[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / lib / CodeGen / MachineVerifier.cpp
bloba19c2ef800272d255c5a5973ce7b8c0653566e0b
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
12 // Operand counts: All explicit operands must be present.
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
26 #include "LiveRangeCalc.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/EHPersonalities.h"
38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
39 #include "llvm/CodeGen/LiveInterval.h"
40 #include "llvm/CodeGen/LiveIntervals.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/LiveVariables.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/PseudoSourceValue.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
83 using namespace llvm;
85 namespace {
87 struct MachineVerifier {
88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
90 unsigned verify(MachineFunction &MF);
92 Pass *const PASS;
93 const char *Banner;
94 const MachineFunction *MF;
95 const TargetMachine *TM;
96 const TargetInstrInfo *TII;
97 const TargetRegisterInfo *TRI;
98 const MachineRegisterInfo *MRI;
100 unsigned foundErrors;
102 // Avoid querying the MachineFunctionProperties for each operand.
103 bool isFunctionRegBankSelected;
104 bool isFunctionSelected;
106 using RegVector = SmallVector<unsigned, 16>;
107 using RegMaskVector = SmallVector<const uint32_t *, 4>;
108 using RegSet = DenseSet<unsigned>;
109 using RegMap = DenseMap<unsigned, const MachineInstr *>;
110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
112 const MachineInstr *FirstNonPHI;
113 const MachineInstr *FirstTerminator;
114 BlockSet FunctionBlocks;
116 BitVector regsReserved;
117 RegSet regsLive;
118 RegVector regsDefined, regsDead, regsKilled;
119 RegMaskVector regMasks;
121 SlotIndex lastIndex;
123 // Add Reg and any sub-registers to RV
124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
125 RV.push_back(Reg);
126 if (TargetRegisterInfo::isPhysicalRegister(Reg))
127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
128 RV.push_back(*SubRegs);
131 struct BBInfo {
132 // Is this MBB reachable from the MF entry point?
133 bool reachable = false;
135 // Vregs that must be live in because they are used without being
136 // defined. Map value is the user.
137 RegMap vregsLiveIn;
139 // Regs killed in MBB. They may be defined again, and will then be in both
140 // regsKilled and regsLiveOut.
141 RegSet regsKilled;
143 // Regs defined in MBB and live out. Note that vregs passing through may
144 // be live out without being mentioned here.
145 RegSet regsLiveOut;
147 // Vregs that pass through MBB untouched. This set is disjoint from
148 // regsKilled and regsLiveOut.
149 RegSet vregsPassed;
151 // Vregs that must pass through MBB because they are needed by a successor
152 // block. This set is disjoint from regsLiveOut.
153 RegSet vregsRequired;
155 // Set versions of block's predecessor and successor lists.
156 BlockSet Preds, Succs;
158 BBInfo() = default;
160 // Add register to vregsPassed if it belongs there. Return true if
161 // anything changed.
162 bool addPassed(unsigned Reg) {
163 if (!TargetRegisterInfo::isVirtualRegister(Reg))
164 return false;
165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
166 return false;
167 return vregsPassed.insert(Reg).second;
170 // Same for a full set.
171 bool addPassed(const RegSet &RS) {
172 bool changed = false;
173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
174 if (addPassed(*I))
175 changed = true;
176 return changed;
179 // Add register to vregsRequired if it belongs there. Return true if
180 // anything changed.
181 bool addRequired(unsigned Reg) {
182 if (!TargetRegisterInfo::isVirtualRegister(Reg))
183 return false;
184 if (regsLiveOut.count(Reg))
185 return false;
186 return vregsRequired.insert(Reg).second;
189 // Same for a full set.
190 bool addRequired(const RegSet &RS) {
191 bool changed = false;
192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
193 if (addRequired(*I))
194 changed = true;
195 return changed;
198 // Same for a full map.
199 bool addRequired(const RegMap &RM) {
200 bool changed = false;
201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
202 if (addRequired(I->first))
203 changed = true;
204 return changed;
207 // Live-out registers are either in regsLiveOut or vregsPassed.
208 bool isLiveOut(unsigned Reg) const {
209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
213 // Extra register info per MBB.
214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
216 bool isReserved(unsigned Reg) {
217 return Reg < regsReserved.size() && regsReserved.test(Reg);
220 bool isAllocatable(unsigned Reg) const {
221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
222 !regsReserved.test(Reg);
225 // Analysis information if available
226 LiveVariables *LiveVars;
227 LiveIntervals *LiveInts;
228 LiveStacks *LiveStks;
229 SlotIndexes *Indexes;
231 void visitMachineFunctionBefore();
232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
233 void visitMachineBundleBefore(const MachineInstr *MI);
234 void visitMachineInstrBefore(const MachineInstr *MI);
235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
236 void visitMachineInstrAfter(const MachineInstr *MI);
237 void visitMachineBundleAfter(const MachineInstr *MI);
238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
239 void visitMachineFunctionAfter();
241 void report(const char *msg, const MachineFunction *MF);
242 void report(const char *msg, const MachineBasicBlock *MBB);
243 void report(const char *msg, const MachineInstr *MI);
244 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
245 LLT MOVRegType = LLT{});
247 void report_context(const LiveInterval &LI) const;
248 void report_context(const LiveRange &LR, unsigned VRegUnit,
249 LaneBitmask LaneMask) const;
250 void report_context(const LiveRange::Segment &S) const;
251 void report_context(const VNInfo &VNI) const;
252 void report_context(SlotIndex Pos) const;
253 void report_context_liverange(const LiveRange &LR) const;
254 void report_context_lanemask(LaneBitmask LaneMask) const;
255 void report_context_vreg(unsigned VReg) const;
256 void report_context_vreg_regunit(unsigned VRegOrUnit) const;
258 void verifyInlineAsm(const MachineInstr *MI);
260 void checkLiveness(const MachineOperand *MO, unsigned MONum);
261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263 LaneBitmask LaneMask = LaneBitmask::getNone());
264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266 bool SubRangeCheck = false,
267 LaneBitmask LaneMask = LaneBitmask::getNone());
269 void markReachable(const MachineBasicBlock *MBB);
270 void calcRegsPassed();
271 void checkPHIOps(const MachineBasicBlock &MBB);
273 void calcRegsRequired();
274 void verifyLiveVariables();
275 void verifyLiveIntervals();
276 void verifyLiveInterval(const LiveInterval&);
277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278 LaneBitmask);
279 void verifyLiveRangeSegment(const LiveRange&,
280 const LiveRange::const_iterator I, unsigned,
281 LaneBitmask);
282 void verifyLiveRange(const LiveRange&, unsigned,
283 LaneBitmask LaneMask = LaneBitmask::getNone());
285 void verifyStackFrame();
287 void verifySlotIndexes() const;
288 void verifyProperties(const MachineFunction &MF);
291 struct MachineVerifierPass : public MachineFunctionPass {
292 static char ID; // Pass ID, replacement for typeid
294 const std::string Banner;
296 MachineVerifierPass(std::string banner = std::string())
297 : MachineFunctionPass(ID), Banner(std::move(banner)) {
298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
301 void getAnalysisUsage(AnalysisUsage &AU) const override {
302 AU.setPreservesAll();
303 MachineFunctionPass::getAnalysisUsage(AU);
306 bool runOnMachineFunction(MachineFunction &MF) override {
307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308 if (FoundErrors)
309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310 return false;
314 } // end anonymous namespace
316 char MachineVerifierPass::ID = 0;
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319 "Verify generated machine code", false, false)
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322 return new MachineVerifierPass(Banner);
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326 const {
327 MachineFunction &MF = const_cast<MachineFunction&>(*this);
328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329 if (AbortOnErrors && FoundErrors)
330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331 return FoundErrors == 0;
334 void MachineVerifier::verifySlotIndexes() const {
335 if (Indexes == nullptr)
336 return;
338 // Ensure the IdxMBB list is sorted by slot indexes.
339 SlotIndex Last;
340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341 E = Indexes->MBBIndexEnd(); I != E; ++I) {
342 assert(!Last.isValid() || I->first > Last);
343 Last = I->first;
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348 // If a pass has introduced virtual registers without clearing the
349 // NoVRegs property (or set it without allocating the vregs)
350 // then report an error.
351 if (MF.getProperties().hasProperty(
352 MachineFunctionProperties::Property::NoVRegs) &&
353 MRI->getNumVirtRegs())
354 report("Function has NoVRegs property but there are VReg operands", &MF);
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358 foundErrors = 0;
360 this->MF = &MF;
361 TM = &MF.getTarget();
362 TII = MF.getSubtarget().getInstrInfo();
363 TRI = MF.getSubtarget().getRegisterInfo();
364 MRI = &MF.getRegInfo();
366 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367 MachineFunctionProperties::Property::FailedISel);
369 // If we're mid-GlobalISel and we already triggered the fallback path then
370 // it's expected that the MIR is somewhat broken but that's ok since we'll
371 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372 if (isFunctionFailedISel)
373 return foundErrors;
375 isFunctionRegBankSelected =
376 !isFunctionFailedISel &&
377 MF.getProperties().hasProperty(
378 MachineFunctionProperties::Property::RegBankSelected);
379 isFunctionSelected = !isFunctionFailedISel &&
380 MF.getProperties().hasProperty(
381 MachineFunctionProperties::Property::Selected);
382 LiveVars = nullptr;
383 LiveInts = nullptr;
384 LiveStks = nullptr;
385 Indexes = nullptr;
386 if (PASS) {
387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388 // We don't want to verify LiveVariables if LiveIntervals is available.
389 if (!LiveInts)
390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
395 verifySlotIndexes();
397 verifyProperties(MF);
399 visitMachineFunctionBefore();
400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401 MFI!=MFE; ++MFI) {
402 visitMachineBasicBlockBefore(&*MFI);
403 // Keep track of the current bundle header.
404 const MachineInstr *CurBundle = nullptr;
405 // Do we expect the next instruction to be part of the same bundle?
406 bool InBundle = false;
408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410 if (MBBI->getParent() != &*MFI) {
411 report("Bad instruction parent pointer", &*MFI);
412 errs() << "Instruction: " << *MBBI;
413 continue;
416 // Check for consistent bundle flags.
417 if (InBundle && !MBBI->isBundledWithPred())
418 report("Missing BundledPred flag, "
419 "BundledSucc was set on predecessor",
420 &*MBBI);
421 if (!InBundle && MBBI->isBundledWithPred())
422 report("BundledPred flag is set, "
423 "but BundledSucc not set on predecessor",
424 &*MBBI);
426 // Is this a bundle header?
427 if (!MBBI->isInsideBundle()) {
428 if (CurBundle)
429 visitMachineBundleAfter(CurBundle);
430 CurBundle = &*MBBI;
431 visitMachineBundleBefore(CurBundle);
432 } else if (!CurBundle)
433 report("No bundle header", &*MBBI);
434 visitMachineInstrBefore(&*MBBI);
435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436 const MachineInstr &MI = *MBBI;
437 const MachineOperand &Op = MI.getOperand(I);
438 if (Op.getParent() != &MI) {
439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440 // functions when replacing operands of a MachineInstr.
441 report("Instruction has operand with wrong parent set", &MI);
444 visitMachineOperand(&Op, I);
447 visitMachineInstrAfter(&*MBBI);
449 // Was this the last bundled instruction?
450 InBundle = MBBI->isBundledWithSucc();
452 if (CurBundle)
453 visitMachineBundleAfter(CurBundle);
454 if (InBundle)
455 report("BundledSucc flag set on last instruction in block", &MFI->back());
456 visitMachineBasicBlockAfter(&*MFI);
458 visitMachineFunctionAfter();
460 // Clean up.
461 regsLive.clear();
462 regsDefined.clear();
463 regsDead.clear();
464 regsKilled.clear();
465 regMasks.clear();
466 MBBInfoMap.clear();
468 return foundErrors;
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472 assert(MF);
473 errs() << '\n';
474 if (!foundErrors++) {
475 if (Banner)
476 errs() << "# " << Banner << '\n';
477 if (LiveInts != nullptr)
478 LiveInts->print(errs());
479 else
480 MF->print(errs(), Indexes);
482 errs() << "*** Bad machine code: " << msg << " ***\n"
483 << "- function: " << MF->getName() << "\n";
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487 assert(MBB);
488 report(msg, MBB->getParent());
489 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490 << MBB->getName() << " (" << (const void *)MBB << ')';
491 if (Indexes)
492 errs() << " [" << Indexes->getMBBStartIdx(MBB)
493 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
494 errs() << '\n';
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498 assert(MI);
499 report(msg, MI->getParent());
500 errs() << "- instruction: ";
501 if (Indexes && Indexes->hasIndex(*MI))
502 errs() << Indexes->getInstructionIndex(*MI) << '\t';
503 MI->print(errs(), /*SkipOpers=*/true);
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507 unsigned MONum, LLT MOVRegType) {
508 assert(MO);
509 report(msg, MO->getParent());
510 errs() << "- operand " << MONum << ": ";
511 MO->print(errs(), MOVRegType, TRI);
512 errs() << "\n";
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516 errs() << "- at: " << Pos << '\n';
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520 errs() << "- interval: " << LI << '\n';
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524 LaneBitmask LaneMask) const {
525 report_context_liverange(LR);
526 report_context_vreg_regunit(VRegUnit);
527 if (LaneMask.any())
528 report_context_lanemask(LaneMask);
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532 errs() << "- segment: " << S << '\n';
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540 errs() << "- liverange: " << LR << '\n';
543 void MachineVerifier::report_context_vreg(unsigned VReg) const {
544 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
547 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
548 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
549 report_context_vreg(VRegOrUnit);
550 } else {
551 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
555 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
556 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
559 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
560 BBInfo &MInfo = MBBInfoMap[MBB];
561 if (!MInfo.reachable) {
562 MInfo.reachable = true;
563 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
564 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
565 markReachable(*SuI);
569 void MachineVerifier::visitMachineFunctionBefore() {
570 lastIndex = SlotIndex();
571 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
572 : TRI->getReservedRegs(*MF);
574 if (!MF->empty())
575 markReachable(&MF->front());
577 // Build a set of the basic blocks in the function.
578 FunctionBlocks.clear();
579 for (const auto &MBB : *MF) {
580 FunctionBlocks.insert(&MBB);
581 BBInfo &MInfo = MBBInfoMap[&MBB];
583 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
584 if (MInfo.Preds.size() != MBB.pred_size())
585 report("MBB has duplicate entries in its predecessor list.", &MBB);
587 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
588 if (MInfo.Succs.size() != MBB.succ_size())
589 report("MBB has duplicate entries in its successor list.", &MBB);
592 // Check that the register use lists are sane.
593 MRI->verifyUseLists();
595 if (!MF->empty())
596 verifyStackFrame();
599 // Does iterator point to a and b as the first two elements?
600 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
601 const MachineBasicBlock *a, const MachineBasicBlock *b) {
602 if (*i == a)
603 return *++i == b;
604 if (*i == b)
605 return *++i == a;
606 return false;
609 void
610 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
611 FirstTerminator = nullptr;
612 FirstNonPHI = nullptr;
614 if (!MF->getProperties().hasProperty(
615 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
616 // If this block has allocatable physical registers live-in, check that
617 // it is an entry block or landing pad.
618 for (const auto &LI : MBB->liveins()) {
619 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
620 MBB->getIterator() != MBB->getParent()->begin()) {
621 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626 // Count the number of landing pad successors.
627 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
628 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
629 E = MBB->succ_end(); I != E; ++I) {
630 if ((*I)->isEHPad())
631 LandingPadSuccs.insert(*I);
632 if (!FunctionBlocks.count(*I))
633 report("MBB has successor that isn't part of the function.", MBB);
634 if (!MBBInfoMap[*I].Preds.count(MBB)) {
635 report("Inconsistent CFG", MBB);
636 errs() << "MBB is not in the predecessor list of the successor "
637 << printMBBReference(*(*I)) << ".\n";
641 // Check the predecessor list.
642 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
643 E = MBB->pred_end(); I != E; ++I) {
644 if (!FunctionBlocks.count(*I))
645 report("MBB has predecessor that isn't part of the function.", MBB);
646 if (!MBBInfoMap[*I].Succs.count(MBB)) {
647 report("Inconsistent CFG", MBB);
648 errs() << "MBB is not in the successor list of the predecessor "
649 << printMBBReference(*(*I)) << ".\n";
653 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
654 const BasicBlock *BB = MBB->getBasicBlock();
655 const Function &F = MF->getFunction();
656 if (LandingPadSuccs.size() > 1 &&
657 !(AsmInfo &&
658 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
659 BB && isa<SwitchInst>(BB->getTerminator())) &&
660 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
661 report("MBB has more than one landing pad successor", MBB);
663 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
664 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
665 SmallVector<MachineOperand, 4> Cond;
666 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
667 Cond)) {
668 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
669 // check whether its answers match up with reality.
670 if (!TBB && !FBB) {
671 // Block falls through to its successor.
672 MachineFunction::const_iterator MBBI = MBB->getIterator();
673 ++MBBI;
674 if (MBBI == MF->end()) {
675 // It's possible that the block legitimately ends with a noreturn
676 // call or an unreachable, in which case it won't actually fall
677 // out the bottom of the function.
678 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
679 // It's possible that the block legitimately ends with a noreturn
680 // call or an unreachable, in which case it won't actuall fall
681 // out of the block.
682 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
683 report("MBB exits via unconditional fall-through but doesn't have "
684 "exactly one CFG successor!", MBB);
685 } else if (!MBB->isSuccessor(&*MBBI)) {
686 report("MBB exits via unconditional fall-through but its successor "
687 "differs from its CFG successor!", MBB);
689 if (!MBB->empty() && MBB->back().isBarrier() &&
690 !TII->isPredicated(MBB->back())) {
691 report("MBB exits via unconditional fall-through but ends with a "
692 "barrier instruction!", MBB);
694 if (!Cond.empty()) {
695 report("MBB exits via unconditional fall-through but has a condition!",
696 MBB);
698 } else if (TBB && !FBB && Cond.empty()) {
699 // Block unconditionally branches somewhere.
700 // If the block has exactly one successor, that happens to be a
701 // landingpad, accept it as valid control flow.
702 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
703 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
704 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
705 report("MBB exits via unconditional branch but doesn't have "
706 "exactly one CFG successor!", MBB);
707 } else if (!MBB->isSuccessor(TBB)) {
708 report("MBB exits via unconditional branch but the CFG "
709 "successor doesn't match the actual successor!", MBB);
711 if (MBB->empty()) {
712 report("MBB exits via unconditional branch but doesn't contain "
713 "any instructions!", MBB);
714 } else if (!MBB->back().isBarrier()) {
715 report("MBB exits via unconditional branch but doesn't end with a "
716 "barrier instruction!", MBB);
717 } else if (!MBB->back().isTerminator()) {
718 report("MBB exits via unconditional branch but the branch isn't a "
719 "terminator instruction!", MBB);
721 } else if (TBB && !FBB && !Cond.empty()) {
722 // Block conditionally branches somewhere, otherwise falls through.
723 MachineFunction::const_iterator MBBI = MBB->getIterator();
724 ++MBBI;
725 if (MBBI == MF->end()) {
726 report("MBB conditionally falls through out of function!", MBB);
727 } else if (MBB->succ_size() == 1) {
728 // A conditional branch with only one successor is weird, but allowed.
729 if (&*MBBI != TBB)
730 report("MBB exits via conditional branch/fall-through but only has "
731 "one CFG successor!", MBB);
732 else if (TBB != *MBB->succ_begin())
733 report("MBB exits via conditional branch/fall-through but the CFG "
734 "successor don't match the actual successor!", MBB);
735 } else if (MBB->succ_size() != 2) {
736 report("MBB exits via conditional branch/fall-through but doesn't have "
737 "exactly two CFG successors!", MBB);
738 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
739 report("MBB exits via conditional branch/fall-through but the CFG "
740 "successors don't match the actual successors!", MBB);
742 if (MBB->empty()) {
743 report("MBB exits via conditional branch/fall-through but doesn't "
744 "contain any instructions!", MBB);
745 } else if (MBB->back().isBarrier()) {
746 report("MBB exits via conditional branch/fall-through but ends with a "
747 "barrier instruction!", MBB);
748 } else if (!MBB->back().isTerminator()) {
749 report("MBB exits via conditional branch/fall-through but the branch "
750 "isn't a terminator instruction!", MBB);
752 } else if (TBB && FBB) {
753 // Block conditionally branches somewhere, otherwise branches
754 // somewhere else.
755 if (MBB->succ_size() == 1) {
756 // A conditional branch with only one successor is weird, but allowed.
757 if (FBB != TBB)
758 report("MBB exits via conditional branch/branch through but only has "
759 "one CFG successor!", MBB);
760 else if (TBB != *MBB->succ_begin())
761 report("MBB exits via conditional branch/branch through but the CFG "
762 "successor don't match the actual successor!", MBB);
763 } else if (MBB->succ_size() != 2) {
764 report("MBB exits via conditional branch/branch but doesn't have "
765 "exactly two CFG successors!", MBB);
766 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
767 report("MBB exits via conditional branch/branch but the CFG "
768 "successors don't match the actual successors!", MBB);
770 if (MBB->empty()) {
771 report("MBB exits via conditional branch/branch but doesn't "
772 "contain any instructions!", MBB);
773 } else if (!MBB->back().isBarrier()) {
774 report("MBB exits via conditional branch/branch but doesn't end with a "
775 "barrier instruction!", MBB);
776 } else if (!MBB->back().isTerminator()) {
777 report("MBB exits via conditional branch/branch but the branch "
778 "isn't a terminator instruction!", MBB);
780 if (Cond.empty()) {
781 report("MBB exits via conditinal branch/branch but there's no "
782 "condition!", MBB);
784 } else {
785 report("AnalyzeBranch returned invalid data!", MBB);
789 regsLive.clear();
790 if (MRI->tracksLiveness()) {
791 for (const auto &LI : MBB->liveins()) {
792 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
793 report("MBB live-in list contains non-physical register", MBB);
794 continue;
796 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
797 SubRegs.isValid(); ++SubRegs)
798 regsLive.insert(*SubRegs);
802 const MachineFrameInfo &MFI = MF->getFrameInfo();
803 BitVector PR = MFI.getPristineRegs(*MF);
804 for (unsigned I : PR.set_bits()) {
805 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
806 SubRegs.isValid(); ++SubRegs)
807 regsLive.insert(*SubRegs);
810 regsKilled.clear();
811 regsDefined.clear();
813 if (Indexes)
814 lastIndex = Indexes->getMBBStartIdx(MBB);
817 // This function gets called for all bundle headers, including normal
818 // stand-alone unbundled instructions.
819 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
820 if (Indexes && Indexes->hasIndex(*MI)) {
821 SlotIndex idx = Indexes->getInstructionIndex(*MI);
822 if (!(idx > lastIndex)) {
823 report("Instruction index out of order", MI);
824 errs() << "Last instruction was at " << lastIndex << '\n';
826 lastIndex = idx;
829 // Ensure non-terminators don't follow terminators.
830 // Ignore predicated terminators formed by if conversion.
831 // FIXME: If conversion shouldn't need to violate this rule.
832 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
833 if (!FirstTerminator)
834 FirstTerminator = MI;
835 } else if (FirstTerminator) {
836 report("Non-terminator instruction after the first terminator", MI);
837 errs() << "First terminator was:\t" << *FirstTerminator;
841 // The operands on an INLINEASM instruction must follow a template.
842 // Verify that the flag operands make sense.
843 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
844 // The first two operands on INLINEASM are the asm string and global flags.
845 if (MI->getNumOperands() < 2) {
846 report("Too few operands on inline asm", MI);
847 return;
849 if (!MI->getOperand(0).isSymbol())
850 report("Asm string must be an external symbol", MI);
851 if (!MI->getOperand(1).isImm())
852 report("Asm flags must be an immediate", MI);
853 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
854 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
855 // and Extra_IsConvergent = 32.
856 if (!isUInt<6>(MI->getOperand(1).getImm()))
857 report("Unknown asm flags", &MI->getOperand(1), 1);
859 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
861 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
862 unsigned NumOps;
863 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
864 const MachineOperand &MO = MI->getOperand(OpNo);
865 // There may be implicit ops after the fixed operands.
866 if (!MO.isImm())
867 break;
868 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
871 if (OpNo > MI->getNumOperands())
872 report("Missing operands in last group", MI);
874 // An optional MDNode follows the groups.
875 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
876 ++OpNo;
878 // All trailing operands must be implicit registers.
879 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
880 const MachineOperand &MO = MI->getOperand(OpNo);
881 if (!MO.isReg() || !MO.isImplicit())
882 report("Expected implicit register after groups", &MO, OpNo);
886 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
887 const MCInstrDesc &MCID = MI->getDesc();
888 if (MI->getNumOperands() < MCID.getNumOperands()) {
889 report("Too few operands", MI);
890 errs() << MCID.getNumOperands() << " operands expected, but "
891 << MI->getNumOperands() << " given.\n";
894 if (MI->isPHI()) {
895 if (MF->getProperties().hasProperty(
896 MachineFunctionProperties::Property::NoPHIs))
897 report("Found PHI instruction with NoPHIs property set", MI);
899 if (FirstNonPHI)
900 report("Found PHI instruction after non-PHI", MI);
901 } else if (FirstNonPHI == nullptr)
902 FirstNonPHI = MI;
904 // Check the tied operands.
905 if (MI->isInlineAsm())
906 verifyInlineAsm(MI);
908 // Check the MachineMemOperands for basic consistency.
909 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
910 E = MI->memoperands_end();
911 I != E; ++I) {
912 if ((*I)->isLoad() && !MI->mayLoad())
913 report("Missing mayLoad flag", MI);
914 if ((*I)->isStore() && !MI->mayStore())
915 report("Missing mayStore flag", MI);
918 // Debug values must not have a slot index.
919 // Other instructions must have one, unless they are inside a bundle.
920 if (LiveInts) {
921 bool mapped = !LiveInts->isNotInMIMap(*MI);
922 if (MI->isDebugInstr()) {
923 if (mapped)
924 report("Debug instruction has a slot index", MI);
925 } else if (MI->isInsideBundle()) {
926 if (mapped)
927 report("Instruction inside bundle has a slot index", MI);
928 } else {
929 if (!mapped)
930 report("Missing slot index", MI);
934 if (isPreISelGenericOpcode(MCID.getOpcode())) {
935 if (isFunctionSelected)
936 report("Unexpected generic instruction in a Selected function", MI);
938 // Check types.
939 SmallVector<LLT, 4> Types;
940 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
941 if (!MCID.OpInfo[I].isGenericType())
942 continue;
943 // Generic instructions specify type equality constraints between some of
944 // their operands. Make sure these are consistent.
945 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
946 Types.resize(std::max(TypeIdx + 1, Types.size()));
948 const MachineOperand *MO = &MI->getOperand(I);
949 LLT OpTy = MRI->getType(MO->getReg());
950 // Don't report a type mismatch if there is no actual mismatch, only a
951 // type missing, to reduce noise:
952 if (OpTy.isValid()) {
953 // Only the first valid type for a type index will be printed: don't
954 // overwrite it later so it's always clear which type was expected:
955 if (!Types[TypeIdx].isValid())
956 Types[TypeIdx] = OpTy;
957 else if (Types[TypeIdx] != OpTy)
958 report("Type mismatch in generic instruction", MO, I, OpTy);
959 } else {
960 // Generic instructions must have types attached to their operands.
961 report("Generic instruction is missing a virtual register type", MO, I);
965 // Generic opcodes must not have physical register operands.
966 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
967 const MachineOperand *MO = &MI->getOperand(I);
968 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
969 report("Generic instruction cannot have physical register", MO, I);
973 StringRef ErrorInfo;
974 if (!TII->verifyInstruction(*MI, ErrorInfo))
975 report(ErrorInfo.data(), MI);
977 // Verify properties of various specific instruction types
978 switch(MI->getOpcode()) {
979 default:
980 break;
981 case TargetOpcode::G_LOAD:
982 case TargetOpcode::G_STORE:
983 // Generic loads and stores must have a single MachineMemOperand
984 // describing that access.
985 if (!MI->hasOneMemOperand())
986 report("Generic instruction accessing memory must have one mem operand",
987 MI);
988 break;
989 case TargetOpcode::G_PHI: {
990 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991 if (!DstTy.isValid() ||
992 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
993 [this, &DstTy](const MachineOperand &MO) {
994 if (!MO.isReg())
995 return true;
996 LLT Ty = MRI->getType(MO.getReg());
997 if (!Ty.isValid() || (Ty != DstTy))
998 return false;
999 return true;
1001 report("Generic Instruction G_PHI has operands with incompatible/missing "
1002 "types",
1003 MI);
1004 break;
1006 case TargetOpcode::G_SEXT:
1007 case TargetOpcode::G_ZEXT:
1008 case TargetOpcode::G_ANYEXT:
1009 case TargetOpcode::G_TRUNC:
1010 case TargetOpcode::G_FPEXT:
1011 case TargetOpcode::G_FPTRUNC: {
1012 // Number of operands and presense of types is already checked (and
1013 // reported in case of any issues), so no need to report them again. As
1014 // we're trying to report as many issues as possible at once, however, the
1015 // instructions aren't guaranteed to have the right number of operands or
1016 // types attached to them at this point
1017 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1018 if (MI->getNumOperands() < MCID.getNumOperands())
1019 break;
1020 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1021 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1022 if (!DstTy.isValid() || !SrcTy.isValid())
1023 break;
1025 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1026 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1027 if (DstElTy.isPointer() || SrcElTy.isPointer())
1028 report("Generic extend/truncate can not operate on pointers", MI);
1030 if (DstTy.isVector() != SrcTy.isVector()) {
1031 report("Generic extend/truncate must be all-vector or all-scalar", MI);
1032 // Generally we try to report as many issues as possible at once, but in
1033 // this case it's not clear what should we be comparing the size of the
1034 // scalar with: the size of the whole vector or its lane. Instead of
1035 // making an arbitrary choice and emitting not so helpful message, let's
1036 // avoid the extra noise and stop here.
1037 break;
1039 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1040 report("Generic vector extend/truncate must preserve number of lanes",
1041 MI);
1042 unsigned DstSize = DstElTy.getSizeInBits();
1043 unsigned SrcSize = SrcElTy.getSizeInBits();
1044 switch (MI->getOpcode()) {
1045 default:
1046 if (DstSize <= SrcSize)
1047 report("Generic extend has destination type no larger than source", MI);
1048 break;
1049 case TargetOpcode::G_TRUNC:
1050 case TargetOpcode::G_FPTRUNC:
1051 if (DstSize >= SrcSize)
1052 report("Generic truncate has destination type no smaller than source",
1053 MI);
1054 break;
1056 break;
1058 case TargetOpcode::COPY: {
1059 if (foundErrors)
1060 break;
1061 const MachineOperand &DstOp = MI->getOperand(0);
1062 const MachineOperand &SrcOp = MI->getOperand(1);
1063 LLT DstTy = MRI->getType(DstOp.getReg());
1064 LLT SrcTy = MRI->getType(SrcOp.getReg());
1065 if (SrcTy.isValid() && DstTy.isValid()) {
1066 // If both types are valid, check that the types are the same.
1067 if (SrcTy != DstTy) {
1068 report("Copy Instruction is illegal with mismatching types", MI);
1069 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1072 if (SrcTy.isValid() || DstTy.isValid()) {
1073 // If one of them have valid types, let's just check they have the same
1074 // size.
1075 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1076 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1077 assert(SrcSize && "Expecting size here");
1078 assert(DstSize && "Expecting size here");
1079 if (SrcSize != DstSize)
1080 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1081 report("Copy Instruction is illegal with mismatching sizes", MI);
1082 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1083 << "\n";
1086 break;
1088 case TargetOpcode::STATEPOINT:
1089 if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1090 !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1091 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1092 report("meta operands to STATEPOINT not constant!", MI);
1093 break;
1095 auto VerifyStackMapConstant = [&](unsigned Offset) {
1096 if (!MI->getOperand(Offset).isImm() ||
1097 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1098 !MI->getOperand(Offset + 1).isImm())
1099 report("stack map constant to STATEPOINT not well formed!", MI);
1101 const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1102 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1103 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1104 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1106 // TODO: verify we have properly encoded deopt arguments
1110 void
1111 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1112 const MachineInstr *MI = MO->getParent();
1113 const MCInstrDesc &MCID = MI->getDesc();
1114 unsigned NumDefs = MCID.getNumDefs();
1115 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1116 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1118 // The first MCID.NumDefs operands must be explicit register defines
1119 if (MONum < NumDefs) {
1120 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1121 if (!MO->isReg())
1122 report("Explicit definition must be a register", MO, MONum);
1123 else if (!MO->isDef() && !MCOI.isOptionalDef())
1124 report("Explicit definition marked as use", MO, MONum);
1125 else if (MO->isImplicit())
1126 report("Explicit definition marked as implicit", MO, MONum);
1127 } else if (MONum < MCID.getNumOperands()) {
1128 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1129 // Don't check if it's the last operand in a variadic instruction. See,
1130 // e.g., LDM_RET in the arm back end.
1131 if (MO->isReg() &&
1132 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1133 if (MO->isDef() && !MCOI.isOptionalDef())
1134 report("Explicit operand marked as def", MO, MONum);
1135 if (MO->isImplicit())
1136 report("Explicit operand marked as implicit", MO, MONum);
1139 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1140 if (TiedTo != -1) {
1141 if (!MO->isReg())
1142 report("Tied use must be a register", MO, MONum);
1143 else if (!MO->isTied())
1144 report("Operand should be tied", MO, MONum);
1145 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1146 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1147 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1148 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1149 if (!MOTied.isReg())
1150 report("Tied counterpart must be a register", &MOTied, TiedTo);
1151 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1152 MO->getReg() != MOTied.getReg())
1153 report("Tied physical registers must match.", &MOTied, TiedTo);
1155 } else if (MO->isReg() && MO->isTied())
1156 report("Explicit operand should not be tied", MO, MONum);
1157 } else {
1158 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1159 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1160 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1163 switch (MO->getType()) {
1164 case MachineOperand::MO_Register: {
1165 const unsigned Reg = MO->getReg();
1166 if (!Reg)
1167 return;
1168 if (MRI->tracksLiveness() && !MI->isDebugValue())
1169 checkLiveness(MO, MONum);
1171 // Verify the consistency of tied operands.
1172 if (MO->isTied()) {
1173 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1174 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1175 if (!OtherMO.isReg())
1176 report("Must be tied to a register", MO, MONum);
1177 if (!OtherMO.isTied())
1178 report("Missing tie flags on tied operand", MO, MONum);
1179 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1180 report("Inconsistent tie links", MO, MONum);
1181 if (MONum < MCID.getNumDefs()) {
1182 if (OtherIdx < MCID.getNumOperands()) {
1183 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1184 report("Explicit def tied to explicit use without tie constraint",
1185 MO, MONum);
1186 } else {
1187 if (!OtherMO.isImplicit())
1188 report("Explicit def should be tied to implicit use", MO, MONum);
1193 // Verify two-address constraints after leaving SSA form.
1194 unsigned DefIdx;
1195 if (!MRI->isSSA() && MO->isUse() &&
1196 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1197 Reg != MI->getOperand(DefIdx).getReg())
1198 report("Two-address instruction operands must be identical", MO, MONum);
1200 // Check register classes.
1201 unsigned SubIdx = MO->getSubReg();
1203 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1204 if (SubIdx) {
1205 report("Illegal subregister index for physical register", MO, MONum);
1206 return;
1208 if (MONum < MCID.getNumOperands()) {
1209 if (const TargetRegisterClass *DRC =
1210 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1211 if (!DRC->contains(Reg)) {
1212 report("Illegal physical register for instruction", MO, MONum);
1213 errs() << printReg(Reg, TRI) << " is not a "
1214 << TRI->getRegClassName(DRC) << " register.\n";
1218 if (MO->isRenamable()) {
1219 if (MRI->isReserved(Reg)) {
1220 report("isRenamable set on reserved register", MO, MONum);
1221 return;
1224 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1225 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1226 return;
1228 } else {
1229 // Virtual register.
1230 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1231 if (!RC) {
1232 // This is a generic virtual register.
1234 // If we're post-Select, we can't have gvregs anymore.
1235 if (isFunctionSelected) {
1236 report("Generic virtual register invalid in a Selected function",
1237 MO, MONum);
1238 return;
1241 // The gvreg must have a type and it must not have a SubIdx.
1242 LLT Ty = MRI->getType(Reg);
1243 if (!Ty.isValid()) {
1244 report("Generic virtual register must have a valid type", MO,
1245 MONum);
1246 return;
1249 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1251 // If we're post-RegBankSelect, the gvreg must have a bank.
1252 if (!RegBank && isFunctionRegBankSelected) {
1253 report("Generic virtual register must have a bank in a "
1254 "RegBankSelected function",
1255 MO, MONum);
1256 return;
1259 // Make sure the register fits into its register bank if any.
1260 if (RegBank && Ty.isValid() &&
1261 RegBank->getSize() < Ty.getSizeInBits()) {
1262 report("Register bank is too small for virtual register", MO,
1263 MONum);
1264 errs() << "Register bank " << RegBank->getName() << " too small("
1265 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1266 << "-bits\n";
1267 return;
1269 if (SubIdx) {
1270 report("Generic virtual register does not subregister index", MO,
1271 MONum);
1272 return;
1275 // If this is a target specific instruction and this operand
1276 // has register class constraint, the virtual register must
1277 // comply to it.
1278 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1279 MONum < MCID.getNumOperands() &&
1280 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1281 report("Virtual register does not match instruction constraint", MO,
1282 MONum);
1283 errs() << "Expect register class "
1284 << TRI->getRegClassName(
1285 TII->getRegClass(MCID, MONum, TRI, *MF))
1286 << " but got nothing\n";
1287 return;
1290 break;
1292 if (SubIdx) {
1293 const TargetRegisterClass *SRC =
1294 TRI->getSubClassWithSubReg(RC, SubIdx);
1295 if (!SRC) {
1296 report("Invalid subregister index for virtual register", MO, MONum);
1297 errs() << "Register class " << TRI->getRegClassName(RC)
1298 << " does not support subreg index " << SubIdx << "\n";
1299 return;
1301 if (RC != SRC) {
1302 report("Invalid register class for subregister index", MO, MONum);
1303 errs() << "Register class " << TRI->getRegClassName(RC)
1304 << " does not fully support subreg index " << SubIdx << "\n";
1305 return;
1308 if (MONum < MCID.getNumOperands()) {
1309 if (const TargetRegisterClass *DRC =
1310 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1311 if (SubIdx) {
1312 const TargetRegisterClass *SuperRC =
1313 TRI->getLargestLegalSuperClass(RC, *MF);
1314 if (!SuperRC) {
1315 report("No largest legal super class exists.", MO, MONum);
1316 return;
1318 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1319 if (!DRC) {
1320 report("No matching super-reg register class.", MO, MONum);
1321 return;
1324 if (!RC->hasSuperClassEq(DRC)) {
1325 report("Illegal virtual register for instruction", MO, MONum);
1326 errs() << "Expected a " << TRI->getRegClassName(DRC)
1327 << " register, but got a " << TRI->getRegClassName(RC)
1328 << " register\n";
1333 break;
1336 case MachineOperand::MO_RegisterMask:
1337 regMasks.push_back(MO->getRegMask());
1338 break;
1340 case MachineOperand::MO_MachineBasicBlock:
1341 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1342 report("PHI operand is not in the CFG", MO, MONum);
1343 break;
1345 case MachineOperand::MO_FrameIndex:
1346 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1347 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1348 int FI = MO->getIndex();
1349 LiveInterval &LI = LiveStks->getInterval(FI);
1350 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1352 bool stores = MI->mayStore();
1353 bool loads = MI->mayLoad();
1354 // For a memory-to-memory move, we need to check if the frame
1355 // index is used for storing or loading, by inspecting the
1356 // memory operands.
1357 if (stores && loads) {
1358 for (auto *MMO : MI->memoperands()) {
1359 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1360 if (PSV == nullptr) continue;
1361 const FixedStackPseudoSourceValue *Value =
1362 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1363 if (Value == nullptr) continue;
1364 if (Value->getFrameIndex() != FI) continue;
1366 if (MMO->isStore())
1367 loads = false;
1368 else
1369 stores = false;
1370 break;
1372 if (loads == stores)
1373 report("Missing fixed stack memoperand.", MI);
1375 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1376 report("Instruction loads from dead spill slot", MO, MONum);
1377 errs() << "Live stack: " << LI << '\n';
1379 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1380 report("Instruction stores to dead spill slot", MO, MONum);
1381 errs() << "Live stack: " << LI << '\n';
1384 break;
1386 default:
1387 break;
1391 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1392 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1393 LaneBitmask LaneMask) {
1394 LiveQueryResult LRQ = LR.Query(UseIdx);
1395 // Check if we have a segment at the use, note however that we only need one
1396 // live subregister range, the others may be dead.
1397 if (!LRQ.valueIn() && LaneMask.none()) {
1398 report("No live segment at use", MO, MONum);
1399 report_context_liverange(LR);
1400 report_context_vreg_regunit(VRegOrUnit);
1401 report_context(UseIdx);
1403 if (MO->isKill() && !LRQ.isKill()) {
1404 report("Live range continues after kill flag", MO, MONum);
1405 report_context_liverange(LR);
1406 report_context_vreg_regunit(VRegOrUnit);
1407 if (LaneMask.any())
1408 report_context_lanemask(LaneMask);
1409 report_context(UseIdx);
1413 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1414 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1415 bool SubRangeCheck, LaneBitmask LaneMask) {
1416 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1417 assert(VNI && "NULL valno is not allowed");
1418 if (VNI->def != DefIdx) {
1419 report("Inconsistent valno->def", MO, MONum);
1420 report_context_liverange(LR);
1421 report_context_vreg_regunit(VRegOrUnit);
1422 if (LaneMask.any())
1423 report_context_lanemask(LaneMask);
1424 report_context(*VNI);
1425 report_context(DefIdx);
1427 } else {
1428 report("No live segment at def", MO, MONum);
1429 report_context_liverange(LR);
1430 report_context_vreg_regunit(VRegOrUnit);
1431 if (LaneMask.any())
1432 report_context_lanemask(LaneMask);
1433 report_context(DefIdx);
1435 // Check that, if the dead def flag is present, LiveInts agree.
1436 if (MO->isDead()) {
1437 LiveQueryResult LRQ = LR.Query(DefIdx);
1438 if (!LRQ.isDeadDef()) {
1439 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1440 "Expecting a virtual register.");
1441 // A dead subreg def only tells us that the specific subreg is dead. There
1442 // could be other non-dead defs of other subregs, or we could have other
1443 // parts of the register being live through the instruction. So unless we
1444 // are checking liveness for a subrange it is ok for the live range to
1445 // continue, given that we have a dead def of a subregister.
1446 if (SubRangeCheck || MO->getSubReg() == 0) {
1447 report("Live range continues after dead def flag", MO, MONum);
1448 report_context_liverange(LR);
1449 report_context_vreg_regunit(VRegOrUnit);
1450 if (LaneMask.any())
1451 report_context_lanemask(LaneMask);
1457 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1458 const MachineInstr *MI = MO->getParent();
1459 const unsigned Reg = MO->getReg();
1461 // Both use and def operands can read a register.
1462 if (MO->readsReg()) {
1463 if (MO->isKill())
1464 addRegWithSubRegs(regsKilled, Reg);
1466 // Check that LiveVars knows this kill.
1467 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1468 MO->isKill()) {
1469 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1470 if (!is_contained(VI.Kills, MI))
1471 report("Kill missing from LiveVariables", MO, MONum);
1474 // Check LiveInts liveness and kill.
1475 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1476 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1477 // Check the cached regunit intervals.
1478 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1479 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1480 if (MRI->isReservedRegUnit(*Units))
1481 continue;
1482 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1483 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1487 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1488 if (LiveInts->hasInterval(Reg)) {
1489 // This is a virtual register interval.
1490 const LiveInterval &LI = LiveInts->getInterval(Reg);
1491 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1493 if (LI.hasSubRanges() && !MO->isDef()) {
1494 unsigned SubRegIdx = MO->getSubReg();
1495 LaneBitmask MOMask = SubRegIdx != 0
1496 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1497 : MRI->getMaxLaneMaskForVReg(Reg);
1498 LaneBitmask LiveInMask;
1499 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1500 if ((MOMask & SR.LaneMask).none())
1501 continue;
1502 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1503 LiveQueryResult LRQ = SR.Query(UseIdx);
1504 if (LRQ.valueIn())
1505 LiveInMask |= SR.LaneMask;
1507 // At least parts of the register has to be live at the use.
1508 if ((LiveInMask & MOMask).none()) {
1509 report("No live subrange at use", MO, MONum);
1510 report_context(LI);
1511 report_context(UseIdx);
1514 } else {
1515 report("Virtual register has no live interval", MO, MONum);
1520 // Use of a dead register.
1521 if (!regsLive.count(Reg)) {
1522 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1523 // Reserved registers may be used even when 'dead'.
1524 bool Bad = !isReserved(Reg);
1525 // We are fine if just any subregister has a defined value.
1526 if (Bad) {
1527 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1528 ++SubRegs) {
1529 if (regsLive.count(*SubRegs)) {
1530 Bad = false;
1531 break;
1535 // If there is an additional implicit-use of a super register we stop
1536 // here. By definition we are fine if the super register is not
1537 // (completely) dead, if the complete super register is dead we will
1538 // get a report for its operand.
1539 if (Bad) {
1540 for (const MachineOperand &MOP : MI->uses()) {
1541 if (!MOP.isReg() || !MOP.isImplicit())
1542 continue;
1544 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1545 continue;
1547 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1548 ++SubRegs) {
1549 if (*SubRegs == Reg) {
1550 Bad = false;
1551 break;
1556 if (Bad)
1557 report("Using an undefined physical register", MO, MONum);
1558 } else if (MRI->def_empty(Reg)) {
1559 report("Reading virtual register without a def", MO, MONum);
1560 } else {
1561 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1562 // We don't know which virtual registers are live in, so only complain
1563 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1564 // must be live in. PHI instructions are handled separately.
1565 if (MInfo.regsKilled.count(Reg))
1566 report("Using a killed virtual register", MO, MONum);
1567 else if (!MI->isPHI())
1568 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1573 if (MO->isDef()) {
1574 // Register defined.
1575 // TODO: verify that earlyclobber ops are not used.
1576 if (MO->isDead())
1577 addRegWithSubRegs(regsDead, Reg);
1578 else
1579 addRegWithSubRegs(regsDefined, Reg);
1581 // Verify SSA form.
1582 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1583 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1584 report("Multiple virtual register defs in SSA form", MO, MONum);
1586 // Check LiveInts for a live segment, but only for virtual registers.
1587 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1588 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1589 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1591 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1592 if (LiveInts->hasInterval(Reg)) {
1593 const LiveInterval &LI = LiveInts->getInterval(Reg);
1594 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1596 if (LI.hasSubRanges()) {
1597 unsigned SubRegIdx = MO->getSubReg();
1598 LaneBitmask MOMask = SubRegIdx != 0
1599 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1600 : MRI->getMaxLaneMaskForVReg(Reg);
1601 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1602 if ((SR.LaneMask & MOMask).none())
1603 continue;
1604 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1607 } else {
1608 report("Virtual register has no Live interval", MO, MONum);
1615 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1617 // This function gets called after visiting all instructions in a bundle. The
1618 // argument points to the bundle header.
1619 // Normal stand-alone instructions are also considered 'bundles', and this
1620 // function is called for all of them.
1621 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1622 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1623 set_union(MInfo.regsKilled, regsKilled);
1624 set_subtract(regsLive, regsKilled); regsKilled.clear();
1625 // Kill any masked registers.
1626 while (!regMasks.empty()) {
1627 const uint32_t *Mask = regMasks.pop_back_val();
1628 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1629 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1630 MachineOperand::clobbersPhysReg(Mask, *I))
1631 regsDead.push_back(*I);
1633 set_subtract(regsLive, regsDead); regsDead.clear();
1634 set_union(regsLive, regsDefined); regsDefined.clear();
1637 void
1638 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1639 MBBInfoMap[MBB].regsLiveOut = regsLive;
1640 regsLive.clear();
1642 if (Indexes) {
1643 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1644 if (!(stop > lastIndex)) {
1645 report("Block ends before last instruction index", MBB);
1646 errs() << "Block ends at " << stop
1647 << " last instruction was at " << lastIndex << '\n';
1649 lastIndex = stop;
1653 // Calculate the largest possible vregsPassed sets. These are the registers that
1654 // can pass through an MBB live, but may not be live every time. It is assumed
1655 // that all vregsPassed sets are empty before the call.
1656 void MachineVerifier::calcRegsPassed() {
1657 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1658 // have any vregsPassed.
1659 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1660 for (const auto &MBB : *MF) {
1661 BBInfo &MInfo = MBBInfoMap[&MBB];
1662 if (!MInfo.reachable)
1663 continue;
1664 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1665 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1666 BBInfo &SInfo = MBBInfoMap[*SuI];
1667 if (SInfo.addPassed(MInfo.regsLiveOut))
1668 todo.insert(*SuI);
1672 // Iteratively push vregsPassed to successors. This will converge to the same
1673 // final state regardless of DenseSet iteration order.
1674 while (!todo.empty()) {
1675 const MachineBasicBlock *MBB = *todo.begin();
1676 todo.erase(MBB);
1677 BBInfo &MInfo = MBBInfoMap[MBB];
1678 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1679 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1680 if (*SuI == MBB)
1681 continue;
1682 BBInfo &SInfo = MBBInfoMap[*SuI];
1683 if (SInfo.addPassed(MInfo.vregsPassed))
1684 todo.insert(*SuI);
1689 // Calculate the set of virtual registers that must be passed through each basic
1690 // block in order to satisfy the requirements of successor blocks. This is very
1691 // similar to calcRegsPassed, only backwards.
1692 void MachineVerifier::calcRegsRequired() {
1693 // First push live-in regs to predecessors' vregsRequired.
1694 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1695 for (const auto &MBB : *MF) {
1696 BBInfo &MInfo = MBBInfoMap[&MBB];
1697 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1698 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1699 BBInfo &PInfo = MBBInfoMap[*PrI];
1700 if (PInfo.addRequired(MInfo.vregsLiveIn))
1701 todo.insert(*PrI);
1705 // Iteratively push vregsRequired to predecessors. This will converge to the
1706 // same final state regardless of DenseSet iteration order.
1707 while (!todo.empty()) {
1708 const MachineBasicBlock *MBB = *todo.begin();
1709 todo.erase(MBB);
1710 BBInfo &MInfo = MBBInfoMap[MBB];
1711 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1712 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1713 if (*PrI == MBB)
1714 continue;
1715 BBInfo &SInfo = MBBInfoMap[*PrI];
1716 if (SInfo.addRequired(MInfo.vregsRequired))
1717 todo.insert(*PrI);
1722 // Check PHI instructions at the beginning of MBB. It is assumed that
1723 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1724 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1725 BBInfo &MInfo = MBBInfoMap[&MBB];
1727 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1728 for (const MachineInstr &Phi : MBB) {
1729 if (!Phi.isPHI())
1730 break;
1731 seen.clear();
1733 const MachineOperand &MODef = Phi.getOperand(0);
1734 if (!MODef.isReg() || !MODef.isDef()) {
1735 report("Expected first PHI operand to be a register def", &MODef, 0);
1736 continue;
1738 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1739 MODef.isEarlyClobber() || MODef.isDebug())
1740 report("Unexpected flag on PHI operand", &MODef, 0);
1741 unsigned DefReg = MODef.getReg();
1742 if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1743 report("Expected first PHI operand to be a virtual register", &MODef, 0);
1745 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1746 const MachineOperand &MO0 = Phi.getOperand(I);
1747 if (!MO0.isReg()) {
1748 report("Expected PHI operand to be a register", &MO0, I);
1749 continue;
1751 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1752 MO0.isDebug() || MO0.isTied())
1753 report("Unexpected flag on PHI operand", &MO0, I);
1755 const MachineOperand &MO1 = Phi.getOperand(I + 1);
1756 if (!MO1.isMBB()) {
1757 report("Expected PHI operand to be a basic block", &MO1, I + 1);
1758 continue;
1761 const MachineBasicBlock &Pre = *MO1.getMBB();
1762 if (!Pre.isSuccessor(&MBB)) {
1763 report("PHI input is not a predecessor block", &MO1, I + 1);
1764 continue;
1767 if (MInfo.reachable) {
1768 seen.insert(&Pre);
1769 BBInfo &PrInfo = MBBInfoMap[&Pre];
1770 if (!MO0.isUndef() && PrInfo.reachable &&
1771 !PrInfo.isLiveOut(MO0.getReg()))
1772 report("PHI operand is not live-out from predecessor", &MO0, I);
1776 // Did we see all predecessors?
1777 if (MInfo.reachable) {
1778 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1779 if (!seen.count(Pred)) {
1780 report("Missing PHI operand", &Phi);
1781 errs() << printMBBReference(*Pred)
1782 << " is a predecessor according to the CFG.\n";
1789 void MachineVerifier::visitMachineFunctionAfter() {
1790 calcRegsPassed();
1792 for (const MachineBasicBlock &MBB : *MF)
1793 checkPHIOps(MBB);
1795 // Now check liveness info if available
1796 calcRegsRequired();
1798 // Check for killed virtual registers that should be live out.
1799 for (const auto &MBB : *MF) {
1800 BBInfo &MInfo = MBBInfoMap[&MBB];
1801 for (RegSet::iterator
1802 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1803 ++I)
1804 if (MInfo.regsKilled.count(*I)) {
1805 report("Virtual register killed in block, but needed live out.", &MBB);
1806 errs() << "Virtual register " << printReg(*I)
1807 << " is used after the block.\n";
1811 if (!MF->empty()) {
1812 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1813 for (RegSet::iterator
1814 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1815 ++I) {
1816 report("Virtual register defs don't dominate all uses.", MF);
1817 report_context_vreg(*I);
1821 if (LiveVars)
1822 verifyLiveVariables();
1823 if (LiveInts)
1824 verifyLiveIntervals();
1827 void MachineVerifier::verifyLiveVariables() {
1828 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1829 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1830 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1831 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1832 for (const auto &MBB : *MF) {
1833 BBInfo &MInfo = MBBInfoMap[&MBB];
1835 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1836 if (MInfo.vregsRequired.count(Reg)) {
1837 if (!VI.AliveBlocks.test(MBB.getNumber())) {
1838 report("LiveVariables: Block missing from AliveBlocks", &MBB);
1839 errs() << "Virtual register " << printReg(Reg)
1840 << " must be live through the block.\n";
1842 } else {
1843 if (VI.AliveBlocks.test(MBB.getNumber())) {
1844 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1845 errs() << "Virtual register " << printReg(Reg)
1846 << " is not needed live through the block.\n";
1853 void MachineVerifier::verifyLiveIntervals() {
1854 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1855 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1856 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1858 // Spilling and splitting may leave unused registers around. Skip them.
1859 if (MRI->reg_nodbg_empty(Reg))
1860 continue;
1862 if (!LiveInts->hasInterval(Reg)) {
1863 report("Missing live interval for virtual register", MF);
1864 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1865 continue;
1868 const LiveInterval &LI = LiveInts->getInterval(Reg);
1869 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1870 verifyLiveInterval(LI);
1873 // Verify all the cached regunit intervals.
1874 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1875 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1876 verifyLiveRange(*LR, i);
1879 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1880 const VNInfo *VNI, unsigned Reg,
1881 LaneBitmask LaneMask) {
1882 if (VNI->isUnused())
1883 return;
1885 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1887 if (!DefVNI) {
1888 report("Value not live at VNInfo def and not marked unused", MF);
1889 report_context(LR, Reg, LaneMask);
1890 report_context(*VNI);
1891 return;
1894 if (DefVNI != VNI) {
1895 report("Live segment at def has different VNInfo", MF);
1896 report_context(LR, Reg, LaneMask);
1897 report_context(*VNI);
1898 return;
1901 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1902 if (!MBB) {
1903 report("Invalid VNInfo definition index", MF);
1904 report_context(LR, Reg, LaneMask);
1905 report_context(*VNI);
1906 return;
1909 if (VNI->isPHIDef()) {
1910 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1911 report("PHIDef VNInfo is not defined at MBB start", MBB);
1912 report_context(LR, Reg, LaneMask);
1913 report_context(*VNI);
1915 return;
1918 // Non-PHI def.
1919 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1920 if (!MI) {
1921 report("No instruction at VNInfo def index", MBB);
1922 report_context(LR, Reg, LaneMask);
1923 report_context(*VNI);
1924 return;
1927 if (Reg != 0) {
1928 bool hasDef = false;
1929 bool isEarlyClobber = false;
1930 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
1931 if (!MOI->isReg() || !MOI->isDef())
1932 continue;
1933 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1934 if (MOI->getReg() != Reg)
1935 continue;
1936 } else {
1937 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1938 !TRI->hasRegUnit(MOI->getReg(), Reg))
1939 continue;
1941 if (LaneMask.any() &&
1942 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
1943 continue;
1944 hasDef = true;
1945 if (MOI->isEarlyClobber())
1946 isEarlyClobber = true;
1949 if (!hasDef) {
1950 report("Defining instruction does not modify register", MI);
1951 report_context(LR, Reg, LaneMask);
1952 report_context(*VNI);
1955 // Early clobber defs begin at USE slots, but other defs must begin at
1956 // DEF slots.
1957 if (isEarlyClobber) {
1958 if (!VNI->def.isEarlyClobber()) {
1959 report("Early clobber def must be at an early-clobber slot", MBB);
1960 report_context(LR, Reg, LaneMask);
1961 report_context(*VNI);
1963 } else if (!VNI->def.isRegister()) {
1964 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
1965 report_context(LR, Reg, LaneMask);
1966 report_context(*VNI);
1971 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1972 const LiveRange::const_iterator I,
1973 unsigned Reg, LaneBitmask LaneMask)
1975 const LiveRange::Segment &S = *I;
1976 const VNInfo *VNI = S.valno;
1977 assert(VNI && "Live segment has no valno");
1979 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1980 report("Foreign valno in live segment", MF);
1981 report_context(LR, Reg, LaneMask);
1982 report_context(S);
1983 report_context(*VNI);
1986 if (VNI->isUnused()) {
1987 report("Live segment valno is marked unused", MF);
1988 report_context(LR, Reg, LaneMask);
1989 report_context(S);
1992 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1993 if (!MBB) {
1994 report("Bad start of live segment, no basic block", MF);
1995 report_context(LR, Reg, LaneMask);
1996 report_context(S);
1997 return;
1999 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2000 if (S.start != MBBStartIdx && S.start != VNI->def) {
2001 report("Live segment must begin at MBB entry or valno def", MBB);
2002 report_context(LR, Reg, LaneMask);
2003 report_context(S);
2006 const MachineBasicBlock *EndMBB =
2007 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2008 if (!EndMBB) {
2009 report("Bad end of live segment, no basic block", MF);
2010 report_context(LR, Reg, LaneMask);
2011 report_context(S);
2012 return;
2015 // No more checks for live-out segments.
2016 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2017 return;
2019 // RegUnit intervals are allowed dead phis.
2020 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2021 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2022 return;
2024 // The live segment is ending inside EndMBB
2025 const MachineInstr *MI =
2026 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2027 if (!MI) {
2028 report("Live segment doesn't end at a valid instruction", EndMBB);
2029 report_context(LR, Reg, LaneMask);
2030 report_context(S);
2031 return;
2034 // The block slot must refer to a basic block boundary.
2035 if (S.end.isBlock()) {
2036 report("Live segment ends at B slot of an instruction", EndMBB);
2037 report_context(LR, Reg, LaneMask);
2038 report_context(S);
2041 if (S.end.isDead()) {
2042 // Segment ends on the dead slot.
2043 // That means there must be a dead def.
2044 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2045 report("Live segment ending at dead slot spans instructions", EndMBB);
2046 report_context(LR, Reg, LaneMask);
2047 report_context(S);
2051 // A live segment can only end at an early-clobber slot if it is being
2052 // redefined by an early-clobber def.
2053 if (S.end.isEarlyClobber()) {
2054 if (I+1 == LR.end() || (I+1)->start != S.end) {
2055 report("Live segment ending at early clobber slot must be "
2056 "redefined by an EC def in the same instruction", EndMBB);
2057 report_context(LR, Reg, LaneMask);
2058 report_context(S);
2062 // The following checks only apply to virtual registers. Physreg liveness
2063 // is too weird to check.
2064 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2065 // A live segment can end with either a redefinition, a kill flag on a
2066 // use, or a dead flag on a def.
2067 bool hasRead = false;
2068 bool hasSubRegDef = false;
2069 bool hasDeadDef = false;
2070 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2071 if (!MOI->isReg() || MOI->getReg() != Reg)
2072 continue;
2073 unsigned Sub = MOI->getSubReg();
2074 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2075 : LaneBitmask::getAll();
2076 if (MOI->isDef()) {
2077 if (Sub != 0) {
2078 hasSubRegDef = true;
2079 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2080 // mask for subregister defs. Read-undef defs will be handled by
2081 // readsReg below.
2082 SLM = ~SLM;
2084 if (MOI->isDead())
2085 hasDeadDef = true;
2087 if (LaneMask.any() && (LaneMask & SLM).none())
2088 continue;
2089 if (MOI->readsReg())
2090 hasRead = true;
2092 if (S.end.isDead()) {
2093 // Make sure that the corresponding machine operand for a "dead" live
2094 // range has the dead flag. We cannot perform this check for subregister
2095 // liveranges as partially dead values are allowed.
2096 if (LaneMask.none() && !hasDeadDef) {
2097 report("Instruction ending live segment on dead slot has no dead flag",
2098 MI);
2099 report_context(LR, Reg, LaneMask);
2100 report_context(S);
2102 } else {
2103 if (!hasRead) {
2104 // When tracking subregister liveness, the main range must start new
2105 // values on partial register writes, even if there is no read.
2106 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2107 !hasSubRegDef) {
2108 report("Instruction ending live segment doesn't read the register",
2109 MI);
2110 report_context(LR, Reg, LaneMask);
2111 report_context(S);
2117 // Now check all the basic blocks in this live segment.
2118 MachineFunction::const_iterator MFI = MBB->getIterator();
2119 // Is this live segment the beginning of a non-PHIDef VN?
2120 if (S.start == VNI->def && !VNI->isPHIDef()) {
2121 // Not live-in to any blocks.
2122 if (MBB == EndMBB)
2123 return;
2124 // Skip this block.
2125 ++MFI;
2128 SmallVector<SlotIndex, 4> Undefs;
2129 if (LaneMask.any()) {
2130 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2131 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2134 while (true) {
2135 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2136 // We don't know how to track physregs into a landing pad.
2137 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2138 MFI->isEHPad()) {
2139 if (&*MFI == EndMBB)
2140 break;
2141 ++MFI;
2142 continue;
2145 // Is VNI a PHI-def in the current block?
2146 bool IsPHI = VNI->isPHIDef() &&
2147 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2149 // Check that VNI is live-out of all predecessors.
2150 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2151 PE = MFI->pred_end(); PI != PE; ++PI) {
2152 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2153 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2155 // All predecessors must have a live-out value. However for a phi
2156 // instruction with subregister intervals
2157 // only one of the subregisters (not necessarily the current one) needs to
2158 // be defined.
2159 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2160 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2161 continue;
2162 report("Register not marked live out of predecessor", *PI);
2163 report_context(LR, Reg, LaneMask);
2164 report_context(*VNI);
2165 errs() << " live into " << printMBBReference(*MFI) << '@'
2166 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2167 << PEnd << '\n';
2168 continue;
2171 // Only PHI-defs can take different predecessor values.
2172 if (!IsPHI && PVNI != VNI) {
2173 report("Different value live out of predecessor", *PI);
2174 report_context(LR, Reg, LaneMask);
2175 errs() << "Valno #" << PVNI->id << " live out of "
2176 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2177 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2178 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2181 if (&*MFI == EndMBB)
2182 break;
2183 ++MFI;
2187 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2188 LaneBitmask LaneMask) {
2189 for (const VNInfo *VNI : LR.valnos)
2190 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2192 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2193 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2196 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2197 unsigned Reg = LI.reg;
2198 assert(TargetRegisterInfo::isVirtualRegister(Reg));
2199 verifyLiveRange(LI, Reg);
2201 LaneBitmask Mask;
2202 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2203 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2204 if ((Mask & SR.LaneMask).any()) {
2205 report("Lane masks of sub ranges overlap in live interval", MF);
2206 report_context(LI);
2208 if ((SR.LaneMask & ~MaxMask).any()) {
2209 report("Subrange lanemask is invalid", MF);
2210 report_context(LI);
2212 if (SR.empty()) {
2213 report("Subrange must not be empty", MF);
2214 report_context(SR, LI.reg, SR.LaneMask);
2216 Mask |= SR.LaneMask;
2217 verifyLiveRange(SR, LI.reg, SR.LaneMask);
2218 if (!LI.covers(SR)) {
2219 report("A Subrange is not covered by the main range", MF);
2220 report_context(LI);
2224 // Check the LI only has one connected component.
2225 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2226 unsigned NumComp = ConEQ.Classify(LI);
2227 if (NumComp > 1) {
2228 report("Multiple connected components in live interval", MF);
2229 report_context(LI);
2230 for (unsigned comp = 0; comp != NumComp; ++comp) {
2231 errs() << comp << ": valnos";
2232 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2233 E = LI.vni_end(); I!=E; ++I)
2234 if (comp == ConEQ.getEqClass(*I))
2235 errs() << ' ' << (*I)->id;
2236 errs() << '\n';
2241 namespace {
2243 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2244 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2245 // value is zero.
2246 // We use a bool plus an integer to capture the stack state.
2247 struct StackStateOfBB {
2248 StackStateOfBB() = default;
2249 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2250 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2251 ExitIsSetup(ExitSetup) {}
2253 // Can be negative, which means we are setting up a frame.
2254 int EntryValue = 0;
2255 int ExitValue = 0;
2256 bool EntryIsSetup = false;
2257 bool ExitIsSetup = false;
2260 } // end anonymous namespace
2262 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2263 /// by a FrameDestroy <n>, stack adjustments are identical on all
2264 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2265 void MachineVerifier::verifyStackFrame() {
2266 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2267 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2268 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2269 return;
2271 SmallVector<StackStateOfBB, 8> SPState;
2272 SPState.resize(MF->getNumBlockIDs());
2273 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2275 // Visit the MBBs in DFS order.
2276 for (df_ext_iterator<const MachineFunction *,
2277 df_iterator_default_set<const MachineBasicBlock *>>
2278 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2279 DFI != DFE; ++DFI) {
2280 const MachineBasicBlock *MBB = *DFI;
2282 StackStateOfBB BBState;
2283 // Check the exit state of the DFS stack predecessor.
2284 if (DFI.getPathLength() >= 2) {
2285 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2286 assert(Reachable.count(StackPred) &&
2287 "DFS stack predecessor is already visited.\n");
2288 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2289 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2290 BBState.ExitValue = BBState.EntryValue;
2291 BBState.ExitIsSetup = BBState.EntryIsSetup;
2294 // Update stack state by checking contents of MBB.
2295 for (const auto &I : *MBB) {
2296 if (I.getOpcode() == FrameSetupOpcode) {
2297 if (BBState.ExitIsSetup)
2298 report("FrameSetup is after another FrameSetup", &I);
2299 BBState.ExitValue -= TII->getFrameTotalSize(I);
2300 BBState.ExitIsSetup = true;
2303 if (I.getOpcode() == FrameDestroyOpcode) {
2304 int Size = TII->getFrameTotalSize(I);
2305 if (!BBState.ExitIsSetup)
2306 report("FrameDestroy is not after a FrameSetup", &I);
2307 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2308 BBState.ExitValue;
2309 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2310 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2311 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2312 << AbsSPAdj << ">.\n";
2314 BBState.ExitValue += Size;
2315 BBState.ExitIsSetup = false;
2318 SPState[MBB->getNumber()] = BBState;
2320 // Make sure the exit state of any predecessor is consistent with the entry
2321 // state.
2322 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2323 E = MBB->pred_end(); I != E; ++I) {
2324 if (Reachable.count(*I) &&
2325 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2326 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2327 report("The exit stack state of a predecessor is inconsistent.", MBB);
2328 errs() << "Predecessor " << printMBBReference(*(*I))
2329 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2330 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2331 << printMBBReference(*MBB) << " has entry state ("
2332 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2336 // Make sure the entry state of any successor is consistent with the exit
2337 // state.
2338 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2339 E = MBB->succ_end(); I != E; ++I) {
2340 if (Reachable.count(*I) &&
2341 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2342 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2343 report("The entry stack state of a successor is inconsistent.", MBB);
2344 errs() << "Successor " << printMBBReference(*(*I))
2345 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2346 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2347 << printMBBReference(*MBB) << " has exit state ("
2348 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2352 // Make sure a basic block with return ends with zero stack adjustment.
2353 if (!MBB->empty() && MBB->back().isReturn()) {
2354 if (BBState.ExitIsSetup)
2355 report("A return block ends with a FrameSetup.", MBB);
2356 if (BBState.ExitValue)
2357 report("A return block ends with a nonzero stack adjustment.", MBB);