[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / CodeGen / IfConversion.cpp
blobf12d00071b2417310c5b085a25305f124216d448
1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the machine instruction level if-conversion pass, which
11 // tries to convert conditional branches into predicated instructions.
13 //===----------------------------------------------------------------------===//
15 #include "BranchFolding.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSchedule.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/BranchProbability.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <functional>
50 #include <iterator>
51 #include <memory>
52 #include <utility>
53 #include <vector>
55 using namespace llvm;
57 #define DEBUG_TYPE "if-converter"
59 // Hidden options for help debugging.
60 static cl::opt<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden);
61 static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden);
62 static cl::opt<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden);
63 static cl::opt<bool> DisableSimple("disable-ifcvt-simple",
64 cl::init(false), cl::Hidden);
65 static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false",
66 cl::init(false), cl::Hidden);
67 static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle",
68 cl::init(false), cl::Hidden);
69 static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
70 cl::init(false), cl::Hidden);
71 static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false",
72 cl::init(false), cl::Hidden);
73 static cl::opt<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
74 cl::init(false), cl::Hidden);
75 static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond",
76 cl::init(false), cl::Hidden);
77 static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
78 cl::init(false), cl::Hidden);
79 static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold",
80 cl::init(true), cl::Hidden);
82 STATISTIC(NumSimple, "Number of simple if-conversions performed");
83 STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed");
84 STATISTIC(NumTriangle, "Number of triangle if-conversions performed");
85 STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed");
86 STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed");
87 STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed");
88 STATISTIC(NumDiamonds, "Number of diamond if-conversions performed");
89 STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed");
90 STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
91 STATISTIC(NumDupBBs, "Number of duplicated blocks");
92 STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated");
94 namespace {
96 class IfConverter : public MachineFunctionPass {
97 enum IfcvtKind {
98 ICNotClassfied, // BB data valid, but not classified.
99 ICSimpleFalse, // Same as ICSimple, but on the false path.
100 ICSimple, // BB is entry of an one split, no rejoin sub-CFG.
101 ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition.
102 ICTriangleRev, // Same as ICTriangle, but true path rev condition.
103 ICTriangleFalse, // Same as ICTriangle, but on the false path.
104 ICTriangle, // BB is entry of a triangle sub-CFG.
105 ICDiamond, // BB is entry of a diamond sub-CFG.
106 ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a
107 // common tail that can be shared.
110 /// One per MachineBasicBlock, this is used to cache the result
111 /// if-conversion feasibility analysis. This includes results from
112 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
113 /// classification, and common tail block of its successors (if it's a
114 /// diamond shape), its size, whether it's predicable, and whether any
115 /// instruction can clobber the 'would-be' predicate.
117 /// IsDone - True if BB is not to be considered for ifcvt.
118 /// IsBeingAnalyzed - True if BB is currently being analyzed.
119 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
120 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
121 /// IsBrAnalyzable - True if analyzeBranch() returns false.
122 /// HasFallThrough - True if BB may fallthrough to the following BB.
123 /// IsUnpredicable - True if BB is known to be unpredicable.
124 /// ClobbersPred - True if BB could modify predicates (e.g. has
125 /// cmp, call, etc.)
126 /// NonPredSize - Number of non-predicated instructions.
127 /// ExtraCost - Extra cost for multi-cycle instructions.
128 /// ExtraCost2 - Some instructions are slower when predicated
129 /// BB - Corresponding MachineBasicBlock.
130 /// TrueBB / FalseBB- See analyzeBranch().
131 /// BrCond - Conditions for end of block conditional branches.
132 /// Predicate - Predicate used in the BB.
133 struct BBInfo {
134 bool IsDone : 1;
135 bool IsBeingAnalyzed : 1;
136 bool IsAnalyzed : 1;
137 bool IsEnqueued : 1;
138 bool IsBrAnalyzable : 1;
139 bool IsBrReversible : 1;
140 bool HasFallThrough : 1;
141 bool IsUnpredicable : 1;
142 bool CannotBeCopied : 1;
143 bool ClobbersPred : 1;
144 unsigned NonPredSize = 0;
145 unsigned ExtraCost = 0;
146 unsigned ExtraCost2 = 0;
147 MachineBasicBlock *BB = nullptr;
148 MachineBasicBlock *TrueBB = nullptr;
149 MachineBasicBlock *FalseBB = nullptr;
150 SmallVector<MachineOperand, 4> BrCond;
151 SmallVector<MachineOperand, 4> Predicate;
153 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
154 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
155 IsBrReversible(false), HasFallThrough(false),
156 IsUnpredicable(false), CannotBeCopied(false),
157 ClobbersPred(false) {}
160 /// Record information about pending if-conversions to attempt:
161 /// BBI - Corresponding BBInfo.
162 /// Kind - Type of block. See IfcvtKind.
163 /// NeedSubsumption - True if the to-be-predicated BB has already been
164 /// predicated.
165 /// NumDups - Number of instructions that would be duplicated due
166 /// to this if-conversion. (For diamonds, the number of
167 /// identical instructions at the beginnings of both
168 /// paths).
169 /// NumDups2 - For diamonds, the number of identical instructions
170 /// at the ends of both paths.
171 struct IfcvtToken {
172 BBInfo &BBI;
173 IfcvtKind Kind;
174 unsigned NumDups;
175 unsigned NumDups2;
176 bool NeedSubsumption : 1;
177 bool TClobbersPred : 1;
178 bool FClobbersPred : 1;
180 IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0,
181 bool tc = false, bool fc = false)
182 : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s),
183 TClobbersPred(tc), FClobbersPred(fc) {}
186 /// Results of if-conversion feasibility analysis indexed by basic block
187 /// number.
188 std::vector<BBInfo> BBAnalysis;
189 TargetSchedModel SchedModel;
191 const TargetLoweringBase *TLI;
192 const TargetInstrInfo *TII;
193 const TargetRegisterInfo *TRI;
194 const MachineBranchProbabilityInfo *MBPI;
195 MachineRegisterInfo *MRI;
197 LivePhysRegs Redefs;
199 bool PreRegAlloc;
200 bool MadeChange;
201 int FnNum = -1;
202 std::function<bool(const MachineFunction &)> PredicateFtor;
204 public:
205 static char ID;
207 IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr)
208 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
209 initializeIfConverterPass(*PassRegistry::getPassRegistry());
212 void getAnalysisUsage(AnalysisUsage &AU) const override {
213 AU.addRequired<MachineBlockFrequencyInfo>();
214 AU.addRequired<MachineBranchProbabilityInfo>();
215 MachineFunctionPass::getAnalysisUsage(AU);
218 bool runOnMachineFunction(MachineFunction &MF) override;
220 MachineFunctionProperties getRequiredProperties() const override {
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoVRegs);
225 private:
226 bool reverseBranchCondition(BBInfo &BBI) const;
227 bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
228 BranchProbability Prediction) const;
229 bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
230 bool FalseBranch, unsigned &Dups,
231 BranchProbability Prediction) const;
232 bool CountDuplicatedInstructions(
233 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
234 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
235 unsigned &Dups1, unsigned &Dups2,
236 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
237 bool SkipUnconditionalBranches) const;
238 bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
239 unsigned &Dups1, unsigned &Dups2,
240 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
241 bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI,
242 unsigned &Dups1, unsigned &Dups2,
243 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const;
244 void AnalyzeBranches(BBInfo &BBI);
245 void ScanInstructions(BBInfo &BBI,
246 MachineBasicBlock::iterator &Begin,
247 MachineBasicBlock::iterator &End,
248 bool BranchUnpredicable = false) const;
249 bool RescanInstructions(
250 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
251 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
252 BBInfo &TrueBBI, BBInfo &FalseBBI) const;
253 void AnalyzeBlock(MachineBasicBlock &MBB,
254 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
255 bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred,
256 bool isTriangle = false, bool RevBranch = false,
257 bool hasCommonTail = false);
258 void AnalyzeBlocks(MachineFunction &MF,
259 std::vector<std::unique_ptr<IfcvtToken>> &Tokens);
260 void InvalidatePreds(MachineBasicBlock &MBB);
261 bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind);
262 bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind);
263 bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
264 unsigned NumDups1, unsigned NumDups2,
265 bool TClobbersPred, bool FClobbersPred,
266 bool RemoveBranch, bool MergeAddEdges);
267 bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
268 unsigned NumDups1, unsigned NumDups2,
269 bool TClobbers, bool FClobbers);
270 bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind,
271 unsigned NumDups1, unsigned NumDups2,
272 bool TClobbers, bool FClobbers);
273 void PredicateBlock(BBInfo &BBI,
274 MachineBasicBlock::iterator E,
275 SmallVectorImpl<MachineOperand> &Cond,
276 SmallSet<unsigned, 4> *LaterRedefs = nullptr);
277 void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
278 SmallVectorImpl<MachineOperand> &Cond,
279 bool IgnoreBr = false);
280 void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true);
282 bool MeetIfcvtSizeLimit(MachineBasicBlock &BB,
283 unsigned Cycle, unsigned Extra,
284 BranchProbability Prediction) const {
285 return Cycle > 0 && TII->isProfitableToIfCvt(BB, Cycle, Extra,
286 Prediction);
289 bool MeetIfcvtSizeLimit(MachineBasicBlock &TBB,
290 unsigned TCycle, unsigned TExtra,
291 MachineBasicBlock &FBB,
292 unsigned FCycle, unsigned FExtra,
293 BranchProbability Prediction) const {
294 return TCycle > 0 && FCycle > 0 &&
295 TII->isProfitableToIfCvt(TBB, TCycle, TExtra, FBB, FCycle, FExtra,
296 Prediction);
299 /// Returns true if Block ends without a terminator.
300 bool blockAlwaysFallThrough(BBInfo &BBI) const {
301 return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr;
304 /// Used to sort if-conversion candidates.
305 static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1,
306 const std::unique_ptr<IfcvtToken> &C2) {
307 int Incr1 = (C1->Kind == ICDiamond)
308 ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups;
309 int Incr2 = (C2->Kind == ICDiamond)
310 ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups;
311 if (Incr1 > Incr2)
312 return true;
313 else if (Incr1 == Incr2) {
314 // Favors subsumption.
315 if (!C1->NeedSubsumption && C2->NeedSubsumption)
316 return true;
317 else if (C1->NeedSubsumption == C2->NeedSubsumption) {
318 // Favors diamond over triangle, etc.
319 if ((unsigned)C1->Kind < (unsigned)C2->Kind)
320 return true;
321 else if (C1->Kind == C2->Kind)
322 return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber();
325 return false;
329 } // end anonymous namespace
331 char IfConverter::ID = 0;
333 char &llvm::IfConverterID = IfConverter::ID;
335 INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter", false, false)
336 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
337 INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter", false, false)
339 bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
340 if (skipFunction(MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF)))
341 return false;
343 const TargetSubtargetInfo &ST = MF.getSubtarget();
344 TLI = ST.getTargetLowering();
345 TII = ST.getInstrInfo();
346 TRI = ST.getRegisterInfo();
347 BranchFolder::MBFIWrapper MBFI(getAnalysis<MachineBlockFrequencyInfo>());
348 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
349 MRI = &MF.getRegInfo();
350 SchedModel.init(&ST);
352 if (!TII) return false;
354 PreRegAlloc = MRI->isSSA();
356 bool BFChange = false;
357 if (!PreRegAlloc) {
358 // Tail merge tend to expose more if-conversion opportunities.
359 BranchFolder BF(true, false, MBFI, *MBPI);
360 BFChange = BF.OptimizeFunction(MF, TII, ST.getRegisterInfo(),
361 getAnalysisIfAvailable<MachineModuleInfo>());
364 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'"
365 << MF.getName() << "\'");
367 if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) {
368 LLVM_DEBUG(dbgs() << " skipped\n");
369 return false;
371 LLVM_DEBUG(dbgs() << "\n");
373 MF.RenumberBlocks();
374 BBAnalysis.resize(MF.getNumBlockIDs());
376 std::vector<std::unique_ptr<IfcvtToken>> Tokens;
377 MadeChange = false;
378 unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle +
379 NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds;
380 while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) {
381 // Do an initial analysis for each basic block and find all the potential
382 // candidates to perform if-conversion.
383 bool Change = false;
384 AnalyzeBlocks(MF, Tokens);
385 while (!Tokens.empty()) {
386 std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back());
387 Tokens.pop_back();
388 BBInfo &BBI = Token->BBI;
389 IfcvtKind Kind = Token->Kind;
390 unsigned NumDups = Token->NumDups;
391 unsigned NumDups2 = Token->NumDups2;
393 // If the block has been evicted out of the queue or it has already been
394 // marked dead (due to it being predicated), then skip it.
395 if (BBI.IsDone)
396 BBI.IsEnqueued = false;
397 if (!BBI.IsEnqueued)
398 continue;
400 BBI.IsEnqueued = false;
402 bool RetVal = false;
403 switch (Kind) {
404 default: llvm_unreachable("Unexpected!");
405 case ICSimple:
406 case ICSimpleFalse: {
407 bool isFalse = Kind == ICSimpleFalse;
408 if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break;
409 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
410 << (Kind == ICSimpleFalse ? " false" : "")
411 << "): " << printMBBReference(*BBI.BB) << " ("
412 << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber()
413 : BBI.TrueBB->getNumber())
414 << ") ");
415 RetVal = IfConvertSimple(BBI, Kind);
416 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
417 if (RetVal) {
418 if (isFalse) ++NumSimpleFalse;
419 else ++NumSimple;
421 break;
423 case ICTriangle:
424 case ICTriangleRev:
425 case ICTriangleFalse:
426 case ICTriangleFRev: {
427 bool isFalse = Kind == ICTriangleFalse;
428 bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev);
429 if (DisableTriangle && !isFalse && !isRev) break;
430 if (DisableTriangleR && !isFalse && isRev) break;
431 if (DisableTriangleF && isFalse && !isRev) break;
432 if (DisableTriangleFR && isFalse && isRev) break;
433 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
434 if (isFalse)
435 LLVM_DEBUG(dbgs() << " false");
436 if (isRev)
437 LLVM_DEBUG(dbgs() << " rev");
438 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB)
439 << " (T:" << BBI.TrueBB->getNumber()
440 << ",F:" << BBI.FalseBB->getNumber() << ") ");
441 RetVal = IfConvertTriangle(BBI, Kind);
442 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
443 if (RetVal) {
444 if (isFalse) {
445 if (isRev) ++NumTriangleFRev;
446 else ++NumTriangleFalse;
447 } else {
448 if (isRev) ++NumTriangleRev;
449 else ++NumTriangle;
452 break;
454 case ICDiamond:
455 if (DisableDiamond) break;
456 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB)
457 << " (T:" << BBI.TrueBB->getNumber()
458 << ",F:" << BBI.FalseBB->getNumber() << ") ");
459 RetVal = IfConvertDiamond(BBI, Kind, NumDups, NumDups2,
460 Token->TClobbersPred,
461 Token->FClobbersPred);
462 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
463 if (RetVal) ++NumDiamonds;
464 break;
465 case ICForkedDiamond:
466 if (DisableForkedDiamond) break;
467 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
468 << printMBBReference(*BBI.BB)
469 << " (T:" << BBI.TrueBB->getNumber()
470 << ",F:" << BBI.FalseBB->getNumber() << ") ");
471 RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups, NumDups2,
472 Token->TClobbersPred,
473 Token->FClobbersPred);
474 LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!") << "\n");
475 if (RetVal) ++NumForkedDiamonds;
476 break;
479 if (RetVal && MRI->tracksLiveness())
480 recomputeLivenessFlags(*BBI.BB);
482 Change |= RetVal;
484 NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev +
485 NumTriangleFalse + NumTriangleFRev + NumDiamonds;
486 if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit)
487 break;
490 if (!Change)
491 break;
492 MadeChange |= Change;
495 Tokens.clear();
496 BBAnalysis.clear();
498 if (MadeChange && IfCvtBranchFold) {
499 BranchFolder BF(false, false, MBFI, *MBPI);
500 BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
501 getAnalysisIfAvailable<MachineModuleInfo>());
504 MadeChange |= BFChange;
505 return MadeChange;
508 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
509 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
510 MachineBasicBlock *TrueBB) {
511 for (MachineBasicBlock *SuccBB : BB->successors()) {
512 if (SuccBB != TrueBB)
513 return SuccBB;
515 return nullptr;
518 /// Reverse the condition of the end of the block branch. Swap block's 'true'
519 /// and 'false' successors.
520 bool IfConverter::reverseBranchCondition(BBInfo &BBI) const {
521 DebugLoc dl; // FIXME: this is nowhere
522 if (!TII->reverseBranchCondition(BBI.BrCond)) {
523 TII->removeBranch(*BBI.BB);
524 TII->insertBranch(*BBI.BB, BBI.FalseBB, BBI.TrueBB, BBI.BrCond, dl);
525 std::swap(BBI.TrueBB, BBI.FalseBB);
526 return true;
528 return false;
531 /// Returns the next block in the function blocks ordering. If it is the end,
532 /// returns NULL.
533 static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) {
534 MachineFunction::iterator I = MBB.getIterator();
535 MachineFunction::iterator E = MBB.getParent()->end();
536 if (++I == E)
537 return nullptr;
538 return &*I;
541 /// Returns true if the 'true' block (along with its predecessor) forms a valid
542 /// simple shape for ifcvt. It also returns the number of instructions that the
543 /// ifcvt would need to duplicate if performed in Dups.
544 bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups,
545 BranchProbability Prediction) const {
546 Dups = 0;
547 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
548 return false;
550 if (TrueBBI.IsBrAnalyzable)
551 return false;
553 if (TrueBBI.BB->pred_size() > 1) {
554 if (TrueBBI.CannotBeCopied ||
555 !TII->isProfitableToDupForIfCvt(*TrueBBI.BB, TrueBBI.NonPredSize,
556 Prediction))
557 return false;
558 Dups = TrueBBI.NonPredSize;
561 return true;
564 /// Returns true if the 'true' and 'false' blocks (along with their common
565 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
566 /// true, it checks if 'true' block's false branch branches to the 'false' block
567 /// rather than the other way around. It also returns the number of instructions
568 /// that the ifcvt would need to duplicate if performed in 'Dups'.
569 bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI,
570 bool FalseBranch, unsigned &Dups,
571 BranchProbability Prediction) const {
572 Dups = 0;
573 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone)
574 return false;
576 if (TrueBBI.BB->pred_size() > 1) {
577 if (TrueBBI.CannotBeCopied)
578 return false;
580 unsigned Size = TrueBBI.NonPredSize;
581 if (TrueBBI.IsBrAnalyzable) {
582 if (TrueBBI.TrueBB && TrueBBI.BrCond.empty())
583 // Ends with an unconditional branch. It will be removed.
584 --Size;
585 else {
586 MachineBasicBlock *FExit = FalseBranch
587 ? TrueBBI.TrueBB : TrueBBI.FalseBB;
588 if (FExit)
589 // Require a conditional branch
590 ++Size;
593 if (!TII->isProfitableToDupForIfCvt(*TrueBBI.BB, Size, Prediction))
594 return false;
595 Dups = Size;
598 MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB;
599 if (!TExit && blockAlwaysFallThrough(TrueBBI)) {
600 MachineFunction::iterator I = TrueBBI.BB->getIterator();
601 if (++I == TrueBBI.BB->getParent()->end())
602 return false;
603 TExit = &*I;
605 return TExit && TExit == FalseBBI.BB;
608 /// Count duplicated instructions and move the iterators to show where they
609 /// are.
610 /// @param TIB True Iterator Begin
611 /// @param FIB False Iterator Begin
612 /// These two iterators initially point to the first instruction of the two
613 /// blocks, and finally point to the first non-shared instruction.
614 /// @param TIE True Iterator End
615 /// @param FIE False Iterator End
616 /// These two iterators initially point to End() for the two blocks() and
617 /// finally point to the first shared instruction in the tail.
618 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
619 /// two blocks.
620 /// @param Dups1 count of duplicated instructions at the beginning of the 2
621 /// blocks.
622 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
623 /// @param SkipUnconditionalBranches if true, Don't make sure that
624 /// unconditional branches at the end of the blocks are the same. True is
625 /// passed when the blocks are analyzable to allow for fallthrough to be
626 /// handled.
627 /// @return false if the shared portion prevents if conversion.
628 bool IfConverter::CountDuplicatedInstructions(
629 MachineBasicBlock::iterator &TIB,
630 MachineBasicBlock::iterator &FIB,
631 MachineBasicBlock::iterator &TIE,
632 MachineBasicBlock::iterator &FIE,
633 unsigned &Dups1, unsigned &Dups2,
634 MachineBasicBlock &TBB, MachineBasicBlock &FBB,
635 bool SkipUnconditionalBranches) const {
636 while (TIB != TIE && FIB != FIE) {
637 // Skip dbg_value instructions. These do not count.
638 TIB = skipDebugInstructionsForward(TIB, TIE);
639 FIB = skipDebugInstructionsForward(FIB, FIE);
640 if (TIB == TIE || FIB == FIE)
641 break;
642 if (!TIB->isIdenticalTo(*FIB))
643 break;
644 // A pred-clobbering instruction in the shared portion prevents
645 // if-conversion.
646 std::vector<MachineOperand> PredDefs;
647 if (TII->DefinesPredicate(*TIB, PredDefs))
648 return false;
649 // If we get all the way to the branch instructions, don't count them.
650 if (!TIB->isBranch())
651 ++Dups1;
652 ++TIB;
653 ++FIB;
656 // Check for already containing all of the block.
657 if (TIB == TIE || FIB == FIE)
658 return true;
659 // Now, in preparation for counting duplicate instructions at the ends of the
660 // blocks, switch to reverse_iterators. Note that getReverse() returns an
661 // iterator that points to the same instruction, unlike std::reverse_iterator.
662 // We have to do our own shifting so that we get the same range.
663 MachineBasicBlock::reverse_iterator RTIE = std::next(TIE.getReverse());
664 MachineBasicBlock::reverse_iterator RFIE = std::next(FIE.getReverse());
665 const MachineBasicBlock::reverse_iterator RTIB = std::next(TIB.getReverse());
666 const MachineBasicBlock::reverse_iterator RFIB = std::next(FIB.getReverse());
668 if (!TBB.succ_empty() || !FBB.succ_empty()) {
669 if (SkipUnconditionalBranches) {
670 while (RTIE != RTIB && RTIE->isUnconditionalBranch())
671 ++RTIE;
672 while (RFIE != RFIB && RFIE->isUnconditionalBranch())
673 ++RFIE;
677 // Count duplicate instructions at the ends of the blocks.
678 while (RTIE != RTIB && RFIE != RFIB) {
679 // Skip dbg_value instructions. These do not count.
680 // Note that these are reverse iterators going forward.
681 RTIE = skipDebugInstructionsForward(RTIE, RTIB);
682 RFIE = skipDebugInstructionsForward(RFIE, RFIB);
683 if (RTIE == RTIB || RFIE == RFIB)
684 break;
685 if (!RTIE->isIdenticalTo(*RFIE))
686 break;
687 // We have to verify that any branch instructions are the same, and then we
688 // don't count them toward the # of duplicate instructions.
689 if (!RTIE->isBranch())
690 ++Dups2;
691 ++RTIE;
692 ++RFIE;
694 TIE = std::next(RTIE.getReverse());
695 FIE = std::next(RFIE.getReverse());
696 return true;
699 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
700 /// @param TIB - True Iterator Begin, points to first non-shared instruction
701 /// @param FIB - False Iterator Begin, points to first non-shared instruction
702 /// @param TIE - True Iterator End, points past last non-shared instruction
703 /// @param FIE - False Iterator End, points past last non-shared instruction
704 /// @param TrueBBI - BBInfo to update for the true block.
705 /// @param FalseBBI - BBInfo to update for the false block.
706 /// @returns - false if either block cannot be predicated or if both blocks end
707 /// with a predicate-clobbering instruction.
708 bool IfConverter::RescanInstructions(
709 MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB,
710 MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE,
711 BBInfo &TrueBBI, BBInfo &FalseBBI) const {
712 bool BranchUnpredicable = true;
713 TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false;
714 ScanInstructions(TrueBBI, TIB, TIE, BranchUnpredicable);
715 if (TrueBBI.IsUnpredicable)
716 return false;
717 ScanInstructions(FalseBBI, FIB, FIE, BranchUnpredicable);
718 if (FalseBBI.IsUnpredicable)
719 return false;
720 if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred)
721 return false;
722 return true;
725 #ifndef NDEBUG
726 static void verifySameBranchInstructions(
727 MachineBasicBlock *MBB1,
728 MachineBasicBlock *MBB2) {
729 const MachineBasicBlock::reverse_iterator B1 = MBB1->rend();
730 const MachineBasicBlock::reverse_iterator B2 = MBB2->rend();
731 MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin();
732 MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin();
733 while (E1 != B1 && E2 != B2) {
734 skipDebugInstructionsForward(E1, B1);
735 skipDebugInstructionsForward(E2, B2);
736 if (E1 == B1 && E2 == B2)
737 break;
739 if (E1 == B1) {
740 assert(!E2->isBranch() && "Branch mis-match, one block is empty.");
741 break;
743 if (E2 == B2) {
744 assert(!E1->isBranch() && "Branch mis-match, one block is empty.");
745 break;
748 if (E1->isBranch() || E2->isBranch())
749 assert(E1->isIdenticalTo(*E2) &&
750 "Branch mis-match, branch instructions don't match.");
751 else
752 break;
753 ++E1;
754 ++E2;
757 #endif
759 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
760 /// with their common predecessor) form a diamond if a common tail block is
761 /// extracted.
762 /// While not strictly a diamond, this pattern would form a diamond if
763 /// tail-merging had merged the shared tails.
764 /// EBB
765 /// _/ \_
766 /// | |
767 /// TBB FBB
768 /// / \ / \
769 /// FalseBB TrueBB FalseBB
770 /// Currently only handles analyzable branches.
771 /// Specifically excludes actual diamonds to avoid overlap.
772 bool IfConverter::ValidForkedDiamond(
773 BBInfo &TrueBBI, BBInfo &FalseBBI,
774 unsigned &Dups1, unsigned &Dups2,
775 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
776 Dups1 = Dups2 = 0;
777 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
778 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
779 return false;
781 if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable)
782 return false;
783 // Don't IfConvert blocks that can't be folded into their predecessor.
784 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
785 return false;
787 // This function is specifically looking for conditional tails, as
788 // unconditional tails are already handled by the standard diamond case.
789 if (TrueBBI.BrCond.size() == 0 ||
790 FalseBBI.BrCond.size() == 0)
791 return false;
793 MachineBasicBlock *TT = TrueBBI.TrueBB;
794 MachineBasicBlock *TF = TrueBBI.FalseBB;
795 MachineBasicBlock *FT = FalseBBI.TrueBB;
796 MachineBasicBlock *FF = FalseBBI.FalseBB;
798 if (!TT)
799 TT = getNextBlock(*TrueBBI.BB);
800 if (!TF)
801 TF = getNextBlock(*TrueBBI.BB);
802 if (!FT)
803 FT = getNextBlock(*FalseBBI.BB);
804 if (!FF)
805 FF = getNextBlock(*FalseBBI.BB);
807 if (!TT || !TF)
808 return false;
810 // Check successors. If they don't match, bail.
811 if (!((TT == FT && TF == FF) || (TF == FT && TT == FF)))
812 return false;
814 bool FalseReversed = false;
815 if (TF == FT && TT == FF) {
816 // If the branches are opposing, but we can't reverse, don't do it.
817 if (!FalseBBI.IsBrReversible)
818 return false;
819 FalseReversed = true;
820 reverseBranchCondition(FalseBBI);
822 auto UnReverseOnExit = make_scope_exit([&]() {
823 if (FalseReversed)
824 reverseBranchCondition(FalseBBI);
827 // Count duplicate instructions at the beginning of the true and false blocks.
828 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
829 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
830 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
831 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
832 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
833 *TrueBBI.BB, *FalseBBI.BB,
834 /* SkipUnconditionalBranches */ true))
835 return false;
837 TrueBBICalc.BB = TrueBBI.BB;
838 FalseBBICalc.BB = FalseBBI.BB;
839 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
840 return false;
842 // The size is used to decide whether to if-convert, and the shared portions
843 // are subtracted off. Because of the subtraction, we just use the size that
844 // was calculated by the original ScanInstructions, as it is correct.
845 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
846 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
847 return true;
850 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
851 /// with their common predecessor) forms a valid diamond shape for ifcvt.
852 bool IfConverter::ValidDiamond(
853 BBInfo &TrueBBI, BBInfo &FalseBBI,
854 unsigned &Dups1, unsigned &Dups2,
855 BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const {
856 Dups1 = Dups2 = 0;
857 if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone ||
858 FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone)
859 return false;
861 MachineBasicBlock *TT = TrueBBI.TrueBB;
862 MachineBasicBlock *FT = FalseBBI.TrueBB;
864 if (!TT && blockAlwaysFallThrough(TrueBBI))
865 TT = getNextBlock(*TrueBBI.BB);
866 if (!FT && blockAlwaysFallThrough(FalseBBI))
867 FT = getNextBlock(*FalseBBI.BB);
868 if (TT != FT)
869 return false;
870 if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable))
871 return false;
872 if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1)
873 return false;
875 // FIXME: Allow true block to have an early exit?
876 if (TrueBBI.FalseBB || FalseBBI.FalseBB)
877 return false;
879 // Count duplicate instructions at the beginning and end of the true and
880 // false blocks.
881 // Skip unconditional branches only if we are considering an analyzable
882 // diamond. Otherwise the branches must be the same.
883 bool SkipUnconditionalBranches =
884 TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable;
885 MachineBasicBlock::iterator TIB = TrueBBI.BB->begin();
886 MachineBasicBlock::iterator FIB = FalseBBI.BB->begin();
887 MachineBasicBlock::iterator TIE = TrueBBI.BB->end();
888 MachineBasicBlock::iterator FIE = FalseBBI.BB->end();
889 if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2,
890 *TrueBBI.BB, *FalseBBI.BB,
891 SkipUnconditionalBranches))
892 return false;
894 TrueBBICalc.BB = TrueBBI.BB;
895 FalseBBICalc.BB = FalseBBI.BB;
896 if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBICalc, FalseBBICalc))
897 return false;
898 // The size is used to decide whether to if-convert, and the shared portions
899 // are subtracted off. Because of the subtraction, we just use the size that
900 // was calculated by the original ScanInstructions, as it is correct.
901 TrueBBICalc.NonPredSize = TrueBBI.NonPredSize;
902 FalseBBICalc.NonPredSize = FalseBBI.NonPredSize;
903 return true;
906 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
907 /// the block is predicable.
908 void IfConverter::AnalyzeBranches(BBInfo &BBI) {
909 if (BBI.IsDone)
910 return;
912 BBI.TrueBB = BBI.FalseBB = nullptr;
913 BBI.BrCond.clear();
914 BBI.IsBrAnalyzable =
915 !TII->analyzeBranch(*BBI.BB, BBI.TrueBB, BBI.FalseBB, BBI.BrCond);
916 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
917 BBI.IsBrReversible = (RevCond.size() == 0) ||
918 !TII->reverseBranchCondition(RevCond);
919 BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr;
921 if (BBI.BrCond.size()) {
922 // No false branch. This BB must end with a conditional branch and a
923 // fallthrough.
924 if (!BBI.FalseBB)
925 BBI.FalseBB = findFalseBlock(BBI.BB, BBI.TrueBB);
926 if (!BBI.FalseBB) {
927 // Malformed bcc? True and false blocks are the same?
928 BBI.IsUnpredicable = true;
933 /// ScanInstructions - Scan all the instructions in the block to determine if
934 /// the block is predicable. In most cases, that means all the instructions
935 /// in the block are isPredicable(). Also checks if the block contains any
936 /// instruction which can clobber a predicate (e.g. condition code register).
937 /// If so, the block is not predicable unless it's the last instruction.
938 void IfConverter::ScanInstructions(BBInfo &BBI,
939 MachineBasicBlock::iterator &Begin,
940 MachineBasicBlock::iterator &End,
941 bool BranchUnpredicable) const {
942 if (BBI.IsDone || BBI.IsUnpredicable)
943 return;
945 bool AlreadyPredicated = !BBI.Predicate.empty();
947 BBI.NonPredSize = 0;
948 BBI.ExtraCost = 0;
949 BBI.ExtraCost2 = 0;
950 BBI.ClobbersPred = false;
951 for (MachineInstr &MI : make_range(Begin, End)) {
952 if (MI.isDebugInstr())
953 continue;
955 // It's unsafe to duplicate convergent instructions in this context, so set
956 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
957 // following CFG, which is subject to our "simple" transformation.
959 // BB0 // if (c1) goto BB1; else goto BB2;
960 // / \
961 // BB1 |
962 // | BB2 // if (c2) goto TBB; else goto FBB;
963 // | / |
964 // | / |
965 // TBB |
966 // | |
967 // | FBB
968 // |
969 // exit
971 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
972 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
973 // TBB contains a convergent instruction. This is safe iff doing so does
974 // not add a control-flow dependency to the convergent instruction -- i.e.,
975 // it's safe iff the set of control flows that leads us to the convergent
976 // instruction does not get smaller after the transformation.
978 // Originally we executed TBB if c1 || c2. After the transformation, there
979 // are two copies of TBB's instructions. We get to the first if c1, and we
980 // get to the second if !c1 && c2.
982 // There are clearly fewer ways to satisfy the condition "c1" than
983 // "c1 || c2". Since we've shrunk the set of control flows which lead to
984 // our convergent instruction, the transformation is unsafe.
985 if (MI.isNotDuplicable() || MI.isConvergent())
986 BBI.CannotBeCopied = true;
988 bool isPredicated = TII->isPredicated(MI);
989 bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch();
991 if (BranchUnpredicable && MI.isBranch()) {
992 BBI.IsUnpredicable = true;
993 return;
996 // A conditional branch is not predicable, but it may be eliminated.
997 if (isCondBr)
998 continue;
1000 if (!isPredicated) {
1001 BBI.NonPredSize++;
1002 unsigned ExtraPredCost = TII->getPredicationCost(MI);
1003 unsigned NumCycles = SchedModel.computeInstrLatency(&MI, false);
1004 if (NumCycles > 1)
1005 BBI.ExtraCost += NumCycles-1;
1006 BBI.ExtraCost2 += ExtraPredCost;
1007 } else if (!AlreadyPredicated) {
1008 // FIXME: This instruction is already predicated before the
1009 // if-conversion pass. It's probably something like a conditional move.
1010 // Mark this block unpredicable for now.
1011 BBI.IsUnpredicable = true;
1012 return;
1015 if (BBI.ClobbersPred && !isPredicated) {
1016 // Predicate modification instruction should end the block (except for
1017 // already predicated instructions and end of block branches).
1018 // Predicate may have been modified, the subsequent (currently)
1019 // unpredicated instructions cannot be correctly predicated.
1020 BBI.IsUnpredicable = true;
1021 return;
1024 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1025 // still potentially predicable.
1026 std::vector<MachineOperand> PredDefs;
1027 if (TII->DefinesPredicate(MI, PredDefs))
1028 BBI.ClobbersPred = true;
1030 if (!TII->isPredicable(MI)) {
1031 BBI.IsUnpredicable = true;
1032 return;
1037 /// Determine if the block is a suitable candidate to be predicated by the
1038 /// specified predicate.
1039 /// @param BBI BBInfo for the block to check
1040 /// @param Pred Predicate array for the branch that leads to BBI
1041 /// @param isTriangle true if the Analysis is for a triangle
1042 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1043 /// case
1044 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1045 /// contains any instruction that would make the block unpredicable.
1046 bool IfConverter::FeasibilityAnalysis(BBInfo &BBI,
1047 SmallVectorImpl<MachineOperand> &Pred,
1048 bool isTriangle, bool RevBranch,
1049 bool hasCommonTail) {
1050 // If the block is dead or unpredicable, then it cannot be predicated.
1051 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1052 // them from being if-converted. The non-shared portion is assumed to have
1053 // been checked
1054 if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail))
1055 return false;
1057 // If it is already predicated but we couldn't analyze its terminator, the
1058 // latter might fallthrough, but we can't determine where to.
1059 // Conservatively avoid if-converting again.
1060 if (BBI.Predicate.size() && !BBI.IsBrAnalyzable)
1061 return false;
1063 // If it is already predicated, check if the new predicate subsumes
1064 // its predicate.
1065 if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred, BBI.Predicate))
1066 return false;
1068 if (!hasCommonTail && BBI.BrCond.size()) {
1069 if (!isTriangle)
1070 return false;
1072 // Test predicate subsumption.
1073 SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end());
1074 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1075 if (RevBranch) {
1076 if (TII->reverseBranchCondition(Cond))
1077 return false;
1079 if (TII->reverseBranchCondition(RevPred) ||
1080 !TII->SubsumesPredicate(Cond, RevPred))
1081 return false;
1084 return true;
1087 /// Analyze the structure of the sub-CFG starting from the specified block.
1088 /// Record its successors and whether it looks like an if-conversion candidate.
1089 void IfConverter::AnalyzeBlock(
1090 MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1091 struct BBState {
1092 BBState(MachineBasicBlock &MBB) : MBB(&MBB), SuccsAnalyzed(false) {}
1093 MachineBasicBlock *MBB;
1095 /// This flag is true if MBB's successors have been analyzed.
1096 bool SuccsAnalyzed;
1099 // Push MBB to the stack.
1100 SmallVector<BBState, 16> BBStack(1, MBB);
1102 while (!BBStack.empty()) {
1103 BBState &State = BBStack.back();
1104 MachineBasicBlock *BB = State.MBB;
1105 BBInfo &BBI = BBAnalysis[BB->getNumber()];
1107 if (!State.SuccsAnalyzed) {
1108 if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) {
1109 BBStack.pop_back();
1110 continue;
1113 BBI.BB = BB;
1114 BBI.IsBeingAnalyzed = true;
1116 AnalyzeBranches(BBI);
1117 MachineBasicBlock::iterator Begin = BBI.BB->begin();
1118 MachineBasicBlock::iterator End = BBI.BB->end();
1119 ScanInstructions(BBI, Begin, End);
1121 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1122 // not considered for ifcvt anymore.
1123 if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) {
1124 BBI.IsBeingAnalyzed = false;
1125 BBI.IsAnalyzed = true;
1126 BBStack.pop_back();
1127 continue;
1130 // Do not ifcvt if either path is a back edge to the entry block.
1131 if (BBI.TrueBB == BB || BBI.FalseBB == BB) {
1132 BBI.IsBeingAnalyzed = false;
1133 BBI.IsAnalyzed = true;
1134 BBStack.pop_back();
1135 continue;
1138 // Do not ifcvt if true and false fallthrough blocks are the same.
1139 if (!BBI.FalseBB) {
1140 BBI.IsBeingAnalyzed = false;
1141 BBI.IsAnalyzed = true;
1142 BBStack.pop_back();
1143 continue;
1146 // Push the False and True blocks to the stack.
1147 State.SuccsAnalyzed = true;
1148 BBStack.push_back(*BBI.FalseBB);
1149 BBStack.push_back(*BBI.TrueBB);
1150 continue;
1153 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1154 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1156 if (TrueBBI.IsDone && FalseBBI.IsDone) {
1157 BBI.IsBeingAnalyzed = false;
1158 BBI.IsAnalyzed = true;
1159 BBStack.pop_back();
1160 continue;
1163 SmallVector<MachineOperand, 4>
1164 RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1165 bool CanRevCond = !TII->reverseBranchCondition(RevCond);
1167 unsigned Dups = 0;
1168 unsigned Dups2 = 0;
1169 bool TNeedSub = !TrueBBI.Predicate.empty();
1170 bool FNeedSub = !FalseBBI.Predicate.empty();
1171 bool Enqueued = false;
1173 BranchProbability Prediction = MBPI->getEdgeProbability(BB, TrueBBI.BB);
1175 if (CanRevCond) {
1176 BBInfo TrueBBICalc, FalseBBICalc;
1177 auto feasibleDiamond = [&]() {
1178 bool MeetsSize = MeetIfcvtSizeLimit(
1179 *TrueBBI.BB, (TrueBBICalc.NonPredSize - (Dups + Dups2) +
1180 TrueBBICalc.ExtraCost), TrueBBICalc.ExtraCost2,
1181 *FalseBBI.BB, (FalseBBICalc.NonPredSize - (Dups + Dups2) +
1182 FalseBBICalc.ExtraCost), FalseBBICalc.ExtraCost2,
1183 Prediction);
1184 bool TrueFeasible = FeasibilityAnalysis(TrueBBI, BBI.BrCond,
1185 /* IsTriangle */ false, /* RevCond */ false,
1186 /* hasCommonTail */ true);
1187 bool FalseFeasible = FeasibilityAnalysis(FalseBBI, RevCond,
1188 /* IsTriangle */ false, /* RevCond */ false,
1189 /* hasCommonTail */ true);
1190 return MeetsSize && TrueFeasible && FalseFeasible;
1193 if (ValidDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1194 TrueBBICalc, FalseBBICalc)) {
1195 if (feasibleDiamond()) {
1196 // Diamond:
1197 // EBB
1198 // / \_
1199 // | |
1200 // TBB FBB
1201 // \ /
1202 // TailBB
1203 // Note TailBB can be empty.
1204 Tokens.push_back(llvm::make_unique<IfcvtToken>(
1205 BBI, ICDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1206 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1207 Enqueued = true;
1209 } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups, Dups2,
1210 TrueBBICalc, FalseBBICalc)) {
1211 if (feasibleDiamond()) {
1212 // ForkedDiamond:
1213 // if TBB and FBB have a common tail that includes their conditional
1214 // branch instructions, then we can If Convert this pattern.
1215 // EBB
1216 // _/ \_
1217 // | |
1218 // TBB FBB
1219 // / \ / \
1220 // FalseBB TrueBB FalseBB
1222 Tokens.push_back(llvm::make_unique<IfcvtToken>(
1223 BBI, ICForkedDiamond, TNeedSub | FNeedSub, Dups, Dups2,
1224 (bool) TrueBBICalc.ClobbersPred, (bool) FalseBBICalc.ClobbersPred));
1225 Enqueued = true;
1230 if (ValidTriangle(TrueBBI, FalseBBI, false, Dups, Prediction) &&
1231 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1232 TrueBBI.ExtraCost2, Prediction) &&
1233 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true)) {
1234 // Triangle:
1235 // EBB
1236 // | \_
1237 // | |
1238 // | TBB
1239 // | /
1240 // FBB
1241 Tokens.push_back(
1242 llvm::make_unique<IfcvtToken>(BBI, ICTriangle, TNeedSub, Dups));
1243 Enqueued = true;
1246 if (ValidTriangle(TrueBBI, FalseBBI, true, Dups, Prediction) &&
1247 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1248 TrueBBI.ExtraCost2, Prediction) &&
1249 FeasibilityAnalysis(TrueBBI, BBI.BrCond, true, true)) {
1250 Tokens.push_back(
1251 llvm::make_unique<IfcvtToken>(BBI, ICTriangleRev, TNeedSub, Dups));
1252 Enqueued = true;
1255 if (ValidSimple(TrueBBI, Dups, Prediction) &&
1256 MeetIfcvtSizeLimit(*TrueBBI.BB, TrueBBI.NonPredSize + TrueBBI.ExtraCost,
1257 TrueBBI.ExtraCost2, Prediction) &&
1258 FeasibilityAnalysis(TrueBBI, BBI.BrCond)) {
1259 // Simple (split, no rejoin):
1260 // EBB
1261 // | \_
1262 // | |
1263 // | TBB---> exit
1264 // |
1265 // FBB
1266 Tokens.push_back(
1267 llvm::make_unique<IfcvtToken>(BBI, ICSimple, TNeedSub, Dups));
1268 Enqueued = true;
1271 if (CanRevCond) {
1272 // Try the other path...
1273 if (ValidTriangle(FalseBBI, TrueBBI, false, Dups,
1274 Prediction.getCompl()) &&
1275 MeetIfcvtSizeLimit(*FalseBBI.BB,
1276 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1277 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1278 FeasibilityAnalysis(FalseBBI, RevCond, true)) {
1279 Tokens.push_back(llvm::make_unique<IfcvtToken>(BBI, ICTriangleFalse,
1280 FNeedSub, Dups));
1281 Enqueued = true;
1284 if (ValidTriangle(FalseBBI, TrueBBI, true, Dups,
1285 Prediction.getCompl()) &&
1286 MeetIfcvtSizeLimit(*FalseBBI.BB,
1287 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1288 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1289 FeasibilityAnalysis(FalseBBI, RevCond, true, true)) {
1290 Tokens.push_back(
1291 llvm::make_unique<IfcvtToken>(BBI, ICTriangleFRev, FNeedSub, Dups));
1292 Enqueued = true;
1295 if (ValidSimple(FalseBBI, Dups, Prediction.getCompl()) &&
1296 MeetIfcvtSizeLimit(*FalseBBI.BB,
1297 FalseBBI.NonPredSize + FalseBBI.ExtraCost,
1298 FalseBBI.ExtraCost2, Prediction.getCompl()) &&
1299 FeasibilityAnalysis(FalseBBI, RevCond)) {
1300 Tokens.push_back(
1301 llvm::make_unique<IfcvtToken>(BBI, ICSimpleFalse, FNeedSub, Dups));
1302 Enqueued = true;
1306 BBI.IsEnqueued = Enqueued;
1307 BBI.IsBeingAnalyzed = false;
1308 BBI.IsAnalyzed = true;
1309 BBStack.pop_back();
1313 /// Analyze all blocks and find entries for all if-conversion candidates.
1314 void IfConverter::AnalyzeBlocks(
1315 MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) {
1316 for (MachineBasicBlock &MBB : MF)
1317 AnalyzeBlock(MBB, Tokens);
1319 // Sort to favor more complex ifcvt scheme.
1320 std::stable_sort(Tokens.begin(), Tokens.end(), IfcvtTokenCmp);
1323 /// Returns true either if ToMBB is the next block after MBB or that all the
1324 /// intervening blocks are empty (given MBB can fall through to its next block).
1325 static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) {
1326 MachineFunction::iterator PI = MBB.getIterator();
1327 MachineFunction::iterator I = std::next(PI);
1328 MachineFunction::iterator TI = ToMBB.getIterator();
1329 MachineFunction::iterator E = MBB.getParent()->end();
1330 while (I != TI) {
1331 // Check isSuccessor to avoid case where the next block is empty, but
1332 // it's not a successor.
1333 if (I == E || !I->empty() || !PI->isSuccessor(&*I))
1334 return false;
1335 PI = I++;
1337 // Finally see if the last I is indeed a successor to PI.
1338 return PI->isSuccessor(&*I);
1341 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1342 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1343 void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) {
1344 for (const MachineBasicBlock *Predecessor : MBB.predecessors()) {
1345 BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()];
1346 if (PBBI.IsDone || PBBI.BB == &MBB)
1347 continue;
1348 PBBI.IsAnalyzed = false;
1349 PBBI.IsEnqueued = false;
1353 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1354 static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB,
1355 const TargetInstrInfo *TII) {
1356 DebugLoc dl; // FIXME: this is nowhere
1357 SmallVector<MachineOperand, 0> NoCond;
1358 TII->insertBranch(MBB, &ToMBB, nullptr, NoCond, dl);
1361 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1362 /// values defined in MI which are also live/used by MI.
1363 static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) {
1364 const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo();
1366 // Before stepping forward past MI, remember which regs were live
1367 // before MI. This is needed to set the Undef flag only when reg is
1368 // dead.
1369 SparseSet<unsigned> LiveBeforeMI;
1370 LiveBeforeMI.setUniverse(TRI->getNumRegs());
1371 for (unsigned Reg : Redefs)
1372 LiveBeforeMI.insert(Reg);
1374 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Clobbers;
1375 Redefs.stepForward(MI, Clobbers);
1377 // Now add the implicit uses for each of the clobbered values.
1378 for (auto Clobber : Clobbers) {
1379 // FIXME: Const cast here is nasty, but better than making StepForward
1380 // take a mutable instruction instead of const.
1381 unsigned Reg = Clobber.first;
1382 MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second);
1383 MachineInstr *OpMI = Op.getParent();
1384 MachineInstrBuilder MIB(*OpMI->getMF(), OpMI);
1385 if (Op.isRegMask()) {
1386 // First handle regmasks. They clobber any entries in the mask which
1387 // means that we need a def for those registers.
1388 if (LiveBeforeMI.count(Reg))
1389 MIB.addReg(Reg, RegState::Implicit);
1391 // We also need to add an implicit def of this register for the later
1392 // use to read from.
1393 // For the register allocator to have allocated a register clobbered
1394 // by the call which is used later, it must be the case that
1395 // the call doesn't return.
1396 MIB.addReg(Reg, RegState::Implicit | RegState::Define);
1397 continue;
1399 if (LiveBeforeMI.count(Reg))
1400 MIB.addReg(Reg, RegState::Implicit);
1401 else {
1402 bool HasLiveSubReg = false;
1403 for (MCSubRegIterator S(Reg, TRI); S.isValid(); ++S) {
1404 if (!LiveBeforeMI.count(*S))
1405 continue;
1406 HasLiveSubReg = true;
1407 break;
1409 if (HasLiveSubReg)
1410 MIB.addReg(Reg, RegState::Implicit);
1415 /// If convert a simple (split, no rejoin) sub-CFG.
1416 bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) {
1417 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1418 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1419 BBInfo *CvtBBI = &TrueBBI;
1420 BBInfo *NextBBI = &FalseBBI;
1422 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1423 if (Kind == ICSimpleFalse)
1424 std::swap(CvtBBI, NextBBI);
1426 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1427 MachineBasicBlock &NextMBB = *NextBBI->BB;
1428 if (CvtBBI->IsDone ||
1429 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1430 // Something has changed. It's no longer safe to predicate this block.
1431 BBI.IsAnalyzed = false;
1432 CvtBBI->IsAnalyzed = false;
1433 return false;
1436 if (CvtMBB.hasAddressTaken())
1437 // Conservatively abort if-conversion if BB's address is taken.
1438 return false;
1440 if (Kind == ICSimpleFalse)
1441 if (TII->reverseBranchCondition(Cond))
1442 llvm_unreachable("Unable to reverse branch condition!");
1444 Redefs.init(*TRI);
1446 if (MRI->tracksLiveness()) {
1447 // Initialize liveins to the first BB. These are potentiall redefined by
1448 // predicated instructions.
1449 Redefs.addLiveIns(CvtMBB);
1450 Redefs.addLiveIns(NextMBB);
1453 // Remove the branches from the entry so we can add the contents of the true
1454 // block to it.
1455 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1457 if (CvtMBB.pred_size() > 1) {
1458 // Copy instructions in the true block, predicate them, and add them to
1459 // the entry block.
1460 CopyAndPredicateBlock(BBI, *CvtBBI, Cond);
1462 // Keep the CFG updated.
1463 BBI.BB->removeSuccessor(&CvtMBB, true);
1464 } else {
1465 // Predicate the instructions in the true block.
1466 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1468 // Merge converted block into entry block. The BB to Cvt edge is removed
1469 // by MergeBlocks.
1470 MergeBlocks(BBI, *CvtBBI);
1473 bool IterIfcvt = true;
1474 if (!canFallThroughTo(*BBI.BB, NextMBB)) {
1475 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1476 BBI.HasFallThrough = false;
1477 // Now ifcvt'd block will look like this:
1478 // BB:
1479 // ...
1480 // t, f = cmp
1481 // if t op
1482 // b BBf
1484 // We cannot further ifcvt this block because the unconditional branch
1485 // will have to be predicated on the new condition, that will not be
1486 // available if cmp executes.
1487 IterIfcvt = false;
1490 // Update block info. BB can be iteratively if-converted.
1491 if (!IterIfcvt)
1492 BBI.IsDone = true;
1493 InvalidatePreds(*BBI.BB);
1494 CvtBBI->IsDone = true;
1496 // FIXME: Must maintain LiveIns.
1497 return true;
1500 /// If convert a triangle sub-CFG.
1501 bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) {
1502 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1503 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1504 BBInfo *CvtBBI = &TrueBBI;
1505 BBInfo *NextBBI = &FalseBBI;
1506 DebugLoc dl; // FIXME: this is nowhere
1508 SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end());
1509 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1510 std::swap(CvtBBI, NextBBI);
1512 MachineBasicBlock &CvtMBB = *CvtBBI->BB;
1513 MachineBasicBlock &NextMBB = *NextBBI->BB;
1514 if (CvtBBI->IsDone ||
1515 (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) {
1516 // Something has changed. It's no longer safe to predicate this block.
1517 BBI.IsAnalyzed = false;
1518 CvtBBI->IsAnalyzed = false;
1519 return false;
1522 if (CvtMBB.hasAddressTaken())
1523 // Conservatively abort if-conversion if BB's address is taken.
1524 return false;
1526 if (Kind == ICTriangleFalse || Kind == ICTriangleFRev)
1527 if (TII->reverseBranchCondition(Cond))
1528 llvm_unreachable("Unable to reverse branch condition!");
1530 if (Kind == ICTriangleRev || Kind == ICTriangleFRev) {
1531 if (reverseBranchCondition(*CvtBBI)) {
1532 // BB has been changed, modify its predecessors (except for this
1533 // one) so they don't get ifcvt'ed based on bad intel.
1534 for (MachineBasicBlock *PBB : CvtMBB.predecessors()) {
1535 if (PBB == BBI.BB)
1536 continue;
1537 BBInfo &PBBI = BBAnalysis[PBB->getNumber()];
1538 if (PBBI.IsEnqueued) {
1539 PBBI.IsAnalyzed = false;
1540 PBBI.IsEnqueued = false;
1546 // Initialize liveins to the first BB. These are potentially redefined by
1547 // predicated instructions.
1548 Redefs.init(*TRI);
1549 if (MRI->tracksLiveness()) {
1550 Redefs.addLiveIns(CvtMBB);
1551 Redefs.addLiveIns(NextMBB);
1554 bool HasEarlyExit = CvtBBI->FalseBB != nullptr;
1555 BranchProbability CvtNext, CvtFalse, BBNext, BBCvt;
1557 if (HasEarlyExit) {
1558 // Get probabilities before modifying CvtMBB and BBI.BB.
1559 CvtNext = MBPI->getEdgeProbability(&CvtMBB, &NextMBB);
1560 CvtFalse = MBPI->getEdgeProbability(&CvtMBB, CvtBBI->FalseBB);
1561 BBNext = MBPI->getEdgeProbability(BBI.BB, &NextMBB);
1562 BBCvt = MBPI->getEdgeProbability(BBI.BB, &CvtMBB);
1565 // Remove the branches from the entry so we can add the contents of the true
1566 // block to it.
1567 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1569 if (CvtMBB.pred_size() > 1) {
1570 // Copy instructions in the true block, predicate them, and add them to
1571 // the entry block.
1572 CopyAndPredicateBlock(BBI, *CvtBBI, Cond, true);
1573 } else {
1574 // Predicate the 'true' block after removing its branch.
1575 CvtBBI->NonPredSize -= TII->removeBranch(CvtMBB);
1576 PredicateBlock(*CvtBBI, CvtMBB.end(), Cond);
1578 // Now merge the entry of the triangle with the true block.
1579 MergeBlocks(BBI, *CvtBBI, false);
1582 // Keep the CFG updated.
1583 BBI.BB->removeSuccessor(&CvtMBB, true);
1585 // If 'true' block has a 'false' successor, add an exit branch to it.
1586 if (HasEarlyExit) {
1587 SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(),
1588 CvtBBI->BrCond.end());
1589 if (TII->reverseBranchCondition(RevCond))
1590 llvm_unreachable("Unable to reverse branch condition!");
1592 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1593 // NewNext = New_Prob(BBI.BB, NextMBB) =
1594 // Prob(BBI.BB, NextMBB) +
1595 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1596 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1597 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1598 auto NewTrueBB = getNextBlock(*BBI.BB);
1599 auto NewNext = BBNext + BBCvt * CvtNext;
1600 auto NewTrueBBIter = find(BBI.BB->successors(), NewTrueBB);
1601 if (NewTrueBBIter != BBI.BB->succ_end())
1602 BBI.BB->setSuccProbability(NewTrueBBIter, NewNext);
1604 auto NewFalse = BBCvt * CvtFalse;
1605 TII->insertBranch(*BBI.BB, CvtBBI->FalseBB, nullptr, RevCond, dl);
1606 BBI.BB->addSuccessor(CvtBBI->FalseBB, NewFalse);
1609 // Merge in the 'false' block if the 'false' block has no other
1610 // predecessors. Otherwise, add an unconditional branch to 'false'.
1611 bool FalseBBDead = false;
1612 bool IterIfcvt = true;
1613 bool isFallThrough = canFallThroughTo(*BBI.BB, NextMBB);
1614 if (!isFallThrough) {
1615 // Only merge them if the true block does not fallthrough to the false
1616 // block. By not merging them, we make it possible to iteratively
1617 // ifcvt the blocks.
1618 if (!HasEarlyExit &&
1619 NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough &&
1620 !NextMBB.hasAddressTaken()) {
1621 MergeBlocks(BBI, *NextBBI);
1622 FalseBBDead = true;
1623 } else {
1624 InsertUncondBranch(*BBI.BB, NextMBB, TII);
1625 BBI.HasFallThrough = false;
1627 // Mixed predicated and unpredicated code. This cannot be iteratively
1628 // predicated.
1629 IterIfcvt = false;
1632 // Update block info. BB can be iteratively if-converted.
1633 if (!IterIfcvt)
1634 BBI.IsDone = true;
1635 InvalidatePreds(*BBI.BB);
1636 CvtBBI->IsDone = true;
1637 if (FalseBBDead)
1638 NextBBI->IsDone = true;
1640 // FIXME: Must maintain LiveIns.
1641 return true;
1644 /// Common code shared between diamond conversions.
1645 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1646 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1647 /// and FalseBBI
1648 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1649 /// and \p FalseBBI
1650 /// \p RemoveBranch - Remove the common branch of the two blocks before
1651 /// predicating. Only false for unanalyzable fallthrough
1652 /// cases. The caller will replace the branch if necessary.
1653 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1654 /// unanalyzable fallthrough
1655 bool IfConverter::IfConvertDiamondCommon(
1656 BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI,
1657 unsigned NumDups1, unsigned NumDups2,
1658 bool TClobbersPred, bool FClobbersPred,
1659 bool RemoveBranch, bool MergeAddEdges) {
1661 if (TrueBBI.IsDone || FalseBBI.IsDone ||
1662 TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) {
1663 // Something has changed. It's no longer safe to predicate these blocks.
1664 BBI.IsAnalyzed = false;
1665 TrueBBI.IsAnalyzed = false;
1666 FalseBBI.IsAnalyzed = false;
1667 return false;
1670 if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken())
1671 // Conservatively abort if-conversion if either BB has its address taken.
1672 return false;
1674 // Put the predicated instructions from the 'true' block before the
1675 // instructions from the 'false' block, unless the true block would clobber
1676 // the predicate, in which case, do the opposite.
1677 BBInfo *BBI1 = &TrueBBI;
1678 BBInfo *BBI2 = &FalseBBI;
1679 SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end());
1680 if (TII->reverseBranchCondition(RevCond))
1681 llvm_unreachable("Unable to reverse branch condition!");
1682 SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond;
1683 SmallVector<MachineOperand, 4> *Cond2 = &RevCond;
1685 // Figure out the more profitable ordering.
1686 bool DoSwap = false;
1687 if (TClobbersPred && !FClobbersPred)
1688 DoSwap = true;
1689 else if (!TClobbersPred && !FClobbersPred) {
1690 if (TrueBBI.NonPredSize > FalseBBI.NonPredSize)
1691 DoSwap = true;
1692 } else if (TClobbersPred && FClobbersPred)
1693 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1694 if (DoSwap) {
1695 std::swap(BBI1, BBI2);
1696 std::swap(Cond1, Cond2);
1699 // Remove the conditional branch from entry to the blocks.
1700 BBI.NonPredSize -= TII->removeBranch(*BBI.BB);
1702 MachineBasicBlock &MBB1 = *BBI1->BB;
1703 MachineBasicBlock &MBB2 = *BBI2->BB;
1705 // Initialize the Redefs:
1706 // - BB2 live-in regs need implicit uses before being redefined by BB1
1707 // instructions.
1708 // - BB1 live-out regs need implicit uses before being redefined by BB2
1709 // instructions. We start with BB1 live-ins so we have the live-out regs
1710 // after tracking the BB1 instructions.
1711 Redefs.init(*TRI);
1712 if (MRI->tracksLiveness()) {
1713 Redefs.addLiveIns(MBB1);
1714 Redefs.addLiveIns(MBB2);
1717 // Remove the duplicated instructions at the beginnings of both paths.
1718 // Skip dbg_value instructions.
1719 MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr();
1720 MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr();
1721 BBI1->NonPredSize -= NumDups1;
1722 BBI2->NonPredSize -= NumDups1;
1724 // Skip past the dups on each side separately since there may be
1725 // differing dbg_value entries. NumDups1 can include a "return"
1726 // instruction, if it's not marked as "branch".
1727 for (unsigned i = 0; i < NumDups1; ++DI1) {
1728 if (DI1 == MBB1.end())
1729 break;
1730 if (!DI1->isDebugInstr())
1731 ++i;
1733 while (NumDups1 != 0) {
1734 ++DI2;
1735 if (DI2 == MBB2.end())
1736 break;
1737 if (!DI2->isDebugInstr())
1738 --NumDups1;
1741 if (MRI->tracksLiveness()) {
1742 for (const MachineInstr &MI : make_range(MBB1.begin(), DI1)) {
1743 SmallVector<std::pair<unsigned, const MachineOperand*>, 4> Dummy;
1744 Redefs.stepForward(MI, Dummy);
1748 BBI.BB->splice(BBI.BB->end(), &MBB1, MBB1.begin(), DI1);
1749 MBB2.erase(MBB2.begin(), DI2);
1751 // The branches have been checked to match, so it is safe to remove the
1752 // branch in BB1 and rely on the copy in BB2. The complication is that
1753 // the blocks may end with a return instruction, which may or may not
1754 // be marked as "branch". If it's not, then it could be included in
1755 // "dups1", leaving the blocks potentially empty after moving the common
1756 // duplicates.
1757 #ifndef NDEBUG
1758 // Unanalyzable branches must match exactly. Check that now.
1759 if (!BBI1->IsBrAnalyzable)
1760 verifySameBranchInstructions(&MBB1, &MBB2);
1761 #endif
1762 BBI1->NonPredSize -= TII->removeBranch(*BBI1->BB);
1763 // Remove duplicated instructions.
1764 DI1 = MBB1.end();
1765 for (unsigned i = 0; i != NumDups2; ) {
1766 // NumDups2 only counted non-dbg_value instructions, so this won't
1767 // run off the head of the list.
1768 assert(DI1 != MBB1.begin());
1769 --DI1;
1770 // skip dbg_value instructions
1771 if (!DI1->isDebugInstr())
1772 ++i;
1774 MBB1.erase(DI1, MBB1.end());
1776 DI2 = BBI2->BB->end();
1777 // The branches have been checked to match. Skip over the branch in the false
1778 // block so that we don't try to predicate it.
1779 if (RemoveBranch)
1780 BBI2->NonPredSize -= TII->removeBranch(*BBI2->BB);
1781 else {
1782 // Make DI2 point to the end of the range where the common "tail"
1783 // instructions could be found.
1784 while (DI2 != MBB2.begin()) {
1785 MachineBasicBlock::iterator Prev = std::prev(DI2);
1786 if (!Prev->isBranch() && !Prev->isDebugInstr())
1787 break;
1788 DI2 = Prev;
1791 while (NumDups2 != 0) {
1792 // NumDups2 only counted non-dbg_value instructions, so this won't
1793 // run off the head of the list.
1794 assert(DI2 != MBB2.begin());
1795 --DI2;
1796 // skip dbg_value instructions
1797 if (!DI2->isDebugInstr())
1798 --NumDups2;
1801 // Remember which registers would later be defined by the false block.
1802 // This allows us not to predicate instructions in the true block that would
1803 // later be re-defined. That is, rather than
1804 // subeq r0, r1, #1
1805 // addne r0, r1, #1
1806 // generate:
1807 // sub r0, r1, #1
1808 // addne r0, r1, #1
1809 SmallSet<unsigned, 4> RedefsByFalse;
1810 SmallSet<unsigned, 4> ExtUses;
1811 if (TII->isProfitableToUnpredicate(MBB1, MBB2)) {
1812 for (const MachineInstr &FI : make_range(MBB2.begin(), DI2)) {
1813 if (FI.isDebugInstr())
1814 continue;
1815 SmallVector<unsigned, 4> Defs;
1816 for (const MachineOperand &MO : FI.operands()) {
1817 if (!MO.isReg())
1818 continue;
1819 unsigned Reg = MO.getReg();
1820 if (!Reg)
1821 continue;
1822 if (MO.isDef()) {
1823 Defs.push_back(Reg);
1824 } else if (!RedefsByFalse.count(Reg)) {
1825 // These are defined before ctrl flow reach the 'false' instructions.
1826 // They cannot be modified by the 'true' instructions.
1827 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1828 SubRegs.isValid(); ++SubRegs)
1829 ExtUses.insert(*SubRegs);
1833 for (unsigned Reg : Defs) {
1834 if (!ExtUses.count(Reg)) {
1835 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1836 SubRegs.isValid(); ++SubRegs)
1837 RedefsByFalse.insert(*SubRegs);
1843 // Predicate the 'true' block.
1844 PredicateBlock(*BBI1, MBB1.end(), *Cond1, &RedefsByFalse);
1846 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1847 // a non-predicated in BBI2, then we don't want to predicate the one from
1848 // BBI2. The reason is that if we merged these blocks, we would end up with
1849 // two predicated terminators in the same block.
1850 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1851 // predicate them either. They were checked to be identical, and so the
1852 // same branch would happen regardless of which path was taken.
1853 if (!MBB2.empty() && (DI2 == MBB2.end())) {
1854 MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator();
1855 MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator();
1856 bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(*BBI1T);
1857 bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(*BBI2T);
1858 if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable))
1859 --DI2;
1862 // Predicate the 'false' block.
1863 PredicateBlock(*BBI2, DI2, *Cond2);
1865 // Merge the true block into the entry of the diamond.
1866 MergeBlocks(BBI, *BBI1, MergeAddEdges);
1867 MergeBlocks(BBI, *BBI2, MergeAddEdges);
1868 return true;
1871 /// If convert an almost-diamond sub-CFG where the true
1872 /// and false blocks share a common tail.
1873 bool IfConverter::IfConvertForkedDiamond(
1874 BBInfo &BBI, IfcvtKind Kind,
1875 unsigned NumDups1, unsigned NumDups2,
1876 bool TClobbersPred, bool FClobbersPred) {
1877 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1878 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1880 // Save the debug location for later.
1881 DebugLoc dl;
1882 MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator();
1883 if (TIE != TrueBBI.BB->end())
1884 dl = TIE->getDebugLoc();
1885 // Removing branches from both blocks is safe, because we have already
1886 // determined that both blocks have the same branch instructions. The branch
1887 // will be added back at the end, unpredicated.
1888 if (!IfConvertDiamondCommon(
1889 BBI, TrueBBI, FalseBBI,
1890 NumDups1, NumDups2,
1891 TClobbersPred, FClobbersPred,
1892 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1893 return false;
1895 // Add back the branch.
1896 // Debug location saved above when removing the branch from BBI2
1897 TII->insertBranch(*BBI.BB, TrueBBI.TrueBB, TrueBBI.FalseBB,
1898 TrueBBI.BrCond, dl);
1900 // Update block info.
1901 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1902 InvalidatePreds(*BBI.BB);
1904 // FIXME: Must maintain LiveIns.
1905 return true;
1908 /// If convert a diamond sub-CFG.
1909 bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind,
1910 unsigned NumDups1, unsigned NumDups2,
1911 bool TClobbersPred, bool FClobbersPred) {
1912 BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()];
1913 BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()];
1914 MachineBasicBlock *TailBB = TrueBBI.TrueBB;
1916 // True block must fall through or end with an unanalyzable terminator.
1917 if (!TailBB) {
1918 if (blockAlwaysFallThrough(TrueBBI))
1919 TailBB = FalseBBI.TrueBB;
1920 assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!");
1923 if (!IfConvertDiamondCommon(
1924 BBI, TrueBBI, FalseBBI,
1925 NumDups1, NumDups2,
1926 TClobbersPred, FClobbersPred,
1927 /* RemoveBranch */ TrueBBI.IsBrAnalyzable,
1928 /* MergeAddEdges */ TailBB == nullptr))
1929 return false;
1931 // If the if-converted block falls through or unconditionally branches into
1932 // the tail block, and the tail block does not have other predecessors, then
1933 // fold the tail block in as well. Otherwise, unless it falls through to the
1934 // tail, add a unconditional branch to it.
1935 if (TailBB) {
1936 // We need to remove the edges to the true and false blocks manually since
1937 // we didn't let IfConvertDiamondCommon update the CFG.
1938 BBI.BB->removeSuccessor(TrueBBI.BB);
1939 BBI.BB->removeSuccessor(FalseBBI.BB, true);
1941 BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()];
1942 bool CanMergeTail = !TailBBI.HasFallThrough &&
1943 !TailBBI.BB->hasAddressTaken();
1944 // The if-converted block can still have a predicated terminator
1945 // (e.g. a predicated return). If that is the case, we cannot merge
1946 // it with the tail block.
1947 MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator();
1948 if (TI != BBI.BB->end() && TII->isPredicated(*TI))
1949 CanMergeTail = false;
1950 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1951 // check if there are any other predecessors besides those.
1952 unsigned NumPreds = TailBB->pred_size();
1953 if (NumPreds > 1)
1954 CanMergeTail = false;
1955 else if (NumPreds == 1 && CanMergeTail) {
1956 MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
1957 if (*PI != TrueBBI.BB && *PI != FalseBBI.BB)
1958 CanMergeTail = false;
1960 if (CanMergeTail) {
1961 MergeBlocks(BBI, TailBBI);
1962 TailBBI.IsDone = true;
1963 } else {
1964 BBI.BB->addSuccessor(TailBB, BranchProbability::getOne());
1965 InsertUncondBranch(*BBI.BB, *TailBB, TII);
1966 BBI.HasFallThrough = false;
1970 // Update block info.
1971 BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true;
1972 InvalidatePreds(*BBI.BB);
1974 // FIXME: Must maintain LiveIns.
1975 return true;
1978 static bool MaySpeculate(const MachineInstr &MI,
1979 SmallSet<unsigned, 4> &LaterRedefs) {
1980 bool SawStore = true;
1981 if (!MI.isSafeToMove(nullptr, SawStore))
1982 return false;
1984 for (const MachineOperand &MO : MI.operands()) {
1985 if (!MO.isReg())
1986 continue;
1987 unsigned Reg = MO.getReg();
1988 if (!Reg)
1989 continue;
1990 if (MO.isDef() && !LaterRedefs.count(Reg))
1991 return false;
1994 return true;
1997 /// Predicate instructions from the start of the block to the specified end with
1998 /// the specified condition.
1999 void IfConverter::PredicateBlock(BBInfo &BBI,
2000 MachineBasicBlock::iterator E,
2001 SmallVectorImpl<MachineOperand> &Cond,
2002 SmallSet<unsigned, 4> *LaterRedefs) {
2003 bool AnyUnpred = false;
2004 bool MaySpec = LaterRedefs != nullptr;
2005 for (MachineInstr &I : make_range(BBI.BB->begin(), E)) {
2006 if (I.isDebugInstr() || TII->isPredicated(I))
2007 continue;
2008 // It may be possible not to predicate an instruction if it's the 'true'
2009 // side of a diamond and the 'false' side may re-define the instruction's
2010 // defs.
2011 if (MaySpec && MaySpeculate(I, *LaterRedefs)) {
2012 AnyUnpred = true;
2013 continue;
2015 // If any instruction is predicated, then every instruction after it must
2016 // be predicated.
2017 MaySpec = false;
2018 if (!TII->PredicateInstruction(I, Cond)) {
2019 #ifndef NDEBUG
2020 dbgs() << "Unable to predicate " << I << "!\n";
2021 #endif
2022 llvm_unreachable(nullptr);
2025 // If the predicated instruction now redefines a register as the result of
2026 // if-conversion, add an implicit kill.
2027 UpdatePredRedefs(I, Redefs);
2030 BBI.Predicate.append(Cond.begin(), Cond.end());
2032 BBI.IsAnalyzed = false;
2033 BBI.NonPredSize = 0;
2035 ++NumIfConvBBs;
2036 if (AnyUnpred)
2037 ++NumUnpred;
2040 /// Copy and predicate instructions from source BB to the destination block.
2041 /// Skip end of block branches if IgnoreBr is true.
2042 void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI,
2043 SmallVectorImpl<MachineOperand> &Cond,
2044 bool IgnoreBr) {
2045 MachineFunction &MF = *ToBBI.BB->getParent();
2047 MachineBasicBlock &FromMBB = *FromBBI.BB;
2048 for (MachineInstr &I : FromMBB) {
2049 // Do not copy the end of the block branches.
2050 if (IgnoreBr && I.isBranch())
2051 break;
2053 MachineInstr *MI = MF.CloneMachineInstr(&I);
2054 ToBBI.BB->insert(ToBBI.BB->end(), MI);
2055 ToBBI.NonPredSize++;
2056 unsigned ExtraPredCost = TII->getPredicationCost(I);
2057 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
2058 if (NumCycles > 1)
2059 ToBBI.ExtraCost += NumCycles-1;
2060 ToBBI.ExtraCost2 += ExtraPredCost;
2062 if (!TII->isPredicated(I) && !MI->isDebugInstr()) {
2063 if (!TII->PredicateInstruction(*MI, Cond)) {
2064 #ifndef NDEBUG
2065 dbgs() << "Unable to predicate " << I << "!\n";
2066 #endif
2067 llvm_unreachable(nullptr);
2071 // If the predicated instruction now redefines a register as the result of
2072 // if-conversion, add an implicit kill.
2073 UpdatePredRedefs(*MI, Redefs);
2076 if (!IgnoreBr) {
2077 std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(),
2078 FromMBB.succ_end());
2079 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2080 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2082 for (MachineBasicBlock *Succ : Succs) {
2083 // Fallthrough edge can't be transferred.
2084 if (Succ == FallThrough)
2085 continue;
2086 ToBBI.BB->addSuccessor(Succ);
2090 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2091 ToBBI.Predicate.append(Cond.begin(), Cond.end());
2093 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2094 ToBBI.IsAnalyzed = false;
2096 ++NumDupBBs;
2099 /// Move all instructions from FromBB to the end of ToBB. This will leave
2100 /// FromBB as an empty block, so remove all of its successor edges except for
2101 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2102 /// being moved, add those successor edges to ToBBI and remove the old edge
2103 /// from ToBBI to FromBBI.
2104 void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) {
2105 MachineBasicBlock &FromMBB = *FromBBI.BB;
2106 assert(!FromMBB.hasAddressTaken() &&
2107 "Removing a BB whose address is taken!");
2109 // In case FromMBB contains terminators (e.g. return instruction),
2110 // first move the non-terminator instructions, then the terminators.
2111 MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator();
2112 MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator();
2113 ToBBI.BB->splice(ToTI, &FromMBB, FromMBB.begin(), FromTI);
2115 // If FromBB has non-predicated terminator we should copy it at the end.
2116 if (FromTI != FromMBB.end() && !TII->isPredicated(*FromTI))
2117 ToTI = ToBBI.BB->end();
2118 ToBBI.BB->splice(ToTI, &FromMBB, FromTI, FromMBB.end());
2120 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2121 // unknown probabilities into known ones.
2122 // FIXME: This usage is too tricky and in the future we would like to
2123 // eliminate all unknown probabilities in MBB.
2124 if (ToBBI.IsBrAnalyzable)
2125 ToBBI.BB->normalizeSuccProbs();
2127 SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.succ_begin(),
2128 FromMBB.succ_end());
2129 MachineBasicBlock *NBB = getNextBlock(FromMBB);
2130 MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr;
2131 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2132 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2133 auto To2FromProb = BranchProbability::getZero();
2134 if (AddEdges && ToBBI.BB->isSuccessor(&FromMBB)) {
2135 // Remove the old edge but remember the edge probability so we can calculate
2136 // the correct weights on the new edges being added further down.
2137 To2FromProb = MBPI->getEdgeProbability(ToBBI.BB, &FromMBB);
2138 ToBBI.BB->removeSuccessor(&FromMBB);
2141 for (MachineBasicBlock *Succ : FromSuccs) {
2142 // Fallthrough edge can't be transferred.
2143 if (Succ == FallThrough)
2144 continue;
2146 auto NewProb = BranchProbability::getZero();
2147 if (AddEdges) {
2148 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2149 // which is a portion of the edge probability from FromMBB to Succ. The
2150 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2151 // FromBBI is a successor of ToBBI.BB. See comment below for excepion).
2152 NewProb = MBPI->getEdgeProbability(&FromMBB, Succ);
2154 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2155 // only happens when if-converting a diamond CFG and FromMBB is the
2156 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2157 // could just use the probabilities on FromMBB's out-edges when adding
2158 // new successors.
2159 if (!To2FromProb.isZero())
2160 NewProb *= To2FromProb;
2163 FromMBB.removeSuccessor(Succ);
2165 if (AddEdges) {
2166 // If the edge from ToBBI.BB to Succ already exists, update the
2167 // probability of this edge by adding NewProb to it. An example is shown
2168 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2169 // don't have to set C as A's successor as it already is. We only need to
2170 // update the edge probability on A->C. Note that B will not be
2171 // immediately removed from A's successors. It is possible that B->D is
2172 // not removed either if D is a fallthrough of B. Later the edge A->D
2173 // (generated here) and B->D will be combined into one edge. To maintain
2174 // correct edge probability of this combined edge, we need to set the edge
2175 // probability of A->B to zero, which is already done above. The edge
2176 // probability on A->D is calculated by scaling the original probability
2177 // on A->B by the probability of B->D.
2179 // Before ifcvt: After ifcvt (assume B->D is kept):
2181 // A A
2182 // /| /|\
2183 // / B / B|
2184 // | /| | ||
2185 // |/ | | |/
2186 // C D C D
2188 if (ToBBI.BB->isSuccessor(Succ))
2189 ToBBI.BB->setSuccProbability(
2190 find(ToBBI.BB->successors(), Succ),
2191 MBPI->getEdgeProbability(ToBBI.BB, Succ) + NewProb);
2192 else
2193 ToBBI.BB->addSuccessor(Succ, NewProb);
2197 // Move the now empty FromMBB out of the way to the end of the function so
2198 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2199 MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin();
2200 if (Last != &FromMBB)
2201 FromMBB.moveAfter(Last);
2203 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2204 // we've done above.
2205 if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable)
2206 ToBBI.BB->normalizeSuccProbs();
2208 ToBBI.Predicate.append(FromBBI.Predicate.begin(), FromBBI.Predicate.end());
2209 FromBBI.Predicate.clear();
2211 ToBBI.NonPredSize += FromBBI.NonPredSize;
2212 ToBBI.ExtraCost += FromBBI.ExtraCost;
2213 ToBBI.ExtraCost2 += FromBBI.ExtraCost2;
2214 FromBBI.NonPredSize = 0;
2215 FromBBI.ExtraCost = 0;
2216 FromBBI.ExtraCost2 = 0;
2218 ToBBI.ClobbersPred |= FromBBI.ClobbersPred;
2219 ToBBI.HasFallThrough = FromBBI.HasFallThrough;
2220 ToBBI.IsAnalyzed = false;
2221 FromBBI.IsAnalyzed = false;
2224 FunctionPass *
2225 llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) {
2226 return new IfConverter(std::move(Ftor));