThisBB
=
3069 cast
<Instruction
>(CurrentValue
)->getParent() == CurrentBlock
;
3070 auto *CurrentPhi
= dyn_cast
<PHINode
>(CurrentValue
);
3071 for (auto B
: predecessors(CurrentBlock
)) {
3072 Value
*PV
= IsDefinedInThisBB
3073 ? CurrentPhi
->getIncomingValueForBlock(B
)
3075 ValueInBB item
= { PV
, isa
<Instruction
>(PV
) ? B
: nullptr };
3076 assert(Map
.find(item
) != Map
.end() && "No predecessor Value!");
3077 PHI
->addIncoming(ST
.Get(Map
[item
]), B
);
3080 // Simplify if possible.
3081 Map
[Current
] = ST
.Simplify(V
);
3085 /// Starting from value recursively iterates over predecessors up to known
3086 /// ending values represented in a map. For each traversed block inserts
3087 /// a placeholder Phi or Select.
3088 /// Reports all new created Phi/Select nodes by adding them to set.
3089 /// Also reports and order in what basic blocks have been traversed.
3090 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
3091 SmallVectorImpl
<ValueInBB
> &TraverseOrder
,
3092 SimplificationTracker
&ST
) {
3093 SmallVector
<ValueInBB
, 32> Worklist
;
3094 assert((isa
<PHINode
>(Original
.first
) || isa
<SelectInst
>(Original
.first
)) &&
3095 "Address must be a Phi or Select node");
3096 auto *Dummy
= UndefValue::get(CommonType
);
3097 Worklist
.push_back(Original
);
3098 while (!Worklist
.empty()) {
3099 auto Current
= Worklist
.pop_back_val();
3100 // If value is not an instruction it is something global, constant,
3101 // parameter and we can say that this value is observable in any block.
3102 // Set block to null to denote it.
3103 // Also please take into account that it is how we build anchors.
3104 if (!isa
<Instruction
>(Current
.first
))
3105 Current
.second
= nullptr;
3106 // if it is already visited or it is an ending value then skip it.
3107 if (Map
.find(Current
) != Map
.end())
3109 TraverseOrder
.push_back(Current
);
3111 Value
*CurrentValue
= Current
.first
;
3112 BasicBlock
*CurrentBlock
= Current
.second
;
3113 // CurrentValue must be a Phi node or select. All others must be covered
3115 Instruction
*CurrentI
= cast
<Instruction
>(CurrentValue
);
3116 bool IsDefinedInThisBB
= CurrentI
->getParent() == CurrentBlock
;
3118 unsigned PredCount
= pred_size(CurrentBlock
);
3119 // if Current Value is not defined in this basic block we are interested
3120 // in values in predecessors.
3121 if (!IsDefinedInThisBB
) {
3122 assert(PredCount
&& "Unreachable block?!");
3123 PHINode
*PHI
= PHINode::Create(CommonType
, PredCount
, "sunk_phi",
3124 &CurrentBlock
->front());
3126 ST
.insertNewPhi(PHI
);
3127 // Add all predecessors in work list.
3128 for (auto B
: predecessors(CurrentBlock
))
3129 Worklist
.push_back({ CurrentValue
, B
});
3132 // Value is defined in this basic block.
3133 if (SelectInst
*OrigSelect
= dyn_cast
<SelectInst
>(CurrentI
)) {
3134 // Is it OK to get metadata from OrigSelect?!
3135 // Create a Select placeholder with dummy value.
3136 SelectInst
*Select
=
3137 SelectInst::Create(OrigSelect
->getCondition(), Dummy
, Dummy
,
3138 OrigSelect
->getName(), OrigSelect
, OrigSelect
);
3139 Map
[Current
] = Select
;
3140 ST
.insertNewSelect(Select
);
3141 // We are interested in True and False value in this basic block.
3142 Worklist
.push_back({ OrigSelect
->getTrueValue(), CurrentBlock
});
3143 Worklist
.push_back({ OrigSelect
->getFalseValue(), CurrentBlock
});
3145 // It must be a Phi node then.
3146 auto *CurrentPhi
= cast
<PHINode
>(CurrentI
);
3147 // Create new Phi node for merge of bases.
3148 assert(PredCount
&& "Unreachable block?!");
3149 PHINode
*PHI
= PHINode::Create(CommonType
, PredCount
, "sunk_phi",
3150 &CurrentBlock
->front());
3152 ST
.insertNewPhi(PHI
);
3154 // Add all predecessors in work list.
3155 for (auto B
: predecessors(CurrentBlock
))
3156 Worklist
.push_back({ CurrentPhi
->getIncomingValueForBlock(B
), B
});
3161 bool addrModeCombiningAllowed() {
3162 if (DisableComplexAddrModes
)
3164 switch (DifferentField
) {
3167 case ExtAddrMode::BaseRegField
:
3168 return AddrSinkCombineBaseReg
;
3169 case ExtAddrMode::BaseGVField
:
3170 return AddrSinkCombineBaseGV
;
3171 case ExtAddrMode::BaseOffsField
:
3172 return AddrSinkCombineBaseOffs
;
3173 case ExtAddrMode::ScaledRegField
:
3174 return AddrSinkCombineScaledReg
;
3178 } // end anonymous namespace
3180 /// Try adding ScaleReg*Scale to the current addressing mode.
3181 /// Return true and update AddrMode if this addr mode is legal for the target,
3183 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
3185 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3186 // mode. Just process that directly.
3188 return matchAddr(ScaleReg
, Depth
);
3190 // If the scale is 0, it takes nothing to add this.
3194 // If we already have a scale of this value, we can add to it, otherwise, we
3195 // need an available scale field.
3196 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
3199 ExtAddrMode TestAddrMode
= AddrMode
;
3201 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3202 // [A+B + A*7] -> [B+A*8].
3203 TestAddrMode
.Scale
+= Scale
;
3204 TestAddrMode
.ScaledReg
= ScaleReg
;
3206 // If the new address isn't legal, bail out.
3207 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
3210 // It was legal, so commit it.
3211 AddrMode
= TestAddrMode
;
3213 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3214 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3215 // X*Scale + C*Scale to addr mode.
3216 ConstantInt
*CI
= nullptr; Value
*AddLHS
= nullptr;
3217 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
3218 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
)))) {
3219 TestAddrMode
.ScaledReg
= AddLHS
;
3220 TestAddrMode
.BaseOffs
+= CI
->getSExtValue()*TestAddrMode
.Scale
;
3222 // If this addressing mode is legal, commit it and remember that we folded
3223 // this instruction.
3224 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
3225 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
3226 AddrMode
= TestAddrMode
;
3231 // Otherwise, not (x+c)*scale, just return what we have.
3235 /// This is a little filter, which returns true if an addressing computation
3236 /// involving I might be folded into a load/store accessing it.
3237 /// This doesn't need to be perfect, but needs to accept at least
3238 /// the set of instructions that MatchOperationAddr can.
3239 static bool MightBeFoldableInst(Instruction
*I
) {
3240 switch (I
->getOpcode()) {
3241 case Instruction::BitCast
:
3242 case Instruction::AddrSpaceCast
:
3243 // Don't touch identity bitcasts.
3244 if (I
->getType() == I
->getOperand(0)->getType())
3246 return I
->getType()->isIntOrPtrTy();
3247 case Instruction::PtrToInt
:
3248 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3250 case Instruction::IntToPtr
:
3251 // We know the input is intptr_t, so this is foldable.
3253 case Instruction::Add
:
3255 case Instruction::Mul
:
3256 case Instruction::Shl
:
3257 // Can only handle X*C and X << C.
3258 return isa
<ConstantInt
>(I
->getOperand(1));
3259 case Instruction::GetElementPtr
:
3266 /// Check whether or not \p Val is a legal instruction for \p TLI.
3267 /// \note \p Val is assumed to be the product of some type promotion.
3268 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3269 /// to be legal, as the non-promoted value would have had the same state.
3270 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
3271 const DataLayout
&DL
, Value
*Val
) {
3272 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
3275 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
3276 // If the ISDOpcode is undefined, it was undefined before the promotion.
3279 // Otherwise, check if the promoted instruction is legal or not.
3280 return TLI
.isOperationLegalOrCustom(
3281 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
3286 /// Hepler class to perform type promotion.
3287 class TypePromotionHelper
{
3288 /// Utility function to add a promoted instruction \p ExtOpnd to
3289 /// \p PromotedInsts and record the type of extension we have seen.
3290 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
3291 Instruction
*ExtOpnd
,
3293 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3294 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
3295 if (It
!= PromotedInsts
.end()) {
3296 // If the new extension is same as original, the information in
3297 // PromotedInsts[ExtOpnd] is still correct.
3298 if (It
->second
.getInt() == ExtTy
)
3301 // Now the new extension is different from old extension, we make
3302 // the type information invalid by setting extension type to
3304 ExtTy
= BothExtension
;
3306 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
3309 /// Utility function to query the original type of instruction \p Opnd
3310 /// with a matched extension type. If the extension doesn't match, we
3311 /// cannot use the information we had on the original type.
3312 /// BothExtension doesn't match any extension type.
3313 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
3316 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
3317 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
3318 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
3319 return It
->second
.getPointer();
3323 /// Utility function to check whether or not a sign or zero extension
3324 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3325 /// either using the operands of \p Inst or promoting \p Inst.
3326 /// The type of the extension is defined by \p IsSExt.
3327 /// In other words, check if:
3328 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3329 /// #1 Promotion applies:
3330 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3331 /// #2 Operand reuses:
3332 /// ext opnd1 to ConsideredExtType.
3333 /// \p PromotedInsts maps the instructions to their type before promotion.
3334 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
3335 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
3337 /// Utility function to determine if \p OpIdx should be promoted when
3338 /// promoting \p Inst.
3339 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
3340 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
3343 /// Utility function to promote the operand of \p Ext when this
3344 /// operand is a promotable trunc or sext or zext.
3345 /// \p PromotedInsts maps the instructions to their type before promotion.
3346 /// \p CreatedInstsCost[out] contains the cost of all instructions
3347 /// created to promote the operand of Ext.
3348 /// Newly added extensions are inserted in \p Exts.
3349 /// Newly added truncates are inserted in \p Truncs.
3350 /// Should never be called directly.
3351 /// \return The promoted value which is used instead of Ext.
3352 static Value
*promoteOperandForTruncAndAnyExt(
3353 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3354 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3355 SmallVectorImpl
<Instruction
*> *Exts
,
3356 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
3358 /// Utility function to promote the operand of \p Ext when this
3359 /// operand is promotable and is not a supported trunc or sext.
3360 /// \p PromotedInsts maps the instructions to their type before promotion.
3361 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3362 /// created to promote the operand of Ext.
3363 /// Newly added extensions are inserted in \p Exts.
3364 /// Newly added truncates are inserted in \p Truncs.
3365 /// Should never be called directly.
3366 /// \return The promoted value which is used instead of Ext.
3367 static Value
*promoteOperandForOther(Instruction
*Ext
,
3368 TypePromotionTransaction
&TPT
,
3369 InstrToOrigTy
&PromotedInsts
,
3370 unsigned &CreatedInstsCost
,
3371 SmallVectorImpl
<Instruction
*> *Exts
,
3372 SmallVectorImpl
<Instruction
*> *Truncs
,
3373 const TargetLowering
&TLI
, bool IsSExt
);
3375 /// \see promoteOperandForOther.
3376 static Value
*signExtendOperandForOther(
3377 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3378 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3379 SmallVectorImpl
<Instruction
*> *Exts
,
3380 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3381 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3382 Exts
, Truncs
, TLI
, true);
3385 /// \see promoteOperandForOther.
3386 static Value
*zeroExtendOperandForOther(
3387 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3388 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3389 SmallVectorImpl
<Instruction
*> *Exts
,
3390 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3391 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
3392 Exts
, Truncs
, TLI
, false);
3396 /// Type for the utility function that promotes the operand of Ext.
3397 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3398 InstrToOrigTy
&PromotedInsts
,
3399 unsigned &CreatedInstsCost
,
3400 SmallVectorImpl
<Instruction
*> *Exts
,
3401 SmallVectorImpl
<Instruction
*> *Truncs
,
3402 const TargetLowering
&TLI
);
3404 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3405 /// action to promote the operand of \p Ext instead of using Ext.
3406 /// \return NULL if no promotable action is possible with the current
3408 /// \p InsertedInsts keeps track of all the instructions inserted by the
3409 /// other CodeGenPrepare optimizations. This information is important
3410 /// because we do not want to promote these instructions as CodeGenPrepare
3411 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3412 /// \p PromotedInsts maps the instructions to their type before promotion.
3413 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3414 const TargetLowering
&TLI
,
3415 const InstrToOrigTy
&PromotedInsts
);
3418 } // end anonymous namespace
3420 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
3421 Type
*ConsideredExtType
,
3422 const InstrToOrigTy
&PromotedInsts
,
3424 // The promotion helper does not know how to deal with vector types yet.
3425 // To be able to fix that, we would need to fix the places where we
3426 // statically extend, e.g., constants and such.
3427 if (Inst
->getType()->isVectorTy())
3430 // We can always get through zext.
3431 if (isa
<ZExtInst
>(Inst
))
3434 // sext(sext) is ok too.
3435 if (IsSExt
&& isa
<SExtInst
>(Inst
))
3438 // We can get through binary operator, if it is legal. In other words, the
3439 // binary operator must have a nuw or nsw flag.
3440 const BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(Inst
);
3441 if (BinOp
&& isa
<OverflowingBinaryOperator
>(BinOp
) &&
3442 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
3443 (IsSExt
&& BinOp
->hasNoSignedWrap())))
3446 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3447 if ((Inst
->getOpcode() == Instruction::And
||
3448 Inst
->getOpcode() == Instruction::Or
))
3451 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3452 if (Inst
->getOpcode() == Instruction::Xor
) {
3453 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1));
3454 // Make sure it is not a NOT.
3455 if (Cst
&& !Cst
->getValue().isAllOnesValue())
3459 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3460 // It may change a poisoned value into a regular value, like
3461 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3462 // poisoned value regular value
3463 // It should be OK since undef covers valid value.
3464 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
3467 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3468 // It may change a poisoned value into a regular value, like
3469 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3470 // poisoned value regular value
3471 // It should be OK since undef covers valid value.
3472 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
3473 const Instruction
*ExtInst
=
3474 dyn_cast
<const Instruction
>(*Inst
->user_begin());
3475 if (ExtInst
->hasOneUse()) {
3476 const Instruction
*AndInst
=
3477 dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
3478 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
3479 const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
3481 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
3487 // Check if we can do the following simplification.
3488 // ext(trunc(opnd)) --> ext(opnd)
3489 if (!isa
<TruncInst
>(Inst
))
3492 Value
*OpndVal
= Inst
->getOperand(0);
3493 // Check if we can use this operand in the extension.
3494 // If the type is larger than the result type of the extension, we cannot.
3495 if (!OpndVal
->getType()->isIntegerTy() ||
3496 OpndVal
->getType()->getIntegerBitWidth() >
3497 ConsideredExtType
->getIntegerBitWidth())
3500 // If the operand of the truncate is not an instruction, we will not have
3501 // any information on the dropped bits.
3502 // (Actually we could for constant but it is not worth the extra logic).
3503 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
3507 // Check if the source of the type is narrow enough.
3508 // I.e., check that trunc just drops extended bits of the same kind of
3510 // #1 get the type of the operand and check the kind of the extended bits.
3511 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
3514 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
3515 OpndType
= Opnd
->getOperand(0)->getType();
3519 // #2 check that the truncate just drops extended bits.
3520 return Inst
->getType()->getIntegerBitWidth() >=
3521 OpndType
->getIntegerBitWidth();
3524 TypePromotionHelper::Action
TypePromotionHelper::getAction(
3525 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
3526 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
3527 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
3528 "Unexpected instruction type");
3529 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
3530 Type
*ExtTy
= Ext
->getType();
3531 bool IsSExt
= isa
<SExtInst
>(Ext
);
3532 // If the operand of the extension is not an instruction, we cannot
3534 // If it, check we can get through.
3535 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
3538 // Do not promote if the operand has been added by codegenprepare.
3539 // Otherwise, it means we are undoing an optimization that is likely to be
3540 // redone, thus causing potential infinite loop.
3541 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
3544 // SExt or Trunc instructions.
3545 // Return the related handler.
3546 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
3547 isa
<ZExtInst
>(ExtOpnd
))
3548 return promoteOperandForTruncAndAnyExt
;
3550 // Regular instruction.
3551 // Abort early if we will have to insert non-free instructions.
3552 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
3554 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
3557 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3558 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
3559 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3560 SmallVectorImpl
<Instruction
*> *Exts
,
3561 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
3562 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3563 // get through it and this method should not be called.
3564 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
3565 Value
*ExtVal
= SExt
;
3566 bool HasMergedNonFreeExt
= false;
3567 if (isa
<ZExtInst
>(SExtOpnd
)) {
3568 // Replace s|zext(zext(opnd))
3570 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
3572 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
3573 TPT
.replaceAllUsesWith(SExt
, ZExt
);
3574 TPT
.eraseInstruction(SExt
);
3577 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3579 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
3581 CreatedInstsCost
= 0;
3583 // Remove dead code.
3584 if (SExtOpnd
->use_empty())
3585 TPT
.eraseInstruction(SExtOpnd
);
3587 // Check if the extension is still needed.
3588 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
3589 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
3592 Exts
->push_back(ExtInst
);
3593 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
3598 // At this point we have: ext ty opnd to ty.
3599 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3600 Value
*NextVal
= ExtInst
->getOperand(0);
3601 TPT
.eraseInstruction(ExtInst
, NextVal
);
3605 Value
*TypePromotionHelper::promoteOperandForOther(
3606 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
3607 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
3608 SmallVectorImpl
<Instruction
*> *Exts
,
3609 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
3611 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3612 // get through it and this method should not be called.
3613 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
3614 CreatedInstsCost
= 0;
3615 if (!ExtOpnd
->hasOneUse()) {
3616 // ExtOpnd will be promoted.
3617 // All its uses, but Ext, will need to use a truncated value of the
3618 // promoted version.
3619 // Create the truncate now.
3620 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
3621 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
3622 // Insert it just after the definition.
3623 ITrunc
->moveAfter(ExtOpnd
);
3625 Truncs
->push_back(ITrunc
);
3628 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
3629 // Restore the operand of Ext (which has been replaced by the previous call
3630 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3631 TPT
.setOperand(Ext
, 0, ExtOpnd
);
3634 // Get through the Instruction:
3635 // 1. Update its type.
3636 // 2. Replace the uses of Ext by Inst.
3637 // 3. Extend each operand that needs to be extended.
3639 // Remember the original type of the instruction before promotion.
3640 // This is useful to know that the high bits are sign extended bits.
3641 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
3643 TPT
.mutateType(ExtOpnd
, Ext
->getType());
3645 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
3647 Instruction
*ExtForOpnd
= Ext
;
3649 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3650 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
3652 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
3653 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
3654 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
3655 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3658 // Check if we can statically extend the operand.
3659 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
3660 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
3661 LLVM_DEBUG(dbgs() << "Statically extend\n");
3662 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
3663 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
3664 : Cst
->getValue().zext(BitWidth
);
3665 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
3668 // UndefValue are typed, so we have to statically sign extend them.
3669 if (isa
<UndefValue
>(Opnd
)) {
3670 LLVM_DEBUG(dbgs() << "Statically extend\n");
3671 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
3675 // Otherwise we have to explicitly sign extend the operand.
3676 // Check if Ext was reused to extend an operand.
3678 // If yes, create a new one.
3679 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3680 Value
*ValForExtOpnd
= IsSExt
? TPT
.createSExt(Ext
, Opnd
, Ext
->getType())
3681 : TPT
.createZExt(Ext
, Opnd
, Ext
->getType());
3682 if (!isa
<Instruction
>(ValForExtOpnd
)) {
3683 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
3686 ExtForOpnd
= cast
<Instruction
>(ValForExtOpnd
);
3689 Exts
->push_back(ExtForOpnd
);
3690 TPT
.setOperand(ExtForOpnd
, 0, Opnd
);
3692 // Move the sign extension before the insertion point.
3693 TPT
.moveBefore(ExtForOpnd
, ExtOpnd
);
3694 TPT
.setOperand(ExtOpnd
, OpIdx
, ExtForOpnd
);
3695 CreatedInstsCost
+= !TLI
.isExtFree(ExtForOpnd
);
3696 // If more sext are required, new instructions will have to be created.
3697 ExtForOpnd
= nullptr;
3699 if (ExtForOpnd
== Ext
) {
3700 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3701 TPT
.eraseInstruction(Ext
);
3706 /// Check whether or not promoting an instruction to a wider type is profitable.
3707 /// \p NewCost gives the cost of extension instructions created by the
3709 /// \p OldCost gives the cost of extension instructions before the promotion
3710 /// plus the number of instructions that have been
3711 /// matched in the addressing mode the promotion.
3712 /// \p PromotedOperand is the value that has been promoted.
3713 /// \return True if the promotion is profitable, false otherwise.
3714 bool AddressingModeMatcher::isPromotionProfitable(
3715 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
3716 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
3718 // The cost of the new extensions is greater than the cost of the
3719 // old extension plus what we folded.
3720 // This is not profitable.
3721 if (NewCost
> OldCost
)
3723 if (NewCost
< OldCost
)
3725 // The promotion is neutral but it may help folding the sign extension in
3726 // loads for instance.
3727 // Check that we did not create an illegal instruction.
3728 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
3731 /// Given an instruction or constant expr, see if we can fold the operation
3732 /// into the addressing mode. If so, update the addressing mode and return
3733 /// true, otherwise return false without modifying AddrMode.
3734 /// If \p MovedAway is not NULL, it contains the information of whether or
3735 /// not AddrInst has to be folded into the addressing mode on success.
3736 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3737 /// because it has been moved away.
3738 /// Thus AddrInst must not be added in the matched instructions.
3739 /// This state can happen when AddrInst is a sext, since it may be moved away.
3740 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3741 /// not be referenced anymore.
3742 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
3745 // Avoid exponential behavior on extremely deep expression trees.
3746 if (Depth
>= 5) return false;
3748 // By default, all matched instructions stay in place.
3753 case Instruction::PtrToInt
:
3754 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3755 return matchAddr(AddrInst
->getOperand(0), Depth
);
3756 case Instruction::IntToPtr
: {
3757 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
3758 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
3759 // This inttoptr is a no-op if the integer type is pointer sized.
3760 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
3761 return matchAddr(AddrInst
->getOperand(0), Depth
);
3764 case Instruction::BitCast
:
3765 // BitCast is always a noop, and we can handle it as long as it is
3766 // int->int or pointer->pointer (we don't want int<->fp or something).
3767 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
3768 // Don't touch identity bitcasts. These were probably put here by LSR,
3769 // and we don't want to mess around with them. Assume it knows what it
3771 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
3772 return matchAddr(AddrInst
->getOperand(0), Depth
);
3774 case Instruction::AddrSpaceCast
: {
3776 = AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
3777 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
3778 if (TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3779 return matchAddr(AddrInst
->getOperand(0), Depth
);
3782 case Instruction::Add
: {
3783 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3784 ExtAddrMode BackupAddrMode
= AddrMode
;
3785 unsigned OldSize
= AddrModeInsts
.size();
3786 // Start a transaction at this point.
3787 // The LHS may match but not the RHS.
3788 // Therefore, we need a higher level restoration point to undo partially
3789 // matched operation.
3790 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
3791 TPT
.getRestorationPoint();
3793 if (matchAddr(AddrInst
->getOperand(1), Depth
+1) &&
3794 matchAddr(AddrInst
->getOperand(0), Depth
+1))
3797 // Restore the old addr mode info.
3798 AddrMode
= BackupAddrMode
;
3799 AddrModeInsts
.resize(OldSize
);
3800 TPT
.rollback(LastKnownGood
);
3802 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3803 if (matchAddr(AddrInst
->getOperand(0), Depth
+1) &&
3804 matchAddr(AddrInst
->getOperand(1), Depth
+1))
3807 // Otherwise we definitely can't merge the ADD in.
3808 AddrMode
= BackupAddrMode
;
3809 AddrModeInsts
.resize(OldSize
);
3810 TPT
.rollback(LastKnownGood
);
3813 //case Instruction::Or:
3814 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3816 case Instruction::Mul
:
3817 case Instruction::Shl
: {
3818 // Can only handle X*C and X << C.
3819 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
3820 if (!RHS
|| RHS
->getBitWidth() > 64)
3822 int64_t Scale
= RHS
->getSExtValue();
3823 if (Opcode
== Instruction::Shl
)
3824 Scale
= 1LL << Scale
;
3826 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
3828 case Instruction::GetElementPtr
: {
3829 // Scan the GEP. We check it if it contains constant offsets and at most
3830 // one variable offset.
3831 int VariableOperand
= -1;
3832 unsigned VariableScale
= 0;
3834 int64_t ConstantOffset
= 0;
3835 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
3836 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
3837 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
3838 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3840 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
3841 ConstantOffset
+= SL
->getElementOffset(Idx
);
3843 uint64_t TypeSize
= DL
.getTypeAllocSize(GTI
.getIndexedType());
3844 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
3845 const APInt
&CVal
= CI
->getValue();
3846 if (CVal
.getMinSignedBits() <= 64) {
3847 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
3851 if (TypeSize
) { // Scales of zero don't do anything.
3852 // We only allow one variable index at the moment.
3853 if (VariableOperand
!= -1)
3856 // Remember the variable index.
3857 VariableOperand
= i
;
3858 VariableScale
= TypeSize
;
3863 // A common case is for the GEP to only do a constant offset. In this case,
3864 // just add it to the disp field and check validity.
3865 if (VariableOperand
== -1) {
3866 AddrMode
.BaseOffs
+= ConstantOffset
;
3867 if (ConstantOffset
== 0 ||
3868 TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
)) {
3869 // Check to see if we can fold the base pointer in too.
3870 if (matchAddr(AddrInst
->getOperand(0), Depth
+1))
3872 } else if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
3873 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
3874 ConstantOffset
> 0) {
3875 // Record GEPs with non-zero offsets as candidates for splitting in the
3876 // event that the offset cannot fit into the r+i addressing mode.
3877 // Simple and common case that only one GEP is used in calculating the
3878 // address for the memory access.
3879 Value
*Base
= AddrInst
->getOperand(0);
3880 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
3881 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
3882 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
3883 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
3884 !isa
<GetElementPtrInst
>(BaseI
))) {
3885 // If the base is an instruction, make sure the GEP is not in the same
3886 // basic block as the base. If the base is an argument or global
3887 // value, make sure the GEP is not in the entry block. Otherwise,
3888 // instruction selection can undo the split. Also make sure the
3889 // parent block allows inserting non-PHI instructions before the
3891 BasicBlock
*Parent
=
3892 BaseI
? BaseI
->getParent() : &GEP
->getFunction()->getEntryBlock();
3893 if (GEP
->getParent() != Parent
&& !Parent
->getTerminator()->isEHPad())
3894 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
3897 AddrMode
.BaseOffs
-= ConstantOffset
;
3901 // Save the valid addressing mode in case we can't match.
3902 ExtAddrMode BackupAddrMode
= AddrMode
;
3903 unsigned OldSize
= AddrModeInsts
.size();
3905 // See if the scale and offset amount is valid for this target.
3906 AddrMode
.BaseOffs
+= ConstantOffset
;
3908 // Match the base operand of the GEP.
3909 if (!matchAddr(AddrInst
->getOperand(0), Depth
+1)) {
3910 // If it couldn't be matched, just stuff the value in a register.
3911 if (AddrMode
.HasBaseReg
) {
3912 AddrMode
= BackupAddrMode
;
3913 AddrModeInsts
.resize(OldSize
);
3916 AddrMode
.HasBaseReg
= true;
3917 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
3920 // Match the remaining variable portion of the GEP.
3921 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
3923 // If it couldn't be matched, try stuffing the base into a register
3924 // instead of matching it, and retrying the match of the scale.
3925 AddrMode
= BackupAddrMode
;
3926 AddrModeInsts
.resize(OldSize
);
3927 if (AddrMode
.HasBaseReg
)
3929 AddrMode
.HasBaseReg
= true;
3930 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
3931 AddrMode
.BaseOffs
+= ConstantOffset
;
3932 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
3933 VariableScale
, Depth
)) {
3934 // If even that didn't work, bail.
3935 AddrMode
= BackupAddrMode
;
3936 AddrModeInsts
.resize(OldSize
);
3943 case Instruction::SExt
:
3944 case Instruction::ZExt
: {
3945 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
3949 // Try to move this ext out of the way of the addressing mode.
3950 // Ask for a method for doing so.
3951 TypePromotionHelper::Action TPH
=
3952 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
3956 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
3957 TPT
.getRestorationPoint();
3958 unsigned CreatedInstsCost
= 0;
3959 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
3960 Value
*PromotedOperand
=
3961 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
3962 // SExt has been moved away.
3963 // Thus either it will be rematched later in the recursive calls or it is
3964 // gone. Anyway, we must not fold it into the addressing mode at this point.
3968 // addr = gep base, idx
3970 // promotedOpnd = ext opnd <- no match here
3971 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
3972 // addr = gep base, op <- match
3976 assert(PromotedOperand
&&
3977 "TypePromotionHelper should have filtered out those cases");
3979 ExtAddrMode BackupAddrMode
= AddrMode
;
3980 unsigned OldSize
= AddrModeInsts
.size();
3982 if (!matchAddr(PromotedOperand
, Depth
) ||
3983 // The total of the new cost is equal to the cost of the created
3985 // The total of the old cost is equal to the cost of the extension plus
3986 // what we have saved in the addressing mode.
3987 !isPromotionProfitable(CreatedInstsCost
,
3988 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
3990 AddrMode
= BackupAddrMode
;
3991 AddrModeInsts
.resize(OldSize
);
3992 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3993 TPT
.rollback(LastKnownGood
);
4002 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4003 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4004 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4007 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
4008 // Start a transaction at this point that we will rollback if the matching
4010 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4011 TPT
.getRestorationPoint();
4012 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
4013 // Fold in immediates if legal for the target.
4014 AddrMode
.BaseOffs
+= CI
->getSExtValue();
4015 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4017 AddrMode
.BaseOffs
-= CI
->getSExtValue();
4018 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
4019 // If this is a global variable, try to fold it into the addressing mode.
4020 if (!AddrMode
.BaseGV
) {
4021 AddrMode
.BaseGV
= GV
;
4022 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4024 AddrMode
.BaseGV
= nullptr;
4026 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
4027 ExtAddrMode BackupAddrMode
= AddrMode
;
4028 unsigned OldSize
= AddrModeInsts
.size();
4030 // Check to see if it is possible to fold this operation.
4031 bool MovedAway
= false;
4032 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
4033 // This instruction may have been moved away. If so, there is nothing
4037 // Okay, it's possible to fold this. Check to see if it is actually
4038 // *profitable* to do so. We use a simple cost model to avoid increasing
4039 // register pressure too much.
4040 if (I
->hasOneUse() ||
4041 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
4042 AddrModeInsts
.push_back(I
);
4046 // It isn't profitable to do this, roll back.
4047 //cerr << "NOT FOLDING: " << *I;
4048 AddrMode
= BackupAddrMode
;
4049 AddrModeInsts
.resize(OldSize
);
4050 TPT
.rollback(LastKnownGood
);
4052 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
4053 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
4055 TPT
.rollback(LastKnownGood
);
4056 } else if (isa
<ConstantPointerNull
>(Addr
)) {
4057 // Null pointer gets folded without affecting the addressing mode.
4061 // Worse case, the target should support [reg] addressing modes. :)
4062 if (!AddrMode
.HasBaseReg
) {
4063 AddrMode
.HasBaseReg
= true;
4064 AddrMode
.BaseReg
= Addr
;
4065 // Still check for legality in case the target supports [imm] but not [i+r].
4066 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4068 AddrMode
.HasBaseReg
= false;
4069 AddrMode
.BaseReg
= nullptr;
4072 // If the base register is already taken, see if we can do [r+r].
4073 if (AddrMode
.Scale
== 0) {
4075 AddrMode
.ScaledReg
= Addr
;
4076 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
4079 AddrMode
.ScaledReg
= nullptr;
4082 TPT
.rollback(LastKnownGood
);
4086 /// Check to see if all uses of OpVal by the specified inline asm call are due
4087 /// to memory operands. If so, return true, otherwise return false.
4088 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
4089 const TargetLowering
&TLI
,
4090 const TargetRegisterInfo
&TRI
) {
4091 const Function
*F
= CI
->getFunction();
4092 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4093 TLI
.ParseConstraints(F
->getParent()->getDataLayout(), &TRI
,
4094 ImmutableCallSite(CI
));
4096 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4097 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4099 // Compute the constraint code and ConstraintType to use.
4100 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
4102 // If this asm operand is our Value*, and if it isn't an indirect memory
4103 // operand, we can't fold it!
4104 if (OpInfo
.CallOperandVal
== OpVal
&&
4105 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
4106 !OpInfo
.isIndirect
))
4113 // Max number of memory uses to look at before aborting the search to conserve
4115 static constexpr int MaxMemoryUsesToScan
= 20;
4117 /// Recursively walk all the uses of I until we find a memory use.
4118 /// If we find an obviously non-foldable instruction, return true.
4119 /// Add the ultimately found memory instructions to MemoryUses.
4120 static bool FindAllMemoryUses(
4122 SmallVectorImpl
<std::pair
<Instruction
*, unsigned>> &MemoryUses
,
4123 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
4124 const TargetRegisterInfo
&TRI
, int SeenInsts
= 0) {
4125 // If we already considered this instruction, we're done.
4126 if (!ConsideredInsts
.insert(I
).second
)
4129 // If this is an obviously unfoldable instruction, bail out.
4130 if (!MightBeFoldableInst(I
))
4133 const bool OptSize
= I
->getFunction()->optForSize();
4135 // Loop over all the uses, recursively processing them.
4136 for (Use
&U
: I
->uses()) {
4137 // Conservatively return true if we're seeing a large number or a deep chain
4138 // of users. This avoids excessive compilation times in pathological cases.
4139 if (SeenInsts
++ >= MaxMemoryUsesToScan
)
4142 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
4143 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
4144 MemoryUses
.push_back(std::make_pair(LI
, U
.getOperandNo()));
4148 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
4149 unsigned opNo
= U
.getOperandNo();
4150 if (opNo
!= StoreInst::getPointerOperandIndex())
4151 return true; // Storing addr, not into addr.
4152 MemoryUses
.push_back(std::make_pair(SI
, opNo
));
4156 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
4157 unsigned opNo
= U
.getOperandNo();
4158 if (opNo
!= AtomicRMWInst::getPointerOperandIndex())
4159 return true; // Storing addr, not into addr.
4160 MemoryUses
.push_back(std::make_pair(RMW
, opNo
));
4164 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
4165 unsigned opNo
= U
.getOperandNo();
4166 if (opNo
!= AtomicCmpXchgInst::getPointerOperandIndex())
4167 return true; // Storing addr, not into addr.
4168 MemoryUses
.push_back(std::make_pair(CmpX
, opNo
));
4172 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
4173 // If this is a cold call, we can sink the addressing calculation into
4174 // the cold path. See optimizeCallInst
4175 if (!OptSize
&& CI
->hasFnAttr(Attribute::Cold
))
4178 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledValue());
4179 if (!IA
) return true;
4181 // If this is a memory operand, we're cool, otherwise bail out.
4182 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
4187 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
,
4195 /// Return true if Val is already known to be live at the use site that we're
4196 /// folding it into. If so, there is no cost to include it in the addressing
4197 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4198 /// instruction already.
4199 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,Value
*KnownLive1
,
4200 Value
*KnownLive2
) {
4201 // If Val is either of the known-live values, we know it is live!
4202 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
4205 // All values other than instructions and arguments (e.g. constants) are live.
4206 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
)) return true;
4208 // If Val is a constant sized alloca in the entry block, it is live, this is
4209 // true because it is just a reference to the stack/frame pointer, which is
4210 // live for the whole function.
4211 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
4212 if (AI
->isStaticAlloca())
4215 // Check to see if this value is already used in the memory instruction's
4216 // block. If so, it's already live into the block at the very least, so we
4217 // can reasonably fold it.
4218 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
4221 /// It is possible for the addressing mode of the machine to fold the specified
4222 /// instruction into a load or store that ultimately uses it.
4223 /// However, the specified instruction has multiple uses.
4224 /// Given this, it may actually increase register pressure to fold it
4225 /// into the load. For example, consider this code:
4229 /// use(Y) -> nonload/store
4233 /// In this case, Y has multiple uses, and can be folded into the load of Z
4234 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4235 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4236 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4237 /// number of computations either.
4239 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4240 /// X was live across 'load Z' for other reasons, we actually *would* want to
4241 /// fold the addressing mode in the Z case. This would make Y die earlier.
4242 bool AddressingModeMatcher::
4243 isProfitableToFoldIntoAddressingMode(Instruction
*I
, ExtAddrMode
&AMBefore
,
4244 ExtAddrMode
&AMAfter
) {
4245 if (IgnoreProfitability
) return true;
4247 // AMBefore is the addressing mode before this instruction was folded into it,
4248 // and AMAfter is the addressing mode after the instruction was folded. Get
4249 // the set of registers referenced by AMAfter and subtract out those
4250 // referenced by AMBefore: this is the set of values which folding in this
4251 // address extends the lifetime of.
4253 // Note that there are only two potential values being referenced here,
4254 // BaseReg and ScaleReg (global addresses are always available, as are any
4255 // folded immediates).
4256 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
4258 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4259 // lifetime wasn't extended by adding this instruction.
4260 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4262 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
4263 ScaledReg
= nullptr;
4265 // If folding this instruction (and it's subexprs) didn't extend any live
4266 // ranges, we're ok with it.
4267 if (!BaseReg
&& !ScaledReg
)
4270 // If all uses of this instruction can have the address mode sunk into them,
4271 // we can remove the addressing mode and effectively trade one live register
4272 // for another (at worst.) In this context, folding an addressing mode into
4273 // the use is just a particularly nice way of sinking it.
4274 SmallVector
<std::pair
<Instruction
*,unsigned>, 16> MemoryUses
;
4275 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
4276 if (FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
))
4277 return false; // Has a non-memory, non-foldable use!
4279 // Now that we know that all uses of this instruction are part of a chain of
4280 // computation involving only operations that could theoretically be folded
4281 // into a memory use, loop over each of these memory operation uses and see
4282 // if they could *actually* fold the instruction. The assumption is that
4283 // addressing modes are cheap and that duplicating the computation involved
4284 // many times is worthwhile, even on a fastpath. For sinking candidates
4285 // (i.e. cold call sites), this serves as a way to prevent excessive code
4286 // growth since most architectures have some reasonable small and fast way to
4287 // compute an effective address. (i.e LEA on x86)
4288 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
4289 for (unsigned i
= 0, e
= MemoryUses
.size(); i
!= e
; ++i
) {
4290 Instruction
*User
= MemoryUses
[i
].first
;
4291 unsigned OpNo
= MemoryUses
[i
].second
;
4293 // Get the access type of this use. If the use isn't a pointer, we don't
4294 // know what it accesses.
4295 Value
*Address
= User
->getOperand(OpNo
);
4296 PointerType
*AddrTy
= dyn_cast
<PointerType
>(Address
->getType());
4299 Type
*AddressAccessTy
= AddrTy
->getElementType();
4300 unsigned AS
= AddrTy
->getAddressSpace();
4302 // Do a match against the root of this address, ignoring profitability. This
4303 // will tell us if the addressing mode for the memory operation will
4304 // *actually* cover the shared instruction.
4306 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4308 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4309 TPT
.getRestorationPoint();
4310 AddressingModeMatcher
Matcher(
4311 MatchedAddrModeInsts
, TLI
, TRI
, AddressAccessTy
, AS
, MemoryInst
, Result
,
4312 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4313 Matcher
.IgnoreProfitability
= true;
4314 bool Success
= Matcher
.matchAddr(Address
, 0);
4315 (void)Success
; assert(Success
&& "Couldn't select *anything*?");
4317 // The match was to check the profitability, the changes made are not
4318 // part of the original matcher. Therefore, they should be dropped
4319 // otherwise the original matcher will not present the right state.
4320 TPT
.rollback(LastKnownGood
);
4322 // If the match didn't cover I, then it won't be shared by it.
4323 if (!is_contained(MatchedAddrModeInsts
, I
))
4326 MatchedAddrModeInsts
.clear();
4332 /// Return true if the specified values are defined in a
4333 /// different basic block than BB.
4334 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
4335 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
4336 return I
->getParent() != BB
;
4340 /// Sink addressing mode computation immediate before MemoryInst if doing so
4341 /// can be done without increasing register pressure. The need for the
4342 /// register pressure constraint means this can end up being an all or nothing
4343 /// decision for all uses of the same addressing computation.
4345 /// Load and Store Instructions often have addressing modes that can do
4346 /// significant amounts of computation. As such, instruction selection will try
4347 /// to get the load or store to do as much computation as possible for the
4348 /// program. The problem is that isel can only see within a single block. As
4349 /// such, we sink as much legal addressing mode work into the block as possible.
4351 /// This method is used to optimize both load/store and inline asms with memory
4352 /// operands. It's also used to sink addressing computations feeding into cold
4353 /// call sites into their (cold) basic block.
4355 /// The motivation for handling sinking into cold blocks is that doing so can
4356 /// both enable other address mode sinking (by satisfying the register pressure
4357 /// constraint above), and reduce register pressure globally (by removing the
4358 /// addressing mode computation from the fast path entirely.).
4359 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
4360 Type
*AccessTy
, unsigned AddrSpace
) {
4363 // Try to collapse single-value PHI nodes. This is necessary to undo
4364 // unprofitable PRE transformations.
4365 SmallVector
<Value
*, 8> worklist
;
4366 SmallPtrSet
<Value
*, 16> Visited
;
4367 worklist
.push_back(Addr
);
4369 // Use a worklist to iteratively look through PHI and select nodes, and
4370 // ensure that the addressing mode obtained from the non-PHI/select roots of
4371 // the graph are compatible.
4372 bool PhiOrSelectSeen
= false;
4373 SmallVector
<Instruction
*, 16> AddrModeInsts
;
4374 const SimplifyQuery
SQ(*DL
, TLInfo
);
4375 AddressingModeCombiner
AddrModes(SQ
, { Addr
, MemoryInst
->getParent() });
4376 TypePromotionTransaction
TPT(RemovedInsts
);
4377 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4378 TPT
.getRestorationPoint();
4379 while (!worklist
.empty()) {
4380 Value
*V
= worklist
.back();
4381 worklist
.pop_back();
4383 // We allow traversing cyclic Phi nodes.
4384 // In case of success after this loop we ensure that traversing through
4385 // Phi nodes ends up with all cases to compute address of the form
4386 // BaseGV + Base + Scale * Index + Offset
4387 // where Scale and Offset are constans and BaseGV, Base and Index
4388 // are exactly the same Values in all cases.
4389 // It means that BaseGV, Scale and Offset dominate our memory instruction
4390 // and have the same value as they had in address computation represented
4391 // as Phi. So we can safely sink address computation to memory instruction.
4392 if (!Visited
.insert(V
).second
)
4395 // For a PHI node, push all of its incoming values.
4396 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
4397 for (Value
*IncValue
: P
->incoming_values())
4398 worklist
.push_back(IncValue
);
4399 PhiOrSelectSeen
= true;
4402 // Similar for select.
4403 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
4404 worklist
.push_back(SI
->getFalseValue());
4405 worklist
.push_back(SI
->getTrueValue());
4406 PhiOrSelectSeen
= true;
4410 // For non-PHIs, determine the addressing mode being computed. Note that
4411 // the result may differ depending on what other uses our candidate
4412 // addressing instructions might have.
4413 AddrModeInsts
.clear();
4414 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
4416 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
4417 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *TRI
,
4418 InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
);
4420 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
4421 if (GEP
&& GEP
->getParent() != MemoryInst
->getParent() &&
4422 !NewGEPBases
.count(GEP
)) {
4423 // If splitting the underlying data structure can reduce the offset of a
4424 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4425 // previously split data structures.
4426 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
4427 if (LargeOffsetGEPID
.find(GEP
) == LargeOffsetGEPID
.end())
4428 LargeOffsetGEPID
[GEP
] = LargeOffsetGEPID
.size();
4431 NewAddrMode
.OriginalValue
= V
;
4432 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
4436 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4437 // or we have multiple but either couldn't combine them or combining them
4438 // wouldn't do anything useful, bail out now.
4439 if (!AddrModes
.combineAddrModes()) {
4440 TPT
.rollback(LastKnownGood
);
4445 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4446 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
4448 // If all the instructions matched are already in this BB, don't do anything.
4449 // If we saw a Phi node then it is not local definitely, and if we saw a select
4450 // then we want to push the address calculation past it even if it's already
4452 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
4453 return IsNonLocalValue(V
, MemoryInst
->getParent());
4455 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4460 // Insert this computation right after this user. Since our caller is
4461 // scanning from the top of the BB to the bottom, reuse of the expr are
4462 // guaranteed to happen later.
4463 IRBuilder
<> Builder(MemoryInst
);
4465 // Now that we determined the addressing expression we want to use and know
4466 // that we have to sink it into this block. Check to see if we have already
4467 // done this for some other load/store instr in this block. If so, reuse
4468 // the computation. Before attempting reuse, check if the address is valid
4469 // as it may have been erased.
4471 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
4473 Value
* SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
4475 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4476 << " for " << *MemoryInst
<< "\n");
4477 if (SunkAddr
->getType() != Addr
->getType())
4478 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4479 } else if (AddrSinkUsingGEPs
||
4480 (!AddrSinkUsingGEPs
.getNumOccurrences() && TM
&& TTI
->useAA())) {
4481 // By default, we use the GEP-based method when AA is used later. This
4482 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4483 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4484 << " for " << *MemoryInst
<< "\n");
4485 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4486 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
4488 // First, find the pointer.
4489 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
4490 ResultPtr
= AddrMode
.BaseReg
;
4491 AddrMode
.BaseReg
= nullptr;
4494 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
4495 // We can't add more than one pointer together, nor can we scale a
4496 // pointer (both of which seem meaningless).
4497 if (ResultPtr
|| AddrMode
.Scale
!= 1)
4500 ResultPtr
= AddrMode
.ScaledReg
;
4504 // It is only safe to sign extend the BaseReg if we know that the math
4505 // required to create it did not overflow before we extend it. Since
4506 // the original IR value was tossed in favor of a constant back when
4507 // the AddrMode was created we need to bail out gracefully if widths
4508 // do not match instead of extending it.
4510 // (See below for code to add the scale.)
4511 if (AddrMode
.Scale
) {
4512 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
4513 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
4514 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
4518 if (AddrMode
.BaseGV
) {
4522 ResultPtr
= AddrMode
.BaseGV
;
4525 // If the real base value actually came from an inttoptr, then the matcher
4526 // will look through it and provide only the integer value. In that case,
4528 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
4529 if (!ResultPtr
&& AddrMode
.BaseReg
) {
4530 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
4532 AddrMode
.BaseReg
= nullptr;
4533 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
4534 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
4541 !AddrMode
.BaseReg
&& !AddrMode
.Scale
&& !AddrMode
.BaseOffs
) {
4542 SunkAddr
= Constant::getNullValue(Addr
->getType());
4543 } else if (!ResultPtr
) {
4547 Builder
.getInt8PtrTy(Addr
->getType()->getPointerAddressSpace());
4548 Type
*I8Ty
= Builder
.getInt8Ty();
4550 // Start with the base register. Do this first so that subsequent address
4551 // matching finds it last, which will prevent it from trying to match it
4552 // as the scaled value in case it happens to be a mul. That would be
4553 // problematic if we've sunk a different mul for the scale, because then
4554 // we'd end up sinking both muls.
4555 if (AddrMode
.BaseReg
) {
4556 Value
*V
= AddrMode
.BaseReg
;
4557 if (V
->getType() != IntPtrTy
)
4558 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4563 // Add the scale value.
4564 if (AddrMode
.Scale
) {
4565 Value
*V
= AddrMode
.ScaledReg
;
4566 if (V
->getType() == IntPtrTy
) {
4569 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4570 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
4571 "We can't transform if ScaledReg is too narrow");
4572 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4575 if (AddrMode
.Scale
!= 1)
4576 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4579 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
4584 // Add in the Base Offset if present.
4585 if (AddrMode
.BaseOffs
) {
4586 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4588 // We need to add this separately from the scale above to help with
4589 // SDAG consecutive load/store merging.
4590 if (ResultPtr
->getType() != I8PtrTy
)
4591 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4592 ResultPtr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4599 SunkAddr
= ResultPtr
;
4601 if (ResultPtr
->getType() != I8PtrTy
)
4602 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
4603 SunkAddr
= Builder
.CreateGEP(I8Ty
, ResultPtr
, ResultIndex
, "sunkaddr");
4606 if (SunkAddr
->getType() != Addr
->getType())
4607 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
4610 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4611 // non-integral pointers, so in that case bail out now.
4612 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
4613 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
4614 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
4615 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
4616 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
4617 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
4618 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
4620 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
4623 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4624 << " for " << *MemoryInst
<< "\n");
4625 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
4626 Value
*Result
= nullptr;
4628 // Start with the base register. Do this first so that subsequent address
4629 // matching finds it last, which will prevent it from trying to match it
4630 // as the scaled value in case it happens to be a mul. That would be
4631 // problematic if we've sunk a different mul for the scale, because then
4632 // we'd end up sinking both muls.
4633 if (AddrMode
.BaseReg
) {
4634 Value
*V
= AddrMode
.BaseReg
;
4635 if (V
->getType()->isPointerTy())
4636 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4637 if (V
->getType() != IntPtrTy
)
4638 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
4642 // Add the scale value.
4643 if (AddrMode
.Scale
) {
4644 Value
*V
= AddrMode
.ScaledReg
;
4645 if (V
->getType() == IntPtrTy
) {
4647 } else if (V
->getType()->isPointerTy()) {
4648 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
4649 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
4650 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
4651 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
4653 // It is only safe to sign extend the BaseReg if we know that the math
4654 // required to create it did not overflow before we extend it. Since
4655 // the original IR value was tossed in favor of a constant back when
4656 // the AddrMode was created we need to bail out gracefully if widths
4657 // do not match instead of extending it.
4658 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
4659 if (I
&& (Result
!= AddrMode
.BaseReg
))
4660 I
->eraseFromParent();
4663 if (AddrMode
.Scale
!= 1)
4664 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
4667 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4672 // Add in the BaseGV if present.
4673 if (AddrMode
.BaseGV
) {
4674 Value
*V
= Builder
.CreatePtrToInt(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr");
4676 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4681 // Add in the Base Offset if present.
4682 if (AddrMode
.BaseOffs
) {
4683 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
4685 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
4691 SunkAddr
= Constant::getNullValue(Addr
->getType());
4693 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
4696 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
4697 // Store the newly computed address into the cache. In the case we reused a
4698 // value, this should be idempotent.
4699 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
4701 // If we have no uses, recursively delete the value and all dead instructions
4703 if (Repl
->use_empty()) {
4704 // This can cause recursive deletion, which can invalidate our iterator.
4705 // Use a WeakTrackingVH to hold onto it in case this happens.
4706 Value
*CurValue
= &*CurInstIterator
;
4707 WeakTrackingVH
IterHandle(CurValue
);
4708 BasicBlock
*BB
= CurInstIterator
->getParent();
4710 RecursivelyDeleteTriviallyDeadInstructions(Repl
, TLInfo
);
4712 if (IterHandle
!= CurValue
) {
4713 // If the iterator instruction was recursively deleted, start over at the
4714 // start of the block.
4715 CurInstIterator
= BB
->begin();
4723 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4724 /// address computing into the block when possible / profitable.
4725 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
4726 bool MadeChange
= false;
4728 const TargetRegisterInfo
*TRI
=
4729 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
4730 TargetLowering::AsmOperandInfoVector TargetConstraints
=
4731 TLI
->ParseConstraints(*DL
, TRI
, CS
);
4733 for (unsigned i
= 0, e
= TargetConstraints
.size(); i
!= e
; ++i
) {
4734 TargetLowering::AsmOperandInfo
&OpInfo
= TargetConstraints
[i
];
4736 // Compute the constraint code and ConstraintType to use.
4737 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
4739 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
4740 OpInfo
.isIndirect
) {
4741 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
4742 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
4743 } else if (OpInfo
.Type
== InlineAsm::isInput
)
4750 /// Check if all the uses of \p Val are equivalent (or free) zero or
4751 /// sign extensions.
4752 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
4753 assert(!Val
->use_empty() && "Input must have at least one use");
4754 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
4755 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
4756 Type
*ExtTy
= FirstUser
->getType();
4757 for (const User
*U
: Val
->users()) {
4758 const Instruction
*UI
= cast
<Instruction
>(U
);
4759 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
4761 Type
*CurTy
= UI
->getType();
4762 // Same input and output types: Same instruction after CSE.
4766 // If IsSExt is true, we are in this situation:
4768 // b = sext ty1 a to ty2
4769 // c = sext ty1 a to ty3
4770 // Assuming ty2 is shorter than ty3, this could be turned into:
4772 // b = sext ty1 a to ty2
4773 // c = sext ty2 b to ty3
4774 // However, the last sext is not free.
4778 // This is a ZExt, maybe this is free to extend from one type to another.
4779 // In that case, we would not account for a different use.
4782 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
4783 CurTy
->getScalarType()->getIntegerBitWidth()) {
4791 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
4794 // All uses are the same or can be derived from one another for free.
4798 /// Try to speculatively promote extensions in \p Exts and continue
4799 /// promoting through newly promoted operands recursively as far as doing so is
4800 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4801 /// When some promotion happened, \p TPT contains the proper state to revert
4804 /// \return true if some promotion happened, false otherwise.
4805 bool CodeGenPrepare::tryToPromoteExts(
4806 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
4807 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
4808 unsigned CreatedInstsCost
) {
4809 bool Promoted
= false;
4811 // Iterate over all the extensions to try to promote them.
4812 for (auto I
: Exts
) {
4813 // Early check if we directly have ext(load).
4814 if (isa
<LoadInst
>(I
->getOperand(0))) {
4815 ProfitablyMovedExts
.push_back(I
);
4819 // Check whether or not we want to do any promotion. The reason we have
4820 // this check inside the for loop is to catch the case where an extension
4821 // is directly fed by a load because in such case the extension can be moved
4822 // up without any promotion on its operands.
4823 if (!TLI
|| !TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
4826 // Get the action to perform the promotion.
4827 TypePromotionHelper::Action TPH
=
4828 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
4829 // Check if we can promote.
4831 // Save the current extension as we cannot move up through its operand.
4832 ProfitablyMovedExts
.push_back(I
);
4836 // Save the current state.
4837 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
4838 TPT
.getRestorationPoint();
4839 SmallVector
<Instruction
*, 4> NewExts
;
4840 unsigned NewCreatedInstsCost
= 0;
4841 unsigned ExtCost
= !TLI
->isExtFree(I
);
4843 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
4844 &NewExts
, nullptr, *TLI
);
4845 assert(PromotedVal
&&
4846 "TypePromotionHelper should have filtered out those cases");
4848 // We would be able to merge only one extension in a load.
4849 // Therefore, if we have more than 1 new extension we heuristically
4850 // cut this search path, because it means we degrade the code quality.
4851 // With exactly 2, the transformation is neutral, because we will merge
4852 // one extension but leave one. However, we optimistically keep going,
4853 // because the new extension may be removed too.
4854 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
4855 // FIXME: It would be possible to propagate a negative value instead of
4856 // conservatively ceiling it to 0.
4857 TotalCreatedInstsCost
=
4858 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
4859 if (!StressExtLdPromotion
&&
4860 (TotalCreatedInstsCost
> 1 ||
4861 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
))) {
4862 // This promotion is not profitable, rollback to the previous state, and
4863 // save the current extension in ProfitablyMovedExts as the latest
4864 // speculative promotion turned out to be unprofitable.
4865 TPT
.rollback(LastKnownGood
);
4866 ProfitablyMovedExts
.push_back(I
);
4869 // Continue promoting NewExts as far as doing so is profitable.
4870 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
4871 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
4872 bool NewPromoted
= false;
4873 for (auto ExtInst
: NewlyMovedExts
) {
4874 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
4875 Value
*ExtOperand
= MovedExt
->getOperand(0);
4876 // If we have reached to a load, we need this extra profitability check
4877 // as it could potentially be merged into an ext(load).
4878 if (isa
<LoadInst
>(ExtOperand
) &&
4879 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
4880 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
4883 ProfitablyMovedExts
.push_back(MovedExt
);
4887 // If none of speculative promotions for NewExts is profitable, rollback
4888 // and save the current extension (I) as the last profitable extension.
4890 TPT
.rollback(LastKnownGood
);
4891 ProfitablyMovedExts
.push_back(I
);
4894 // The promotion is profitable.
4900 /// Merging redundant sexts when one is dominating the other.
4901 bool CodeGenPrepare::mergeSExts(Function
&F
) {
4902 DominatorTree
DT(F
);
4903 bool Changed
= false;
4904 for (auto &Entry
: ValToSExtendedUses
) {
4905 SExts
&Insts
= Entry
.second
;
4907 for (Instruction
*Inst
: Insts
) {
4908 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
4909 Inst
->getOperand(0) != Entry
.first
)
4911 bool inserted
= false;
4912 for (auto &Pt
: CurPts
) {
4913 if (DT
.dominates(Inst
, Pt
)) {
4914 Pt
->replaceAllUsesWith(Inst
);
4915 RemovedInsts
.insert(Pt
);
4916 Pt
->removeFromParent();
4922 if (!DT
.dominates(Pt
, Inst
))
4923 // Give up if we need to merge in a common dominator as the
4924 // experiments show it is not profitable.
4926 Inst
->replaceAllUsesWith(Pt
);
4927 RemovedInsts
.insert(Inst
);
4928 Inst
->removeFromParent();
4934 CurPts
.push_back(Inst
);
4940 // Spliting large data structures so that the GEPs accessing them can have
4941 // smaller offsets so that they can be sunk to the same blocks as their users.
4942 // For example, a large struct starting from %base is splitted into two parts
4943 // where the second part starts from %new_base.
4950 // %gep0 = gep %base, off0
4951 // %gep1 = gep %base, off1
4952 // %gep2 = gep %base, off2
4955 // %load1 = load %gep0
4956 // %load2 = load %gep1
4957 // %load3 = load %gep2
4962 // %new_base = gep %base, off0
4965 // %new_gep0 = %new_base
4966 // %new_gep1 = gep %new_base, off1 - off0
4967 // %new_gep2 = gep %new_base, off2 - off0
4970 // %load1 = load i32, i32* %new_gep0
4971 // %load2 = load i32, i32* %new_gep1
4972 // %load3 = load i32, i32* %new_gep2
4974 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
4975 // their offsets are smaller enough to fit into the addressing mode.
4976 bool CodeGenPrepare::splitLargeGEPOffsets() {
4977 bool Changed
= false;
4978 for (auto &Entry
: LargeOffsetGEPMap
) {
4979 Value
*OldBase
= Entry
.first
;
4980 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
4981 &LargeOffsetGEPs
= Entry
.second
;
4982 auto compareGEPOffset
=
4983 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
4984 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
4985 if (LHS
.first
== RHS
.first
)
4987 if (LHS
.second
!= RHS
.second
)
4988 return LHS
.second
< RHS
.second
;
4989 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
4991 // Sorting all the GEPs of the same data structures based on the offsets.
4992 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
4993 LargeOffsetGEPs
.erase(
4994 std::unique(LargeOffsetGEPs
.begin(), LargeOffsetGEPs
.end()),
4995 LargeOffsetGEPs
.end());
4996 // Skip if all the GEPs have the same offsets.
4997 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
4999 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
5000 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
5001 Value
*NewBaseGEP
= nullptr;
5003 auto LargeOffsetGEP
= LargeOffsetGEPs
.begin();
5004 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
5005 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
5006 int64_t Offset
= LargeOffsetGEP
->second
;
5007 if (Offset
!= BaseOffset
) {
5008 TargetLowering::AddrMode AddrMode
;
5009 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
5010 // The result type of the GEP might not be the type of the memory
5012 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
5013 GEP
->getResultElementType(),
5014 GEP
->getAddressSpace())) {
5015 // We need to create a new base if the offset to the current base is
5016 // too large to fit into the addressing mode. So, a very large struct
5017 // may be splitted into several parts.
5019 BaseOffset
= Offset
;
5020 NewBaseGEP
= nullptr;
5024 // Generate a new GEP to replace the current one.
5025 IRBuilder
<> Builder(GEP
);
5026 Type
*IntPtrTy
= DL
->getIntPtrType(GEP
->getType());
5028 Builder
.getInt8PtrTy(GEP
->getType()->getPointerAddressSpace());
5029 Type
*I8Ty
= Builder
.getInt8Ty();
5032 // Create a new base if we don't have one yet. Find the insertion
5033 // pointer for the new base first.
5034 BasicBlock::iterator NewBaseInsertPt
;
5035 BasicBlock
*NewBaseInsertBB
;
5036 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
5037 // If the base of the struct is an instruction, the new base will be
5038 // inserted close to it.
5039 NewBaseInsertBB
= BaseI
->getParent();
5040 if (isa
<PHINode
>(BaseI
))
5041 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5042 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
5044 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest());
5045 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5047 NewBaseInsertPt
= std::next(BaseI
->getIterator());
5049 // If the current base is an argument or global value, the new base
5050 // will be inserted to the entry block.
5051 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
5052 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
5054 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
5055 // Create a new base.
5056 Value
*BaseIndex
= ConstantInt::get(IntPtrTy
, BaseOffset
);
5057 NewBaseGEP
= OldBase
;
5058 if (NewBaseGEP
->getType() != I8PtrTy
)
5059 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
5061 NewBaseBuilder
.CreateGEP(I8Ty
, NewBaseGEP
, BaseIndex
, "splitgep");
5062 NewGEPBases
.insert(NewBaseGEP
);
5065 Value
*NewGEP
= NewBaseGEP
;
5066 if (Offset
== BaseOffset
) {
5067 if (GEP
->getType() != I8PtrTy
)
5068 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5070 // Calculate the new offset for the new GEP.
5071 Value
*Index
= ConstantInt::get(IntPtrTy
, Offset
- BaseOffset
);
5072 NewGEP
= Builder
.CreateGEP(I8Ty
, NewBaseGEP
, Index
);
5074 if (GEP
->getType() != I8PtrTy
)
5075 NewGEP
= Builder
.CreatePointerCast(NewGEP
, GEP
->getType());
5077 GEP
->replaceAllUsesWith(NewGEP
);
5078 LargeOffsetGEPID
.erase(GEP
);
5079 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
5080 GEP
->eraseFromParent();
5087 /// Return true, if an ext(load) can be formed from an extension in
5089 bool CodeGenPrepare::canFormExtLd(
5090 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
5091 Instruction
*&Inst
, bool HasPromoted
) {
5092 for (auto *MovedExtInst
: MovedExts
) {
5093 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
5094 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
5095 Inst
= MovedExtInst
;
5102 // If they're already in the same block, there's nothing to do.
5103 // Make the cheap checks first if we did not promote.
5104 // If we promoted, we need to check if it is indeed profitable.
5105 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
5108 return TLI
->isExtLoad(LI
, Inst
, *DL
);
5111 /// Move a zext or sext fed by a load into the same basic block as the load,
5112 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5113 /// extend into the load.
5117 /// %ld = load i32* %addr
5118 /// %add = add nuw i32 %ld, 4
5119 /// %zext = zext i32 %add to i64
5123 /// %ld = load i32* %addr
5124 /// %zext = zext i32 %ld to i64
5125 /// %add = add nuw i64 %zext, 4
5127 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5128 /// allow us to match zext(load i32*) to i64.
5130 /// Also, try to promote the computations used to obtain a sign extended
5131 /// value used into memory accesses.
5134 /// a = add nsw i32 b, 3
5135 /// d = sext i32 a to i64
5136 /// e = getelementptr ..., i64 d
5140 /// f = sext i32 b to i64
5141 /// a = add nsw i64 f, 3
5142 /// e = getelementptr ..., i64 a
5145 /// \p Inst[in/out] the extension may be modified during the process if some
5146 /// promotions apply.
5147 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
5148 // ExtLoad formation and address type promotion infrastructure requires TLI to
5153 bool AllowPromotionWithoutCommonHeader
= false;
5154 /// See if it is an interesting sext operations for the address type
5155 /// promotion before trying to promote it, e.g., the ones with the right
5156 /// type and used in memory accesses.
5157 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
5158 *Inst
, AllowPromotionWithoutCommonHeader
);
5159 TypePromotionTransaction
TPT(RemovedInsts
);
5160 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5161 TPT
.getRestorationPoint();
5162 SmallVector
<Instruction
*, 1> Exts
;
5163 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
5164 Exts
.push_back(Inst
);
5166 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
5168 // Look for a load being extended.
5169 LoadInst
*LI
= nullptr;
5170 Instruction
*ExtFedByLoad
;
5172 // Try to promote a chain of computation if it allows to form an extended
5174 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
5175 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
5177 // Move the extend into the same block as the load
5178 ExtFedByLoad
->moveAfter(LI
);
5179 // CGP does not check if the zext would be speculatively executed when moved
5180 // to the same basic block as the load. Preserving its original location
5181 // would pessimize the debugging experience, as well as negatively impact
5182 // the quality of sample pgo. We don't want to use "line 0" as that has a
5183 // size cost in the line-table section and logically the zext can be seen as
5184 // part of the load. Therefore we conservatively reuse the same debug
5185 // location for the load and the zext.
5186 ExtFedByLoad
->setDebugLoc(LI
->getDebugLoc());
5188 Inst
= ExtFedByLoad
;
5192 // Continue promoting SExts if known as considerable depending on targets.
5193 if (ATPConsiderable
&&
5194 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
5195 HasPromoted
, TPT
, SpeculativelyMovedExts
))
5198 TPT
.rollback(LastKnownGood
);
5202 // Perform address type promotion if doing so is profitable.
5203 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5204 // instructions that sign extended the same initial value. However, if
5205 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5206 // extension is just profitable.
5207 bool CodeGenPrepare::performAddressTypePromotion(
5208 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
5209 bool HasPromoted
, TypePromotionTransaction
&TPT
,
5210 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
5211 bool Promoted
= false;
5212 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
5213 bool AllSeenFirst
= true;
5214 for (auto I
: SpeculativelyMovedExts
) {
5215 Value
*HeadOfChain
= I
->getOperand(0);
5216 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
5217 SeenChainsForSExt
.find(HeadOfChain
);
5218 // If there is an unhandled SExt which has the same header, try to promote
5220 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
5221 if (AlreadySeen
->second
!= nullptr)
5222 UnhandledExts
.insert(AlreadySeen
->second
);
5223 AllSeenFirst
= false;
5227 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
5228 SpeculativelyMovedExts
.size() == 1)) {
5232 for (auto I
: SpeculativelyMovedExts
) {
5233 Value
*HeadOfChain
= I
->getOperand(0);
5234 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5235 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5237 // Update Inst as promotion happen.
5238 Inst
= SpeculativelyMovedExts
.pop_back_val();
5240 // This is the first chain visited from the header, keep the current chain
5241 // as unhandled. Defer to promote this until we encounter another SExt
5242 // chain derived from the same header.
5243 for (auto I
: SpeculativelyMovedExts
) {
5244 Value
*HeadOfChain
= I
->getOperand(0);
5245 SeenChainsForSExt
[HeadOfChain
] = Inst
;
5250 if (!AllSeenFirst
&& !UnhandledExts
.empty())
5251 for (auto VisitedSExt
: UnhandledExts
) {
5252 if (RemovedInsts
.count(VisitedSExt
))
5254 TypePromotionTransaction
TPT(RemovedInsts
);
5255 SmallVector
<Instruction
*, 1> Exts
;
5256 SmallVector
<Instruction
*, 2> Chains
;
5257 Exts
.push_back(VisitedSExt
);
5258 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
5262 for (auto I
: Chains
) {
5263 Value
*HeadOfChain
= I
->getOperand(0);
5264 // Mark this as handled.
5265 SeenChainsForSExt
[HeadOfChain
] = nullptr;
5266 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
5272 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
5273 BasicBlock
*DefBB
= I
->getParent();
5275 // If the result of a {s|z}ext and its source are both live out, rewrite all
5276 // other uses of the source with result of extension.
5277 Value
*Src
= I
->getOperand(0);
5278 if (Src
->hasOneUse())
5281 // Only do this xform if truncating is free.
5282 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
5285 // Only safe to perform the optimization if the source is also defined in
5287 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
5290 bool DefIsLiveOut
= false;
5291 for (User
*U
: I
->users()) {
5292 Instruction
*UI
= cast
<Instruction
>(U
);
5294 // Figure out which BB this ext is used in.
5295 BasicBlock
*UserBB
= UI
->getParent();
5296 if (UserBB
== DefBB
) continue;
5297 DefIsLiveOut
= true;
5303 // Make sure none of the uses are PHI nodes.
5304 for (User
*U
: Src
->users()) {
5305 Instruction
*UI
= cast
<Instruction
>(U
);
5306 BasicBlock
*UserBB
= UI
->getParent();
5307 if (UserBB
== DefBB
) continue;
5308 // Be conservative. We don't want this xform to end up introducing
5309 // reloads just before load / store instructions.
5310 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
5314 // InsertedTruncs - Only insert one trunc in each block once.
5315 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
5317 bool MadeChange
= false;
5318 for (Use
&U
: Src
->uses()) {
5319 Instruction
*User
= cast
<Instruction
>(U
.getUser());
5321 // Figure out which BB this ext is used in.
5322 BasicBlock
*UserBB
= User
->getParent();
5323 if (UserBB
== DefBB
) continue;
5325 // Both src and def are live in this block. Rewrite the use.
5326 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
5328 if (!InsertedTrunc
) {
5329 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5330 assert(InsertPt
!= UserBB
->end());
5331 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", &*InsertPt
);
5332 InsertedInsts
.insert(InsertedTrunc
);
5335 // Replace a use of the {s|z}ext source with a use of the result.
5344 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5345 // just after the load if the target can fold this into one extload instruction,
5346 // with the hope of eliminating some of the other later "and" instructions using
5347 // the loaded value. "and"s that are made trivially redundant by the insertion
5348 // of the new "and" are removed by this function, while others (e.g. those whose
5349 // path from the load goes through a phi) are left for isel to potentially
5382 // becomes (after a call to optimizeLoadExt for each load):
5386 // x1' = and x1, 0xff
5390 // x2' = and x2, 0xff
5395 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
5396 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
5399 // Skip loads we've already transformed.
5400 if (Load
->hasOneUse() &&
5401 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
5404 // Look at all uses of Load, looking through phis, to determine how many bits
5405 // of the loaded value are needed.
5406 SmallVector
<Instruction
*, 8> WorkList
;
5407 SmallPtrSet
<Instruction
*, 16> Visited
;
5408 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
5409 for (auto *U
: Load
->users())
5410 WorkList
.push_back(cast
<Instruction
>(U
));
5412 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
5413 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
5414 APInt
DemandBits(BitWidth
, 0);
5415 APInt
WidestAndBits(BitWidth
, 0);
5417 while (!WorkList
.empty()) {
5418 Instruction
*I
= WorkList
.back();
5419 WorkList
.pop_back();
5421 // Break use-def graph loops.
5422 if (!Visited
.insert(I
).second
)
5425 // For a PHI node, push all of its users.
5426 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
5427 for (auto *U
: Phi
->users())
5428 WorkList
.push_back(cast
<Instruction
>(U
));
5432 switch (I
->getOpcode()) {
5433 case Instruction::And
: {
5434 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5437 APInt AndBits
= AndC
->getValue();
5438 DemandBits
|= AndBits
;
5439 // Keep track of the widest and mask we see.
5440 if (AndBits
.ugt(WidestAndBits
))
5441 WidestAndBits
= AndBits
;
5442 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
5443 AndsToMaybeRemove
.push_back(I
);
5447 case Instruction::Shl
: {
5448 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
5451 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
5452 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
5456 case Instruction::Trunc
: {
5457 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
5458 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
5459 DemandBits
.setLowBits(TruncBitWidth
);
5468 uint32_t ActiveBits
= DemandBits
.getActiveBits();
5469 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5470 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5471 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5472 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5473 // followed by an AND.
5474 // TODO: Look into removing this restriction by fixing backends to either
5475 // return false for isLoadExtLegal for i1 or have them select this pattern to
5476 // a single instruction.
5478 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5479 // mask, since these are the only ands that will be removed by isel.
5480 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
5481 WidestAndBits
!= DemandBits
)
5484 LLVMContext
&Ctx
= Load
->getType()->getContext();
5485 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
5486 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
5488 // Reject cases that won't be matched as extloads.
5489 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
5490 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
5493 IRBuilder
<> Builder(Load
->getNextNode());
5494 auto *NewAnd
= dyn_cast
<Instruction
>(
5495 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
5496 // Mark this instruction as "inserted by CGP", so that other
5497 // optimizations don't touch it.
5498 InsertedInsts
.insert(NewAnd
);
5500 // Replace all uses of load with new and (except for the use of load in the
5502 Load
->replaceAllUsesWith(NewAnd
);
5503 NewAnd
->setOperand(0, Load
);
5505 // Remove any and instructions that are now redundant.
5506 for (auto *And
: AndsToMaybeRemove
)
5507 // Check that the and mask is the same as the one we decided to put on the
5509 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
5510 And
->replaceAllUsesWith(NewAnd
);
5511 if (&*CurInstIterator
== And
)
5512 CurInstIterator
= std::next(And
->getIterator());
5513 And
->eraseFromParent();
5521 /// Check if V (an operand of a select instruction) is an expensive instruction
5522 /// that is only used once.
5523 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
5524 auto *I
= dyn_cast
<Instruction
>(V
);
5525 // If it's safe to speculatively execute, then it should not have side
5526 // effects; therefore, it's safe to sink and possibly *not* execute.
5527 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
5528 TTI
->getUserCost(I
) >= TargetTransformInfo::TCC_Expensive
;
5531 /// Returns true if a SelectInst should be turned into an explicit branch.
5532 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
5533 const TargetLowering
*TLI
,
5535 // If even a predictable select is cheap, then a branch can't be cheaper.
5536 if (!TLI
->isPredictableSelectExpensive())
5539 // FIXME: This should use the same heuristics as IfConversion to determine
5540 // whether a select is better represented as a branch.
5542 // If metadata tells us that the select condition is obviously predictable,
5543 // then we want to replace the select with a branch.
5544 uint64_t TrueWeight
, FalseWeight
;
5545 if (SI
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
5546 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
5547 uint64_t Sum
= TrueWeight
+ FalseWeight
;
5549 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
5550 if (Probability
> TLI
->getPredictableBranchThreshold())
5555 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
5557 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5558 // comparison condition. If the compare has more than one use, there's
5559 // probably another cmov or setcc around, so it's not worth emitting a branch.
5560 if (!Cmp
|| !Cmp
->hasOneUse())
5563 // If either operand of the select is expensive and only needed on one side
5564 // of the select, we should form a branch.
5565 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
5566 sinkSelectOperand(TTI
, SI
->getFalseValue()))
5572 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5573 /// false value of \p SI. If the true/false value of \p SI is defined by any
5574 /// select instructions in \p Selects, look through the defining select
5575 /// instruction until the true/false value is not defined in \p Selects.
5576 static Value
*getTrueOrFalseValue(
5577 SelectInst
*SI
, bool isTrue
,
5578 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
5581 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
5582 DefSI
= dyn_cast
<SelectInst
>(V
)) {
5583 assert(DefSI
->getCondition() == SI
->getCondition() &&
5584 "The condition of DefSI does not match with SI");
5585 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
5590 /// If we have a SelectInst that will likely profit from branch prediction,
5591 /// turn it into a branch.
5592 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
5593 // If branch conversion isn't desirable, exit early.
5594 if (DisableSelectToBranch
|| OptSize
|| !TLI
)
5597 // Find all consecutive select instructions that share the same condition.
5598 SmallVector
<SelectInst
*, 2> ASI
;
5600 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
5601 It
!= SI
->getParent()->end(); ++It
) {
5602 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
5603 if (I
&& SI
->getCondition() == I
->getCondition()) {
5610 SelectInst
*LastSI
= ASI
.back();
5611 // Increment the current iterator to skip all the rest of select instructions
5612 // because they will be either "not lowered" or "all lowered" to branch.
5613 CurInstIterator
= std::next(LastSI
->getIterator());
5615 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
5617 // Can we convert the 'select' to CF ?
5618 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
5621 TargetLowering::SelectSupportKind SelectKind
;
5623 SelectKind
= TargetLowering::VectorMaskSelect
;
5624 else if (SI
->getType()->isVectorTy())
5625 SelectKind
= TargetLowering::ScalarCondVectorVal
;
5627 SelectKind
= TargetLowering::ScalarValSelect
;
5629 if (TLI
->isSelectSupported(SelectKind
) &&
5630 !isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
))
5635 // Transform a sequence like this:
5637 // %cmp = cmp uge i32 %a, %b
5638 // %sel = select i1 %cmp, i32 %c, i32 %d
5642 // %cmp = cmp uge i32 %a, %b
5643 // br i1 %cmp, label %select.true, label %select.false
5645 // br label %select.end
5647 // br label %select.end
5649 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5651 // In addition, we may sink instructions that produce %c or %d from
5652 // the entry block into the destination(s) of the new branch.
5653 // If the true or false blocks do not contain a sunken instruction, that
5654 // block and its branch may be optimized away. In that case, one side of the
5655 // first branch will point directly to select.end, and the corresponding PHI
5656 // predecessor block will be the start block.
5658 // First, we split the block containing the select into 2 blocks.
5659 BasicBlock
*StartBlock
= SI
->getParent();
5660 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
5661 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
5663 // Delete the unconditional branch that was just created by the split.
5664 StartBlock
->getTerminator()->eraseFromParent();
5666 // These are the new basic blocks for the conditional branch.
5667 // At least one will become an actual new basic block.
5668 BasicBlock
*TrueBlock
= nullptr;
5669 BasicBlock
*FalseBlock
= nullptr;
5670 BranchInst
*TrueBranch
= nullptr;
5671 BranchInst
*FalseBranch
= nullptr;
5673 // Sink expensive instructions into the conditional blocks to avoid executing
5674 // them speculatively.
5675 for (SelectInst
*SI
: ASI
) {
5676 if (sinkSelectOperand(TTI
, SI
->getTrueValue())) {
5677 if (TrueBlock
== nullptr) {
5678 TrueBlock
= BasicBlock::Create(SI
->getContext(), "select.true.sink",
5679 EndBlock
->getParent(), EndBlock
);
5680 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
5681 TrueBranch
->setDebugLoc(SI
->getDebugLoc());
5683 auto *TrueInst
= cast
<Instruction
>(SI
->getTrueValue());
5684 TrueInst
->moveBefore(TrueBranch
);
5686 if (sinkSelectOperand(TTI
, SI
->getFalseValue())) {
5687 if (FalseBlock
== nullptr) {
5688 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false.sink",
5689 EndBlock
->getParent(), EndBlock
);
5690 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5691 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5693 auto *FalseInst
= cast
<Instruction
>(SI
->getFalseValue());
5694 FalseInst
->moveBefore(FalseBranch
);
5698 // If there was nothing to sink, then arbitrarily choose the 'false' side
5699 // for a new input value to the PHI.
5700 if (TrueBlock
== FalseBlock
) {
5701 assert(TrueBlock
== nullptr &&
5702 "Unexpected basic block transform while optimizing select");
5704 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
5705 EndBlock
->getParent(), EndBlock
);
5706 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
5707 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
5710 // Insert the real conditional branch based on the original condition.
5711 // If we did not create a new block for one of the 'true' or 'false' paths
5712 // of the condition, it means that side of the branch goes to the end block
5713 // directly and the path originates from the start block from the point of
5714 // view of the new PHI.
5715 BasicBlock
*TT
, *FT
;
5716 if (TrueBlock
== nullptr) {
5719 TrueBlock
= StartBlock
;
5720 } else if (FalseBlock
== nullptr) {
5723 FalseBlock
= StartBlock
;
5728 IRBuilder
<>(SI
).CreateCondBr(SI
->getCondition(), TT
, FT
, SI
);
5730 SmallPtrSet
<const Instruction
*, 2> INS
;
5731 INS
.insert(ASI
.begin(), ASI
.end());
5732 // Use reverse iterator because later select may use the value of the
5733 // earlier select, and we need to propagate value through earlier select
5734 // to get the PHI operand.
5735 for (auto It
= ASI
.rbegin(); It
!= ASI
.rend(); ++It
) {
5736 SelectInst
*SI
= *It
;
5737 // The select itself is replaced with a PHI Node.
5738 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "", &EndBlock
->front());
5740 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
5741 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
5742 PN
->setDebugLoc(SI
->getDebugLoc());
5744 SI
->replaceAllUsesWith(PN
);
5745 SI
->eraseFromParent();
5747 ++NumSelectsExpanded
;
5750 // Instruct OptimizeBlock to skip to the next block.
5751 CurInstIterator
= StartBlock
->end();
5755 static bool isBroadcastShuffle(ShuffleVectorInst
*SVI
) {
5756 SmallVector
<int, 16> Mask(SVI
->getShuffleMask());
5758 for (unsigned i
= 0; i
< Mask
.size(); ++i
) {
5759 if (SplatElem
!= -1 && Mask
[i
] != -1 && Mask
[i
] != SplatElem
)
5761 SplatElem
= Mask
[i
];
5767 /// Some targets have expensive vector shifts if the lanes aren't all the same
5768 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5769 /// it's often worth sinking a shufflevector splat down to its use so that
5770 /// codegen can spot all lanes are identical.
5771 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
5772 BasicBlock
*DefBB
= SVI
->getParent();
5774 // Only do this xform if variable vector shifts are particularly expensive.
5775 if (!TLI
|| !TLI
->isVectorShiftByScalarCheap(SVI
->getType()))
5778 // We only expect better codegen by sinking a shuffle if we can recognise a
5780 if (!isBroadcastShuffle(SVI
))
5783 // InsertedShuffles - Only insert a shuffle in each block once.
5784 DenseMap
<BasicBlock
*, Instruction
*> InsertedShuffles
;
5786 bool MadeChange
= false;
5787 for (User
*U
: SVI
->users()) {
5788 Instruction
*UI
= cast
<Instruction
>(U
);
5790 // Figure out which BB this ext is used in.
5791 BasicBlock
*UserBB
= UI
->getParent();
5792 if (UserBB
== DefBB
) continue;
5794 // For now only apply this when the splat is used by a shift instruction.
5795 if (!UI
->isShift()) continue;
5797 // Everything checks out, sink the shuffle if the user's block doesn't
5798 // already have a copy.
5799 Instruction
*&InsertedShuffle
= InsertedShuffles
[UserBB
];
5801 if (!InsertedShuffle
) {
5802 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
5803 assert(InsertPt
!= UserBB
->end());
5805 new ShuffleVectorInst(SVI
->getOperand(0), SVI
->getOperand(1),
5806 SVI
->getOperand(2), "", &*InsertPt
);
5809 UI
->replaceUsesOfWith(SVI
, InsertedShuffle
);
5813 // If we removed all uses, nuke the shuffle.
5814 if (SVI
->use_empty()) {
5815 SVI
->eraseFromParent();
5822 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
5826 Value
*Cond
= SI
->getCondition();
5827 Type
*OldType
= Cond
->getType();
5828 LLVMContext
&Context
= Cond
->getContext();
5829 MVT RegType
= TLI
->getRegisterType(Context
, TLI
->getValueType(*DL
, OldType
));
5830 unsigned RegWidth
= RegType
.getSizeInBits();
5832 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
5835 // If the register width is greater than the type width, expand the condition
5836 // of the switch instruction and each case constant to the width of the
5837 // register. By widening the type of the switch condition, subsequent
5838 // comparisons (for case comparisons) will not need to be extended to the
5839 // preferred register width, so we will potentially eliminate N-1 extends,
5840 // where N is the number of cases in the switch.
5841 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
5843 // Zero-extend the switch condition and case constants unless the switch
5844 // condition is a function argument that is already being sign-extended.
5845 // In that case, we can avoid an unnecessary mask/extension by sign-extending
5846 // everything instead.
5847 Instruction::CastOps ExtType
= Instruction::ZExt
;
5848 if (auto *Arg
= dyn_cast
<Argument
>(Cond
))
5849 if (Arg
->hasSExtAttr())
5850 ExtType
= Instruction::SExt
;
5852 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
5853 ExtInst
->insertBefore(SI
);
5854 ExtInst
->setDebugLoc(SI
->getDebugLoc());
5855 SI
->setCondition(ExtInst
);
5856 for (auto Case
: SI
->cases()) {
5857 APInt NarrowConst
= Case
.getCaseValue()->getValue();
5858 APInt WideConst
= (ExtType
== Instruction::ZExt
) ?
5859 NarrowConst
.zext(RegWidth
) : NarrowConst
.sext(RegWidth
);
5860 Case
.setValue(ConstantInt::get(Context
, WideConst
));
5869 /// Helper class to promote a scalar operation to a vector one.
5870 /// This class is used to move downward extractelement transition.
5872 /// a = vector_op <2 x i32>
5873 /// b = extractelement <2 x i32> a, i32 0
5878 /// a = vector_op <2 x i32>
5879 /// c = vector_op a (equivalent to scalar_op on the related lane)
5880 /// * d = extractelement <2 x i32> c, i32 0
5882 /// Assuming both extractelement and store can be combine, we get rid of the
5884 class VectorPromoteHelper
{
5885 /// DataLayout associated with the current module.
5886 const DataLayout
&DL
;
5888 /// Used to perform some checks on the legality of vector operations.
5889 const TargetLowering
&TLI
;
5891 /// Used to estimated the cost of the promoted chain.
5892 const TargetTransformInfo
&TTI
;
5894 /// The transition being moved downwards.
5895 Instruction
*Transition
;
5897 /// The sequence of instructions to be promoted.
5898 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
5900 /// Cost of combining a store and an extract.
5901 unsigned StoreExtractCombineCost
;
5903 /// Instruction that will be combined with the transition.
5904 Instruction
*CombineInst
= nullptr;
5906 /// The instruction that represents the current end of the transition.
5907 /// Since we are faking the promotion until we reach the end of the chain
5908 /// of computation, we need a way to get the current end of the transition.
5909 Instruction
*getEndOfTransition() const {
5910 if (InstsToBePromoted
.empty())
5912 return InstsToBePromoted
.back();
5915 /// Return the index of the original value in the transition.
5916 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5917 /// c, is at index 0.
5918 unsigned getTransitionOriginalValueIdx() const {
5919 assert(isa
<ExtractElementInst
>(Transition
) &&
5920 "Other kind of transitions are not supported yet");
5924 /// Return the index of the index in the transition.
5925 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5927 unsigned getTransitionIdx() const {
5928 assert(isa
<ExtractElementInst
>(Transition
) &&
5929 "Other kind of transitions are not supported yet");
5933 /// Get the type of the transition.
5934 /// This is the type of the original value.
5935 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5936 /// transition is <2 x i32>.
5937 Type
*getTransitionType() const {
5938 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
5941 /// Promote \p ToBePromoted by moving \p Def downward through.
5942 /// I.e., we have the following sequence:
5943 /// Def = Transition <ty1> a to <ty2>
5944 /// b = ToBePromoted <ty2> Def, ...
5946 /// b = ToBePromoted <ty1> a, ...
5947 /// Def = Transition <ty1> ToBePromoted to <ty2>
5948 void promoteImpl(Instruction
*ToBePromoted
);
5950 /// Check whether or not it is profitable to promote all the
5951 /// instructions enqueued to be promoted.
5952 bool isProfitableToPromote() {
5953 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
5954 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
5955 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
5957 Type
*PromotedType
= getTransitionType();
5959 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
5960 unsigned AS
= ST
->getPointerAddressSpace();
5961 unsigned Align
= ST
->getAlignment();
5962 // Check if this store is supported.
5963 if (!TLI
.allowsMisalignedMemoryAccesses(
5964 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
5966 // If this is not supported, there is no way we can combine
5967 // the extract with the store.
5971 // The scalar chain of computation has to pay for the transition
5972 // scalar to vector.
5973 // The vector chain has to account for the combining cost.
5974 uint64_t ScalarCost
=
5975 TTI
.getVectorInstrCost(Transition
->getOpcode(), PromotedType
, Index
);
5976 uint64_t VectorCost
= StoreExtractCombineCost
;
5977 for (const auto &Inst
: InstsToBePromoted
) {
5978 // Compute the cost.
5979 // By construction, all instructions being promoted are arithmetic ones.
5980 // Moreover, one argument is a constant that can be viewed as a splat
5982 Value
*Arg0
= Inst
->getOperand(0);
5983 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
5984 isa
<ConstantFP
>(Arg0
);
5985 TargetTransformInfo::OperandValueKind Arg0OVK
=
5986 IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
5987 : TargetTransformInfo::OK_AnyValue
;
5988 TargetTransformInfo::OperandValueKind Arg1OVK
=
5989 !IsArg0Constant
? TargetTransformInfo::OK_UniformConstantValue
5990 : TargetTransformInfo::OK_AnyValue
;
5991 ScalarCost
+= TTI
.getArithmeticInstrCost(
5992 Inst
->getOpcode(), Inst
->getType(), Arg0OVK
, Arg1OVK
);
5993 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
5997 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5998 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
5999 return ScalarCost
> VectorCost
;
6002 /// Generate a constant vector with \p Val with the same
6003 /// number of elements as the transition.
6004 /// \p UseSplat defines whether or not \p Val should be replicated
6005 /// across the whole vector.
6006 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6007 /// otherwise we generate a vector with as many undef as possible:
6008 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6009 /// used at the index of the extract.
6010 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
6011 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
6013 // If we cannot determine where the constant must be, we have to
6014 // use a splat constant.
6015 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
6016 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
6017 ExtractIdx
= CstVal
->getSExtValue();
6022 unsigned End
= getTransitionType()->getVectorNumElements();
6024 return ConstantVector::getSplat(End
, Val
);
6026 SmallVector
<Constant
*, 4> ConstVec
;
6027 UndefValue
*UndefVal
= UndefValue::get(Val
->getType());
6028 for (unsigned Idx
= 0; Idx
!= End
; ++Idx
) {
6029 if (Idx
== ExtractIdx
)
6030 ConstVec
.push_back(Val
);
6032 ConstVec
.push_back(UndefVal
);
6034 return ConstantVector::get(ConstVec
);
6037 /// Check if promoting to a vector type an operand at \p OperandIdx
6038 /// in \p Use can trigger undefined behavior.
6039 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
6040 unsigned OperandIdx
) {
6041 // This is not safe to introduce undef when the operand is on
6042 // the right hand side of a division-like instruction.
6043 if (OperandIdx
!= 1)
6045 switch (Use
->getOpcode()) {
6048 case Instruction::SDiv
:
6049 case Instruction::UDiv
:
6050 case Instruction::SRem
:
6051 case Instruction::URem
:
6053 case Instruction::FDiv
:
6054 case Instruction::FRem
:
6055 return !Use
->hasNoNaNs();
6057 llvm_unreachable(nullptr);
6061 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
6062 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
6063 unsigned CombineCost
)
6064 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
6065 StoreExtractCombineCost(CombineCost
) {
6066 assert(Transition
&& "Do not know how to promote null");
6069 /// Check if we can promote \p ToBePromoted to \p Type.
6070 bool canPromote(const Instruction
*ToBePromoted
) const {
6071 // We could support CastInst too.
6072 return isa
<BinaryOperator
>(ToBePromoted
);
6075 /// Check if it is profitable to promote \p ToBePromoted
6076 /// by moving downward the transition through.
6077 bool shouldPromote(const Instruction
*ToBePromoted
) const {
6078 // Promote only if all the operands can be statically expanded.
6079 // Indeed, we do not want to introduce any new kind of transitions.
6080 for (const Use
&U
: ToBePromoted
->operands()) {
6081 const Value
*Val
= U
.get();
6082 if (Val
== getEndOfTransition()) {
6083 // If the use is a division and the transition is on the rhs,
6084 // we cannot promote the operation, otherwise we may create a
6085 // division by zero.
6086 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
6090 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
6091 !isa
<ConstantFP
>(Val
))
6094 // Check that the resulting operation is legal.
6095 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
6098 return StressStoreExtract
||
6099 TLI
.isOperationLegalOrCustom(
6100 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
6103 /// Check whether or not \p Use can be combined
6104 /// with the transition.
6105 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6106 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
6108 /// Record \p ToBePromoted as part of the chain to be promoted.
6109 void enqueueForPromotion(Instruction
*ToBePromoted
) {
6110 InstsToBePromoted
.push_back(ToBePromoted
);
6113 /// Set the instruction that will be combined with the transition.
6114 void recordCombineInstruction(Instruction
*ToBeCombined
) {
6115 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
6116 CombineInst
= ToBeCombined
;
6119 /// Promote all the instructions enqueued for promotion if it is
6121 /// \return True if the promotion happened, false otherwise.
6123 // Check if there is something to promote.
6124 // Right now, if we do not have anything to combine with,
6125 // we assume the promotion is not profitable.
6126 if (InstsToBePromoted
.empty() || !CombineInst
)
6130 if (!StressStoreExtract
&& !isProfitableToPromote())
6134 for (auto &ToBePromoted
: InstsToBePromoted
)
6135 promoteImpl(ToBePromoted
);
6136 InstsToBePromoted
.clear();
6141 } // end anonymous namespace
6143 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
6144 // At this point, we know that all the operands of ToBePromoted but Def
6145 // can be statically promoted.
6146 // For Def, we need to use its parameter in ToBePromoted:
6147 // b = ToBePromoted ty1 a
6148 // Def = Transition ty1 b to ty2
6149 // Move the transition down.
6150 // 1. Replace all uses of the promoted operation by the transition.
6151 // = ... b => = ... Def.
6152 assert(ToBePromoted
->getType() == Transition
->getType() &&
6153 "The type of the result of the transition does not match "
6155 ToBePromoted
->replaceAllUsesWith(Transition
);
6156 // 2. Update the type of the uses.
6157 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6158 Type
*TransitionTy
= getTransitionType();
6159 ToBePromoted
->mutateType(TransitionTy
);
6160 // 3. Update all the operands of the promoted operation with promoted
6162 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6163 for (Use
&U
: ToBePromoted
->operands()) {
6164 Value
*Val
= U
.get();
6165 Value
*NewVal
= nullptr;
6166 if (Val
== Transition
)
6167 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
6168 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
6169 isa
<ConstantFP
>(Val
)) {
6170 // Use a splat constant if it is not safe to use undef.
6171 NewVal
= getConstantVector(
6172 cast
<Constant
>(Val
),
6173 isa
<UndefValue
>(Val
) ||
6174 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
6176 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6178 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
6180 Transition
->moveAfter(ToBePromoted
);
6181 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
6184 /// Some targets can do store(extractelement) with one instruction.
6185 /// Try to push the extractelement towards the stores when the target
6186 /// has this feature and this is profitable.
6187 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
6188 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
6189 if (DisableStoreExtract
|| !TLI
||
6190 (!StressStoreExtract
&&
6191 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
6192 Inst
->getOperand(1), CombineCost
)))
6195 // At this point we know that Inst is a vector to scalar transition.
6196 // Try to move it down the def-use chain, until:
6197 // - We can combine the transition with its single use
6198 // => we got rid of the transition.
6199 // - We escape the current basic block
6200 // => we would need to check that we are moving it at a cheaper place and
6201 // we do not do that for now.
6202 BasicBlock
*Parent
= Inst
->getParent();
6203 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
6204 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
6205 // If the transition has more than one use, assume this is not going to be
6207 while (Inst
->hasOneUse()) {
6208 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
6209 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
6211 if (ToBePromoted
->getParent() != Parent
) {
6212 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6213 << ToBePromoted
->getParent()->getName()
6214 << ") than the transition (" << Parent
->getName()
6219 if (VPH
.canCombine(ToBePromoted
)) {
6220 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
6221 << "will be combined with: " << *ToBePromoted
<< '\n');
6222 VPH
.recordCombineInstruction(ToBePromoted
);
6223 bool Changed
= VPH
.promote();
6224 NumStoreExtractExposed
+= Changed
;
6228 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6229 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
6232 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6234 VPH
.enqueueForPromotion(ToBePromoted
);
6235 Inst
= ToBePromoted
;
6240 /// For the instruction sequence of store below, F and I values
6241 /// are bundled together as an i64 value before being stored into memory.
6242 /// Sometimes it is more efficient to generate separate stores for F and I,
6243 /// which can remove the bitwise instructions or sink them to colder places.
6245 /// (store (or (zext (bitcast F to i32) to i64),
6246 /// (shl (zext I to i64), 32)), addr) -->
6247 /// (store F, addr) and (store I, addr+4)
6249 /// Similarly, splitting for other merged store can also be beneficial, like:
6250 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6251 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6252 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6253 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6254 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6256 /// We allow each target to determine specifically which kind of splitting is
6259 /// The store patterns are commonly seen from the simple code snippet below
6260 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6261 /// void goo(const std::pair<int, float> &);
6264 /// goo(std::make_pair(tmp, ftmp));
6268 /// Although we already have similar splitting in DAG Combine, we duplicate
6269 /// it in CodeGenPrepare to catch the case in which pattern is across
6270 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6271 /// during code expansion.
6272 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
6273 const TargetLowering
&TLI
) {
6274 // Handle simple but common cases only.
6275 Type
*StoreType
= SI
.getValueOperand()->getType();
6276 if (DL
.getTypeStoreSizeInBits(StoreType
) != DL
.getTypeSizeInBits(StoreType
) ||
6277 DL
.getTypeSizeInBits(StoreType
) == 0)
6280 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
6281 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
6282 if (DL
.getTypeStoreSizeInBits(SplitStoreType
) !=
6283 DL
.getTypeSizeInBits(SplitStoreType
))
6286 // Match the following patterns:
6287 // (store (or (zext LValue to i64),
6288 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6290 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6291 // (zext LValue to i64),
6292 // Expect both operands of OR and the first operand of SHL have only
6294 Value
*LValue
, *HValue
;
6295 if (!match(SI
.getValueOperand(),
6296 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
6297 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
6298 m_SpecificInt(HalfValBitSize
))))))
6301 // Check LValue and HValue are int with size less or equal than 32.
6302 if (!LValue
->getType()->isIntegerTy() ||
6303 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
6304 !HValue
->getType()->isIntegerTy() ||
6305 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
6308 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6309 // as the input of target query.
6310 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
6311 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
6312 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
6313 : EVT::getEVT(LValue
->getType());
6314 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
6315 : EVT::getEVT(HValue
->getType());
6316 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
6319 // Start to split store.
6320 IRBuilder
<> Builder(SI
.getContext());
6321 Builder
.SetInsertPoint(&SI
);
6323 // If LValue/HValue is a bitcast in another BB, create a new one in current
6324 // BB so it may be merged with the splitted stores by dag combiner.
6325 if (LBC
&& LBC
->getParent() != SI
.getParent())
6326 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
6327 if (HBC
&& HBC
->getParent() != SI
.getParent())
6328 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
6330 bool IsLE
= SI
.getModule()->getDataLayout().isLittleEndian();
6331 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
6332 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
6333 Value
*Addr
= Builder
.CreateBitCast(
6335 SplitStoreType
->getPointerTo(SI
.getPointerAddressSpace()));
6336 if ((IsLE
&& Upper
) || (!IsLE
&& !Upper
))
6337 Addr
= Builder
.CreateGEP(
6338 SplitStoreType
, Addr
,
6339 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
6340 Builder
.CreateAlignedStore(
6341 V
, Addr
, Upper
? SI
.getAlignment() / 2 : SI
.getAlignment());
6344 CreateSplitStore(LValue
, false);
6345 CreateSplitStore(HValue
, true);
6347 // Delete the old store.
6348 SI
.eraseFromParent();
6352 // Return true if the GEP has two operands, the first operand is of a sequential
6353 // type, and the second operand is a constant.
6354 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
6355 gep_type_iterator I
= gep_type_begin(*GEP
);
6356 return GEP
->getNumOperands() == 2 &&
6358 isa
<ConstantInt
>(GEP
->getOperand(1));
6361 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6362 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6363 // reducing liveness interference across those edges benefits global register
6364 // allocation. Currently handles only certain cases.
6366 // For example, unmerge %GEPI and %UGEPI as below.
6368 // ---------- BEFORE ----------
6373 // %GEPI = gep %GEPIOp, Idx
6375 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6376 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6377 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6380 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6381 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6386 // %UGEPI = gep %GEPIOp, UIdx
6388 // ---------------------------
6390 // ---------- AFTER ----------
6392 // ... (same as above)
6393 // (* %GEPI is still alive on the indirectbr edges)
6394 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6400 // %UGEPI = gep %GEPI, (UIdx-Idx)
6402 // ---------------------------
6404 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6405 // no longer alive on them.
6407 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6408 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6409 // not to disable further simplications and optimizations as a result of GEP
6412 // Note this unmerging may increase the length of the data flow critical path
6413 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6414 // between the register pressure and the length of data-flow critical
6415 // path. Restricting this to the uncommon IndirectBr case would minimize the
6416 // impact of potentially longer critical path, if any, and the impact on compile
6418 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
6419 const TargetTransformInfo
*TTI
) {
6420 BasicBlock
*SrcBlock
= GEPI
->getParent();
6421 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6422 // (non-IndirectBr) cases exit early here.
6423 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
6425 // Check that GEPI is a simple gep with a single constant index.
6426 if (!GEPSequentialConstIndexed(GEPI
))
6428 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
6429 // Check that GEPI is a cheap one.
6430 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType())
6431 > TargetTransformInfo::TCC_Basic
)
6433 Value
*GEPIOp
= GEPI
->getOperand(0);
6434 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6435 if (!isa
<Instruction
>(GEPIOp
))
6437 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
6438 if (GEPIOpI
->getParent() != SrcBlock
)
6440 // Check that GEP is used outside the block, meaning it's alive on the
6441 // IndirectBr edge(s).
6442 if (find_if(GEPI
->users(), [&](User
*Usr
) {
6443 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
6444 if (I
->getParent() != SrcBlock
) {
6449 }) == GEPI
->users().end())
6451 // The second elements of the GEP chains to be unmerged.
6452 std::vector
<GetElementPtrInst
*> UGEPIs
;
6453 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6454 // on IndirectBr edges.
6455 for (User
*Usr
: GEPIOp
->users()) {
6456 if (Usr
== GEPI
) continue;
6457 // Check if Usr is an Instruction. If not, give up.
6458 if (!isa
<Instruction
>(Usr
))
6460 auto *UI
= cast
<Instruction
>(Usr
);
6461 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6462 if (UI
->getParent() == SrcBlock
)
6464 // Check if Usr is a GEP. If not, give up.
6465 if (!isa
<GetElementPtrInst
>(Usr
))
6467 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
6468 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6469 // the pointer operand to it. If so, record it in the vector. If not, give
6471 if (!GEPSequentialConstIndexed(UGEPI
))
6473 if (UGEPI
->getOperand(0) != GEPIOp
)
6475 if (GEPIIdx
->getType() !=
6476 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
6478 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6479 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType())
6480 > TargetTransformInfo::TCC_Basic
)
6482 UGEPIs
.push_back(UGEPI
);
6484 if (UGEPIs
.size() == 0)
6486 // Check the materializing cost of (Uidx-Idx).
6487 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6488 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6489 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
6490 unsigned ImmCost
= TTI
->getIntImmCost(NewIdx
, GEPIIdx
->getType());
6491 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
6494 // Now unmerge between GEPI and UGEPIs.
6495 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
6496 UGEPI
->setOperand(0, GEPI
);
6497 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
6498 Constant
*NewUGEPIIdx
=
6499 ConstantInt::get(GEPIIdx
->getType(),
6500 UGEPIIdx
->getValue() - GEPIIdx
->getValue());
6501 UGEPI
->setOperand(1, NewUGEPIIdx
);
6502 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6503 // inbounds to avoid UB.
6504 if (!GEPI
->isInBounds()) {
6505 UGEPI
->setIsInBounds(false);
6508 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6509 // alive on IndirectBr edges).
6510 assert(find_if(GEPIOp
->users(), [&](User
*Usr
) {
6511 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
6512 }) == GEPIOp
->users().end() && "GEPIOp is used outside SrcBlock");
6516 bool CodeGenPrepare::optimizeInst(Instruction
*I
, bool &ModifiedDT
) {
6517 // Bail out if we inserted the instruction to prevent optimizations from
6518 // stepping on each other's toes.
6519 if (InsertedInsts
.count(I
))
6522 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
6523 // It is possible for very late stage optimizations (such as SimplifyCFG)
6524 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6525 // trivial PHI, go ahead and zap it here.
6526 if (Value
*V
= SimplifyInstruction(P
, {*DL
, TLInfo
})) {
6527 P
->replaceAllUsesWith(V
);
6528 P
->eraseFromParent();
6535 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
6536 // If the source of the cast is a constant, then this should have
6537 // already been constant folded. The only reason NOT to constant fold
6538 // it is if something (e.g. LSR) was careful to place the constant
6539 // evaluation in a block other than then one that uses it (e.g. to hoist
6540 // the address of globals out of a loop). If this is the case, we don't
6541 // want to forward-subst the cast.
6542 if (isa
<Constant
>(CI
->getOperand(0)))
6545 if (TLI
&& OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
6548 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
6549 /// Sink a zext or sext into its user blocks if the target type doesn't
6550 /// fit in one register
6552 TLI
->getTypeAction(CI
->getContext(),
6553 TLI
->getValueType(*DL
, CI
->getType())) ==
6554 TargetLowering::TypeExpandInteger
) {
6555 return SinkCast(CI
);
6557 bool MadeChange
= optimizeExt(I
);
6558 return MadeChange
| optimizeExtUses(I
);
6564 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
6565 if (!TLI
|| !TLI
->hasMultipleConditionRegisters())
6566 return OptimizeCmpExpression(CI
, TLI
);
6568 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
6569 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6571 bool Modified
= optimizeLoadExt(LI
);
6572 unsigned AS
= LI
->getPointerAddressSpace();
6573 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
6579 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
6580 if (TLI
&& splitMergedValStore(*SI
, *DL
, *TLI
))
6582 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
6584 unsigned AS
= SI
->getPointerAddressSpace();
6585 return optimizeMemoryInst(I
, SI
->getOperand(1),
6586 SI
->getOperand(0)->getType(), AS
);
6591 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
6592 unsigned AS
= RMW
->getPointerAddressSpace();
6593 return optimizeMemoryInst(I
, RMW
->getPointerOperand(),
6594 RMW
->getType(), AS
);
6597 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
6598 unsigned AS
= CmpX
->getPointerAddressSpace();
6599 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
6600 CmpX
->getCompareOperand()->getType(), AS
);
6603 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
6605 if (BinOp
&& (BinOp
->getOpcode() == Instruction::And
) &&
6606 EnableAndCmpSinking
&& TLI
)
6607 return sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
);
6609 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
6610 BinOp
->getOpcode() == Instruction::LShr
)) {
6611 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
6612 if (TLI
&& CI
&& TLI
->hasExtractBitsInsn())
6613 return OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
);
6618 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
6619 if (GEPI
->hasAllZeroIndices()) {
6620 /// The GEP operand must be a pointer, so must its result -> BitCast
6621 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
6622 GEPI
->getName(), GEPI
);
6623 NC
->setDebugLoc(GEPI
->getDebugLoc());
6624 GEPI
->replaceAllUsesWith(NC
);
6625 GEPI
->eraseFromParent();
6627 optimizeInst(NC
, ModifiedDT
);
6630 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
6636 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
))
6637 return optimizeCallInst(CI
, ModifiedDT
);
6639 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
))
6640 return optimizeSelectInst(SI
);
6642 if (ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(I
))
6643 return optimizeShuffleVectorInst(SVI
);
6645 if (auto *Switch
= dyn_cast
<SwitchInst
>(I
))
6646 return optimizeSwitchInst(Switch
);
6648 if (isa
<ExtractElementInst
>(I
))
6649 return optimizeExtractElementInst(I
);
6654 /// Given an OR instruction, check to see if this is a bitreverse
6655 /// idiom. If so, insert the new intrinsic and return true.
6656 static bool makeBitReverse(Instruction
&I
, const DataLayout
&DL
,
6657 const TargetLowering
&TLI
) {
6658 if (!I
.getType()->isIntegerTy() ||
6659 !TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
,
6660 TLI
.getValueType(DL
, I
.getType(), true)))
6663 SmallVector
<Instruction
*, 4> Insts
;
6664 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
6666 Instruction
*LastInst
= Insts
.back();
6667 I
.replaceAllUsesWith(LastInst
);
6668 RecursivelyDeleteTriviallyDeadInstructions(&I
);
6672 // In this pass we look for GEP and cast instructions that are used
6673 // across basic blocks and rewrite them to improve basic-block-at-a-time
6675 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, bool &ModifiedDT
) {
6677 bool MadeChange
= false;
6679 CurInstIterator
= BB
.begin();
6680 while (CurInstIterator
!= BB
.end()) {
6681 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
6686 bool MadeBitReverse
= true;
6687 while (TLI
&& MadeBitReverse
) {
6688 MadeBitReverse
= false;
6689 for (auto &I
: reverse(BB
)) {
6690 if (makeBitReverse(I
, *DL
, *TLI
)) {
6691 MadeBitReverse
= MadeChange
= true;
6697 MadeChange
|= dupRetToEnableTailCallOpts(&BB
);
6702 // llvm.dbg.value is far away from the value then iSel may not be able
6703 // handle it properly. iSel will drop llvm.dbg.value if it can not
6704 // find a node corresponding to the value.
6705 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
6706 bool MadeChange
= false;
6707 for (BasicBlock
&BB
: F
) {
6708 Instruction
*PrevNonDbgInst
= nullptr;
6709 for (BasicBlock::iterator BI
= BB
.begin(), BE
= BB
.end(); BI
!= BE
;) {
6710 Instruction
*Insn
= &*BI
++;
6711 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(Insn
);
6712 // Leave dbg.values that refer to an alloca alone. These
6713 // intrinsics describe the address of a variable (= the alloca)
6714 // being taken. They should not be moved next to the alloca
6715 // (and to the beginning of the scope), but rather stay close to
6716 // where said address is used.
6717 if (!DVI
|| (DVI
->getValue() && isa
<AllocaInst
>(DVI
->getValue()))) {
6718 PrevNonDbgInst
= Insn
;
6722 Instruction
*VI
= dyn_cast_or_null
<Instruction
>(DVI
->getValue());
6723 if (VI
&& VI
!= PrevNonDbgInst
&& !VI
->isTerminator()) {
6724 // If VI is a phi in a block with an EHPad terminator, we can't insert
6726 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
6728 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6729 << *DVI
<< ' ' << *VI
);
6730 DVI
->removeFromParent();
6731 if (isa
<PHINode
>(VI
))
6732 DVI
->insertBefore(&*VI
->getParent()->getFirstInsertionPt());
6734 DVI
->insertAfter(VI
);
6743 /// Scale down both weights to fit into uint32_t.
6744 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
6745 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
6746 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
6747 NewTrue
= NewTrue
/ Scale
;
6748 NewFalse
= NewFalse
/ Scale
;
6751 /// Some targets prefer to split a conditional branch like:
6753 /// %0 = icmp ne i32 %a, 0
6754 /// %1 = icmp ne i32 %b, 0
6755 /// %or.cond = or i1 %0, %1
6756 /// br i1 %or.cond, label %TrueBB, label %FalseBB
6758 /// into multiple branch instructions like:
6761 /// %0 = icmp ne i32 %a, 0
6762 /// br i1 %0, label %TrueBB, label %bb2
6764 /// %1 = icmp ne i32 %b, 0
6765 /// br i1 %1, label %TrueBB, label %FalseBB
6767 /// This usually allows instruction selection to do even further optimizations
6768 /// and combine the compare with the branch instruction. Currently this is
6769 /// applied for targets which have "cheap" jump instructions.
6771 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6773 bool CodeGenPrepare::splitBranchCondition(Function
&F
) {
6774 if (!TM
|| !TM
->Options
.EnableFastISel
|| !TLI
|| TLI
->isJumpExpensive())
6777 bool MadeChange
= false;
6778 for (auto &BB
: F
) {
6779 // Does this BB end with the following?
6780 // %cond1 = icmp|fcmp|binary instruction ...
6781 // %cond2 = icmp|fcmp|binary instruction ...
6782 // %cond.or = or|and i1 %cond1, cond2
6783 // br i1 %cond.or label %dest1, label %dest2"
6784 BinaryOperator
*LogicOp
;
6785 BasicBlock
*TBB
, *FBB
;
6786 if (!match(BB
.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp
)), TBB
, FBB
)))
6789 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
6790 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
6794 Value
*Cond1
, *Cond2
;
6795 if (match(LogicOp
, m_And(m_OneUse(m_Value(Cond1
)),
6796 m_OneUse(m_Value(Cond2
)))))
6797 Opc
= Instruction::And
;
6798 else if (match(LogicOp
, m_Or(m_OneUse(m_Value(Cond1
)),
6799 m_OneUse(m_Value(Cond2
)))))
6800 Opc
= Instruction::Or
;
6804 if (!match(Cond1
, m_CombineOr(m_Cmp(), m_BinOp())) ||
6805 !match(Cond2
, m_CombineOr(m_Cmp(), m_BinOp())) )
6808 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
6812 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
6813 BB
.getParent(), BB
.getNextNode());
6815 // Update original basic block by using the first condition directly by the
6816 // branch instruction and removing the no longer needed and/or instruction.
6817 Br1
->setCondition(Cond1
);
6818 LogicOp
->eraseFromParent();
6820 // Depending on the condition we have to either replace the true or the
6821 // false successor of the original branch instruction.
6822 if (Opc
== Instruction::And
)
6823 Br1
->setSuccessor(0, TmpBB
);
6825 Br1
->setSuccessor(1, TmpBB
);
6827 // Fill in the new basic block.
6828 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
6829 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
6830 I
->removeFromParent();
6831 I
->insertBefore(Br2
);
6834 // Update PHI nodes in both successors. The original BB needs to be
6835 // replaced in one successor's PHI nodes, because the branch comes now from
6836 // the newly generated BB (NewBB). In the other successor we need to add one
6837 // incoming edge to the PHI nodes, because both branch instructions target
6838 // now the same successor. Depending on the original branch condition
6839 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6840 // we perform the correct update for the PHI nodes.
6841 // This doesn't change the successor order of the just created branch
6842 // instruction (or any other instruction).
6843 if (Opc
== Instruction::Or
)
6844 std::swap(TBB
, FBB
);
6846 // Replace the old BB with the new BB.
6847 for (PHINode
&PN
: TBB
->phis()) {
6849 while ((i
= PN
.getBasicBlockIndex(&BB
)) >= 0)
6850 PN
.setIncomingBlock(i
, TmpBB
);
6853 // Add another incoming edge form the new BB.
6854 for (PHINode
&PN
: FBB
->phis()) {
6855 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
6856 PN
.addIncoming(Val
, TmpBB
);
6859 // Update the branch weights (from SelectionDAGBuilder::
6860 // FindMergedConditions).
6861 if (Opc
== Instruction::Or
) {
6862 // Codegen X | Y as:
6871 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6872 // The requirement is that
6873 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6874 // = TrueProb for original BB.
6875 // Assuming the original weights are A and B, one choice is to set BB1's
6876 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6878 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6879 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6880 // TmpBB, but the math is more complicated.
6881 uint64_t TrueWeight
, FalseWeight
;
6882 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
6883 uint64_t NewTrueWeight
= TrueWeight
;
6884 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
6885 scaleWeights(NewTrueWeight
, NewFalseWeight
);
6886 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
6887 .createBranchWeights(TrueWeight
, FalseWeight
));
6889 NewTrueWeight
= TrueWeight
;
6890 NewFalseWeight
= 2 * FalseWeight
;
6891 scaleWeights(NewTrueWeight
, NewFalseWeight
);
6892 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
6893 .createBranchWeights(TrueWeight
, FalseWeight
));
6896 // Codegen X & Y as:
6904 // This requires creation of TmpBB after CurBB.
6906 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6907 // The requirement is that
6908 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6909 // = FalseProb for original BB.
6910 // Assuming the original weights are A and B, one choice is to set BB1's
6911 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6913 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6914 uint64_t TrueWeight
, FalseWeight
;
6915 if (Br1
->extractProfMetadata(TrueWeight
, FalseWeight
)) {
6916 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
6917 uint64_t NewFalseWeight
= FalseWeight
;
6918 scaleWeights(NewTrueWeight
, NewFalseWeight
);
6919 Br1
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br1
->getContext())
6920 .createBranchWeights(TrueWeight
, FalseWeight
));
6922 NewTrueWeight
= 2 * TrueWeight
;
6923 NewFalseWeight
= FalseWeight
;
6924 scaleWeights(NewTrueWeight
, NewFalseWeight
);
6925 Br2
->setMetadata(LLVMContext::MD_prof
, MDBuilder(Br2
->getContext())
6926 .createBranchWeights(TrueWeight
, FalseWeight
));
6930 // Note: No point in getting fancy here, since the DT info is never
6931 // available to CodeGenPrepare.
6936 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();