1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This program is a utility that generates random .ll files to stress-test
11 // different components in LLVM.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/IR/Verifier.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FileSystem.h"
42 #include "llvm/Support/ManagedStatic.h"
43 #include "llvm/Support/PrettyStackTrace.h"
44 #include "llvm/Support/ToolOutputFile.h"
45 #include "llvm/Support/raw_ostream.h"
52 #include <system_error>
57 static cl::opt
<unsigned> SeedCL("seed",
58 cl::desc("Seed used for randomness"), cl::init(0));
60 static cl::opt
<unsigned> SizeCL("size",
61 cl::desc("The estimated size of the generated function (# of instrs)"),
64 static cl::opt
<std::string
>
65 OutputFilename("o", cl::desc("Override output filename"),
66 cl::value_desc("filename"));
68 static LLVMContext Context
;
72 template <> class parser
<Type
*> final
: public basic_parser
<Type
*> {
74 parser(Option
&O
) : basic_parser(O
) {}
76 // Parse options as IR types. Return true on error.
77 bool parse(Option
&O
, StringRef
, StringRef Arg
, Type
*&Value
) {
78 if (Arg
== "half") Value
= Type::getHalfTy(Context
);
79 else if (Arg
== "fp128") Value
= Type::getFP128Ty(Context
);
80 else if (Arg
== "x86_fp80") Value
= Type::getX86_FP80Ty(Context
);
81 else if (Arg
== "ppc_fp128") Value
= Type::getPPC_FP128Ty(Context
);
82 else if (Arg
== "x86_mmx") Value
= Type::getX86_MMXTy(Context
);
83 else if (Arg
.startswith("i")) {
85 Arg
.drop_front().getAsInteger(10, N
);
87 Value
= Type::getIntNTy(Context
, N
);
91 return O
.error("Invalid IR scalar type: '" + Arg
+ "'!");
95 StringRef
getValueName() const override
{ return "IR scalar type"; }
100 static cl::list
<Type
*> AdditionalScalarTypes("types", cl::CommaSeparated
,
101 cl::desc("Additional IR scalar types "
102 "(always includes i1, i8, i16, i32, i64, float and double)"));
106 /// A utility class to provide a pseudo-random number generator which is
107 /// the same across all platforms. This is somewhat close to the libc
108 /// implementation. Note: This is not a cryptographically secure pseudorandom
109 /// number generator.
113 Random(unsigned _seed
):Seed(_seed
) {}
115 /// Return a random integer, up to a
116 /// maximum of 2**19 - 1.
118 uint32_t Val
= Seed
+ 0x000b07a1;
119 Seed
= (Val
* 0x3c7c0ac1);
120 // Only lowest 19 bits are random-ish.
121 return Seed
& 0x7ffff;
124 /// Return a random 64 bit integer.
126 uint64_t Val
= Rand() & 0xffff;
127 Val
|= uint64_t(Rand() & 0xffff) << 16;
128 Val
|= uint64_t(Rand() & 0xffff) << 32;
129 Val
|= uint64_t(Rand() & 0xffff) << 48;
133 /// Rand operator for STL algorithms.
134 ptrdiff_t operator()(ptrdiff_t y
) {
138 /// Make this like a C++11 random device
139 using result_type
= uint32_t ;
141 static constexpr result_type
min() { return 0; }
142 static constexpr result_type
max() { return 0x7ffff; }
144 uint32_t operator()() {
145 uint32_t Val
= Rand();
146 assert(Val
<= max() && "Random value out of range");
154 /// Generate an empty function with a default argument list.
155 Function
*GenEmptyFunction(Module
*M
) {
156 // Define a few arguments
157 LLVMContext
&Context
= M
->getContext();
159 Type::getInt8PtrTy(Context
),
160 Type::getInt32PtrTy(Context
),
161 Type::getInt64PtrTy(Context
),
162 Type::getInt32Ty(Context
),
163 Type::getInt64Ty(Context
),
164 Type::getInt8Ty(Context
)
167 auto *FuncTy
= FunctionType::get(Type::getVoidTy(Context
), ArgsTy
, false);
168 // Pick a unique name to describe the input parameters
169 Twine Name
= "autogen_SD" + Twine
{SeedCL
};
170 auto *Func
= Function::Create(FuncTy
, GlobalValue::ExternalLinkage
, Name
, M
);
171 Func
->setCallingConv(CallingConv::C
);
175 /// A base class, implementing utilities needed for
176 /// modifying and adding new random instructions.
178 /// Used to store the randomly generated values.
179 using PieceTable
= std::vector
<Value
*>;
183 Modifier(BasicBlock
*Block
, PieceTable
*PT
, Random
*R
)
184 : BB(Block
), PT(PT
), Ran(R
), Context(BB
->getContext()) {}
186 /// virtual D'tor to silence warnings.
187 virtual ~Modifier() = default;
189 /// Add a new instruction.
190 virtual void Act() = 0;
192 /// Add N new instructions,
193 virtual void ActN(unsigned n
) {
194 for (unsigned i
=0; i
<n
; ++i
)
199 /// Return a random integer.
200 uint32_t getRandom() {
204 /// Return a random value from the list of known values.
205 Value
*getRandomVal() {
207 return PT
->at(getRandom() % PT
->size());
210 Constant
*getRandomConstant(Type
*Tp
) {
211 if (Tp
->isIntegerTy()) {
213 return ConstantInt::getAllOnesValue(Tp
);
214 return ConstantInt::getNullValue(Tp
);
215 } else if (Tp
->isFloatingPointTy()) {
217 return ConstantFP::getAllOnesValue(Tp
);
218 return ConstantFP::getNullValue(Tp
);
220 return UndefValue::get(Tp
);
223 /// Return a random value with a known type.
224 Value
*getRandomValue(Type
*Tp
) {
225 unsigned index
= getRandom();
226 for (unsigned i
=0; i
<PT
->size(); ++i
) {
227 Value
*V
= PT
->at((index
+ i
) % PT
->size());
228 if (V
->getType() == Tp
)
232 // If the requested type was not found, generate a constant value.
233 if (Tp
->isIntegerTy()) {
235 return ConstantInt::getAllOnesValue(Tp
);
236 return ConstantInt::getNullValue(Tp
);
237 } else if (Tp
->isFloatingPointTy()) {
239 return ConstantFP::getAllOnesValue(Tp
);
240 return ConstantFP::getNullValue(Tp
);
241 } else if (Tp
->isVectorTy()) {
242 VectorType
*VTp
= cast
<VectorType
>(Tp
);
244 std::vector
<Constant
*> TempValues
;
245 TempValues
.reserve(VTp
->getNumElements());
246 for (unsigned i
= 0; i
< VTp
->getNumElements(); ++i
)
247 TempValues
.push_back(getRandomConstant(VTp
->getScalarType()));
249 ArrayRef
<Constant
*> VectorValue(TempValues
);
250 return ConstantVector::get(VectorValue
);
253 return UndefValue::get(Tp
);
256 /// Return a random value of any pointer type.
257 Value
*getRandomPointerValue() {
258 unsigned index
= getRandom();
259 for (unsigned i
=0; i
<PT
->size(); ++i
) {
260 Value
*V
= PT
->at((index
+ i
) % PT
->size());
261 if (V
->getType()->isPointerTy())
264 return UndefValue::get(pickPointerType());
267 /// Return a random value of any vector type.
268 Value
*getRandomVectorValue() {
269 unsigned index
= getRandom();
270 for (unsigned i
=0; i
<PT
->size(); ++i
) {
271 Value
*V
= PT
->at((index
+ i
) % PT
->size());
272 if (V
->getType()->isVectorTy())
275 return UndefValue::get(pickVectorType());
278 /// Pick a random type.
280 return (getRandom() & 1 ? pickVectorType() : pickScalarType());
283 /// Pick a random pointer type.
284 Type
*pickPointerType() {
285 Type
*Ty
= pickType();
286 return PointerType::get(Ty
, 0);
289 /// Pick a random vector type.
290 Type
*pickVectorType(unsigned len
= (unsigned)-1) {
291 // Pick a random vector width in the range 2**0 to 2**4.
292 // by adding two randoms we are generating a normal-like distribution
294 unsigned width
= 1<<((getRandom() % 3) + (getRandom() % 3));
297 // Vectors of x86mmx are illegal; keep trying till we get something else.
299 Ty
= pickScalarType();
300 } while (Ty
->isX86_MMXTy());
302 if (len
!= (unsigned)-1)
304 return VectorType::get(Ty
, width
);
307 /// Pick a random scalar type.
308 Type
*pickScalarType() {
309 static std::vector
<Type
*> ScalarTypes
;
310 if (ScalarTypes
.empty()) {
312 Type::getInt1Ty(Context
),
313 Type::getInt8Ty(Context
),
314 Type::getInt16Ty(Context
),
315 Type::getInt32Ty(Context
),
316 Type::getInt64Ty(Context
),
317 Type::getFloatTy(Context
),
318 Type::getDoubleTy(Context
)
320 ScalarTypes
.insert(ScalarTypes
.end(),
321 AdditionalScalarTypes
.begin(), AdditionalScalarTypes
.end());
324 return ScalarTypes
[getRandom() % ScalarTypes
.size()];
327 /// Basic block to populate
333 /// Random number generator
337 LLVMContext
&Context
;
340 struct LoadModifier
: public Modifier
{
341 LoadModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
342 : Modifier(BB
, PT
, R
) {}
344 void Act() override
{
345 // Try to use predefined pointers. If non-exist, use undef pointer value;
346 Value
*Ptr
= getRandomPointerValue();
347 Value
*V
= new LoadInst(Ptr
, "L", BB
->getTerminator());
352 struct StoreModifier
: public Modifier
{
353 StoreModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
354 : Modifier(BB
, PT
, R
) {}
356 void Act() override
{
357 // Try to use predefined pointers. If non-exist, use undef pointer value;
358 Value
*Ptr
= getRandomPointerValue();
359 Type
*Tp
= Ptr
->getType();
360 Value
*Val
= getRandomValue(Tp
->getContainedType(0));
361 Type
*ValTy
= Val
->getType();
363 // Do not store vectors of i1s because they are unsupported
365 if (ValTy
->isVectorTy() && ValTy
->getScalarSizeInBits() == 1)
368 new StoreInst(Val
, Ptr
, BB
->getTerminator());
372 struct BinModifier
: public Modifier
{
373 BinModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
374 : Modifier(BB
, PT
, R
) {}
376 void Act() override
{
377 Value
*Val0
= getRandomVal();
378 Value
*Val1
= getRandomValue(Val0
->getType());
380 // Don't handle pointer types.
381 if (Val0
->getType()->isPointerTy() ||
382 Val1
->getType()->isPointerTy())
385 // Don't handle i1 types.
386 if (Val0
->getType()->getScalarSizeInBits() == 1)
389 bool isFloat
= Val0
->getType()->getScalarType()->isFloatingPointTy();
390 Instruction
* Term
= BB
->getTerminator();
391 unsigned R
= getRandom() % (isFloat
? 7 : 13);
392 Instruction::BinaryOps Op
;
395 default: llvm_unreachable("Invalid BinOp");
396 case 0:{Op
= (isFloat
?Instruction::FAdd
: Instruction::Add
); break; }
397 case 1:{Op
= (isFloat
?Instruction::FSub
: Instruction::Sub
); break; }
398 case 2:{Op
= (isFloat
?Instruction::FMul
: Instruction::Mul
); break; }
399 case 3:{Op
= (isFloat
?Instruction::FDiv
: Instruction::SDiv
); break; }
400 case 4:{Op
= (isFloat
?Instruction::FDiv
: Instruction::UDiv
); break; }
401 case 5:{Op
= (isFloat
?Instruction::FRem
: Instruction::SRem
); break; }
402 case 6:{Op
= (isFloat
?Instruction::FRem
: Instruction::URem
); break; }
403 case 7: {Op
= Instruction::Shl
; break; }
404 case 8: {Op
= Instruction::LShr
; break; }
405 case 9: {Op
= Instruction::AShr
; break; }
406 case 10:{Op
= Instruction::And
; break; }
407 case 11:{Op
= Instruction::Or
; break; }
408 case 12:{Op
= Instruction::Xor
; break; }
411 PT
->push_back(BinaryOperator::Create(Op
, Val0
, Val1
, "B", Term
));
415 /// Generate constant values.
416 struct ConstModifier
: public Modifier
{
417 ConstModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
418 : Modifier(BB
, PT
, R
) {}
420 void Act() override
{
421 Type
*Ty
= pickType();
423 if (Ty
->isVectorTy()) {
424 switch (getRandom() % 2) {
425 case 0: if (Ty
->isIntOrIntVectorTy())
426 return PT
->push_back(ConstantVector::getAllOnesValue(Ty
));
428 case 1: if (Ty
->isIntOrIntVectorTy())
429 return PT
->push_back(ConstantVector::getNullValue(Ty
));
433 if (Ty
->isFloatingPointTy()) {
434 // Generate 128 random bits, the size of the (currently)
435 // largest floating-point types.
436 uint64_t RandomBits
[2];
437 for (unsigned i
= 0; i
< 2; ++i
)
438 RandomBits
[i
] = Ran
->Rand64();
440 APInt
RandomInt(Ty
->getPrimitiveSizeInBits(), makeArrayRef(RandomBits
));
441 APFloat
RandomFloat(Ty
->getFltSemantics(), RandomInt
);
444 return PT
->push_back(ConstantFP::getNullValue(Ty
));
445 return PT
->push_back(ConstantFP::get(Ty
->getContext(), RandomFloat
));
448 if (Ty
->isIntegerTy()) {
449 switch (getRandom() % 7) {
451 return PT
->push_back(ConstantInt::get(
452 Ty
, APInt::getAllOnesValue(Ty
->getPrimitiveSizeInBits())));
454 return PT
->push_back(ConstantInt::get(
455 Ty
, APInt::getNullValue(Ty
->getPrimitiveSizeInBits())));
461 PT
->push_back(ConstantInt::get(Ty
, getRandom()));
467 struct AllocaModifier
: public Modifier
{
468 AllocaModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
469 : Modifier(BB
, PT
, R
) {}
471 void Act() override
{
472 Type
*Tp
= pickType();
473 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
474 PT
->push_back(new AllocaInst(Tp
, DL
.getAllocaAddrSpace(),
475 "A", BB
->getFirstNonPHI()));
479 struct ExtractElementModifier
: public Modifier
{
480 ExtractElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
481 : Modifier(BB
, PT
, R
) {}
483 void Act() override
{
484 Value
*Val0
= getRandomVectorValue();
485 Value
*V
= ExtractElementInst::Create(Val0
,
486 ConstantInt::get(Type::getInt32Ty(BB
->getContext()),
487 getRandom() % cast
<VectorType
>(Val0
->getType())->getNumElements()),
488 "E", BB
->getTerminator());
489 return PT
->push_back(V
);
493 struct ShuffModifier
: public Modifier
{
494 ShuffModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
495 : Modifier(BB
, PT
, R
) {}
497 void Act() override
{
498 Value
*Val0
= getRandomVectorValue();
499 Value
*Val1
= getRandomValue(Val0
->getType());
501 unsigned Width
= cast
<VectorType
>(Val0
->getType())->getNumElements();
502 std::vector
<Constant
*> Idxs
;
504 Type
*I32
= Type::getInt32Ty(BB
->getContext());
505 for (unsigned i
=0; i
<Width
; ++i
) {
506 Constant
*CI
= ConstantInt::get(I32
, getRandom() % (Width
*2));
507 // Pick some undef values.
508 if (!(getRandom() % 5))
509 CI
= UndefValue::get(I32
);
513 Constant
*Mask
= ConstantVector::get(Idxs
);
515 Value
*V
= new ShuffleVectorInst(Val0
, Val1
, Mask
, "Shuff",
516 BB
->getTerminator());
521 struct InsertElementModifier
: public Modifier
{
522 InsertElementModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
523 : Modifier(BB
, PT
, R
) {}
525 void Act() override
{
526 Value
*Val0
= getRandomVectorValue();
527 Value
*Val1
= getRandomValue(Val0
->getType()->getScalarType());
529 Value
*V
= InsertElementInst::Create(Val0
, Val1
,
530 ConstantInt::get(Type::getInt32Ty(BB
->getContext()),
531 getRandom() % cast
<VectorType
>(Val0
->getType())->getNumElements()),
532 "I", BB
->getTerminator());
533 return PT
->push_back(V
);
537 struct CastModifier
: public Modifier
{
538 CastModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
539 : Modifier(BB
, PT
, R
) {}
541 void Act() override
{
542 Value
*V
= getRandomVal();
543 Type
*VTy
= V
->getType();
544 Type
*DestTy
= pickScalarType();
546 // Handle vector casts vectors.
547 if (VTy
->isVectorTy()) {
548 VectorType
*VecTy
= cast
<VectorType
>(VTy
);
549 DestTy
= pickVectorType(VecTy
->getNumElements());
553 if (VTy
== DestTy
) return;
556 if (VTy
->isPointerTy()) {
557 if (!DestTy
->isPointerTy())
558 DestTy
= PointerType::get(DestTy
, 0);
559 return PT
->push_back(
560 new BitCastInst(V
, DestTy
, "PC", BB
->getTerminator()));
563 unsigned VSize
= VTy
->getScalarType()->getPrimitiveSizeInBits();
564 unsigned DestSize
= DestTy
->getScalarType()->getPrimitiveSizeInBits();
566 // Generate lots of bitcasts.
567 if ((getRandom() & 1) && VSize
== DestSize
) {
568 return PT
->push_back(
569 new BitCastInst(V
, DestTy
, "BC", BB
->getTerminator()));
572 // Both types are integers:
573 if (VTy
->isIntOrIntVectorTy() && DestTy
->isIntOrIntVectorTy()) {
574 if (VSize
> DestSize
) {
575 return PT
->push_back(
576 new TruncInst(V
, DestTy
, "Tr", BB
->getTerminator()));
578 assert(VSize
< DestSize
&& "Different int types with the same size?");
580 return PT
->push_back(
581 new ZExtInst(V
, DestTy
, "ZE", BB
->getTerminator()));
582 return PT
->push_back(new SExtInst(V
, DestTy
, "Se", BB
->getTerminator()));
587 if (VTy
->isFPOrFPVectorTy() && DestTy
->isIntOrIntVectorTy()) {
589 return PT
->push_back(
590 new FPToSIInst(V
, DestTy
, "FC", BB
->getTerminator()));
591 return PT
->push_back(new FPToUIInst(V
, DestTy
, "FC", BB
->getTerminator()));
595 if (VTy
->isIntOrIntVectorTy() && DestTy
->isFPOrFPVectorTy()) {
597 return PT
->push_back(
598 new SIToFPInst(V
, DestTy
, "FC", BB
->getTerminator()));
599 return PT
->push_back(new UIToFPInst(V
, DestTy
, "FC", BB
->getTerminator()));
603 if (VTy
->isFPOrFPVectorTy() && DestTy
->isFPOrFPVectorTy()) {
604 if (VSize
> DestSize
) {
605 return PT
->push_back(
606 new FPTruncInst(V
, DestTy
, "Tr", BB
->getTerminator()));
607 } else if (VSize
< DestSize
) {
608 return PT
->push_back(
609 new FPExtInst(V
, DestTy
, "ZE", BB
->getTerminator()));
611 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
612 // for which there is no defined conversion. So do nothing.
617 struct SelectModifier
: public Modifier
{
618 SelectModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
619 : Modifier(BB
, PT
, R
) {}
621 void Act() override
{
622 // Try a bunch of different select configuration until a valid one is found.
623 Value
*Val0
= getRandomVal();
624 Value
*Val1
= getRandomValue(Val0
->getType());
626 Type
*CondTy
= Type::getInt1Ty(Context
);
628 // If the value type is a vector, and we allow vector select, then in 50%
629 // of the cases generate a vector select.
630 if (Val0
->getType()->isVectorTy() && (getRandom() % 1)) {
631 unsigned NumElem
= cast
<VectorType
>(Val0
->getType())->getNumElements();
632 CondTy
= VectorType::get(CondTy
, NumElem
);
635 Value
*Cond
= getRandomValue(CondTy
);
636 Value
*V
= SelectInst::Create(Cond
, Val0
, Val1
, "Sl", BB
->getTerminator());
637 return PT
->push_back(V
);
641 struct CmpModifier
: public Modifier
{
642 CmpModifier(BasicBlock
*BB
, PieceTable
*PT
, Random
*R
)
643 : Modifier(BB
, PT
, R
) {}
645 void Act() override
{
646 Value
*Val0
= getRandomVal();
647 Value
*Val1
= getRandomValue(Val0
->getType());
649 if (Val0
->getType()->isPointerTy()) return;
650 bool fp
= Val0
->getType()->getScalarType()->isFloatingPointTy();
655 (CmpInst::LAST_FCMP_PREDICATE
- CmpInst::FIRST_FCMP_PREDICATE
) +
656 CmpInst::FIRST_FCMP_PREDICATE
;
659 (CmpInst::LAST_ICMP_PREDICATE
- CmpInst::FIRST_ICMP_PREDICATE
) +
660 CmpInst::FIRST_ICMP_PREDICATE
;
663 Value
*V
= CmpInst::Create(fp
? Instruction::FCmp
: Instruction::ICmp
,
664 (CmpInst::Predicate
)op
, Val0
, Val1
, "Cmp",
665 BB
->getTerminator());
666 return PT
->push_back(V
);
670 } // end anonymous namespace
672 static void FillFunction(Function
*F
, Random
&R
) {
673 // Create a legal entry block.
674 BasicBlock
*BB
= BasicBlock::Create(F
->getContext(), "BB", F
);
675 ReturnInst::Create(F
->getContext(), BB
);
677 // Create the value table.
678 Modifier::PieceTable PT
;
680 // Consider arguments as legal values.
681 for (auto &arg
: F
->args())
684 // List of modifiers which add new random instructions.
685 std::vector
<std::unique_ptr
<Modifier
>> Modifiers
;
686 Modifiers
.emplace_back(new LoadModifier(BB
, &PT
, &R
));
687 Modifiers
.emplace_back(new StoreModifier(BB
, &PT
, &R
));
688 auto SM
= Modifiers
.back().get();
689 Modifiers
.emplace_back(new ExtractElementModifier(BB
, &PT
, &R
));
690 Modifiers
.emplace_back(new ShuffModifier(BB
, &PT
, &R
));
691 Modifiers
.emplace_back(new InsertElementModifier(BB
, &PT
, &R
));
692 Modifiers
.emplace_back(new BinModifier(BB
, &PT
, &R
));
693 Modifiers
.emplace_back(new CastModifier(BB
, &PT
, &R
));
694 Modifiers
.emplace_back(new SelectModifier(BB
, &PT
, &R
));
695 Modifiers
.emplace_back(new CmpModifier(BB
, &PT
, &R
));
697 // Generate the random instructions
698 AllocaModifier
{BB
, &PT
, &R
}.ActN(5); // Throw in a few allocas
699 ConstModifier
{BB
, &PT
, &R
}.ActN(40); // Throw in a few constants
701 for (unsigned i
= 0; i
< SizeCL
/ Modifiers
.size(); ++i
)
702 for (auto &Mod
: Modifiers
)
705 SM
->ActN(5); // Throw in a few stores.
708 static void IntroduceControlFlow(Function
*F
, Random
&R
) {
709 std::vector
<Instruction
*> BoolInst
;
710 for (auto &Instr
: F
->front()) {
711 if (Instr
.getType() == IntegerType::getInt1Ty(F
->getContext()))
712 BoolInst
.push_back(&Instr
);
715 std::shuffle(BoolInst
.begin(), BoolInst
.end(), R
);
717 for (auto *Instr
: BoolInst
) {
718 BasicBlock
*Curr
= Instr
->getParent();
719 BasicBlock::iterator Loc
= Instr
->getIterator();
720 BasicBlock
*Next
= Curr
->splitBasicBlock(Loc
, "CF");
721 Instr
->moveBefore(Curr
->getTerminator());
722 if (Curr
!= &F
->getEntryBlock()) {
723 BranchInst::Create(Curr
, Next
, Instr
, Curr
->getTerminator());
724 Curr
->getTerminator()->eraseFromParent();
729 } // end namespace llvm
731 int main(int argc
, char **argv
) {
732 using namespace llvm
;
734 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
735 PrettyStackTraceProgram
X(argc
, argv
);
736 cl::ParseCommandLineOptions(argc
, argv
, "llvm codegen stress-tester\n");
739 auto M
= llvm::make_unique
<Module
>("/tmp/autogen.bc", Context
);
740 Function
*F
= GenEmptyFunction(M
.get());
742 // Pick an initial seed value
744 // Generate lots of random instructions inside a single basic block.
746 // Break the basic block into many loops.
747 IntroduceControlFlow(F
, R
);
749 // Figure out what stream we are supposed to write to...
750 std::unique_ptr
<ToolOutputFile
> Out
;
751 // Default to standard output.
752 if (OutputFilename
.empty())
753 OutputFilename
= "-";
756 Out
.reset(new ToolOutputFile(OutputFilename
, EC
, sys::fs::F_None
));
758 errs() << EC
.message() << '\n';
762 legacy::PassManager Passes
;
763 Passes
.add(createVerifierPass());
764 Passes
.add(createPrintModulePass(Out
->os()));
765 Passes
.run(*M
.get());