[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / CodeGen / CodeGenPrepare.cpp
blobdfbfae85a86376e6839537c20796a19c9cf5611a
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <utility>
98 #include <vector>
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
103 #define DEBUG_TYPE "codegenprepare"
105 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
109 "sunken Cmps");
110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
111 "of sunken Casts");
112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
113 "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated,
115 "Number of phis created when address "
116 "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated,
118 "Number of select created when address "
119 "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded,
123 "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
130 static cl::opt<bool> DisableBranchOpts(
131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
132 cl::desc("Disable branch optimizations in CodeGenPrepare"));
134 static cl::opt<bool>
135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
136 cl::desc("Disable GC optimizations in CodeGenPrepare"));
138 static cl::opt<bool> DisableSelectToBranch(
139 "disable-cgp-select2branch", cl::Hidden, cl::init(false),
140 cl::desc("Disable select to branch conversion."));
142 static cl::opt<bool> AddrSinkUsingGEPs(
143 "addr-sink-using-gep", cl::Hidden, cl::init(true),
144 cl::desc("Address sinking in CGP using GEPs."));
146 static cl::opt<bool> EnableAndCmpSinking(
147 "enable-andcmp-sinking", cl::Hidden, cl::init(true),
148 cl::desc("Enable sinkinig and/cmp into branches."));
150 static cl::opt<bool> DisableStoreExtract(
151 "disable-cgp-store-extract", cl::Hidden, cl::init(false),
152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
154 static cl::opt<bool> StressStoreExtract(
155 "stress-cgp-store-extract", cl::Hidden, cl::init(false),
156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
158 static cl::opt<bool> DisableExtLdPromotion(
159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
161 "CodeGenPrepare"));
163 static cl::opt<bool> StressExtLdPromotion(
164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166 "optimization in CodeGenPrepare"));
168 static cl::opt<bool> DisablePreheaderProtect(
169 "disable-preheader-prot", cl::Hidden, cl::init(false),
170 cl::desc("Disable protection against removing loop preheaders"));
172 static cl::opt<bool> ProfileGuidedSectionPrefix(
173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
174 cl::desc("Use profile info to add section prefix for hot/cold functions"));
176 static cl::opt<unsigned> FreqRatioToSkipMerge(
177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
178 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179 "(frequency of destination block) is greater than this ratio"));
181 static cl::opt<bool> ForceSplitStore(
182 "force-split-store", cl::Hidden, cl::init(false),
183 cl::desc("Force store splitting no matter what the target query says."));
185 static cl::opt<bool>
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
187 cl::desc("Enable merging of redundant sexts when one is dominating"
188 " the other."), cl::init(true));
190 static cl::opt<bool> DisableComplexAddrModes(
191 "disable-complex-addr-modes", cl::Hidden, cl::init(false),
192 cl::desc("Disables combining addressing modes with different parts "
193 "in optimizeMemoryInst."));
195 static cl::opt<bool>
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
197 cl::desc("Allow creation of Phis in Address sinking."));
199 static cl::opt<bool>
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
201 cl::desc("Allow creation of selects in Address sinking."));
203 static cl::opt<bool> AddrSinkCombineBaseReg(
204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
205 cl::desc("Allow combining of BaseReg field in Address sinking."));
207 static cl::opt<bool> AddrSinkCombineBaseGV(
208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
209 cl::desc("Allow combining of BaseGV field in Address sinking."));
211 static cl::opt<bool> AddrSinkCombineBaseOffs(
212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
213 cl::desc("Allow combining of BaseOffs field in Address sinking."));
215 static cl::opt<bool> AddrSinkCombineScaledReg(
216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
217 cl::desc("Allow combining of ScaledReg field in Address sinking."));
219 static cl::opt<bool>
220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
221 cl::init(true),
222 cl::desc("Enable splitting large offset of GEP."));
224 namespace {
226 enum ExtType {
227 ZeroExtension, // Zero extension has been seen.
228 SignExtension, // Sign extension has been seen.
229 BothExtension // This extension type is used if we saw sext after
230 // ZeroExtension had been set, or if we saw zext after
231 // SignExtension had been set. It makes the type
232 // information of a promoted instruction invalid.
235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
238 using SExts = SmallVector<Instruction *, 16>;
239 using ValueToSExts = DenseMap<Value *, SExts>;
241 class TypePromotionTransaction;
243 class CodeGenPrepare : public FunctionPass {
244 const TargetMachine *TM = nullptr;
245 const TargetSubtargetInfo *SubtargetInfo;
246 const TargetLowering *TLI = nullptr;
247 const TargetRegisterInfo *TRI;
248 const TargetTransformInfo *TTI = nullptr;
249 const TargetLibraryInfo *TLInfo;
250 const LoopInfo *LI;
251 std::unique_ptr<BlockFrequencyInfo> BFI;
252 std::unique_ptr<BranchProbabilityInfo> BPI;
254 /// As we scan instructions optimizing them, this is the next instruction
255 /// to optimize. Transforms that can invalidate this should update it.
256 BasicBlock::iterator CurInstIterator;
258 /// Keeps track of non-local addresses that have been sunk into a block.
259 /// This allows us to avoid inserting duplicate code for blocks with
260 /// multiple load/stores of the same address. The usage of WeakTrackingVH
261 /// enables SunkAddrs to be treated as a cache whose entries can be
262 /// invalidated if a sunken address computation has been erased.
263 ValueMap<Value*, WeakTrackingVH> SunkAddrs;
265 /// Keeps track of all instructions inserted for the current function.
266 SetOfInstrs InsertedInsts;
268 /// Keeps track of the type of the related instruction before their
269 /// promotion for the current function.
270 InstrToOrigTy PromotedInsts;
272 /// Keep track of instructions removed during promotion.
273 SetOfInstrs RemovedInsts;
275 /// Keep track of sext chains based on their initial value.
276 DenseMap<Value *, Instruction *> SeenChainsForSExt;
278 /// Keep track of GEPs accessing the same data structures such as structs or
279 /// arrays that are candidates to be split later because of their large
280 /// size.
281 MapVector<
282 AssertingVH<Value>,
283 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
284 LargeOffsetGEPMap;
286 /// Keep track of new GEP base after splitting the GEPs having large offset.
287 SmallSet<AssertingVH<Value>, 2> NewGEPBases;
289 /// Map serial numbers to Large offset GEPs.
290 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
292 /// Keep track of SExt promoted.
293 ValueToSExts ValToSExtendedUses;
295 /// True if CFG is modified in any way.
296 bool ModifiedDT;
298 /// True if optimizing for size.
299 bool OptSize;
301 /// DataLayout for the Function being processed.
302 const DataLayout *DL = nullptr;
304 public:
305 static char ID; // Pass identification, replacement for typeid
307 CodeGenPrepare() : FunctionPass(ID) {
308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
311 bool runOnFunction(Function &F) override;
313 StringRef getPassName() const override { return "CodeGen Prepare"; }
315 void getAnalysisUsage(AnalysisUsage &AU) const override {
316 // FIXME: When we can selectively preserve passes, preserve the domtree.
317 AU.addRequired<ProfileSummaryInfoWrapperPass>();
318 AU.addRequired<TargetLibraryInfoWrapperPass>();
319 AU.addRequired<TargetTransformInfoWrapperPass>();
320 AU.addRequired<LoopInfoWrapperPass>();
323 private:
324 bool eliminateFallThrough(Function &F);
325 bool eliminateMostlyEmptyBlocks(Function &F);
326 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
327 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
328 void eliminateMostlyEmptyBlock(BasicBlock *BB);
329 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
330 bool isPreheader);
331 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
332 bool optimizeInst(Instruction *I, bool &ModifiedDT);
333 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
334 Type *AccessTy, unsigned AddrSpace);
335 bool optimizeInlineAsmInst(CallInst *CS);
336 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
337 bool optimizeExt(Instruction *&I);
338 bool optimizeExtUses(Instruction *I);
339 bool optimizeLoadExt(LoadInst *Load);
340 bool optimizeSelectInst(SelectInst *SI);
341 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
342 bool optimizeSwitchInst(SwitchInst *SI);
343 bool optimizeExtractElementInst(Instruction *Inst);
344 bool dupRetToEnableTailCallOpts(BasicBlock *BB);
345 bool placeDbgValues(Function &F);
346 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
347 LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
348 bool tryToPromoteExts(TypePromotionTransaction &TPT,
349 const SmallVectorImpl<Instruction *> &Exts,
350 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
351 unsigned CreatedInstsCost = 0);
352 bool mergeSExts(Function &F);
353 bool splitLargeGEPOffsets();
354 bool performAddressTypePromotion(
355 Instruction *&Inst,
356 bool AllowPromotionWithoutCommonHeader,
357 bool HasPromoted, TypePromotionTransaction &TPT,
358 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
359 bool splitBranchCondition(Function &F);
360 bool simplifyOffsetableRelocate(Instruction &I);
363 } // end anonymous namespace
365 char CodeGenPrepare::ID = 0;
367 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
368 "Optimize for code generation", false, false)
369 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
370 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
371 "Optimize for code generation", false, false)
373 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
375 bool CodeGenPrepare::runOnFunction(Function &F) {
376 if (skipFunction(F))
377 return false;
379 DL = &F.getParent()->getDataLayout();
381 bool EverMadeChange = false;
382 // Clear per function information.
383 InsertedInsts.clear();
384 PromotedInsts.clear();
386 ModifiedDT = false;
387 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
388 TM = &TPC->getTM<TargetMachine>();
389 SubtargetInfo = TM->getSubtargetImpl(F);
390 TLI = SubtargetInfo->getTargetLowering();
391 TRI = SubtargetInfo->getRegisterInfo();
393 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
394 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
395 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
396 BPI.reset(new BranchProbabilityInfo(F, *LI));
397 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
398 OptSize = F.optForSize();
400 ProfileSummaryInfo *PSI =
401 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
402 if (ProfileGuidedSectionPrefix) {
403 if (PSI->isFunctionHotInCallGraph(&F, *BFI))
404 F.setSectionPrefix(".hot");
405 else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
406 F.setSectionPrefix(".unlikely");
409 /// This optimization identifies DIV instructions that can be
410 /// profitably bypassed and carried out with a shorter, faster divide.
411 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
412 TLI->isSlowDivBypassed()) {
413 const DenseMap<unsigned int, unsigned int> &BypassWidths =
414 TLI->getBypassSlowDivWidths();
415 BasicBlock* BB = &*F.begin();
416 while (BB != nullptr) {
417 // bypassSlowDivision may create new BBs, but we don't want to reapply the
418 // optimization to those blocks.
419 BasicBlock* Next = BB->getNextNode();
420 EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
421 BB = Next;
425 // Eliminate blocks that contain only PHI nodes and an
426 // unconditional branch.
427 EverMadeChange |= eliminateMostlyEmptyBlocks(F);
429 if (!DisableBranchOpts)
430 EverMadeChange |= splitBranchCondition(F);
432 // Split some critical edges where one of the sources is an indirect branch,
433 // to help generate sane code for PHIs involving such edges.
434 EverMadeChange |= SplitIndirectBrCriticalEdges(F);
436 bool MadeChange = true;
437 while (MadeChange) {
438 MadeChange = false;
439 SeenChainsForSExt.clear();
440 ValToSExtendedUses.clear();
441 RemovedInsts.clear();
442 LargeOffsetGEPMap.clear();
443 LargeOffsetGEPID.clear();
444 for (Function::iterator I = F.begin(); I != F.end(); ) {
445 BasicBlock *BB = &*I++;
446 bool ModifiedDTOnIteration = false;
447 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
449 // Restart BB iteration if the dominator tree of the Function was changed
450 if (ModifiedDTOnIteration)
451 break;
453 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
454 MadeChange |= mergeSExts(F);
455 if (!LargeOffsetGEPMap.empty())
456 MadeChange |= splitLargeGEPOffsets();
458 // Really free removed instructions during promotion.
459 for (Instruction *I : RemovedInsts)
460 I->deleteValue();
462 EverMadeChange |= MadeChange;
465 SunkAddrs.clear();
467 if (!DisableBranchOpts) {
468 MadeChange = false;
469 // Use a set vector to get deterministic iteration order. The order the
470 // blocks are removed may affect whether or not PHI nodes in successors
471 // are removed.
472 SmallSetVector<BasicBlock*, 8> WorkList;
473 for (BasicBlock &BB : F) {
474 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
475 MadeChange |= ConstantFoldTerminator(&BB, true);
476 if (!MadeChange) continue;
478 for (SmallVectorImpl<BasicBlock*>::iterator
479 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
480 if (pred_begin(*II) == pred_end(*II))
481 WorkList.insert(*II);
484 // Delete the dead blocks and any of their dead successors.
485 MadeChange |= !WorkList.empty();
486 while (!WorkList.empty()) {
487 BasicBlock *BB = WorkList.pop_back_val();
488 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
490 DeleteDeadBlock(BB);
492 for (SmallVectorImpl<BasicBlock*>::iterator
493 II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
494 if (pred_begin(*II) == pred_end(*II))
495 WorkList.insert(*II);
498 // Merge pairs of basic blocks with unconditional branches, connected by
499 // a single edge.
500 if (EverMadeChange || MadeChange)
501 MadeChange |= eliminateFallThrough(F);
503 EverMadeChange |= MadeChange;
506 if (!DisableGCOpts) {
507 SmallVector<Instruction *, 2> Statepoints;
508 for (BasicBlock &BB : F)
509 for (Instruction &I : BB)
510 if (isStatepoint(I))
511 Statepoints.push_back(&I);
512 for (auto &I : Statepoints)
513 EverMadeChange |= simplifyOffsetableRelocate(*I);
516 // Do this last to clean up use-before-def scenarios introduced by other
517 // preparatory transforms.
518 EverMadeChange |= placeDbgValues(F);
520 return EverMadeChange;
523 /// Merge basic blocks which are connected by a single edge, where one of the
524 /// basic blocks has a single successor pointing to the other basic block,
525 /// which has a single predecessor.
526 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
527 bool Changed = false;
528 // Scan all of the blocks in the function, except for the entry block.
529 // Use a temporary array to avoid iterator being invalidated when
530 // deleting blocks.
531 SmallVector<WeakTrackingVH, 16> Blocks;
532 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
533 Blocks.push_back(&Block);
535 for (auto &Block : Blocks) {
536 auto *BB = cast_or_null<BasicBlock>(Block);
537 if (!BB)
538 continue;
539 // If the destination block has a single pred, then this is a trivial
540 // edge, just collapse it.
541 BasicBlock *SinglePred = BB->getSinglePredecessor();
543 // Don't merge if BB's address is taken.
544 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
546 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
547 if (Term && !Term->isConditional()) {
548 Changed = true;
549 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
551 // Merge BB into SinglePred and delete it.
552 MergeBlockIntoPredecessor(BB);
555 return Changed;
558 /// Find a destination block from BB if BB is mergeable empty block.
559 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
560 // If this block doesn't end with an uncond branch, ignore it.
561 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
562 if (!BI || !BI->isUnconditional())
563 return nullptr;
565 // If the instruction before the branch (skipping debug info) isn't a phi
566 // node, then other stuff is happening here.
567 BasicBlock::iterator BBI = BI->getIterator();
568 if (BBI != BB->begin()) {
569 --BBI;
570 while (isa<DbgInfoIntrinsic>(BBI)) {
571 if (BBI == BB->begin())
572 break;
573 --BBI;
575 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
576 return nullptr;
579 // Do not break infinite loops.
580 BasicBlock *DestBB = BI->getSuccessor(0);
581 if (DestBB == BB)
582 return nullptr;
584 if (!canMergeBlocks(BB, DestBB))
585 DestBB = nullptr;
587 return DestBB;
590 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
591 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
592 /// edges in ways that are non-optimal for isel. Start by eliminating these
593 /// blocks so we can split them the way we want them.
594 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
595 SmallPtrSet<BasicBlock *, 16> Preheaders;
596 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
597 while (!LoopList.empty()) {
598 Loop *L = LoopList.pop_back_val();
599 LoopList.insert(LoopList.end(), L->begin(), L->end());
600 if (BasicBlock *Preheader = L->getLoopPreheader())
601 Preheaders.insert(Preheader);
604 bool MadeChange = false;
605 // Copy blocks into a temporary array to avoid iterator invalidation issues
606 // as we remove them.
607 // Note that this intentionally skips the entry block.
608 SmallVector<WeakTrackingVH, 16> Blocks;
609 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
610 Blocks.push_back(&Block);
612 for (auto &Block : Blocks) {
613 BasicBlock *BB = cast_or_null<BasicBlock>(Block);
614 if (!BB)
615 continue;
616 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
617 if (!DestBB ||
618 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
619 continue;
621 eliminateMostlyEmptyBlock(BB);
622 MadeChange = true;
624 return MadeChange;
627 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
628 BasicBlock *DestBB,
629 bool isPreheader) {
630 // Do not delete loop preheaders if doing so would create a critical edge.
631 // Loop preheaders can be good locations to spill registers. If the
632 // preheader is deleted and we create a critical edge, registers may be
633 // spilled in the loop body instead.
634 if (!DisablePreheaderProtect && isPreheader &&
635 !(BB->getSinglePredecessor() &&
636 BB->getSinglePredecessor()->getSingleSuccessor()))
637 return false;
639 // Try to skip merging if the unique predecessor of BB is terminated by a
640 // switch or indirect branch instruction, and BB is used as an incoming block
641 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
642 // add COPY instructions in the predecessor of BB instead of BB (if it is not
643 // merged). Note that the critical edge created by merging such blocks wont be
644 // split in MachineSink because the jump table is not analyzable. By keeping
645 // such empty block (BB), ISel will place COPY instructions in BB, not in the
646 // predecessor of BB.
647 BasicBlock *Pred = BB->getUniquePredecessor();
648 if (!Pred ||
649 !(isa<SwitchInst>(Pred->getTerminator()) ||
650 isa<IndirectBrInst>(Pred->getTerminator())))
651 return true;
653 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
654 return true;
656 // We use a simple cost heuristic which determine skipping merging is
657 // profitable if the cost of skipping merging is less than the cost of
658 // merging : Cost(skipping merging) < Cost(merging BB), where the
659 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
660 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
661 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
662 // Freq(Pred) / Freq(BB) > 2.
663 // Note that if there are multiple empty blocks sharing the same incoming
664 // value for the PHIs in the DestBB, we consider them together. In such
665 // case, Cost(merging BB) will be the sum of their frequencies.
667 if (!isa<PHINode>(DestBB->begin()))
668 return true;
670 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
672 // Find all other incoming blocks from which incoming values of all PHIs in
673 // DestBB are the same as the ones from BB.
674 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
675 ++PI) {
676 BasicBlock *DestBBPred = *PI;
677 if (DestBBPred == BB)
678 continue;
680 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
681 return DestPN.getIncomingValueForBlock(BB) ==
682 DestPN.getIncomingValueForBlock(DestBBPred);
684 SameIncomingValueBBs.insert(DestBBPred);
687 // See if all BB's incoming values are same as the value from Pred. In this
688 // case, no reason to skip merging because COPYs are expected to be place in
689 // Pred already.
690 if (SameIncomingValueBBs.count(Pred))
691 return true;
693 BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
694 BlockFrequency BBFreq = BFI->getBlockFreq(BB);
696 for (auto SameValueBB : SameIncomingValueBBs)
697 if (SameValueBB->getUniquePredecessor() == Pred &&
698 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
699 BBFreq += BFI->getBlockFreq(SameValueBB);
701 return PredFreq.getFrequency() <=
702 BBFreq.getFrequency() * FreqRatioToSkipMerge;
705 /// Return true if we can merge BB into DestBB if there is a single
706 /// unconditional branch between them, and BB contains no other non-phi
707 /// instructions.
708 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
709 const BasicBlock *DestBB) const {
710 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
711 // the successor. If there are more complex condition (e.g. preheaders),
712 // don't mess around with them.
713 for (const PHINode &PN : BB->phis()) {
714 for (const User *U : PN.users()) {
715 const Instruction *UI = cast<Instruction>(U);
716 if (UI->getParent() != DestBB || !isa<PHINode>(UI))
717 return false;
718 // If User is inside DestBB block and it is a PHINode then check
719 // incoming value. If incoming value is not from BB then this is
720 // a complex condition (e.g. preheaders) we want to avoid here.
721 if (UI->getParent() == DestBB) {
722 if (const PHINode *UPN = dyn_cast<PHINode>(UI))
723 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
724 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
725 if (Insn && Insn->getParent() == BB &&
726 Insn->getParent() != UPN->getIncomingBlock(I))
727 return false;
733 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
734 // and DestBB may have conflicting incoming values for the block. If so, we
735 // can't merge the block.
736 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
737 if (!DestBBPN) return true; // no conflict.
739 // Collect the preds of BB.
740 SmallPtrSet<const BasicBlock*, 16> BBPreds;
741 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
742 // It is faster to get preds from a PHI than with pred_iterator.
743 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
744 BBPreds.insert(BBPN->getIncomingBlock(i));
745 } else {
746 BBPreds.insert(pred_begin(BB), pred_end(BB));
749 // Walk the preds of DestBB.
750 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
751 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
752 if (BBPreds.count(Pred)) { // Common predecessor?
753 for (const PHINode &PN : DestBB->phis()) {
754 const Value *V1 = PN.getIncomingValueForBlock(Pred);
755 const Value *V2 = PN.getIncomingValueForBlock(BB);
757 // If V2 is a phi node in BB, look up what the mapped value will be.
758 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
759 if (V2PN->getParent() == BB)
760 V2 = V2PN->getIncomingValueForBlock(Pred);
762 // If there is a conflict, bail out.
763 if (V1 != V2) return false;
768 return true;
771 /// Eliminate a basic block that has only phi's and an unconditional branch in
772 /// it.
773 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
774 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
775 BasicBlock *DestBB = BI->getSuccessor(0);
777 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
778 << *BB << *DestBB);
780 // If the destination block has a single pred, then this is a trivial edge,
781 // just collapse it.
782 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
783 if (SinglePred != DestBB) {
784 assert(SinglePred == BB &&
785 "Single predecessor not the same as predecessor");
786 // Merge DestBB into SinglePred/BB and delete it.
787 MergeBlockIntoPredecessor(DestBB);
788 // Note: BB(=SinglePred) will not be deleted on this path.
789 // DestBB(=its single successor) is the one that was deleted.
790 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
791 return;
795 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
796 // to handle the new incoming edges it is about to have.
797 for (PHINode &PN : DestBB->phis()) {
798 // Remove the incoming value for BB, and remember it.
799 Value *InVal = PN.removeIncomingValue(BB, false);
801 // Two options: either the InVal is a phi node defined in BB or it is some
802 // value that dominates BB.
803 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
804 if (InValPhi && InValPhi->getParent() == BB) {
805 // Add all of the input values of the input PHI as inputs of this phi.
806 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
807 PN.addIncoming(InValPhi->getIncomingValue(i),
808 InValPhi->getIncomingBlock(i));
809 } else {
810 // Otherwise, add one instance of the dominating value for each edge that
811 // we will be adding.
812 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
813 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
814 PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
815 } else {
816 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
817 PN.addIncoming(InVal, *PI);
822 // The PHIs are now updated, change everything that refers to BB to use
823 // DestBB and remove BB.
824 BB->replaceAllUsesWith(DestBB);
825 BB->eraseFromParent();
826 ++NumBlocksElim;
828 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
831 // Computes a map of base pointer relocation instructions to corresponding
832 // derived pointer relocation instructions given a vector of all relocate calls
833 static void computeBaseDerivedRelocateMap(
834 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
835 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
836 &RelocateInstMap) {
837 // Collect information in two maps: one primarily for locating the base object
838 // while filling the second map; the second map is the final structure holding
839 // a mapping between Base and corresponding Derived relocate calls
840 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
841 for (auto *ThisRelocate : AllRelocateCalls) {
842 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
843 ThisRelocate->getDerivedPtrIndex());
844 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
846 for (auto &Item : RelocateIdxMap) {
847 std::pair<unsigned, unsigned> Key = Item.first;
848 if (Key.first == Key.second)
849 // Base relocation: nothing to insert
850 continue;
852 GCRelocateInst *I = Item.second;
853 auto BaseKey = std::make_pair(Key.first, Key.first);
855 // We're iterating over RelocateIdxMap so we cannot modify it.
856 auto MaybeBase = RelocateIdxMap.find(BaseKey);
857 if (MaybeBase == RelocateIdxMap.end())
858 // TODO: We might want to insert a new base object relocate and gep off
859 // that, if there are enough derived object relocates.
860 continue;
862 RelocateInstMap[MaybeBase->second].push_back(I);
866 // Accepts a GEP and extracts the operands into a vector provided they're all
867 // small integer constants
868 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
869 SmallVectorImpl<Value *> &OffsetV) {
870 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
871 // Only accept small constant integer operands
872 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
873 if (!Op || Op->getZExtValue() > 20)
874 return false;
877 for (unsigned i = 1; i < GEP->getNumOperands(); i++)
878 OffsetV.push_back(GEP->getOperand(i));
879 return true;
882 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
883 // replace, computes a replacement, and affects it.
884 static bool
885 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
886 const SmallVectorImpl<GCRelocateInst *> &Targets) {
887 bool MadeChange = false;
888 // We must ensure the relocation of derived pointer is defined after
889 // relocation of base pointer. If we find a relocation corresponding to base
890 // defined earlier than relocation of base then we move relocation of base
891 // right before found relocation. We consider only relocation in the same
892 // basic block as relocation of base. Relocations from other basic block will
893 // be skipped by optimization and we do not care about them.
894 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
895 &*R != RelocatedBase; ++R)
896 if (auto RI = dyn_cast<GCRelocateInst>(R))
897 if (RI->getStatepoint() == RelocatedBase->getStatepoint())
898 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
899 RelocatedBase->moveBefore(RI);
900 break;
903 for (GCRelocateInst *ToReplace : Targets) {
904 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
905 "Not relocating a derived object of the original base object");
906 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
907 // A duplicate relocate call. TODO: coalesce duplicates.
908 continue;
911 if (RelocatedBase->getParent() != ToReplace->getParent()) {
912 // Base and derived relocates are in different basic blocks.
913 // In this case transform is only valid when base dominates derived
914 // relocate. However it would be too expensive to check dominance
915 // for each such relocate, so we skip the whole transformation.
916 continue;
919 Value *Base = ToReplace->getBasePtr();
920 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
921 if (!Derived || Derived->getPointerOperand() != Base)
922 continue;
924 SmallVector<Value *, 2> OffsetV;
925 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
926 continue;
928 // Create a Builder and replace the target callsite with a gep
929 assert(RelocatedBase->getNextNode() &&
930 "Should always have one since it's not a terminator");
932 // Insert after RelocatedBase
933 IRBuilder<> Builder(RelocatedBase->getNextNode());
934 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
936 // If gc_relocate does not match the actual type, cast it to the right type.
937 // In theory, there must be a bitcast after gc_relocate if the type does not
938 // match, and we should reuse it to get the derived pointer. But it could be
939 // cases like this:
940 // bb1:
941 // ...
942 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
943 // br label %merge
945 // bb2:
946 // ...
947 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
948 // br label %merge
950 // merge:
951 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
952 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
954 // In this case, we can not find the bitcast any more. So we insert a new bitcast
955 // no matter there is already one or not. In this way, we can handle all cases, and
956 // the extra bitcast should be optimized away in later passes.
957 Value *ActualRelocatedBase = RelocatedBase;
958 if (RelocatedBase->getType() != Base->getType()) {
959 ActualRelocatedBase =
960 Builder.CreateBitCast(RelocatedBase, Base->getType());
962 Value *Replacement = Builder.CreateGEP(
963 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
964 Replacement->takeName(ToReplace);
965 // If the newly generated derived pointer's type does not match the original derived
966 // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
967 Value *ActualReplacement = Replacement;
968 if (Replacement->getType() != ToReplace->getType()) {
969 ActualReplacement =
970 Builder.CreateBitCast(Replacement, ToReplace->getType());
972 ToReplace->replaceAllUsesWith(ActualReplacement);
973 ToReplace->eraseFromParent();
975 MadeChange = true;
977 return MadeChange;
980 // Turns this:
982 // %base = ...
983 // %ptr = gep %base + 15
984 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
985 // %base' = relocate(%tok, i32 4, i32 4)
986 // %ptr' = relocate(%tok, i32 4, i32 5)
987 // %val = load %ptr'
989 // into this:
991 // %base = ...
992 // %ptr = gep %base + 15
993 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
994 // %base' = gc.relocate(%tok, i32 4, i32 4)
995 // %ptr' = gep %base' + 15
996 // %val = load %ptr'
997 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
998 bool MadeChange = false;
999 SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1001 for (auto *U : I.users())
1002 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1003 // Collect all the relocate calls associated with a statepoint
1004 AllRelocateCalls.push_back(Relocate);
1006 // We need atleast one base pointer relocation + one derived pointer
1007 // relocation to mangle
1008 if (AllRelocateCalls.size() < 2)
1009 return false;
1011 // RelocateInstMap is a mapping from the base relocate instruction to the
1012 // corresponding derived relocate instructions
1013 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1014 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1015 if (RelocateInstMap.empty())
1016 return false;
1018 for (auto &Item : RelocateInstMap)
1019 // Item.first is the RelocatedBase to offset against
1020 // Item.second is the vector of Targets to replace
1021 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1022 return MadeChange;
1025 /// SinkCast - Sink the specified cast instruction into its user blocks
1026 static bool SinkCast(CastInst *CI) {
1027 BasicBlock *DefBB = CI->getParent();
1029 /// InsertedCasts - Only insert a cast in each block once.
1030 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1032 bool MadeChange = false;
1033 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1034 UI != E; ) {
1035 Use &TheUse = UI.getUse();
1036 Instruction *User = cast<Instruction>(*UI);
1038 // Figure out which BB this cast is used in. For PHI's this is the
1039 // appropriate predecessor block.
1040 BasicBlock *UserBB = User->getParent();
1041 if (PHINode *PN = dyn_cast<PHINode>(User)) {
1042 UserBB = PN->getIncomingBlock(TheUse);
1045 // Preincrement use iterator so we don't invalidate it.
1046 ++UI;
1048 // The first insertion point of a block containing an EH pad is after the
1049 // pad. If the pad is the user, we cannot sink the cast past the pad.
1050 if (User->isEHPad())
1051 continue;
1053 // If the block selected to receive the cast is an EH pad that does not
1054 // allow non-PHI instructions before the terminator, we can't sink the
1055 // cast.
1056 if (UserBB->getTerminator()->isEHPad())
1057 continue;
1059 // If this user is in the same block as the cast, don't change the cast.
1060 if (UserBB == DefBB) continue;
1062 // If we have already inserted a cast into this block, use it.
1063 CastInst *&InsertedCast = InsertedCasts[UserBB];
1065 if (!InsertedCast) {
1066 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1067 assert(InsertPt != UserBB->end());
1068 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1069 CI->getType(), "", &*InsertPt);
1070 InsertedCast->setDebugLoc(CI->getDebugLoc());
1073 // Replace a use of the cast with a use of the new cast.
1074 TheUse = InsertedCast;
1075 MadeChange = true;
1076 ++NumCastUses;
1079 // If we removed all uses, nuke the cast.
1080 if (CI->use_empty()) {
1081 salvageDebugInfo(*CI);
1082 CI->eraseFromParent();
1083 MadeChange = true;
1086 return MadeChange;
1089 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1090 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1091 /// reduce the number of virtual registers that must be created and coalesced.
1093 /// Return true if any changes are made.
1094 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1095 const DataLayout &DL) {
1096 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1097 // than sinking only nop casts, but is helpful on some platforms.
1098 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1099 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1100 ASC->getDestAddressSpace()))
1101 return false;
1104 // If this is a noop copy,
1105 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1106 EVT DstVT = TLI.getValueType(DL, CI->getType());
1108 // This is an fp<->int conversion?
1109 if (SrcVT.isInteger() != DstVT.isInteger())
1110 return false;
1112 // If this is an extension, it will be a zero or sign extension, which
1113 // isn't a noop.
1114 if (SrcVT.bitsLT(DstVT)) return false;
1116 // If these values will be promoted, find out what they will be promoted
1117 // to. This helps us consider truncates on PPC as noop copies when they
1118 // are.
1119 if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1120 TargetLowering::TypePromoteInteger)
1121 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1122 if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1123 TargetLowering::TypePromoteInteger)
1124 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1126 // If, after promotion, these are the same types, this is a noop copy.
1127 if (SrcVT != DstVT)
1128 return false;
1130 return SinkCast(CI);
1133 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1134 /// possible.
1136 /// Return true if any changes were made.
1137 static bool CombineUAddWithOverflow(CmpInst *CI) {
1138 Value *A, *B;
1139 Instruction *AddI;
1140 if (!match(CI,
1141 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1142 return false;
1144 Type *Ty = AddI->getType();
1145 if (!isa<IntegerType>(Ty))
1146 return false;
1148 // We don't want to move around uses of condition values this late, so we we
1149 // check if it is legal to create the call to the intrinsic in the basic
1150 // block containing the icmp:
1152 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1153 return false;
1155 #ifndef NDEBUG
1156 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1157 // for now:
1158 if (AddI->hasOneUse())
1159 assert(*AddI->user_begin() == CI && "expected!");
1160 #endif
1162 Module *M = CI->getModule();
1163 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1165 auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1167 DebugLoc Loc = CI->getDebugLoc();
1168 auto *UAddWithOverflow =
1169 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1170 UAddWithOverflow->setDebugLoc(Loc);
1171 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1172 UAdd->setDebugLoc(Loc);
1173 auto *Overflow =
1174 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1175 Overflow->setDebugLoc(Loc);
1177 CI->replaceAllUsesWith(Overflow);
1178 AddI->replaceAllUsesWith(UAdd);
1179 CI->eraseFromParent();
1180 AddI->eraseFromParent();
1181 return true;
1184 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1185 /// registers that must be created and coalesced. This is a clear win except on
1186 /// targets with multiple condition code registers (PowerPC), where it might
1187 /// lose; some adjustment may be wanted there.
1189 /// Return true if any changes are made.
1190 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1191 BasicBlock *DefBB = CI->getParent();
1193 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1194 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1195 return false;
1197 // Only insert a cmp in each block once.
1198 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1200 bool MadeChange = false;
1201 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1202 UI != E; ) {
1203 Use &TheUse = UI.getUse();
1204 Instruction *User = cast<Instruction>(*UI);
1206 // Preincrement use iterator so we don't invalidate it.
1207 ++UI;
1209 // Don't bother for PHI nodes.
1210 if (isa<PHINode>(User))
1211 continue;
1213 // Figure out which BB this cmp is used in.
1214 BasicBlock *UserBB = User->getParent();
1216 // If this user is in the same block as the cmp, don't change the cmp.
1217 if (UserBB == DefBB) continue;
1219 // If we have already inserted a cmp into this block, use it.
1220 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1222 if (!InsertedCmp) {
1223 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1224 assert(InsertPt != UserBB->end());
1225 InsertedCmp =
1226 CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1227 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1228 // Propagate the debug info.
1229 InsertedCmp->setDebugLoc(CI->getDebugLoc());
1232 // Replace a use of the cmp with a use of the new cmp.
1233 TheUse = InsertedCmp;
1234 MadeChange = true;
1235 ++NumCmpUses;
1238 // If we removed all uses, nuke the cmp.
1239 if (CI->use_empty()) {
1240 CI->eraseFromParent();
1241 MadeChange = true;
1244 return MadeChange;
1247 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1248 if (SinkCmpExpression(CI, TLI))
1249 return true;
1251 if (CombineUAddWithOverflow(CI))
1252 return true;
1254 return false;
1257 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1258 /// used in a compare to allow isel to generate better code for targets where
1259 /// this operation can be combined.
1261 /// Return true if any changes are made.
1262 static bool sinkAndCmp0Expression(Instruction *AndI,
1263 const TargetLowering &TLI,
1264 SetOfInstrs &InsertedInsts) {
1265 // Double-check that we're not trying to optimize an instruction that was
1266 // already optimized by some other part of this pass.
1267 assert(!InsertedInsts.count(AndI) &&
1268 "Attempting to optimize already optimized and instruction");
1269 (void) InsertedInsts;
1271 // Nothing to do for single use in same basic block.
1272 if (AndI->hasOneUse() &&
1273 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1274 return false;
1276 // Try to avoid cases where sinking/duplicating is likely to increase register
1277 // pressure.
1278 if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1279 !isa<ConstantInt>(AndI->getOperand(1)) &&
1280 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1281 return false;
1283 for (auto *U : AndI->users()) {
1284 Instruction *User = cast<Instruction>(U);
1286 // Only sink for and mask feeding icmp with 0.
1287 if (!isa<ICmpInst>(User))
1288 return false;
1290 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1291 if (!CmpC || !CmpC->isZero())
1292 return false;
1295 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1296 return false;
1298 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1299 LLVM_DEBUG(AndI->getParent()->dump());
1301 // Push the 'and' into the same block as the icmp 0. There should only be
1302 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1303 // others, so we don't need to keep track of which BBs we insert into.
1304 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1305 UI != E; ) {
1306 Use &TheUse = UI.getUse();
1307 Instruction *User = cast<Instruction>(*UI);
1309 // Preincrement use iterator so we don't invalidate it.
1310 ++UI;
1312 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1314 // Keep the 'and' in the same place if the use is already in the same block.
1315 Instruction *InsertPt =
1316 User->getParent() == AndI->getParent() ? AndI : User;
1317 Instruction *InsertedAnd =
1318 BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1319 AndI->getOperand(1), "", InsertPt);
1320 // Propagate the debug info.
1321 InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1323 // Replace a use of the 'and' with a use of the new 'and'.
1324 TheUse = InsertedAnd;
1325 ++NumAndUses;
1326 LLVM_DEBUG(User->getParent()->dump());
1329 // We removed all uses, nuke the and.
1330 AndI->eraseFromParent();
1331 return true;
1334 /// Check if the candidates could be combined with a shift instruction, which
1335 /// includes:
1336 /// 1. Truncate instruction
1337 /// 2. And instruction and the imm is a mask of the low bits:
1338 /// imm & (imm+1) == 0
1339 static bool isExtractBitsCandidateUse(Instruction *User) {
1340 if (!isa<TruncInst>(User)) {
1341 if (User->getOpcode() != Instruction::And ||
1342 !isa<ConstantInt>(User->getOperand(1)))
1343 return false;
1345 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1347 if ((Cimm & (Cimm + 1)).getBoolValue())
1348 return false;
1350 return true;
1353 /// Sink both shift and truncate instruction to the use of truncate's BB.
1354 static bool
1355 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1356 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1357 const TargetLowering &TLI, const DataLayout &DL) {
1358 BasicBlock *UserBB = User->getParent();
1359 DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1360 TruncInst *TruncI = dyn_cast<TruncInst>(User);
1361 bool MadeChange = false;
1363 for (Value::user_iterator TruncUI = TruncI->user_begin(),
1364 TruncE = TruncI->user_end();
1365 TruncUI != TruncE;) {
1367 Use &TruncTheUse = TruncUI.getUse();
1368 Instruction *TruncUser = cast<Instruction>(*TruncUI);
1369 // Preincrement use iterator so we don't invalidate it.
1371 ++TruncUI;
1373 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1374 if (!ISDOpcode)
1375 continue;
1377 // If the use is actually a legal node, there will not be an
1378 // implicit truncate.
1379 // FIXME: always querying the result type is just an
1380 // approximation; some nodes' legality is determined by the
1381 // operand or other means. There's no good way to find out though.
1382 if (TLI.isOperationLegalOrCustom(
1383 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1384 continue;
1386 // Don't bother for PHI nodes.
1387 if (isa<PHINode>(TruncUser))
1388 continue;
1390 BasicBlock *TruncUserBB = TruncUser->getParent();
1392 if (UserBB == TruncUserBB)
1393 continue;
1395 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1396 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1398 if (!InsertedShift && !InsertedTrunc) {
1399 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1400 assert(InsertPt != TruncUserBB->end());
1401 // Sink the shift
1402 if (ShiftI->getOpcode() == Instruction::AShr)
1403 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1404 "", &*InsertPt);
1405 else
1406 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1407 "", &*InsertPt);
1408 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1410 // Sink the trunc
1411 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1412 TruncInsertPt++;
1413 assert(TruncInsertPt != TruncUserBB->end());
1415 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1416 TruncI->getType(), "", &*TruncInsertPt);
1417 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1419 MadeChange = true;
1421 TruncTheUse = InsertedTrunc;
1424 return MadeChange;
1427 /// Sink the shift *right* instruction into user blocks if the uses could
1428 /// potentially be combined with this shift instruction and generate BitExtract
1429 /// instruction. It will only be applied if the architecture supports BitExtract
1430 /// instruction. Here is an example:
1431 /// BB1:
1432 /// %x.extract.shift = lshr i64 %arg1, 32
1433 /// BB2:
1434 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
1435 /// ==>
1437 /// BB2:
1438 /// %x.extract.shift.1 = lshr i64 %arg1, 32
1439 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1441 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1442 /// instruction.
1443 /// Return true if any changes are made.
1444 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1445 const TargetLowering &TLI,
1446 const DataLayout &DL) {
1447 BasicBlock *DefBB = ShiftI->getParent();
1449 /// Only insert instructions in each block once.
1450 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1452 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1454 bool MadeChange = false;
1455 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1456 UI != E;) {
1457 Use &TheUse = UI.getUse();
1458 Instruction *User = cast<Instruction>(*UI);
1459 // Preincrement use iterator so we don't invalidate it.
1460 ++UI;
1462 // Don't bother for PHI nodes.
1463 if (isa<PHINode>(User))
1464 continue;
1466 if (!isExtractBitsCandidateUse(User))
1467 continue;
1469 BasicBlock *UserBB = User->getParent();
1471 if (UserBB == DefBB) {
1472 // If the shift and truncate instruction are in the same BB. The use of
1473 // the truncate(TruncUse) may still introduce another truncate if not
1474 // legal. In this case, we would like to sink both shift and truncate
1475 // instruction to the BB of TruncUse.
1476 // for example:
1477 // BB1:
1478 // i64 shift.result = lshr i64 opnd, imm
1479 // trunc.result = trunc shift.result to i16
1481 // BB2:
1482 // ----> We will have an implicit truncate here if the architecture does
1483 // not have i16 compare.
1484 // cmp i16 trunc.result, opnd2
1486 if (isa<TruncInst>(User) && shiftIsLegal
1487 // If the type of the truncate is legal, no truncate will be
1488 // introduced in other basic blocks.
1490 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1491 MadeChange =
1492 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1494 continue;
1496 // If we have already inserted a shift into this block, use it.
1497 BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1499 if (!InsertedShift) {
1500 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1501 assert(InsertPt != UserBB->end());
1503 if (ShiftI->getOpcode() == Instruction::AShr)
1504 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1505 "", &*InsertPt);
1506 else
1507 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1508 "", &*InsertPt);
1509 InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1511 MadeChange = true;
1514 // Replace a use of the shift with a use of the new shift.
1515 TheUse = InsertedShift;
1518 // If we removed all uses, nuke the shift.
1519 if (ShiftI->use_empty()) {
1520 salvageDebugInfo(*ShiftI);
1521 ShiftI->eraseFromParent();
1524 return MadeChange;
1527 /// If counting leading or trailing zeros is an expensive operation and a zero
1528 /// input is defined, add a check for zero to avoid calling the intrinsic.
1530 /// We want to transform:
1531 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1533 /// into:
1534 /// entry:
1535 /// %cmpz = icmp eq i64 %A, 0
1536 /// br i1 %cmpz, label %cond.end, label %cond.false
1537 /// cond.false:
1538 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1539 /// br label %cond.end
1540 /// cond.end:
1541 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1543 /// If the transform is performed, return true and set ModifiedDT to true.
1544 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1545 const TargetLowering *TLI,
1546 const DataLayout *DL,
1547 bool &ModifiedDT) {
1548 if (!TLI || !DL)
1549 return false;
1551 // If a zero input is undefined, it doesn't make sense to despeculate that.
1552 if (match(CountZeros->getOperand(1), m_One()))
1553 return false;
1555 // If it's cheap to speculate, there's nothing to do.
1556 auto IntrinsicID = CountZeros->getIntrinsicID();
1557 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1558 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1559 return false;
1561 // Only handle legal scalar cases. Anything else requires too much work.
1562 Type *Ty = CountZeros->getType();
1563 unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1564 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1565 return false;
1567 // The intrinsic will be sunk behind a compare against zero and branch.
1568 BasicBlock *StartBlock = CountZeros->getParent();
1569 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1571 // Create another block after the count zero intrinsic. A PHI will be added
1572 // in this block to select the result of the intrinsic or the bit-width
1573 // constant if the input to the intrinsic is zero.
1574 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1575 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1577 // Set up a builder to create a compare, conditional branch, and PHI.
1578 IRBuilder<> Builder(CountZeros->getContext());
1579 Builder.SetInsertPoint(StartBlock->getTerminator());
1580 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1582 // Replace the unconditional branch that was created by the first split with
1583 // a compare against zero and a conditional branch.
1584 Value *Zero = Constant::getNullValue(Ty);
1585 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1586 Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1587 StartBlock->getTerminator()->eraseFromParent();
1589 // Create a PHI in the end block to select either the output of the intrinsic
1590 // or the bit width of the operand.
1591 Builder.SetInsertPoint(&EndBlock->front());
1592 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1593 CountZeros->replaceAllUsesWith(PN);
1594 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1595 PN->addIncoming(BitWidth, StartBlock);
1596 PN->addIncoming(CountZeros, CallBlock);
1598 // We are explicitly handling the zero case, so we can set the intrinsic's
1599 // undefined zero argument to 'true'. This will also prevent reprocessing the
1600 // intrinsic; we only despeculate when a zero input is defined.
1601 CountZeros->setArgOperand(1, Builder.getTrue());
1602 ModifiedDT = true;
1603 return true;
1606 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1607 BasicBlock *BB = CI->getParent();
1609 // Lower inline assembly if we can.
1610 // If we found an inline asm expession, and if the target knows how to
1611 // lower it to normal LLVM code, do so now.
1612 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1613 if (TLI->ExpandInlineAsm(CI)) {
1614 // Avoid invalidating the iterator.
1615 CurInstIterator = BB->begin();
1616 // Avoid processing instructions out of order, which could cause
1617 // reuse before a value is defined.
1618 SunkAddrs.clear();
1619 return true;
1621 // Sink address computing for memory operands into the block.
1622 if (optimizeInlineAsmInst(CI))
1623 return true;
1626 // Align the pointer arguments to this call if the target thinks it's a good
1627 // idea
1628 unsigned MinSize, PrefAlign;
1629 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1630 for (auto &Arg : CI->arg_operands()) {
1631 // We want to align both objects whose address is used directly and
1632 // objects whose address is used in casts and GEPs, though it only makes
1633 // sense for GEPs if the offset is a multiple of the desired alignment and
1634 // if size - offset meets the size threshold.
1635 if (!Arg->getType()->isPointerTy())
1636 continue;
1637 APInt Offset(DL->getIndexSizeInBits(
1638 cast<PointerType>(Arg->getType())->getAddressSpace()),
1640 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1641 uint64_t Offset2 = Offset.getLimitedValue();
1642 if ((Offset2 & (PrefAlign-1)) != 0)
1643 continue;
1644 AllocaInst *AI;
1645 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1646 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1647 AI->setAlignment(PrefAlign);
1648 // Global variables can only be aligned if they are defined in this
1649 // object (i.e. they are uniquely initialized in this object), and
1650 // over-aligning global variables that have an explicit section is
1651 // forbidden.
1652 GlobalVariable *GV;
1653 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1654 GV->getPointerAlignment(*DL) < PrefAlign &&
1655 DL->getTypeAllocSize(GV->getValueType()) >=
1656 MinSize + Offset2)
1657 GV->setAlignment(PrefAlign);
1659 // If this is a memcpy (or similar) then we may be able to improve the
1660 // alignment
1661 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1662 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1663 if (DestAlign > MI->getDestAlignment())
1664 MI->setDestAlignment(DestAlign);
1665 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1666 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1667 if (SrcAlign > MTI->getSourceAlignment())
1668 MTI->setSourceAlignment(SrcAlign);
1673 // If we have a cold call site, try to sink addressing computation into the
1674 // cold block. This interacts with our handling for loads and stores to
1675 // ensure that we can fold all uses of a potential addressing computation
1676 // into their uses. TODO: generalize this to work over profiling data
1677 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1678 for (auto &Arg : CI->arg_operands()) {
1679 if (!Arg->getType()->isPointerTy())
1680 continue;
1681 unsigned AS = Arg->getType()->getPointerAddressSpace();
1682 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1685 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1686 if (II) {
1687 switch (II->getIntrinsicID()) {
1688 default: break;
1689 case Intrinsic::objectsize: {
1690 // Lower all uses of llvm.objectsize.*
1691 ConstantInt *RetVal =
1692 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1693 // Substituting this can cause recursive simplifications, which can
1694 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case
1695 // this
1696 // happens.
1697 Value *CurValue = &*CurInstIterator;
1698 WeakTrackingVH IterHandle(CurValue);
1700 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1702 // If the iterator instruction was recursively deleted, start over at the
1703 // start of the block.
1704 if (IterHandle != CurValue) {
1705 CurInstIterator = BB->begin();
1706 SunkAddrs.clear();
1708 return true;
1710 case Intrinsic::aarch64_stlxr:
1711 case Intrinsic::aarch64_stxr: {
1712 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1713 if (!ExtVal || !ExtVal->hasOneUse() ||
1714 ExtVal->getParent() == CI->getParent())
1715 return false;
1716 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1717 ExtVal->moveBefore(CI);
1718 // Mark this instruction as "inserted by CGP", so that other
1719 // optimizations don't touch it.
1720 InsertedInsts.insert(ExtVal);
1721 return true;
1723 case Intrinsic::launder_invariant_group:
1724 case Intrinsic::strip_invariant_group:
1725 II->replaceAllUsesWith(II->getArgOperand(0));
1726 II->eraseFromParent();
1727 return true;
1729 case Intrinsic::cttz:
1730 case Intrinsic::ctlz:
1731 // If counting zeros is expensive, try to avoid it.
1732 return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1735 if (TLI) {
1736 SmallVector<Value*, 2> PtrOps;
1737 Type *AccessTy;
1738 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1739 while (!PtrOps.empty()) {
1740 Value *PtrVal = PtrOps.pop_back_val();
1741 unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1742 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1743 return true;
1748 // From here on out we're working with named functions.
1749 if (!CI->getCalledFunction()) return false;
1751 // Lower all default uses of _chk calls. This is very similar
1752 // to what InstCombineCalls does, but here we are only lowering calls
1753 // to fortified library functions (e.g. __memcpy_chk) that have the default
1754 // "don't know" as the objectsize. Anything else should be left alone.
1755 FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1756 if (Value *V = Simplifier.optimizeCall(CI)) {
1757 CI->replaceAllUsesWith(V);
1758 CI->eraseFromParent();
1759 return true;
1762 return false;
1765 /// Look for opportunities to duplicate return instructions to the predecessor
1766 /// to enable tail call optimizations. The case it is currently looking for is:
1767 /// @code
1768 /// bb0:
1769 /// %tmp0 = tail call i32 @f0()
1770 /// br label %return
1771 /// bb1:
1772 /// %tmp1 = tail call i32 @f1()
1773 /// br label %return
1774 /// bb2:
1775 /// %tmp2 = tail call i32 @f2()
1776 /// br label %return
1777 /// return:
1778 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1779 /// ret i32 %retval
1780 /// @endcode
1782 /// =>
1784 /// @code
1785 /// bb0:
1786 /// %tmp0 = tail call i32 @f0()
1787 /// ret i32 %tmp0
1788 /// bb1:
1789 /// %tmp1 = tail call i32 @f1()
1790 /// ret i32 %tmp1
1791 /// bb2:
1792 /// %tmp2 = tail call i32 @f2()
1793 /// ret i32 %tmp2
1794 /// @endcode
1795 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1796 if (!TLI)
1797 return false;
1799 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1800 if (!RetI)
1801 return false;
1803 PHINode *PN = nullptr;
1804 BitCastInst *BCI = nullptr;
1805 Value *V = RetI->getReturnValue();
1806 if (V) {
1807 BCI = dyn_cast<BitCastInst>(V);
1808 if (BCI)
1809 V = BCI->getOperand(0);
1811 PN = dyn_cast<PHINode>(V);
1812 if (!PN)
1813 return false;
1816 if (PN && PN->getParent() != BB)
1817 return false;
1819 // Make sure there are no instructions between the PHI and return, or that the
1820 // return is the first instruction in the block.
1821 if (PN) {
1822 BasicBlock::iterator BI = BB->begin();
1823 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1824 if (&*BI == BCI)
1825 // Also skip over the bitcast.
1826 ++BI;
1827 if (&*BI != RetI)
1828 return false;
1829 } else {
1830 BasicBlock::iterator BI = BB->begin();
1831 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1832 if (&*BI != RetI)
1833 return false;
1836 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1837 /// call.
1838 const Function *F = BB->getParent();
1839 SmallVector<CallInst*, 4> TailCalls;
1840 if (PN) {
1841 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1842 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1843 // Make sure the phi value is indeed produced by the tail call.
1844 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1845 TLI->mayBeEmittedAsTailCall(CI) &&
1846 attributesPermitTailCall(F, CI, RetI, *TLI))
1847 TailCalls.push_back(CI);
1849 } else {
1850 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1851 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1852 if (!VisitedBBs.insert(*PI).second)
1853 continue;
1855 BasicBlock::InstListType &InstList = (*PI)->getInstList();
1856 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1857 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1858 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1859 if (RI == RE)
1860 continue;
1862 CallInst *CI = dyn_cast<CallInst>(&*RI);
1863 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1864 attributesPermitTailCall(F, CI, RetI, *TLI))
1865 TailCalls.push_back(CI);
1869 bool Changed = false;
1870 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1871 CallInst *CI = TailCalls[i];
1872 CallSite CS(CI);
1874 // Make sure the call instruction is followed by an unconditional branch to
1875 // the return block.
1876 BasicBlock *CallBB = CI->getParent();
1877 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1878 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1879 continue;
1881 // Duplicate the return into CallBB.
1882 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1883 ModifiedDT = Changed = true;
1884 ++NumRetsDup;
1887 // If we eliminated all predecessors of the block, delete the block now.
1888 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1889 BB->eraseFromParent();
1891 return Changed;
1894 //===----------------------------------------------------------------------===//
1895 // Memory Optimization
1896 //===----------------------------------------------------------------------===//
1898 namespace {
1900 /// This is an extended version of TargetLowering::AddrMode
1901 /// which holds actual Value*'s for register values.
1902 struct ExtAddrMode : public TargetLowering::AddrMode {
1903 Value *BaseReg = nullptr;
1904 Value *ScaledReg = nullptr;
1905 Value *OriginalValue = nullptr;
1907 enum FieldName {
1908 NoField = 0x00,
1909 BaseRegField = 0x01,
1910 BaseGVField = 0x02,
1911 BaseOffsField = 0x04,
1912 ScaledRegField = 0x08,
1913 ScaleField = 0x10,
1914 MultipleFields = 0xff
1917 ExtAddrMode() = default;
1919 void print(raw_ostream &OS) const;
1920 void dump() const;
1922 FieldName compare(const ExtAddrMode &other) {
1923 // First check that the types are the same on each field, as differing types
1924 // is something we can't cope with later on.
1925 if (BaseReg && other.BaseReg &&
1926 BaseReg->getType() != other.BaseReg->getType())
1927 return MultipleFields;
1928 if (BaseGV && other.BaseGV &&
1929 BaseGV->getType() != other.BaseGV->getType())
1930 return MultipleFields;
1931 if (ScaledReg && other.ScaledReg &&
1932 ScaledReg->getType() != other.ScaledReg->getType())
1933 return MultipleFields;
1935 // Check each field to see if it differs.
1936 unsigned Result = NoField;
1937 if (BaseReg != other.BaseReg)
1938 Result |= BaseRegField;
1939 if (BaseGV != other.BaseGV)
1940 Result |= BaseGVField;
1941 if (BaseOffs != other.BaseOffs)
1942 Result |= BaseOffsField;
1943 if (ScaledReg != other.ScaledReg)
1944 Result |= ScaledRegField;
1945 // Don't count 0 as being a different scale, because that actually means
1946 // unscaled (which will already be counted by having no ScaledReg).
1947 if (Scale && other.Scale && Scale != other.Scale)
1948 Result |= ScaleField;
1950 if (countPopulation(Result) > 1)
1951 return MultipleFields;
1952 else
1953 return static_cast<FieldName>(Result);
1956 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1957 // with no offset.
1958 bool isTrivial() {
1959 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1960 // trivial if at most one of these terms is nonzero, except that BaseGV and
1961 // BaseReg both being zero actually means a null pointer value, which we
1962 // consider to be 'non-zero' here.
1963 return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1966 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1967 switch (Field) {
1968 default:
1969 return nullptr;
1970 case BaseRegField:
1971 return BaseReg;
1972 case BaseGVField:
1973 return BaseGV;
1974 case ScaledRegField:
1975 return ScaledReg;
1976 case BaseOffsField:
1977 return ConstantInt::get(IntPtrTy, BaseOffs);
1981 void SetCombinedField(FieldName Field, Value *V,
1982 const SmallVectorImpl<ExtAddrMode> &AddrModes) {
1983 switch (Field) {
1984 default:
1985 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1986 break;
1987 case ExtAddrMode::BaseRegField:
1988 BaseReg = V;
1989 break;
1990 case ExtAddrMode::BaseGVField:
1991 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
1992 // in the BaseReg field.
1993 assert(BaseReg == nullptr);
1994 BaseReg = V;
1995 BaseGV = nullptr;
1996 break;
1997 case ExtAddrMode::ScaledRegField:
1998 ScaledReg = V;
1999 // If we have a mix of scaled and unscaled addrmodes then we want scale
2000 // to be the scale and not zero.
2001 if (!Scale)
2002 for (const ExtAddrMode &AM : AddrModes)
2003 if (AM.Scale) {
2004 Scale = AM.Scale;
2005 break;
2007 break;
2008 case ExtAddrMode::BaseOffsField:
2009 // The offset is no longer a constant, so it goes in ScaledReg with a
2010 // scale of 1.
2011 assert(ScaledReg == nullptr);
2012 ScaledReg = V;
2013 Scale = 1;
2014 BaseOffs = 0;
2015 break;
2020 } // end anonymous namespace
2022 #ifndef NDEBUG
2023 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2024 AM.print(OS);
2025 return OS;
2027 #endif
2029 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2030 void ExtAddrMode::print(raw_ostream &OS) const {
2031 bool NeedPlus = false;
2032 OS << "[";
2033 if (BaseGV) {
2034 OS << (NeedPlus ? " + " : "")
2035 << "GV:";
2036 BaseGV->printAsOperand(OS, /*PrintType=*/false);
2037 NeedPlus = true;
2040 if (BaseOffs) {
2041 OS << (NeedPlus ? " + " : "")
2042 << BaseOffs;
2043 NeedPlus = true;
2046 if (BaseReg) {
2047 OS << (NeedPlus ? " + " : "")
2048 << "Base:";
2049 BaseReg->printAsOperand(OS, /*PrintType=*/false);
2050 NeedPlus = true;
2052 if (Scale) {
2053 OS << (NeedPlus ? " + " : "")
2054 << Scale << "*";
2055 ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2058 OS << ']';
2061 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2062 print(dbgs());
2063 dbgs() << '\n';
2065 #endif
2067 namespace {
2069 /// This class provides transaction based operation on the IR.
2070 /// Every change made through this class is recorded in the internal state and
2071 /// can be undone (rollback) until commit is called.
2072 class TypePromotionTransaction {
2073 /// This represents the common interface of the individual transaction.
2074 /// Each class implements the logic for doing one specific modification on
2075 /// the IR via the TypePromotionTransaction.
2076 class TypePromotionAction {
2077 protected:
2078 /// The Instruction modified.
2079 Instruction *Inst;
2081 public:
2082 /// Constructor of the action.
2083 /// The constructor performs the related action on the IR.
2084 TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2086 virtual ~TypePromotionAction() = default;
2088 /// Undo the modification done by this action.
2089 /// When this method is called, the IR must be in the same state as it was
2090 /// before this action was applied.
2091 /// \pre Undoing the action works if and only if the IR is in the exact same
2092 /// state as it was directly after this action was applied.
2093 virtual void undo() = 0;
2095 /// Advocate every change made by this action.
2096 /// When the results on the IR of the action are to be kept, it is important
2097 /// to call this function, otherwise hidden information may be kept forever.
2098 virtual void commit() {
2099 // Nothing to be done, this action is not doing anything.
2103 /// Utility to remember the position of an instruction.
2104 class InsertionHandler {
2105 /// Position of an instruction.
2106 /// Either an instruction:
2107 /// - Is the first in a basic block: BB is used.
2108 /// - Has a previous instruction: PrevInst is used.
2109 union {
2110 Instruction *PrevInst;
2111 BasicBlock *BB;
2112 } Point;
2114 /// Remember whether or not the instruction had a previous instruction.
2115 bool HasPrevInstruction;
2117 public:
2118 /// Record the position of \p Inst.
2119 InsertionHandler(Instruction *Inst) {
2120 BasicBlock::iterator It = Inst->getIterator();
2121 HasPrevInstruction = (It != (Inst->getParent()->begin()));
2122 if (HasPrevInstruction)
2123 Point.PrevInst = &*--It;
2124 else
2125 Point.BB = Inst->getParent();
2128 /// Insert \p Inst at the recorded position.
2129 void insert(Instruction *Inst) {
2130 if (HasPrevInstruction) {
2131 if (Inst->getParent())
2132 Inst->removeFromParent();
2133 Inst->insertAfter(Point.PrevInst);
2134 } else {
2135 Instruction *Position = &*Point.BB->getFirstInsertionPt();
2136 if (Inst->getParent())
2137 Inst->moveBefore(Position);
2138 else
2139 Inst->insertBefore(Position);
2144 /// Move an instruction before another.
2145 class InstructionMoveBefore : public TypePromotionAction {
2146 /// Original position of the instruction.
2147 InsertionHandler Position;
2149 public:
2150 /// Move \p Inst before \p Before.
2151 InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2152 : TypePromotionAction(Inst), Position(Inst) {
2153 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2154 << "\n");
2155 Inst->moveBefore(Before);
2158 /// Move the instruction back to its original position.
2159 void undo() override {
2160 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2161 Position.insert(Inst);
2165 /// Set the operand of an instruction with a new value.
2166 class OperandSetter : public TypePromotionAction {
2167 /// Original operand of the instruction.
2168 Value *Origin;
2170 /// Index of the modified instruction.
2171 unsigned Idx;
2173 public:
2174 /// Set \p Idx operand of \p Inst with \p NewVal.
2175 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2176 : TypePromotionAction(Inst), Idx(Idx) {
2177 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2178 << "for:" << *Inst << "\n"
2179 << "with:" << *NewVal << "\n");
2180 Origin = Inst->getOperand(Idx);
2181 Inst->setOperand(Idx, NewVal);
2184 /// Restore the original value of the instruction.
2185 void undo() override {
2186 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2187 << "for: " << *Inst << "\n"
2188 << "with: " << *Origin << "\n");
2189 Inst->setOperand(Idx, Origin);
2193 /// Hide the operands of an instruction.
2194 /// Do as if this instruction was not using any of its operands.
2195 class OperandsHider : public TypePromotionAction {
2196 /// The list of original operands.
2197 SmallVector<Value *, 4> OriginalValues;
2199 public:
2200 /// Remove \p Inst from the uses of the operands of \p Inst.
2201 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2202 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2203 unsigned NumOpnds = Inst->getNumOperands();
2204 OriginalValues.reserve(NumOpnds);
2205 for (unsigned It = 0; It < NumOpnds; ++It) {
2206 // Save the current operand.
2207 Value *Val = Inst->getOperand(It);
2208 OriginalValues.push_back(Val);
2209 // Set a dummy one.
2210 // We could use OperandSetter here, but that would imply an overhead
2211 // that we are not willing to pay.
2212 Inst->setOperand(It, UndefValue::get(Val->getType()));
2216 /// Restore the original list of uses.
2217 void undo() override {
2218 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2219 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2220 Inst->setOperand(It, OriginalValues[It]);
2224 /// Build a truncate instruction.
2225 class TruncBuilder : public TypePromotionAction {
2226 Value *Val;
2228 public:
2229 /// Build a truncate instruction of \p Opnd producing a \p Ty
2230 /// result.
2231 /// trunc Opnd to Ty.
2232 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2233 IRBuilder<> Builder(Opnd);
2234 Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2235 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2238 /// Get the built value.
2239 Value *getBuiltValue() { return Val; }
2241 /// Remove the built instruction.
2242 void undo() override {
2243 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2244 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2245 IVal->eraseFromParent();
2249 /// Build a sign extension instruction.
2250 class SExtBuilder : public TypePromotionAction {
2251 Value *Val;
2253 public:
2254 /// Build a sign extension instruction of \p Opnd producing a \p Ty
2255 /// result.
2256 /// sext Opnd to Ty.
2257 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2258 : TypePromotionAction(InsertPt) {
2259 IRBuilder<> Builder(InsertPt);
2260 Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2261 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2264 /// Get the built value.
2265 Value *getBuiltValue() { return Val; }
2267 /// Remove the built instruction.
2268 void undo() override {
2269 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2270 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2271 IVal->eraseFromParent();
2275 /// Build a zero extension instruction.
2276 class ZExtBuilder : public TypePromotionAction {
2277 Value *Val;
2279 public:
2280 /// Build a zero extension instruction of \p Opnd producing a \p Ty
2281 /// result.
2282 /// zext Opnd to Ty.
2283 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2284 : TypePromotionAction(InsertPt) {
2285 IRBuilder<> Builder(InsertPt);
2286 Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2287 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2290 /// Get the built value.
2291 Value *getBuiltValue() { return Val; }
2293 /// Remove the built instruction.
2294 void undo() override {
2295 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2296 if (Instruction *IVal = dyn_cast<Instruction>(Val))
2297 IVal->eraseFromParent();
2301 /// Mutate an instruction to another type.
2302 class TypeMutator : public TypePromotionAction {
2303 /// Record the original type.
2304 Type *OrigTy;
2306 public:
2307 /// Mutate the type of \p Inst into \p NewTy.
2308 TypeMutator(Instruction *Inst, Type *NewTy)
2309 : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2310 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2311 << "\n");
2312 Inst->mutateType(NewTy);
2315 /// Mutate the instruction back to its original type.
2316 void undo() override {
2317 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2318 << "\n");
2319 Inst->mutateType(OrigTy);
2323 /// Replace the uses of an instruction by another instruction.
2324 class UsesReplacer : public TypePromotionAction {
2325 /// Helper structure to keep track of the replaced uses.
2326 struct InstructionAndIdx {
2327 /// The instruction using the instruction.
2328 Instruction *Inst;
2330 /// The index where this instruction is used for Inst.
2331 unsigned Idx;
2333 InstructionAndIdx(Instruction *Inst, unsigned Idx)
2334 : Inst(Inst), Idx(Idx) {}
2337 /// Keep track of the original uses (pair Instruction, Index).
2338 SmallVector<InstructionAndIdx, 4> OriginalUses;
2340 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2342 public:
2343 /// Replace all the use of \p Inst by \p New.
2344 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2345 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2346 << "\n");
2347 // Record the original uses.
2348 for (Use &U : Inst->uses()) {
2349 Instruction *UserI = cast<Instruction>(U.getUser());
2350 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2352 // Now, we can replace the uses.
2353 Inst->replaceAllUsesWith(New);
2356 /// Reassign the original uses of Inst to Inst.
2357 void undo() override {
2358 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2359 for (use_iterator UseIt = OriginalUses.begin(),
2360 EndIt = OriginalUses.end();
2361 UseIt != EndIt; ++UseIt) {
2362 UseIt->Inst->setOperand(UseIt->Idx, Inst);
2367 /// Remove an instruction from the IR.
2368 class InstructionRemover : public TypePromotionAction {
2369 /// Original position of the instruction.
2370 InsertionHandler Inserter;
2372 /// Helper structure to hide all the link to the instruction. In other
2373 /// words, this helps to do as if the instruction was removed.
2374 OperandsHider Hider;
2376 /// Keep track of the uses replaced, if any.
2377 UsesReplacer *Replacer = nullptr;
2379 /// Keep track of instructions removed.
2380 SetOfInstrs &RemovedInsts;
2382 public:
2383 /// Remove all reference of \p Inst and optionally replace all its
2384 /// uses with New.
2385 /// \p RemovedInsts Keep track of the instructions removed by this Action.
2386 /// \pre If !Inst->use_empty(), then New != nullptr
2387 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2388 Value *New = nullptr)
2389 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2390 RemovedInsts(RemovedInsts) {
2391 if (New)
2392 Replacer = new UsesReplacer(Inst, New);
2393 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2394 RemovedInsts.insert(Inst);
2395 /// The instructions removed here will be freed after completing
2396 /// optimizeBlock() for all blocks as we need to keep track of the
2397 /// removed instructions during promotion.
2398 Inst->removeFromParent();
2401 ~InstructionRemover() override { delete Replacer; }
2403 /// Resurrect the instruction and reassign it to the proper uses if
2404 /// new value was provided when build this action.
2405 void undo() override {
2406 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2407 Inserter.insert(Inst);
2408 if (Replacer)
2409 Replacer->undo();
2410 Hider.undo();
2411 RemovedInsts.erase(Inst);
2415 public:
2416 /// Restoration point.
2417 /// The restoration point is a pointer to an action instead of an iterator
2418 /// because the iterator may be invalidated but not the pointer.
2419 using ConstRestorationPt = const TypePromotionAction *;
2421 TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2422 : RemovedInsts(RemovedInsts) {}
2424 /// Advocate every changes made in that transaction.
2425 void commit();
2427 /// Undo all the changes made after the given point.
2428 void rollback(ConstRestorationPt Point);
2430 /// Get the current restoration point.
2431 ConstRestorationPt getRestorationPoint() const;
2433 /// \name API for IR modification with state keeping to support rollback.
2434 /// @{
2435 /// Same as Instruction::setOperand.
2436 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2438 /// Same as Instruction::eraseFromParent.
2439 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2441 /// Same as Value::replaceAllUsesWith.
2442 void replaceAllUsesWith(Instruction *Inst, Value *New);
2444 /// Same as Value::mutateType.
2445 void mutateType(Instruction *Inst, Type *NewTy);
2447 /// Same as IRBuilder::createTrunc.
2448 Value *createTrunc(Instruction *Opnd, Type *Ty);
2450 /// Same as IRBuilder::createSExt.
2451 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2453 /// Same as IRBuilder::createZExt.
2454 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2456 /// Same as Instruction::moveBefore.
2457 void moveBefore(Instruction *Inst, Instruction *Before);
2458 /// @}
2460 private:
2461 /// The ordered list of actions made so far.
2462 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2464 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2466 SetOfInstrs &RemovedInsts;
2469 } // end anonymous namespace
2471 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2472 Value *NewVal) {
2473 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2474 Inst, Idx, NewVal));
2477 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2478 Value *NewVal) {
2479 Actions.push_back(
2480 llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2481 Inst, RemovedInsts, NewVal));
2484 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2485 Value *New) {
2486 Actions.push_back(
2487 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2490 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2491 Actions.push_back(
2492 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2495 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2496 Type *Ty) {
2497 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2498 Value *Val = Ptr->getBuiltValue();
2499 Actions.push_back(std::move(Ptr));
2500 return Val;
2503 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2504 Value *Opnd, Type *Ty) {
2505 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2506 Value *Val = Ptr->getBuiltValue();
2507 Actions.push_back(std::move(Ptr));
2508 return Val;
2511 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2512 Value *Opnd, Type *Ty) {
2513 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2514 Value *Val = Ptr->getBuiltValue();
2515 Actions.push_back(std::move(Ptr));
2516 return Val;
2519 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2520 Instruction *Before) {
2521 Actions.push_back(
2522 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2523 Inst, Before));
2526 TypePromotionTransaction::ConstRestorationPt
2527 TypePromotionTransaction::getRestorationPoint() const {
2528 return !Actions.empty() ? Actions.back().get() : nullptr;
2531 void TypePromotionTransaction::commit() {
2532 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2533 ++It)
2534 (*It)->commit();
2535 Actions.clear();
2538 void TypePromotionTransaction::rollback(
2539 TypePromotionTransaction::ConstRestorationPt Point) {
2540 while (!Actions.empty() && Point != Actions.back().get()) {
2541 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2542 Curr->undo();
2546 namespace {
2548 /// A helper class for matching addressing modes.
2550 /// This encapsulates the logic for matching the target-legal addressing modes.
2551 class AddressingModeMatcher {
2552 SmallVectorImpl<Instruction*> &AddrModeInsts;
2553 const TargetLowering &TLI;
2554 const TargetRegisterInfo &TRI;
2555 const DataLayout &DL;
2557 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2558 /// the memory instruction that we're computing this address for.
2559 Type *AccessTy;
2560 unsigned AddrSpace;
2561 Instruction *MemoryInst;
2563 /// This is the addressing mode that we're building up. This is
2564 /// part of the return value of this addressing mode matching stuff.
2565 ExtAddrMode &AddrMode;
2567 /// The instructions inserted by other CodeGenPrepare optimizations.
2568 const SetOfInstrs &InsertedInsts;
2570 /// A map from the instructions to their type before promotion.
2571 InstrToOrigTy &PromotedInsts;
2573 /// The ongoing transaction where every action should be registered.
2574 TypePromotionTransaction &TPT;
2576 // A GEP which has too large offset to be folded into the addressing mode.
2577 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2579 /// This is set to true when we should not do profitability checks.
2580 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2581 bool IgnoreProfitability;
2583 AddressingModeMatcher(
2584 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2585 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2586 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2587 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2588 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2589 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2590 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2591 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2592 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2593 IgnoreProfitability = false;
2596 public:
2597 /// Find the maximal addressing mode that a load/store of V can fold,
2598 /// give an access type of AccessTy. This returns a list of involved
2599 /// instructions in AddrModeInsts.
2600 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2601 /// optimizations.
2602 /// \p PromotedInsts maps the instructions to their type before promotion.
2603 /// \p The ongoing transaction where every action should be registered.
2604 static ExtAddrMode
2605 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2606 SmallVectorImpl<Instruction *> &AddrModeInsts,
2607 const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2608 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2609 TypePromotionTransaction &TPT,
2610 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2611 ExtAddrMode Result;
2613 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2614 MemoryInst, Result, InsertedInsts,
2615 PromotedInsts, TPT, LargeOffsetGEP)
2616 .matchAddr(V, 0);
2617 (void)Success; assert(Success && "Couldn't select *anything*?");
2618 return Result;
2621 private:
2622 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2623 bool matchAddr(Value *Addr, unsigned Depth);
2624 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2625 bool *MovedAway = nullptr);
2626 bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2627 ExtAddrMode &AMBefore,
2628 ExtAddrMode &AMAfter);
2629 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2630 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2631 Value *PromotedOperand) const;
2634 /// Keep track of simplification of Phi nodes.
2635 /// Accept the set of all phi nodes and erase phi node from this set
2636 /// if it is simplified.
2637 class SimplificationTracker {
2638 DenseMap<Value *, Value *> Storage;
2639 const SimplifyQuery &SQ;
2640 // Tracks newly created Phi nodes. We use a SetVector to get deterministic
2641 // order when iterating over the set in MatchPhiSet.
2642 SmallSetVector<PHINode *, 32> AllPhiNodes;
2643 // Tracks newly created Select nodes.
2644 SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2646 public:
2647 SimplificationTracker(const SimplifyQuery &sq)
2648 : SQ(sq) {}
2650 Value *Get(Value *V) {
2651 do {
2652 auto SV = Storage.find(V);
2653 if (SV == Storage.end())
2654 return V;
2655 V = SV->second;
2656 } while (true);
2659 Value *Simplify(Value *Val) {
2660 SmallVector<Value *, 32> WorkList;
2661 SmallPtrSet<Value *, 32> Visited;
2662 WorkList.push_back(Val);
2663 while (!WorkList.empty()) {
2664 auto P = WorkList.pop_back_val();
2665 if (!Visited.insert(P).second)
2666 continue;
2667 if (auto *PI = dyn_cast<Instruction>(P))
2668 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2669 for (auto *U : PI->users())
2670 WorkList.push_back(cast<Value>(U));
2671 Put(PI, V);
2672 PI->replaceAllUsesWith(V);
2673 if (auto *PHI = dyn_cast<PHINode>(PI))
2674 AllPhiNodes.remove(PHI);
2675 if (auto *Select = dyn_cast<SelectInst>(PI))
2676 AllSelectNodes.erase(Select);
2677 PI->eraseFromParent();
2680 return Get(Val);
2683 void Put(Value *From, Value *To) {
2684 Storage.insert({ From, To });
2687 void ReplacePhi(PHINode *From, PHINode *To) {
2688 Value* OldReplacement = Get(From);
2689 while (OldReplacement != From) {
2690 From = To;
2691 To = dyn_cast<PHINode>(OldReplacement);
2692 OldReplacement = Get(From);
2694 assert(Get(To) == To && "Replacement PHI node is already replaced.");
2695 Put(From, To);
2696 From->replaceAllUsesWith(To);
2697 AllPhiNodes.remove(From);
2698 From->eraseFromParent();
2701 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; }
2703 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2705 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2707 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2709 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2711 void destroyNewNodes(Type *CommonType) {
2712 // For safe erasing, replace the uses with dummy value first.
2713 auto Dummy = UndefValue::get(CommonType);
2714 for (auto I : AllPhiNodes) {
2715 I->replaceAllUsesWith(Dummy);
2716 I->eraseFromParent();
2718 AllPhiNodes.clear();
2719 for (auto I : AllSelectNodes) {
2720 I->replaceAllUsesWith(Dummy);
2721 I->eraseFromParent();
2723 AllSelectNodes.clear();
2727 /// A helper class for combining addressing modes.
2728 class AddressingModeCombiner {
2729 typedef std::pair<Value *, BasicBlock *> ValueInBB;
2730 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping;
2731 typedef std::pair<PHINode *, PHINode *> PHIPair;
2733 private:
2734 /// The addressing modes we've collected.
2735 SmallVector<ExtAddrMode, 16> AddrModes;
2737 /// The field in which the AddrModes differ, when we have more than one.
2738 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2740 /// Are the AddrModes that we have all just equal to their original values?
2741 bool AllAddrModesTrivial = true;
2743 /// Common Type for all different fields in addressing modes.
2744 Type *CommonType;
2746 /// SimplifyQuery for simplifyInstruction utility.
2747 const SimplifyQuery &SQ;
2749 /// Original Address.
2750 ValueInBB Original;
2752 public:
2753 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue)
2754 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2756 /// Get the combined AddrMode
2757 const ExtAddrMode &getAddrMode() const {
2758 return AddrModes[0];
2761 /// Add a new AddrMode if it's compatible with the AddrModes we already
2762 /// have.
2763 /// \return True iff we succeeded in doing so.
2764 bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2765 // Take note of if we have any non-trivial AddrModes, as we need to detect
2766 // when all AddrModes are trivial as then we would introduce a phi or select
2767 // which just duplicates what's already there.
2768 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2770 // If this is the first addrmode then everything is fine.
2771 if (AddrModes.empty()) {
2772 AddrModes.emplace_back(NewAddrMode);
2773 return true;
2776 // Figure out how different this is from the other address modes, which we
2777 // can do just by comparing against the first one given that we only care
2778 // about the cumulative difference.
2779 ExtAddrMode::FieldName ThisDifferentField =
2780 AddrModes[0].compare(NewAddrMode);
2781 if (DifferentField == ExtAddrMode::NoField)
2782 DifferentField = ThisDifferentField;
2783 else if (DifferentField != ThisDifferentField)
2784 DifferentField = ExtAddrMode::MultipleFields;
2786 // If NewAddrMode differs in more than one dimension we cannot handle it.
2787 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2789 // If Scale Field is different then we reject.
2790 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2792 // We also must reject the case when base offset is different and
2793 // scale reg is not null, we cannot handle this case due to merge of
2794 // different offsets will be used as ScaleReg.
2795 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2796 !NewAddrMode.ScaledReg);
2798 // We also must reject the case when GV is different and BaseReg installed
2799 // due to we want to use base reg as a merge of GV values.
2800 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2801 !NewAddrMode.HasBaseReg);
2803 // Even if NewAddMode is the same we still need to collect it due to
2804 // original value is different. And later we will need all original values
2805 // as anchors during finding the common Phi node.
2806 if (CanHandle)
2807 AddrModes.emplace_back(NewAddrMode);
2808 else
2809 AddrModes.clear();
2811 return CanHandle;
2814 /// Combine the addressing modes we've collected into a single
2815 /// addressing mode.
2816 /// \return True iff we successfully combined them or we only had one so
2817 /// didn't need to combine them anyway.
2818 bool combineAddrModes() {
2819 // If we have no AddrModes then they can't be combined.
2820 if (AddrModes.size() == 0)
2821 return false;
2823 // A single AddrMode can trivially be combined.
2824 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2825 return true;
2827 // If the AddrModes we collected are all just equal to the value they are
2828 // derived from then combining them wouldn't do anything useful.
2829 if (AllAddrModesTrivial)
2830 return false;
2832 if (!addrModeCombiningAllowed())
2833 return false;
2835 // Build a map between <original value, basic block where we saw it> to
2836 // value of base register.
2837 // Bail out if there is no common type.
2838 FoldAddrToValueMapping Map;
2839 if (!initializeMap(Map))
2840 return false;
2842 Value *CommonValue = findCommon(Map);
2843 if (CommonValue)
2844 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
2845 return CommonValue != nullptr;
2848 private:
2849 /// Initialize Map with anchor values. For address seen in some BB
2850 /// we set the value of different field saw in this address.
2851 /// If address is not an instruction than basic block is set to null.
2852 /// At the same time we find a common type for different field we will
2853 /// use to create new Phi/Select nodes. Keep it in CommonType field.
2854 /// Return false if there is no common type found.
2855 bool initializeMap(FoldAddrToValueMapping &Map) {
2856 // Keep track of keys where the value is null. We will need to replace it
2857 // with constant null when we know the common type.
2858 SmallVector<ValueInBB, 2> NullValue;
2859 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
2860 for (auto &AM : AddrModes) {
2861 BasicBlock *BB = nullptr;
2862 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue))
2863 BB = I->getParent();
2865 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
2866 if (DV) {
2867 auto *Type = DV->getType();
2868 if (CommonType && CommonType != Type)
2869 return false;
2870 CommonType = Type;
2871 Map[{ AM.OriginalValue, BB }] = DV;
2872 } else {
2873 NullValue.push_back({ AM.OriginalValue, BB });
2876 assert(CommonType && "At least one non-null value must be!");
2877 for (auto VIBB : NullValue)
2878 Map[VIBB] = Constant::getNullValue(CommonType);
2879 return true;
2882 /// We have mapping between value A and basic block where value A
2883 /// seen to other value B where B was a field in addressing mode represented
2884 /// by A. Also we have an original value C representing an address in some
2885 /// basic block. Traversing from C through phi and selects we ended up with
2886 /// A's in a map. This utility function tries to find a value V which is a
2887 /// field in addressing mode C and traversing through phi nodes and selects
2888 /// we will end up in corresponded values B in a map.
2889 /// The utility will create a new Phi/Selects if needed.
2890 // The simple example looks as follows:
2891 // BB1:
2892 // p1 = b1 + 40
2893 // br cond BB2, BB3
2894 // BB2:
2895 // p2 = b2 + 40
2896 // br BB3
2897 // BB3:
2898 // p = phi [p1, BB1], [p2, BB2]
2899 // v = load p
2900 // Map is
2901 // <p1, BB1> -> b1
2902 // <p2, BB2> -> b2
2903 // Request is
2904 // <p, BB3> -> ?
2905 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2906 Value *findCommon(FoldAddrToValueMapping &Map) {
2907 // Tracks the simplification of newly created phi nodes. The reason we use
2908 // this mapping is because we will add new created Phi nodes in AddrToBase.
2909 // Simplification of Phi nodes is recursive, so some Phi node may
2910 // be simplified after we added it to AddrToBase.
2911 // Using this mapping we can find the current value in AddrToBase.
2912 SimplificationTracker ST(SQ);
2914 // First step, DFS to create PHI nodes for all intermediate blocks.
2915 // Also fill traverse order for the second step.
2916 SmallVector<ValueInBB, 32> TraverseOrder;
2917 InsertPlaceholders(Map, TraverseOrder, ST);
2919 // Second Step, fill new nodes by merged values and simplify if possible.
2920 FillPlaceholders(Map, TraverseOrder, ST);
2922 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
2923 ST.destroyNewNodes(CommonType);
2924 return nullptr;
2927 // Now we'd like to match New Phi nodes to existed ones.
2928 unsigned PhiNotMatchedCount = 0;
2929 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
2930 ST.destroyNewNodes(CommonType);
2931 return nullptr;
2934 auto *Result = ST.Get(Map.find(Original)->second);
2935 if (Result) {
2936 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
2937 NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
2939 return Result;
2942 /// Try to match PHI node to Candidate.
2943 /// Matcher tracks the matched Phi nodes.
2944 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
2945 SmallSetVector<PHIPair, 8> &Matcher,
2946 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) {
2947 SmallVector<PHIPair, 8> WorkList;
2948 Matcher.insert({ PHI, Candidate });
2949 WorkList.push_back({ PHI, Candidate });
2950 SmallSet<PHIPair, 8> Visited;
2951 while (!WorkList.empty()) {
2952 auto Item = WorkList.pop_back_val();
2953 if (!Visited.insert(Item).second)
2954 continue;
2955 // We iterate over all incoming values to Phi to compare them.
2956 // If values are different and both of them Phi and the first one is a
2957 // Phi we added (subject to match) and both of them is in the same basic
2958 // block then we can match our pair if values match. So we state that
2959 // these values match and add it to work list to verify that.
2960 for (auto B : Item.first->blocks()) {
2961 Value *FirstValue = Item.first->getIncomingValueForBlock(B);
2962 Value *SecondValue = Item.second->getIncomingValueForBlock(B);
2963 if (FirstValue == SecondValue)
2964 continue;
2966 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
2967 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
2969 // One of them is not Phi or
2970 // The first one is not Phi node from the set we'd like to match or
2971 // Phi nodes from different basic blocks then
2972 // we will not be able to match.
2973 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
2974 FirstPhi->getParent() != SecondPhi->getParent())
2975 return false;
2977 // If we already matched them then continue.
2978 if (Matcher.count({ FirstPhi, SecondPhi }))
2979 continue;
2980 // So the values are different and does not match. So we need them to
2981 // match.
2982 Matcher.insert({ FirstPhi, SecondPhi });
2983 // But me must check it.
2984 WorkList.push_back({ FirstPhi, SecondPhi });
2987 return true;
2990 /// For the given set of PHI nodes (in the SimplificationTracker) try
2991 /// to find their equivalents.
2992 /// Returns false if this matching fails and creation of new Phi is disabled.
2993 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
2994 unsigned &PhiNotMatchedCount) {
2995 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi)
2996 // in a deterministic order below.
2997 SmallSetVector<PHIPair, 8> Matched;
2998 SmallPtrSet<PHINode *, 8> WillNotMatch;
2999 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes();
3000 while (PhiNodesToMatch.size()) {
3001 PHINode *PHI = *PhiNodesToMatch.begin();
3003 // Add us, if no Phi nodes in the basic block we do not match.
3004 WillNotMatch.clear();
3005 WillNotMatch.insert(PHI);
3007 // Traverse all Phis until we found equivalent or fail to do that.
3008 bool IsMatched = false;
3009 for (auto &P : PHI->getParent()->phis()) {
3010 if (&P == PHI)
3011 continue;
3012 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3013 break;
3014 // If it does not match, collect all Phi nodes from matcher.
3015 // if we end up with no match, them all these Phi nodes will not match
3016 // later.
3017 for (auto M : Matched)
3018 WillNotMatch.insert(M.first);
3019 Matched.clear();
3021 if (IsMatched) {
3022 // Replace all matched values and erase them.
3023 for (auto MV : Matched)
3024 ST.ReplacePhi(MV.first, MV.second);
3025 Matched.clear();
3026 continue;
3028 // If we are not allowed to create new nodes then bail out.
3029 if (!AllowNewPhiNodes)
3030 return false;
3031 // Just remove all seen values in matcher. They will not match anything.
3032 PhiNotMatchedCount += WillNotMatch.size();
3033 for (auto *P : WillNotMatch)
3034 PhiNodesToMatch.remove(P);
3036 return true;
3038 /// Fill the placeholder with values from predecessors and simplify it.
3039 void FillPlaceholders(FoldAddrToValueMapping &Map,
3040 SmallVectorImpl<ValueInBB> &TraverseOrder,
3041 SimplificationTracker &ST) {
3042 while (!TraverseOrder.empty()) {
3043 auto Current = TraverseOrder.pop_back_val();
3044 assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3045 Value *CurrentValue = Current.first;
3046 BasicBlock *CurrentBlock = Current.second;
3047 Value *V = Map[Current];
3049 if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3050 // CurrentValue also must be Select.
3051 auto *CurrentSelect = cast<SelectInst>(CurrentValue);
3052 auto *TrueValue = CurrentSelect->getTrueValue();
3053 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue)
3054 ? CurrentBlock
3055 : nullptr };
3056 assert(Map.find(TrueItem) != Map.end() && "No True Value!");
3057 Select->setTrueValue(ST.Get(Map[TrueItem]));
3058 auto *FalseValue = CurrentSelect->getFalseValue();
3059 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue)
3060 ? CurrentBlock
3061 : nullptr };
3062 assert(Map.find(FalseItem) != Map.end() && "No False Value!");
3063 Select->setFalseValue(ST.Get(Map[FalseItem]));
3064 } else {
3065 // Must be a Phi node then.
3066 PHINode *PHI = cast<PHINode>(V);
3067 // Fill the Phi node with values from predecessors.
3068 bool IsDefinedInThisBB =
3069 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock;
3070 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue);
3071 for (auto B : predecessors(CurrentBlock)) {
3072 Value *PV = IsDefinedInThisBB
3073 ? CurrentPhi->getIncomingValueForBlock(B)
3074 : CurrentValue;
3075 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr };
3076 assert(Map.find(item) != Map.end() && "No predecessor Value!");
3077 PHI->addIncoming(ST.Get(Map[item]), B);
3080 // Simplify if possible.
3081 Map[Current] = ST.Simplify(V);
3085 /// Starting from value recursively iterates over predecessors up to known
3086 /// ending values represented in a map. For each traversed block inserts
3087 /// a placeholder Phi or Select.
3088 /// Reports all new created Phi/Select nodes by adding them to set.
3089 /// Also reports and order in what basic blocks have been traversed.
3090 void InsertPlaceholders(FoldAddrToValueMapping &Map,
3091 SmallVectorImpl<ValueInBB> &TraverseOrder,
3092 SimplificationTracker &ST) {
3093 SmallVector<ValueInBB, 32> Worklist;
3094 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) &&
3095 "Address must be a Phi or Select node");
3096 auto *Dummy = UndefValue::get(CommonType);
3097 Worklist.push_back(Original);
3098 while (!Worklist.empty()) {
3099 auto Current = Worklist.pop_back_val();
3100 // If value is not an instruction it is something global, constant,
3101 // parameter and we can say that this value is observable in any block.
3102 // Set block to null to denote it.
3103 // Also please take into account that it is how we build anchors.
3104 if (!isa<Instruction>(Current.first))
3105 Current.second = nullptr;
3106 // if it is already visited or it is an ending value then skip it.
3107 if (Map.find(Current) != Map.end())
3108 continue;
3109 TraverseOrder.push_back(Current);
3111 Value *CurrentValue = Current.first;
3112 BasicBlock *CurrentBlock = Current.second;
3113 // CurrentValue must be a Phi node or select. All others must be covered
3114 // by anchors.
3115 Instruction *CurrentI = cast<Instruction>(CurrentValue);
3116 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock;
3118 unsigned PredCount = pred_size(CurrentBlock);
3119 // if Current Value is not defined in this basic block we are interested
3120 // in values in predecessors.
3121 if (!IsDefinedInThisBB) {
3122 assert(PredCount && "Unreachable block?!");
3123 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3124 &CurrentBlock->front());
3125 Map[Current] = PHI;
3126 ST.insertNewPhi(PHI);
3127 // Add all predecessors in work list.
3128 for (auto B : predecessors(CurrentBlock))
3129 Worklist.push_back({ CurrentValue, B });
3130 continue;
3132 // Value is defined in this basic block.
3133 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) {
3134 // Is it OK to get metadata from OrigSelect?!
3135 // Create a Select placeholder with dummy value.
3136 SelectInst *Select =
3137 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy,
3138 OrigSelect->getName(), OrigSelect, OrigSelect);
3139 Map[Current] = Select;
3140 ST.insertNewSelect(Select);
3141 // We are interested in True and False value in this basic block.
3142 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock });
3143 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock });
3144 } else {
3145 // It must be a Phi node then.
3146 auto *CurrentPhi = cast<PHINode>(CurrentI);
3147 // Create new Phi node for merge of bases.
3148 assert(PredCount && "Unreachable block?!");
3149 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3150 &CurrentBlock->front());
3151 Map[Current] = PHI;
3152 ST.insertNewPhi(PHI);
3154 // Add all predecessors in work list.
3155 for (auto B : predecessors(CurrentBlock))
3156 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B });
3161 bool addrModeCombiningAllowed() {
3162 if (DisableComplexAddrModes)
3163 return false;
3164 switch (DifferentField) {
3165 default:
3166 return false;
3167 case ExtAddrMode::BaseRegField:
3168 return AddrSinkCombineBaseReg;
3169 case ExtAddrMode::BaseGVField:
3170 return AddrSinkCombineBaseGV;
3171 case ExtAddrMode::BaseOffsField:
3172 return AddrSinkCombineBaseOffs;
3173 case ExtAddrMode::ScaledRegField:
3174 return AddrSinkCombineScaledReg;
3178 } // end anonymous namespace
3180 /// Try adding ScaleReg*Scale to the current addressing mode.
3181 /// Return true and update AddrMode if this addr mode is legal for the target,
3182 /// false if not.
3183 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3184 unsigned Depth) {
3185 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3186 // mode. Just process that directly.
3187 if (Scale == 1)
3188 return matchAddr(ScaleReg, Depth);
3190 // If the scale is 0, it takes nothing to add this.
3191 if (Scale == 0)
3192 return true;
3194 // If we already have a scale of this value, we can add to it, otherwise, we
3195 // need an available scale field.
3196 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3197 return false;
3199 ExtAddrMode TestAddrMode = AddrMode;
3201 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
3202 // [A+B + A*7] -> [B+A*8].
3203 TestAddrMode.Scale += Scale;
3204 TestAddrMode.ScaledReg = ScaleReg;
3206 // If the new address isn't legal, bail out.
3207 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3208 return false;
3210 // It was legal, so commit it.
3211 AddrMode = TestAddrMode;
3213 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
3214 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
3215 // X*Scale + C*Scale to addr mode.
3216 ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3217 if (isa<Instruction>(ScaleReg) && // not a constant expr.
3218 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3219 TestAddrMode.ScaledReg = AddLHS;
3220 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3222 // If this addressing mode is legal, commit it and remember that we folded
3223 // this instruction.
3224 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3225 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3226 AddrMode = TestAddrMode;
3227 return true;
3231 // Otherwise, not (x+c)*scale, just return what we have.
3232 return true;
3235 /// This is a little filter, which returns true if an addressing computation
3236 /// involving I might be folded into a load/store accessing it.
3237 /// This doesn't need to be perfect, but needs to accept at least
3238 /// the set of instructions that MatchOperationAddr can.
3239 static bool MightBeFoldableInst(Instruction *I) {
3240 switch (I->getOpcode()) {
3241 case Instruction::BitCast:
3242 case Instruction::AddrSpaceCast:
3243 // Don't touch identity bitcasts.
3244 if (I->getType() == I->getOperand(0)->getType())
3245 return false;
3246 return I->getType()->isIntOrPtrTy();
3247 case Instruction::PtrToInt:
3248 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3249 return true;
3250 case Instruction::IntToPtr:
3251 // We know the input is intptr_t, so this is foldable.
3252 return true;
3253 case Instruction::Add:
3254 return true;
3255 case Instruction::Mul:
3256 case Instruction::Shl:
3257 // Can only handle X*C and X << C.
3258 return isa<ConstantInt>(I->getOperand(1));
3259 case Instruction::GetElementPtr:
3260 return true;
3261 default:
3262 return false;
3266 /// Check whether or not \p Val is a legal instruction for \p TLI.
3267 /// \note \p Val is assumed to be the product of some type promotion.
3268 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3269 /// to be legal, as the non-promoted value would have had the same state.
3270 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3271 const DataLayout &DL, Value *Val) {
3272 Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3273 if (!PromotedInst)
3274 return false;
3275 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3276 // If the ISDOpcode is undefined, it was undefined before the promotion.
3277 if (!ISDOpcode)
3278 return true;
3279 // Otherwise, check if the promoted instruction is legal or not.
3280 return TLI.isOperationLegalOrCustom(
3281 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3284 namespace {
3286 /// Hepler class to perform type promotion.
3287 class TypePromotionHelper {
3288 /// Utility function to add a promoted instruction \p ExtOpnd to
3289 /// \p PromotedInsts and record the type of extension we have seen.
3290 static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3291 Instruction *ExtOpnd,
3292 bool IsSExt) {
3293 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3294 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3295 if (It != PromotedInsts.end()) {
3296 // If the new extension is same as original, the information in
3297 // PromotedInsts[ExtOpnd] is still correct.
3298 if (It->second.getInt() == ExtTy)
3299 return;
3301 // Now the new extension is different from old extension, we make
3302 // the type information invalid by setting extension type to
3303 // BothExtension.
3304 ExtTy = BothExtension;
3306 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3309 /// Utility function to query the original type of instruction \p Opnd
3310 /// with a matched extension type. If the extension doesn't match, we
3311 /// cannot use the information we had on the original type.
3312 /// BothExtension doesn't match any extension type.
3313 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3314 Instruction *Opnd,
3315 bool IsSExt) {
3316 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3317 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3318 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3319 return It->second.getPointer();
3320 return nullptr;
3323 /// Utility function to check whether or not a sign or zero extension
3324 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3325 /// either using the operands of \p Inst or promoting \p Inst.
3326 /// The type of the extension is defined by \p IsSExt.
3327 /// In other words, check if:
3328 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3329 /// #1 Promotion applies:
3330 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3331 /// #2 Operand reuses:
3332 /// ext opnd1 to ConsideredExtType.
3333 /// \p PromotedInsts maps the instructions to their type before promotion.
3334 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3335 const InstrToOrigTy &PromotedInsts, bool IsSExt);
3337 /// Utility function to determine if \p OpIdx should be promoted when
3338 /// promoting \p Inst.
3339 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3340 return !(isa<SelectInst>(Inst) && OpIdx == 0);
3343 /// Utility function to promote the operand of \p Ext when this
3344 /// operand is a promotable trunc or sext or zext.
3345 /// \p PromotedInsts maps the instructions to their type before promotion.
3346 /// \p CreatedInstsCost[out] contains the cost of all instructions
3347 /// created to promote the operand of Ext.
3348 /// Newly added extensions are inserted in \p Exts.
3349 /// Newly added truncates are inserted in \p Truncs.
3350 /// Should never be called directly.
3351 /// \return The promoted value which is used instead of Ext.
3352 static Value *promoteOperandForTruncAndAnyExt(
3353 Instruction *Ext, TypePromotionTransaction &TPT,
3354 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3355 SmallVectorImpl<Instruction *> *Exts,
3356 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3358 /// Utility function to promote the operand of \p Ext when this
3359 /// operand is promotable and is not a supported trunc or sext.
3360 /// \p PromotedInsts maps the instructions to their type before promotion.
3361 /// \p CreatedInstsCost[out] contains the cost of all the instructions
3362 /// created to promote the operand of Ext.
3363 /// Newly added extensions are inserted in \p Exts.
3364 /// Newly added truncates are inserted in \p Truncs.
3365 /// Should never be called directly.
3366 /// \return The promoted value which is used instead of Ext.
3367 static Value *promoteOperandForOther(Instruction *Ext,
3368 TypePromotionTransaction &TPT,
3369 InstrToOrigTy &PromotedInsts,
3370 unsigned &CreatedInstsCost,
3371 SmallVectorImpl<Instruction *> *Exts,
3372 SmallVectorImpl<Instruction *> *Truncs,
3373 const TargetLowering &TLI, bool IsSExt);
3375 /// \see promoteOperandForOther.
3376 static Value *signExtendOperandForOther(
3377 Instruction *Ext, TypePromotionTransaction &TPT,
3378 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3379 SmallVectorImpl<Instruction *> *Exts,
3380 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3381 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3382 Exts, Truncs, TLI, true);
3385 /// \see promoteOperandForOther.
3386 static Value *zeroExtendOperandForOther(
3387 Instruction *Ext, TypePromotionTransaction &TPT,
3388 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3389 SmallVectorImpl<Instruction *> *Exts,
3390 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3391 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3392 Exts, Truncs, TLI, false);
3395 public:
3396 /// Type for the utility function that promotes the operand of Ext.
3397 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3398 InstrToOrigTy &PromotedInsts,
3399 unsigned &CreatedInstsCost,
3400 SmallVectorImpl<Instruction *> *Exts,
3401 SmallVectorImpl<Instruction *> *Truncs,
3402 const TargetLowering &TLI);
3404 /// Given a sign/zero extend instruction \p Ext, return the appropriate
3405 /// action to promote the operand of \p Ext instead of using Ext.
3406 /// \return NULL if no promotable action is possible with the current
3407 /// sign extension.
3408 /// \p InsertedInsts keeps track of all the instructions inserted by the
3409 /// other CodeGenPrepare optimizations. This information is important
3410 /// because we do not want to promote these instructions as CodeGenPrepare
3411 /// will reinsert them later. Thus creating an infinite loop: create/remove.
3412 /// \p PromotedInsts maps the instructions to their type before promotion.
3413 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3414 const TargetLowering &TLI,
3415 const InstrToOrigTy &PromotedInsts);
3418 } // end anonymous namespace
3420 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3421 Type *ConsideredExtType,
3422 const InstrToOrigTy &PromotedInsts,
3423 bool IsSExt) {
3424 // The promotion helper does not know how to deal with vector types yet.
3425 // To be able to fix that, we would need to fix the places where we
3426 // statically extend, e.g., constants and such.
3427 if (Inst->getType()->isVectorTy())
3428 return false;
3430 // We can always get through zext.
3431 if (isa<ZExtInst>(Inst))
3432 return true;
3434 // sext(sext) is ok too.
3435 if (IsSExt && isa<SExtInst>(Inst))
3436 return true;
3438 // We can get through binary operator, if it is legal. In other words, the
3439 // binary operator must have a nuw or nsw flag.
3440 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3441 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3442 ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3443 (IsSExt && BinOp->hasNoSignedWrap())))
3444 return true;
3446 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3447 if ((Inst->getOpcode() == Instruction::And ||
3448 Inst->getOpcode() == Instruction::Or))
3449 return true;
3451 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3452 if (Inst->getOpcode() == Instruction::Xor) {
3453 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3454 // Make sure it is not a NOT.
3455 if (Cst && !Cst->getValue().isAllOnesValue())
3456 return true;
3459 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3460 // It may change a poisoned value into a regular value, like
3461 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
3462 // poisoned value regular value
3463 // It should be OK since undef covers valid value.
3464 if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3465 return true;
3467 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3468 // It may change a poisoned value into a regular value, like
3469 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
3470 // poisoned value regular value
3471 // It should be OK since undef covers valid value.
3472 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3473 const Instruction *ExtInst =
3474 dyn_cast<const Instruction>(*Inst->user_begin());
3475 if (ExtInst->hasOneUse()) {
3476 const Instruction *AndInst =
3477 dyn_cast<const Instruction>(*ExtInst->user_begin());
3478 if (AndInst && AndInst->getOpcode() == Instruction::And) {
3479 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3480 if (Cst &&
3481 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3482 return true;
3487 // Check if we can do the following simplification.
3488 // ext(trunc(opnd)) --> ext(opnd)
3489 if (!isa<TruncInst>(Inst))
3490 return false;
3492 Value *OpndVal = Inst->getOperand(0);
3493 // Check if we can use this operand in the extension.
3494 // If the type is larger than the result type of the extension, we cannot.
3495 if (!OpndVal->getType()->isIntegerTy() ||
3496 OpndVal->getType()->getIntegerBitWidth() >
3497 ConsideredExtType->getIntegerBitWidth())
3498 return false;
3500 // If the operand of the truncate is not an instruction, we will not have
3501 // any information on the dropped bits.
3502 // (Actually we could for constant but it is not worth the extra logic).
3503 Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3504 if (!Opnd)
3505 return false;
3507 // Check if the source of the type is narrow enough.
3508 // I.e., check that trunc just drops extended bits of the same kind of
3509 // the extension.
3510 // #1 get the type of the operand and check the kind of the extended bits.
3511 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3512 if (OpndType)
3514 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3515 OpndType = Opnd->getOperand(0)->getType();
3516 else
3517 return false;
3519 // #2 check that the truncate just drops extended bits.
3520 return Inst->getType()->getIntegerBitWidth() >=
3521 OpndType->getIntegerBitWidth();
3524 TypePromotionHelper::Action TypePromotionHelper::getAction(
3525 Instruction *Ext, const SetOfInstrs &InsertedInsts,
3526 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3527 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3528 "Unexpected instruction type");
3529 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3530 Type *ExtTy = Ext->getType();
3531 bool IsSExt = isa<SExtInst>(Ext);
3532 // If the operand of the extension is not an instruction, we cannot
3533 // get through.
3534 // If it, check we can get through.
3535 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3536 return nullptr;
3538 // Do not promote if the operand has been added by codegenprepare.
3539 // Otherwise, it means we are undoing an optimization that is likely to be
3540 // redone, thus causing potential infinite loop.
3541 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3542 return nullptr;
3544 // SExt or Trunc instructions.
3545 // Return the related handler.
3546 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3547 isa<ZExtInst>(ExtOpnd))
3548 return promoteOperandForTruncAndAnyExt;
3550 // Regular instruction.
3551 // Abort early if we will have to insert non-free instructions.
3552 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3553 return nullptr;
3554 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3557 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3558 Instruction *SExt, TypePromotionTransaction &TPT,
3559 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3560 SmallVectorImpl<Instruction *> *Exts,
3561 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3562 // By construction, the operand of SExt is an instruction. Otherwise we cannot
3563 // get through it and this method should not be called.
3564 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3565 Value *ExtVal = SExt;
3566 bool HasMergedNonFreeExt = false;
3567 if (isa<ZExtInst>(SExtOpnd)) {
3568 // Replace s|zext(zext(opnd))
3569 // => zext(opnd).
3570 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3571 Value *ZExt =
3572 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3573 TPT.replaceAllUsesWith(SExt, ZExt);
3574 TPT.eraseInstruction(SExt);
3575 ExtVal = ZExt;
3576 } else {
3577 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3578 // => z|sext(opnd).
3579 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3581 CreatedInstsCost = 0;
3583 // Remove dead code.
3584 if (SExtOpnd->use_empty())
3585 TPT.eraseInstruction(SExtOpnd);
3587 // Check if the extension is still needed.
3588 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3589 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3590 if (ExtInst) {
3591 if (Exts)
3592 Exts->push_back(ExtInst);
3593 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3595 return ExtVal;
3598 // At this point we have: ext ty opnd to ty.
3599 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3600 Value *NextVal = ExtInst->getOperand(0);
3601 TPT.eraseInstruction(ExtInst, NextVal);
3602 return NextVal;
3605 Value *TypePromotionHelper::promoteOperandForOther(
3606 Instruction *Ext, TypePromotionTransaction &TPT,
3607 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3608 SmallVectorImpl<Instruction *> *Exts,
3609 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3610 bool IsSExt) {
3611 // By construction, the operand of Ext is an instruction. Otherwise we cannot
3612 // get through it and this method should not be called.
3613 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3614 CreatedInstsCost = 0;
3615 if (!ExtOpnd->hasOneUse()) {
3616 // ExtOpnd will be promoted.
3617 // All its uses, but Ext, will need to use a truncated value of the
3618 // promoted version.
3619 // Create the truncate now.
3620 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3621 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3622 // Insert it just after the definition.
3623 ITrunc->moveAfter(ExtOpnd);
3624 if (Truncs)
3625 Truncs->push_back(ITrunc);
3628 TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3629 // Restore the operand of Ext (which has been replaced by the previous call
3630 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3631 TPT.setOperand(Ext, 0, ExtOpnd);
3634 // Get through the Instruction:
3635 // 1. Update its type.
3636 // 2. Replace the uses of Ext by Inst.
3637 // 3. Extend each operand that needs to be extended.
3639 // Remember the original type of the instruction before promotion.
3640 // This is useful to know that the high bits are sign extended bits.
3641 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3642 // Step #1.
3643 TPT.mutateType(ExtOpnd, Ext->getType());
3644 // Step #2.
3645 TPT.replaceAllUsesWith(Ext, ExtOpnd);
3646 // Step #3.
3647 Instruction *ExtForOpnd = Ext;
3649 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3650 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3651 ++OpIdx) {
3652 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3653 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3654 !shouldExtOperand(ExtOpnd, OpIdx)) {
3655 LLVM_DEBUG(dbgs() << "No need to propagate\n");
3656 continue;
3658 // Check if we can statically extend the operand.
3659 Value *Opnd = ExtOpnd->getOperand(OpIdx);
3660 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3661 LLVM_DEBUG(dbgs() << "Statically extend\n");
3662 unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3663 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3664 : Cst->getValue().zext(BitWidth);
3665 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3666 continue;
3668 // UndefValue are typed, so we have to statically sign extend them.
3669 if (isa<UndefValue>(Opnd)) {
3670 LLVM_DEBUG(dbgs() << "Statically extend\n");
3671 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3672 continue;
3675 // Otherwise we have to explicitly sign extend the operand.
3676 // Check if Ext was reused to extend an operand.
3677 if (!ExtForOpnd) {
3678 // If yes, create a new one.
3679 LLVM_DEBUG(dbgs() << "More operands to ext\n");
3680 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3681 : TPT.createZExt(Ext, Opnd, Ext->getType());
3682 if (!isa<Instruction>(ValForExtOpnd)) {
3683 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3684 continue;
3686 ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3688 if (Exts)
3689 Exts->push_back(ExtForOpnd);
3690 TPT.setOperand(ExtForOpnd, 0, Opnd);
3692 // Move the sign extension before the insertion point.
3693 TPT.moveBefore(ExtForOpnd, ExtOpnd);
3694 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3695 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3696 // If more sext are required, new instructions will have to be created.
3697 ExtForOpnd = nullptr;
3699 if (ExtForOpnd == Ext) {
3700 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3701 TPT.eraseInstruction(Ext);
3703 return ExtOpnd;
3706 /// Check whether or not promoting an instruction to a wider type is profitable.
3707 /// \p NewCost gives the cost of extension instructions created by the
3708 /// promotion.
3709 /// \p OldCost gives the cost of extension instructions before the promotion
3710 /// plus the number of instructions that have been
3711 /// matched in the addressing mode the promotion.
3712 /// \p PromotedOperand is the value that has been promoted.
3713 /// \return True if the promotion is profitable, false otherwise.
3714 bool AddressingModeMatcher::isPromotionProfitable(
3715 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3716 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3717 << '\n');
3718 // The cost of the new extensions is greater than the cost of the
3719 // old extension plus what we folded.
3720 // This is not profitable.
3721 if (NewCost > OldCost)
3722 return false;
3723 if (NewCost < OldCost)
3724 return true;
3725 // The promotion is neutral but it may help folding the sign extension in
3726 // loads for instance.
3727 // Check that we did not create an illegal instruction.
3728 return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3731 /// Given an instruction or constant expr, see if we can fold the operation
3732 /// into the addressing mode. If so, update the addressing mode and return
3733 /// true, otherwise return false without modifying AddrMode.
3734 /// If \p MovedAway is not NULL, it contains the information of whether or
3735 /// not AddrInst has to be folded into the addressing mode on success.
3736 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3737 /// because it has been moved away.
3738 /// Thus AddrInst must not be added in the matched instructions.
3739 /// This state can happen when AddrInst is a sext, since it may be moved away.
3740 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3741 /// not be referenced anymore.
3742 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3743 unsigned Depth,
3744 bool *MovedAway) {
3745 // Avoid exponential behavior on extremely deep expression trees.
3746 if (Depth >= 5) return false;
3748 // By default, all matched instructions stay in place.
3749 if (MovedAway)
3750 *MovedAway = false;
3752 switch (Opcode) {
3753 case Instruction::PtrToInt:
3754 // PtrToInt is always a noop, as we know that the int type is pointer sized.
3755 return matchAddr(AddrInst->getOperand(0), Depth);
3756 case Instruction::IntToPtr: {
3757 auto AS = AddrInst->getType()->getPointerAddressSpace();
3758 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3759 // This inttoptr is a no-op if the integer type is pointer sized.
3760 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3761 return matchAddr(AddrInst->getOperand(0), Depth);
3762 return false;
3764 case Instruction::BitCast:
3765 // BitCast is always a noop, and we can handle it as long as it is
3766 // int->int or pointer->pointer (we don't want int<->fp or something).
3767 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
3768 // Don't touch identity bitcasts. These were probably put here by LSR,
3769 // and we don't want to mess around with them. Assume it knows what it
3770 // is doing.
3771 AddrInst->getOperand(0)->getType() != AddrInst->getType())
3772 return matchAddr(AddrInst->getOperand(0), Depth);
3773 return false;
3774 case Instruction::AddrSpaceCast: {
3775 unsigned SrcAS
3776 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3777 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3778 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3779 return matchAddr(AddrInst->getOperand(0), Depth);
3780 return false;
3782 case Instruction::Add: {
3783 // Check to see if we can merge in the RHS then the LHS. If so, we win.
3784 ExtAddrMode BackupAddrMode = AddrMode;
3785 unsigned OldSize = AddrModeInsts.size();
3786 // Start a transaction at this point.
3787 // The LHS may match but not the RHS.
3788 // Therefore, we need a higher level restoration point to undo partially
3789 // matched operation.
3790 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3791 TPT.getRestorationPoint();
3793 if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3794 matchAddr(AddrInst->getOperand(0), Depth+1))
3795 return true;
3797 // Restore the old addr mode info.
3798 AddrMode = BackupAddrMode;
3799 AddrModeInsts.resize(OldSize);
3800 TPT.rollback(LastKnownGood);
3802 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
3803 if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3804 matchAddr(AddrInst->getOperand(1), Depth+1))
3805 return true;
3807 // Otherwise we definitely can't merge the ADD in.
3808 AddrMode = BackupAddrMode;
3809 AddrModeInsts.resize(OldSize);
3810 TPT.rollback(LastKnownGood);
3811 break;
3813 //case Instruction::Or:
3814 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3815 //break;
3816 case Instruction::Mul:
3817 case Instruction::Shl: {
3818 // Can only handle X*C and X << C.
3819 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3820 if (!RHS || RHS->getBitWidth() > 64)
3821 return false;
3822 int64_t Scale = RHS->getSExtValue();
3823 if (Opcode == Instruction::Shl)
3824 Scale = 1LL << Scale;
3826 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3828 case Instruction::GetElementPtr: {
3829 // Scan the GEP. We check it if it contains constant offsets and at most
3830 // one variable offset.
3831 int VariableOperand = -1;
3832 unsigned VariableScale = 0;
3834 int64_t ConstantOffset = 0;
3835 gep_type_iterator GTI = gep_type_begin(AddrInst);
3836 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3837 if (StructType *STy = GTI.getStructTypeOrNull()) {
3838 const StructLayout *SL = DL.getStructLayout(STy);
3839 unsigned Idx =
3840 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3841 ConstantOffset += SL->getElementOffset(Idx);
3842 } else {
3843 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3844 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3845 const APInt &CVal = CI->getValue();
3846 if (CVal.getMinSignedBits() <= 64) {
3847 ConstantOffset += CVal.getSExtValue() * TypeSize;
3848 continue;
3851 if (TypeSize) { // Scales of zero don't do anything.
3852 // We only allow one variable index at the moment.
3853 if (VariableOperand != -1)
3854 return false;
3856 // Remember the variable index.
3857 VariableOperand = i;
3858 VariableScale = TypeSize;
3863 // A common case is for the GEP to only do a constant offset. In this case,
3864 // just add it to the disp field and check validity.
3865 if (VariableOperand == -1) {
3866 AddrMode.BaseOffs += ConstantOffset;
3867 if (ConstantOffset == 0 ||
3868 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3869 // Check to see if we can fold the base pointer in too.
3870 if (matchAddr(AddrInst->getOperand(0), Depth+1))
3871 return true;
3872 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
3873 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
3874 ConstantOffset > 0) {
3875 // Record GEPs with non-zero offsets as candidates for splitting in the
3876 // event that the offset cannot fit into the r+i addressing mode.
3877 // Simple and common case that only one GEP is used in calculating the
3878 // address for the memory access.
3879 Value *Base = AddrInst->getOperand(0);
3880 auto *BaseI = dyn_cast<Instruction>(Base);
3881 auto *GEP = cast<GetElementPtrInst>(AddrInst);
3882 if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
3883 (BaseI && !isa<CastInst>(BaseI) &&
3884 !isa<GetElementPtrInst>(BaseI))) {
3885 // If the base is an instruction, make sure the GEP is not in the same
3886 // basic block as the base. If the base is an argument or global
3887 // value, make sure the GEP is not in the entry block. Otherwise,
3888 // instruction selection can undo the split. Also make sure the
3889 // parent block allows inserting non-PHI instructions before the
3890 // terminator.
3891 BasicBlock *Parent =
3892 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
3893 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
3894 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
3897 AddrMode.BaseOffs -= ConstantOffset;
3898 return false;
3901 // Save the valid addressing mode in case we can't match.
3902 ExtAddrMode BackupAddrMode = AddrMode;
3903 unsigned OldSize = AddrModeInsts.size();
3905 // See if the scale and offset amount is valid for this target.
3906 AddrMode.BaseOffs += ConstantOffset;
3908 // Match the base operand of the GEP.
3909 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3910 // If it couldn't be matched, just stuff the value in a register.
3911 if (AddrMode.HasBaseReg) {
3912 AddrMode = BackupAddrMode;
3913 AddrModeInsts.resize(OldSize);
3914 return false;
3916 AddrMode.HasBaseReg = true;
3917 AddrMode.BaseReg = AddrInst->getOperand(0);
3920 // Match the remaining variable portion of the GEP.
3921 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3922 Depth)) {
3923 // If it couldn't be matched, try stuffing the base into a register
3924 // instead of matching it, and retrying the match of the scale.
3925 AddrMode = BackupAddrMode;
3926 AddrModeInsts.resize(OldSize);
3927 if (AddrMode.HasBaseReg)
3928 return false;
3929 AddrMode.HasBaseReg = true;
3930 AddrMode.BaseReg = AddrInst->getOperand(0);
3931 AddrMode.BaseOffs += ConstantOffset;
3932 if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3933 VariableScale, Depth)) {
3934 // If even that didn't work, bail.
3935 AddrMode = BackupAddrMode;
3936 AddrModeInsts.resize(OldSize);
3937 return false;
3941 return true;
3943 case Instruction::SExt:
3944 case Instruction::ZExt: {
3945 Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3946 if (!Ext)
3947 return false;
3949 // Try to move this ext out of the way of the addressing mode.
3950 // Ask for a method for doing so.
3951 TypePromotionHelper::Action TPH =
3952 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3953 if (!TPH)
3954 return false;
3956 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3957 TPT.getRestorationPoint();
3958 unsigned CreatedInstsCost = 0;
3959 unsigned ExtCost = !TLI.isExtFree(Ext);
3960 Value *PromotedOperand =
3961 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3962 // SExt has been moved away.
3963 // Thus either it will be rematched later in the recursive calls or it is
3964 // gone. Anyway, we must not fold it into the addressing mode at this point.
3965 // E.g.,
3966 // op = add opnd, 1
3967 // idx = ext op
3968 // addr = gep base, idx
3969 // is now:
3970 // promotedOpnd = ext opnd <- no match here
3971 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
3972 // addr = gep base, op <- match
3973 if (MovedAway)
3974 *MovedAway = true;
3976 assert(PromotedOperand &&
3977 "TypePromotionHelper should have filtered out those cases");
3979 ExtAddrMode BackupAddrMode = AddrMode;
3980 unsigned OldSize = AddrModeInsts.size();
3982 if (!matchAddr(PromotedOperand, Depth) ||
3983 // The total of the new cost is equal to the cost of the created
3984 // instructions.
3985 // The total of the old cost is equal to the cost of the extension plus
3986 // what we have saved in the addressing mode.
3987 !isPromotionProfitable(CreatedInstsCost,
3988 ExtCost + (AddrModeInsts.size() - OldSize),
3989 PromotedOperand)) {
3990 AddrMode = BackupAddrMode;
3991 AddrModeInsts.resize(OldSize);
3992 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3993 TPT.rollback(LastKnownGood);
3994 return false;
3996 return true;
3999 return false;
4002 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4003 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4004 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4005 /// for the target.
4007 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4008 // Start a transaction at this point that we will rollback if the matching
4009 // fails.
4010 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4011 TPT.getRestorationPoint();
4012 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4013 // Fold in immediates if legal for the target.
4014 AddrMode.BaseOffs += CI->getSExtValue();
4015 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4016 return true;
4017 AddrMode.BaseOffs -= CI->getSExtValue();
4018 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4019 // If this is a global variable, try to fold it into the addressing mode.
4020 if (!AddrMode.BaseGV) {
4021 AddrMode.BaseGV = GV;
4022 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4023 return true;
4024 AddrMode.BaseGV = nullptr;
4026 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4027 ExtAddrMode BackupAddrMode = AddrMode;
4028 unsigned OldSize = AddrModeInsts.size();
4030 // Check to see if it is possible to fold this operation.
4031 bool MovedAway = false;
4032 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4033 // This instruction may have been moved away. If so, there is nothing
4034 // to check here.
4035 if (MovedAway)
4036 return true;
4037 // Okay, it's possible to fold this. Check to see if it is actually
4038 // *profitable* to do so. We use a simple cost model to avoid increasing
4039 // register pressure too much.
4040 if (I->hasOneUse() ||
4041 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4042 AddrModeInsts.push_back(I);
4043 return true;
4046 // It isn't profitable to do this, roll back.
4047 //cerr << "NOT FOLDING: " << *I;
4048 AddrMode = BackupAddrMode;
4049 AddrModeInsts.resize(OldSize);
4050 TPT.rollback(LastKnownGood);
4052 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4053 if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4054 return true;
4055 TPT.rollback(LastKnownGood);
4056 } else if (isa<ConstantPointerNull>(Addr)) {
4057 // Null pointer gets folded without affecting the addressing mode.
4058 return true;
4061 // Worse case, the target should support [reg] addressing modes. :)
4062 if (!AddrMode.HasBaseReg) {
4063 AddrMode.HasBaseReg = true;
4064 AddrMode.BaseReg = Addr;
4065 // Still check for legality in case the target supports [imm] but not [i+r].
4066 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4067 return true;
4068 AddrMode.HasBaseReg = false;
4069 AddrMode.BaseReg = nullptr;
4072 // If the base register is already taken, see if we can do [r+r].
4073 if (AddrMode.Scale == 0) {
4074 AddrMode.Scale = 1;
4075 AddrMode.ScaledReg = Addr;
4076 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4077 return true;
4078 AddrMode.Scale = 0;
4079 AddrMode.ScaledReg = nullptr;
4081 // Couldn't match.
4082 TPT.rollback(LastKnownGood);
4083 return false;
4086 /// Check to see if all uses of OpVal by the specified inline asm call are due
4087 /// to memory operands. If so, return true, otherwise return false.
4088 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4089 const TargetLowering &TLI,
4090 const TargetRegisterInfo &TRI) {
4091 const Function *F = CI->getFunction();
4092 TargetLowering::AsmOperandInfoVector TargetConstraints =
4093 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4094 ImmutableCallSite(CI));
4096 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4097 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4099 // Compute the constraint code and ConstraintType to use.
4100 TLI.ComputeConstraintToUse(OpInfo, SDValue());
4102 // If this asm operand is our Value*, and if it isn't an indirect memory
4103 // operand, we can't fold it!
4104 if (OpInfo.CallOperandVal == OpVal &&
4105 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4106 !OpInfo.isIndirect))
4107 return false;
4110 return true;
4113 // Max number of memory uses to look at before aborting the search to conserve
4114 // compile time.
4115 static constexpr int MaxMemoryUsesToScan = 20;
4117 /// Recursively walk all the uses of I until we find a memory use.
4118 /// If we find an obviously non-foldable instruction, return true.
4119 /// Add the ultimately found memory instructions to MemoryUses.
4120 static bool FindAllMemoryUses(
4121 Instruction *I,
4122 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4123 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4124 const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4125 // If we already considered this instruction, we're done.
4126 if (!ConsideredInsts.insert(I).second)
4127 return false;
4129 // If this is an obviously unfoldable instruction, bail out.
4130 if (!MightBeFoldableInst(I))
4131 return true;
4133 const bool OptSize = I->getFunction()->optForSize();
4135 // Loop over all the uses, recursively processing them.
4136 for (Use &U : I->uses()) {
4137 // Conservatively return true if we're seeing a large number or a deep chain
4138 // of users. This avoids excessive compilation times in pathological cases.
4139 if (SeenInsts++ >= MaxMemoryUsesToScan)
4140 return true;
4142 Instruction *UserI = cast<Instruction>(U.getUser());
4143 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4144 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4145 continue;
4148 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4149 unsigned opNo = U.getOperandNo();
4150 if (opNo != StoreInst::getPointerOperandIndex())
4151 return true; // Storing addr, not into addr.
4152 MemoryUses.push_back(std::make_pair(SI, opNo));
4153 continue;
4156 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4157 unsigned opNo = U.getOperandNo();
4158 if (opNo != AtomicRMWInst::getPointerOperandIndex())
4159 return true; // Storing addr, not into addr.
4160 MemoryUses.push_back(std::make_pair(RMW, opNo));
4161 continue;
4164 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4165 unsigned opNo = U.getOperandNo();
4166 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4167 return true; // Storing addr, not into addr.
4168 MemoryUses.push_back(std::make_pair(CmpX, opNo));
4169 continue;
4172 if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4173 // If this is a cold call, we can sink the addressing calculation into
4174 // the cold path. See optimizeCallInst
4175 if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4176 continue;
4178 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4179 if (!IA) return true;
4181 // If this is a memory operand, we're cool, otherwise bail out.
4182 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4183 return true;
4184 continue;
4187 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4188 SeenInsts))
4189 return true;
4192 return false;
4195 /// Return true if Val is already known to be live at the use site that we're
4196 /// folding it into. If so, there is no cost to include it in the addressing
4197 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4198 /// instruction already.
4199 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4200 Value *KnownLive2) {
4201 // If Val is either of the known-live values, we know it is live!
4202 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4203 return true;
4205 // All values other than instructions and arguments (e.g. constants) are live.
4206 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4208 // If Val is a constant sized alloca in the entry block, it is live, this is
4209 // true because it is just a reference to the stack/frame pointer, which is
4210 // live for the whole function.
4211 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4212 if (AI->isStaticAlloca())
4213 return true;
4215 // Check to see if this value is already used in the memory instruction's
4216 // block. If so, it's already live into the block at the very least, so we
4217 // can reasonably fold it.
4218 return Val->isUsedInBasicBlock(MemoryInst->getParent());
4221 /// It is possible for the addressing mode of the machine to fold the specified
4222 /// instruction into a load or store that ultimately uses it.
4223 /// However, the specified instruction has multiple uses.
4224 /// Given this, it may actually increase register pressure to fold it
4225 /// into the load. For example, consider this code:
4227 /// X = ...
4228 /// Y = X+1
4229 /// use(Y) -> nonload/store
4230 /// Z = Y+1
4231 /// load Z
4233 /// In this case, Y has multiple uses, and can be folded into the load of Z
4234 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
4235 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
4236 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
4237 /// number of computations either.
4239 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
4240 /// X was live across 'load Z' for other reasons, we actually *would* want to
4241 /// fold the addressing mode in the Z case. This would make Y die earlier.
4242 bool AddressingModeMatcher::
4243 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4244 ExtAddrMode &AMAfter) {
4245 if (IgnoreProfitability) return true;
4247 // AMBefore is the addressing mode before this instruction was folded into it,
4248 // and AMAfter is the addressing mode after the instruction was folded. Get
4249 // the set of registers referenced by AMAfter and subtract out those
4250 // referenced by AMBefore: this is the set of values which folding in this
4251 // address extends the lifetime of.
4253 // Note that there are only two potential values being referenced here,
4254 // BaseReg and ScaleReg (global addresses are always available, as are any
4255 // folded immediates).
4256 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4258 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4259 // lifetime wasn't extended by adding this instruction.
4260 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4261 BaseReg = nullptr;
4262 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4263 ScaledReg = nullptr;
4265 // If folding this instruction (and it's subexprs) didn't extend any live
4266 // ranges, we're ok with it.
4267 if (!BaseReg && !ScaledReg)
4268 return true;
4270 // If all uses of this instruction can have the address mode sunk into them,
4271 // we can remove the addressing mode and effectively trade one live register
4272 // for another (at worst.) In this context, folding an addressing mode into
4273 // the use is just a particularly nice way of sinking it.
4274 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4275 SmallPtrSet<Instruction*, 16> ConsideredInsts;
4276 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4277 return false; // Has a non-memory, non-foldable use!
4279 // Now that we know that all uses of this instruction are part of a chain of
4280 // computation involving only operations that could theoretically be folded
4281 // into a memory use, loop over each of these memory operation uses and see
4282 // if they could *actually* fold the instruction. The assumption is that
4283 // addressing modes are cheap and that duplicating the computation involved
4284 // many times is worthwhile, even on a fastpath. For sinking candidates
4285 // (i.e. cold call sites), this serves as a way to prevent excessive code
4286 // growth since most architectures have some reasonable small and fast way to
4287 // compute an effective address. (i.e LEA on x86)
4288 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4289 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4290 Instruction *User = MemoryUses[i].first;
4291 unsigned OpNo = MemoryUses[i].second;
4293 // Get the access type of this use. If the use isn't a pointer, we don't
4294 // know what it accesses.
4295 Value *Address = User->getOperand(OpNo);
4296 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4297 if (!AddrTy)
4298 return false;
4299 Type *AddressAccessTy = AddrTy->getElementType();
4300 unsigned AS = AddrTy->getAddressSpace();
4302 // Do a match against the root of this address, ignoring profitability. This
4303 // will tell us if the addressing mode for the memory operation will
4304 // *actually* cover the shared instruction.
4305 ExtAddrMode Result;
4306 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4308 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4309 TPT.getRestorationPoint();
4310 AddressingModeMatcher Matcher(
4311 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4312 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4313 Matcher.IgnoreProfitability = true;
4314 bool Success = Matcher.matchAddr(Address, 0);
4315 (void)Success; assert(Success && "Couldn't select *anything*?");
4317 // The match was to check the profitability, the changes made are not
4318 // part of the original matcher. Therefore, they should be dropped
4319 // otherwise the original matcher will not present the right state.
4320 TPT.rollback(LastKnownGood);
4322 // If the match didn't cover I, then it won't be shared by it.
4323 if (!is_contained(MatchedAddrModeInsts, I))
4324 return false;
4326 MatchedAddrModeInsts.clear();
4329 return true;
4332 /// Return true if the specified values are defined in a
4333 /// different basic block than BB.
4334 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4335 if (Instruction *I = dyn_cast<Instruction>(V))
4336 return I->getParent() != BB;
4337 return false;
4340 /// Sink addressing mode computation immediate before MemoryInst if doing so
4341 /// can be done without increasing register pressure. The need for the
4342 /// register pressure constraint means this can end up being an all or nothing
4343 /// decision for all uses of the same addressing computation.
4345 /// Load and Store Instructions often have addressing modes that can do
4346 /// significant amounts of computation. As such, instruction selection will try
4347 /// to get the load or store to do as much computation as possible for the
4348 /// program. The problem is that isel can only see within a single block. As
4349 /// such, we sink as much legal addressing mode work into the block as possible.
4351 /// This method is used to optimize both load/store and inline asms with memory
4352 /// operands. It's also used to sink addressing computations feeding into cold
4353 /// call sites into their (cold) basic block.
4355 /// The motivation for handling sinking into cold blocks is that doing so can
4356 /// both enable other address mode sinking (by satisfying the register pressure
4357 /// constraint above), and reduce register pressure globally (by removing the
4358 /// addressing mode computation from the fast path entirely.).
4359 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4360 Type *AccessTy, unsigned AddrSpace) {
4361 Value *Repl = Addr;
4363 // Try to collapse single-value PHI nodes. This is necessary to undo
4364 // unprofitable PRE transformations.
4365 SmallVector<Value*, 8> worklist;
4366 SmallPtrSet<Value*, 16> Visited;
4367 worklist.push_back(Addr);
4369 // Use a worklist to iteratively look through PHI and select nodes, and
4370 // ensure that the addressing mode obtained from the non-PHI/select roots of
4371 // the graph are compatible.
4372 bool PhiOrSelectSeen = false;
4373 SmallVector<Instruction*, 16> AddrModeInsts;
4374 const SimplifyQuery SQ(*DL, TLInfo);
4375 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() });
4376 TypePromotionTransaction TPT(RemovedInsts);
4377 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4378 TPT.getRestorationPoint();
4379 while (!worklist.empty()) {
4380 Value *V = worklist.back();
4381 worklist.pop_back();
4383 // We allow traversing cyclic Phi nodes.
4384 // In case of success after this loop we ensure that traversing through
4385 // Phi nodes ends up with all cases to compute address of the form
4386 // BaseGV + Base + Scale * Index + Offset
4387 // where Scale and Offset are constans and BaseGV, Base and Index
4388 // are exactly the same Values in all cases.
4389 // It means that BaseGV, Scale and Offset dominate our memory instruction
4390 // and have the same value as they had in address computation represented
4391 // as Phi. So we can safely sink address computation to memory instruction.
4392 if (!Visited.insert(V).second)
4393 continue;
4395 // For a PHI node, push all of its incoming values.
4396 if (PHINode *P = dyn_cast<PHINode>(V)) {
4397 for (Value *IncValue : P->incoming_values())
4398 worklist.push_back(IncValue);
4399 PhiOrSelectSeen = true;
4400 continue;
4402 // Similar for select.
4403 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4404 worklist.push_back(SI->getFalseValue());
4405 worklist.push_back(SI->getTrueValue());
4406 PhiOrSelectSeen = true;
4407 continue;
4410 // For non-PHIs, determine the addressing mode being computed. Note that
4411 // the result may differ depending on what other uses our candidate
4412 // addressing instructions might have.
4413 AddrModeInsts.clear();
4414 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4416 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4417 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4418 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4420 GetElementPtrInst *GEP = LargeOffsetGEP.first;
4421 if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4422 !NewGEPBases.count(GEP)) {
4423 // If splitting the underlying data structure can reduce the offset of a
4424 // GEP, collect the GEP. Skip the GEPs that are the new bases of
4425 // previously split data structures.
4426 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4427 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4428 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4431 NewAddrMode.OriginalValue = V;
4432 if (!AddrModes.addNewAddrMode(NewAddrMode))
4433 break;
4436 // Try to combine the AddrModes we've collected. If we couldn't collect any,
4437 // or we have multiple but either couldn't combine them or combining them
4438 // wouldn't do anything useful, bail out now.
4439 if (!AddrModes.combineAddrModes()) {
4440 TPT.rollback(LastKnownGood);
4441 return false;
4443 TPT.commit();
4445 // Get the combined AddrMode (or the only AddrMode, if we only had one).
4446 ExtAddrMode AddrMode = AddrModes.getAddrMode();
4448 // If all the instructions matched are already in this BB, don't do anything.
4449 // If we saw a Phi node then it is not local definitely, and if we saw a select
4450 // then we want to push the address calculation past it even if it's already
4451 // in this BB.
4452 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4453 return IsNonLocalValue(V, MemoryInst->getParent());
4454 })) {
4455 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
4456 << "\n");
4457 return false;
4460 // Insert this computation right after this user. Since our caller is
4461 // scanning from the top of the BB to the bottom, reuse of the expr are
4462 // guaranteed to happen later.
4463 IRBuilder<> Builder(MemoryInst);
4465 // Now that we determined the addressing expression we want to use and know
4466 // that we have to sink it into this block. Check to see if we have already
4467 // done this for some other load/store instr in this block. If so, reuse
4468 // the computation. Before attempting reuse, check if the address is valid
4469 // as it may have been erased.
4471 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4473 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4474 if (SunkAddr) {
4475 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4476 << " for " << *MemoryInst << "\n");
4477 if (SunkAddr->getType() != Addr->getType())
4478 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4479 } else if (AddrSinkUsingGEPs ||
4480 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4481 // By default, we use the GEP-based method when AA is used later. This
4482 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4483 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4484 << " for " << *MemoryInst << "\n");
4485 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4486 Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4488 // First, find the pointer.
4489 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4490 ResultPtr = AddrMode.BaseReg;
4491 AddrMode.BaseReg = nullptr;
4494 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4495 // We can't add more than one pointer together, nor can we scale a
4496 // pointer (both of which seem meaningless).
4497 if (ResultPtr || AddrMode.Scale != 1)
4498 return false;
4500 ResultPtr = AddrMode.ScaledReg;
4501 AddrMode.Scale = 0;
4504 // It is only safe to sign extend the BaseReg if we know that the math
4505 // required to create it did not overflow before we extend it. Since
4506 // the original IR value was tossed in favor of a constant back when
4507 // the AddrMode was created we need to bail out gracefully if widths
4508 // do not match instead of extending it.
4510 // (See below for code to add the scale.)
4511 if (AddrMode.Scale) {
4512 Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4513 if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4514 cast<IntegerType>(ScaledRegTy)->getBitWidth())
4515 return false;
4518 if (AddrMode.BaseGV) {
4519 if (ResultPtr)
4520 return false;
4522 ResultPtr = AddrMode.BaseGV;
4525 // If the real base value actually came from an inttoptr, then the matcher
4526 // will look through it and provide only the integer value. In that case,
4527 // use it here.
4528 if (!DL->isNonIntegralPointerType(Addr->getType())) {
4529 if (!ResultPtr && AddrMode.BaseReg) {
4530 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4531 "sunkaddr");
4532 AddrMode.BaseReg = nullptr;
4533 } else if (!ResultPtr && AddrMode.Scale == 1) {
4534 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4535 "sunkaddr");
4536 AddrMode.Scale = 0;
4540 if (!ResultPtr &&
4541 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4542 SunkAddr = Constant::getNullValue(Addr->getType());
4543 } else if (!ResultPtr) {
4544 return false;
4545 } else {
4546 Type *I8PtrTy =
4547 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4548 Type *I8Ty = Builder.getInt8Ty();
4550 // Start with the base register. Do this first so that subsequent address
4551 // matching finds it last, which will prevent it from trying to match it
4552 // as the scaled value in case it happens to be a mul. That would be
4553 // problematic if we've sunk a different mul for the scale, because then
4554 // we'd end up sinking both muls.
4555 if (AddrMode.BaseReg) {
4556 Value *V = AddrMode.BaseReg;
4557 if (V->getType() != IntPtrTy)
4558 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4560 ResultIndex = V;
4563 // Add the scale value.
4564 if (AddrMode.Scale) {
4565 Value *V = AddrMode.ScaledReg;
4566 if (V->getType() == IntPtrTy) {
4567 // done.
4568 } else {
4569 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4570 cast<IntegerType>(V->getType())->getBitWidth() &&
4571 "We can't transform if ScaledReg is too narrow");
4572 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4575 if (AddrMode.Scale != 1)
4576 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4577 "sunkaddr");
4578 if (ResultIndex)
4579 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4580 else
4581 ResultIndex = V;
4584 // Add in the Base Offset if present.
4585 if (AddrMode.BaseOffs) {
4586 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4587 if (ResultIndex) {
4588 // We need to add this separately from the scale above to help with
4589 // SDAG consecutive load/store merging.
4590 if (ResultPtr->getType() != I8PtrTy)
4591 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4592 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4595 ResultIndex = V;
4598 if (!ResultIndex) {
4599 SunkAddr = ResultPtr;
4600 } else {
4601 if (ResultPtr->getType() != I8PtrTy)
4602 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4603 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4606 if (SunkAddr->getType() != Addr->getType())
4607 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4609 } else {
4610 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4611 // non-integral pointers, so in that case bail out now.
4612 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4613 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4614 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4615 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4616 if (DL->isNonIntegralPointerType(Addr->getType()) ||
4617 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4618 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4619 (AddrMode.BaseGV &&
4620 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4621 return false;
4623 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4624 << " for " << *MemoryInst << "\n");
4625 Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4626 Value *Result = nullptr;
4628 // Start with the base register. Do this first so that subsequent address
4629 // matching finds it last, which will prevent it from trying to match it
4630 // as the scaled value in case it happens to be a mul. That would be
4631 // problematic if we've sunk a different mul for the scale, because then
4632 // we'd end up sinking both muls.
4633 if (AddrMode.BaseReg) {
4634 Value *V = AddrMode.BaseReg;
4635 if (V->getType()->isPointerTy())
4636 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4637 if (V->getType() != IntPtrTy)
4638 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4639 Result = V;
4642 // Add the scale value.
4643 if (AddrMode.Scale) {
4644 Value *V = AddrMode.ScaledReg;
4645 if (V->getType() == IntPtrTy) {
4646 // done.
4647 } else if (V->getType()->isPointerTy()) {
4648 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4649 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4650 cast<IntegerType>(V->getType())->getBitWidth()) {
4651 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4652 } else {
4653 // It is only safe to sign extend the BaseReg if we know that the math
4654 // required to create it did not overflow before we extend it. Since
4655 // the original IR value was tossed in favor of a constant back when
4656 // the AddrMode was created we need to bail out gracefully if widths
4657 // do not match instead of extending it.
4658 Instruction *I = dyn_cast_or_null<Instruction>(Result);
4659 if (I && (Result != AddrMode.BaseReg))
4660 I->eraseFromParent();
4661 return false;
4663 if (AddrMode.Scale != 1)
4664 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4665 "sunkaddr");
4666 if (Result)
4667 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4668 else
4669 Result = V;
4672 // Add in the BaseGV if present.
4673 if (AddrMode.BaseGV) {
4674 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4675 if (Result)
4676 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4677 else
4678 Result = V;
4681 // Add in the Base Offset if present.
4682 if (AddrMode.BaseOffs) {
4683 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4684 if (Result)
4685 Result = Builder.CreateAdd(Result, V, "sunkaddr");
4686 else
4687 Result = V;
4690 if (!Result)
4691 SunkAddr = Constant::getNullValue(Addr->getType());
4692 else
4693 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4696 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4697 // Store the newly computed address into the cache. In the case we reused a
4698 // value, this should be idempotent.
4699 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4701 // If we have no uses, recursively delete the value and all dead instructions
4702 // using it.
4703 if (Repl->use_empty()) {
4704 // This can cause recursive deletion, which can invalidate our iterator.
4705 // Use a WeakTrackingVH to hold onto it in case this happens.
4706 Value *CurValue = &*CurInstIterator;
4707 WeakTrackingVH IterHandle(CurValue);
4708 BasicBlock *BB = CurInstIterator->getParent();
4710 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4712 if (IterHandle != CurValue) {
4713 // If the iterator instruction was recursively deleted, start over at the
4714 // start of the block.
4715 CurInstIterator = BB->begin();
4716 SunkAddrs.clear();
4719 ++NumMemoryInsts;
4720 return true;
4723 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4724 /// address computing into the block when possible / profitable.
4725 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4726 bool MadeChange = false;
4728 const TargetRegisterInfo *TRI =
4729 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4730 TargetLowering::AsmOperandInfoVector TargetConstraints =
4731 TLI->ParseConstraints(*DL, TRI, CS);
4732 unsigned ArgNo = 0;
4733 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4734 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4736 // Compute the constraint code and ConstraintType to use.
4737 TLI->ComputeConstraintToUse(OpInfo, SDValue());
4739 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4740 OpInfo.isIndirect) {
4741 Value *OpVal = CS->getArgOperand(ArgNo++);
4742 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4743 } else if (OpInfo.Type == InlineAsm::isInput)
4744 ArgNo++;
4747 return MadeChange;
4750 /// Check if all the uses of \p Val are equivalent (or free) zero or
4751 /// sign extensions.
4752 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4753 assert(!Val->use_empty() && "Input must have at least one use");
4754 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4755 bool IsSExt = isa<SExtInst>(FirstUser);
4756 Type *ExtTy = FirstUser->getType();
4757 for (const User *U : Val->users()) {
4758 const Instruction *UI = cast<Instruction>(U);
4759 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4760 return false;
4761 Type *CurTy = UI->getType();
4762 // Same input and output types: Same instruction after CSE.
4763 if (CurTy == ExtTy)
4764 continue;
4766 // If IsSExt is true, we are in this situation:
4767 // a = Val
4768 // b = sext ty1 a to ty2
4769 // c = sext ty1 a to ty3
4770 // Assuming ty2 is shorter than ty3, this could be turned into:
4771 // a = Val
4772 // b = sext ty1 a to ty2
4773 // c = sext ty2 b to ty3
4774 // However, the last sext is not free.
4775 if (IsSExt)
4776 return false;
4778 // This is a ZExt, maybe this is free to extend from one type to another.
4779 // In that case, we would not account for a different use.
4780 Type *NarrowTy;
4781 Type *LargeTy;
4782 if (ExtTy->getScalarType()->getIntegerBitWidth() >
4783 CurTy->getScalarType()->getIntegerBitWidth()) {
4784 NarrowTy = CurTy;
4785 LargeTy = ExtTy;
4786 } else {
4787 NarrowTy = ExtTy;
4788 LargeTy = CurTy;
4791 if (!TLI.isZExtFree(NarrowTy, LargeTy))
4792 return false;
4794 // All uses are the same or can be derived from one another for free.
4795 return true;
4798 /// Try to speculatively promote extensions in \p Exts and continue
4799 /// promoting through newly promoted operands recursively as far as doing so is
4800 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4801 /// When some promotion happened, \p TPT contains the proper state to revert
4802 /// them.
4804 /// \return true if some promotion happened, false otherwise.
4805 bool CodeGenPrepare::tryToPromoteExts(
4806 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4807 SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4808 unsigned CreatedInstsCost) {
4809 bool Promoted = false;
4811 // Iterate over all the extensions to try to promote them.
4812 for (auto I : Exts) {
4813 // Early check if we directly have ext(load).
4814 if (isa<LoadInst>(I->getOperand(0))) {
4815 ProfitablyMovedExts.push_back(I);
4816 continue;
4819 // Check whether or not we want to do any promotion. The reason we have
4820 // this check inside the for loop is to catch the case where an extension
4821 // is directly fed by a load because in such case the extension can be moved
4822 // up without any promotion on its operands.
4823 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4824 return false;
4826 // Get the action to perform the promotion.
4827 TypePromotionHelper::Action TPH =
4828 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4829 // Check if we can promote.
4830 if (!TPH) {
4831 // Save the current extension as we cannot move up through its operand.
4832 ProfitablyMovedExts.push_back(I);
4833 continue;
4836 // Save the current state.
4837 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4838 TPT.getRestorationPoint();
4839 SmallVector<Instruction *, 4> NewExts;
4840 unsigned NewCreatedInstsCost = 0;
4841 unsigned ExtCost = !TLI->isExtFree(I);
4842 // Promote.
4843 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4844 &NewExts, nullptr, *TLI);
4845 assert(PromotedVal &&
4846 "TypePromotionHelper should have filtered out those cases");
4848 // We would be able to merge only one extension in a load.
4849 // Therefore, if we have more than 1 new extension we heuristically
4850 // cut this search path, because it means we degrade the code quality.
4851 // With exactly 2, the transformation is neutral, because we will merge
4852 // one extension but leave one. However, we optimistically keep going,
4853 // because the new extension may be removed too.
4854 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4855 // FIXME: It would be possible to propagate a negative value instead of
4856 // conservatively ceiling it to 0.
4857 TotalCreatedInstsCost =
4858 std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4859 if (!StressExtLdPromotion &&
4860 (TotalCreatedInstsCost > 1 ||
4861 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4862 // This promotion is not profitable, rollback to the previous state, and
4863 // save the current extension in ProfitablyMovedExts as the latest
4864 // speculative promotion turned out to be unprofitable.
4865 TPT.rollback(LastKnownGood);
4866 ProfitablyMovedExts.push_back(I);
4867 continue;
4869 // Continue promoting NewExts as far as doing so is profitable.
4870 SmallVector<Instruction *, 2> NewlyMovedExts;
4871 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4872 bool NewPromoted = false;
4873 for (auto ExtInst : NewlyMovedExts) {
4874 Instruction *MovedExt = cast<Instruction>(ExtInst);
4875 Value *ExtOperand = MovedExt->getOperand(0);
4876 // If we have reached to a load, we need this extra profitability check
4877 // as it could potentially be merged into an ext(load).
4878 if (isa<LoadInst>(ExtOperand) &&
4879 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4880 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4881 continue;
4883 ProfitablyMovedExts.push_back(MovedExt);
4884 NewPromoted = true;
4887 // If none of speculative promotions for NewExts is profitable, rollback
4888 // and save the current extension (I) as the last profitable extension.
4889 if (!NewPromoted) {
4890 TPT.rollback(LastKnownGood);
4891 ProfitablyMovedExts.push_back(I);
4892 continue;
4894 // The promotion is profitable.
4895 Promoted = true;
4897 return Promoted;
4900 /// Merging redundant sexts when one is dominating the other.
4901 bool CodeGenPrepare::mergeSExts(Function &F) {
4902 DominatorTree DT(F);
4903 bool Changed = false;
4904 for (auto &Entry : ValToSExtendedUses) {
4905 SExts &Insts = Entry.second;
4906 SExts CurPts;
4907 for (Instruction *Inst : Insts) {
4908 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4909 Inst->getOperand(0) != Entry.first)
4910 continue;
4911 bool inserted = false;
4912 for (auto &Pt : CurPts) {
4913 if (DT.dominates(Inst, Pt)) {
4914 Pt->replaceAllUsesWith(Inst);
4915 RemovedInsts.insert(Pt);
4916 Pt->removeFromParent();
4917 Pt = Inst;
4918 inserted = true;
4919 Changed = true;
4920 break;
4922 if (!DT.dominates(Pt, Inst))
4923 // Give up if we need to merge in a common dominator as the
4924 // experiments show it is not profitable.
4925 continue;
4926 Inst->replaceAllUsesWith(Pt);
4927 RemovedInsts.insert(Inst);
4928 Inst->removeFromParent();
4929 inserted = true;
4930 Changed = true;
4931 break;
4933 if (!inserted)
4934 CurPts.push_back(Inst);
4937 return Changed;
4940 // Spliting large data structures so that the GEPs accessing them can have
4941 // smaller offsets so that they can be sunk to the same blocks as their users.
4942 // For example, a large struct starting from %base is splitted into two parts
4943 // where the second part starts from %new_base.
4945 // Before:
4946 // BB0:
4947 // %base =
4949 // BB1:
4950 // %gep0 = gep %base, off0
4951 // %gep1 = gep %base, off1
4952 // %gep2 = gep %base, off2
4954 // BB2:
4955 // %load1 = load %gep0
4956 // %load2 = load %gep1
4957 // %load3 = load %gep2
4959 // After:
4960 // BB0:
4961 // %base =
4962 // %new_base = gep %base, off0
4964 // BB1:
4965 // %new_gep0 = %new_base
4966 // %new_gep1 = gep %new_base, off1 - off0
4967 // %new_gep2 = gep %new_base, off2 - off0
4969 // BB2:
4970 // %load1 = load i32, i32* %new_gep0
4971 // %load2 = load i32, i32* %new_gep1
4972 // %load3 = load i32, i32* %new_gep2
4974 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
4975 // their offsets are smaller enough to fit into the addressing mode.
4976 bool CodeGenPrepare::splitLargeGEPOffsets() {
4977 bool Changed = false;
4978 for (auto &Entry : LargeOffsetGEPMap) {
4979 Value *OldBase = Entry.first;
4980 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
4981 &LargeOffsetGEPs = Entry.second;
4982 auto compareGEPOffset =
4983 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
4984 const std::pair<GetElementPtrInst *, int64_t> &RHS) {
4985 if (LHS.first == RHS.first)
4986 return false;
4987 if (LHS.second != RHS.second)
4988 return LHS.second < RHS.second;
4989 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
4991 // Sorting all the GEPs of the same data structures based on the offsets.
4992 llvm::sort(LargeOffsetGEPs, compareGEPOffset);
4993 LargeOffsetGEPs.erase(
4994 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
4995 LargeOffsetGEPs.end());
4996 // Skip if all the GEPs have the same offsets.
4997 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
4998 continue;
4999 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5000 int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5001 Value *NewBaseGEP = nullptr;
5003 auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5004 while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5005 GetElementPtrInst *GEP = LargeOffsetGEP->first;
5006 int64_t Offset = LargeOffsetGEP->second;
5007 if (Offset != BaseOffset) {
5008 TargetLowering::AddrMode AddrMode;
5009 AddrMode.BaseOffs = Offset - BaseOffset;
5010 // The result type of the GEP might not be the type of the memory
5011 // access.
5012 if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5013 GEP->getResultElementType(),
5014 GEP->getAddressSpace())) {
5015 // We need to create a new base if the offset to the current base is
5016 // too large to fit into the addressing mode. So, a very large struct
5017 // may be splitted into several parts.
5018 BaseGEP = GEP;
5019 BaseOffset = Offset;
5020 NewBaseGEP = nullptr;
5024 // Generate a new GEP to replace the current one.
5025 IRBuilder<> Builder(GEP);
5026 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5027 Type *I8PtrTy =
5028 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace());
5029 Type *I8Ty = Builder.getInt8Ty();
5031 if (!NewBaseGEP) {
5032 // Create a new base if we don't have one yet. Find the insertion
5033 // pointer for the new base first.
5034 BasicBlock::iterator NewBaseInsertPt;
5035 BasicBlock *NewBaseInsertBB;
5036 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5037 // If the base of the struct is an instruction, the new base will be
5038 // inserted close to it.
5039 NewBaseInsertBB = BaseI->getParent();
5040 if (isa<PHINode>(BaseI))
5041 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5042 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5043 NewBaseInsertBB =
5044 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5045 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5046 } else
5047 NewBaseInsertPt = std::next(BaseI->getIterator());
5048 } else {
5049 // If the current base is an argument or global value, the new base
5050 // will be inserted to the entry block.
5051 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5052 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5054 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5055 // Create a new base.
5056 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5057 NewBaseGEP = OldBase;
5058 if (NewBaseGEP->getType() != I8PtrTy)
5059 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5060 NewBaseGEP =
5061 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5062 NewGEPBases.insert(NewBaseGEP);
5065 Value *NewGEP = NewBaseGEP;
5066 if (Offset == BaseOffset) {
5067 if (GEP->getType() != I8PtrTy)
5068 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5069 } else {
5070 // Calculate the new offset for the new GEP.
5071 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5072 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5074 if (GEP->getType() != I8PtrTy)
5075 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5077 GEP->replaceAllUsesWith(NewGEP);
5078 LargeOffsetGEPID.erase(GEP);
5079 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5080 GEP->eraseFromParent();
5081 Changed = true;
5084 return Changed;
5087 /// Return true, if an ext(load) can be formed from an extension in
5088 /// \p MovedExts.
5089 bool CodeGenPrepare::canFormExtLd(
5090 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5091 Instruction *&Inst, bool HasPromoted) {
5092 for (auto *MovedExtInst : MovedExts) {
5093 if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5094 LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5095 Inst = MovedExtInst;
5096 break;
5099 if (!LI)
5100 return false;
5102 // If they're already in the same block, there's nothing to do.
5103 // Make the cheap checks first if we did not promote.
5104 // If we promoted, we need to check if it is indeed profitable.
5105 if (!HasPromoted && LI->getParent() == Inst->getParent())
5106 return false;
5108 return TLI->isExtLoad(LI, Inst, *DL);
5111 /// Move a zext or sext fed by a load into the same basic block as the load,
5112 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5113 /// extend into the load.
5115 /// E.g.,
5116 /// \code
5117 /// %ld = load i32* %addr
5118 /// %add = add nuw i32 %ld, 4
5119 /// %zext = zext i32 %add to i64
5120 // \endcode
5121 /// =>
5122 /// \code
5123 /// %ld = load i32* %addr
5124 /// %zext = zext i32 %ld to i64
5125 /// %add = add nuw i64 %zext, 4
5126 /// \encode
5127 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5128 /// allow us to match zext(load i32*) to i64.
5130 /// Also, try to promote the computations used to obtain a sign extended
5131 /// value used into memory accesses.
5132 /// E.g.,
5133 /// \code
5134 /// a = add nsw i32 b, 3
5135 /// d = sext i32 a to i64
5136 /// e = getelementptr ..., i64 d
5137 /// \endcode
5138 /// =>
5139 /// \code
5140 /// f = sext i32 b to i64
5141 /// a = add nsw i64 f, 3
5142 /// e = getelementptr ..., i64 a
5143 /// \endcode
5145 /// \p Inst[in/out] the extension may be modified during the process if some
5146 /// promotions apply.
5147 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5148 // ExtLoad formation and address type promotion infrastructure requires TLI to
5149 // be effective.
5150 if (!TLI)
5151 return false;
5153 bool AllowPromotionWithoutCommonHeader = false;
5154 /// See if it is an interesting sext operations for the address type
5155 /// promotion before trying to promote it, e.g., the ones with the right
5156 /// type and used in memory accesses.
5157 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5158 *Inst, AllowPromotionWithoutCommonHeader);
5159 TypePromotionTransaction TPT(RemovedInsts);
5160 TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5161 TPT.getRestorationPoint();
5162 SmallVector<Instruction *, 1> Exts;
5163 SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5164 Exts.push_back(Inst);
5166 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5168 // Look for a load being extended.
5169 LoadInst *LI = nullptr;
5170 Instruction *ExtFedByLoad;
5172 // Try to promote a chain of computation if it allows to form an extended
5173 // load.
5174 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5175 assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5176 TPT.commit();
5177 // Move the extend into the same block as the load
5178 ExtFedByLoad->moveAfter(LI);
5179 // CGP does not check if the zext would be speculatively executed when moved
5180 // to the same basic block as the load. Preserving its original location
5181 // would pessimize the debugging experience, as well as negatively impact
5182 // the quality of sample pgo. We don't want to use "line 0" as that has a
5183 // size cost in the line-table section and logically the zext can be seen as
5184 // part of the load. Therefore we conservatively reuse the same debug
5185 // location for the load and the zext.
5186 ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5187 ++NumExtsMoved;
5188 Inst = ExtFedByLoad;
5189 return true;
5192 // Continue promoting SExts if known as considerable depending on targets.
5193 if (ATPConsiderable &&
5194 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5195 HasPromoted, TPT, SpeculativelyMovedExts))
5196 return true;
5198 TPT.rollback(LastKnownGood);
5199 return false;
5202 // Perform address type promotion if doing so is profitable.
5203 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5204 // instructions that sign extended the same initial value. However, if
5205 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5206 // extension is just profitable.
5207 bool CodeGenPrepare::performAddressTypePromotion(
5208 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5209 bool HasPromoted, TypePromotionTransaction &TPT,
5210 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5211 bool Promoted = false;
5212 SmallPtrSet<Instruction *, 1> UnhandledExts;
5213 bool AllSeenFirst = true;
5214 for (auto I : SpeculativelyMovedExts) {
5215 Value *HeadOfChain = I->getOperand(0);
5216 DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5217 SeenChainsForSExt.find(HeadOfChain);
5218 // If there is an unhandled SExt which has the same header, try to promote
5219 // it as well.
5220 if (AlreadySeen != SeenChainsForSExt.end()) {
5221 if (AlreadySeen->second != nullptr)
5222 UnhandledExts.insert(AlreadySeen->second);
5223 AllSeenFirst = false;
5227 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5228 SpeculativelyMovedExts.size() == 1)) {
5229 TPT.commit();
5230 if (HasPromoted)
5231 Promoted = true;
5232 for (auto I : SpeculativelyMovedExts) {
5233 Value *HeadOfChain = I->getOperand(0);
5234 SeenChainsForSExt[HeadOfChain] = nullptr;
5235 ValToSExtendedUses[HeadOfChain].push_back(I);
5237 // Update Inst as promotion happen.
5238 Inst = SpeculativelyMovedExts.pop_back_val();
5239 } else {
5240 // This is the first chain visited from the header, keep the current chain
5241 // as unhandled. Defer to promote this until we encounter another SExt
5242 // chain derived from the same header.
5243 for (auto I : SpeculativelyMovedExts) {
5244 Value *HeadOfChain = I->getOperand(0);
5245 SeenChainsForSExt[HeadOfChain] = Inst;
5247 return false;
5250 if (!AllSeenFirst && !UnhandledExts.empty())
5251 for (auto VisitedSExt : UnhandledExts) {
5252 if (RemovedInsts.count(VisitedSExt))
5253 continue;
5254 TypePromotionTransaction TPT(RemovedInsts);
5255 SmallVector<Instruction *, 1> Exts;
5256 SmallVector<Instruction *, 2> Chains;
5257 Exts.push_back(VisitedSExt);
5258 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5259 TPT.commit();
5260 if (HasPromoted)
5261 Promoted = true;
5262 for (auto I : Chains) {
5263 Value *HeadOfChain = I->getOperand(0);
5264 // Mark this as handled.
5265 SeenChainsForSExt[HeadOfChain] = nullptr;
5266 ValToSExtendedUses[HeadOfChain].push_back(I);
5269 return Promoted;
5272 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5273 BasicBlock *DefBB = I->getParent();
5275 // If the result of a {s|z}ext and its source are both live out, rewrite all
5276 // other uses of the source with result of extension.
5277 Value *Src = I->getOperand(0);
5278 if (Src->hasOneUse())
5279 return false;
5281 // Only do this xform if truncating is free.
5282 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5283 return false;
5285 // Only safe to perform the optimization if the source is also defined in
5286 // this block.
5287 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5288 return false;
5290 bool DefIsLiveOut = false;
5291 for (User *U : I->users()) {
5292 Instruction *UI = cast<Instruction>(U);
5294 // Figure out which BB this ext is used in.
5295 BasicBlock *UserBB = UI->getParent();
5296 if (UserBB == DefBB) continue;
5297 DefIsLiveOut = true;
5298 break;
5300 if (!DefIsLiveOut)
5301 return false;
5303 // Make sure none of the uses are PHI nodes.
5304 for (User *U : Src->users()) {
5305 Instruction *UI = cast<Instruction>(U);
5306 BasicBlock *UserBB = UI->getParent();
5307 if (UserBB == DefBB) continue;
5308 // Be conservative. We don't want this xform to end up introducing
5309 // reloads just before load / store instructions.
5310 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5311 return false;
5314 // InsertedTruncs - Only insert one trunc in each block once.
5315 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5317 bool MadeChange = false;
5318 for (Use &U : Src->uses()) {
5319 Instruction *User = cast<Instruction>(U.getUser());
5321 // Figure out which BB this ext is used in.
5322 BasicBlock *UserBB = User->getParent();
5323 if (UserBB == DefBB) continue;
5325 // Both src and def are live in this block. Rewrite the use.
5326 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5328 if (!InsertedTrunc) {
5329 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5330 assert(InsertPt != UserBB->end());
5331 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5332 InsertedInsts.insert(InsertedTrunc);
5335 // Replace a use of the {s|z}ext source with a use of the result.
5336 U = InsertedTrunc;
5337 ++NumExtUses;
5338 MadeChange = true;
5341 return MadeChange;
5344 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
5345 // just after the load if the target can fold this into one extload instruction,
5346 // with the hope of eliminating some of the other later "and" instructions using
5347 // the loaded value. "and"s that are made trivially redundant by the insertion
5348 // of the new "and" are removed by this function, while others (e.g. those whose
5349 // path from the load goes through a phi) are left for isel to potentially
5350 // remove.
5352 // For example:
5354 // b0:
5355 // x = load i32
5356 // ...
5357 // b1:
5358 // y = and x, 0xff
5359 // z = use y
5361 // becomes:
5363 // b0:
5364 // x = load i32
5365 // x' = and x, 0xff
5366 // ...
5367 // b1:
5368 // z = use x'
5370 // whereas:
5372 // b0:
5373 // x1 = load i32
5374 // ...
5375 // b1:
5376 // x2 = load i32
5377 // ...
5378 // b2:
5379 // x = phi x1, x2
5380 // y = and x, 0xff
5382 // becomes (after a call to optimizeLoadExt for each load):
5384 // b0:
5385 // x1 = load i32
5386 // x1' = and x1, 0xff
5387 // ...
5388 // b1:
5389 // x2 = load i32
5390 // x2' = and x2, 0xff
5391 // ...
5392 // b2:
5393 // x = phi x1', x2'
5394 // y = and x, 0xff
5395 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5396 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5397 return false;
5399 // Skip loads we've already transformed.
5400 if (Load->hasOneUse() &&
5401 InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5402 return false;
5404 // Look at all uses of Load, looking through phis, to determine how many bits
5405 // of the loaded value are needed.
5406 SmallVector<Instruction *, 8> WorkList;
5407 SmallPtrSet<Instruction *, 16> Visited;
5408 SmallVector<Instruction *, 8> AndsToMaybeRemove;
5409 for (auto *U : Load->users())
5410 WorkList.push_back(cast<Instruction>(U));
5412 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5413 unsigned BitWidth = LoadResultVT.getSizeInBits();
5414 APInt DemandBits(BitWidth, 0);
5415 APInt WidestAndBits(BitWidth, 0);
5417 while (!WorkList.empty()) {
5418 Instruction *I = WorkList.back();
5419 WorkList.pop_back();
5421 // Break use-def graph loops.
5422 if (!Visited.insert(I).second)
5423 continue;
5425 // For a PHI node, push all of its users.
5426 if (auto *Phi = dyn_cast<PHINode>(I)) {
5427 for (auto *U : Phi->users())
5428 WorkList.push_back(cast<Instruction>(U));
5429 continue;
5432 switch (I->getOpcode()) {
5433 case Instruction::And: {
5434 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5435 if (!AndC)
5436 return false;
5437 APInt AndBits = AndC->getValue();
5438 DemandBits |= AndBits;
5439 // Keep track of the widest and mask we see.
5440 if (AndBits.ugt(WidestAndBits))
5441 WidestAndBits = AndBits;
5442 if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5443 AndsToMaybeRemove.push_back(I);
5444 break;
5447 case Instruction::Shl: {
5448 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5449 if (!ShlC)
5450 return false;
5451 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5452 DemandBits.setLowBits(BitWidth - ShiftAmt);
5453 break;
5456 case Instruction::Trunc: {
5457 EVT TruncVT = TLI->getValueType(*DL, I->getType());
5458 unsigned TruncBitWidth = TruncVT.getSizeInBits();
5459 DemandBits.setLowBits(TruncBitWidth);
5460 break;
5463 default:
5464 return false;
5468 uint32_t ActiveBits = DemandBits.getActiveBits();
5469 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5470 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
5471 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5472 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5473 // followed by an AND.
5474 // TODO: Look into removing this restriction by fixing backends to either
5475 // return false for isLoadExtLegal for i1 or have them select this pattern to
5476 // a single instruction.
5478 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5479 // mask, since these are the only ands that will be removed by isel.
5480 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5481 WidestAndBits != DemandBits)
5482 return false;
5484 LLVMContext &Ctx = Load->getType()->getContext();
5485 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5486 EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5488 // Reject cases that won't be matched as extloads.
5489 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5490 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5491 return false;
5493 IRBuilder<> Builder(Load->getNextNode());
5494 auto *NewAnd = dyn_cast<Instruction>(
5495 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5496 // Mark this instruction as "inserted by CGP", so that other
5497 // optimizations don't touch it.
5498 InsertedInsts.insert(NewAnd);
5500 // Replace all uses of load with new and (except for the use of load in the
5501 // new and itself).
5502 Load->replaceAllUsesWith(NewAnd);
5503 NewAnd->setOperand(0, Load);
5505 // Remove any and instructions that are now redundant.
5506 for (auto *And : AndsToMaybeRemove)
5507 // Check that the and mask is the same as the one we decided to put on the
5508 // new and.
5509 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5510 And->replaceAllUsesWith(NewAnd);
5511 if (&*CurInstIterator == And)
5512 CurInstIterator = std::next(And->getIterator());
5513 And->eraseFromParent();
5514 ++NumAndUses;
5517 ++NumAndsAdded;
5518 return true;
5521 /// Check if V (an operand of a select instruction) is an expensive instruction
5522 /// that is only used once.
5523 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5524 auto *I = dyn_cast<Instruction>(V);
5525 // If it's safe to speculatively execute, then it should not have side
5526 // effects; therefore, it's safe to sink and possibly *not* execute.
5527 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5528 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5531 /// Returns true if a SelectInst should be turned into an explicit branch.
5532 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5533 const TargetLowering *TLI,
5534 SelectInst *SI) {
5535 // If even a predictable select is cheap, then a branch can't be cheaper.
5536 if (!TLI->isPredictableSelectExpensive())
5537 return false;
5539 // FIXME: This should use the same heuristics as IfConversion to determine
5540 // whether a select is better represented as a branch.
5542 // If metadata tells us that the select condition is obviously predictable,
5543 // then we want to replace the select with a branch.
5544 uint64_t TrueWeight, FalseWeight;
5545 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5546 uint64_t Max = std::max(TrueWeight, FalseWeight);
5547 uint64_t Sum = TrueWeight + FalseWeight;
5548 if (Sum != 0) {
5549 auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5550 if (Probability > TLI->getPredictableBranchThreshold())
5551 return true;
5555 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5557 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5558 // comparison condition. If the compare has more than one use, there's
5559 // probably another cmov or setcc around, so it's not worth emitting a branch.
5560 if (!Cmp || !Cmp->hasOneUse())
5561 return false;
5563 // If either operand of the select is expensive and only needed on one side
5564 // of the select, we should form a branch.
5565 if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5566 sinkSelectOperand(TTI, SI->getFalseValue()))
5567 return true;
5569 return false;
5572 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5573 /// false value of \p SI. If the true/false value of \p SI is defined by any
5574 /// select instructions in \p Selects, look through the defining select
5575 /// instruction until the true/false value is not defined in \p Selects.
5576 static Value *getTrueOrFalseValue(
5577 SelectInst *SI, bool isTrue,
5578 const SmallPtrSet<const Instruction *, 2> &Selects) {
5579 Value *V;
5581 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5582 DefSI = dyn_cast<SelectInst>(V)) {
5583 assert(DefSI->getCondition() == SI->getCondition() &&
5584 "The condition of DefSI does not match with SI");
5585 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5587 return V;
5590 /// If we have a SelectInst that will likely profit from branch prediction,
5591 /// turn it into a branch.
5592 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5593 // If branch conversion isn't desirable, exit early.
5594 if (DisableSelectToBranch || OptSize || !TLI)
5595 return false;
5597 // Find all consecutive select instructions that share the same condition.
5598 SmallVector<SelectInst *, 2> ASI;
5599 ASI.push_back(SI);
5600 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5601 It != SI->getParent()->end(); ++It) {
5602 SelectInst *I = dyn_cast<SelectInst>(&*It);
5603 if (I && SI->getCondition() == I->getCondition()) {
5604 ASI.push_back(I);
5605 } else {
5606 break;
5610 SelectInst *LastSI = ASI.back();
5611 // Increment the current iterator to skip all the rest of select instructions
5612 // because they will be either "not lowered" or "all lowered" to branch.
5613 CurInstIterator = std::next(LastSI->getIterator());
5615 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5617 // Can we convert the 'select' to CF ?
5618 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5619 return false;
5621 TargetLowering::SelectSupportKind SelectKind;
5622 if (VectorCond)
5623 SelectKind = TargetLowering::VectorMaskSelect;
5624 else if (SI->getType()->isVectorTy())
5625 SelectKind = TargetLowering::ScalarCondVectorVal;
5626 else
5627 SelectKind = TargetLowering::ScalarValSelect;
5629 if (TLI->isSelectSupported(SelectKind) &&
5630 !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5631 return false;
5633 ModifiedDT = true;
5635 // Transform a sequence like this:
5636 // start:
5637 // %cmp = cmp uge i32 %a, %b
5638 // %sel = select i1 %cmp, i32 %c, i32 %d
5640 // Into:
5641 // start:
5642 // %cmp = cmp uge i32 %a, %b
5643 // br i1 %cmp, label %select.true, label %select.false
5644 // select.true:
5645 // br label %select.end
5646 // select.false:
5647 // br label %select.end
5648 // select.end:
5649 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5651 // In addition, we may sink instructions that produce %c or %d from
5652 // the entry block into the destination(s) of the new branch.
5653 // If the true or false blocks do not contain a sunken instruction, that
5654 // block and its branch may be optimized away. In that case, one side of the
5655 // first branch will point directly to select.end, and the corresponding PHI
5656 // predecessor block will be the start block.
5658 // First, we split the block containing the select into 2 blocks.
5659 BasicBlock *StartBlock = SI->getParent();
5660 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5661 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5663 // Delete the unconditional branch that was just created by the split.
5664 StartBlock->getTerminator()->eraseFromParent();
5666 // These are the new basic blocks for the conditional branch.
5667 // At least one will become an actual new basic block.
5668 BasicBlock *TrueBlock = nullptr;
5669 BasicBlock *FalseBlock = nullptr;
5670 BranchInst *TrueBranch = nullptr;
5671 BranchInst *FalseBranch = nullptr;
5673 // Sink expensive instructions into the conditional blocks to avoid executing
5674 // them speculatively.
5675 for (SelectInst *SI : ASI) {
5676 if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5677 if (TrueBlock == nullptr) {
5678 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5679 EndBlock->getParent(), EndBlock);
5680 TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5681 TrueBranch->setDebugLoc(SI->getDebugLoc());
5683 auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5684 TrueInst->moveBefore(TrueBranch);
5686 if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5687 if (FalseBlock == nullptr) {
5688 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5689 EndBlock->getParent(), EndBlock);
5690 FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5691 FalseBranch->setDebugLoc(SI->getDebugLoc());
5693 auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5694 FalseInst->moveBefore(FalseBranch);
5698 // If there was nothing to sink, then arbitrarily choose the 'false' side
5699 // for a new input value to the PHI.
5700 if (TrueBlock == FalseBlock) {
5701 assert(TrueBlock == nullptr &&
5702 "Unexpected basic block transform while optimizing select");
5704 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5705 EndBlock->getParent(), EndBlock);
5706 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5707 FalseBranch->setDebugLoc(SI->getDebugLoc());
5710 // Insert the real conditional branch based on the original condition.
5711 // If we did not create a new block for one of the 'true' or 'false' paths
5712 // of the condition, it means that side of the branch goes to the end block
5713 // directly and the path originates from the start block from the point of
5714 // view of the new PHI.
5715 BasicBlock *TT, *FT;
5716 if (TrueBlock == nullptr) {
5717 TT = EndBlock;
5718 FT = FalseBlock;
5719 TrueBlock = StartBlock;
5720 } else if (FalseBlock == nullptr) {
5721 TT = TrueBlock;
5722 FT = EndBlock;
5723 FalseBlock = StartBlock;
5724 } else {
5725 TT = TrueBlock;
5726 FT = FalseBlock;
5728 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5730 SmallPtrSet<const Instruction *, 2> INS;
5731 INS.insert(ASI.begin(), ASI.end());
5732 // Use reverse iterator because later select may use the value of the
5733 // earlier select, and we need to propagate value through earlier select
5734 // to get the PHI operand.
5735 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5736 SelectInst *SI = *It;
5737 // The select itself is replaced with a PHI Node.
5738 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5739 PN->takeName(SI);
5740 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5741 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5742 PN->setDebugLoc(SI->getDebugLoc());
5744 SI->replaceAllUsesWith(PN);
5745 SI->eraseFromParent();
5746 INS.erase(SI);
5747 ++NumSelectsExpanded;
5750 // Instruct OptimizeBlock to skip to the next block.
5751 CurInstIterator = StartBlock->end();
5752 return true;
5755 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5756 SmallVector<int, 16> Mask(SVI->getShuffleMask());
5757 int SplatElem = -1;
5758 for (unsigned i = 0; i < Mask.size(); ++i) {
5759 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5760 return false;
5761 SplatElem = Mask[i];
5764 return true;
5767 /// Some targets have expensive vector shifts if the lanes aren't all the same
5768 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5769 /// it's often worth sinking a shufflevector splat down to its use so that
5770 /// codegen can spot all lanes are identical.
5771 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5772 BasicBlock *DefBB = SVI->getParent();
5774 // Only do this xform if variable vector shifts are particularly expensive.
5775 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5776 return false;
5778 // We only expect better codegen by sinking a shuffle if we can recognise a
5779 // constant splat.
5780 if (!isBroadcastShuffle(SVI))
5781 return false;
5783 // InsertedShuffles - Only insert a shuffle in each block once.
5784 DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5786 bool MadeChange = false;
5787 for (User *U : SVI->users()) {
5788 Instruction *UI = cast<Instruction>(U);
5790 // Figure out which BB this ext is used in.
5791 BasicBlock *UserBB = UI->getParent();
5792 if (UserBB == DefBB) continue;
5794 // For now only apply this when the splat is used by a shift instruction.
5795 if (!UI->isShift()) continue;
5797 // Everything checks out, sink the shuffle if the user's block doesn't
5798 // already have a copy.
5799 Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5801 if (!InsertedShuffle) {
5802 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5803 assert(InsertPt != UserBB->end());
5804 InsertedShuffle =
5805 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5806 SVI->getOperand(2), "", &*InsertPt);
5809 UI->replaceUsesOfWith(SVI, InsertedShuffle);
5810 MadeChange = true;
5813 // If we removed all uses, nuke the shuffle.
5814 if (SVI->use_empty()) {
5815 SVI->eraseFromParent();
5816 MadeChange = true;
5819 return MadeChange;
5822 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5823 if (!TLI || !DL)
5824 return false;
5826 Value *Cond = SI->getCondition();
5827 Type *OldType = Cond->getType();
5828 LLVMContext &Context = Cond->getContext();
5829 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5830 unsigned RegWidth = RegType.getSizeInBits();
5832 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5833 return false;
5835 // If the register width is greater than the type width, expand the condition
5836 // of the switch instruction and each case constant to the width of the
5837 // register. By widening the type of the switch condition, subsequent
5838 // comparisons (for case comparisons) will not need to be extended to the
5839 // preferred register width, so we will potentially eliminate N-1 extends,
5840 // where N is the number of cases in the switch.
5841 auto *NewType = Type::getIntNTy(Context, RegWidth);
5843 // Zero-extend the switch condition and case constants unless the switch
5844 // condition is a function argument that is already being sign-extended.
5845 // In that case, we can avoid an unnecessary mask/extension by sign-extending
5846 // everything instead.
5847 Instruction::CastOps ExtType = Instruction::ZExt;
5848 if (auto *Arg = dyn_cast<Argument>(Cond))
5849 if (Arg->hasSExtAttr())
5850 ExtType = Instruction::SExt;
5852 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5853 ExtInst->insertBefore(SI);
5854 ExtInst->setDebugLoc(SI->getDebugLoc());
5855 SI->setCondition(ExtInst);
5856 for (auto Case : SI->cases()) {
5857 APInt NarrowConst = Case.getCaseValue()->getValue();
5858 APInt WideConst = (ExtType == Instruction::ZExt) ?
5859 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5860 Case.setValue(ConstantInt::get(Context, WideConst));
5863 return true;
5867 namespace {
5869 /// Helper class to promote a scalar operation to a vector one.
5870 /// This class is used to move downward extractelement transition.
5871 /// E.g.,
5872 /// a = vector_op <2 x i32>
5873 /// b = extractelement <2 x i32> a, i32 0
5874 /// c = scalar_op b
5875 /// store c
5877 /// =>
5878 /// a = vector_op <2 x i32>
5879 /// c = vector_op a (equivalent to scalar_op on the related lane)
5880 /// * d = extractelement <2 x i32> c, i32 0
5881 /// * store d
5882 /// Assuming both extractelement and store can be combine, we get rid of the
5883 /// transition.
5884 class VectorPromoteHelper {
5885 /// DataLayout associated with the current module.
5886 const DataLayout &DL;
5888 /// Used to perform some checks on the legality of vector operations.
5889 const TargetLowering &TLI;
5891 /// Used to estimated the cost of the promoted chain.
5892 const TargetTransformInfo &TTI;
5894 /// The transition being moved downwards.
5895 Instruction *Transition;
5897 /// The sequence of instructions to be promoted.
5898 SmallVector<Instruction *, 4> InstsToBePromoted;
5900 /// Cost of combining a store and an extract.
5901 unsigned StoreExtractCombineCost;
5903 /// Instruction that will be combined with the transition.
5904 Instruction *CombineInst = nullptr;
5906 /// The instruction that represents the current end of the transition.
5907 /// Since we are faking the promotion until we reach the end of the chain
5908 /// of computation, we need a way to get the current end of the transition.
5909 Instruction *getEndOfTransition() const {
5910 if (InstsToBePromoted.empty())
5911 return Transition;
5912 return InstsToBePromoted.back();
5915 /// Return the index of the original value in the transition.
5916 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5917 /// c, is at index 0.
5918 unsigned getTransitionOriginalValueIdx() const {
5919 assert(isa<ExtractElementInst>(Transition) &&
5920 "Other kind of transitions are not supported yet");
5921 return 0;
5924 /// Return the index of the index in the transition.
5925 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5926 /// is at index 1.
5927 unsigned getTransitionIdx() const {
5928 assert(isa<ExtractElementInst>(Transition) &&
5929 "Other kind of transitions are not supported yet");
5930 return 1;
5933 /// Get the type of the transition.
5934 /// This is the type of the original value.
5935 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5936 /// transition is <2 x i32>.
5937 Type *getTransitionType() const {
5938 return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5941 /// Promote \p ToBePromoted by moving \p Def downward through.
5942 /// I.e., we have the following sequence:
5943 /// Def = Transition <ty1> a to <ty2>
5944 /// b = ToBePromoted <ty2> Def, ...
5945 /// =>
5946 /// b = ToBePromoted <ty1> a, ...
5947 /// Def = Transition <ty1> ToBePromoted to <ty2>
5948 void promoteImpl(Instruction *ToBePromoted);
5950 /// Check whether or not it is profitable to promote all the
5951 /// instructions enqueued to be promoted.
5952 bool isProfitableToPromote() {
5953 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5954 unsigned Index = isa<ConstantInt>(ValIdx)
5955 ? cast<ConstantInt>(ValIdx)->getZExtValue()
5956 : -1;
5957 Type *PromotedType = getTransitionType();
5959 StoreInst *ST = cast<StoreInst>(CombineInst);
5960 unsigned AS = ST->getPointerAddressSpace();
5961 unsigned Align = ST->getAlignment();
5962 // Check if this store is supported.
5963 if (!TLI.allowsMisalignedMemoryAccesses(
5964 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5965 Align)) {
5966 // If this is not supported, there is no way we can combine
5967 // the extract with the store.
5968 return false;
5971 // The scalar chain of computation has to pay for the transition
5972 // scalar to vector.
5973 // The vector chain has to account for the combining cost.
5974 uint64_t ScalarCost =
5975 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5976 uint64_t VectorCost = StoreExtractCombineCost;
5977 for (const auto &Inst : InstsToBePromoted) {
5978 // Compute the cost.
5979 // By construction, all instructions being promoted are arithmetic ones.
5980 // Moreover, one argument is a constant that can be viewed as a splat
5981 // constant.
5982 Value *Arg0 = Inst->getOperand(0);
5983 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5984 isa<ConstantFP>(Arg0);
5985 TargetTransformInfo::OperandValueKind Arg0OVK =
5986 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5987 : TargetTransformInfo::OK_AnyValue;
5988 TargetTransformInfo::OperandValueKind Arg1OVK =
5989 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5990 : TargetTransformInfo::OK_AnyValue;
5991 ScalarCost += TTI.getArithmeticInstrCost(
5992 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5993 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5994 Arg0OVK, Arg1OVK);
5996 LLVM_DEBUG(
5997 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5998 << ScalarCost << "\nVector: " << VectorCost << '\n');
5999 return ScalarCost > VectorCost;
6002 /// Generate a constant vector with \p Val with the same
6003 /// number of elements as the transition.
6004 /// \p UseSplat defines whether or not \p Val should be replicated
6005 /// across the whole vector.
6006 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6007 /// otherwise we generate a vector with as many undef as possible:
6008 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6009 /// used at the index of the extract.
6010 Value *getConstantVector(Constant *Val, bool UseSplat) const {
6011 unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6012 if (!UseSplat) {
6013 // If we cannot determine where the constant must be, we have to
6014 // use a splat constant.
6015 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6016 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6017 ExtractIdx = CstVal->getSExtValue();
6018 else
6019 UseSplat = true;
6022 unsigned End = getTransitionType()->getVectorNumElements();
6023 if (UseSplat)
6024 return ConstantVector::getSplat(End, Val);
6026 SmallVector<Constant *, 4> ConstVec;
6027 UndefValue *UndefVal = UndefValue::get(Val->getType());
6028 for (unsigned Idx = 0; Idx != End; ++Idx) {
6029 if (Idx == ExtractIdx)
6030 ConstVec.push_back(Val);
6031 else
6032 ConstVec.push_back(UndefVal);
6034 return ConstantVector::get(ConstVec);
6037 /// Check if promoting to a vector type an operand at \p OperandIdx
6038 /// in \p Use can trigger undefined behavior.
6039 static bool canCauseUndefinedBehavior(const Instruction *Use,
6040 unsigned OperandIdx) {
6041 // This is not safe to introduce undef when the operand is on
6042 // the right hand side of a division-like instruction.
6043 if (OperandIdx != 1)
6044 return false;
6045 switch (Use->getOpcode()) {
6046 default:
6047 return false;
6048 case Instruction::SDiv:
6049 case Instruction::UDiv:
6050 case Instruction::SRem:
6051 case Instruction::URem:
6052 return true;
6053 case Instruction::FDiv:
6054 case Instruction::FRem:
6055 return !Use->hasNoNaNs();
6057 llvm_unreachable(nullptr);
6060 public:
6061 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6062 const TargetTransformInfo &TTI, Instruction *Transition,
6063 unsigned CombineCost)
6064 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6065 StoreExtractCombineCost(CombineCost) {
6066 assert(Transition && "Do not know how to promote null");
6069 /// Check if we can promote \p ToBePromoted to \p Type.
6070 bool canPromote(const Instruction *ToBePromoted) const {
6071 // We could support CastInst too.
6072 return isa<BinaryOperator>(ToBePromoted);
6075 /// Check if it is profitable to promote \p ToBePromoted
6076 /// by moving downward the transition through.
6077 bool shouldPromote(const Instruction *ToBePromoted) const {
6078 // Promote only if all the operands can be statically expanded.
6079 // Indeed, we do not want to introduce any new kind of transitions.
6080 for (const Use &U : ToBePromoted->operands()) {
6081 const Value *Val = U.get();
6082 if (Val == getEndOfTransition()) {
6083 // If the use is a division and the transition is on the rhs,
6084 // we cannot promote the operation, otherwise we may create a
6085 // division by zero.
6086 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6087 return false;
6088 continue;
6090 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6091 !isa<ConstantFP>(Val))
6092 return false;
6094 // Check that the resulting operation is legal.
6095 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6096 if (!ISDOpcode)
6097 return false;
6098 return StressStoreExtract ||
6099 TLI.isOperationLegalOrCustom(
6100 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6103 /// Check whether or not \p Use can be combined
6104 /// with the transition.
6105 /// I.e., is it possible to do Use(Transition) => AnotherUse?
6106 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6108 /// Record \p ToBePromoted as part of the chain to be promoted.
6109 void enqueueForPromotion(Instruction *ToBePromoted) {
6110 InstsToBePromoted.push_back(ToBePromoted);
6113 /// Set the instruction that will be combined with the transition.
6114 void recordCombineInstruction(Instruction *ToBeCombined) {
6115 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6116 CombineInst = ToBeCombined;
6119 /// Promote all the instructions enqueued for promotion if it is
6120 /// is profitable.
6121 /// \return True if the promotion happened, false otherwise.
6122 bool promote() {
6123 // Check if there is something to promote.
6124 // Right now, if we do not have anything to combine with,
6125 // we assume the promotion is not profitable.
6126 if (InstsToBePromoted.empty() || !CombineInst)
6127 return false;
6129 // Check cost.
6130 if (!StressStoreExtract && !isProfitableToPromote())
6131 return false;
6133 // Promote.
6134 for (auto &ToBePromoted : InstsToBePromoted)
6135 promoteImpl(ToBePromoted);
6136 InstsToBePromoted.clear();
6137 return true;
6141 } // end anonymous namespace
6143 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6144 // At this point, we know that all the operands of ToBePromoted but Def
6145 // can be statically promoted.
6146 // For Def, we need to use its parameter in ToBePromoted:
6147 // b = ToBePromoted ty1 a
6148 // Def = Transition ty1 b to ty2
6149 // Move the transition down.
6150 // 1. Replace all uses of the promoted operation by the transition.
6151 // = ... b => = ... Def.
6152 assert(ToBePromoted->getType() == Transition->getType() &&
6153 "The type of the result of the transition does not match "
6154 "the final type");
6155 ToBePromoted->replaceAllUsesWith(Transition);
6156 // 2. Update the type of the uses.
6157 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6158 Type *TransitionTy = getTransitionType();
6159 ToBePromoted->mutateType(TransitionTy);
6160 // 3. Update all the operands of the promoted operation with promoted
6161 // operands.
6162 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6163 for (Use &U : ToBePromoted->operands()) {
6164 Value *Val = U.get();
6165 Value *NewVal = nullptr;
6166 if (Val == Transition)
6167 NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6168 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6169 isa<ConstantFP>(Val)) {
6170 // Use a splat constant if it is not safe to use undef.
6171 NewVal = getConstantVector(
6172 cast<Constant>(Val),
6173 isa<UndefValue>(Val) ||
6174 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6175 } else
6176 llvm_unreachable("Did you modified shouldPromote and forgot to update "
6177 "this?");
6178 ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6180 Transition->moveAfter(ToBePromoted);
6181 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6184 /// Some targets can do store(extractelement) with one instruction.
6185 /// Try to push the extractelement towards the stores when the target
6186 /// has this feature and this is profitable.
6187 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6188 unsigned CombineCost = std::numeric_limits<unsigned>::max();
6189 if (DisableStoreExtract || !TLI ||
6190 (!StressStoreExtract &&
6191 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6192 Inst->getOperand(1), CombineCost)))
6193 return false;
6195 // At this point we know that Inst is a vector to scalar transition.
6196 // Try to move it down the def-use chain, until:
6197 // - We can combine the transition with its single use
6198 // => we got rid of the transition.
6199 // - We escape the current basic block
6200 // => we would need to check that we are moving it at a cheaper place and
6201 // we do not do that for now.
6202 BasicBlock *Parent = Inst->getParent();
6203 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6204 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6205 // If the transition has more than one use, assume this is not going to be
6206 // beneficial.
6207 while (Inst->hasOneUse()) {
6208 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6209 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6211 if (ToBePromoted->getParent() != Parent) {
6212 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6213 << ToBePromoted->getParent()->getName()
6214 << ") than the transition (" << Parent->getName()
6215 << ").\n");
6216 return false;
6219 if (VPH.canCombine(ToBePromoted)) {
6220 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6221 << "will be combined with: " << *ToBePromoted << '\n');
6222 VPH.recordCombineInstruction(ToBePromoted);
6223 bool Changed = VPH.promote();
6224 NumStoreExtractExposed += Changed;
6225 return Changed;
6228 LLVM_DEBUG(dbgs() << "Try promoting.\n");
6229 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6230 return false;
6232 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6234 VPH.enqueueForPromotion(ToBePromoted);
6235 Inst = ToBePromoted;
6237 return false;
6240 /// For the instruction sequence of store below, F and I values
6241 /// are bundled together as an i64 value before being stored into memory.
6242 /// Sometimes it is more efficient to generate separate stores for F and I,
6243 /// which can remove the bitwise instructions or sink them to colder places.
6245 /// (store (or (zext (bitcast F to i32) to i64),
6246 /// (shl (zext I to i64), 32)), addr) -->
6247 /// (store F, addr) and (store I, addr+4)
6249 /// Similarly, splitting for other merged store can also be beneficial, like:
6250 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6251 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6252 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6253 /// For pair of {i16, i8}, i32 store --> two i16 stores.
6254 /// For pair of {i8, i8}, i16 store --> two i8 stores.
6256 /// We allow each target to determine specifically which kind of splitting is
6257 /// supported.
6259 /// The store patterns are commonly seen from the simple code snippet below
6260 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6261 /// void goo(const std::pair<int, float> &);
6262 /// hoo() {
6263 /// ...
6264 /// goo(std::make_pair(tmp, ftmp));
6265 /// ...
6266 /// }
6268 /// Although we already have similar splitting in DAG Combine, we duplicate
6269 /// it in CodeGenPrepare to catch the case in which pattern is across
6270 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6271 /// during code expansion.
6272 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6273 const TargetLowering &TLI) {
6274 // Handle simple but common cases only.
6275 Type *StoreType = SI.getValueOperand()->getType();
6276 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6277 DL.getTypeSizeInBits(StoreType) == 0)
6278 return false;
6280 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6281 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6282 if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6283 DL.getTypeSizeInBits(SplitStoreType))
6284 return false;
6286 // Match the following patterns:
6287 // (store (or (zext LValue to i64),
6288 // (shl (zext HValue to i64), 32)), HalfValBitSize)
6289 // or
6290 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6291 // (zext LValue to i64),
6292 // Expect both operands of OR and the first operand of SHL have only
6293 // one use.
6294 Value *LValue, *HValue;
6295 if (!match(SI.getValueOperand(),
6296 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6297 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6298 m_SpecificInt(HalfValBitSize))))))
6299 return false;
6301 // Check LValue and HValue are int with size less or equal than 32.
6302 if (!LValue->getType()->isIntegerTy() ||
6303 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6304 !HValue->getType()->isIntegerTy() ||
6305 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6306 return false;
6308 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6309 // as the input of target query.
6310 auto *LBC = dyn_cast<BitCastInst>(LValue);
6311 auto *HBC = dyn_cast<BitCastInst>(HValue);
6312 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6313 : EVT::getEVT(LValue->getType());
6314 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6315 : EVT::getEVT(HValue->getType());
6316 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6317 return false;
6319 // Start to split store.
6320 IRBuilder<> Builder(SI.getContext());
6321 Builder.SetInsertPoint(&SI);
6323 // If LValue/HValue is a bitcast in another BB, create a new one in current
6324 // BB so it may be merged with the splitted stores by dag combiner.
6325 if (LBC && LBC->getParent() != SI.getParent())
6326 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6327 if (HBC && HBC->getParent() != SI.getParent())
6328 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6330 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6331 auto CreateSplitStore = [&](Value *V, bool Upper) {
6332 V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6333 Value *Addr = Builder.CreateBitCast(
6334 SI.getOperand(1),
6335 SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6336 if ((IsLE && Upper) || (!IsLE && !Upper))
6337 Addr = Builder.CreateGEP(
6338 SplitStoreType, Addr,
6339 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6340 Builder.CreateAlignedStore(
6341 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6344 CreateSplitStore(LValue, false);
6345 CreateSplitStore(HValue, true);
6347 // Delete the old store.
6348 SI.eraseFromParent();
6349 return true;
6352 // Return true if the GEP has two operands, the first operand is of a sequential
6353 // type, and the second operand is a constant.
6354 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6355 gep_type_iterator I = gep_type_begin(*GEP);
6356 return GEP->getNumOperands() == 2 &&
6357 I.isSequential() &&
6358 isa<ConstantInt>(GEP->getOperand(1));
6361 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6362 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6363 // reducing liveness interference across those edges benefits global register
6364 // allocation. Currently handles only certain cases.
6366 // For example, unmerge %GEPI and %UGEPI as below.
6368 // ---------- BEFORE ----------
6369 // SrcBlock:
6370 // ...
6371 // %GEPIOp = ...
6372 // ...
6373 // %GEPI = gep %GEPIOp, Idx
6374 // ...
6375 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6376 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6377 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6378 // %UGEPI)
6380 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6381 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6382 // ...
6384 // DstBi:
6385 // ...
6386 // %UGEPI = gep %GEPIOp, UIdx
6387 // ...
6388 // ---------------------------
6390 // ---------- AFTER ----------
6391 // SrcBlock:
6392 // ... (same as above)
6393 // (* %GEPI is still alive on the indirectbr edges)
6394 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6395 // unmerging)
6396 // ...
6398 // DstBi:
6399 // ...
6400 // %UGEPI = gep %GEPI, (UIdx-Idx)
6401 // ...
6402 // ---------------------------
6404 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6405 // no longer alive on them.
6407 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6408 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6409 // not to disable further simplications and optimizations as a result of GEP
6410 // merging.
6412 // Note this unmerging may increase the length of the data flow critical path
6413 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6414 // between the register pressure and the length of data-flow critical
6415 // path. Restricting this to the uncommon IndirectBr case would minimize the
6416 // impact of potentially longer critical path, if any, and the impact on compile
6417 // time.
6418 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6419 const TargetTransformInfo *TTI) {
6420 BasicBlock *SrcBlock = GEPI->getParent();
6421 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6422 // (non-IndirectBr) cases exit early here.
6423 if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6424 return false;
6425 // Check that GEPI is a simple gep with a single constant index.
6426 if (!GEPSequentialConstIndexed(GEPI))
6427 return false;
6428 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6429 // Check that GEPI is a cheap one.
6430 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6431 > TargetTransformInfo::TCC_Basic)
6432 return false;
6433 Value *GEPIOp = GEPI->getOperand(0);
6434 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6435 if (!isa<Instruction>(GEPIOp))
6436 return false;
6437 auto *GEPIOpI = cast<Instruction>(GEPIOp);
6438 if (GEPIOpI->getParent() != SrcBlock)
6439 return false;
6440 // Check that GEP is used outside the block, meaning it's alive on the
6441 // IndirectBr edge(s).
6442 if (find_if(GEPI->users(), [&](User *Usr) {
6443 if (auto *I = dyn_cast<Instruction>(Usr)) {
6444 if (I->getParent() != SrcBlock) {
6445 return true;
6448 return false;
6449 }) == GEPI->users().end())
6450 return false;
6451 // The second elements of the GEP chains to be unmerged.
6452 std::vector<GetElementPtrInst *> UGEPIs;
6453 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6454 // on IndirectBr edges.
6455 for (User *Usr : GEPIOp->users()) {
6456 if (Usr == GEPI) continue;
6457 // Check if Usr is an Instruction. If not, give up.
6458 if (!isa<Instruction>(Usr))
6459 return false;
6460 auto *UI = cast<Instruction>(Usr);
6461 // Check if Usr in the same block as GEPIOp, which is fine, skip.
6462 if (UI->getParent() == SrcBlock)
6463 continue;
6464 // Check if Usr is a GEP. If not, give up.
6465 if (!isa<GetElementPtrInst>(Usr))
6466 return false;
6467 auto *UGEPI = cast<GetElementPtrInst>(Usr);
6468 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6469 // the pointer operand to it. If so, record it in the vector. If not, give
6470 // up.
6471 if (!GEPSequentialConstIndexed(UGEPI))
6472 return false;
6473 if (UGEPI->getOperand(0) != GEPIOp)
6474 return false;
6475 if (GEPIIdx->getType() !=
6476 cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6477 return false;
6478 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6479 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6480 > TargetTransformInfo::TCC_Basic)
6481 return false;
6482 UGEPIs.push_back(UGEPI);
6484 if (UGEPIs.size() == 0)
6485 return false;
6486 // Check the materializing cost of (Uidx-Idx).
6487 for (GetElementPtrInst *UGEPI : UGEPIs) {
6488 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6489 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6490 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6491 if (ImmCost > TargetTransformInfo::TCC_Basic)
6492 return false;
6494 // Now unmerge between GEPI and UGEPIs.
6495 for (GetElementPtrInst *UGEPI : UGEPIs) {
6496 UGEPI->setOperand(0, GEPI);
6497 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6498 Constant *NewUGEPIIdx =
6499 ConstantInt::get(GEPIIdx->getType(),
6500 UGEPIIdx->getValue() - GEPIIdx->getValue());
6501 UGEPI->setOperand(1, NewUGEPIIdx);
6502 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6503 // inbounds to avoid UB.
6504 if (!GEPI->isInBounds()) {
6505 UGEPI->setIsInBounds(false);
6508 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6509 // alive on IndirectBr edges).
6510 assert(find_if(GEPIOp->users(), [&](User *Usr) {
6511 return cast<Instruction>(Usr)->getParent() != SrcBlock;
6512 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6513 return true;
6516 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6517 // Bail out if we inserted the instruction to prevent optimizations from
6518 // stepping on each other's toes.
6519 if (InsertedInsts.count(I))
6520 return false;
6522 if (PHINode *P = dyn_cast<PHINode>(I)) {
6523 // It is possible for very late stage optimizations (such as SimplifyCFG)
6524 // to introduce PHI nodes too late to be cleaned up. If we detect such a
6525 // trivial PHI, go ahead and zap it here.
6526 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6527 P->replaceAllUsesWith(V);
6528 P->eraseFromParent();
6529 ++NumPHIsElim;
6530 return true;
6532 return false;
6535 if (CastInst *CI = dyn_cast<CastInst>(I)) {
6536 // If the source of the cast is a constant, then this should have
6537 // already been constant folded. The only reason NOT to constant fold
6538 // it is if something (e.g. LSR) was careful to place the constant
6539 // evaluation in a block other than then one that uses it (e.g. to hoist
6540 // the address of globals out of a loop). If this is the case, we don't
6541 // want to forward-subst the cast.
6542 if (isa<Constant>(CI->getOperand(0)))
6543 return false;
6545 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6546 return true;
6548 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6549 /// Sink a zext or sext into its user blocks if the target type doesn't
6550 /// fit in one register
6551 if (TLI &&
6552 TLI->getTypeAction(CI->getContext(),
6553 TLI->getValueType(*DL, CI->getType())) ==
6554 TargetLowering::TypeExpandInteger) {
6555 return SinkCast(CI);
6556 } else {
6557 bool MadeChange = optimizeExt(I);
6558 return MadeChange | optimizeExtUses(I);
6561 return false;
6564 if (CmpInst *CI = dyn_cast<CmpInst>(I))
6565 if (!TLI || !TLI->hasMultipleConditionRegisters())
6566 return OptimizeCmpExpression(CI, TLI);
6568 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6569 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6570 if (TLI) {
6571 bool Modified = optimizeLoadExt(LI);
6572 unsigned AS = LI->getPointerAddressSpace();
6573 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6574 return Modified;
6576 return false;
6579 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6580 if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6581 return true;
6582 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6583 if (TLI) {
6584 unsigned AS = SI->getPointerAddressSpace();
6585 return optimizeMemoryInst(I, SI->getOperand(1),
6586 SI->getOperand(0)->getType(), AS);
6588 return false;
6591 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6592 unsigned AS = RMW->getPointerAddressSpace();
6593 return optimizeMemoryInst(I, RMW->getPointerOperand(),
6594 RMW->getType(), AS);
6597 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6598 unsigned AS = CmpX->getPointerAddressSpace();
6599 return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6600 CmpX->getCompareOperand()->getType(), AS);
6603 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6605 if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6606 EnableAndCmpSinking && TLI)
6607 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6609 if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6610 BinOp->getOpcode() == Instruction::LShr)) {
6611 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6612 if (TLI && CI && TLI->hasExtractBitsInsn())
6613 return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6615 return false;
6618 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6619 if (GEPI->hasAllZeroIndices()) {
6620 /// The GEP operand must be a pointer, so must its result -> BitCast
6621 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6622 GEPI->getName(), GEPI);
6623 NC->setDebugLoc(GEPI->getDebugLoc());
6624 GEPI->replaceAllUsesWith(NC);
6625 GEPI->eraseFromParent();
6626 ++NumGEPsElim;
6627 optimizeInst(NC, ModifiedDT);
6628 return true;
6630 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6631 return true;
6633 return false;
6636 if (CallInst *CI = dyn_cast<CallInst>(I))
6637 return optimizeCallInst(CI, ModifiedDT);
6639 if (SelectInst *SI = dyn_cast<SelectInst>(I))
6640 return optimizeSelectInst(SI);
6642 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6643 return optimizeShuffleVectorInst(SVI);
6645 if (auto *Switch = dyn_cast<SwitchInst>(I))
6646 return optimizeSwitchInst(Switch);
6648 if (isa<ExtractElementInst>(I))
6649 return optimizeExtractElementInst(I);
6651 return false;
6654 /// Given an OR instruction, check to see if this is a bitreverse
6655 /// idiom. If so, insert the new intrinsic and return true.
6656 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6657 const TargetLowering &TLI) {
6658 if (!I.getType()->isIntegerTy() ||
6659 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6660 TLI.getValueType(DL, I.getType(), true)))
6661 return false;
6663 SmallVector<Instruction*, 4> Insts;
6664 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6665 return false;
6666 Instruction *LastInst = Insts.back();
6667 I.replaceAllUsesWith(LastInst);
6668 RecursivelyDeleteTriviallyDeadInstructions(&I);
6669 return true;
6672 // In this pass we look for GEP and cast instructions that are used
6673 // across basic blocks and rewrite them to improve basic-block-at-a-time
6674 // selection.
6675 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6676 SunkAddrs.clear();
6677 bool MadeChange = false;
6679 CurInstIterator = BB.begin();
6680 while (CurInstIterator != BB.end()) {
6681 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6682 if (ModifiedDT)
6683 return true;
6686 bool MadeBitReverse = true;
6687 while (TLI && MadeBitReverse) {
6688 MadeBitReverse = false;
6689 for (auto &I : reverse(BB)) {
6690 if (makeBitReverse(I, *DL, *TLI)) {
6691 MadeBitReverse = MadeChange = true;
6692 ModifiedDT = true;
6693 break;
6697 MadeChange |= dupRetToEnableTailCallOpts(&BB);
6699 return MadeChange;
6702 // llvm.dbg.value is far away from the value then iSel may not be able
6703 // handle it properly. iSel will drop llvm.dbg.value if it can not
6704 // find a node corresponding to the value.
6705 bool CodeGenPrepare::placeDbgValues(Function &F) {
6706 bool MadeChange = false;
6707 for (BasicBlock &BB : F) {
6708 Instruction *PrevNonDbgInst = nullptr;
6709 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6710 Instruction *Insn = &*BI++;
6711 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6712 // Leave dbg.values that refer to an alloca alone. These
6713 // intrinsics describe the address of a variable (= the alloca)
6714 // being taken. They should not be moved next to the alloca
6715 // (and to the beginning of the scope), but rather stay close to
6716 // where said address is used.
6717 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6718 PrevNonDbgInst = Insn;
6719 continue;
6722 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6723 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6724 // If VI is a phi in a block with an EHPad terminator, we can't insert
6725 // after it.
6726 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6727 continue;
6728 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6729 << *DVI << ' ' << *VI);
6730 DVI->removeFromParent();
6731 if (isa<PHINode>(VI))
6732 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6733 else
6734 DVI->insertAfter(VI);
6735 MadeChange = true;
6736 ++NumDbgValueMoved;
6740 return MadeChange;
6743 /// Scale down both weights to fit into uint32_t.
6744 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6745 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6746 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6747 NewTrue = NewTrue / Scale;
6748 NewFalse = NewFalse / Scale;
6751 /// Some targets prefer to split a conditional branch like:
6752 /// \code
6753 /// %0 = icmp ne i32 %a, 0
6754 /// %1 = icmp ne i32 %b, 0
6755 /// %or.cond = or i1 %0, %1
6756 /// br i1 %or.cond, label %TrueBB, label %FalseBB
6757 /// \endcode
6758 /// into multiple branch instructions like:
6759 /// \code
6760 /// bb1:
6761 /// %0 = icmp ne i32 %a, 0
6762 /// br i1 %0, label %TrueBB, label %bb2
6763 /// bb2:
6764 /// %1 = icmp ne i32 %b, 0
6765 /// br i1 %1, label %TrueBB, label %FalseBB
6766 /// \endcode
6767 /// This usually allows instruction selection to do even further optimizations
6768 /// and combine the compare with the branch instruction. Currently this is
6769 /// applied for targets which have "cheap" jump instructions.
6771 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6773 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6774 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6775 return false;
6777 bool MadeChange = false;
6778 for (auto &BB : F) {
6779 // Does this BB end with the following?
6780 // %cond1 = icmp|fcmp|binary instruction ...
6781 // %cond2 = icmp|fcmp|binary instruction ...
6782 // %cond.or = or|and i1 %cond1, cond2
6783 // br i1 %cond.or label %dest1, label %dest2"
6784 BinaryOperator *LogicOp;
6785 BasicBlock *TBB, *FBB;
6786 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6787 continue;
6789 auto *Br1 = cast<BranchInst>(BB.getTerminator());
6790 if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6791 continue;
6793 unsigned Opc;
6794 Value *Cond1, *Cond2;
6795 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6796 m_OneUse(m_Value(Cond2)))))
6797 Opc = Instruction::And;
6798 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6799 m_OneUse(m_Value(Cond2)))))
6800 Opc = Instruction::Or;
6801 else
6802 continue;
6804 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6805 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) )
6806 continue;
6808 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6810 // Create a new BB.
6811 auto TmpBB =
6812 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6813 BB.getParent(), BB.getNextNode());
6815 // Update original basic block by using the first condition directly by the
6816 // branch instruction and removing the no longer needed and/or instruction.
6817 Br1->setCondition(Cond1);
6818 LogicOp->eraseFromParent();
6820 // Depending on the condition we have to either replace the true or the
6821 // false successor of the original branch instruction.
6822 if (Opc == Instruction::And)
6823 Br1->setSuccessor(0, TmpBB);
6824 else
6825 Br1->setSuccessor(1, TmpBB);
6827 // Fill in the new basic block.
6828 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6829 if (auto *I = dyn_cast<Instruction>(Cond2)) {
6830 I->removeFromParent();
6831 I->insertBefore(Br2);
6834 // Update PHI nodes in both successors. The original BB needs to be
6835 // replaced in one successor's PHI nodes, because the branch comes now from
6836 // the newly generated BB (NewBB). In the other successor we need to add one
6837 // incoming edge to the PHI nodes, because both branch instructions target
6838 // now the same successor. Depending on the original branch condition
6839 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6840 // we perform the correct update for the PHI nodes.
6841 // This doesn't change the successor order of the just created branch
6842 // instruction (or any other instruction).
6843 if (Opc == Instruction::Or)
6844 std::swap(TBB, FBB);
6846 // Replace the old BB with the new BB.
6847 for (PHINode &PN : TBB->phis()) {
6848 int i;
6849 while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6850 PN.setIncomingBlock(i, TmpBB);
6853 // Add another incoming edge form the new BB.
6854 for (PHINode &PN : FBB->phis()) {
6855 auto *Val = PN.getIncomingValueForBlock(&BB);
6856 PN.addIncoming(Val, TmpBB);
6859 // Update the branch weights (from SelectionDAGBuilder::
6860 // FindMergedConditions).
6861 if (Opc == Instruction::Or) {
6862 // Codegen X | Y as:
6863 // BB1:
6864 // jmp_if_X TBB
6865 // jmp TmpBB
6866 // TmpBB:
6867 // jmp_if_Y TBB
6868 // jmp FBB
6871 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6872 // The requirement is that
6873 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6874 // = TrueProb for original BB.
6875 // Assuming the original weights are A and B, one choice is to set BB1's
6876 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6877 // assumes that
6878 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6879 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6880 // TmpBB, but the math is more complicated.
6881 uint64_t TrueWeight, FalseWeight;
6882 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6883 uint64_t NewTrueWeight = TrueWeight;
6884 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6885 scaleWeights(NewTrueWeight, NewFalseWeight);
6886 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6887 .createBranchWeights(TrueWeight, FalseWeight));
6889 NewTrueWeight = TrueWeight;
6890 NewFalseWeight = 2 * FalseWeight;
6891 scaleWeights(NewTrueWeight, NewFalseWeight);
6892 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6893 .createBranchWeights(TrueWeight, FalseWeight));
6895 } else {
6896 // Codegen X & Y as:
6897 // BB1:
6898 // jmp_if_X TmpBB
6899 // jmp FBB
6900 // TmpBB:
6901 // jmp_if_Y TBB
6902 // jmp FBB
6904 // This requires creation of TmpBB after CurBB.
6906 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6907 // The requirement is that
6908 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6909 // = FalseProb for original BB.
6910 // Assuming the original weights are A and B, one choice is to set BB1's
6911 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6912 // assumes that
6913 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6914 uint64_t TrueWeight, FalseWeight;
6915 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6916 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6917 uint64_t NewFalseWeight = FalseWeight;
6918 scaleWeights(NewTrueWeight, NewFalseWeight);
6919 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6920 .createBranchWeights(TrueWeight, FalseWeight));
6922 NewTrueWeight = 2 * TrueWeight;
6923 NewFalseWeight = FalseWeight;
6924 scaleWeights(NewTrueWeight, NewFalseWeight);
6925 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6926 .createBranchWeights(TrueWeight, FalseWeight));
6930 // Note: No point in getting fancy here, since the DT info is never
6931 // available to CodeGenPrepare.
6932 ModifiedDT = true;
6934 MadeChange = true;
6936 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6937 TmpBB->dump());
6939 return MadeChange;