1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the machine instruction level if-conversion pass, which
11 // tries to convert conditional branches into predicated instructions.
13 //===----------------------------------------------------------------------===//
15 #include "BranchFolding.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
57 #define DEBUG_TYPE "if-converter"
59 // Hidden options for help debugging.
60 static cl::opt
<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden
);
61 static cl::opt
<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden
);
62 static cl::opt
<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden
);
63 static cl::opt
<bool> DisableSimple("disable-ifcvt-simple",
64 cl::init(false), cl::Hidden
);
65 static cl::opt
<bool> DisableSimpleF("disable-ifcvt-simple-false",
66 cl::init(false), cl::Hidden
);
67 static cl::opt
<bool> DisableTriangle("disable-ifcvt-triangle",
68 cl::init(false), cl::Hidden
);
69 static cl::opt
<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
70 cl::init(false), cl::Hidden
);
71 static cl::opt
<bool> DisableTriangleF("disable-ifcvt-triangle-false",
72 cl::init(false), cl::Hidden
);
73 static cl::opt
<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
74 cl::init(false), cl::Hidden
);
75 static cl::opt
<bool> DisableDiamond("disable-ifcvt-diamond",
76 cl::init(false), cl::Hidden
);
77 static cl::opt
<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
78 cl::init(false), cl::Hidden
);
79 static cl::opt
<bool> IfCvtBranchFold("ifcvt-branch-fold",
80 cl::init(true), cl::Hidden
);
82 STATISTIC(NumSimple
, "Number of simple if-conversions performed");
83 STATISTIC(NumSimpleFalse
, "Number of simple (F) if-conversions performed");
84 STATISTIC(NumTriangle
, "Number of triangle if-conversions performed");
85 STATISTIC(NumTriangleRev
, "Number of triangle (R) if-conversions performed");
86 STATISTIC(NumTriangleFalse
,"Number of triangle (F) if-conversions performed");
87 STATISTIC(NumTriangleFRev
, "Number of triangle (F/R) if-conversions performed");
88 STATISTIC(NumDiamonds
, "Number of diamond if-conversions performed");
89 STATISTIC(NumForkedDiamonds
, "Number of forked-diamond if-conversions performed");
90 STATISTIC(NumIfConvBBs
, "Number of if-converted blocks");
91 STATISTIC(NumDupBBs
, "Number of duplicated blocks");
92 STATISTIC(NumUnpred
, "Number of true blocks of diamonds unpredicated");
96 class IfConverter
: public MachineFunctionPass
{
98 ICNotClassfied
, // BB data valid, but not classified.
99 ICSimpleFalse
, // Same as ICSimple, but on the false path.
100 ICSimple
, // BB is entry of an one split, no rejoin sub-CFG.
101 ICTriangleFRev
, // Same as ICTriangleFalse, but false path rev condition.
102 ICTriangleRev
, // Same as ICTriangle, but true path rev condition.
103 ICTriangleFalse
, // Same as ICTriangle, but on the false path.
104 ICTriangle
, // BB is entry of a triangle sub-CFG.
105 ICDiamond
, // BB is entry of a diamond sub-CFG.
106 ICForkedDiamond
// BB is entry of an almost diamond sub-CFG, with a
107 // common tail that can be shared.
110 /// One per MachineBasicBlock, this is used to cache the result
111 /// if-conversion feasibility analysis. This includes results from
112 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
113 /// classification, and common tail block of its successors (if it's a
114 /// diamond shape), its size, whether it's predicable, and whether any
115 /// instruction can clobber the 'would-be' predicate.
117 /// IsDone - True if BB is not to be considered for ifcvt.
118 /// IsBeingAnalyzed - True if BB is currently being analyzed.
119 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
120 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
121 /// IsBrAnalyzable - True if analyzeBranch() returns false.
122 /// HasFallThrough - True if BB may fallthrough to the following BB.
123 /// IsUnpredicable - True if BB is known to be unpredicable.
124 /// ClobbersPred - True if BB could modify predicates (e.g. has
126 /// NonPredSize - Number of non-predicated instructions.
127 /// ExtraCost - Extra cost for multi-cycle instructions.
128 /// ExtraCost2 - Some instructions are slower when predicated
129 /// BB - Corresponding MachineBasicBlock.
130 /// TrueBB / FalseBB- See analyzeBranch().
131 /// BrCond - Conditions for end of block conditional branches.
132 /// Predicate - Predicate used in the BB.
135 bool IsBeingAnalyzed
: 1;
138 bool IsBrAnalyzable
: 1;
139 bool IsBrReversible
: 1;
140 bool HasFallThrough
: 1;
141 bool IsUnpredicable
: 1;
142 bool CannotBeCopied
: 1;
143 bool ClobbersPred
: 1;
144 unsigned NonPredSize
= 0;
145 unsigned ExtraCost
= 0;
146 unsigned ExtraCost2
= 0;
147 MachineBasicBlock
*BB
= nullptr;
148 MachineBasicBlock
*TrueBB
= nullptr;
149 MachineBasicBlock
*FalseBB
= nullptr;
150 SmallVector
<MachineOperand
, 4> BrCond
;
151 SmallVector
<MachineOperand
, 4> Predicate
;
153 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
154 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
155 IsBrReversible(false), HasFallThrough(false),
156 IsUnpredicable(false), CannotBeCopied(false),
157 ClobbersPred(false) {}
160 /// Record information about pending if-conversions to attempt:
161 /// BBI - Corresponding BBInfo.
162 /// Kind - Type of block. See IfcvtKind.
163 /// NeedSubsumption - True if the to-be-predicated BB has already been
165 /// NumDups - Number of instructions that would be duplicated due
166 /// to this if-conversion. (For diamonds, the number of
167 /// identical instructions at the beginnings of both
169 /// NumDups2 - For diamonds, the number of identical instructions
170 /// at the ends of both paths.
176 bool NeedSubsumption
: 1;
177 bool TClobbersPred
: 1;
178 bool FClobbersPred
: 1;
180 IfcvtToken(BBInfo
&b
, IfcvtKind k
, bool s
, unsigned d
, unsigned d2
= 0,
181 bool tc
= false, bool fc
= false)
182 : BBI(b
), Kind(k
), NumDups(d
), NumDups2(d2
), NeedSubsumption(s
),
183 TClobbersPred(tc
), FClobbersPred(fc
) {}
186 /// Results of if-conversion feasibility analysis indexed by basic block
188 std::vector
<BBInfo
> BBAnalysis
;
189 TargetSchedModel SchedModel
;
191 const TargetLoweringBase
*TLI
;
192 const TargetInstrInfo
*TII
;
193 const TargetRegisterInfo
*TRI
;
194 const MachineBranchProbabilityInfo
*MBPI
;
195 MachineRegisterInfo
*MRI
;
202 std::function
<bool(const MachineFunction
&)> PredicateFtor
;
207 IfConverter(std::function
<bool(const MachineFunction
&)> Ftor
= nullptr)
208 : MachineFunctionPass(ID
), PredicateFtor(std::move(Ftor
)) {
209 initializeIfConverterPass(*PassRegistry::getPassRegistry());
212 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
213 AU
.addRequired
<MachineBlockFrequencyInfo
>();
214 AU
.addRequired
<MachineBranchProbabilityInfo
>();
215 MachineFunctionPass::getAnalysisUsage(AU
);
218 bool runOnMachineFunction(MachineFunction
&MF
) override
;
220 MachineFunctionProperties
getRequiredProperties() const override
{
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoVRegs
);
226 bool reverseBranchCondition(BBInfo
&BBI
) const;
227 bool ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
228 BranchProbability Prediction
) const;
229 bool ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
230 bool FalseBranch
, unsigned &Dups
,
231 BranchProbability Prediction
) const;
232 bool CountDuplicatedInstructions(
233 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
234 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
235 unsigned &Dups1
, unsigned &Dups2
,
236 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
237 bool SkipUnconditionalBranches
) const;
238 bool ValidDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
239 unsigned &Dups1
, unsigned &Dups2
,
240 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
241 bool ValidForkedDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
242 unsigned &Dups1
, unsigned &Dups2
,
243 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
244 void AnalyzeBranches(BBInfo
&BBI
);
245 void ScanInstructions(BBInfo
&BBI
,
246 MachineBasicBlock::iterator
&Begin
,
247 MachineBasicBlock::iterator
&End
,
248 bool BranchUnpredicable
= false) const;
249 bool RescanInstructions(
250 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
251 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
252 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const;
253 void AnalyzeBlock(MachineBasicBlock
&MBB
,
254 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
255 bool FeasibilityAnalysis(BBInfo
&BBI
, SmallVectorImpl
<MachineOperand
> &Pred
,
256 bool isTriangle
= false, bool RevBranch
= false,
257 bool hasCommonTail
= false);
258 void AnalyzeBlocks(MachineFunction
&MF
,
259 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
260 void InvalidatePreds(MachineBasicBlock
&MBB
);
261 bool IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
);
262 bool IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
);
263 bool IfConvertDiamondCommon(BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
264 unsigned NumDups1
, unsigned NumDups2
,
265 bool TClobbersPred
, bool FClobbersPred
,
266 bool RemoveBranch
, bool MergeAddEdges
);
267 bool IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
268 unsigned NumDups1
, unsigned NumDups2
,
269 bool TClobbers
, bool FClobbers
);
270 bool IfConvertForkedDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
271 unsigned NumDups1
, unsigned NumDups2
,
272 bool TClobbers
, bool FClobbers
);
273 void PredicateBlock(BBInfo
&BBI
,
274 MachineBasicBlock::iterator E
,
275 SmallVectorImpl
<MachineOperand
> &Cond
,
276 SmallSet
<unsigned, 4> *LaterRedefs
= nullptr);
277 void CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
278 SmallVectorImpl
<MachineOperand
> &Cond
,
279 bool IgnoreBr
= false);
280 void MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
= true);
282 bool MeetIfcvtSizeLimit(MachineBasicBlock
&BB
,
283 unsigned Cycle
, unsigned Extra
,
284 BranchProbability Prediction
) const {
285 return Cycle
> 0 && TII
->isProfitableToIfCvt(BB
, Cycle
, Extra
,
289 bool MeetIfcvtSizeLimit(MachineBasicBlock
&TBB
,
290 unsigned TCycle
, unsigned TExtra
,
291 MachineBasicBlock
&FBB
,
292 unsigned FCycle
, unsigned FExtra
,
293 BranchProbability Prediction
) const {
294 return TCycle
> 0 && FCycle
> 0 &&
295 TII
->isProfitableToIfCvt(TBB
, TCycle
, TExtra
, FBB
, FCycle
, FExtra
,
299 /// Returns true if Block ends without a terminator.
300 bool blockAlwaysFallThrough(BBInfo
&BBI
) const {
301 return BBI
.IsBrAnalyzable
&& BBI
.TrueBB
== nullptr;
304 /// Used to sort if-conversion candidates.
305 static bool IfcvtTokenCmp(const std::unique_ptr
<IfcvtToken
> &C1
,
306 const std::unique_ptr
<IfcvtToken
> &C2
) {
307 int Incr1
= (C1
->Kind
== ICDiamond
)
308 ? -(int)(C1
->NumDups
+ C1
->NumDups2
) : (int)C1
->NumDups
;
309 int Incr2
= (C2
->Kind
== ICDiamond
)
310 ? -(int)(C2
->NumDups
+ C2
->NumDups2
) : (int)C2
->NumDups
;
313 else if (Incr1
== Incr2
) {
314 // Favors subsumption.
315 if (!C1
->NeedSubsumption
&& C2
->NeedSubsumption
)
317 else if (C1
->NeedSubsumption
== C2
->NeedSubsumption
) {
318 // Favors diamond over triangle, etc.
319 if ((unsigned)C1
->Kind
< (unsigned)C2
->Kind
)
321 else if (C1
->Kind
== C2
->Kind
)
322 return C1
->BBI
.BB
->getNumber() < C2
->BBI
.BB
->getNumber();
329 } // end anonymous namespace
331 char IfConverter::ID
= 0;
333 char &llvm::IfConverterID
= IfConverter::ID
;
335 INITIALIZE_PASS_BEGIN(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
336 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
337 INITIALIZE_PASS_END(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
339 bool IfConverter::runOnMachineFunction(MachineFunction
&MF
) {
340 if (skipFunction(MF
.getFunction()) || (PredicateFtor
&& !PredicateFtor(MF
)))
343 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
344 TLI
= ST
.getTargetLowering();
345 TII
= ST
.getInstrInfo();
346 TRI
= ST
.getRegisterInfo();
347 BranchFolder::MBFIWrapper
MBFI(getAnalysis
<MachineBlockFrequencyInfo
>());
348 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
349 MRI
= &MF
.getRegInfo();
350 SchedModel
.init(&ST
);
352 if (!TII
) return false;
354 PreRegAlloc
= MRI
->isSSA();
356 bool BFChange
= false;
358 // Tail merge tend to expose more if-conversion opportunities.
359 BranchFolder
BF(true, false, MBFI
, *MBPI
);
360 BFChange
= BF
.OptimizeFunction(MF
, TII
, ST
.getRegisterInfo(),
361 getAnalysisIfAvailable
<MachineModuleInfo
>());
364 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum
<< ") \'"
365 << MF
.getName() << "\'");
367 if (FnNum
< IfCvtFnStart
|| (IfCvtFnStop
!= -1 && FnNum
> IfCvtFnStop
)) {
368 LLVM_DEBUG(dbgs() << " skipped\n");
371 LLVM_DEBUG(dbgs() << "\n");
374 BBAnalysis
.resize(MF
.getNumBlockIDs());
376 std::vector
<std::unique_ptr
<IfcvtToken
>> Tokens
;
378 unsigned NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+
379 NumTriangleRev
+ NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
380 while (IfCvtLimit
== -1 || (int)NumIfCvts
< IfCvtLimit
) {
381 // Do an initial analysis for each basic block and find all the potential
382 // candidates to perform if-conversion.
384 AnalyzeBlocks(MF
, Tokens
);
385 while (!Tokens
.empty()) {
386 std::unique_ptr
<IfcvtToken
> Token
= std::move(Tokens
.back());
388 BBInfo
&BBI
= Token
->BBI
;
389 IfcvtKind Kind
= Token
->Kind
;
390 unsigned NumDups
= Token
->NumDups
;
391 unsigned NumDups2
= Token
->NumDups2
;
393 // If the block has been evicted out of the queue or it has already been
394 // marked dead (due to it being predicated), then skip it.
396 BBI
.IsEnqueued
= false;
400 BBI
.IsEnqueued
= false;
404 default: llvm_unreachable("Unexpected!");
406 case ICSimpleFalse
: {
407 bool isFalse
= Kind
== ICSimpleFalse
;
408 if ((isFalse
&& DisableSimpleF
) || (!isFalse
&& DisableSimple
)) break;
409 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
410 << (Kind
== ICSimpleFalse
? " false" : "")
411 << "): " << printMBBReference(*BBI
.BB
) << " ("
412 << ((Kind
== ICSimpleFalse
) ? BBI
.FalseBB
->getNumber()
413 : BBI
.TrueBB
->getNumber())
415 RetVal
= IfConvertSimple(BBI
, Kind
);
416 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
418 if (isFalse
) ++NumSimpleFalse
;
425 case ICTriangleFalse
:
426 case ICTriangleFRev
: {
427 bool isFalse
= Kind
== ICTriangleFalse
;
428 bool isRev
= (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
);
429 if (DisableTriangle
&& !isFalse
&& !isRev
) break;
430 if (DisableTriangleR
&& !isFalse
&& isRev
) break;
431 if (DisableTriangleF
&& isFalse
&& !isRev
) break;
432 if (DisableTriangleFR
&& isFalse
&& isRev
) break;
433 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
435 LLVM_DEBUG(dbgs() << " false");
437 LLVM_DEBUG(dbgs() << " rev");
438 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI
.BB
)
439 << " (T:" << BBI
.TrueBB
->getNumber()
440 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
441 RetVal
= IfConvertTriangle(BBI
, Kind
);
442 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
445 if (isRev
) ++NumTriangleFRev
;
446 else ++NumTriangleFalse
;
448 if (isRev
) ++NumTriangleRev
;
455 if (DisableDiamond
) break;
456 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI
.BB
)
457 << " (T:" << BBI
.TrueBB
->getNumber()
458 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
459 RetVal
= IfConvertDiamond(BBI
, Kind
, NumDups
, NumDups2
,
460 Token
->TClobbersPred
,
461 Token
->FClobbersPred
);
462 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
463 if (RetVal
) ++NumDiamonds
;
465 case ICForkedDiamond
:
466 if (DisableForkedDiamond
) break;
467 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
468 << printMBBReference(*BBI
.BB
)
469 << " (T:" << BBI
.TrueBB
->getNumber()
470 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
471 RetVal
= IfConvertForkedDiamond(BBI
, Kind
, NumDups
, NumDups2
,
472 Token
->TClobbersPred
,
473 Token
->FClobbersPred
);
474 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
475 if (RetVal
) ++NumForkedDiamonds
;
479 if (RetVal
&& MRI
->tracksLiveness())
480 recomputeLivenessFlags(*BBI
.BB
);
484 NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+ NumTriangleRev
+
485 NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
486 if (IfCvtLimit
!= -1 && (int)NumIfCvts
>= IfCvtLimit
)
492 MadeChange
|= Change
;
498 if (MadeChange
&& IfCvtBranchFold
) {
499 BranchFolder
BF(false, false, MBFI
, *MBPI
);
500 BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
501 getAnalysisIfAvailable
<MachineModuleInfo
>());
504 MadeChange
|= BFChange
;
508 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
509 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
510 MachineBasicBlock
*TrueBB
) {
511 for (MachineBasicBlock
*SuccBB
: BB
->successors()) {
512 if (SuccBB
!= TrueBB
)
518 /// Reverse the condition of the end of the block branch. Swap block's 'true'
519 /// and 'false' successors.
520 bool IfConverter::reverseBranchCondition(BBInfo
&BBI
) const {
521 DebugLoc dl
; // FIXME: this is nowhere
522 if (!TII
->reverseBranchCondition(BBI
.BrCond
)) {
523 TII
->removeBranch(*BBI
.BB
);
524 TII
->insertBranch(*BBI
.BB
, BBI
.FalseBB
, BBI
.TrueBB
, BBI
.BrCond
, dl
);
525 std::swap(BBI
.TrueBB
, BBI
.FalseBB
);
531 /// Returns the next block in the function blocks ordering. If it is the end,
533 static inline MachineBasicBlock
*getNextBlock(MachineBasicBlock
&MBB
) {
534 MachineFunction::iterator I
= MBB
.getIterator();
535 MachineFunction::iterator E
= MBB
.getParent()->end();
541 /// Returns true if the 'true' block (along with its predecessor) forms a valid
542 /// simple shape for ifcvt. It also returns the number of instructions that the
543 /// ifcvt would need to duplicate if performed in Dups.
544 bool IfConverter::ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
545 BranchProbability Prediction
) const {
547 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
550 if (TrueBBI
.IsBrAnalyzable
)
553 if (TrueBBI
.BB
->pred_size() > 1) {
554 if (TrueBBI
.CannotBeCopied
||
555 !TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, TrueBBI
.NonPredSize
,
558 Dups
= TrueBBI
.NonPredSize
;
564 /// Returns true if the 'true' and 'false' blocks (along with their common
565 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
566 /// true, it checks if 'true' block's false branch branches to the 'false' block
567 /// rather than the other way around. It also returns the number of instructions
568 /// that the ifcvt would need to duplicate if performed in 'Dups'.
569 bool IfConverter::ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
570 bool FalseBranch
, unsigned &Dups
,
571 BranchProbability Prediction
) const {
573 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
576 if (TrueBBI
.BB
->pred_size() > 1) {
577 if (TrueBBI
.CannotBeCopied
)
580 unsigned Size
= TrueBBI
.NonPredSize
;
581 if (TrueBBI
.IsBrAnalyzable
) {
582 if (TrueBBI
.TrueBB
&& TrueBBI
.BrCond
.empty())
583 // Ends with an unconditional branch. It will be removed.
586 MachineBasicBlock
*FExit
= FalseBranch
587 ? TrueBBI
.TrueBB
: TrueBBI
.FalseBB
;
589 // Require a conditional branch
593 if (!TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, Size
, Prediction
))
598 MachineBasicBlock
*TExit
= FalseBranch
? TrueBBI
.FalseBB
: TrueBBI
.TrueBB
;
599 if (!TExit
&& blockAlwaysFallThrough(TrueBBI
)) {
600 MachineFunction::iterator I
= TrueBBI
.BB
->getIterator();
601 if (++I
== TrueBBI
.BB
->getParent()->end())
605 return TExit
&& TExit
== FalseBBI
.BB
;
608 /// Count duplicated instructions and move the iterators to show where they
610 /// @param TIB True Iterator Begin
611 /// @param FIB False Iterator Begin
612 /// These two iterators initially point to the first instruction of the two
613 /// blocks, and finally point to the first non-shared instruction.
614 /// @param TIE True Iterator End
615 /// @param FIE False Iterator End
616 /// These two iterators initially point to End() for the two blocks() and
617 /// finally point to the first shared instruction in the tail.
618 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
620 /// @param Dups1 count of duplicated instructions at the beginning of the 2
622 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
623 /// @param SkipUnconditionalBranches if true, Don't make sure that
624 /// unconditional branches at the end of the blocks are the same. True is
625 /// passed when the blocks are analyzable to allow for fallthrough to be
627 /// @return false if the shared portion prevents if conversion.
628 bool IfConverter::CountDuplicatedInstructions(
629 MachineBasicBlock::iterator
&TIB
,
630 MachineBasicBlock::iterator
&FIB
,
631 MachineBasicBlock::iterator
&TIE
,
632 MachineBasicBlock::iterator
&FIE
,
633 unsigned &Dups1
, unsigned &Dups2
,
634 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
635 bool SkipUnconditionalBranches
) const {
636 while (TIB
!= TIE
&& FIB
!= FIE
) {
637 // Skip dbg_value instructions. These do not count.
638 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
639 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
640 if (TIB
== TIE
|| FIB
== FIE
)
642 if (!TIB
->isIdenticalTo(*FIB
))
644 // A pred-clobbering instruction in the shared portion prevents
646 std::vector
<MachineOperand
> PredDefs
;
647 if (TII
->DefinesPredicate(*TIB
, PredDefs
))
649 // If we get all the way to the branch instructions, don't count them.
650 if (!TIB
->isBranch())
656 // Check for already containing all of the block.
657 if (TIB
== TIE
|| FIB
== FIE
)
659 // Now, in preparation for counting duplicate instructions at the ends of the
660 // blocks, switch to reverse_iterators. Note that getReverse() returns an
661 // iterator that points to the same instruction, unlike std::reverse_iterator.
662 // We have to do our own shifting so that we get the same range.
663 MachineBasicBlock::reverse_iterator RTIE
= std::next(TIE
.getReverse());
664 MachineBasicBlock::reverse_iterator RFIE
= std::next(FIE
.getReverse());
665 const MachineBasicBlock::reverse_iterator RTIB
= std::next(TIB
.getReverse());
666 const MachineBasicBlock::reverse_iterator RFIB
= std::next(FIB
.getReverse());
668 if (!TBB
.succ_empty() || !FBB
.succ_empty()) {
669 if (SkipUnconditionalBranches
) {
670 while (RTIE
!= RTIB
&& RTIE
->isUnconditionalBranch())
672 while (RFIE
!= RFIB
&& RFIE
->isUnconditionalBranch())
677 // Count duplicate instructions at the ends of the blocks.
678 while (RTIE
!= RTIB
&& RFIE
!= RFIB
) {
679 // Skip dbg_value instructions. These do not count.
680 // Note that these are reverse iterators going forward.
681 RTIE
= skipDebugInstructionsForward(RTIE
, RTIB
);
682 RFIE
= skipDebugInstructionsForward(RFIE
, RFIB
);
683 if (RTIE
== RTIB
|| RFIE
== RFIB
)
685 if (!RTIE
->isIdenticalTo(*RFIE
))
687 // We have to verify that any branch instructions are the same, and then we
688 // don't count them toward the # of duplicate instructions.
689 if (!RTIE
->isBranch())
694 TIE
= std::next(RTIE
.getReverse());
695 FIE
= std::next(RFIE
.getReverse());
699 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
700 /// @param TIB - True Iterator Begin, points to first non-shared instruction
701 /// @param FIB - False Iterator Begin, points to first non-shared instruction
702 /// @param TIE - True Iterator End, points past last non-shared instruction
703 /// @param FIE - False Iterator End, points past last non-shared instruction
704 /// @param TrueBBI - BBInfo to update for the true block.
705 /// @param FalseBBI - BBInfo to update for the false block.
706 /// @returns - false if either block cannot be predicated or if both blocks end
707 /// with a predicate-clobbering instruction.
708 bool IfConverter::RescanInstructions(
709 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
710 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
711 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const {
712 bool BranchUnpredicable
= true;
713 TrueBBI
.IsUnpredicable
= FalseBBI
.IsUnpredicable
= false;
714 ScanInstructions(TrueBBI
, TIB
, TIE
, BranchUnpredicable
);
715 if (TrueBBI
.IsUnpredicable
)
717 ScanInstructions(FalseBBI
, FIB
, FIE
, BranchUnpredicable
);
718 if (FalseBBI
.IsUnpredicable
)
720 if (TrueBBI
.ClobbersPred
&& FalseBBI
.ClobbersPred
)
726 static void verifySameBranchInstructions(
727 MachineBasicBlock
*MBB1
,
728 MachineBasicBlock
*MBB2
) {
729 const MachineBasicBlock::reverse_iterator B1
= MBB1
->rend();
730 const MachineBasicBlock::reverse_iterator B2
= MBB2
->rend();
731 MachineBasicBlock::reverse_iterator E1
= MBB1
->rbegin();
732 MachineBasicBlock::reverse_iterator E2
= MBB2
->rbegin();
733 while (E1
!= B1
&& E2
!= B2
) {
734 skipDebugInstructionsForward(E1
, B1
);
735 skipDebugInstructionsForward(E2
, B2
);
736 if (E1
== B1
&& E2
== B2
)
740 assert(!E2
->isBranch() && "Branch mis-match, one block is empty.");
744 assert(!E1
->isBranch() && "Branch mis-match, one block is empty.");
748 if (E1
->isBranch() || E2
->isBranch())
749 assert(E1
->isIdenticalTo(*E2
) &&
750 "Branch mis-match, branch instructions don't match.");
759 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
760 /// with their common predecessor) form a diamond if a common tail block is
762 /// While not strictly a diamond, this pattern would form a diamond if
763 /// tail-merging had merged the shared tails.
769 /// FalseBB TrueBB FalseBB
770 /// Currently only handles analyzable branches.
771 /// Specifically excludes actual diamonds to avoid overlap.
772 bool IfConverter::ValidForkedDiamond(
773 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
774 unsigned &Dups1
, unsigned &Dups2
,
775 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
777 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
778 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
781 if (!TrueBBI
.IsBrAnalyzable
|| !FalseBBI
.IsBrAnalyzable
)
783 // Don't IfConvert blocks that can't be folded into their predecessor.
784 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
787 // This function is specifically looking for conditional tails, as
788 // unconditional tails are already handled by the standard diamond case.
789 if (TrueBBI
.BrCond
.size() == 0 ||
790 FalseBBI
.BrCond
.size() == 0)
793 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
794 MachineBasicBlock
*TF
= TrueBBI
.FalseBB
;
795 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
796 MachineBasicBlock
*FF
= FalseBBI
.FalseBB
;
799 TT
= getNextBlock(*TrueBBI
.BB
);
801 TF
= getNextBlock(*TrueBBI
.BB
);
803 FT
= getNextBlock(*FalseBBI
.BB
);
805 FF
= getNextBlock(*FalseBBI
.BB
);
810 // Check successors. If they don't match, bail.
811 if (!((TT
== FT
&& TF
== FF
) || (TF
== FT
&& TT
== FF
)))
814 bool FalseReversed
= false;
815 if (TF
== FT
&& TT
== FF
) {
816 // If the branches are opposing, but we can't reverse, don't do it.
817 if (!FalseBBI
.IsBrReversible
)
819 FalseReversed
= true;
820 reverseBranchCondition(FalseBBI
);
822 auto UnReverseOnExit
= make_scope_exit([&]() {
824 reverseBranchCondition(FalseBBI
);
827 // Count duplicate instructions at the beginning of the true and false blocks.
828 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
829 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
830 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
831 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
832 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
833 *TrueBBI
.BB
, *FalseBBI
.BB
,
834 /* SkipUnconditionalBranches */ true))
837 TrueBBICalc
.BB
= TrueBBI
.BB
;
838 FalseBBICalc
.BB
= FalseBBI
.BB
;
839 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
842 // The size is used to decide whether to if-convert, and the shared portions
843 // are subtracted off. Because of the subtraction, we just use the size that
844 // was calculated by the original ScanInstructions, as it is correct.
845 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
846 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
850 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
851 /// with their common predecessor) forms a valid diamond shape for ifcvt.
852 bool IfConverter::ValidDiamond(
853 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
854 unsigned &Dups1
, unsigned &Dups2
,
855 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
857 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
858 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
861 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
862 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
864 if (!TT
&& blockAlwaysFallThrough(TrueBBI
))
865 TT
= getNextBlock(*TrueBBI
.BB
);
866 if (!FT
&& blockAlwaysFallThrough(FalseBBI
))
867 FT
= getNextBlock(*FalseBBI
.BB
);
870 if (!TT
&& (TrueBBI
.IsBrAnalyzable
|| FalseBBI
.IsBrAnalyzable
))
872 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
875 // FIXME: Allow true block to have an early exit?
876 if (TrueBBI
.FalseBB
|| FalseBBI
.FalseBB
)
879 // Count duplicate instructions at the beginning and end of the true and
881 // Skip unconditional branches only if we are considering an analyzable
882 // diamond. Otherwise the branches must be the same.
883 bool SkipUnconditionalBranches
=
884 TrueBBI
.IsBrAnalyzable
&& FalseBBI
.IsBrAnalyzable
;
885 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
886 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
887 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
888 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
889 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
890 *TrueBBI
.BB
, *FalseBBI
.BB
,
891 SkipUnconditionalBranches
))
894 TrueBBICalc
.BB
= TrueBBI
.BB
;
895 FalseBBICalc
.BB
= FalseBBI
.BB
;
896 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
898 // The size is used to decide whether to if-convert, and the shared portions
899 // are subtracted off. Because of the subtraction, we just use the size that
900 // was calculated by the original ScanInstructions, as it is correct.
901 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
902 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
906 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
907 /// the block is predicable.
908 void IfConverter::AnalyzeBranches(BBInfo
&BBI
) {
912 BBI
.TrueBB
= BBI
.FalseBB
= nullptr;
915 !TII
->analyzeBranch(*BBI
.BB
, BBI
.TrueBB
, BBI
.FalseBB
, BBI
.BrCond
);
916 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
917 BBI
.IsBrReversible
= (RevCond
.size() == 0) ||
918 !TII
->reverseBranchCondition(RevCond
);
919 BBI
.HasFallThrough
= BBI
.IsBrAnalyzable
&& BBI
.FalseBB
== nullptr;
921 if (BBI
.BrCond
.size()) {
922 // No false branch. This BB must end with a conditional branch and a
925 BBI
.FalseBB
= findFalseBlock(BBI
.BB
, BBI
.TrueBB
);
927 // Malformed bcc? True and false blocks are the same?
928 BBI
.IsUnpredicable
= true;
933 /// ScanInstructions - Scan all the instructions in the block to determine if
934 /// the block is predicable. In most cases, that means all the instructions
935 /// in the block are isPredicable(). Also checks if the block contains any
936 /// instruction which can clobber a predicate (e.g. condition code register).
937 /// If so, the block is not predicable unless it's the last instruction.
938 void IfConverter::ScanInstructions(BBInfo
&BBI
,
939 MachineBasicBlock::iterator
&Begin
,
940 MachineBasicBlock::iterator
&End
,
941 bool BranchUnpredicable
) const {
942 if (BBI
.IsDone
|| BBI
.IsUnpredicable
)
945 bool AlreadyPredicated
= !BBI
.Predicate
.empty();
950 BBI
.ClobbersPred
= false;
951 for (MachineInstr
&MI
: make_range(Begin
, End
)) {
952 if (MI
.isDebugInstr())
955 // It's unsafe to duplicate convergent instructions in this context, so set
956 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
957 // following CFG, which is subject to our "simple" transformation.
959 // BB0 // if (c1) goto BB1; else goto BB2;
962 // | BB2 // if (c2) goto TBB; else goto FBB;
971 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
972 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
973 // TBB contains a convergent instruction. This is safe iff doing so does
974 // not add a control-flow dependency to the convergent instruction -- i.e.,
975 // it's safe iff the set of control flows that leads us to the convergent
976 // instruction does not get smaller after the transformation.
978 // Originally we executed TBB if c1 || c2. After the transformation, there
979 // are two copies of TBB's instructions. We get to the first if c1, and we
980 // get to the second if !c1 && c2.
982 // There are clearly fewer ways to satisfy the condition "c1" than
983 // "c1 || c2". Since we've shrunk the set of control flows which lead to
984 // our convergent instruction, the transformation is unsafe.
985 if (MI
.isNotDuplicable() || MI
.isConvergent())
986 BBI
.CannotBeCopied
= true;
988 bool isPredicated
= TII
->isPredicated(MI
);
989 bool isCondBr
= BBI
.IsBrAnalyzable
&& MI
.isConditionalBranch();
991 if (BranchUnpredicable
&& MI
.isBranch()) {
992 BBI
.IsUnpredicable
= true;
996 // A conditional branch is not predicable, but it may be eliminated.
1000 if (!isPredicated
) {
1002 unsigned ExtraPredCost
= TII
->getPredicationCost(MI
);
1003 unsigned NumCycles
= SchedModel
.computeInstrLatency(&MI
, false);
1005 BBI
.ExtraCost
+= NumCycles
-1;
1006 BBI
.ExtraCost2
+= ExtraPredCost
;
1007 } else if (!AlreadyPredicated
) {
1008 // FIXME: This instruction is already predicated before the
1009 // if-conversion pass. It's probably something like a conditional move.
1010 // Mark this block unpredicable for now.
1011 BBI
.IsUnpredicable
= true;
1015 if (BBI
.ClobbersPred
&& !isPredicated
) {
1016 // Predicate modification instruction should end the block (except for
1017 // already predicated instructions and end of block branches).
1018 // Predicate may have been modified, the subsequent (currently)
1019 // unpredicated instructions cannot be correctly predicated.
1020 BBI
.IsUnpredicable
= true;
1024 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1025 // still potentially predicable.
1026 std::vector
<MachineOperand
> PredDefs
;
1027 if (TII
->DefinesPredicate(MI
, PredDefs
))
1028 BBI
.ClobbersPred
= true;
1030 if (!TII
->isPredicable(MI
)) {
1031 BBI
.IsUnpredicable
= true;
1037 /// Determine if the block is a suitable candidate to be predicated by the
1038 /// specified predicate.
1039 /// @param BBI BBInfo for the block to check
1040 /// @param Pred Predicate array for the branch that leads to BBI
1041 /// @param isTriangle true if the Analysis is for a triangle
1042 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1044 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1045 /// contains any instruction that would make the block unpredicable.
1046 bool IfConverter::FeasibilityAnalysis(BBInfo
&BBI
,
1047 SmallVectorImpl
<MachineOperand
> &Pred
,
1048 bool isTriangle
, bool RevBranch
,
1049 bool hasCommonTail
) {
1050 // If the block is dead or unpredicable, then it cannot be predicated.
1051 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1052 // them from being if-converted. The non-shared portion is assumed to have
1054 if (BBI
.IsDone
|| (BBI
.IsUnpredicable
&& !hasCommonTail
))
1057 // If it is already predicated but we couldn't analyze its terminator, the
1058 // latter might fallthrough, but we can't determine where to.
1059 // Conservatively avoid if-converting again.
1060 if (BBI
.Predicate
.size() && !BBI
.IsBrAnalyzable
)
1063 // If it is already predicated, check if the new predicate subsumes
1065 if (BBI
.Predicate
.size() && !TII
->SubsumesPredicate(Pred
, BBI
.Predicate
))
1068 if (!hasCommonTail
&& BBI
.BrCond
.size()) {
1072 // Test predicate subsumption.
1073 SmallVector
<MachineOperand
, 4> RevPred(Pred
.begin(), Pred
.end());
1074 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1076 if (TII
->reverseBranchCondition(Cond
))
1079 if (TII
->reverseBranchCondition(RevPred
) ||
1080 !TII
->SubsumesPredicate(Cond
, RevPred
))
1087 /// Analyze the structure of the sub-CFG starting from the specified block.
1088 /// Record its successors and whether it looks like an if-conversion candidate.
1089 void IfConverter::AnalyzeBlock(
1090 MachineBasicBlock
&MBB
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1092 BBState(MachineBasicBlock
&MBB
) : MBB(&MBB
), SuccsAnalyzed(false) {}
1093 MachineBasicBlock
*MBB
;
1095 /// This flag is true if MBB's successors have been analyzed.
1099 // Push MBB to the stack.
1100 SmallVector
<BBState
, 16> BBStack(1, MBB
);
1102 while (!BBStack
.empty()) {
1103 BBState
&State
= BBStack
.back();
1104 MachineBasicBlock
*BB
= State
.MBB
;
1105 BBInfo
&BBI
= BBAnalysis
[BB
->getNumber()];
1107 if (!State
.SuccsAnalyzed
) {
1108 if (BBI
.IsAnalyzed
|| BBI
.IsBeingAnalyzed
) {
1114 BBI
.IsBeingAnalyzed
= true;
1116 AnalyzeBranches(BBI
);
1117 MachineBasicBlock::iterator Begin
= BBI
.BB
->begin();
1118 MachineBasicBlock::iterator End
= BBI
.BB
->end();
1119 ScanInstructions(BBI
, Begin
, End
);
1121 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1122 // not considered for ifcvt anymore.
1123 if (!BBI
.IsBrAnalyzable
|| BBI
.BrCond
.empty() || BBI
.IsDone
) {
1124 BBI
.IsBeingAnalyzed
= false;
1125 BBI
.IsAnalyzed
= true;
1130 // Do not ifcvt if either path is a back edge to the entry block.
1131 if (BBI
.TrueBB
== BB
|| BBI
.FalseBB
== BB
) {
1132 BBI
.IsBeingAnalyzed
= false;
1133 BBI
.IsAnalyzed
= true;
1138 // Do not ifcvt if true and false fallthrough blocks are the same.
1140 BBI
.IsBeingAnalyzed
= false;
1141 BBI
.IsAnalyzed
= true;
1146 // Push the False and True blocks to the stack.
1147 State
.SuccsAnalyzed
= true;
1148 BBStack
.push_back(*BBI
.FalseBB
);
1149 BBStack
.push_back(*BBI
.TrueBB
);
1153 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1154 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1156 if (TrueBBI
.IsDone
&& FalseBBI
.IsDone
) {
1157 BBI
.IsBeingAnalyzed
= false;
1158 BBI
.IsAnalyzed
= true;
1163 SmallVector
<MachineOperand
, 4>
1164 RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1165 bool CanRevCond
= !TII
->reverseBranchCondition(RevCond
);
1169 bool TNeedSub
= !TrueBBI
.Predicate
.empty();
1170 bool FNeedSub
= !FalseBBI
.Predicate
.empty();
1171 bool Enqueued
= false;
1173 BranchProbability Prediction
= MBPI
->getEdgeProbability(BB
, TrueBBI
.BB
);
1176 BBInfo TrueBBICalc
, FalseBBICalc
;
1177 auto feasibleDiamond
= [&]() {
1178 bool MeetsSize
= MeetIfcvtSizeLimit(
1179 *TrueBBI
.BB
, (TrueBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1180 TrueBBICalc
.ExtraCost
), TrueBBICalc
.ExtraCost2
,
1181 *FalseBBI
.BB
, (FalseBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1182 FalseBBICalc
.ExtraCost
), FalseBBICalc
.ExtraCost2
,
1184 bool TrueFeasible
= FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
,
1185 /* IsTriangle */ false, /* RevCond */ false,
1186 /* hasCommonTail */ true);
1187 bool FalseFeasible
= FeasibilityAnalysis(FalseBBI
, RevCond
,
1188 /* IsTriangle */ false, /* RevCond */ false,
1189 /* hasCommonTail */ true);
1190 return MeetsSize
&& TrueFeasible
&& FalseFeasible
;
1193 if (ValidDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1194 TrueBBICalc
, FalseBBICalc
)) {
1195 if (feasibleDiamond()) {
1203 // Note TailBB can be empty.
1204 Tokens
.push_back(llvm::make_unique
<IfcvtToken
>(
1205 BBI
, ICDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1206 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1209 } else if (ValidForkedDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1210 TrueBBICalc
, FalseBBICalc
)) {
1211 if (feasibleDiamond()) {
1213 // if TBB and FBB have a common tail that includes their conditional
1214 // branch instructions, then we can If Convert this pattern.
1220 // FalseBB TrueBB FalseBB
1222 Tokens
.push_back(llvm::make_unique
<IfcvtToken
>(
1223 BBI
, ICForkedDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1224 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1230 if (ValidTriangle(TrueBBI
, FalseBBI
, false, Dups
, Prediction
) &&
1231 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1232 TrueBBI
.ExtraCost2
, Prediction
) &&
1233 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true)) {
1242 llvm::make_unique
<IfcvtToken
>(BBI
, ICTriangle
, TNeedSub
, Dups
));
1246 if (ValidTriangle(TrueBBI
, FalseBBI
, true, Dups
, Prediction
) &&
1247 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1248 TrueBBI
.ExtraCost2
, Prediction
) &&
1249 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true, true)) {
1251 llvm::make_unique
<IfcvtToken
>(BBI
, ICTriangleRev
, TNeedSub
, Dups
));
1255 if (ValidSimple(TrueBBI
, Dups
, Prediction
) &&
1256 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1257 TrueBBI
.ExtraCost2
, Prediction
) &&
1258 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
)) {
1259 // Simple (split, no rejoin):
1267 llvm::make_unique
<IfcvtToken
>(BBI
, ICSimple
, TNeedSub
, Dups
));
1272 // Try the other path...
1273 if (ValidTriangle(FalseBBI
, TrueBBI
, false, Dups
,
1274 Prediction
.getCompl()) &&
1275 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1276 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1277 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1278 FeasibilityAnalysis(FalseBBI
, RevCond
, true)) {
1279 Tokens
.push_back(llvm::make_unique
<IfcvtToken
>(BBI
, ICTriangleFalse
,
1284 if (ValidTriangle(FalseBBI
, TrueBBI
, true, Dups
,
1285 Prediction
.getCompl()) &&
1286 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1287 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1288 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1289 FeasibilityAnalysis(FalseBBI
, RevCond
, true, true)) {
1291 llvm::make_unique
<IfcvtToken
>(BBI
, ICTriangleFRev
, FNeedSub
, Dups
));
1295 if (ValidSimple(FalseBBI
, Dups
, Prediction
.getCompl()) &&
1296 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1297 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1298 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1299 FeasibilityAnalysis(FalseBBI
, RevCond
)) {
1301 llvm::make_unique
<IfcvtToken
>(BBI
, ICSimpleFalse
, FNeedSub
, Dups
));
1306 BBI
.IsEnqueued
= Enqueued
;
1307 BBI
.IsBeingAnalyzed
= false;
1308 BBI
.IsAnalyzed
= true;
1313 /// Analyze all blocks and find entries for all if-conversion candidates.
1314 void IfConverter::AnalyzeBlocks(
1315 MachineFunction
&MF
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1316 for (MachineBasicBlock
&MBB
: MF
)
1317 AnalyzeBlock(MBB
, Tokens
);
1319 // Sort to favor more complex ifcvt scheme.
1320 std::stable_sort(Tokens
.begin(), Tokens
.end(), IfcvtTokenCmp
);
1323 /// Returns true either if ToMBB is the next block after MBB or that all the
1324 /// intervening blocks are empty (given MBB can fall through to its next block).
1325 static bool canFallThroughTo(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
) {
1326 MachineFunction::iterator PI
= MBB
.getIterator();
1327 MachineFunction::iterator I
= std::next(PI
);
1328 MachineFunction::iterator TI
= ToMBB
.getIterator();
1329 MachineFunction::iterator E
= MBB
.getParent()->end();
1331 // Check isSuccessor to avoid case where the next block is empty, but
1332 // it's not a successor.
1333 if (I
== E
|| !I
->empty() || !PI
->isSuccessor(&*I
))
1337 // Finally see if the last I is indeed a successor to PI.
1338 return PI
->isSuccessor(&*I
);
1341 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1342 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1343 void IfConverter::InvalidatePreds(MachineBasicBlock
&MBB
) {
1344 for (const MachineBasicBlock
*Predecessor
: MBB
.predecessors()) {
1345 BBInfo
&PBBI
= BBAnalysis
[Predecessor
->getNumber()];
1346 if (PBBI
.IsDone
|| PBBI
.BB
== &MBB
)
1348 PBBI
.IsAnalyzed
= false;
1349 PBBI
.IsEnqueued
= false;
1353 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1354 static void InsertUncondBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
,
1355 const TargetInstrInfo
*TII
) {
1356 DebugLoc dl
; // FIXME: this is nowhere
1357 SmallVector
<MachineOperand
, 0> NoCond
;
1358 TII
->insertBranch(MBB
, &ToMBB
, nullptr, NoCond
, dl
);
1361 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1362 /// values defined in MI which are also live/used by MI.
1363 static void UpdatePredRedefs(MachineInstr
&MI
, LivePhysRegs
&Redefs
) {
1364 const TargetRegisterInfo
*TRI
= MI
.getMF()->getSubtarget().getRegisterInfo();
1366 // Before stepping forward past MI, remember which regs were live
1367 // before MI. This is needed to set the Undef flag only when reg is
1369 SparseSet
<unsigned> LiveBeforeMI
;
1370 LiveBeforeMI
.setUniverse(TRI
->getNumRegs());
1371 for (unsigned Reg
: Redefs
)
1372 LiveBeforeMI
.insert(Reg
);
1374 SmallVector
<std::pair
<unsigned, const MachineOperand
*>, 4> Clobbers
;
1375 Redefs
.stepForward(MI
, Clobbers
);
1377 // Now add the implicit uses for each of the clobbered values.
1378 for (auto Clobber
: Clobbers
) {
1379 // FIXME: Const cast here is nasty, but better than making StepForward
1380 // take a mutable instruction instead of const.
1381 unsigned Reg
= Clobber
.first
;
1382 MachineOperand
&Op
= const_cast<MachineOperand
&>(*Clobber
.second
);
1383 MachineInstr
*OpMI
= Op
.getParent();
1384 MachineInstrBuilder
MIB(*OpMI
->getMF(), OpMI
);
1385 if (Op
.isRegMask()) {
1386 // First handle regmasks. They clobber any entries in the mask which
1387 // means that we need a def for those registers.
1388 if (LiveBeforeMI
.count(Reg
))
1389 MIB
.addReg(Reg
, RegState::Implicit
);
1391 // We also need to add an implicit def of this register for the later
1392 // use to read from.
1393 // For the register allocator to have allocated a register clobbered
1394 // by the call which is used later, it must be the case that
1395 // the call doesn't return.
1396 MIB
.addReg(Reg
, RegState::Implicit
| RegState::Define
);
1399 if (LiveBeforeMI
.count(Reg
))
1400 MIB
.addReg(Reg
, RegState::Implicit
);
1402 bool HasLiveSubReg
= false;
1403 for (MCSubRegIterator
S(Reg
, TRI
); S
.isValid(); ++S
) {
1404 if (!LiveBeforeMI
.count(*S
))
1406 HasLiveSubReg
= true;
1410 MIB
.addReg(Reg
, RegState::Implicit
);
1415 /// If convert a simple (split, no rejoin) sub-CFG.
1416 bool IfConverter::IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
) {
1417 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1418 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1419 BBInfo
*CvtBBI
= &TrueBBI
;
1420 BBInfo
*NextBBI
= &FalseBBI
;
1422 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1423 if (Kind
== ICSimpleFalse
)
1424 std::swap(CvtBBI
, NextBBI
);
1426 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1427 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1428 if (CvtBBI
->IsDone
||
1429 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1430 // Something has changed. It's no longer safe to predicate this block.
1431 BBI
.IsAnalyzed
= false;
1432 CvtBBI
->IsAnalyzed
= false;
1436 if (CvtMBB
.hasAddressTaken())
1437 // Conservatively abort if-conversion if BB's address is taken.
1440 if (Kind
== ICSimpleFalse
)
1441 if (TII
->reverseBranchCondition(Cond
))
1442 llvm_unreachable("Unable to reverse branch condition!");
1446 if (MRI
->tracksLiveness()) {
1447 // Initialize liveins to the first BB. These are potentiall redefined by
1448 // predicated instructions.
1449 Redefs
.addLiveIns(CvtMBB
);
1450 Redefs
.addLiveIns(NextMBB
);
1453 // Remove the branches from the entry so we can add the contents of the true
1455 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1457 if (CvtMBB
.pred_size() > 1) {
1458 // Copy instructions in the true block, predicate them, and add them to
1460 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
);
1462 // Keep the CFG updated.
1463 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1465 // Predicate the instructions in the true block.
1466 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1468 // Merge converted block into entry block. The BB to Cvt edge is removed
1470 MergeBlocks(BBI
, *CvtBBI
);
1473 bool IterIfcvt
= true;
1474 if (!canFallThroughTo(*BBI
.BB
, NextMBB
)) {
1475 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1476 BBI
.HasFallThrough
= false;
1477 // Now ifcvt'd block will look like this:
1484 // We cannot further ifcvt this block because the unconditional branch
1485 // will have to be predicated on the new condition, that will not be
1486 // available if cmp executes.
1490 // Update block info. BB can be iteratively if-converted.
1493 InvalidatePreds(*BBI
.BB
);
1494 CvtBBI
->IsDone
= true;
1496 // FIXME: Must maintain LiveIns.
1500 /// If convert a triangle sub-CFG.
1501 bool IfConverter::IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
) {
1502 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1503 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1504 BBInfo
*CvtBBI
= &TrueBBI
;
1505 BBInfo
*NextBBI
= &FalseBBI
;
1506 DebugLoc dl
; // FIXME: this is nowhere
1508 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1509 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1510 std::swap(CvtBBI
, NextBBI
);
1512 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1513 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1514 if (CvtBBI
->IsDone
||
1515 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1516 // Something has changed. It's no longer safe to predicate this block.
1517 BBI
.IsAnalyzed
= false;
1518 CvtBBI
->IsAnalyzed
= false;
1522 if (CvtMBB
.hasAddressTaken())
1523 // Conservatively abort if-conversion if BB's address is taken.
1526 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1527 if (TII
->reverseBranchCondition(Cond
))
1528 llvm_unreachable("Unable to reverse branch condition!");
1530 if (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
) {
1531 if (reverseBranchCondition(*CvtBBI
)) {
1532 // BB has been changed, modify its predecessors (except for this
1533 // one) so they don't get ifcvt'ed based on bad intel.
1534 for (MachineBasicBlock
*PBB
: CvtMBB
.predecessors()) {
1537 BBInfo
&PBBI
= BBAnalysis
[PBB
->getNumber()];
1538 if (PBBI
.IsEnqueued
) {
1539 PBBI
.IsAnalyzed
= false;
1540 PBBI
.IsEnqueued
= false;
1546 // Initialize liveins to the first BB. These are potentially redefined by
1547 // predicated instructions.
1549 if (MRI
->tracksLiveness()) {
1550 Redefs
.addLiveIns(CvtMBB
);
1551 Redefs
.addLiveIns(NextMBB
);
1554 bool HasEarlyExit
= CvtBBI
->FalseBB
!= nullptr;
1555 BranchProbability CvtNext
, CvtFalse
, BBNext
, BBCvt
;
1558 // Get probabilities before modifying CvtMBB and BBI.BB.
1559 CvtNext
= MBPI
->getEdgeProbability(&CvtMBB
, &NextMBB
);
1560 CvtFalse
= MBPI
->getEdgeProbability(&CvtMBB
, CvtBBI
->FalseBB
);
1561 BBNext
= MBPI
->getEdgeProbability(BBI
.BB
, &NextMBB
);
1562 BBCvt
= MBPI
->getEdgeProbability(BBI
.BB
, &CvtMBB
);
1565 // Remove the branches from the entry so we can add the contents of the true
1567 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1569 if (CvtMBB
.pred_size() > 1) {
1570 // Copy instructions in the true block, predicate them, and add them to
1572 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
, true);
1574 // Predicate the 'true' block after removing its branch.
1575 CvtBBI
->NonPredSize
-= TII
->removeBranch(CvtMBB
);
1576 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1578 // Now merge the entry of the triangle with the true block.
1579 MergeBlocks(BBI
, *CvtBBI
, false);
1582 // Keep the CFG updated.
1583 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1585 // If 'true' block has a 'false' successor, add an exit branch to it.
1587 SmallVector
<MachineOperand
, 4> RevCond(CvtBBI
->BrCond
.begin(),
1588 CvtBBI
->BrCond
.end());
1589 if (TII
->reverseBranchCondition(RevCond
))
1590 llvm_unreachable("Unable to reverse branch condition!");
1592 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1593 // NewNext = New_Prob(BBI.BB, NextMBB) =
1594 // Prob(BBI.BB, NextMBB) +
1595 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1596 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1597 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1598 auto NewTrueBB
= getNextBlock(*BBI
.BB
);
1599 auto NewNext
= BBNext
+ BBCvt
* CvtNext
;
1600 auto NewTrueBBIter
= find(BBI
.BB
->successors(), NewTrueBB
);
1601 if (NewTrueBBIter
!= BBI
.BB
->succ_end())
1602 BBI
.BB
->setSuccProbability(NewTrueBBIter
, NewNext
);
1604 auto NewFalse
= BBCvt
* CvtFalse
;
1605 TII
->insertBranch(*BBI
.BB
, CvtBBI
->FalseBB
, nullptr, RevCond
, dl
);
1606 BBI
.BB
->addSuccessor(CvtBBI
->FalseBB
, NewFalse
);
1609 // Merge in the 'false' block if the 'false' block has no other
1610 // predecessors. Otherwise, add an unconditional branch to 'false'.
1611 bool FalseBBDead
= false;
1612 bool IterIfcvt
= true;
1613 bool isFallThrough
= canFallThroughTo(*BBI
.BB
, NextMBB
);
1614 if (!isFallThrough
) {
1615 // Only merge them if the true block does not fallthrough to the false
1616 // block. By not merging them, we make it possible to iteratively
1617 // ifcvt the blocks.
1618 if (!HasEarlyExit
&&
1619 NextMBB
.pred_size() == 1 && !NextBBI
->HasFallThrough
&&
1620 !NextMBB
.hasAddressTaken()) {
1621 MergeBlocks(BBI
, *NextBBI
);
1624 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1625 BBI
.HasFallThrough
= false;
1627 // Mixed predicated and unpredicated code. This cannot be iteratively
1632 // Update block info. BB can be iteratively if-converted.
1635 InvalidatePreds(*BBI
.BB
);
1636 CvtBBI
->IsDone
= true;
1638 NextBBI
->IsDone
= true;
1640 // FIXME: Must maintain LiveIns.
1644 /// Common code shared between diamond conversions.
1645 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1646 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1648 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1650 /// \p RemoveBranch - Remove the common branch of the two blocks before
1651 /// predicating. Only false for unanalyzable fallthrough
1652 /// cases. The caller will replace the branch if necessary.
1653 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1654 /// unanalyzable fallthrough
1655 bool IfConverter::IfConvertDiamondCommon(
1656 BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
1657 unsigned NumDups1
, unsigned NumDups2
,
1658 bool TClobbersPred
, bool FClobbersPred
,
1659 bool RemoveBranch
, bool MergeAddEdges
) {
1661 if (TrueBBI
.IsDone
|| FalseBBI
.IsDone
||
1662 TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1) {
1663 // Something has changed. It's no longer safe to predicate these blocks.
1664 BBI
.IsAnalyzed
= false;
1665 TrueBBI
.IsAnalyzed
= false;
1666 FalseBBI
.IsAnalyzed
= false;
1670 if (TrueBBI
.BB
->hasAddressTaken() || FalseBBI
.BB
->hasAddressTaken())
1671 // Conservatively abort if-conversion if either BB has its address taken.
1674 // Put the predicated instructions from the 'true' block before the
1675 // instructions from the 'false' block, unless the true block would clobber
1676 // the predicate, in which case, do the opposite.
1677 BBInfo
*BBI1
= &TrueBBI
;
1678 BBInfo
*BBI2
= &FalseBBI
;
1679 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1680 if (TII
->reverseBranchCondition(RevCond
))
1681 llvm_unreachable("Unable to reverse branch condition!");
1682 SmallVector
<MachineOperand
, 4> *Cond1
= &BBI
.BrCond
;
1683 SmallVector
<MachineOperand
, 4> *Cond2
= &RevCond
;
1685 // Figure out the more profitable ordering.
1686 bool DoSwap
= false;
1687 if (TClobbersPred
&& !FClobbersPred
)
1689 else if (!TClobbersPred
&& !FClobbersPred
) {
1690 if (TrueBBI
.NonPredSize
> FalseBBI
.NonPredSize
)
1692 } else if (TClobbersPred
&& FClobbersPred
)
1693 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1695 std::swap(BBI1
, BBI2
);
1696 std::swap(Cond1
, Cond2
);
1699 // Remove the conditional branch from entry to the blocks.
1700 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1702 MachineBasicBlock
&MBB1
= *BBI1
->BB
;
1703 MachineBasicBlock
&MBB2
= *BBI2
->BB
;
1705 // Initialize the Redefs:
1706 // - BB2 live-in regs need implicit uses before being redefined by BB1
1708 // - BB1 live-out regs need implicit uses before being redefined by BB2
1709 // instructions. We start with BB1 live-ins so we have the live-out regs
1710 // after tracking the BB1 instructions.
1712 if (MRI
->tracksLiveness()) {
1713 Redefs
.addLiveIns(MBB1
);
1714 Redefs
.addLiveIns(MBB2
);
1717 // Remove the duplicated instructions at the beginnings of both paths.
1718 // Skip dbg_value instructions.
1719 MachineBasicBlock::iterator DI1
= MBB1
.getFirstNonDebugInstr();
1720 MachineBasicBlock::iterator DI2
= MBB2
.getFirstNonDebugInstr();
1721 BBI1
->NonPredSize
-= NumDups1
;
1722 BBI2
->NonPredSize
-= NumDups1
;
1724 // Skip past the dups on each side separately since there may be
1725 // differing dbg_value entries. NumDups1 can include a "return"
1726 // instruction, if it's not marked as "branch".
1727 for (unsigned i
= 0; i
< NumDups1
; ++DI1
) {
1728 if (DI1
== MBB1
.end())
1730 if (!DI1
->isDebugInstr())
1733 while (NumDups1
!= 0) {
1735 if (DI2
== MBB2
.end())
1737 if (!DI2
->isDebugInstr())
1741 if (MRI
->tracksLiveness()) {
1742 for (const MachineInstr
&MI
: make_range(MBB1
.begin(), DI1
)) {
1743 SmallVector
<std::pair
<unsigned, const MachineOperand
*>, 4> Dummy
;
1744 Redefs
.stepForward(MI
, Dummy
);
1748 BBI
.BB
->splice(BBI
.BB
->end(), &MBB1
, MBB1
.begin(), DI1
);
1749 MBB2
.erase(MBB2
.begin(), DI2
);
1751 // The branches have been checked to match, so it is safe to remove the
1752 // branch in BB1 and rely on the copy in BB2. The complication is that
1753 // the blocks may end with a return instruction, which may or may not
1754 // be marked as "branch". If it's not, then it could be included in
1755 // "dups1", leaving the blocks potentially empty after moving the common
1758 // Unanalyzable branches must match exactly. Check that now.
1759 if (!BBI1
->IsBrAnalyzable
)
1760 verifySameBranchInstructions(&MBB1
, &MBB2
);
1762 BBI1
->NonPredSize
-= TII
->removeBranch(*BBI1
->BB
);
1763 // Remove duplicated instructions.
1765 for (unsigned i
= 0; i
!= NumDups2
; ) {
1766 // NumDups2 only counted non-dbg_value instructions, so this won't
1767 // run off the head of the list.
1768 assert(DI1
!= MBB1
.begin());
1770 // skip dbg_value instructions
1771 if (!DI1
->isDebugInstr())
1774 MBB1
.erase(DI1
, MBB1
.end());
1776 DI2
= BBI2
->BB
->end();
1777 // The branches have been checked to match. Skip over the branch in the false
1778 // block so that we don't try to predicate it.
1780 BBI2
->NonPredSize
-= TII
->removeBranch(*BBI2
->BB
);
1782 // Make DI2 point to the end of the range where the common "tail"
1783 // instructions could be found.
1784 while (DI2
!= MBB2
.begin()) {
1785 MachineBasicBlock::iterator Prev
= std::prev(DI2
);
1786 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1791 while (NumDups2
!= 0) {
1792 // NumDups2 only counted non-dbg_value instructions, so this won't
1793 // run off the head of the list.
1794 assert(DI2
!= MBB2
.begin());
1796 // skip dbg_value instructions
1797 if (!DI2
->isDebugInstr())
1801 // Remember which registers would later be defined by the false block.
1802 // This allows us not to predicate instructions in the true block that would
1803 // later be re-defined. That is, rather than
1809 SmallSet
<unsigned, 4> RedefsByFalse
;
1810 SmallSet
<unsigned, 4> ExtUses
;
1811 if (TII
->isProfitableToUnpredicate(MBB1
, MBB2
)) {
1812 for (const MachineInstr
&FI
: make_range(MBB2
.begin(), DI2
)) {
1813 if (FI
.isDebugInstr())
1815 SmallVector
<unsigned, 4> Defs
;
1816 for (const MachineOperand
&MO
: FI
.operands()) {
1819 unsigned Reg
= MO
.getReg();
1823 Defs
.push_back(Reg
);
1824 } else if (!RedefsByFalse
.count(Reg
)) {
1825 // These are defined before ctrl flow reach the 'false' instructions.
1826 // They cannot be modified by the 'true' instructions.
1827 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1828 SubRegs
.isValid(); ++SubRegs
)
1829 ExtUses
.insert(*SubRegs
);
1833 for (unsigned Reg
: Defs
) {
1834 if (!ExtUses
.count(Reg
)) {
1835 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1836 SubRegs
.isValid(); ++SubRegs
)
1837 RedefsByFalse
.insert(*SubRegs
);
1843 // Predicate the 'true' block.
1844 PredicateBlock(*BBI1
, MBB1
.end(), *Cond1
, &RedefsByFalse
);
1846 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1847 // a non-predicated in BBI2, then we don't want to predicate the one from
1848 // BBI2. The reason is that if we merged these blocks, we would end up with
1849 // two predicated terminators in the same block.
1850 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1851 // predicate them either. They were checked to be identical, and so the
1852 // same branch would happen regardless of which path was taken.
1853 if (!MBB2
.empty() && (DI2
== MBB2
.end())) {
1854 MachineBasicBlock::iterator BBI1T
= MBB1
.getFirstTerminator();
1855 MachineBasicBlock::iterator BBI2T
= MBB2
.getFirstTerminator();
1856 bool BB1Predicated
= BBI1T
!= MBB1
.end() && TII
->isPredicated(*BBI1T
);
1857 bool BB2NonPredicated
= BBI2T
!= MBB2
.end() && !TII
->isPredicated(*BBI2T
);
1858 if (BB2NonPredicated
&& (BB1Predicated
|| !BBI2
->IsBrAnalyzable
))
1862 // Predicate the 'false' block.
1863 PredicateBlock(*BBI2
, DI2
, *Cond2
);
1865 // Merge the true block into the entry of the diamond.
1866 MergeBlocks(BBI
, *BBI1
, MergeAddEdges
);
1867 MergeBlocks(BBI
, *BBI2
, MergeAddEdges
);
1871 /// If convert an almost-diamond sub-CFG where the true
1872 /// and false blocks share a common tail.
1873 bool IfConverter::IfConvertForkedDiamond(
1874 BBInfo
&BBI
, IfcvtKind Kind
,
1875 unsigned NumDups1
, unsigned NumDups2
,
1876 bool TClobbersPred
, bool FClobbersPred
) {
1877 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1878 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1880 // Save the debug location for later.
1882 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->getFirstTerminator();
1883 if (TIE
!= TrueBBI
.BB
->end())
1884 dl
= TIE
->getDebugLoc();
1885 // Removing branches from both blocks is safe, because we have already
1886 // determined that both blocks have the same branch instructions. The branch
1887 // will be added back at the end, unpredicated.
1888 if (!IfConvertDiamondCommon(
1889 BBI
, TrueBBI
, FalseBBI
,
1891 TClobbersPred
, FClobbersPred
,
1892 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1895 // Add back the branch.
1896 // Debug location saved above when removing the branch from BBI2
1897 TII
->insertBranch(*BBI
.BB
, TrueBBI
.TrueBB
, TrueBBI
.FalseBB
,
1898 TrueBBI
.BrCond
, dl
);
1900 // Update block info.
1901 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1902 InvalidatePreds(*BBI
.BB
);
1904 // FIXME: Must maintain LiveIns.
1908 /// If convert a diamond sub-CFG.
1909 bool IfConverter::IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
1910 unsigned NumDups1
, unsigned NumDups2
,
1911 bool TClobbersPred
, bool FClobbersPred
) {
1912 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1913 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1914 MachineBasicBlock
*TailBB
= TrueBBI
.TrueBB
;
1916 // True block must fall through or end with an unanalyzable terminator.
1918 if (blockAlwaysFallThrough(TrueBBI
))
1919 TailBB
= FalseBBI
.TrueBB
;
1920 assert((TailBB
|| !TrueBBI
.IsBrAnalyzable
) && "Unexpected!");
1923 if (!IfConvertDiamondCommon(
1924 BBI
, TrueBBI
, FalseBBI
,
1926 TClobbersPred
, FClobbersPred
,
1927 /* RemoveBranch */ TrueBBI
.IsBrAnalyzable
,
1928 /* MergeAddEdges */ TailBB
== nullptr))
1931 // If the if-converted block falls through or unconditionally branches into
1932 // the tail block, and the tail block does not have other predecessors, then
1933 // fold the tail block in as well. Otherwise, unless it falls through to the
1934 // tail, add a unconditional branch to it.
1936 // We need to remove the edges to the true and false blocks manually since
1937 // we didn't let IfConvertDiamondCommon update the CFG.
1938 BBI
.BB
->removeSuccessor(TrueBBI
.BB
);
1939 BBI
.BB
->removeSuccessor(FalseBBI
.BB
, true);
1941 BBInfo
&TailBBI
= BBAnalysis
[TailBB
->getNumber()];
1942 bool CanMergeTail
= !TailBBI
.HasFallThrough
&&
1943 !TailBBI
.BB
->hasAddressTaken();
1944 // The if-converted block can still have a predicated terminator
1945 // (e.g. a predicated return). If that is the case, we cannot merge
1946 // it with the tail block.
1947 MachineBasicBlock::const_iterator TI
= BBI
.BB
->getFirstTerminator();
1948 if (TI
!= BBI
.BB
->end() && TII
->isPredicated(*TI
))
1949 CanMergeTail
= false;
1950 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1951 // check if there are any other predecessors besides those.
1952 unsigned NumPreds
= TailBB
->pred_size();
1954 CanMergeTail
= false;
1955 else if (NumPreds
== 1 && CanMergeTail
) {
1956 MachineBasicBlock::pred_iterator PI
= TailBB
->pred_begin();
1957 if (*PI
!= TrueBBI
.BB
&& *PI
!= FalseBBI
.BB
)
1958 CanMergeTail
= false;
1961 MergeBlocks(BBI
, TailBBI
);
1962 TailBBI
.IsDone
= true;
1964 BBI
.BB
->addSuccessor(TailBB
, BranchProbability::getOne());
1965 InsertUncondBranch(*BBI
.BB
, *TailBB
, TII
);
1966 BBI
.HasFallThrough
= false;
1970 // Update block info.
1971 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1972 InvalidatePreds(*BBI
.BB
);
1974 // FIXME: Must maintain LiveIns.
1978 static bool MaySpeculate(const MachineInstr
&MI
,
1979 SmallSet
<unsigned, 4> &LaterRedefs
) {
1980 bool SawStore
= true;
1981 if (!MI
.isSafeToMove(nullptr, SawStore
))
1984 for (const MachineOperand
&MO
: MI
.operands()) {
1987 unsigned Reg
= MO
.getReg();
1990 if (MO
.isDef() && !LaterRedefs
.count(Reg
))
1997 /// Predicate instructions from the start of the block to the specified end with
1998 /// the specified condition.
1999 void IfConverter::PredicateBlock(BBInfo
&BBI
,
2000 MachineBasicBlock::iterator E
,
2001 SmallVectorImpl
<MachineOperand
> &Cond
,
2002 SmallSet
<unsigned, 4> *LaterRedefs
) {
2003 bool AnyUnpred
= false;
2004 bool MaySpec
= LaterRedefs
!= nullptr;
2005 for (MachineInstr
&I
: make_range(BBI
.BB
->begin(), E
)) {
2006 if (I
.isDebugInstr() || TII
->isPredicated(I
))
2008 // It may be possible not to predicate an instruction if it's the 'true'
2009 // side of a diamond and the 'false' side may re-define the instruction's
2011 if (MaySpec
&& MaySpeculate(I
, *LaterRedefs
)) {
2015 // If any instruction is predicated, then every instruction after it must
2018 if (!TII
->PredicateInstruction(I
, Cond
)) {
2020 dbgs() << "Unable to predicate " << I
<< "!\n";
2022 llvm_unreachable(nullptr);
2025 // If the predicated instruction now redefines a register as the result of
2026 // if-conversion, add an implicit kill.
2027 UpdatePredRedefs(I
, Redefs
);
2030 BBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2032 BBI
.IsAnalyzed
= false;
2033 BBI
.NonPredSize
= 0;
2040 /// Copy and predicate instructions from source BB to the destination block.
2041 /// Skip end of block branches if IgnoreBr is true.
2042 void IfConverter::CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
2043 SmallVectorImpl
<MachineOperand
> &Cond
,
2045 MachineFunction
&MF
= *ToBBI
.BB
->getParent();
2047 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2048 for (MachineInstr
&I
: FromMBB
) {
2049 // Do not copy the end of the block branches.
2050 if (IgnoreBr
&& I
.isBranch())
2053 MachineInstr
*MI
= MF
.CloneMachineInstr(&I
);
2054 ToBBI
.BB
->insert(ToBBI
.BB
->end(), MI
);
2055 ToBBI
.NonPredSize
++;
2056 unsigned ExtraPredCost
= TII
->getPredicationCost(I
);
2057 unsigned NumCycles
= SchedModel
.computeInstrLatency(&I
, false);
2059 ToBBI
.ExtraCost
+= NumCycles
-1;
2060 ToBBI
.ExtraCost2
+= ExtraPredCost
;
2062 if (!TII
->isPredicated(I
) && !MI
->isDebugInstr()) {
2063 if (!TII
->PredicateInstruction(*MI
, Cond
)) {
2065 dbgs() << "Unable to predicate " << I
<< "!\n";
2067 llvm_unreachable(nullptr);
2071 // If the predicated instruction now redefines a register as the result of
2072 // if-conversion, add an implicit kill.
2073 UpdatePredRedefs(*MI
, Redefs
);
2077 std::vector
<MachineBasicBlock
*> Succs(FromMBB
.succ_begin(),
2078 FromMBB
.succ_end());
2079 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2080 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2082 for (MachineBasicBlock
*Succ
: Succs
) {
2083 // Fallthrough edge can't be transferred.
2084 if (Succ
== FallThrough
)
2086 ToBBI
.BB
->addSuccessor(Succ
);
2090 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2091 ToBBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2093 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2094 ToBBI
.IsAnalyzed
= false;
2099 /// Move all instructions from FromBB to the end of ToBB. This will leave
2100 /// FromBB as an empty block, so remove all of its successor edges except for
2101 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2102 /// being moved, add those successor edges to ToBBI and remove the old edge
2103 /// from ToBBI to FromBBI.
2104 void IfConverter::MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
) {
2105 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2106 assert(!FromMBB
.hasAddressTaken() &&
2107 "Removing a BB whose address is taken!");
2109 // In case FromMBB contains terminators (e.g. return instruction),
2110 // first move the non-terminator instructions, then the terminators.
2111 MachineBasicBlock::iterator FromTI
= FromMBB
.getFirstTerminator();
2112 MachineBasicBlock::iterator ToTI
= ToBBI
.BB
->getFirstTerminator();
2113 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromMBB
.begin(), FromTI
);
2115 // If FromBB has non-predicated terminator we should copy it at the end.
2116 if (FromTI
!= FromMBB
.end() && !TII
->isPredicated(*FromTI
))
2117 ToTI
= ToBBI
.BB
->end();
2118 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromTI
, FromMBB
.end());
2120 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2121 // unknown probabilities into known ones.
2122 // FIXME: This usage is too tricky and in the future we would like to
2123 // eliminate all unknown probabilities in MBB.
2124 if (ToBBI
.IsBrAnalyzable
)
2125 ToBBI
.BB
->normalizeSuccProbs();
2127 SmallVector
<MachineBasicBlock
*, 4> FromSuccs(FromMBB
.succ_begin(),
2128 FromMBB
.succ_end());
2129 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2130 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2131 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2132 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2133 auto To2FromProb
= BranchProbability::getZero();
2134 if (AddEdges
&& ToBBI
.BB
->isSuccessor(&FromMBB
)) {
2135 // Remove the old edge but remember the edge probability so we can calculate
2136 // the correct weights on the new edges being added further down.
2137 To2FromProb
= MBPI
->getEdgeProbability(ToBBI
.BB
, &FromMBB
);
2138 ToBBI
.BB
->removeSuccessor(&FromMBB
);
2141 for (MachineBasicBlock
*Succ
: FromSuccs
) {
2142 // Fallthrough edge can't be transferred.
2143 if (Succ
== FallThrough
)
2146 auto NewProb
= BranchProbability::getZero();
2148 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2149 // which is a portion of the edge probability from FromMBB to Succ. The
2150 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2151 // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
2152 NewProb
= MBPI
->getEdgeProbability(&FromMBB
, Succ
);
2154 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2155 // only happens when if-converting a diamond CFG and FromMBB is the
2156 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2157 // could just use the probabilities on FromMBB's out-edges when adding
2159 if (!To2FromProb
.isZero())
2160 NewProb
*= To2FromProb
;
2163 FromMBB
.removeSuccessor(Succ
);
2166 // If the edge from ToBBI.BB to Succ already exists, update the
2167 // probability of this edge by adding NewProb to it. An example is shown
2168 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2169 // don't have to set C as A's successor as it already is. We only need to
2170 // update the edge probability on A->C. Note that B will not be
2171 // immediately removed from A's successors. It is possible that B->D is
2172 // not removed either if D is a fallthrough of B. Later the edge A->D
2173 // (generated here) and B->D will be combined into one edge. To maintain
2174 // correct edge probability of this combined edge, we need to set the edge
2175 // probability of A->B to zero, which is already done above. The edge
2176 // probability on A->D is calculated by scaling the original probability
2177 // on A->B by the probability of B->D.
2179 // Before ifcvt: After ifcvt (assume B->D is kept):
2188 if (ToBBI
.BB
->isSuccessor(Succ
))
2189 ToBBI
.BB
->setSuccProbability(
2190 find(ToBBI
.BB
->successors(), Succ
),
2191 MBPI
->getEdgeProbability(ToBBI
.BB
, Succ
) + NewProb
);
2193 ToBBI
.BB
->addSuccessor(Succ
, NewProb
);
2197 // Move the now empty FromMBB out of the way to the end of the function so
2198 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2199 MachineBasicBlock
*Last
= &*FromMBB
.getParent()->rbegin();
2200 if (Last
!= &FromMBB
)
2201 FromMBB
.moveAfter(Last
);
2203 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2204 // we've done above.
2205 if (ToBBI
.IsBrAnalyzable
&& FromBBI
.IsBrAnalyzable
)
2206 ToBBI
.BB
->normalizeSuccProbs();
2208 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2209 FromBBI
.Predicate
.clear();
2211 ToBBI
.NonPredSize
+= FromBBI
.NonPredSize
;
2212 ToBBI
.ExtraCost
+= FromBBI
.ExtraCost
;
2213 ToBBI
.ExtraCost2
+= FromBBI
.ExtraCost2
;
2214 FromBBI
.NonPredSize
= 0;
2215 FromBBI
.ExtraCost
= 0;
2216 FromBBI
.ExtraCost2
= 0;
2218 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2219 ToBBI
.HasFallThrough
= FromBBI
.HasFallThrough
;
2220 ToBBI
.IsAnalyzed
= false;
2221 FromBBI
.IsAnalyzed
= false;
2225 llvm::createIfConverter(std::function
<bool(const MachineFunction
&)> Ftor
) {
2226 return new IfConverter(std::move(Ftor
));