1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Collect the sequence of machine instructions for a basic block.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
41 #define DEBUG_TYPE "codegen"
43 MachineBasicBlock::MachineBasicBlock(MachineFunction
&MF
, const BasicBlock
*B
)
44 : BB(B
), Number(-1), xParent(&MF
) {
47 IrrLoopHeaderWeight
= B
->getIrrLoopHeaderWeight();
50 MachineBasicBlock::~MachineBasicBlock() {
53 /// Return the MCSymbol for this basic block.
54 MCSymbol
*MachineBasicBlock::getSymbol() const {
55 if (!CachedMCSymbol
) {
56 const MachineFunction
*MF
= getParent();
57 MCContext
&Ctx
= MF
->getContext();
58 auto Prefix
= Ctx
.getAsmInfo()->getPrivateLabelPrefix();
59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60 CachedMCSymbol
= Ctx
.getOrCreateSymbol(Twine(Prefix
) + "BB" +
61 Twine(MF
->getFunctionNumber()) +
62 "_" + Twine(getNumber()));
65 return CachedMCSymbol
;
69 raw_ostream
&llvm::operator<<(raw_ostream
&OS
, const MachineBasicBlock
&MBB
) {
74 Printable
llvm::printMBBReference(const MachineBasicBlock
&MBB
) {
75 return Printable([&MBB
](raw_ostream
&OS
) { return MBB
.printAsOperand(OS
); });
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
85 void ilist_callback_traits
<MachineBasicBlock
>::addNodeToList(
86 MachineBasicBlock
*N
) {
87 MachineFunction
&MF
= *N
->getParent();
88 N
->Number
= MF
.addToMBBNumbering(N
);
90 // Make sure the instructions have their operands in the reginfo lists.
91 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
92 for (MachineBasicBlock::instr_iterator
93 I
= N
->instr_begin(), E
= N
->instr_end(); I
!= E
; ++I
)
94 I
->AddRegOperandsToUseLists(RegInfo
);
97 void ilist_callback_traits
<MachineBasicBlock
>::removeNodeFromList(
98 MachineBasicBlock
*N
) {
99 N
->getParent()->removeFromMBBNumbering(N
->Number
);
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
105 void ilist_traits
<MachineInstr
>::addNodeToList(MachineInstr
*N
) {
106 assert(!N
->getParent() && "machine instruction already in a basic block");
107 N
->setParent(Parent
);
109 // Add the instruction's register operands to their corresponding
111 MachineFunction
*MF
= Parent
->getParent();
112 N
->AddRegOperandsToUseLists(MF
->getRegInfo());
113 MF
->handleInsertion(*N
);
116 /// When we remove an instruction from a basic block list, we update its parent
117 /// pointer and remove its operands from reg use/def lists if appropriate.
118 void ilist_traits
<MachineInstr
>::removeNodeFromList(MachineInstr
*N
) {
119 assert(N
->getParent() && "machine instruction not in a basic block");
121 // Remove from the use/def lists.
122 if (MachineFunction
*MF
= N
->getMF()) {
123 MF
->handleRemoval(*N
);
124 N
->RemoveRegOperandsFromUseLists(MF
->getRegInfo());
127 N
->setParent(nullptr);
130 /// When moving a range of instructions from one MBB list to another, we need to
131 /// update the parent pointers and the use/def lists.
132 void ilist_traits
<MachineInstr
>::transferNodesFromList(ilist_traits
&FromList
,
133 instr_iterator First
,
134 instr_iterator Last
) {
135 assert(Parent
->getParent() == FromList
.Parent
->getParent() &&
136 "MachineInstr parent mismatch!");
137 assert(this != &FromList
&& "Called without a real transfer...");
138 assert(Parent
!= FromList
.Parent
&& "Two lists have the same parent?");
140 // If splicing between two blocks within the same function, just update the
142 for (; First
!= Last
; ++First
)
143 First
->setParent(Parent
);
146 void ilist_traits
<MachineInstr
>::deleteNode(MachineInstr
*MI
) {
147 assert(!MI
->getParent() && "MI is still in a block!");
148 Parent
->getParent()->DeleteMachineInstr(MI
);
151 MachineBasicBlock::iterator
MachineBasicBlock::getFirstNonPHI() {
152 instr_iterator I
= instr_begin(), E
= instr_end();
153 while (I
!= E
&& I
->isPHI())
155 assert((I
== E
|| !I
->isInsideBundle()) &&
156 "First non-phi MI cannot be inside a bundle!");
160 MachineBasicBlock::iterator
161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I
) {
162 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
165 while (I
!= E
&& (I
->isPHI() || I
->isPosition() ||
166 TII
->isBasicBlockPrologue(*I
)))
168 // FIXME: This needs to change if we wish to bundle labels
169 // inside the bundle.
170 assert((I
== E
|| !I
->isInsideBundle()) &&
171 "First non-phi / non-label instruction is inside a bundle!");
175 MachineBasicBlock::iterator
176 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I
) {
177 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
180 while (I
!= E
&& (I
->isPHI() || I
->isPosition() || I
->isDebugInstr() ||
181 TII
->isBasicBlockPrologue(*I
)))
183 // FIXME: This needs to change if we wish to bundle labels / dbg_values
184 // inside the bundle.
185 assert((I
== E
|| !I
->isInsideBundle()) &&
186 "First non-phi / non-label / non-debug "
187 "instruction is inside a bundle!");
191 MachineBasicBlock::iterator
MachineBasicBlock::getFirstTerminator() {
192 iterator B
= begin(), E
= end(), I
= E
;
193 while (I
!= B
&& ((--I
)->isTerminator() || I
->isDebugInstr()))
195 while (I
!= E
&& !I
->isTerminator())
200 MachineBasicBlock::instr_iterator
MachineBasicBlock::getFirstInstrTerminator() {
201 instr_iterator B
= instr_begin(), E
= instr_end(), I
= E
;
202 while (I
!= B
&& ((--I
)->isTerminator() || I
->isDebugInstr()))
204 while (I
!= E
&& !I
->isTerminator())
209 MachineBasicBlock::iterator
MachineBasicBlock::getFirstNonDebugInstr() {
210 // Skip over begin-of-block dbg_value instructions.
211 return skipDebugInstructionsForward(begin(), end());
214 MachineBasicBlock::iterator
MachineBasicBlock::getLastNonDebugInstr() {
215 // Skip over end-of-block dbg_value instructions.
216 instr_iterator B
= instr_begin(), I
= instr_end();
219 // Return instruction that starts a bundle.
220 if (I
->isDebugInstr() || I
->isInsideBundle())
224 // The block is all debug values.
228 bool MachineBasicBlock::hasEHPadSuccessor() const {
229 for (const_succ_iterator I
= succ_begin(), E
= succ_end(); I
!= E
; ++I
)
235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
236 LLVM_DUMP_METHOD
void MachineBasicBlock::dump() const {
241 bool MachineBasicBlock::isLegalToHoistInto() const {
242 if (isReturnBlock() || hasEHPadSuccessor())
247 StringRef
MachineBasicBlock::getName() const {
248 if (const BasicBlock
*LBB
= getBasicBlock())
249 return LBB
->getName();
251 return StringRef("", 0);
254 /// Return a hopefully unique identifier for this block.
255 std::string
MachineBasicBlock::getFullName() const {
258 Name
= (getParent()->getName() + ":").str();
260 Name
+= getBasicBlock()->getName();
262 Name
+= ("BB" + Twine(getNumber())).str();
266 void MachineBasicBlock::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
,
267 bool IsStandalone
) const {
268 const MachineFunction
*MF
= getParent();
270 OS
<< "Can't print out MachineBasicBlock because parent MachineFunction"
274 const Function
&F
= MF
->getFunction();
275 const Module
*M
= F
.getParent();
276 ModuleSlotTracker
MST(M
);
277 MST
.incorporateFunction(F
);
278 print(OS
, MST
, Indexes
, IsStandalone
);
281 void MachineBasicBlock::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
282 const SlotIndexes
*Indexes
,
283 bool IsStandalone
) const {
284 const MachineFunction
*MF
= getParent();
286 OS
<< "Can't print out MachineBasicBlock because parent MachineFunction"
292 OS
<< Indexes
->getMBBStartIdx(this) << '\t';
294 OS
<< "bb." << getNumber();
295 bool HasAttributes
= false;
296 if (const auto *BB
= getBasicBlock()) {
298 OS
<< "." << BB
->getName();
300 HasAttributes
= true;
302 int Slot
= MST
.getLocalSlot(BB
);
304 OS
<< "<ir-block badref>";
306 OS
<< (Twine("%ir-block.") + Twine(Slot
)).str();
310 if (hasAddressTaken()) {
311 OS
<< (HasAttributes
? ", " : " (");
312 OS
<< "address-taken";
313 HasAttributes
= true;
316 OS
<< (HasAttributes
? ", " : " (");
318 HasAttributes
= true;
320 if (getAlignment()) {
321 OS
<< (HasAttributes
? ", " : " (");
322 OS
<< "align " << getAlignment();
323 HasAttributes
= true;
329 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
330 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
331 const TargetInstrInfo
&TII
= *getParent()->getSubtarget().getInstrInfo();
332 bool HasLineAttributes
= false;
334 // Print the preds of this block according to the CFG.
335 if (!pred_empty() && IsStandalone
) {
336 if (Indexes
) OS
<< '\t';
337 // Don't indent(2), align with previous line attributes.
338 OS
<< "; predecessors: ";
339 for (auto I
= pred_begin(), E
= pred_end(); I
!= E
; ++I
) {
340 if (I
!= pred_begin())
342 OS
<< printMBBReference(**I
);
345 HasLineAttributes
= true;
349 if (Indexes
) OS
<< '\t';
350 // Print the successors
351 OS
.indent(2) << "successors: ";
352 for (auto I
= succ_begin(), E
= succ_end(); I
!= E
; ++I
) {
353 if (I
!= succ_begin())
355 OS
<< printMBBReference(**I
);
358 << format("0x%08" PRIx32
, getSuccProbability(I
).getNumerator())
361 if (!Probs
.empty() && IsStandalone
) {
362 // Print human readable probabilities as comments.
364 for (auto I
= succ_begin(), E
= succ_end(); I
!= E
; ++I
) {
365 const BranchProbability
&BP
= getSuccProbability(I
);
366 if (I
!= succ_begin())
368 OS
<< printMBBReference(**I
) << '('
370 rint(((double)BP
.getNumerator() / BP
.getDenominator()) *
378 HasLineAttributes
= true;
381 if (!livein_empty() && MRI
.tracksLiveness()) {
382 if (Indexes
) OS
<< '\t';
383 OS
.indent(2) << "liveins: ";
386 for (const auto &LI
: liveins()) {
390 OS
<< printReg(LI
.PhysReg
, TRI
);
391 if (!LI
.LaneMask
.all())
392 OS
<< ":0x" << PrintLaneMask(LI
.LaneMask
);
394 HasLineAttributes
= true;
397 if (HasLineAttributes
)
400 bool IsInBundle
= false;
401 for (const MachineInstr
&MI
: instrs()) {
403 if (Indexes
->hasIndex(MI
))
404 OS
<< Indexes
->getInstructionIndex(MI
);
408 if (IsInBundle
&& !MI
.isInsideBundle()) {
409 OS
.indent(2) << "}\n";
413 OS
.indent(IsInBundle
? 4 : 2);
414 MI
.print(OS
, MST
, IsStandalone
, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
415 /*AddNewLine=*/false, &TII
);
417 if (!IsInBundle
&& MI
.getFlag(MachineInstr::BundledSucc
)) {
425 OS
.indent(2) << "}\n";
427 if (IrrLoopHeaderWeight
&& IsStandalone
) {
428 if (Indexes
) OS
<< '\t';
429 OS
.indent(2) << "; Irreducible loop header weight: "
430 << IrrLoopHeaderWeight
.getValue() << '\n';
434 void MachineBasicBlock::printAsOperand(raw_ostream
&OS
,
435 bool /*PrintType*/) const {
436 OS
<< "%bb." << getNumber();
439 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg
, LaneBitmask LaneMask
) {
440 LiveInVector::iterator I
= find_if(
441 LiveIns
, [Reg
](const RegisterMaskPair
&LI
) { return LI
.PhysReg
== Reg
; });
442 if (I
== LiveIns
.end())
445 I
->LaneMask
&= ~LaneMask
;
446 if (I
->LaneMask
.none())
450 MachineBasicBlock::livein_iterator
451 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I
) {
452 // Get non-const version of iterator.
453 LiveInVector::iterator LI
= LiveIns
.begin() + (I
- LiveIns
.begin());
454 return LiveIns
.erase(LI
);
457 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg
, LaneBitmask LaneMask
) const {
458 livein_iterator I
= find_if(
459 LiveIns
, [Reg
](const RegisterMaskPair
&LI
) { return LI
.PhysReg
== Reg
; });
460 return I
!= livein_end() && (I
->LaneMask
& LaneMask
).any();
463 void MachineBasicBlock::sortUniqueLiveIns() {
465 [](const RegisterMaskPair
&LI0
, const RegisterMaskPair
&LI1
) {
466 return LI0
.PhysReg
< LI1
.PhysReg
;
468 // Liveins are sorted by physreg now we can merge their lanemasks.
469 LiveInVector::const_iterator I
= LiveIns
.begin();
470 LiveInVector::const_iterator J
;
471 LiveInVector::iterator Out
= LiveIns
.begin();
472 for (; I
!= LiveIns
.end(); ++Out
, I
= J
) {
473 unsigned PhysReg
= I
->PhysReg
;
474 LaneBitmask LaneMask
= I
->LaneMask
;
475 for (J
= std::next(I
); J
!= LiveIns
.end() && J
->PhysReg
== PhysReg
; ++J
)
476 LaneMask
|= J
->LaneMask
;
477 Out
->PhysReg
= PhysReg
;
478 Out
->LaneMask
= LaneMask
;
480 LiveIns
.erase(Out
, LiveIns
.end());
484 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg
, const TargetRegisterClass
*RC
) {
485 assert(getParent() && "MBB must be inserted in function");
486 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg
) && "Expected physreg");
487 assert(RC
&& "Register class is required");
488 assert((isEHPad() || this == &getParent()->front()) &&
489 "Only the entry block and landing pads can have physreg live ins");
491 bool LiveIn
= isLiveIn(PhysReg
);
492 iterator I
= SkipPHIsAndLabels(begin()), E
= end();
493 MachineRegisterInfo
&MRI
= getParent()->getRegInfo();
494 const TargetInstrInfo
&TII
= *getParent()->getSubtarget().getInstrInfo();
496 // Look for an existing copy.
498 for (;I
!= E
&& I
->isCopy(); ++I
)
499 if (I
->getOperand(1).getReg() == PhysReg
) {
500 unsigned VirtReg
= I
->getOperand(0).getReg();
501 if (!MRI
.constrainRegClass(VirtReg
, RC
))
502 llvm_unreachable("Incompatible live-in register class.");
506 // No luck, create a virtual register.
507 unsigned VirtReg
= MRI
.createVirtualRegister(RC
);
508 BuildMI(*this, I
, DebugLoc(), TII
.get(TargetOpcode::COPY
), VirtReg
)
509 .addReg(PhysReg
, RegState::Kill
);
515 void MachineBasicBlock::moveBefore(MachineBasicBlock
*NewAfter
) {
516 getParent()->splice(NewAfter
->getIterator(), getIterator());
519 void MachineBasicBlock::moveAfter(MachineBasicBlock
*NewBefore
) {
520 getParent()->splice(++NewBefore
->getIterator(), getIterator());
523 void MachineBasicBlock::updateTerminator() {
524 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
525 // A block with no successors has no concerns with fall-through edges.
526 if (this->succ_empty())
529 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
530 SmallVector
<MachineOperand
, 4> Cond
;
531 DebugLoc DL
= findBranchDebugLoc();
532 bool B
= TII
->analyzeBranch(*this, TBB
, FBB
, Cond
);
534 assert(!B
&& "UpdateTerminators requires analyzable predecessors!");
537 // The block has an unconditional branch. If its successor is now its
538 // layout successor, delete the branch.
539 if (isLayoutSuccessor(TBB
))
540 TII
->removeBranch(*this);
542 // The block has an unconditional fallthrough. If its successor is not its
543 // layout successor, insert a branch. First we have to locate the only
544 // non-landing-pad successor, as that is the fallthrough block.
545 for (succ_iterator SI
= succ_begin(), SE
= succ_end(); SI
!= SE
; ++SI
) {
546 if ((*SI
)->isEHPad())
548 assert(!TBB
&& "Found more than one non-landing-pad successor!");
552 // If there is no non-landing-pad successor, the block has no fall-through
553 // edges to be concerned with.
557 // Finally update the unconditional successor to be reached via a branch
558 // if it would not be reached by fallthrough.
559 if (!isLayoutSuccessor(TBB
))
560 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
566 // The block has a non-fallthrough conditional branch. If one of its
567 // successors is its layout successor, rewrite it to a fallthrough
568 // conditional branch.
569 if (isLayoutSuccessor(TBB
)) {
570 if (TII
->reverseBranchCondition(Cond
))
572 TII
->removeBranch(*this);
573 TII
->insertBranch(*this, FBB
, nullptr, Cond
, DL
);
574 } else if (isLayoutSuccessor(FBB
)) {
575 TII
->removeBranch(*this);
576 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
581 // Walk through the successors and find the successor which is not a landing
582 // pad and is not the conditional branch destination (in TBB) as the
583 // fallthrough successor.
584 MachineBasicBlock
*FallthroughBB
= nullptr;
585 for (succ_iterator SI
= succ_begin(), SE
= succ_end(); SI
!= SE
; ++SI
) {
586 if ((*SI
)->isEHPad() || *SI
== TBB
)
588 assert(!FallthroughBB
&& "Found more than one fallthrough successor.");
592 if (!FallthroughBB
) {
593 if (canFallThrough()) {
594 // We fallthrough to the same basic block as the conditional jump targets.
595 // Remove the conditional jump, leaving unconditional fallthrough.
596 // FIXME: This does not seem like a reasonable pattern to support, but it
597 // has been seen in the wild coming out of degenerate ARM test cases.
598 TII
->removeBranch(*this);
600 // Finally update the unconditional successor to be reached via a branch if
601 // it would not be reached by fallthrough.
602 if (!isLayoutSuccessor(TBB
))
603 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
607 // We enter here iff exactly one successor is TBB which cannot fallthrough
608 // and the rest successors if any are EHPads. In this case, we need to
609 // change the conditional branch into unconditional branch.
610 TII
->removeBranch(*this);
612 TII
->insertBranch(*this, TBB
, nullptr, Cond
, DL
);
616 // The block has a fallthrough conditional branch.
617 if (isLayoutSuccessor(TBB
)) {
618 if (TII
->reverseBranchCondition(Cond
)) {
619 // We can't reverse the condition, add an unconditional branch.
621 TII
->insertBranch(*this, FallthroughBB
, nullptr, Cond
, DL
);
624 TII
->removeBranch(*this);
625 TII
->insertBranch(*this, FallthroughBB
, nullptr, Cond
, DL
);
626 } else if (!isLayoutSuccessor(FallthroughBB
)) {
627 TII
->removeBranch(*this);
628 TII
->insertBranch(*this, TBB
, FallthroughBB
, Cond
, DL
);
632 void MachineBasicBlock::validateSuccProbs() const {
635 for (auto Prob
: Probs
)
636 Sum
+= Prob
.getNumerator();
637 // Due to precision issue, we assume that the sum of probabilities is one if
638 // the difference between the sum of their numerators and the denominator is
639 // no greater than the number of successors.
640 assert((uint64_t)std::abs(Sum
- BranchProbability::getDenominator()) <=
642 "The sum of successors's probabilities exceeds one.");
646 void MachineBasicBlock::addSuccessor(MachineBasicBlock
*Succ
,
647 BranchProbability Prob
) {
648 // Probability list is either empty (if successor list isn't empty, this means
649 // disabled optimization) or has the same size as successor list.
650 if (!(Probs
.empty() && !Successors
.empty()))
651 Probs
.push_back(Prob
);
652 Successors
.push_back(Succ
);
653 Succ
->addPredecessor(this);
656 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock
*Succ
) {
657 // We need to make sure probability list is either empty or has the same size
658 // of successor list. When this function is called, we can safely delete all
659 // probability in the list.
661 Successors
.push_back(Succ
);
662 Succ
->addPredecessor(this);
665 void MachineBasicBlock::splitSuccessor(MachineBasicBlock
*Old
,
666 MachineBasicBlock
*New
,
667 bool NormalizeSuccProbs
) {
668 succ_iterator OldI
= llvm::find(successors(), Old
);
669 assert(OldI
!= succ_end() && "Old is not a successor of this block!");
670 assert(llvm::find(successors(), New
) == succ_end() &&
671 "New is already a successor of this block!");
673 // Add a new successor with equal probability as the original one. Note
674 // that we directly copy the probability using the iterator rather than
675 // getting a potentially synthetic probability computed when unknown. This
676 // preserves the probabilities as-is and then we can renormalize them and
677 // query them effectively afterward.
678 addSuccessor(New
, Probs
.empty() ? BranchProbability::getUnknown()
679 : *getProbabilityIterator(OldI
));
680 if (NormalizeSuccProbs
)
681 normalizeSuccProbs();
684 void MachineBasicBlock::removeSuccessor(MachineBasicBlock
*Succ
,
685 bool NormalizeSuccProbs
) {
686 succ_iterator I
= find(Successors
, Succ
);
687 removeSuccessor(I
, NormalizeSuccProbs
);
690 MachineBasicBlock::succ_iterator
691 MachineBasicBlock::removeSuccessor(succ_iterator I
, bool NormalizeSuccProbs
) {
692 assert(I
!= Successors
.end() && "Not a current successor!");
694 // If probability list is empty it means we don't use it (disabled
696 if (!Probs
.empty()) {
697 probability_iterator WI
= getProbabilityIterator(I
);
699 if (NormalizeSuccProbs
)
700 normalizeSuccProbs();
703 (*I
)->removePredecessor(this);
704 return Successors
.erase(I
);
707 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock
*Old
,
708 MachineBasicBlock
*New
) {
712 succ_iterator E
= succ_end();
713 succ_iterator NewI
= E
;
714 succ_iterator OldI
= E
;
715 for (succ_iterator I
= succ_begin(); I
!= E
; ++I
) {
727 assert(OldI
!= E
&& "Old is not a successor of this block");
729 // If New isn't already a successor, let it take Old's place.
731 Old
->removePredecessor(this);
732 New
->addPredecessor(this);
737 // New is already a successor.
738 // Update its probability instead of adding a duplicate edge.
739 if (!Probs
.empty()) {
740 auto ProbIter
= getProbabilityIterator(NewI
);
741 if (!ProbIter
->isUnknown())
742 *ProbIter
+= *getProbabilityIterator(OldI
);
744 removeSuccessor(OldI
);
747 void MachineBasicBlock::copySuccessor(MachineBasicBlock
*Orig
,
749 if (Orig
->Probs
.empty())
750 addSuccessor(*I
, Orig
->getSuccProbability(I
));
752 addSuccessorWithoutProb(*I
);
755 void MachineBasicBlock::addPredecessor(MachineBasicBlock
*Pred
) {
756 Predecessors
.push_back(Pred
);
759 void MachineBasicBlock::removePredecessor(MachineBasicBlock
*Pred
) {
760 pred_iterator I
= find(Predecessors
, Pred
);
761 assert(I
!= Predecessors
.end() && "Pred is not a predecessor of this block!");
762 Predecessors
.erase(I
);
765 void MachineBasicBlock::transferSuccessors(MachineBasicBlock
*FromMBB
) {
769 while (!FromMBB
->succ_empty()) {
770 MachineBasicBlock
*Succ
= *FromMBB
->succ_begin();
772 // If probability list is empty it means we don't use it (disabled optimization).
773 if (!FromMBB
->Probs
.empty()) {
774 auto Prob
= *FromMBB
->Probs
.begin();
775 addSuccessor(Succ
, Prob
);
777 addSuccessorWithoutProb(Succ
);
779 FromMBB
->removeSuccessor(Succ
);
784 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock
*FromMBB
) {
788 while (!FromMBB
->succ_empty()) {
789 MachineBasicBlock
*Succ
= *FromMBB
->succ_begin();
790 if (!FromMBB
->Probs
.empty()) {
791 auto Prob
= *FromMBB
->Probs
.begin();
792 addSuccessor(Succ
, Prob
);
794 addSuccessorWithoutProb(Succ
);
795 FromMBB
->removeSuccessor(Succ
);
797 // Fix up any PHI nodes in the successor.
798 for (MachineBasicBlock::instr_iterator MI
= Succ
->instr_begin(),
799 ME
= Succ
->instr_end(); MI
!= ME
&& MI
->isPHI(); ++MI
)
800 for (unsigned i
= 2, e
= MI
->getNumOperands()+1; i
!= e
; i
+= 2) {
801 MachineOperand
&MO
= MI
->getOperand(i
);
802 if (MO
.getMBB() == FromMBB
)
806 normalizeSuccProbs();
809 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock
*MBB
) const {
810 return is_contained(predecessors(), MBB
);
813 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock
*MBB
) const {
814 return is_contained(successors(), MBB
);
817 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock
*MBB
) const {
818 MachineFunction::const_iterator
I(this);
819 return std::next(I
) == MachineFunction::const_iterator(MBB
);
822 MachineBasicBlock
*MachineBasicBlock::getFallThrough() {
823 MachineFunction::iterator Fallthrough
= getIterator();
825 // If FallthroughBlock is off the end of the function, it can't fall through.
826 if (Fallthrough
== getParent()->end())
829 // If FallthroughBlock isn't a successor, no fallthrough is possible.
830 if (!isSuccessor(&*Fallthrough
))
833 // Analyze the branches, if any, at the end of the block.
834 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
835 SmallVector
<MachineOperand
, 4> Cond
;
836 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
837 if (TII
->analyzeBranch(*this, TBB
, FBB
, Cond
)) {
838 // If we couldn't analyze the branch, examine the last instruction.
839 // If the block doesn't end in a known control barrier, assume fallthrough
840 // is possible. The isPredicated check is needed because this code can be
841 // called during IfConversion, where an instruction which is normally a
842 // Barrier is predicated and thus no longer an actual control barrier.
843 return (empty() || !back().isBarrier() || TII
->isPredicated(back()))
848 // If there is no branch, control always falls through.
849 if (!TBB
) return &*Fallthrough
;
851 // If there is some explicit branch to the fallthrough block, it can obviously
852 // reach, even though the branch should get folded to fall through implicitly.
853 if (MachineFunction::iterator(TBB
) == Fallthrough
||
854 MachineFunction::iterator(FBB
) == Fallthrough
)
855 return &*Fallthrough
;
857 // If it's an unconditional branch to some block not the fall through, it
858 // doesn't fall through.
859 if (Cond
.empty()) return nullptr;
861 // Otherwise, if it is conditional and has no explicit false block, it falls
863 return (FBB
== nullptr) ? &*Fallthrough
: nullptr;
866 bool MachineBasicBlock::canFallThrough() {
867 return getFallThrough() != nullptr;
870 MachineBasicBlock
*MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock
*Succ
,
872 if (!canSplitCriticalEdge(Succ
))
875 MachineFunction
*MF
= getParent();
876 DebugLoc DL
; // FIXME: this is nowhere
878 MachineBasicBlock
*NMBB
= MF
->CreateMachineBasicBlock();
879 MF
->insert(std::next(MachineFunction::iterator(this)), NMBB
);
880 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
881 << " -- " << printMBBReference(*NMBB
) << " -- "
882 << printMBBReference(*Succ
) << '\n');
884 LiveIntervals
*LIS
= P
.getAnalysisIfAvailable
<LiveIntervals
>();
885 SlotIndexes
*Indexes
= P
.getAnalysisIfAvailable
<SlotIndexes
>();
887 LIS
->insertMBBInMaps(NMBB
);
889 Indexes
->insertMBBInMaps(NMBB
);
891 // On some targets like Mips, branches may kill virtual registers. Make sure
892 // that LiveVariables is properly updated after updateTerminator replaces the
894 LiveVariables
*LV
= P
.getAnalysisIfAvailable
<LiveVariables
>();
896 // Collect a list of virtual registers killed by the terminators.
897 SmallVector
<unsigned, 4> KilledRegs
;
899 for (instr_iterator I
= getFirstInstrTerminator(), E
= instr_end();
901 MachineInstr
*MI
= &*I
;
902 for (MachineInstr::mop_iterator OI
= MI
->operands_begin(),
903 OE
= MI
->operands_end(); OI
!= OE
; ++OI
) {
904 if (!OI
->isReg() || OI
->getReg() == 0 ||
905 !OI
->isUse() || !OI
->isKill() || OI
->isUndef())
907 unsigned Reg
= OI
->getReg();
908 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
909 LV
->getVarInfo(Reg
).removeKill(*MI
)) {
910 KilledRegs
.push_back(Reg
);
911 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI
);
912 OI
->setIsKill(false);
917 SmallVector
<unsigned, 4> UsedRegs
;
919 for (instr_iterator I
= getFirstInstrTerminator(), E
= instr_end();
921 MachineInstr
*MI
= &*I
;
923 for (MachineInstr::mop_iterator OI
= MI
->operands_begin(),
924 OE
= MI
->operands_end(); OI
!= OE
; ++OI
) {
925 if (!OI
->isReg() || OI
->getReg() == 0)
928 unsigned Reg
= OI
->getReg();
929 if (!is_contained(UsedRegs
, Reg
))
930 UsedRegs
.push_back(Reg
);
935 ReplaceUsesOfBlockWith(Succ
, NMBB
);
937 // If updateTerminator() removes instructions, we need to remove them from
939 SmallVector
<MachineInstr
*, 4> Terminators
;
941 for (instr_iterator I
= getFirstInstrTerminator(), E
= instr_end();
943 Terminators
.push_back(&*I
);
949 SmallVector
<MachineInstr
*, 4> NewTerminators
;
950 for (instr_iterator I
= getFirstInstrTerminator(), E
= instr_end();
952 NewTerminators
.push_back(&*I
);
954 for (SmallVectorImpl
<MachineInstr
*>::iterator I
= Terminators
.begin(),
955 E
= Terminators
.end(); I
!= E
; ++I
) {
956 if (!is_contained(NewTerminators
, *I
))
957 Indexes
->removeMachineInstrFromMaps(**I
);
961 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
962 NMBB
->addSuccessor(Succ
);
963 if (!NMBB
->isLayoutSuccessor(Succ
)) {
964 SmallVector
<MachineOperand
, 4> Cond
;
965 const TargetInstrInfo
*TII
= getParent()->getSubtarget().getInstrInfo();
966 TII
->insertBranch(*NMBB
, Succ
, nullptr, Cond
, DL
);
969 for (MachineInstr
&MI
: NMBB
->instrs()) {
970 // Some instructions may have been moved to NMBB by updateTerminator(),
971 // so we first remove any instruction that already has an index.
972 if (Indexes
->hasIndex(MI
))
973 Indexes
->removeMachineInstrFromMaps(MI
);
974 Indexes
->insertMachineInstrInMaps(MI
);
979 // Fix PHI nodes in Succ so they refer to NMBB instead of this
980 for (MachineBasicBlock::instr_iterator
981 i
= Succ
->instr_begin(),e
= Succ
->instr_end();
982 i
!= e
&& i
->isPHI(); ++i
)
983 for (unsigned ni
= 1, ne
= i
->getNumOperands(); ni
!= ne
; ni
+= 2)
984 if (i
->getOperand(ni
+1).getMBB() == this)
985 i
->getOperand(ni
+1).setMBB(NMBB
);
987 // Inherit live-ins from the successor
988 for (const auto &LI
: Succ
->liveins())
991 // Update LiveVariables.
992 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
994 // Restore kills of virtual registers that were killed by the terminators.
995 while (!KilledRegs
.empty()) {
996 unsigned Reg
= KilledRegs
.pop_back_val();
997 for (instr_iterator I
= instr_end(), E
= instr_begin(); I
!= E
;) {
998 if (!(--I
)->addRegisterKilled(Reg
, TRI
, /* addIfNotFound= */ false))
1000 if (TargetRegisterInfo::isVirtualRegister(Reg
))
1001 LV
->getVarInfo(Reg
).Kills
.push_back(&*I
);
1002 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I
);
1006 // Update relevant live-through information.
1007 LV
->addNewBlock(NMBB
, this, Succ
);
1011 // After splitting the edge and updating SlotIndexes, live intervals may be
1012 // in one of two situations, depending on whether this block was the last in
1013 // the function. If the original block was the last in the function, all
1014 // live intervals will end prior to the beginning of the new split block. If
1015 // the original block was not at the end of the function, all live intervals
1016 // will extend to the end of the new split block.
1019 std::next(MachineFunction::iterator(NMBB
)) == getParent()->end();
1021 SlotIndex StartIndex
= Indexes
->getMBBEndIdx(this);
1022 SlotIndex PrevIndex
= StartIndex
.getPrevSlot();
1023 SlotIndex EndIndex
= Indexes
->getMBBEndIdx(NMBB
);
1025 // Find the registers used from NMBB in PHIs in Succ.
1026 SmallSet
<unsigned, 8> PHISrcRegs
;
1027 for (MachineBasicBlock::instr_iterator
1028 I
= Succ
->instr_begin(), E
= Succ
->instr_end();
1029 I
!= E
&& I
->isPHI(); ++I
) {
1030 for (unsigned ni
= 1, ne
= I
->getNumOperands(); ni
!= ne
; ni
+= 2) {
1031 if (I
->getOperand(ni
+1).getMBB() == NMBB
) {
1032 MachineOperand
&MO
= I
->getOperand(ni
);
1033 unsigned Reg
= MO
.getReg();
1034 PHISrcRegs
.insert(Reg
);
1038 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1039 VNInfo
*VNI
= LI
.getVNInfoAt(PrevIndex
);
1041 "PHI sources should be live out of their predecessors.");
1042 LI
.addSegment(LiveInterval::Segment(StartIndex
, EndIndex
, VNI
));
1047 MachineRegisterInfo
*MRI
= &getParent()->getRegInfo();
1048 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
1049 unsigned Reg
= TargetRegisterInfo::index2VirtReg(i
);
1050 if (PHISrcRegs
.count(Reg
) || !LIS
->hasInterval(Reg
))
1053 LiveInterval
&LI
= LIS
->getInterval(Reg
);
1054 if (!LI
.liveAt(PrevIndex
))
1057 bool isLiveOut
= LI
.liveAt(LIS
->getMBBStartIdx(Succ
));
1058 if (isLiveOut
&& isLastMBB
) {
1059 VNInfo
*VNI
= LI
.getVNInfoAt(PrevIndex
);
1060 assert(VNI
&& "LiveInterval should have VNInfo where it is live.");
1061 LI
.addSegment(LiveInterval::Segment(StartIndex
, EndIndex
, VNI
));
1062 } else if (!isLiveOut
&& !isLastMBB
) {
1063 LI
.removeSegment(StartIndex
, EndIndex
);
1067 // Update all intervals for registers whose uses may have been modified by
1068 // updateTerminator().
1069 LIS
->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs
);
1072 if (MachineDominatorTree
*MDT
=
1073 P
.getAnalysisIfAvailable
<MachineDominatorTree
>())
1074 MDT
->recordSplitCriticalEdge(this, Succ
, NMBB
);
1076 if (MachineLoopInfo
*MLI
= P
.getAnalysisIfAvailable
<MachineLoopInfo
>())
1077 if (MachineLoop
*TIL
= MLI
->getLoopFor(this)) {
1078 // If one or the other blocks were not in a loop, the new block is not
1079 // either, and thus LI doesn't need to be updated.
1080 if (MachineLoop
*DestLoop
= MLI
->getLoopFor(Succ
)) {
1081 if (TIL
== DestLoop
) {
1082 // Both in the same loop, the NMBB joins loop.
1083 DestLoop
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1084 } else if (TIL
->contains(DestLoop
)) {
1085 // Edge from an outer loop to an inner loop. Add to the outer loop.
1086 TIL
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1087 } else if (DestLoop
->contains(TIL
)) {
1088 // Edge from an inner loop to an outer loop. Add to the outer loop.
1089 DestLoop
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1091 // Edge from two loops with no containment relation. Because these
1092 // are natural loops, we know that the destination block must be the
1093 // header of its loop (adding a branch into a loop elsewhere would
1094 // create an irreducible loop).
1095 assert(DestLoop
->getHeader() == Succ
&&
1096 "Should not create irreducible loops!");
1097 if (MachineLoop
*P
= DestLoop
->getParentLoop())
1098 P
->addBasicBlockToLoop(NMBB
, MLI
->getBase());
1106 bool MachineBasicBlock::canSplitCriticalEdge(
1107 const MachineBasicBlock
*Succ
) const {
1108 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1109 // it in this generic function.
1110 if (Succ
->isEHPad())
1113 const MachineFunction
*MF
= getParent();
1115 // Performance might be harmed on HW that implements branching using exec mask
1116 // where both sides of the branches are always executed.
1117 if (MF
->getTarget().requiresStructuredCFG())
1120 // We may need to update this's terminator, but we can't do that if
1121 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1122 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1123 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
1124 SmallVector
<MachineOperand
, 4> Cond
;
1125 // AnalyzeBanch should modify this, since we did not allow modification.
1126 if (TII
->analyzeBranch(*const_cast<MachineBasicBlock
*>(this), TBB
, FBB
, Cond
,
1127 /*AllowModify*/ false))
1130 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1131 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1132 // case that we can't handle. Since this never happens in properly optimized
1133 // code, just skip those edges.
1134 if (TBB
&& TBB
== FBB
) {
1135 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1136 << printMBBReference(*this) << '\n');
1142 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1143 /// neighboring instructions so the bundle won't be broken by removing MI.
1144 static void unbundleSingleMI(MachineInstr
*MI
) {
1145 // Removing the first instruction in a bundle.
1146 if (MI
->isBundledWithSucc() && !MI
->isBundledWithPred())
1147 MI
->unbundleFromSucc();
1148 // Removing the last instruction in a bundle.
1149 if (MI
->isBundledWithPred() && !MI
->isBundledWithSucc())
1150 MI
->unbundleFromPred();
1151 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1152 // are already fine.
1155 MachineBasicBlock::instr_iterator
1156 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I
) {
1157 unbundleSingleMI(&*I
);
1158 return Insts
.erase(I
);
1161 MachineInstr
*MachineBasicBlock::remove_instr(MachineInstr
*MI
) {
1162 unbundleSingleMI(MI
);
1163 MI
->clearFlag(MachineInstr::BundledPred
);
1164 MI
->clearFlag(MachineInstr::BundledSucc
);
1165 return Insts
.remove(MI
);
1168 MachineBasicBlock::instr_iterator
1169 MachineBasicBlock::insert(instr_iterator I
, MachineInstr
*MI
) {
1170 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
1171 "Cannot insert instruction with bundle flags");
1172 // Set the bundle flags when inserting inside a bundle.
1173 if (I
!= instr_end() && I
->isBundledWithPred()) {
1174 MI
->setFlag(MachineInstr::BundledPred
);
1175 MI
->setFlag(MachineInstr::BundledSucc
);
1177 return Insts
.insert(I
, MI
);
1180 /// This method unlinks 'this' from the containing function, and returns it, but
1181 /// does not delete it.
1182 MachineBasicBlock
*MachineBasicBlock::removeFromParent() {
1183 assert(getParent() && "Not embedded in a function!");
1184 getParent()->remove(this);
1188 /// This method unlinks 'this' from the containing function, and deletes it.
1189 void MachineBasicBlock::eraseFromParent() {
1190 assert(getParent() && "Not embedded in a function!");
1191 getParent()->erase(this);
1194 /// Given a machine basic block that branched to 'Old', change the code and CFG
1195 /// so that it branches to 'New' instead.
1196 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock
*Old
,
1197 MachineBasicBlock
*New
) {
1198 assert(Old
!= New
&& "Cannot replace self with self!");
1200 MachineBasicBlock::instr_iterator I
= instr_end();
1201 while (I
!= instr_begin()) {
1203 if (!I
->isTerminator()) break;
1205 // Scan the operands of this machine instruction, replacing any uses of Old
1207 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1208 if (I
->getOperand(i
).isMBB() &&
1209 I
->getOperand(i
).getMBB() == Old
)
1210 I
->getOperand(i
).setMBB(New
);
1213 // Update the successor information.
1214 replaceSuccessor(Old
, New
);
1217 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1218 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1219 /// MBB successors from the CFG. DestA and DestB can be null.
1221 /// Besides DestA and DestB, retain other edges leading to LandingPads
1222 /// (currently there can be only one; we don't check or require that here).
1223 /// Note it is possible that DestA and/or DestB are LandingPads.
1224 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock
*DestA
,
1225 MachineBasicBlock
*DestB
,
1227 // The values of DestA and DestB frequently come from a call to the
1228 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1229 // values from there.
1231 // 1. If both DestA and DestB are null, then the block ends with no branches
1232 // (it falls through to its successor).
1233 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1234 // with only an unconditional branch.
1235 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1236 // with a conditional branch that falls through to a successor (DestB).
1237 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1238 // conditional branch followed by an unconditional branch. DestA is the
1239 // 'true' destination and DestB is the 'false' destination.
1241 bool Changed
= false;
1243 MachineBasicBlock
*FallThru
= getNextNode();
1245 if (!DestA
&& !DestB
) {
1246 // Block falls through to successor.
1249 } else if (DestA
&& !DestB
) {
1251 // Block ends in conditional jump that falls through to successor.
1254 assert(DestA
&& DestB
&& IsCond
&&
1255 "CFG in a bad state. Cannot correct CFG edges");
1258 // Remove superfluous edges. I.e., those which aren't destinations of this
1259 // basic block, duplicate edges, or landing pads.
1260 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenMBBs
;
1261 MachineBasicBlock::succ_iterator SI
= succ_begin();
1262 while (SI
!= succ_end()) {
1263 const MachineBasicBlock
*MBB
= *SI
;
1264 if (!SeenMBBs
.insert(MBB
).second
||
1265 (MBB
!= DestA
&& MBB
!= DestB
&& !MBB
->isEHPad())) {
1266 // This is a superfluous edge, remove it.
1267 SI
= removeSuccessor(SI
);
1275 normalizeSuccProbs();
1279 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1280 /// instructions. Return UnknownLoc if there is none.
1282 MachineBasicBlock::findDebugLoc(instr_iterator MBBI
) {
1283 // Skip debug declarations, we don't want a DebugLoc from them.
1284 MBBI
= skipDebugInstructionsForward(MBBI
, instr_end());
1285 if (MBBI
!= instr_end())
1286 return MBBI
->getDebugLoc();
1290 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1291 /// instructions. Return UnknownLoc if there is none.
1292 DebugLoc
MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI
) {
1293 if (MBBI
== instr_begin()) return {};
1294 // Skip debug declarations, we don't want a DebugLoc from them.
1295 MBBI
= skipDebugInstructionsBackward(std::prev(MBBI
), instr_begin());
1296 if (!MBBI
->isDebugInstr()) return MBBI
->getDebugLoc();
1300 /// Find and return the merged DebugLoc of the branch instructions of the block.
1301 /// Return UnknownLoc if there is none.
1303 MachineBasicBlock::findBranchDebugLoc() {
1305 auto TI
= getFirstTerminator();
1306 while (TI
!= end() && !TI
->isBranch())
1310 DL
= TI
->getDebugLoc();
1311 for (++TI
; TI
!= end() ; ++TI
)
1313 DL
= DILocation::getMergedLocation(DL
, TI
->getDebugLoc());
1318 /// Return probability of the edge from this block to MBB.
1320 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ
) const {
1322 return BranchProbability(1, succ_size());
1324 const auto &Prob
= *getProbabilityIterator(Succ
);
1325 if (Prob
.isUnknown()) {
1326 // For unknown probabilities, collect the sum of all known ones, and evenly
1327 // ditribute the complemental of the sum to each unknown probability.
1328 unsigned KnownProbNum
= 0;
1329 auto Sum
= BranchProbability::getZero();
1330 for (auto &P
: Probs
) {
1331 if (!P
.isUnknown()) {
1336 return Sum
.getCompl() / (Probs
.size() - KnownProbNum
);
1341 /// Set successor probability of a given iterator.
1342 void MachineBasicBlock::setSuccProbability(succ_iterator I
,
1343 BranchProbability Prob
) {
1344 assert(!Prob
.isUnknown());
1347 *getProbabilityIterator(I
) = Prob
;
1350 /// Return probability iterator corresonding to the I successor iterator
1351 MachineBasicBlock::const_probability_iterator
1352 MachineBasicBlock::getProbabilityIterator(
1353 MachineBasicBlock::const_succ_iterator I
) const {
1354 assert(Probs
.size() == Successors
.size() && "Async probability list!");
1355 const size_t index
= std::distance(Successors
.begin(), I
);
1356 assert(index
< Probs
.size() && "Not a current successor!");
1357 return Probs
.begin() + index
;
1360 /// Return probability iterator corresonding to the I successor iterator.
1361 MachineBasicBlock::probability_iterator
1362 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I
) {
1363 assert(Probs
.size() == Successors
.size() && "Async probability list!");
1364 const size_t index
= std::distance(Successors
.begin(), I
);
1365 assert(index
< Probs
.size() && "Not a current successor!");
1366 return Probs
.begin() + index
;
1369 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1370 /// as of just before "MI".
1372 /// Search is localised to a neighborhood of
1373 /// Neighborhood instructions before (searching for defs or kills) and N
1374 /// instructions after (searching just for defs) MI.
1375 MachineBasicBlock::LivenessQueryResult
1376 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo
*TRI
,
1377 unsigned Reg
, const_iterator Before
,
1378 unsigned Neighborhood
) const {
1379 unsigned N
= Neighborhood
;
1381 // Try searching forwards from Before, looking for reads or defs.
1382 const_iterator
I(Before
);
1383 // If this is the last insn in the block, don't search forwards.
1385 for (++I
; I
!= end() && N
> 0; ++I
) {
1386 if (I
->isDebugInstr())
1391 MachineOperandIteratorBase::PhysRegInfo Info
=
1392 ConstMIOperands(*I
).analyzePhysReg(Reg
, TRI
);
1394 // Register is live when we read it here.
1397 // Register is dead if we can fully overwrite or clobber it here.
1398 if (Info
.FullyDefined
|| Info
.Clobbered
)
1403 // If we reached the end, it is safe to clobber Reg at the end of a block of
1404 // no successor has it live in.
1406 for (MachineBasicBlock
*S
: successors()) {
1407 for (const MachineBasicBlock::RegisterMaskPair
&LI
: S
->liveins()) {
1408 if (TRI
->regsOverlap(LI
.PhysReg
, Reg
))
1419 // Start by searching backwards from Before, looking for kills, reads or defs.
1420 I
= const_iterator(Before
);
1421 // If this is the first insn in the block, don't search backwards.
1426 if (I
->isDebugInstr())
1431 MachineOperandIteratorBase::PhysRegInfo Info
=
1432 ConstMIOperands(*I
).analyzePhysReg(Reg
, TRI
);
1434 // Defs happen after uses so they take precedence if both are present.
1436 // Register is dead after a dead def of the full register.
1439 // Register is (at least partially) live after a def.
1441 if (!Info
.PartialDeadDef
)
1443 // As soon as we saw a partial definition (dead or not),
1444 // we cannot tell if the value is partial live without
1445 // tracking the lanemasks. We are not going to do this,
1446 // so fall back on the remaining of the analysis.
1449 // Register is dead after a full kill or clobber and no def.
1450 if (Info
.Killed
|| Info
.Clobbered
)
1452 // Register must be live if we read it.
1456 } while (I
!= begin() && N
> 0);
1459 // Did we get to the start of the block?
1461 // If so, the register's state is definitely defined by the live-in state.
1462 for (const MachineBasicBlock::RegisterMaskPair
&LI
: liveins())
1463 if (TRI
->regsOverlap(LI
.PhysReg
, Reg
))
1469 // At this point we have no idea of the liveness of the register.
1474 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo
*TRI
) const {
1475 // EH funclet entry does not preserve any registers.
1476 return isEHFuncletEntry() ? TRI
->getNoPreservedMask() : nullptr;
1480 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo
*TRI
) const {
1481 // If we see a return block with successors, this must be a funclet return,
1482 // which does not preserve any registers. If there are no successors, we don't
1483 // care what kind of return it is, putting a mask after it is a no-op.
1484 return isReturnBlock() && !succ_empty() ? TRI
->getNoPreservedMask() : nullptr;
1487 void MachineBasicBlock::clearLiveIns() {
1491 MachineBasicBlock::livein_iterator
MachineBasicBlock::livein_begin() const {
1492 assert(getParent()->getProperties().hasProperty(
1493 MachineFunctionProperties::Property::TracksLiveness
) &&
1494 "Liveness information is accurate");
1495 return LiveIns
.begin();