[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / CodeGen / ExpandMemCmp.cpp
blobd7562cbf1e90c59e23643db15185d1640f0d3776
1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass tries to expand memcmp() calls into optimally-sized loads and
11 // compares for the target.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/IRBuilder.h"
25 using namespace llvm;
27 #define DEBUG_TYPE "expandmemcmp"
29 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
30 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
31 STATISTIC(NumMemCmpGreaterThanMax,
32 "Number of memcmp calls with size greater than max size");
33 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
35 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
36 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
37 cl::desc("The number of loads per basic block for inline expansion of "
38 "memcmp that is only being compared against zero."));
40 namespace {
43 // This class provides helper functions to expand a memcmp library call into an
44 // inline expansion.
45 class MemCmpExpansion {
46 struct ResultBlock {
47 BasicBlock *BB = nullptr;
48 PHINode *PhiSrc1 = nullptr;
49 PHINode *PhiSrc2 = nullptr;
51 ResultBlock() = default;
54 CallInst *const CI;
55 ResultBlock ResBlock;
56 const uint64_t Size;
57 unsigned MaxLoadSize;
58 uint64_t NumLoadsNonOneByte;
59 const uint64_t NumLoadsPerBlockForZeroCmp;
60 std::vector<BasicBlock *> LoadCmpBlocks;
61 BasicBlock *EndBlock;
62 PHINode *PhiRes;
63 const bool IsUsedForZeroCmp;
64 const DataLayout &DL;
65 IRBuilder<> Builder;
66 // Represents the decomposition in blocks of the expansion. For example,
67 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
68 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
69 // TODO(courbet): Involve the target more in this computation. On X86, 7
70 // bytes can be done more efficiently with two overlaping 4-byte loads than
71 // covering the interval with [{4, 0},{2, 4},{1, 6}}.
72 struct LoadEntry {
73 LoadEntry(unsigned LoadSize, uint64_t Offset)
74 : LoadSize(LoadSize), Offset(Offset) {
75 assert(Offset % LoadSize == 0 && "invalid load entry");
78 uint64_t getGEPIndex() const { return Offset / LoadSize; }
80 // The size of the load for this block, in bytes.
81 const unsigned LoadSize;
82 // The offset of this load WRT the base pointer, in bytes.
83 const uint64_t Offset;
85 SmallVector<LoadEntry, 8> LoadSequence;
87 void createLoadCmpBlocks();
88 void createResultBlock();
89 void setupResultBlockPHINodes();
90 void setupEndBlockPHINodes();
91 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
92 void emitLoadCompareBlock(unsigned BlockIndex);
93 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
94 unsigned &LoadIndex);
95 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
96 void emitMemCmpResultBlock();
97 Value *getMemCmpExpansionZeroCase();
98 Value *getMemCmpEqZeroOneBlock();
99 Value *getMemCmpOneBlock();
101 public:
102 MemCmpExpansion(CallInst *CI, uint64_t Size,
103 const TargetTransformInfo::MemCmpExpansionOptions &Options,
104 unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
105 unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout);
107 unsigned getNumBlocks();
108 uint64_t getNumLoads() const { return LoadSequence.size(); }
110 Value *getMemCmpExpansion();
113 // Initialize the basic block structure required for expansion of memcmp call
114 // with given maximum load size and memcmp size parameter.
115 // This structure includes:
116 // 1. A list of load compare blocks - LoadCmpBlocks.
117 // 2. An EndBlock, split from original instruction point, which is the block to
118 // return from.
119 // 3. ResultBlock, block to branch to for early exit when a
120 // LoadCmpBlock finds a difference.
121 MemCmpExpansion::MemCmpExpansion(
122 CallInst *const CI, uint64_t Size,
123 const TargetTransformInfo::MemCmpExpansionOptions &Options,
124 const unsigned MaxNumLoads, const bool IsUsedForZeroCmp,
125 const unsigned MaxLoadsPerBlockForZeroCmp, const DataLayout &TheDataLayout)
126 : CI(CI),
127 Size(Size),
128 MaxLoadSize(0),
129 NumLoadsNonOneByte(0),
130 NumLoadsPerBlockForZeroCmp(MaxLoadsPerBlockForZeroCmp),
131 IsUsedForZeroCmp(IsUsedForZeroCmp),
132 DL(TheDataLayout),
133 Builder(CI) {
134 assert(Size > 0 && "zero blocks");
135 // Scale the max size down if the target can load more bytes than we need.
136 size_t LoadSizeIndex = 0;
137 while (LoadSizeIndex < Options.LoadSizes.size() &&
138 Options.LoadSizes[LoadSizeIndex] > Size) {
139 ++LoadSizeIndex;
141 this->MaxLoadSize = Options.LoadSizes[LoadSizeIndex];
142 // Compute the decomposition.
143 uint64_t CurSize = Size;
144 uint64_t Offset = 0;
145 while (CurSize && LoadSizeIndex < Options.LoadSizes.size()) {
146 const unsigned LoadSize = Options.LoadSizes[LoadSizeIndex];
147 assert(LoadSize > 0 && "zero load size");
148 const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
149 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
150 // Do not expand if the total number of loads is larger than what the
151 // target allows. Note that it's important that we exit before completing
152 // the expansion to avoid using a ton of memory to store the expansion for
153 // large sizes.
154 LoadSequence.clear();
155 return;
157 if (NumLoadsForThisSize > 0) {
158 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
159 LoadSequence.push_back({LoadSize, Offset});
160 Offset += LoadSize;
162 if (LoadSize > 1) {
163 ++NumLoadsNonOneByte;
165 CurSize = CurSize % LoadSize;
167 ++LoadSizeIndex;
169 assert(LoadSequence.size() <= MaxNumLoads && "broken invariant");
172 unsigned MemCmpExpansion::getNumBlocks() {
173 if (IsUsedForZeroCmp)
174 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
175 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
176 return getNumLoads();
179 void MemCmpExpansion::createLoadCmpBlocks() {
180 for (unsigned i = 0; i < getNumBlocks(); i++) {
181 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
182 EndBlock->getParent(), EndBlock);
183 LoadCmpBlocks.push_back(BB);
187 void MemCmpExpansion::createResultBlock() {
188 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
189 EndBlock->getParent(), EndBlock);
192 // This function creates the IR instructions for loading and comparing 1 byte.
193 // It loads 1 byte from each source of the memcmp parameters with the given
194 // GEPIndex. It then subtracts the two loaded values and adds this result to the
195 // final phi node for selecting the memcmp result.
196 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
197 unsigned GEPIndex) {
198 Value *Source1 = CI->getArgOperand(0);
199 Value *Source2 = CI->getArgOperand(1);
201 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
202 Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
203 // Cast source to LoadSizeType*.
204 if (Source1->getType() != LoadSizeType)
205 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
206 if (Source2->getType() != LoadSizeType)
207 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
209 // Get the base address using the GEPIndex.
210 if (GEPIndex != 0) {
211 Source1 = Builder.CreateGEP(LoadSizeType, Source1,
212 ConstantInt::get(LoadSizeType, GEPIndex));
213 Source2 = Builder.CreateGEP(LoadSizeType, Source2,
214 ConstantInt::get(LoadSizeType, GEPIndex));
217 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
218 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
220 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
221 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
222 Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
224 PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
226 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
227 // Early exit branch if difference found to EndBlock. Otherwise, continue to
228 // next LoadCmpBlock,
229 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
230 ConstantInt::get(Diff->getType(), 0));
231 BranchInst *CmpBr =
232 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
233 Builder.Insert(CmpBr);
234 } else {
235 // The last block has an unconditional branch to EndBlock.
236 BranchInst *CmpBr = BranchInst::Create(EndBlock);
237 Builder.Insert(CmpBr);
241 /// Generate an equality comparison for one or more pairs of loaded values.
242 /// This is used in the case where the memcmp() call is compared equal or not
243 /// equal to zero.
244 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
245 unsigned &LoadIndex) {
246 assert(LoadIndex < getNumLoads() &&
247 "getCompareLoadPairs() called with no remaining loads");
248 std::vector<Value *> XorList, OrList;
249 Value *Diff;
251 const unsigned NumLoads =
252 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
254 // For a single-block expansion, start inserting before the memcmp call.
255 if (LoadCmpBlocks.empty())
256 Builder.SetInsertPoint(CI);
257 else
258 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
260 Value *Cmp = nullptr;
261 // If we have multiple loads per block, we need to generate a composite
262 // comparison using xor+or. The type for the combinations is the largest load
263 // type.
264 IntegerType *const MaxLoadType =
265 NumLoads == 1 ? nullptr
266 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
267 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
268 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
270 IntegerType *LoadSizeType =
271 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
273 Value *Source1 = CI->getArgOperand(0);
274 Value *Source2 = CI->getArgOperand(1);
276 // Cast source to LoadSizeType*.
277 if (Source1->getType() != LoadSizeType)
278 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
279 if (Source2->getType() != LoadSizeType)
280 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
282 // Get the base address using a GEP.
283 if (CurLoadEntry.Offset != 0) {
284 Source1 = Builder.CreateGEP(
285 LoadSizeType, Source1,
286 ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
287 Source2 = Builder.CreateGEP(
288 LoadSizeType, Source2,
289 ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
292 // Get a constant or load a value for each source address.
293 Value *LoadSrc1 = nullptr;
294 if (auto *Source1C = dyn_cast<Constant>(Source1))
295 LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
296 if (!LoadSrc1)
297 LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
299 Value *LoadSrc2 = nullptr;
300 if (auto *Source2C = dyn_cast<Constant>(Source2))
301 LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
302 if (!LoadSrc2)
303 LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
305 if (NumLoads != 1) {
306 if (LoadSizeType != MaxLoadType) {
307 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
308 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
310 // If we have multiple loads per block, we need to generate a composite
311 // comparison using xor+or.
312 Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
313 Diff = Builder.CreateZExt(Diff, MaxLoadType);
314 XorList.push_back(Diff);
315 } else {
316 // If there's only one load per block, we just compare the loaded values.
317 Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
321 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
322 std::vector<Value *> OutList;
323 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
324 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
325 OutList.push_back(Or);
327 if (InList.size() % 2 != 0)
328 OutList.push_back(InList.back());
329 return OutList;
332 if (!Cmp) {
333 // Pairwise OR the XOR results.
334 OrList = pairWiseOr(XorList);
336 // Pairwise OR the OR results until one result left.
337 while (OrList.size() != 1) {
338 OrList = pairWiseOr(OrList);
340 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
343 return Cmp;
346 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
347 unsigned &LoadIndex) {
348 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
350 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
351 ? EndBlock
352 : LoadCmpBlocks[BlockIndex + 1];
353 // Early exit branch if difference found to ResultBlock. Otherwise,
354 // continue to next LoadCmpBlock or EndBlock.
355 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
356 Builder.Insert(CmpBr);
358 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
359 // since early exit to ResultBlock was not taken (no difference was found in
360 // any of the bytes).
361 if (BlockIndex == LoadCmpBlocks.size() - 1) {
362 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
363 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
367 // This function creates the IR intructions for loading and comparing using the
368 // given LoadSize. It loads the number of bytes specified by LoadSize from each
369 // source of the memcmp parameters. It then does a subtract to see if there was
370 // a difference in the loaded values. If a difference is found, it branches
371 // with an early exit to the ResultBlock for calculating which source was
372 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
373 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
374 // a special case through emitLoadCompareByteBlock. The special handling can
375 // simply subtract the loaded values and add it to the result phi node.
376 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
377 // There is one load per block in this case, BlockIndex == LoadIndex.
378 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
380 if (CurLoadEntry.LoadSize == 1) {
381 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
382 CurLoadEntry.getGEPIndex());
383 return;
386 Type *LoadSizeType =
387 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
388 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
389 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
391 Value *Source1 = CI->getArgOperand(0);
392 Value *Source2 = CI->getArgOperand(1);
394 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
395 // Cast source to LoadSizeType*.
396 if (Source1->getType() != LoadSizeType)
397 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
398 if (Source2->getType() != LoadSizeType)
399 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
401 // Get the base address using a GEP.
402 if (CurLoadEntry.Offset != 0) {
403 Source1 = Builder.CreateGEP(
404 LoadSizeType, Source1,
405 ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
406 Source2 = Builder.CreateGEP(
407 LoadSizeType, Source2,
408 ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
411 // Load LoadSizeType from the base address.
412 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
413 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
415 if (DL.isLittleEndian()) {
416 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
417 Intrinsic::bswap, LoadSizeType);
418 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
419 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
422 if (LoadSizeType != MaxLoadType) {
423 LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
424 LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
427 // Add the loaded values to the phi nodes for calculating memcmp result only
428 // if result is not used in a zero equality.
429 if (!IsUsedForZeroCmp) {
430 ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
431 ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
434 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
435 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
436 ? EndBlock
437 : LoadCmpBlocks[BlockIndex + 1];
438 // Early exit branch if difference found to ResultBlock. Otherwise, continue
439 // to next LoadCmpBlock or EndBlock.
440 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
441 Builder.Insert(CmpBr);
443 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
444 // since early exit to ResultBlock was not taken (no difference was found in
445 // any of the bytes).
446 if (BlockIndex == LoadCmpBlocks.size() - 1) {
447 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
448 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
452 // This function populates the ResultBlock with a sequence to calculate the
453 // memcmp result. It compares the two loaded source values and returns -1 if
454 // src1 < src2 and 1 if src1 > src2.
455 void MemCmpExpansion::emitMemCmpResultBlock() {
456 // Special case: if memcmp result is used in a zero equality, result does not
457 // need to be calculated and can simply return 1.
458 if (IsUsedForZeroCmp) {
459 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
460 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
461 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
462 PhiRes->addIncoming(Res, ResBlock.BB);
463 BranchInst *NewBr = BranchInst::Create(EndBlock);
464 Builder.Insert(NewBr);
465 return;
467 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
468 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
470 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
471 ResBlock.PhiSrc2);
473 Value *Res =
474 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
475 ConstantInt::get(Builder.getInt32Ty(), 1));
477 BranchInst *NewBr = BranchInst::Create(EndBlock);
478 Builder.Insert(NewBr);
479 PhiRes->addIncoming(Res, ResBlock.BB);
482 void MemCmpExpansion::setupResultBlockPHINodes() {
483 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
484 Builder.SetInsertPoint(ResBlock.BB);
485 // Note: this assumes one load per block.
486 ResBlock.PhiSrc1 =
487 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
488 ResBlock.PhiSrc2 =
489 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
492 void MemCmpExpansion::setupEndBlockPHINodes() {
493 Builder.SetInsertPoint(&EndBlock->front());
494 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
497 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
498 unsigned LoadIndex = 0;
499 // This loop populates each of the LoadCmpBlocks with the IR sequence to
500 // handle multiple loads per block.
501 for (unsigned I = 0; I < getNumBlocks(); ++I) {
502 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
505 emitMemCmpResultBlock();
506 return PhiRes;
509 /// A memcmp expansion that compares equality with 0 and only has one block of
510 /// load and compare can bypass the compare, branch, and phi IR that is required
511 /// in the general case.
512 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
513 unsigned LoadIndex = 0;
514 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
515 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
516 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
519 /// A memcmp expansion that only has one block of load and compare can bypass
520 /// the compare, branch, and phi IR that is required in the general case.
521 Value *MemCmpExpansion::getMemCmpOneBlock() {
522 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
523 Value *Source1 = CI->getArgOperand(0);
524 Value *Source2 = CI->getArgOperand(1);
526 // Cast source to LoadSizeType*.
527 if (Source1->getType() != LoadSizeType)
528 Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
529 if (Source2->getType() != LoadSizeType)
530 Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
532 // Load LoadSizeType from the base address.
533 Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
534 Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
536 if (DL.isLittleEndian() && Size != 1) {
537 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
538 Intrinsic::bswap, LoadSizeType);
539 LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
540 LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
543 if (Size < 4) {
544 // The i8 and i16 cases don't need compares. We zext the loaded values and
545 // subtract them to get the suitable negative, zero, or positive i32 result.
546 LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
547 LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
548 return Builder.CreateSub(LoadSrc1, LoadSrc2);
551 // The result of memcmp is negative, zero, or positive, so produce that by
552 // subtracting 2 extended compare bits: sub (ugt, ult).
553 // If a target prefers to use selects to get -1/0/1, they should be able
554 // to transform this later. The inverse transform (going from selects to math)
555 // may not be possible in the DAG because the selects got converted into
556 // branches before we got there.
557 Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
558 Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
559 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
560 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
561 return Builder.CreateSub(ZextUGT, ZextULT);
564 // This function expands the memcmp call into an inline expansion and returns
565 // the memcmp result.
566 Value *MemCmpExpansion::getMemCmpExpansion() {
567 // Create the basic block framework for a multi-block expansion.
568 if (getNumBlocks() != 1) {
569 BasicBlock *StartBlock = CI->getParent();
570 EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
571 setupEndBlockPHINodes();
572 createResultBlock();
574 // If return value of memcmp is not used in a zero equality, we need to
575 // calculate which source was larger. The calculation requires the
576 // two loaded source values of each load compare block.
577 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
578 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
580 // Create the number of required load compare basic blocks.
581 createLoadCmpBlocks();
583 // Update the terminator added by splitBasicBlock to branch to the first
584 // LoadCmpBlock.
585 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
588 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
590 if (IsUsedForZeroCmp)
591 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
592 : getMemCmpExpansionZeroCase();
594 if (getNumBlocks() == 1)
595 return getMemCmpOneBlock();
597 for (unsigned I = 0; I < getNumBlocks(); ++I) {
598 emitLoadCompareBlock(I);
601 emitMemCmpResultBlock();
602 return PhiRes;
605 // This function checks to see if an expansion of memcmp can be generated.
606 // It checks for constant compare size that is less than the max inline size.
607 // If an expansion cannot occur, returns false to leave as a library call.
608 // Otherwise, the library call is replaced with a new IR instruction sequence.
609 /// We want to transform:
610 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
611 /// To:
612 /// loadbb:
613 /// %0 = bitcast i32* %buffer2 to i8*
614 /// %1 = bitcast i32* %buffer1 to i8*
615 /// %2 = bitcast i8* %1 to i64*
616 /// %3 = bitcast i8* %0 to i64*
617 /// %4 = load i64, i64* %2
618 /// %5 = load i64, i64* %3
619 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
620 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
621 /// %8 = sub i64 %6, %7
622 /// %9 = icmp ne i64 %8, 0
623 /// br i1 %9, label %res_block, label %loadbb1
624 /// res_block: ; preds = %loadbb2,
625 /// %loadbb1, %loadbb
626 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
627 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
628 /// %10 = icmp ult i64 %phi.src1, %phi.src2
629 /// %11 = select i1 %10, i32 -1, i32 1
630 /// br label %endblock
631 /// loadbb1: ; preds = %loadbb
632 /// %12 = bitcast i32* %buffer2 to i8*
633 /// %13 = bitcast i32* %buffer1 to i8*
634 /// %14 = bitcast i8* %13 to i32*
635 /// %15 = bitcast i8* %12 to i32*
636 /// %16 = getelementptr i32, i32* %14, i32 2
637 /// %17 = getelementptr i32, i32* %15, i32 2
638 /// %18 = load i32, i32* %16
639 /// %19 = load i32, i32* %17
640 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
641 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
642 /// %22 = zext i32 %20 to i64
643 /// %23 = zext i32 %21 to i64
644 /// %24 = sub i64 %22, %23
645 /// %25 = icmp ne i64 %24, 0
646 /// br i1 %25, label %res_block, label %loadbb2
647 /// loadbb2: ; preds = %loadbb1
648 /// %26 = bitcast i32* %buffer2 to i8*
649 /// %27 = bitcast i32* %buffer1 to i8*
650 /// %28 = bitcast i8* %27 to i16*
651 /// %29 = bitcast i8* %26 to i16*
652 /// %30 = getelementptr i16, i16* %28, i16 6
653 /// %31 = getelementptr i16, i16* %29, i16 6
654 /// %32 = load i16, i16* %30
655 /// %33 = load i16, i16* %31
656 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
657 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
658 /// %36 = zext i16 %34 to i64
659 /// %37 = zext i16 %35 to i64
660 /// %38 = sub i64 %36, %37
661 /// %39 = icmp ne i64 %38, 0
662 /// br i1 %39, label %res_block, label %loadbb3
663 /// loadbb3: ; preds = %loadbb2
664 /// %40 = bitcast i32* %buffer2 to i8*
665 /// %41 = bitcast i32* %buffer1 to i8*
666 /// %42 = getelementptr i8, i8* %41, i8 14
667 /// %43 = getelementptr i8, i8* %40, i8 14
668 /// %44 = load i8, i8* %42
669 /// %45 = load i8, i8* %43
670 /// %46 = zext i8 %44 to i32
671 /// %47 = zext i8 %45 to i32
672 /// %48 = sub i32 %46, %47
673 /// br label %endblock
674 /// endblock: ; preds = %res_block,
675 /// %loadbb3
676 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
677 /// ret i32 %phi.res
678 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
679 const TargetLowering *TLI, const DataLayout *DL) {
680 NumMemCmpCalls++;
682 // Early exit from expansion if -Oz.
683 if (CI->getFunction()->optForMinSize())
684 return false;
686 // Early exit from expansion if size is not a constant.
687 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
688 if (!SizeCast) {
689 NumMemCmpNotConstant++;
690 return false;
692 const uint64_t SizeVal = SizeCast->getZExtValue();
694 if (SizeVal == 0) {
695 return false;
698 // TTI call to check if target would like to expand memcmp. Also, get the
699 // available load sizes.
700 const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
701 const auto *const Options = TTI->enableMemCmpExpansion(IsUsedForZeroCmp);
702 if (!Options) return false;
704 const unsigned MaxNumLoads =
705 TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize());
707 unsigned NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences()
708 ? MemCmpEqZeroNumLoadsPerBlock
709 : TLI->getMemcmpEqZeroLoadsPerBlock();
711 MemCmpExpansion Expansion(CI, SizeVal, *Options, MaxNumLoads,
712 IsUsedForZeroCmp, NumLoadsPerBlock, *DL);
714 // Don't expand if this will require more loads than desired by the target.
715 if (Expansion.getNumLoads() == 0) {
716 NumMemCmpGreaterThanMax++;
717 return false;
720 NumMemCmpInlined++;
722 Value *Res = Expansion.getMemCmpExpansion();
724 // Replace call with result of expansion and erase call.
725 CI->replaceAllUsesWith(Res);
726 CI->eraseFromParent();
728 return true;
733 class ExpandMemCmpPass : public FunctionPass {
734 public:
735 static char ID;
737 ExpandMemCmpPass() : FunctionPass(ID) {
738 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
741 bool runOnFunction(Function &F) override {
742 if (skipFunction(F)) return false;
744 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
745 if (!TPC) {
746 return false;
748 const TargetLowering* TL =
749 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
751 const TargetLibraryInfo *TLI =
752 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
753 const TargetTransformInfo *TTI =
754 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
755 auto PA = runImpl(F, TLI, TTI, TL);
756 return !PA.areAllPreserved();
759 private:
760 void getAnalysisUsage(AnalysisUsage &AU) const override {
761 AU.addRequired<TargetLibraryInfoWrapperPass>();
762 AU.addRequired<TargetTransformInfoWrapperPass>();
763 FunctionPass::getAnalysisUsage(AU);
766 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
767 const TargetTransformInfo *TTI,
768 const TargetLowering* TL);
769 // Returns true if a change was made.
770 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
771 const TargetTransformInfo *TTI, const TargetLowering* TL,
772 const DataLayout& DL);
775 bool ExpandMemCmpPass::runOnBlock(
776 BasicBlock &BB, const TargetLibraryInfo *TLI,
777 const TargetTransformInfo *TTI, const TargetLowering* TL,
778 const DataLayout& DL) {
779 for (Instruction& I : BB) {
780 CallInst *CI = dyn_cast<CallInst>(&I);
781 if (!CI) {
782 continue;
784 LibFunc Func;
785 if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
786 Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TL, &DL)) {
787 return true;
790 return false;
794 PreservedAnalyses ExpandMemCmpPass::runImpl(
795 Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
796 const TargetLowering* TL) {
797 const DataLayout& DL = F.getParent()->getDataLayout();
798 bool MadeChanges = false;
799 for (auto BBIt = F.begin(); BBIt != F.end();) {
800 if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
801 MadeChanges = true;
802 // If changes were made, restart the function from the beginning, since
803 // the structure of the function was changed.
804 BBIt = F.begin();
805 } else {
806 ++BBIt;
809 return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
812 } // namespace
814 char ExpandMemCmpPass::ID = 0;
815 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
816 "Expand memcmp() to load/stores", false, false)
817 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
818 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
819 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
820 "Expand memcmp() to load/stores", false, false)
822 FunctionPass *llvm::createExpandMemCmpPass() {
823 return new ExpandMemCmpPass();