[llvm-exegesis][NFC] Pass Instruction instead of bare Opcode
[llvm-core.git] / unittests / Transforms / Scalar / LoopPassManagerTest.cpp
blob9f0b6f0ea03ec3af86c095f7e030c61a6dd7799e
1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Transforms/Scalar/LoopPassManager.h"
11 #include "llvm/Analysis/AliasAnalysis.h"
12 #include "llvm/Analysis/AssumptionCache.h"
13 #include "llvm/Analysis/ScalarEvolution.h"
14 #include "llvm/Analysis/TargetLibraryInfo.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/AsmParser/Parser.h"
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/Support/SourceMgr.h"
24 // Workaround for the gcc 6.1 bug PR80916.
25 #if defined(__GNUC__) && __GNUC__ > 5
26 # pragma GCC diagnostic push
27 # pragma GCC diagnostic ignored "-Wunused-function"
28 #endif
30 #include "gmock/gmock.h"
31 #include "gtest/gtest.h"
33 #if defined(__GNUC__) && __GNUC__ > 5
34 # pragma GCC diagnostic pop
35 #endif
37 using namespace llvm;
39 namespace {
41 using testing::DoDefault;
42 using testing::Return;
43 using testing::Expectation;
44 using testing::Invoke;
45 using testing::InvokeWithoutArgs;
46 using testing::_;
48 template <typename DerivedT, typename IRUnitT,
49 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
50 typename... ExtraArgTs>
51 class MockAnalysisHandleBase {
52 public:
53 class Analysis : public AnalysisInfoMixin<Analysis> {
54 friend AnalysisInfoMixin<Analysis>;
55 friend MockAnalysisHandleBase;
56 static AnalysisKey Key;
58 DerivedT *Handle;
60 Analysis(DerivedT &Handle) : Handle(&Handle) {
61 static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
62 "Must pass the derived type to this template!");
65 public:
66 class Result {
67 friend MockAnalysisHandleBase;
69 DerivedT *Handle;
71 Result(DerivedT &Handle) : Handle(&Handle) {}
73 public:
74 // Forward invalidation events to the mock handle.
75 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
76 typename AnalysisManagerT::Invalidator &Inv) {
77 return Handle->invalidate(IR, PA, Inv);
81 Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
82 return Handle->run(IR, AM, ExtraArgs...);
86 Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
87 typename Analysis::Result getResult() {
88 return typename Analysis::Result(static_cast<DerivedT &>(*this));
91 protected:
92 // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
93 // the template, so we use a boring static function.
94 static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
95 typename AnalysisManagerT::Invalidator &Inv) {
96 auto PAC = PA.template getChecker<Analysis>();
97 return !PAC.preserved() &&
98 !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
101 /// Derived classes should call this in their constructor to set up default
102 /// mock actions. (We can't do this in our constructor because this has to
103 /// run after the DerivedT is constructed.)
104 void setDefaults() {
105 ON_CALL(static_cast<DerivedT &>(*this),
106 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
107 .WillByDefault(Return(this->getResult()));
108 ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
109 .WillByDefault(Invoke(&invalidateCallback));
113 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
114 typename... ExtraArgTs>
115 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
116 ExtraArgTs...>::Analysis::Key;
118 /// Mock handle for loop analyses.
120 /// This is provided as a template accepting an (optional) integer. Because
121 /// analyses are identified and queried by type, this allows constructing
122 /// multiple handles with distinctly typed nested 'Analysis' types that can be
123 /// registered and queried. If you want to register multiple loop analysis
124 /// passes, you'll need to instantiate this type with different values for I.
125 /// For example:
127 /// MockLoopAnalysisHandleTemplate<0> h0;
128 /// MockLoopAnalysisHandleTemplate<1> h1;
129 /// typedef decltype(h0)::Analysis Analysis0;
130 /// typedef decltype(h1)::Analysis Analysis1;
131 template <size_t I = static_cast<size_t>(-1)>
132 struct MockLoopAnalysisHandleTemplate
133 : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
134 LoopAnalysisManager,
135 LoopStandardAnalysisResults &> {
136 typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
138 MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
139 LoopStandardAnalysisResults &));
141 MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
142 LoopAnalysisManager::Invalidator &));
144 MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
147 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
149 struct MockFunctionAnalysisHandle
150 : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
151 MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
153 MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
154 FunctionAnalysisManager::Invalidator &));
156 MockFunctionAnalysisHandle() { setDefaults(); }
159 template <typename DerivedT, typename IRUnitT,
160 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
161 typename... ExtraArgTs>
162 class MockPassHandleBase {
163 public:
164 class Pass : public PassInfoMixin<Pass> {
165 friend MockPassHandleBase;
167 DerivedT *Handle;
169 Pass(DerivedT &Handle) : Handle(&Handle) {
170 static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
171 "Must pass the derived type to this template!");
174 public:
175 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
176 ExtraArgTs... ExtraArgs) {
177 return Handle->run(IR, AM, ExtraArgs...);
181 Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
183 protected:
184 /// Derived classes should call this in their constructor to set up default
185 /// mock actions. (We can't do this in our constructor because this has to
186 /// run after the DerivedT is constructed.)
187 void setDefaults() {
188 ON_CALL(static_cast<DerivedT &>(*this),
189 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
190 .WillByDefault(Return(PreservedAnalyses::all()));
194 struct MockLoopPassHandle
195 : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
196 LoopStandardAnalysisResults &, LPMUpdater &> {
197 MOCK_METHOD4(run,
198 PreservedAnalyses(Loop &, LoopAnalysisManager &,
199 LoopStandardAnalysisResults &, LPMUpdater &));
200 MockLoopPassHandle() { setDefaults(); }
203 struct MockFunctionPassHandle
204 : MockPassHandleBase<MockFunctionPassHandle, Function> {
205 MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
207 MockFunctionPassHandle() { setDefaults(); }
210 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
211 MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
213 MockModulePassHandle() { setDefaults(); }
216 /// Define a custom matcher for objects which support a 'getName' method
217 /// returning a StringRef.
219 /// LLVM often has IR objects or analysis objects which expose a StringRef name
220 /// and in tests it is convenient to match these by name for readability. This
221 /// matcher supports any type exposing a getName() method of this form.
223 /// It should be used as:
225 /// HasName("my_function")
227 /// No namespace or other qualification is required.
228 MATCHER_P(HasName, Name, "") {
229 // The matcher's name and argument are printed in the case of failure, but we
230 // also want to print out the name of the argument. This uses an implicitly
231 // avaiable std::ostream, so we have to construct a std::string.
232 *result_listener << "has name '" << arg.getName().str() << "'";
233 return Name == arg.getName();
236 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
237 SMDiagnostic Err;
238 return parseAssemblyString(IR, Err, C);
241 class LoopPassManagerTest : public ::testing::Test {
242 protected:
243 LLVMContext Context;
244 std::unique_ptr<Module> M;
246 LoopAnalysisManager LAM;
247 FunctionAnalysisManager FAM;
248 ModuleAnalysisManager MAM;
250 MockLoopAnalysisHandle MLAHandle;
251 MockLoopPassHandle MLPHandle;
252 MockFunctionPassHandle MFPHandle;
253 MockModulePassHandle MMPHandle;
255 static PreservedAnalyses
256 getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
257 LoopStandardAnalysisResults &AR, LPMUpdater &) {
258 (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
259 return PreservedAnalyses::all();
262 public:
263 LoopPassManagerTest()
264 : M(parseIR(Context,
265 "define void @f(i1* %ptr) {\n"
266 "entry:\n"
267 " br label %loop.0\n"
268 "loop.0:\n"
269 " %cond.0 = load volatile i1, i1* %ptr\n"
270 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
271 "loop.0.0.ph:\n"
272 " br label %loop.0.0\n"
273 "loop.0.0:\n"
274 " %cond.0.0 = load volatile i1, i1* %ptr\n"
275 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
276 "loop.0.1.ph:\n"
277 " br label %loop.0.1\n"
278 "loop.0.1:\n"
279 " %cond.0.1 = load volatile i1, i1* %ptr\n"
280 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
281 "loop.0.latch:\n"
282 " br label %loop.0\n"
283 "end:\n"
284 " ret void\n"
285 "}\n"
286 "\n"
287 "define void @g(i1* %ptr) {\n"
288 "entry:\n"
289 " br label %loop.g.0\n"
290 "loop.g.0:\n"
291 " %cond.0 = load volatile i1, i1* %ptr\n"
292 " br i1 %cond.0, label %loop.g.0, label %end\n"
293 "end:\n"
294 " ret void\n"
295 "}\n")),
296 LAM(true), FAM(true), MAM(true) {
297 // Register our mock analysis.
298 LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
300 // We need DominatorTreeAnalysis for LoopAnalysis.
301 FAM.registerPass([&] { return DominatorTreeAnalysis(); });
302 FAM.registerPass([&] { return LoopAnalysis(); });
303 // We also allow loop passes to assume a set of other analyses and so need
304 // those.
305 FAM.registerPass([&] { return AAManager(); });
306 FAM.registerPass([&] { return AssumptionAnalysis(); });
307 FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
308 FAM.registerPass([&] { return TargetLibraryAnalysis(); });
309 FAM.registerPass([&] { return TargetIRAnalysis(); });
311 // Register required pass instrumentation analysis.
312 LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
313 FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
314 MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
316 // Cross-register proxies.
317 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
318 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
319 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
320 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
324 TEST_F(LoopPassManagerTest, Basic) {
325 ModulePassManager MPM(true);
326 ::testing::InSequence MakeExpectationsSequenced;
328 // First we just visit all the loops in all the functions and get their
329 // analysis results. This will run the analysis a total of four times,
330 // once for each loop.
331 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
332 .WillOnce(Invoke(getLoopAnalysisResult));
333 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
334 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
335 .WillOnce(Invoke(getLoopAnalysisResult));
336 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
337 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
338 .WillOnce(Invoke(getLoopAnalysisResult));
339 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
340 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
341 .WillOnce(Invoke(getLoopAnalysisResult));
342 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
343 // Wire the loop pass through pass managers into the module pipeline.
345 LoopPassManager LPM(true);
346 LPM.addPass(MLPHandle.getPass());
347 FunctionPassManager FPM(true);
348 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
349 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
352 // Next we run two passes over the loops. The first one invalidates the
353 // analyses for one loop, the second ones try to get the analysis results.
354 // This should force only one analysis to re-run within the loop PM, but will
355 // also invalidate everything after the loop pass manager finishes.
356 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
357 .WillOnce(DoDefault())
358 .WillOnce(Invoke(getLoopAnalysisResult));
359 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
360 .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
361 .WillOnce(Invoke(getLoopAnalysisResult));
362 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
363 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
364 .WillOnce(DoDefault())
365 .WillOnce(Invoke(getLoopAnalysisResult));
366 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
367 .WillOnce(DoDefault())
368 .WillOnce(Invoke(getLoopAnalysisResult));
369 // Wire two loop pass runs into the module pipeline.
371 LoopPassManager LPM(true);
372 LPM.addPass(MLPHandle.getPass());
373 LPM.addPass(MLPHandle.getPass());
374 FunctionPassManager FPM(true);
375 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
376 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
379 // And now run the pipeline across the module.
380 MPM.run(*M, MAM);
383 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
384 ModulePassManager MPM(true);
385 FunctionPassManager FPM(true);
386 // We process each function completely in sequence.
387 ::testing::Sequence FSequence, GSequence;
389 // First, force the analysis result to be computed for each loop.
390 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
391 .InSequence(FSequence)
392 .WillOnce(DoDefault());
393 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
394 .InSequence(FSequence)
395 .WillOnce(DoDefault());
396 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
397 .InSequence(FSequence)
398 .WillOnce(DoDefault());
399 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
400 .InSequence(GSequence)
401 .WillOnce(DoDefault());
402 FPM.addPass(createFunctionToLoopPassAdaptor(
403 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
405 // No need to re-run if we require again from a fresh loop pass manager.
406 FPM.addPass(createFunctionToLoopPassAdaptor(
407 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
409 // For 'f', preserve most things but not the specific loop analyses.
410 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
411 .InSequence(FSequence)
412 .WillOnce(Return(getLoopPassPreservedAnalyses()));
413 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
414 .InSequence(FSequence)
415 .WillOnce(DoDefault());
416 // On one loop, skip the invalidation (as though we did an internal update).
417 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
418 .InSequence(FSequence)
419 .WillOnce(Return(false));
420 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
421 .InSequence(FSequence)
422 .WillOnce(DoDefault());
423 // Now two loops still have to be recomputed.
424 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
425 .InSequence(FSequence)
426 .WillOnce(DoDefault());
427 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
428 .InSequence(FSequence)
429 .WillOnce(DoDefault());
430 // Preserve things in the second function to ensure invalidation remains
431 // isolated to one function.
432 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
433 .InSequence(GSequence)
434 .WillOnce(DoDefault());
435 FPM.addPass(MFPHandle.getPass());
436 FPM.addPass(createFunctionToLoopPassAdaptor(
437 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
439 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
440 .InSequence(FSequence)
441 .WillOnce(DoDefault());
442 // For 'g', fail to preserve anything, causing the loops themselves to be
443 // cleared. We don't get an invalidation event here as the loop is gone, but
444 // we should still have to recompute the analysis.
445 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
446 .InSequence(GSequence)
447 .WillOnce(Return(PreservedAnalyses::none()));
448 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
449 .InSequence(GSequence)
450 .WillOnce(DoDefault());
451 FPM.addPass(MFPHandle.getPass());
452 FPM.addPass(createFunctionToLoopPassAdaptor(
453 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
455 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
457 // Verify with a separate function pass run that we didn't mess up 'f's
458 // cache. No analysis runs should be necessary here.
459 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
460 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
462 MPM.run(*M, MAM);
465 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
466 ModulePassManager MPM(true);
467 ::testing::InSequence MakeExpectationsSequenced;
469 // First, force the analysis result to be computed for each loop.
470 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
471 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
472 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
473 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
474 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
475 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
477 // Walking all the way out and all the way back in doesn't re-run the
478 // analysis.
479 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
480 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
482 // But a module pass that doesn't preserve the actual mock loop analysis
483 // invalidates all the way down and forces recomputing.
484 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
485 auto PA = getLoopPassPreservedAnalyses();
486 PA.preserve<FunctionAnalysisManagerModuleProxy>();
487 return PA;
488 }));
489 // All the loop analyses from both functions get invalidated before we
490 // recompute anything.
491 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
492 // On one loop, again skip the invalidation (as though we did an internal
493 // update).
494 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
495 .WillOnce(Return(false));
496 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
497 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
498 // Now all but one of the loops gets re-analyzed.
499 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
500 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
501 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
502 MPM.addPass(MMPHandle.getPass());
503 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
504 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
506 // Verify that the cached values persist.
507 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
508 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
510 // Now we fail to preserve the loop analysis and observe that the loop
511 // analyses are cleared (so no invalidation event) as the loops themselves
512 // are no longer valid.
513 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
514 auto PA = PreservedAnalyses::none();
515 PA.preserve<FunctionAnalysisManagerModuleProxy>();
516 return PA;
517 }));
518 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
519 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
520 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
521 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
522 MPM.addPass(MMPHandle.getPass());
523 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
524 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
526 // Verify that the cached values persist.
527 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
528 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
530 // Next, check that even if we preserve everything within the function itelf,
531 // if the function's module pass proxy isn't preserved and the potential set
532 // of functions changes, the clear reaches the loop analyses as well. This
533 // will again trigger re-runs but not invalidation events.
534 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
535 auto PA = PreservedAnalyses::none();
536 PA.preserveSet<AllAnalysesOn<Function>>();
537 PA.preserveSet<AllAnalysesOn<Loop>>();
538 return PA;
539 }));
540 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
541 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
542 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
543 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
544 MPM.addPass(MMPHandle.getPass());
545 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
546 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
548 MPM.run(*M, MAM);
551 // Test that if any of the bundled analyses provided in the LPM's signature
552 // become invalid, the analysis proxy itself becomes invalid and we clear all
553 // loop analysis results.
554 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
555 ModulePassManager MPM(true);
556 FunctionPassManager FPM(true);
557 ::testing::InSequence MakeExpectationsSequenced;
559 // First, force the analysis result to be computed for each loop.
560 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
561 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
562 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
563 FPM.addPass(createFunctionToLoopPassAdaptor(
564 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
566 // No need to re-run if we require again from a fresh loop pass manager.
567 FPM.addPass(createFunctionToLoopPassAdaptor(
568 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
570 // Preserving everything but the loop analyses themselves results in
571 // invalidation and running.
572 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
573 .WillOnce(Return(getLoopPassPreservedAnalyses()));
574 EXPECT_CALL(MLAHandle, invalidate(_, _, _)).Times(3);
575 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
576 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
577 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
578 FPM.addPass(MFPHandle.getPass());
579 FPM.addPass(createFunctionToLoopPassAdaptor(
580 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
582 // The rest don't invalidate analyses, they only trigger re-runs because we
583 // clear the cache completely.
584 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
585 auto PA = PreservedAnalyses::none();
586 // Not preserving `AAManager`.
587 PA.preserve<DominatorTreeAnalysis>();
588 PA.preserve<LoopAnalysis>();
589 PA.preserve<LoopAnalysisManagerFunctionProxy>();
590 PA.preserve<ScalarEvolutionAnalysis>();
591 return PA;
592 }));
593 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
594 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
595 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
596 FPM.addPass(MFPHandle.getPass());
597 FPM.addPass(createFunctionToLoopPassAdaptor(
598 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
600 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
601 auto PA = PreservedAnalyses::none();
602 PA.preserve<AAManager>();
603 // Not preserving `DominatorTreeAnalysis`.
604 PA.preserve<LoopAnalysis>();
605 PA.preserve<LoopAnalysisManagerFunctionProxy>();
606 PA.preserve<ScalarEvolutionAnalysis>();
607 return PA;
608 }));
609 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
610 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
611 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
612 FPM.addPass(MFPHandle.getPass());
613 FPM.addPass(createFunctionToLoopPassAdaptor(
614 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
616 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
617 auto PA = PreservedAnalyses::none();
618 PA.preserve<AAManager>();
619 PA.preserve<DominatorTreeAnalysis>();
620 // Not preserving the `LoopAnalysis`.
621 PA.preserve<LoopAnalysisManagerFunctionProxy>();
622 PA.preserve<ScalarEvolutionAnalysis>();
623 return PA;
624 }));
625 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
626 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
627 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
628 FPM.addPass(MFPHandle.getPass());
629 FPM.addPass(createFunctionToLoopPassAdaptor(
630 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
632 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
633 auto PA = PreservedAnalyses::none();
634 PA.preserve<AAManager>();
635 PA.preserve<DominatorTreeAnalysis>();
636 PA.preserve<LoopAnalysis>();
637 // Not preserving the `LoopAnalysisManagerFunctionProxy`.
638 PA.preserve<ScalarEvolutionAnalysis>();
639 return PA;
640 }));
641 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
642 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
643 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
644 FPM.addPass(MFPHandle.getPass());
645 FPM.addPass(createFunctionToLoopPassAdaptor(
646 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
648 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
649 auto PA = PreservedAnalyses::none();
650 PA.preserve<AAManager>();
651 PA.preserve<DominatorTreeAnalysis>();
652 PA.preserve<LoopAnalysis>();
653 PA.preserve<LoopAnalysisManagerFunctionProxy>();
654 // Not preserving `ScalarEvolutionAnalysis`.
655 return PA;
656 }));
657 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
658 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
659 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
660 FPM.addPass(MFPHandle.getPass());
661 FPM.addPass(createFunctionToLoopPassAdaptor(
662 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
664 // After all the churn on 'f', we'll compute the loop analysis results for
665 // 'g' once with a requires pass and then run our mock pass over g a bunch
666 // but just get cached results each time.
667 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
668 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
670 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
671 MPM.run(*M, MAM);
674 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
675 // We need two distinct analysis types and handles.
676 enum { A, B };
677 MockLoopAnalysisHandleTemplate<A> MLAHandleA;
678 MockLoopAnalysisHandleTemplate<B> MLAHandleB;
679 LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
680 LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
681 typedef decltype(MLAHandleA)::Analysis AnalysisA;
682 typedef decltype(MLAHandleB)::Analysis AnalysisB;
684 // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
685 // need to get the AnalysisB results in AnalysisA's run method and check if
686 // AnalysisB gets invalidated in AnalysisA's invalidate method.
687 ON_CALL(MLAHandleA, run(_, _, _))
688 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
689 LoopStandardAnalysisResults &AR) {
690 (void)AM.getResult<AnalysisB>(L, AR);
691 return MLAHandleA.getResult();
692 }));
693 ON_CALL(MLAHandleA, invalidate(_, _, _))
694 .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
695 LoopAnalysisManager::Invalidator &Inv) {
696 auto PAC = PA.getChecker<AnalysisA>();
697 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
698 Inv.invalidate<AnalysisB>(L, PA);
699 }));
701 ::testing::InSequence MakeExpectationsSequenced;
703 // Compute the analyses across all of 'f' first.
704 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
705 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
706 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
707 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
708 EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
709 EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
711 // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
712 // preserve everything for the rest. This in turn triggers that one loop to
713 // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
714 // working.
715 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
716 .WillOnce(InvokeWithoutArgs([] {
717 auto PA = getLoopPassPreservedAnalyses();
718 // Specifically preserve AnalysisA so that it would survive if it
719 // didn't depend on AnalysisB.
720 PA.preserve<AnalysisA>();
721 return PA;
722 }));
723 // It happens that AnalysisB is invalidated first. That shouldn't matter
724 // though, and we should still call AnalysisA's invalidation.
725 EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
726 EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
727 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
728 .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
729 LoopStandardAnalysisResults &AR, LPMUpdater &) {
730 (void)AM.getResult<AnalysisA>(L, AR);
731 return PreservedAnalyses::all();
732 }));
733 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
734 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
735 // The rest of the loops should run and get cached results.
736 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
737 .Times(2)
738 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
739 LoopStandardAnalysisResults &AR, LPMUpdater &) {
740 (void)AM.getResult<AnalysisA>(L, AR);
741 return PreservedAnalyses::all();
742 }));
743 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
744 .Times(2)
745 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
746 LoopStandardAnalysisResults &AR, LPMUpdater &) {
747 (void)AM.getResult<AnalysisA>(L, AR);
748 return PreservedAnalyses::all();
749 }));
751 // The run over 'g' should be boring, with us just computing the analyses once
752 // up front and then running loop passes and getting cached results.
753 EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
754 EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
755 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
756 .Times(2)
757 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
758 LoopStandardAnalysisResults &AR, LPMUpdater &) {
759 (void)AM.getResult<AnalysisA>(L, AR);
760 return PreservedAnalyses::all();
761 }));
763 // Build the pipeline and run it.
764 ModulePassManager MPM(true);
765 FunctionPassManager FPM(true);
766 FPM.addPass(
767 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
768 LoopPassManager LPM(true);
769 LPM.addPass(MLPHandle.getPass());
770 LPM.addPass(MLPHandle.getPass());
771 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
772 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
773 MPM.run(*M, MAM);
776 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
777 typedef decltype(MLAHandle)::Analysis LoopAnalysis;
779 MockFunctionAnalysisHandle MFAHandle;
780 FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
781 typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
783 // Set up the loop analysis to depend on both the function and module
784 // analysis.
785 ON_CALL(MLAHandle, run(_, _, _))
786 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
787 LoopStandardAnalysisResults &AR) {
788 auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
789 auto &FAM = FAMP.getManager();
790 Function &F = *L.getHeader()->getParent();
791 if (FAM.getCachedResult<FunctionAnalysis>(F))
792 FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
793 LoopAnalysis>();
794 return MLAHandle.getResult();
795 }));
797 ::testing::InSequence MakeExpectationsSequenced;
799 // Compute the analyses across all of 'f' first.
800 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
801 .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
802 // Force the computing of the function analysis so it is available in
803 // this function.
804 (void)AM.getResult<FunctionAnalysis>(F);
805 return PreservedAnalyses::all();
806 }));
807 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
808 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
809 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
811 // Now invalidate the function analysis but preserve the loop analyses.
812 // This should trigger immediate invalidation of the loop analyses, despite
813 // the fact that they were preserved.
814 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
815 auto PA = getLoopPassPreservedAnalyses();
816 PA.preserveSet<AllAnalysesOn<Loop>>();
817 return PA;
818 }));
819 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
820 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
821 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
823 // And re-running a requires pass recomputes them.
824 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
825 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
826 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
828 // When we run over 'g' we don't populate the cache with the function
829 // analysis.
830 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
831 .WillOnce(Return(PreservedAnalyses::all()));
832 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
834 // Which means that no extra invalidation occurs and cached values are used.
835 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
836 auto PA = getLoopPassPreservedAnalyses();
837 PA.preserveSet<AllAnalysesOn<Loop>>();
838 return PA;
839 }));
841 // Build the pipeline and run it.
842 ModulePassManager MPM(true);
843 FunctionPassManager FPM(true);
844 FPM.addPass(MFPHandle.getPass());
845 FPM.addPass(
846 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
847 FPM.addPass(MFPHandle.getPass());
848 FPM.addPass(
849 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
850 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
851 MPM.run(*M, MAM);
854 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
855 // Super boring module with three loops in a single loop nest.
856 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
857 "entry:\n"
858 " br label %loop.0\n"
859 "loop.0:\n"
860 " %cond.0 = load volatile i1, i1* %ptr\n"
861 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
862 "loop.0.0.ph:\n"
863 " br label %loop.0.0\n"
864 "loop.0.0:\n"
865 " %cond.0.0 = load volatile i1, i1* %ptr\n"
866 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
867 "loop.0.1.ph:\n"
868 " br label %loop.0.1\n"
869 "loop.0.1:\n"
870 " %cond.0.1 = load volatile i1, i1* %ptr\n"
871 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
872 "loop.0.2.ph:\n"
873 " br label %loop.0.2\n"
874 "loop.0.2:\n"
875 " %cond.0.2 = load volatile i1, i1* %ptr\n"
876 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
877 "loop.0.latch:\n"
878 " br label %loop.0\n"
879 "end:\n"
880 " ret void\n"
881 "}\n");
883 // Build up variables referring into the IR so we can rewrite it below
884 // easily.
885 Function &F = *M->begin();
886 ASSERT_THAT(F, HasName("f"));
887 Argument &Ptr = *F.arg_begin();
888 auto BBI = F.begin();
889 BasicBlock &EntryBB = *BBI++;
890 ASSERT_THAT(EntryBB, HasName("entry"));
891 BasicBlock &Loop0BB = *BBI++;
892 ASSERT_THAT(Loop0BB, HasName("loop.0"));
893 BasicBlock &Loop00PHBB = *BBI++;
894 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
895 BasicBlock &Loop00BB = *BBI++;
896 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
897 BasicBlock &Loop01PHBB = *BBI++;
898 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
899 BasicBlock &Loop01BB = *BBI++;
900 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
901 BasicBlock &Loop02PHBB = *BBI++;
902 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
903 BasicBlock &Loop02BB = *BBI++;
904 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
905 BasicBlock &Loop0LatchBB = *BBI++;
906 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
907 BasicBlock &EndBB = *BBI++;
908 ASSERT_THAT(EndBB, HasName("end"));
909 ASSERT_THAT(BBI, F.end());
910 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
911 const char *Name, BasicBlock *BB) {
912 auto *Cond = new LoadInst(&Ptr, Name, /*isVolatile*/ true, BB);
913 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
916 // Build the pass managers and register our pipeline. We build a single loop
917 // pass pipeline consisting of three mock pass runs over each loop. After
918 // this we run both domtree and loop verification passes to make sure that
919 // the IR remained valid during our mutations.
920 ModulePassManager MPM(true);
921 FunctionPassManager FPM(true);
922 LoopPassManager LPM(true);
923 LPM.addPass(MLPHandle.getPass());
924 LPM.addPass(MLPHandle.getPass());
925 LPM.addPass(MLPHandle.getPass());
926 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
927 FPM.addPass(DominatorTreeVerifierPass());
928 FPM.addPass(LoopVerifierPass());
929 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
931 // All the visit orders are deterministic, so we use simple fully order
932 // expectations.
933 ::testing::InSequence MakeExpectationsSequenced;
935 // We run loop passes three times over each of the loops.
936 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
937 .WillOnce(Invoke(getLoopAnalysisResult));
938 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
939 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
940 .Times(2)
941 .WillRepeatedly(Invoke(getLoopAnalysisResult));
943 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
944 .WillOnce(Invoke(getLoopAnalysisResult));
945 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
947 // When running over the middle loop, the second run inserts two new child
948 // loops, inserting them and itself into the worklist.
949 BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
950 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
951 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
952 LoopStandardAnalysisResults &AR,
953 LPMUpdater &Updater) {
954 auto *NewLoop = AR.LI.AllocateLoop();
955 L.addChildLoop(NewLoop);
956 auto *NewLoop010PHBB =
957 BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
958 NewLoop010BB =
959 BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
960 NewLoop01LatchBB =
961 BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
962 Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
963 BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
964 CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
965 NewLoop010BB);
966 BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
967 AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
968 AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
969 AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
970 EXPECT_TRUE(AR.DT.verify());
971 L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
972 NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
973 L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
974 NewLoop->verifyLoop();
975 L.verifyLoop();
976 Updater.addChildLoops({NewLoop});
977 return PreservedAnalyses::all();
978 }));
980 // We should immediately drop down to fully visit the new inner loop.
981 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
982 .WillOnce(Invoke(getLoopAnalysisResult));
983 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
984 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
985 .Times(2)
986 .WillRepeatedly(Invoke(getLoopAnalysisResult));
988 // After visiting the inner loop, we should re-visit the second loop
989 // reflecting its new loop nest structure.
990 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
991 .WillOnce(Invoke(getLoopAnalysisResult));
993 // In the second run over the middle loop after we've visited the new child,
994 // we add another child to check that we can repeatedly add children, and add
995 // children to a loop that already has children.
996 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
997 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
998 LoopStandardAnalysisResults &AR,
999 LPMUpdater &Updater) {
1000 auto *NewLoop = AR.LI.AllocateLoop();
1001 L.addChildLoop(NewLoop);
1002 auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1003 auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1004 NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1005 NewLoop011PHBB);
1006 BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1007 CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1008 NewLoop011BB);
1009 AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1010 auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1011 AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1012 EXPECT_TRUE(AR.DT.verify());
1013 L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1014 NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1015 NewLoop->verifyLoop();
1016 L.verifyLoop();
1017 Updater.addChildLoops({NewLoop});
1018 return PreservedAnalyses::all();
1019 }));
1021 // Again, we should immediately drop down to visit the new, unvisited child
1022 // loop. We don't need to revisit the other child though.
1023 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1024 .WillOnce(Invoke(getLoopAnalysisResult));
1025 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1026 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1027 .Times(2)
1028 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1030 // And now we should pop back up to the second loop and do a full pipeline of
1031 // three passes on its current form.
1032 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1033 .Times(3)
1034 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1036 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1037 .WillOnce(Invoke(getLoopAnalysisResult));
1038 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1039 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1040 .Times(2)
1041 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1043 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1044 .WillOnce(Invoke(getLoopAnalysisResult));
1045 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1046 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1047 .Times(2)
1048 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1050 // Now that all the expected actions are registered, run the pipeline over
1051 // our module. All of our expectations are verified when the test finishes.
1052 MPM.run(*M, MAM);
1055 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1056 // Super boring module with two loop nests and loop nest with two child
1057 // loops.
1058 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1059 "entry:\n"
1060 " br label %loop.0\n"
1061 "loop.0:\n"
1062 " %cond.0 = load volatile i1, i1* %ptr\n"
1063 " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1064 "loop.0.0.ph:\n"
1065 " br label %loop.0.0\n"
1066 "loop.0.0:\n"
1067 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1068 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1069 "loop.0.2.ph:\n"
1070 " br label %loop.0.2\n"
1071 "loop.0.2:\n"
1072 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1073 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1074 "loop.0.latch:\n"
1075 " br label %loop.0\n"
1076 "loop.2.ph:\n"
1077 " br label %loop.2\n"
1078 "loop.2:\n"
1079 " %cond.2 = load volatile i1, i1* %ptr\n"
1080 " br i1 %cond.2, label %loop.2, label %end\n"
1081 "end:\n"
1082 " ret void\n"
1083 "}\n");
1085 // Build up variables referring into the IR so we can rewrite it below
1086 // easily.
1087 Function &F = *M->begin();
1088 ASSERT_THAT(F, HasName("f"));
1089 Argument &Ptr = *F.arg_begin();
1090 auto BBI = F.begin();
1091 BasicBlock &EntryBB = *BBI++;
1092 ASSERT_THAT(EntryBB, HasName("entry"));
1093 BasicBlock &Loop0BB = *BBI++;
1094 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1095 BasicBlock &Loop00PHBB = *BBI++;
1096 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1097 BasicBlock &Loop00BB = *BBI++;
1098 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1099 BasicBlock &Loop02PHBB = *BBI++;
1100 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1101 BasicBlock &Loop02BB = *BBI++;
1102 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1103 BasicBlock &Loop0LatchBB = *BBI++;
1104 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1105 BasicBlock &Loop2PHBB = *BBI++;
1106 ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1107 BasicBlock &Loop2BB = *BBI++;
1108 ASSERT_THAT(Loop2BB, HasName("loop.2"));
1109 BasicBlock &EndBB = *BBI++;
1110 ASSERT_THAT(EndBB, HasName("end"));
1111 ASSERT_THAT(BBI, F.end());
1112 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1113 const char *Name, BasicBlock *BB) {
1114 auto *Cond = new LoadInst(&Ptr, Name, /*isVolatile*/ true, BB);
1115 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1118 // Build the pass managers and register our pipeline. We build a single loop
1119 // pass pipeline consisting of three mock pass runs over each loop. After
1120 // this we run both domtree and loop verification passes to make sure that
1121 // the IR remained valid during our mutations.
1122 ModulePassManager MPM(true);
1123 FunctionPassManager FPM(true);
1124 LoopPassManager LPM(true);
1125 LPM.addPass(MLPHandle.getPass());
1126 LPM.addPass(MLPHandle.getPass());
1127 LPM.addPass(MLPHandle.getPass());
1128 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1129 FPM.addPass(DominatorTreeVerifierPass());
1130 FPM.addPass(LoopVerifierPass());
1131 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1133 // All the visit orders are deterministic, so we use simple fully order
1134 // expectations.
1135 ::testing::InSequence MakeExpectationsSequenced;
1137 // We run loop passes three times over each of the loops.
1138 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1139 .WillOnce(Invoke(getLoopAnalysisResult));
1140 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1142 // On the second run, we insert a sibling loop.
1143 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1144 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1145 LoopStandardAnalysisResults &AR,
1146 LPMUpdater &Updater) {
1147 auto *NewLoop = AR.LI.AllocateLoop();
1148 L.getParentLoop()->addChildLoop(NewLoop);
1149 auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1150 auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1151 BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1152 CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1153 Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1154 AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1155 auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1156 AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1157 EXPECT_TRUE(AR.DT.verify());
1158 L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1159 NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1160 L.getParentLoop()->verifyLoop();
1161 Updater.addSiblingLoops({NewLoop});
1162 return PreservedAnalyses::all();
1163 }));
1164 // We finish processing this loop as sibling loops don't perturb the
1165 // postorder walk.
1166 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1167 .WillOnce(Invoke(getLoopAnalysisResult));
1169 // We visit the inserted sibling next.
1170 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1171 .WillOnce(Invoke(getLoopAnalysisResult));
1172 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1173 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1174 .Times(2)
1175 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1177 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1178 .WillOnce(Invoke(getLoopAnalysisResult));
1179 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1180 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1181 .WillOnce(Invoke(getLoopAnalysisResult));
1182 // Next, on the third pass run on the last inner loop we add more new
1183 // siblings, more than one, and one with nested child loops. By doing this at
1184 // the end we make sure that edge case works well.
1185 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1186 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1187 LoopStandardAnalysisResults &AR,
1188 LPMUpdater &Updater) {
1189 Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1190 AR.LI.AllocateLoop()};
1191 L.getParentLoop()->addChildLoop(NewLoops[0]);
1192 L.getParentLoop()->addChildLoop(NewLoops[1]);
1193 NewLoops[1]->addChildLoop(NewLoops[2]);
1194 auto *NewLoop03PHBB =
1195 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1196 auto *NewLoop03BB =
1197 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1198 auto *NewLoop04PHBB =
1199 BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1200 auto *NewLoop04BB =
1201 BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1202 auto *NewLoop040PHBB =
1203 BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1204 auto *NewLoop040BB =
1205 BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1206 auto *NewLoop04LatchBB =
1207 BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1208 Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1209 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1210 CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1211 BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1212 CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1213 BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1214 CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1215 BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1216 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1217 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1218 AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1219 auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1220 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1221 AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1222 AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1223 AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1224 EXPECT_TRUE(AR.DT.verify());
1225 L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1226 NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1227 L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1228 NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1229 NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1230 NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1231 NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1232 L.getParentLoop()->verifyLoop();
1233 Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1234 return PreservedAnalyses::all();
1235 }));
1237 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1238 .WillOnce(Invoke(getLoopAnalysisResult));
1239 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1240 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1241 .Times(2)
1242 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1244 // Note that we need to visit the inner loop of this added sibling before the
1245 // sibling itself!
1246 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1247 .WillOnce(Invoke(getLoopAnalysisResult));
1248 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1249 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1250 .Times(2)
1251 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1253 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1254 .WillOnce(Invoke(getLoopAnalysisResult));
1255 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1256 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1257 .Times(2)
1258 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1260 // And only now do we visit the outermost loop of the nest.
1261 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1262 .WillOnce(Invoke(getLoopAnalysisResult));
1263 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1264 // On the second pass, we add sibling loops which become new top-level loops.
1265 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1266 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1267 LoopStandardAnalysisResults &AR,
1268 LPMUpdater &Updater) {
1269 auto *NewLoop = AR.LI.AllocateLoop();
1270 AR.LI.addTopLevelLoop(NewLoop);
1271 auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1272 auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1273 BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1274 CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1275 Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1276 AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1277 auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1278 AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1279 EXPECT_TRUE(AR.DT.verify());
1280 NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1281 NewLoop->verifyLoop();
1282 Updater.addSiblingLoops({NewLoop});
1283 return PreservedAnalyses::all();
1284 }));
1285 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1286 .WillOnce(Invoke(getLoopAnalysisResult));
1288 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1289 .WillOnce(Invoke(getLoopAnalysisResult));
1290 EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1291 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1292 .Times(2)
1293 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1295 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1296 .WillOnce(Invoke(getLoopAnalysisResult));
1297 EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1298 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1299 .Times(2)
1300 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1302 // Now that all the expected actions are registered, run the pipeline over
1303 // our module. All of our expectations are verified when the test finishes.
1304 MPM.run(*M, MAM);
1307 TEST_F(LoopPassManagerTest, LoopDeletion) {
1308 // Build a module with a single loop nest that contains one outer loop with
1309 // three subloops, and one of those with its own subloop. We will
1310 // incrementally delete all of these to test different deletion scenarios.
1311 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1312 "entry:\n"
1313 " br label %loop.0\n"
1314 "loop.0:\n"
1315 " %cond.0 = load volatile i1, i1* %ptr\n"
1316 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1317 "loop.0.0.ph:\n"
1318 " br label %loop.0.0\n"
1319 "loop.0.0:\n"
1320 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1321 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1322 "loop.0.1.ph:\n"
1323 " br label %loop.0.1\n"
1324 "loop.0.1:\n"
1325 " %cond.0.1 = load volatile i1, i1* %ptr\n"
1326 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1327 "loop.0.2.ph:\n"
1328 " br label %loop.0.2\n"
1329 "loop.0.2:\n"
1330 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1331 " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1332 "loop.0.2.0.ph:\n"
1333 " br label %loop.0.2.0\n"
1334 "loop.0.2.0:\n"
1335 " %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1336 " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1337 "loop.0.2.latch:\n"
1338 " br label %loop.0.2\n"
1339 "loop.0.latch:\n"
1340 " br label %loop.0\n"
1341 "end:\n"
1342 " ret void\n"
1343 "}\n");
1345 // Build up variables referring into the IR so we can rewrite it below
1346 // easily.
1347 Function &F = *M->begin();
1348 ASSERT_THAT(F, HasName("f"));
1349 Argument &Ptr = *F.arg_begin();
1350 auto BBI = F.begin();
1351 BasicBlock &EntryBB = *BBI++;
1352 ASSERT_THAT(EntryBB, HasName("entry"));
1353 BasicBlock &Loop0BB = *BBI++;
1354 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1355 BasicBlock &Loop00PHBB = *BBI++;
1356 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1357 BasicBlock &Loop00BB = *BBI++;
1358 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1359 BasicBlock &Loop01PHBB = *BBI++;
1360 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1361 BasicBlock &Loop01BB = *BBI++;
1362 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1363 BasicBlock &Loop02PHBB = *BBI++;
1364 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1365 BasicBlock &Loop02BB = *BBI++;
1366 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1367 BasicBlock &Loop020PHBB = *BBI++;
1368 ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1369 BasicBlock &Loop020BB = *BBI++;
1370 ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1371 BasicBlock &Loop02LatchBB = *BBI++;
1372 ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1373 BasicBlock &Loop0LatchBB = *BBI++;
1374 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1375 BasicBlock &EndBB = *BBI++;
1376 ASSERT_THAT(EndBB, HasName("end"));
1377 ASSERT_THAT(BBI, F.end());
1379 // Helper to do the actual deletion of a loop. We directly encode this here
1380 // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1381 // egregiously cheat based on knowledge of the test case. For example, we
1382 // have no PHI nodes and there is always a single i-dom.
1383 auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1384 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1385 assert(L.empty() && "Can only delete leaf loops with this routine!");
1386 SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1387 Updater.markLoopAsDeleted(L, L.getName());
1388 IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1389 L.getUniqueExitBlock());
1390 for (BasicBlock *LoopBB : LoopBBs) {
1391 SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1392 AR.DT[LoopBB]->end());
1393 for (DomTreeNode *ChildNode : ChildNodes)
1394 AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1395 AR.DT.eraseNode(LoopBB);
1396 AR.LI.removeBlock(LoopBB);
1397 LoopBB->dropAllReferences();
1399 for (BasicBlock *LoopBB : LoopBBs)
1400 LoopBB->eraseFromParent();
1402 AR.LI.erase(&L);
1405 // Build up the pass managers.
1406 ModulePassManager MPM(true);
1407 FunctionPassManager FPM(true);
1408 // We run several loop pass pipelines across the loop nest, but they all take
1409 // the same form of three mock pass runs in a loop pipeline followed by
1410 // domtree and loop verification. We use a lambda to stamp this out each
1411 // time.
1412 auto AddLoopPipelineAndVerificationPasses = [&] {
1413 LoopPassManager LPM(true);
1414 LPM.addPass(MLPHandle.getPass());
1415 LPM.addPass(MLPHandle.getPass());
1416 LPM.addPass(MLPHandle.getPass());
1417 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1418 FPM.addPass(DominatorTreeVerifierPass());
1419 FPM.addPass(LoopVerifierPass());
1422 // All the visit orders are deterministic so we use simple fully order
1423 // expectations.
1424 ::testing::InSequence MakeExpectationsSequenced;
1426 // We run the loop pipeline with three passes over each of the loops. When
1427 // running over the middle loop, the second pass in the pipeline deletes it.
1428 // This should prevent the third pass from visiting it but otherwise leave
1429 // the process unimpacted.
1430 AddLoopPipelineAndVerificationPasses();
1431 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1432 .WillOnce(Invoke(getLoopAnalysisResult));
1433 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1434 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1435 .Times(2)
1436 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1438 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1439 .WillOnce(Invoke(getLoopAnalysisResult));
1440 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1441 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1442 .WillOnce(
1443 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1444 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1445 Loop *ParentL = L.getParentLoop();
1446 AR.SE.forgetLoop(&L);
1447 EraseLoop(L, Loop01PHBB, AR, Updater);
1448 ParentL->verifyLoop();
1449 return PreservedAnalyses::all();
1450 }));
1452 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1453 .WillOnce(Invoke(getLoopAnalysisResult));
1454 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1455 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1456 .Times(2)
1457 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1459 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1460 .WillOnce(Invoke(getLoopAnalysisResult));
1461 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1462 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1463 .Times(2)
1464 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1466 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1467 .WillOnce(Invoke(getLoopAnalysisResult));
1468 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1469 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1470 .Times(2)
1471 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1473 // Run the loop pipeline again. This time we delete the last loop, which
1474 // contains a nested loop within it and insert a new loop into the nest. This
1475 // makes sure we can handle nested loop deletion.
1476 AddLoopPipelineAndVerificationPasses();
1477 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1478 .Times(3)
1479 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1481 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1482 .Times(3)
1483 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1485 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1486 .WillOnce(Invoke(getLoopAnalysisResult));
1487 BasicBlock *NewLoop03PHBB;
1488 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1489 .WillOnce(
1490 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1491 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1492 AR.SE.forgetLoop(*L.begin());
1493 EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1495 auto *ParentL = L.getParentLoop();
1496 AR.SE.forgetLoop(&L);
1497 EraseLoop(L, Loop02PHBB, AR, Updater);
1499 // Now insert a new sibling loop.
1500 auto *NewSibling = AR.LI.AllocateLoop();
1501 ParentL->addChildLoop(NewSibling);
1502 NewLoop03PHBB =
1503 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1504 auto *NewLoop03BB =
1505 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1506 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1507 auto *Cond = new LoadInst(&Ptr, "cond.0.3", /*isVolatile*/ true,
1508 NewLoop03BB);
1509 BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1510 Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1511 NewLoop03PHBB);
1512 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1513 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1514 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1515 AR.DT[NewLoop03BB]);
1516 EXPECT_TRUE(AR.DT.verify());
1517 ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1518 NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1519 NewSibling->verifyLoop();
1520 ParentL->verifyLoop();
1521 Updater.addSiblingLoops({NewSibling});
1522 return PreservedAnalyses::all();
1523 }));
1525 // To respect our inner-to-outer traversal order, we must visit the
1526 // newly-inserted sibling of the loop we just deleted before we visit the
1527 // outer loop. When we do so, this must compute a fresh analysis result, even
1528 // though our new loop has the same pointer value as the loop we deleted.
1529 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1530 .WillOnce(Invoke(getLoopAnalysisResult));
1531 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1532 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1533 .Times(2)
1534 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1536 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1537 .Times(3)
1538 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1540 // In the final loop pipeline run we delete every loop, including the last
1541 // loop of the nest. We do this again in the second pass in the pipeline, and
1542 // as a consequence we never make it to three runs on any loop. We also cover
1543 // deleting multiple loops in a single pipeline, deleting the first loop and
1544 // deleting the (last) top level loop.
1545 AddLoopPipelineAndVerificationPasses();
1546 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1547 .WillOnce(Invoke(getLoopAnalysisResult));
1548 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1549 .WillOnce(
1550 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1551 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1552 AR.SE.forgetLoop(&L);
1553 EraseLoop(L, Loop00PHBB, AR, Updater);
1554 return PreservedAnalyses::all();
1555 }));
1557 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1558 .WillOnce(Invoke(getLoopAnalysisResult));
1559 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1560 .WillOnce(
1561 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1562 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1563 AR.SE.forgetLoop(&L);
1564 EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1565 return PreservedAnalyses::all();
1566 }));
1568 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1569 .WillOnce(Invoke(getLoopAnalysisResult));
1570 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1571 .WillOnce(
1572 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1573 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1574 AR.SE.forgetLoop(&L);
1575 EraseLoop(L, EntryBB, AR, Updater);
1576 return PreservedAnalyses::all();
1577 }));
1579 // Add the function pass pipeline now that it is fully built up and run it
1580 // over the module's one function.
1581 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1582 MPM.run(*M, MAM);