[DebugInfoMetadata] Refactor DIExpression::prepend constants (NFC)
[llvm-core.git] / lib / Transforms / Instrumentation / AddressSanitizer.cpp
blob25d81c9efd18664ec56bfabcc741f82d7165d025
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iomanip>
82 #include <limits>
83 #include <memory>
84 #include <sstream>
85 #include <string>
86 #include <tuple>
88 using namespace llvm;
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale = 3;
93 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel =
96 std::numeric_limits<uint64_t>::max();
97 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
98 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
99 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
109 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
110 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
113 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
114 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
116 static const uint64_t kMyriadShadowScale = 5;
117 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
118 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
119 static const uint64_t kMyriadTagShift = 29;
120 static const uint64_t kMyriadDDRTag = 4;
121 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
123 // The shadow memory space is dynamically allocated.
124 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
126 static const size_t kMinStackMallocSize = 1 << 6; // 64B
127 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
128 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
129 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
131 static const char *const kAsanModuleCtorName = "asan.module_ctor";
132 static const char *const kAsanModuleDtorName = "asan.module_dtor";
133 static const uint64_t kAsanCtorAndDtorPriority = 1;
134 static const char *const kAsanReportErrorTemplate = "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName =
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName =
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName =
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName =
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName =
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
148 static const char *const kAsanInitName = "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix =
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
157 static const char *const kAsanGenPrefix = "___asan_gen_";
158 static const char *const kODRGenPrefix = "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix = "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix = "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName =
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName =
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName =
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn =
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress =
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
183 static const unsigned kAllocaRzSize = 32;
185 // Command-line flags.
187 static cl::opt<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden, cl::init(false));
191 static cl::opt<bool> ClRecover(
192 "asan-recover",
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden, cl::init(false));
196 // This flag may need to be replaced with -f[no-]asan-reads.
197 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
198 cl::desc("instrument read instructions"),
199 cl::Hidden, cl::init(true));
201 static cl::opt<bool> ClInstrumentWrites(
202 "asan-instrument-writes", cl::desc("instrument write instructions"),
203 cl::Hidden, cl::init(true));
205 static cl::opt<bool> ClInstrumentAtomics(
206 "asan-instrument-atomics",
207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
208 cl::init(true));
210 static cl::opt<bool> ClAlwaysSlowPath(
211 "asan-always-slow-path",
212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
213 cl::init(false));
215 static cl::opt<bool> ClForceDynamicShadow(
216 "asan-force-dynamic-shadow",
217 cl::desc("Load shadow address into a local variable for each function"),
218 cl::Hidden, cl::init(false));
220 static cl::opt<bool>
221 ClWithIfunc("asan-with-ifunc",
222 cl::desc("Access dynamic shadow through an ifunc global on "
223 "platforms that support this"),
224 cl::Hidden, cl::init(true));
226 static cl::opt<bool> ClWithIfuncSuppressRemat(
227 "asan-with-ifunc-suppress-remat",
228 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
229 "it through inline asm in prologue."),
230 cl::Hidden, cl::init(true));
232 // This flag limits the number of instructions to be instrumented
233 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
235 // set it to 10000.
236 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
237 "asan-max-ins-per-bb", cl::init(10000),
238 cl::desc("maximal number of instructions to instrument in any given BB"),
239 cl::Hidden);
241 // This flag may need to be replaced with -f[no]asan-stack.
242 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
243 cl::Hidden, cl::init(true));
244 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
245 "asan-max-inline-poisoning-size",
246 cl::desc(
247 "Inline shadow poisoning for blocks up to the given size in bytes."),
248 cl::Hidden, cl::init(64));
250 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
251 cl::desc("Check stack-use-after-return"),
252 cl::Hidden, cl::init(true));
254 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
255 cl::desc("Create redzones for byval "
256 "arguments (extra copy "
257 "required)"), cl::Hidden,
258 cl::init(true));
260 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
261 cl::desc("Check stack-use-after-scope"),
262 cl::Hidden, cl::init(false));
264 // This flag may need to be replaced with -f[no]asan-globals.
265 static cl::opt<bool> ClGlobals("asan-globals",
266 cl::desc("Handle global objects"), cl::Hidden,
267 cl::init(true));
269 static cl::opt<bool> ClInitializers("asan-initialization-order",
270 cl::desc("Handle C++ initializer order"),
271 cl::Hidden, cl::init(true));
273 static cl::opt<bool> ClInvalidPointerPairs(
274 "asan-detect-invalid-pointer-pair",
275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
276 cl::init(false));
278 static cl::opt<bool> ClInvalidPointerCmp(
279 "asan-detect-invalid-pointer-cmp",
280 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
281 cl::init(false));
283 static cl::opt<bool> ClInvalidPointerSub(
284 "asan-detect-invalid-pointer-sub",
285 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
286 cl::init(false));
288 static cl::opt<unsigned> ClRealignStack(
289 "asan-realign-stack",
290 cl::desc("Realign stack to the value of this flag (power of two)"),
291 cl::Hidden, cl::init(32));
293 static cl::opt<int> ClInstrumentationWithCallsThreshold(
294 "asan-instrumentation-with-call-threshold",
295 cl::desc(
296 "If the function being instrumented contains more than "
297 "this number of memory accesses, use callbacks instead of "
298 "inline checks (-1 means never use callbacks)."),
299 cl::Hidden, cl::init(7000));
301 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
302 "asan-memory-access-callback-prefix",
303 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
304 cl::init("__asan_"));
306 static cl::opt<bool>
307 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
308 cl::desc("instrument dynamic allocas"),
309 cl::Hidden, cl::init(true));
311 static cl::opt<bool> ClSkipPromotableAllocas(
312 "asan-skip-promotable-allocas",
313 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
314 cl::init(true));
316 // These flags allow to change the shadow mapping.
317 // The shadow mapping looks like
318 // Shadow = (Mem >> scale) + offset
320 static cl::opt<int> ClMappingScale("asan-mapping-scale",
321 cl::desc("scale of asan shadow mapping"),
322 cl::Hidden, cl::init(0));
324 static cl::opt<uint64_t>
325 ClMappingOffset("asan-mapping-offset",
326 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
327 cl::Hidden, cl::init(0));
329 // Optimization flags. Not user visible, used mostly for testing
330 // and benchmarking the tool.
332 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
333 cl::Hidden, cl::init(true));
335 static cl::opt<bool> ClOptSameTemp(
336 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
337 cl::Hidden, cl::init(true));
339 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
340 cl::desc("Don't instrument scalar globals"),
341 cl::Hidden, cl::init(true));
343 static cl::opt<bool> ClOptStack(
344 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
345 cl::Hidden, cl::init(false));
347 static cl::opt<bool> ClDynamicAllocaStack(
348 "asan-stack-dynamic-alloca",
349 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
350 cl::init(true));
352 static cl::opt<uint32_t> ClForceExperiment(
353 "asan-force-experiment",
354 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
355 cl::init(0));
357 static cl::opt<bool>
358 ClUsePrivateAlias("asan-use-private-alias",
359 cl::desc("Use private aliases for global variables"),
360 cl::Hidden, cl::init(false));
362 static cl::opt<bool>
363 ClUseOdrIndicator("asan-use-odr-indicator",
364 cl::desc("Use odr indicators to improve ODR reporting"),
365 cl::Hidden, cl::init(false));
367 static cl::opt<bool>
368 ClUseGlobalsGC("asan-globals-live-support",
369 cl::desc("Use linker features to support dead "
370 "code stripping of globals"),
371 cl::Hidden, cl::init(true));
373 // This is on by default even though there is a bug in gold:
374 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
375 static cl::opt<bool>
376 ClWithComdat("asan-with-comdat",
377 cl::desc("Place ASan constructors in comdat sections"),
378 cl::Hidden, cl::init(true));
380 // Debug flags.
382 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
383 cl::init(0));
385 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
386 cl::Hidden, cl::init(0));
388 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
389 cl::desc("Debug func"));
391 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
392 cl::Hidden, cl::init(-1));
394 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
395 cl::Hidden, cl::init(-1));
397 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
398 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
399 STATISTIC(NumOptimizedAccessesToGlobalVar,
400 "Number of optimized accesses to global vars");
401 STATISTIC(NumOptimizedAccessesToStackVar,
402 "Number of optimized accesses to stack vars");
404 namespace {
406 /// This struct defines the shadow mapping using the rule:
407 /// shadow = (mem >> Scale) ADD-or-OR Offset.
408 /// If InGlobal is true, then
409 /// extern char __asan_shadow[];
410 /// shadow = (mem >> Scale) + &__asan_shadow
411 struct ShadowMapping {
412 int Scale;
413 uint64_t Offset;
414 bool OrShadowOffset;
415 bool InGlobal;
418 } // end anonymous namespace
420 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
421 bool IsKasan) {
422 bool IsAndroid = TargetTriple.isAndroid();
423 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
424 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
425 bool IsNetBSD = TargetTriple.isOSNetBSD();
426 bool IsPS4CPU = TargetTriple.isPS4CPU();
427 bool IsLinux = TargetTriple.isOSLinux();
428 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
429 TargetTriple.getArch() == Triple::ppc64le;
430 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
431 bool IsX86 = TargetTriple.getArch() == Triple::x86;
432 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
433 bool IsMIPS32 = TargetTriple.isMIPS32();
434 bool IsMIPS64 = TargetTriple.isMIPS64();
435 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
436 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
437 bool IsWindows = TargetTriple.isOSWindows();
438 bool IsFuchsia = TargetTriple.isOSFuchsia();
439 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
441 ShadowMapping Mapping;
443 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
444 if (ClMappingScale.getNumOccurrences() > 0) {
445 Mapping.Scale = ClMappingScale;
448 if (LongSize == 32) {
449 if (IsAndroid)
450 Mapping.Offset = kDynamicShadowSentinel;
451 else if (IsMIPS32)
452 Mapping.Offset = kMIPS32_ShadowOffset32;
453 else if (IsFreeBSD)
454 Mapping.Offset = kFreeBSD_ShadowOffset32;
455 else if (IsNetBSD)
456 Mapping.Offset = kNetBSD_ShadowOffset32;
457 else if (IsIOS)
458 // If we're targeting iOS and x86, the binary is built for iOS simulator.
459 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
460 else if (IsWindows)
461 Mapping.Offset = kWindowsShadowOffset32;
462 else if (IsMyriad) {
463 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
464 (kMyriadMemorySize32 >> Mapping.Scale));
465 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
467 else
468 Mapping.Offset = kDefaultShadowOffset32;
469 } else { // LongSize == 64
470 // Fuchsia is always PIE, which means that the beginning of the address
471 // space is always available.
472 if (IsFuchsia)
473 Mapping.Offset = 0;
474 else if (IsPPC64)
475 Mapping.Offset = kPPC64_ShadowOffset64;
476 else if (IsSystemZ)
477 Mapping.Offset = kSystemZ_ShadowOffset64;
478 else if (IsFreeBSD && !IsMIPS64)
479 Mapping.Offset = kFreeBSD_ShadowOffset64;
480 else if (IsNetBSD) {
481 if (IsKasan)
482 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
483 else
484 Mapping.Offset = kNetBSD_ShadowOffset64;
485 } else if (IsPS4CPU)
486 Mapping.Offset = kPS4CPU_ShadowOffset64;
487 else if (IsLinux && IsX86_64) {
488 if (IsKasan)
489 Mapping.Offset = kLinuxKasan_ShadowOffset64;
490 else
491 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
492 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
493 } else if (IsWindows && IsX86_64) {
494 Mapping.Offset = kWindowsShadowOffset64;
495 } else if (IsMIPS64)
496 Mapping.Offset = kMIPS64_ShadowOffset64;
497 else if (IsIOS)
498 // If we're targeting iOS and x86, the binary is built for iOS simulator.
499 // We are using dynamic shadow offset on the 64-bit devices.
500 Mapping.Offset =
501 IsX86_64 ? kIOSSimShadowOffset64 : kDynamicShadowSentinel;
502 else if (IsAArch64)
503 Mapping.Offset = kAArch64_ShadowOffset64;
504 else
505 Mapping.Offset = kDefaultShadowOffset64;
508 if (ClForceDynamicShadow) {
509 Mapping.Offset = kDynamicShadowSentinel;
512 if (ClMappingOffset.getNumOccurrences() > 0) {
513 Mapping.Offset = ClMappingOffset;
516 // OR-ing shadow offset if more efficient (at least on x86) if the offset
517 // is a power of two, but on ppc64 we have to use add since the shadow
518 // offset is not necessary 1/8-th of the address space. On SystemZ,
519 // we could OR the constant in a single instruction, but it's more
520 // efficient to load it once and use indexed addressing.
521 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
522 !(Mapping.Offset & (Mapping.Offset - 1)) &&
523 Mapping.Offset != kDynamicShadowSentinel;
524 bool IsAndroidWithIfuncSupport =
525 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
526 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
528 return Mapping;
531 static size_t RedzoneSizeForScale(int MappingScale) {
532 // Redzone used for stack and globals is at least 32 bytes.
533 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
534 return std::max(32U, 1U << MappingScale);
537 namespace {
539 /// Module analysis for getting various metadata about the module.
540 class ASanGlobalsMetadataWrapperPass : public ModulePass {
541 public:
542 static char ID;
544 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
545 initializeASanGlobalsMetadataWrapperPassPass(
546 *PassRegistry::getPassRegistry());
549 bool runOnModule(Module &M) override {
550 GlobalsMD = GlobalsMetadata(M);
551 return false;
554 StringRef getPassName() const override {
555 return "ASanGlobalsMetadataWrapperPass";
558 void getAnalysisUsage(AnalysisUsage &AU) const override {
559 AU.setPreservesAll();
562 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
564 private:
565 GlobalsMetadata GlobalsMD;
568 char ASanGlobalsMetadataWrapperPass::ID = 0;
570 /// AddressSanitizer: instrument the code in module to find memory bugs.
571 struct AddressSanitizer {
572 AddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
573 bool CompileKernel = false, bool Recover = false,
574 bool UseAfterScope = false)
575 : UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(GlobalsMD) {
576 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
577 this->CompileKernel =
578 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
580 C = &(M.getContext());
581 LongSize = M.getDataLayout().getPointerSizeInBits();
582 IntptrTy = Type::getIntNTy(*C, LongSize);
583 TargetTriple = Triple(M.getTargetTriple());
585 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
588 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
589 uint64_t ArraySize = 1;
590 if (AI.isArrayAllocation()) {
591 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
592 assert(CI && "non-constant array size");
593 ArraySize = CI->getZExtValue();
595 Type *Ty = AI.getAllocatedType();
596 uint64_t SizeInBytes =
597 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
598 return SizeInBytes * ArraySize;
601 /// Check if we want (and can) handle this alloca.
602 bool isInterestingAlloca(const AllocaInst &AI);
604 /// If it is an interesting memory access, return the PointerOperand
605 /// and set IsWrite/Alignment. Otherwise return nullptr.
606 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
607 /// masked load/store.
608 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
609 uint64_t *TypeSize, unsigned *Alignment,
610 Value **MaybeMask = nullptr);
612 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
613 bool UseCalls, const DataLayout &DL);
614 void instrumentPointerComparisonOrSubtraction(Instruction *I);
615 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
616 Value *Addr, uint32_t TypeSize, bool IsWrite,
617 Value *SizeArgument, bool UseCalls, uint32_t Exp);
618 void instrumentUnusualSizeOrAlignment(Instruction *I,
619 Instruction *InsertBefore, Value *Addr,
620 uint32_t TypeSize, bool IsWrite,
621 Value *SizeArgument, bool UseCalls,
622 uint32_t Exp);
623 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
624 Value *ShadowValue, uint32_t TypeSize);
625 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
626 bool IsWrite, size_t AccessSizeIndex,
627 Value *SizeArgument, uint32_t Exp);
628 void instrumentMemIntrinsic(MemIntrinsic *MI);
629 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
630 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
631 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
632 void maybeInsertDynamicShadowAtFunctionEntry(Function &F);
633 void markEscapedLocalAllocas(Function &F);
635 private:
636 friend struct FunctionStackPoisoner;
638 void initializeCallbacks(Module &M);
640 bool LooksLikeCodeInBug11395(Instruction *I);
641 bool GlobalIsLinkerInitialized(GlobalVariable *G);
642 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
643 uint64_t TypeSize) const;
645 /// Helper to cleanup per-function state.
646 struct FunctionStateRAII {
647 AddressSanitizer *Pass;
649 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
650 assert(Pass->ProcessedAllocas.empty() &&
651 "last pass forgot to clear cache");
652 assert(!Pass->LocalDynamicShadow);
655 ~FunctionStateRAII() {
656 Pass->LocalDynamicShadow = nullptr;
657 Pass->ProcessedAllocas.clear();
661 LLVMContext *C;
662 Triple TargetTriple;
663 int LongSize;
664 bool CompileKernel;
665 bool Recover;
666 bool UseAfterScope;
667 Type *IntptrTy;
668 ShadowMapping Mapping;
669 FunctionCallee AsanHandleNoReturnFunc;
670 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
671 Constant *AsanShadowGlobal;
673 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
674 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
675 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
677 // These arrays is indexed by AccessIsWrite and Experiment.
678 FunctionCallee AsanErrorCallbackSized[2][2];
679 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
681 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
682 InlineAsm *EmptyAsm;
683 Value *LocalDynamicShadow = nullptr;
684 GlobalsMetadata GlobalsMD;
685 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
688 class AddressSanitizerLegacyPass : public FunctionPass {
689 public:
690 static char ID;
692 explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
693 bool Recover = false,
694 bool UseAfterScope = false)
695 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
696 UseAfterScope(UseAfterScope) {
697 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
700 StringRef getPassName() const override {
701 return "AddressSanitizerFunctionPass";
704 void getAnalysisUsage(AnalysisUsage &AU) const override {
705 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
706 AU.addRequired<TargetLibraryInfoWrapperPass>();
709 bool runOnFunction(Function &F) override {
710 GlobalsMetadata &GlobalsMD =
711 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
712 const TargetLibraryInfo *TLI =
713 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
714 AddressSanitizer ASan(*F.getParent(), GlobalsMD, CompileKernel, Recover,
715 UseAfterScope);
716 return ASan.instrumentFunction(F, TLI);
719 private:
720 bool CompileKernel;
721 bool Recover;
722 bool UseAfterScope;
725 class ModuleAddressSanitizer {
726 public:
727 ModuleAddressSanitizer(Module &M, GlobalsMetadata &GlobalsMD,
728 bool CompileKernel = false, bool Recover = false,
729 bool UseGlobalsGC = true, bool UseOdrIndicator = false)
730 : GlobalsMD(GlobalsMD), UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC),
731 // Enable aliases as they should have no downside with ODR indicators.
732 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
733 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
734 // Not a typo: ClWithComdat is almost completely pointless without
735 // ClUseGlobalsGC (because then it only works on modules without
736 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
737 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
738 // argument is designed as workaround. Therefore, disable both
739 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
740 // do globals-gc.
741 UseCtorComdat(UseGlobalsGC && ClWithComdat) {
742 this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover;
743 this->CompileKernel =
744 ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan : CompileKernel;
746 C = &(M.getContext());
747 int LongSize = M.getDataLayout().getPointerSizeInBits();
748 IntptrTy = Type::getIntNTy(*C, LongSize);
749 TargetTriple = Triple(M.getTargetTriple());
750 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
753 bool instrumentModule(Module &);
755 private:
756 void initializeCallbacks(Module &M);
758 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
759 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
760 ArrayRef<GlobalVariable *> ExtendedGlobals,
761 ArrayRef<Constant *> MetadataInitializers);
762 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
763 ArrayRef<GlobalVariable *> ExtendedGlobals,
764 ArrayRef<Constant *> MetadataInitializers,
765 const std::string &UniqueModuleId);
766 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
767 ArrayRef<GlobalVariable *> ExtendedGlobals,
768 ArrayRef<Constant *> MetadataInitializers);
769 void
770 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
771 ArrayRef<GlobalVariable *> ExtendedGlobals,
772 ArrayRef<Constant *> MetadataInitializers);
774 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
775 StringRef OriginalName);
776 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
777 StringRef InternalSuffix);
778 IRBuilder<> CreateAsanModuleDtor(Module &M);
780 bool ShouldInstrumentGlobal(GlobalVariable *G);
781 bool ShouldUseMachOGlobalsSection() const;
782 StringRef getGlobalMetadataSection() const;
783 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
784 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
785 size_t MinRedzoneSizeForGlobal() const {
786 return RedzoneSizeForScale(Mapping.Scale);
788 int GetAsanVersion(const Module &M) const;
790 GlobalsMetadata GlobalsMD;
791 bool CompileKernel;
792 bool Recover;
793 bool UseGlobalsGC;
794 bool UsePrivateAlias;
795 bool UseOdrIndicator;
796 bool UseCtorComdat;
797 Type *IntptrTy;
798 LLVMContext *C;
799 Triple TargetTriple;
800 ShadowMapping Mapping;
801 FunctionCallee AsanPoisonGlobals;
802 FunctionCallee AsanUnpoisonGlobals;
803 FunctionCallee AsanRegisterGlobals;
804 FunctionCallee AsanUnregisterGlobals;
805 FunctionCallee AsanRegisterImageGlobals;
806 FunctionCallee AsanUnregisterImageGlobals;
807 FunctionCallee AsanRegisterElfGlobals;
808 FunctionCallee AsanUnregisterElfGlobals;
810 Function *AsanCtorFunction = nullptr;
811 Function *AsanDtorFunction = nullptr;
814 class ModuleAddressSanitizerLegacyPass : public ModulePass {
815 public:
816 static char ID;
818 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false,
819 bool Recover = false,
820 bool UseGlobalGC = true,
821 bool UseOdrIndicator = false)
822 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
823 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) {
824 initializeModuleAddressSanitizerLegacyPassPass(
825 *PassRegistry::getPassRegistry());
828 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
830 void getAnalysisUsage(AnalysisUsage &AU) const override {
831 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
834 bool runOnModule(Module &M) override {
835 GlobalsMetadata &GlobalsMD =
836 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
837 ModuleAddressSanitizer ASanModule(M, GlobalsMD, CompileKernel, Recover,
838 UseGlobalGC, UseOdrIndicator);
839 return ASanModule.instrumentModule(M);
842 private:
843 bool CompileKernel;
844 bool Recover;
845 bool UseGlobalGC;
846 bool UseOdrIndicator;
849 // Stack poisoning does not play well with exception handling.
850 // When an exception is thrown, we essentially bypass the code
851 // that unpoisones the stack. This is why the run-time library has
852 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
853 // stack in the interceptor. This however does not work inside the
854 // actual function which catches the exception. Most likely because the
855 // compiler hoists the load of the shadow value somewhere too high.
856 // This causes asan to report a non-existing bug on 453.povray.
857 // It sounds like an LLVM bug.
858 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
859 Function &F;
860 AddressSanitizer &ASan;
861 DIBuilder DIB;
862 LLVMContext *C;
863 Type *IntptrTy;
864 Type *IntptrPtrTy;
865 ShadowMapping Mapping;
867 SmallVector<AllocaInst *, 16> AllocaVec;
868 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
869 SmallVector<Instruction *, 8> RetVec;
870 unsigned StackAlignment;
872 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
873 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
874 FunctionCallee AsanSetShadowFunc[0x100] = {};
875 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
876 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
878 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
879 struct AllocaPoisonCall {
880 IntrinsicInst *InsBefore;
881 AllocaInst *AI;
882 uint64_t Size;
883 bool DoPoison;
885 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
886 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
887 bool HasUntracedLifetimeIntrinsic = false;
889 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
890 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
891 AllocaInst *DynamicAllocaLayout = nullptr;
892 IntrinsicInst *LocalEscapeCall = nullptr;
894 // Maps Value to an AllocaInst from which the Value is originated.
895 using AllocaForValueMapTy = DenseMap<Value *, AllocaInst *>;
896 AllocaForValueMapTy AllocaForValue;
898 bool HasNonEmptyInlineAsm = false;
899 bool HasReturnsTwiceCall = false;
900 std::unique_ptr<CallInst> EmptyInlineAsm;
902 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
903 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
904 C(ASan.C), IntptrTy(ASan.IntptrTy),
905 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
906 StackAlignment(1 << Mapping.Scale),
907 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
909 bool runOnFunction() {
910 if (!ClStack) return false;
912 if (ClRedzoneByvalArgs)
913 copyArgsPassedByValToAllocas();
915 // Collect alloca, ret, lifetime instructions etc.
916 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
918 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
920 initializeCallbacks(*F.getParent());
922 if (HasUntracedLifetimeIntrinsic) {
923 // If there are lifetime intrinsics which couldn't be traced back to an
924 // alloca, we may not know exactly when a variable enters scope, and
925 // therefore should "fail safe" by not poisoning them.
926 StaticAllocaPoisonCallVec.clear();
927 DynamicAllocaPoisonCallVec.clear();
930 processDynamicAllocas();
931 processStaticAllocas();
933 if (ClDebugStack) {
934 LLVM_DEBUG(dbgs() << F);
936 return true;
939 // Arguments marked with the "byval" attribute are implicitly copied without
940 // using an alloca instruction. To produce redzones for those arguments, we
941 // copy them a second time into memory allocated with an alloca instruction.
942 void copyArgsPassedByValToAllocas();
944 // Finds all Alloca instructions and puts
945 // poisoned red zones around all of them.
946 // Then unpoison everything back before the function returns.
947 void processStaticAllocas();
948 void processDynamicAllocas();
950 void createDynamicAllocasInitStorage();
952 // ----------------------- Visitors.
953 /// Collect all Ret instructions.
954 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
956 /// Collect all Resume instructions.
957 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
959 /// Collect all CatchReturnInst instructions.
960 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
962 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
963 Value *SavedStack) {
964 IRBuilder<> IRB(InstBefore);
965 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
966 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
967 // need to adjust extracted SP to compute the address of the most recent
968 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
969 // this purpose.
970 if (!isa<ReturnInst>(InstBefore)) {
971 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
972 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
973 {IntptrTy});
975 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
977 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
978 DynamicAreaOffset);
981 IRB.CreateCall(
982 AsanAllocasUnpoisonFunc,
983 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
986 // Unpoison dynamic allocas redzones.
987 void unpoisonDynamicAllocas() {
988 for (auto &Ret : RetVec)
989 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
991 for (auto &StackRestoreInst : StackRestoreVec)
992 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
993 StackRestoreInst->getOperand(0));
996 // Deploy and poison redzones around dynamic alloca call. To do this, we
997 // should replace this call with another one with changed parameters and
998 // replace all its uses with new address, so
999 // addr = alloca type, old_size, align
1000 // is replaced by
1001 // new_size = (old_size + additional_size) * sizeof(type)
1002 // tmp = alloca i8, new_size, max(align, 32)
1003 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1004 // Additional_size is added to make new memory allocation contain not only
1005 // requested memory, but also left, partial and right redzones.
1006 void handleDynamicAllocaCall(AllocaInst *AI);
1008 /// Collect Alloca instructions we want (and can) handle.
1009 void visitAllocaInst(AllocaInst &AI) {
1010 if (!ASan.isInterestingAlloca(AI)) {
1011 if (AI.isStaticAlloca()) {
1012 // Skip over allocas that are present *before* the first instrumented
1013 // alloca, we don't want to move those around.
1014 if (AllocaVec.empty())
1015 return;
1017 StaticAllocasToMoveUp.push_back(&AI);
1019 return;
1022 StackAlignment = std::max(StackAlignment, AI.getAlignment());
1023 if (!AI.isStaticAlloca())
1024 DynamicAllocaVec.push_back(&AI);
1025 else
1026 AllocaVec.push_back(&AI);
1029 /// Collect lifetime intrinsic calls to check for use-after-scope
1030 /// errors.
1031 void visitIntrinsicInst(IntrinsicInst &II) {
1032 Intrinsic::ID ID = II.getIntrinsicID();
1033 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1034 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1035 if (!ASan.UseAfterScope)
1036 return;
1037 if (!II.isLifetimeStartOrEnd())
1038 return;
1039 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1040 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
1041 // If size argument is undefined, don't do anything.
1042 if (Size->isMinusOne()) return;
1043 // Check that size doesn't saturate uint64_t and can
1044 // be stored in IntptrTy.
1045 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1046 if (SizeValue == ~0ULL ||
1047 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1048 return;
1049 // Find alloca instruction that corresponds to llvm.lifetime argument.
1050 AllocaInst *AI =
1051 llvm::findAllocaForValue(II.getArgOperand(1), AllocaForValue);
1052 if (!AI) {
1053 HasUntracedLifetimeIntrinsic = true;
1054 return;
1056 // We're interested only in allocas we can handle.
1057 if (!ASan.isInterestingAlloca(*AI))
1058 return;
1059 bool DoPoison = (ID == Intrinsic::lifetime_end);
1060 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1061 if (AI->isStaticAlloca())
1062 StaticAllocaPoisonCallVec.push_back(APC);
1063 else if (ClInstrumentDynamicAllocas)
1064 DynamicAllocaPoisonCallVec.push_back(APC);
1067 void visitCallSite(CallSite CS) {
1068 Instruction *I = CS.getInstruction();
1069 if (CallInst *CI = dyn_cast<CallInst>(I)) {
1070 HasNonEmptyInlineAsm |= CI->isInlineAsm() &&
1071 !CI->isIdenticalTo(EmptyInlineAsm.get()) &&
1072 I != ASan.LocalDynamicShadow;
1073 HasReturnsTwiceCall |= CI->canReturnTwice();
1077 // ---------------------- Helpers.
1078 void initializeCallbacks(Module &M);
1080 // Copies bytes from ShadowBytes into shadow memory for indexes where
1081 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1082 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1083 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1084 IRBuilder<> &IRB, Value *ShadowBase);
1085 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1086 size_t Begin, size_t End, IRBuilder<> &IRB,
1087 Value *ShadowBase);
1088 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1089 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1090 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1092 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1094 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1095 bool Dynamic);
1096 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1097 Instruction *ThenTerm, Value *ValueIfFalse);
1100 } // end anonymous namespace
1102 void LocationMetadata::parse(MDNode *MDN) {
1103 assert(MDN->getNumOperands() == 3);
1104 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1105 Filename = DIFilename->getString();
1106 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1107 ColumnNo =
1108 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1111 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1112 // we want to sanitize instead and reading this metadata on each pass over a
1113 // function instead of reading module level metadata at first.
1114 GlobalsMetadata::GlobalsMetadata(Module &M) {
1115 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1116 if (!Globals)
1117 return;
1118 for (auto MDN : Globals->operands()) {
1119 // Metadata node contains the global and the fields of "Entry".
1120 assert(MDN->getNumOperands() == 5);
1121 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1122 // The optimizer may optimize away a global entirely.
1123 if (!V)
1124 continue;
1125 auto *StrippedV = V->stripPointerCasts();
1126 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1127 if (!GV)
1128 continue;
1129 // We can already have an entry for GV if it was merged with another
1130 // global.
1131 Entry &E = Entries[GV];
1132 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1133 E.SourceLoc.parse(Loc);
1134 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1135 E.Name = Name->getString();
1136 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1137 E.IsDynInit |= IsDynInit->isOne();
1138 ConstantInt *IsBlacklisted =
1139 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1140 E.IsBlacklisted |= IsBlacklisted->isOne();
1144 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1146 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1147 ModuleAnalysisManager &AM) {
1148 return GlobalsMetadata(M);
1151 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1152 bool UseAfterScope)
1153 : CompileKernel(CompileKernel), Recover(Recover),
1154 UseAfterScope(UseAfterScope) {}
1156 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1157 AnalysisManager<Function> &AM) {
1158 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1159 auto &MAM = MAMProxy.getManager();
1160 Module &M = *F.getParent();
1161 if (auto *R = MAM.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1162 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1163 AddressSanitizer Sanitizer(M, *R, CompileKernel, Recover, UseAfterScope);
1164 if (Sanitizer.instrumentFunction(F, TLI))
1165 return PreservedAnalyses::none();
1166 return PreservedAnalyses::all();
1169 report_fatal_error(
1170 "The ASanGlobalsMetadataAnalysis is required to run before "
1171 "AddressSanitizer can run");
1172 return PreservedAnalyses::all();
1175 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel,
1176 bool Recover,
1177 bool UseGlobalGC,
1178 bool UseOdrIndicator)
1179 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1180 UseOdrIndicator(UseOdrIndicator) {}
1182 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1183 AnalysisManager<Module> &AM) {
1184 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1185 ModuleAddressSanitizer Sanitizer(M, GlobalsMD, CompileKernel, Recover,
1186 UseGlobalGC, UseOdrIndicator);
1187 if (Sanitizer.instrumentModule(M))
1188 return PreservedAnalyses::none();
1189 return PreservedAnalyses::all();
1192 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1193 "Read metadata to mark which globals should be instrumented "
1194 "when running ASan.",
1195 false, true)
1197 char AddressSanitizerLegacyPass::ID = 0;
1199 INITIALIZE_PASS_BEGIN(
1200 AddressSanitizerLegacyPass, "asan",
1201 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1202 false)
1203 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1204 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1205 INITIALIZE_PASS_END(
1206 AddressSanitizerLegacyPass, "asan",
1207 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1208 false)
1210 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1211 bool Recover,
1212 bool UseAfterScope) {
1213 assert(!CompileKernel || Recover);
1214 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1217 char ModuleAddressSanitizerLegacyPass::ID = 0;
1219 INITIALIZE_PASS(
1220 ModuleAddressSanitizerLegacyPass, "asan-module",
1221 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1222 "ModulePass",
1223 false, false)
1225 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1226 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) {
1227 assert(!CompileKernel || Recover);
1228 return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover,
1229 UseGlobalsGC, UseOdrIndicator);
1232 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1233 size_t Res = countTrailingZeros(TypeSize / 8);
1234 assert(Res < kNumberOfAccessSizes);
1235 return Res;
1238 /// Create a global describing a source location.
1239 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1240 LocationMetadata MD) {
1241 Constant *LocData[] = {
1242 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1243 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1244 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1246 auto LocStruct = ConstantStruct::getAnon(LocData);
1247 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1248 GlobalValue::PrivateLinkage, LocStruct,
1249 kAsanGenPrefix);
1250 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1251 return GV;
1254 /// Check if \p G has been created by a trusted compiler pass.
1255 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1256 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1257 if (G->getName().startswith("llvm."))
1258 return true;
1260 // Do not instrument asan globals.
1261 if (G->getName().startswith(kAsanGenPrefix) ||
1262 G->getName().startswith(kSanCovGenPrefix) ||
1263 G->getName().startswith(kODRGenPrefix))
1264 return true;
1266 // Do not instrument gcov counter arrays.
1267 if (G->getName() == "__llvm_gcov_ctr")
1268 return true;
1270 return false;
1273 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1274 // Shadow >> scale
1275 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1276 if (Mapping.Offset == 0) return Shadow;
1277 // (Shadow >> scale) | offset
1278 Value *ShadowBase;
1279 if (LocalDynamicShadow)
1280 ShadowBase = LocalDynamicShadow;
1281 else
1282 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1283 if (Mapping.OrShadowOffset)
1284 return IRB.CreateOr(Shadow, ShadowBase);
1285 else
1286 return IRB.CreateAdd(Shadow, ShadowBase);
1289 // Instrument memset/memmove/memcpy
1290 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1291 IRBuilder<> IRB(MI);
1292 if (isa<MemTransferInst>(MI)) {
1293 IRB.CreateCall(
1294 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1295 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1296 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1297 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1298 } else if (isa<MemSetInst>(MI)) {
1299 IRB.CreateCall(
1300 AsanMemset,
1301 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1302 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1303 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1305 MI->eraseFromParent();
1308 /// Check if we want (and can) handle this alloca.
1309 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1310 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1312 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1313 return PreviouslySeenAllocaInfo->getSecond();
1315 bool IsInteresting =
1316 (AI.getAllocatedType()->isSized() &&
1317 // alloca() may be called with 0 size, ignore it.
1318 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1319 // We are only interested in allocas not promotable to registers.
1320 // Promotable allocas are common under -O0.
1321 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1322 // inalloca allocas are not treated as static, and we don't want
1323 // dynamic alloca instrumentation for them as well.
1324 !AI.isUsedWithInAlloca() &&
1325 // swifterror allocas are register promoted by ISel
1326 !AI.isSwiftError());
1328 ProcessedAllocas[&AI] = IsInteresting;
1329 return IsInteresting;
1332 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
1333 bool *IsWrite,
1334 uint64_t *TypeSize,
1335 unsigned *Alignment,
1336 Value **MaybeMask) {
1337 // Skip memory accesses inserted by another instrumentation.
1338 if (I->getMetadata("nosanitize")) return nullptr;
1340 // Do not instrument the load fetching the dynamic shadow address.
1341 if (LocalDynamicShadow == I)
1342 return nullptr;
1344 Value *PtrOperand = nullptr;
1345 const DataLayout &DL = I->getModule()->getDataLayout();
1346 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1347 if (!ClInstrumentReads) return nullptr;
1348 *IsWrite = false;
1349 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
1350 *Alignment = LI->getAlignment();
1351 PtrOperand = LI->getPointerOperand();
1352 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1353 if (!ClInstrumentWrites) return nullptr;
1354 *IsWrite = true;
1355 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
1356 *Alignment = SI->getAlignment();
1357 PtrOperand = SI->getPointerOperand();
1358 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1359 if (!ClInstrumentAtomics) return nullptr;
1360 *IsWrite = true;
1361 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
1362 *Alignment = 0;
1363 PtrOperand = RMW->getPointerOperand();
1364 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1365 if (!ClInstrumentAtomics) return nullptr;
1366 *IsWrite = true;
1367 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
1368 *Alignment = 0;
1369 PtrOperand = XCHG->getPointerOperand();
1370 } else if (auto CI = dyn_cast<CallInst>(I)) {
1371 auto *F = dyn_cast<Function>(CI->getCalledValue());
1372 if (F && (F->getName().startswith("llvm.masked.load.") ||
1373 F->getName().startswith("llvm.masked.store."))) {
1374 unsigned OpOffset = 0;
1375 if (F->getName().startswith("llvm.masked.store.")) {
1376 if (!ClInstrumentWrites)
1377 return nullptr;
1378 // Masked store has an initial operand for the value.
1379 OpOffset = 1;
1380 *IsWrite = true;
1381 } else {
1382 if (!ClInstrumentReads)
1383 return nullptr;
1384 *IsWrite = false;
1387 auto BasePtr = CI->getOperand(0 + OpOffset);
1388 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1389 *TypeSize = DL.getTypeStoreSizeInBits(Ty);
1390 if (auto AlignmentConstant =
1391 dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1392 *Alignment = (unsigned)AlignmentConstant->getZExtValue();
1393 else
1394 *Alignment = 1; // No alignment guarantees. We probably got Undef
1395 if (MaybeMask)
1396 *MaybeMask = CI->getOperand(2 + OpOffset);
1397 PtrOperand = BasePtr;
1401 if (PtrOperand) {
1402 // Do not instrument acesses from different address spaces; we cannot deal
1403 // with them.
1404 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
1405 if (PtrTy->getPointerAddressSpace() != 0)
1406 return nullptr;
1408 // Ignore swifterror addresses.
1409 // swifterror memory addresses are mem2reg promoted by instruction
1410 // selection. As such they cannot have regular uses like an instrumentation
1411 // function and it makes no sense to track them as memory.
1412 if (PtrOperand->isSwiftError())
1413 return nullptr;
1416 // Treat memory accesses to promotable allocas as non-interesting since they
1417 // will not cause memory violations. This greatly speeds up the instrumented
1418 // executable at -O0.
1419 if (ClSkipPromotableAllocas)
1420 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
1421 return isInterestingAlloca(*AI) ? AI : nullptr;
1423 return PtrOperand;
1426 static bool isPointerOperand(Value *V) {
1427 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1430 // This is a rough heuristic; it may cause both false positives and
1431 // false negatives. The proper implementation requires cooperation with
1432 // the frontend.
1433 static bool isInterestingPointerComparison(Instruction *I) {
1434 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1435 if (!Cmp->isRelational())
1436 return false;
1437 } else {
1438 return false;
1440 return isPointerOperand(I->getOperand(0)) &&
1441 isPointerOperand(I->getOperand(1));
1444 // This is a rough heuristic; it may cause both false positives and
1445 // false negatives. The proper implementation requires cooperation with
1446 // the frontend.
1447 static bool isInterestingPointerSubtraction(Instruction *I) {
1448 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1449 if (BO->getOpcode() != Instruction::Sub)
1450 return false;
1451 } else {
1452 return false;
1454 return isPointerOperand(I->getOperand(0)) &&
1455 isPointerOperand(I->getOperand(1));
1458 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1459 // If a global variable does not have dynamic initialization we don't
1460 // have to instrument it. However, if a global does not have initializer
1461 // at all, we assume it has dynamic initializer (in other TU).
1463 // FIXME: Metadata should be attched directly to the global directly instead
1464 // of being added to llvm.asan.globals.
1465 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1468 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1469 Instruction *I) {
1470 IRBuilder<> IRB(I);
1471 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1472 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1473 for (Value *&i : Param) {
1474 if (i->getType()->isPointerTy())
1475 i = IRB.CreatePointerCast(i, IntptrTy);
1477 IRB.CreateCall(F, Param);
1480 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1481 Instruction *InsertBefore, Value *Addr,
1482 unsigned Alignment, unsigned Granularity,
1483 uint32_t TypeSize, bool IsWrite,
1484 Value *SizeArgument, bool UseCalls,
1485 uint32_t Exp) {
1486 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1487 // if the data is properly aligned.
1488 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1489 TypeSize == 128) &&
1490 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1491 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1492 nullptr, UseCalls, Exp);
1493 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1494 IsWrite, nullptr, UseCalls, Exp);
1497 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1498 const DataLayout &DL, Type *IntptrTy,
1499 Value *Mask, Instruction *I,
1500 Value *Addr, unsigned Alignment,
1501 unsigned Granularity, uint32_t TypeSize,
1502 bool IsWrite, Value *SizeArgument,
1503 bool UseCalls, uint32_t Exp) {
1504 auto *VTy = cast<PointerType>(Addr->getType())->getElementType();
1505 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1506 unsigned Num = VTy->getVectorNumElements();
1507 auto Zero = ConstantInt::get(IntptrTy, 0);
1508 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1509 Value *InstrumentedAddress = nullptr;
1510 Instruction *InsertBefore = I;
1511 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1512 // dyn_cast as we might get UndefValue
1513 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1514 if (Masked->isZero())
1515 // Mask is constant false, so no instrumentation needed.
1516 continue;
1517 // If we have a true or undef value, fall through to doInstrumentAddress
1518 // with InsertBefore == I
1520 } else {
1521 IRBuilder<> IRB(I);
1522 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1523 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1524 InsertBefore = ThenTerm;
1527 IRBuilder<> IRB(InsertBefore);
1528 InstrumentedAddress =
1529 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1530 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1531 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1532 UseCalls, Exp);
1536 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1537 Instruction *I, bool UseCalls,
1538 const DataLayout &DL) {
1539 bool IsWrite = false;
1540 unsigned Alignment = 0;
1541 uint64_t TypeSize = 0;
1542 Value *MaybeMask = nullptr;
1543 Value *Addr =
1544 isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment, &MaybeMask);
1545 assert(Addr);
1547 // Optimization experiments.
1548 // The experiments can be used to evaluate potential optimizations that remove
1549 // instrumentation (assess false negatives). Instead of completely removing
1550 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1551 // experiments that want to remove instrumentation of this instruction).
1552 // If Exp is non-zero, this pass will emit special calls into runtime
1553 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1554 // make runtime terminate the program in a special way (with a different
1555 // exit status). Then you run the new compiler on a buggy corpus, collect
1556 // the special terminations (ideally, you don't see them at all -- no false
1557 // negatives) and make the decision on the optimization.
1558 uint32_t Exp = ClForceExperiment;
1560 if (ClOpt && ClOptGlobals) {
1561 // If initialization order checking is disabled, a simple access to a
1562 // dynamically initialized global is always valid.
1563 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1564 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1565 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1566 NumOptimizedAccessesToGlobalVar++;
1567 return;
1571 if (ClOpt && ClOptStack) {
1572 // A direct inbounds access to a stack variable is always valid.
1573 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1574 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1575 NumOptimizedAccessesToStackVar++;
1576 return;
1580 if (IsWrite)
1581 NumInstrumentedWrites++;
1582 else
1583 NumInstrumentedReads++;
1585 unsigned Granularity = 1 << Mapping.Scale;
1586 if (MaybeMask) {
1587 instrumentMaskedLoadOrStore(this, DL, IntptrTy, MaybeMask, I, Addr,
1588 Alignment, Granularity, TypeSize, IsWrite,
1589 nullptr, UseCalls, Exp);
1590 } else {
1591 doInstrumentAddress(this, I, I, Addr, Alignment, Granularity, TypeSize,
1592 IsWrite, nullptr, UseCalls, Exp);
1596 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1597 Value *Addr, bool IsWrite,
1598 size_t AccessSizeIndex,
1599 Value *SizeArgument,
1600 uint32_t Exp) {
1601 IRBuilder<> IRB(InsertBefore);
1602 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1603 CallInst *Call = nullptr;
1604 if (SizeArgument) {
1605 if (Exp == 0)
1606 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1607 {Addr, SizeArgument});
1608 else
1609 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1610 {Addr, SizeArgument, ExpVal});
1611 } else {
1612 if (Exp == 0)
1613 Call =
1614 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1615 else
1616 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1617 {Addr, ExpVal});
1620 // We don't do Call->setDoesNotReturn() because the BB already has
1621 // UnreachableInst at the end.
1622 // This EmptyAsm is required to avoid callback merge.
1623 IRB.CreateCall(EmptyAsm, {});
1624 return Call;
1627 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1628 Value *ShadowValue,
1629 uint32_t TypeSize) {
1630 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1631 // Addr & (Granularity - 1)
1632 Value *LastAccessedByte =
1633 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1634 // (Addr & (Granularity - 1)) + size - 1
1635 if (TypeSize / 8 > 1)
1636 LastAccessedByte = IRB.CreateAdd(
1637 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1638 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1639 LastAccessedByte =
1640 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1641 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1642 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1645 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1646 Instruction *InsertBefore, Value *Addr,
1647 uint32_t TypeSize, bool IsWrite,
1648 Value *SizeArgument, bool UseCalls,
1649 uint32_t Exp) {
1650 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1652 IRBuilder<> IRB(InsertBefore);
1653 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1654 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1656 if (UseCalls) {
1657 if (Exp == 0)
1658 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1659 AddrLong);
1660 else
1661 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1662 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1663 return;
1666 if (IsMyriad) {
1667 // Strip the cache bit and do range check.
1668 // AddrLong &= ~kMyriadCacheBitMask32
1669 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1670 // Tag = AddrLong >> kMyriadTagShift
1671 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1672 // Tag == kMyriadDDRTag
1673 Value *TagCheck =
1674 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1676 Instruction *TagCheckTerm =
1677 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1678 MDBuilder(*C).createBranchWeights(1, 100000));
1679 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1680 IRB.SetInsertPoint(TagCheckTerm);
1681 InsertBefore = TagCheckTerm;
1684 Type *ShadowTy =
1685 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1686 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1687 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1688 Value *CmpVal = Constant::getNullValue(ShadowTy);
1689 Value *ShadowValue =
1690 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1692 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1693 size_t Granularity = 1ULL << Mapping.Scale;
1694 Instruction *CrashTerm = nullptr;
1696 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1697 // We use branch weights for the slow path check, to indicate that the slow
1698 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1699 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1700 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1701 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1702 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1703 IRB.SetInsertPoint(CheckTerm);
1704 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1705 if (Recover) {
1706 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1707 } else {
1708 BasicBlock *CrashBlock =
1709 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1710 CrashTerm = new UnreachableInst(*C, CrashBlock);
1711 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1712 ReplaceInstWithInst(CheckTerm, NewTerm);
1714 } else {
1715 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1718 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1719 AccessSizeIndex, SizeArgument, Exp);
1720 Crash->setDebugLoc(OrigIns->getDebugLoc());
1723 // Instrument unusual size or unusual alignment.
1724 // We can not do it with a single check, so we do 1-byte check for the first
1725 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1726 // to report the actual access size.
1727 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1728 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1729 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1730 IRBuilder<> IRB(InsertBefore);
1731 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1732 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1733 if (UseCalls) {
1734 if (Exp == 0)
1735 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1736 {AddrLong, Size});
1737 else
1738 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1739 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1740 } else {
1741 Value *LastByte = IRB.CreateIntToPtr(
1742 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1743 Addr->getType());
1744 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1745 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1749 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1750 GlobalValue *ModuleName) {
1751 // Set up the arguments to our poison/unpoison functions.
1752 IRBuilder<> IRB(&GlobalInit.front(),
1753 GlobalInit.front().getFirstInsertionPt());
1755 // Add a call to poison all external globals before the given function starts.
1756 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1757 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1759 // Add calls to unpoison all globals before each return instruction.
1760 for (auto &BB : GlobalInit.getBasicBlockList())
1761 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1762 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1765 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1766 Module &M, GlobalValue *ModuleName) {
1767 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1768 if (!GV)
1769 return;
1771 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1772 if (!CA)
1773 return;
1775 for (Use &OP : CA->operands()) {
1776 if (isa<ConstantAggregateZero>(OP)) continue;
1777 ConstantStruct *CS = cast<ConstantStruct>(OP);
1779 // Must have a function or null ptr.
1780 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1781 if (F->getName() == kAsanModuleCtorName) continue;
1782 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1783 // Don't instrument CTORs that will run before asan.module_ctor.
1784 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1785 poisonOneInitializer(*F, ModuleName);
1790 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable *G) {
1791 Type *Ty = G->getValueType();
1792 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1794 // FIXME: Metadata should be attched directly to the global directly instead
1795 // of being added to llvm.asan.globals.
1796 if (GlobalsMD.get(G).IsBlacklisted) return false;
1797 if (!Ty->isSized()) return false;
1798 if (!G->hasInitializer()) return false;
1799 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1800 // Two problems with thread-locals:
1801 // - The address of the main thread's copy can't be computed at link-time.
1802 // - Need to poison all copies, not just the main thread's one.
1803 if (G->isThreadLocal()) return false;
1804 // For now, just ignore this Global if the alignment is large.
1805 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1807 // For non-COFF targets, only instrument globals known to be defined by this
1808 // TU.
1809 // FIXME: We can instrument comdat globals on ELF if we are using the
1810 // GC-friendly metadata scheme.
1811 if (!TargetTriple.isOSBinFormatCOFF()) {
1812 if (!G->hasExactDefinition() || G->hasComdat())
1813 return false;
1814 } else {
1815 // On COFF, don't instrument non-ODR linkages.
1816 if (G->isInterposable())
1817 return false;
1820 // If a comdat is present, it must have a selection kind that implies ODR
1821 // semantics: no duplicates, any, or exact match.
1822 if (Comdat *C = G->getComdat()) {
1823 switch (C->getSelectionKind()) {
1824 case Comdat::Any:
1825 case Comdat::ExactMatch:
1826 case Comdat::NoDuplicates:
1827 break;
1828 case Comdat::Largest:
1829 case Comdat::SameSize:
1830 return false;
1834 if (G->hasSection()) {
1835 StringRef Section = G->getSection();
1837 // Globals from llvm.metadata aren't emitted, do not instrument them.
1838 if (Section == "llvm.metadata") return false;
1839 // Do not instrument globals from special LLVM sections.
1840 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1842 // Do not instrument function pointers to initialization and termination
1843 // routines: dynamic linker will not properly handle redzones.
1844 if (Section.startswith(".preinit_array") ||
1845 Section.startswith(".init_array") ||
1846 Section.startswith(".fini_array")) {
1847 return false;
1850 // On COFF, if the section name contains '$', it is highly likely that the
1851 // user is using section sorting to create an array of globals similar to
1852 // the way initialization callbacks are registered in .init_array and
1853 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1854 // to such globals is counterproductive, because the intent is that they
1855 // will form an array, and out-of-bounds accesses are expected.
1856 // See https://github.com/google/sanitizers/issues/305
1857 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1858 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1859 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1860 << *G << "\n");
1861 return false;
1864 if (TargetTriple.isOSBinFormatMachO()) {
1865 StringRef ParsedSegment, ParsedSection;
1866 unsigned TAA = 0, StubSize = 0;
1867 bool TAAParsed;
1868 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1869 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1870 assert(ErrorCode.empty() && "Invalid section specifier.");
1872 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1873 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1874 // them.
1875 if (ParsedSegment == "__OBJC" ||
1876 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1877 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1878 return false;
1880 // See https://github.com/google/sanitizers/issues/32
1881 // Constant CFString instances are compiled in the following way:
1882 // -- the string buffer is emitted into
1883 // __TEXT,__cstring,cstring_literals
1884 // -- the constant NSConstantString structure referencing that buffer
1885 // is placed into __DATA,__cfstring
1886 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1887 // Moreover, it causes the linker to crash on OS X 10.7
1888 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1889 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1890 return false;
1892 // The linker merges the contents of cstring_literals and removes the
1893 // trailing zeroes.
1894 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1895 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1896 return false;
1901 return true;
1904 // On Mach-O platforms, we emit global metadata in a separate section of the
1905 // binary in order to allow the linker to properly dead strip. This is only
1906 // supported on recent versions of ld64.
1907 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1908 if (!TargetTriple.isOSBinFormatMachO())
1909 return false;
1911 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1912 return true;
1913 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1914 return true;
1915 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1916 return true;
1918 return false;
1921 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
1922 switch (TargetTriple.getObjectFormat()) {
1923 case Triple::COFF: return ".ASAN$GL";
1924 case Triple::ELF: return "asan_globals";
1925 case Triple::MachO: return "__DATA,__asan_globals,regular";
1926 default: break;
1928 llvm_unreachable("unsupported object format");
1931 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
1932 IRBuilder<> IRB(*C);
1934 // Declare our poisoning and unpoisoning functions.
1935 AsanPoisonGlobals =
1936 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
1937 AsanUnpoisonGlobals =
1938 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
1940 // Declare functions that register/unregister globals.
1941 AsanRegisterGlobals = M.getOrInsertFunction(
1942 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1943 AsanUnregisterGlobals = M.getOrInsertFunction(
1944 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
1946 // Declare the functions that find globals in a shared object and then invoke
1947 // the (un)register function on them.
1948 AsanRegisterImageGlobals = M.getOrInsertFunction(
1949 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1950 AsanUnregisterImageGlobals = M.getOrInsertFunction(
1951 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
1953 AsanRegisterElfGlobals =
1954 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
1955 IntptrTy, IntptrTy, IntptrTy);
1956 AsanUnregisterElfGlobals =
1957 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
1958 IntptrTy, IntptrTy, IntptrTy);
1961 // Put the metadata and the instrumented global in the same group. This ensures
1962 // that the metadata is discarded if the instrumented global is discarded.
1963 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1964 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
1965 Module &M = *G->getParent();
1966 Comdat *C = G->getComdat();
1967 if (!C) {
1968 if (!G->hasName()) {
1969 // If G is unnamed, it must be internal. Give it an artificial name
1970 // so we can put it in a comdat.
1971 assert(G->hasLocalLinkage());
1972 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
1975 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
1976 std::string Name = G->getName();
1977 Name += InternalSuffix;
1978 C = M.getOrInsertComdat(Name);
1979 } else {
1980 C = M.getOrInsertComdat(G->getName());
1983 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1984 // linkage to internal linkage so that a symbol table entry is emitted. This
1985 // is necessary in order to create the comdat group.
1986 if (TargetTriple.isOSBinFormatCOFF()) {
1987 C->setSelectionKind(Comdat::NoDuplicates);
1988 if (G->hasPrivateLinkage())
1989 G->setLinkage(GlobalValue::InternalLinkage);
1991 G->setComdat(C);
1994 assert(G->hasComdat());
1995 Metadata->setComdat(G->getComdat());
1998 // Create a separate metadata global and put it in the appropriate ASan
1999 // global registration section.
2000 GlobalVariable *
2001 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2002 StringRef OriginalName) {
2003 auto Linkage = TargetTriple.isOSBinFormatMachO()
2004 ? GlobalVariable::InternalLinkage
2005 : GlobalVariable::PrivateLinkage;
2006 GlobalVariable *Metadata = new GlobalVariable(
2007 M, Initializer->getType(), false, Linkage, Initializer,
2008 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2009 Metadata->setSection(getGlobalMetadataSection());
2010 return Metadata;
2013 IRBuilder<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2014 AsanDtorFunction =
2015 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
2016 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
2017 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2019 return IRBuilder<>(ReturnInst::Create(*C, AsanDtorBB));
2022 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2023 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2024 ArrayRef<Constant *> MetadataInitializers) {
2025 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2026 auto &DL = M.getDataLayout();
2028 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2029 Constant *Initializer = MetadataInitializers[i];
2030 GlobalVariable *G = ExtendedGlobals[i];
2031 GlobalVariable *Metadata =
2032 CreateMetadataGlobal(M, Initializer, G->getName());
2034 // The MSVC linker always inserts padding when linking incrementally. We
2035 // cope with that by aligning each struct to its size, which must be a power
2036 // of two.
2037 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2038 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2039 "global metadata will not be padded appropriately");
2040 Metadata->setAlignment(SizeOfGlobalStruct);
2042 SetComdatForGlobalMetadata(G, Metadata, "");
2046 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2047 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2048 ArrayRef<Constant *> MetadataInitializers,
2049 const std::string &UniqueModuleId) {
2050 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2052 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2053 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2054 GlobalVariable *G = ExtendedGlobals[i];
2055 GlobalVariable *Metadata =
2056 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2057 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2058 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2059 MetadataGlobals[i] = Metadata;
2061 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2064 // Update llvm.compiler.used, adding the new metadata globals. This is
2065 // needed so that during LTO these variables stay alive.
2066 if (!MetadataGlobals.empty())
2067 appendToCompilerUsed(M, MetadataGlobals);
2069 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2070 // to look up the loaded image that contains it. Second, we can store in it
2071 // whether registration has already occurred, to prevent duplicate
2072 // registration.
2074 // Common linkage ensures that there is only one global per shared library.
2075 GlobalVariable *RegisteredFlag = new GlobalVariable(
2076 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2077 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2078 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2080 // Create start and stop symbols.
2081 GlobalVariable *StartELFMetadata = new GlobalVariable(
2082 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2083 "__start_" + getGlobalMetadataSection());
2084 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2085 GlobalVariable *StopELFMetadata = new GlobalVariable(
2086 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2087 "__stop_" + getGlobalMetadataSection());
2088 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2090 // Create a call to register the globals with the runtime.
2091 IRB.CreateCall(AsanRegisterElfGlobals,
2092 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2093 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2094 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2096 // We also need to unregister globals at the end, e.g., when a shared library
2097 // gets closed.
2098 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2099 IRB_Dtor.CreateCall(AsanUnregisterElfGlobals,
2100 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2101 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2102 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2105 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2106 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2107 ArrayRef<Constant *> MetadataInitializers) {
2108 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2110 // On recent Mach-O platforms, use a structure which binds the liveness of
2111 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2112 // created to be added to llvm.compiler.used
2113 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2114 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2116 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2117 Constant *Initializer = MetadataInitializers[i];
2118 GlobalVariable *G = ExtendedGlobals[i];
2119 GlobalVariable *Metadata =
2120 CreateMetadataGlobal(M, Initializer, G->getName());
2122 // On recent Mach-O platforms, we emit the global metadata in a way that
2123 // allows the linker to properly strip dead globals.
2124 auto LivenessBinder =
2125 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2126 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2127 GlobalVariable *Liveness = new GlobalVariable(
2128 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2129 Twine("__asan_binder_") + G->getName());
2130 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2131 LivenessGlobals[i] = Liveness;
2134 // Update llvm.compiler.used, adding the new liveness globals. This is
2135 // needed so that during LTO these variables stay alive. The alternative
2136 // would be to have the linker handling the LTO symbols, but libLTO
2137 // current API does not expose access to the section for each symbol.
2138 if (!LivenessGlobals.empty())
2139 appendToCompilerUsed(M, LivenessGlobals);
2141 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2142 // to look up the loaded image that contains it. Second, we can store in it
2143 // whether registration has already occurred, to prevent duplicate
2144 // registration.
2146 // common linkage ensures that there is only one global per shared library.
2147 GlobalVariable *RegisteredFlag = new GlobalVariable(
2148 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2149 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2150 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2152 IRB.CreateCall(AsanRegisterImageGlobals,
2153 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2155 // We also need to unregister globals at the end, e.g., when a shared library
2156 // gets closed.
2157 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2158 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
2159 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2162 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2163 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2164 ArrayRef<Constant *> MetadataInitializers) {
2165 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2166 unsigned N = ExtendedGlobals.size();
2167 assert(N > 0);
2169 // On platforms that don't have a custom metadata section, we emit an array
2170 // of global metadata structures.
2171 ArrayType *ArrayOfGlobalStructTy =
2172 ArrayType::get(MetadataInitializers[0]->getType(), N);
2173 auto AllGlobals = new GlobalVariable(
2174 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2175 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2176 if (Mapping.Scale > 3)
2177 AllGlobals->setAlignment(1ULL << Mapping.Scale);
2179 IRB.CreateCall(AsanRegisterGlobals,
2180 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2181 ConstantInt::get(IntptrTy, N)});
2183 // We also need to unregister globals at the end, e.g., when a shared library
2184 // gets closed.
2185 IRBuilder<> IRB_Dtor = CreateAsanModuleDtor(M);
2186 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
2187 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2188 ConstantInt::get(IntptrTy, N)});
2191 // This function replaces all global variables with new variables that have
2192 // trailing redzones. It also creates a function that poisons
2193 // redzones and inserts this function into llvm.global_ctors.
2194 // Sets *CtorComdat to true if the global registration code emitted into the
2195 // asan constructor is comdat-compatible.
2196 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2197 bool *CtorComdat) {
2198 *CtorComdat = false;
2200 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2202 for (auto &G : M.globals()) {
2203 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
2206 size_t n = GlobalsToChange.size();
2207 if (n == 0) {
2208 *CtorComdat = true;
2209 return false;
2212 auto &DL = M.getDataLayout();
2214 // A global is described by a structure
2215 // size_t beg;
2216 // size_t size;
2217 // size_t size_with_redzone;
2218 // const char *name;
2219 // const char *module_name;
2220 // size_t has_dynamic_init;
2221 // void *source_location;
2222 // size_t odr_indicator;
2223 // We initialize an array of such structures and pass it to a run-time call.
2224 StructType *GlobalStructTy =
2225 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2226 IntptrTy, IntptrTy, IntptrTy);
2227 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2228 SmallVector<Constant *, 16> Initializers(n);
2230 bool HasDynamicallyInitializedGlobals = false;
2232 // We shouldn't merge same module names, as this string serves as unique
2233 // module ID in runtime.
2234 GlobalVariable *ModuleName = createPrivateGlobalForString(
2235 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2237 for (size_t i = 0; i < n; i++) {
2238 static const uint64_t kMaxGlobalRedzone = 1 << 18;
2239 GlobalVariable *G = GlobalsToChange[i];
2241 // FIXME: Metadata should be attched directly to the global directly instead
2242 // of being added to llvm.asan.globals.
2243 auto MD = GlobalsMD.get(G);
2244 StringRef NameForGlobal = G->getName();
2245 // Create string holding the global name (use global name from metadata
2246 // if it's available, otherwise just write the name of global variable).
2247 GlobalVariable *Name = createPrivateGlobalForString(
2248 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2249 /*AllowMerging*/ true, kAsanGenPrefix);
2251 Type *Ty = G->getValueType();
2252 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2253 uint64_t MinRZ = MinRedzoneSizeForGlobal();
2254 // MinRZ <= RZ <= kMaxGlobalRedzone
2255 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2256 uint64_t RZ = std::max(
2257 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
2258 uint64_t RightRedzoneSize = RZ;
2259 // Round up to MinRZ
2260 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
2261 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
2262 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2264 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2265 Constant *NewInitializer = ConstantStruct::get(
2266 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2268 // Create a new global variable with enough space for a redzone.
2269 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2270 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2271 Linkage = GlobalValue::InternalLinkage;
2272 GlobalVariable *NewGlobal =
2273 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
2274 "", G, G->getThreadLocalMode());
2275 NewGlobal->copyAttributesFrom(G);
2276 NewGlobal->setComdat(G->getComdat());
2277 NewGlobal->setAlignment(MinRZ);
2278 // Don't fold globals with redzones. ODR violation detector and redzone
2279 // poisoning implicitly creates a dependence on the global's address, so it
2280 // is no longer valid for it to be marked unnamed_addr.
2281 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2283 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2284 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2285 G->isConstant()) {
2286 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2287 if (Seq && Seq->isCString())
2288 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2291 // Transfer the debug info. The payload starts at offset zero so we can
2292 // copy the debug info over as is.
2293 SmallVector<DIGlobalVariableExpression *, 1> GVs;
2294 G->getDebugInfo(GVs);
2295 for (auto *GV : GVs)
2296 NewGlobal->addDebugInfo(GV);
2298 Value *Indices2[2];
2299 Indices2[0] = IRB.getInt32(0);
2300 Indices2[1] = IRB.getInt32(0);
2302 G->replaceAllUsesWith(
2303 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2304 NewGlobal->takeName(G);
2305 G->eraseFromParent();
2306 NewGlobals[i] = NewGlobal;
2308 Constant *SourceLoc;
2309 if (!MD.SourceLoc.empty()) {
2310 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2311 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2312 } else {
2313 SourceLoc = ConstantInt::get(IntptrTy, 0);
2316 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2317 GlobalValue *InstrumentedGlobal = NewGlobal;
2319 bool CanUsePrivateAliases =
2320 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2321 TargetTriple.isOSBinFormatWasm();
2322 if (CanUsePrivateAliases && UsePrivateAlias) {
2323 // Create local alias for NewGlobal to avoid crash on ODR between
2324 // instrumented and non-instrumented libraries.
2325 InstrumentedGlobal =
2326 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2329 // ODR should not happen for local linkage.
2330 if (NewGlobal->hasLocalLinkage()) {
2331 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2332 IRB.getInt8PtrTy());
2333 } else if (UseOdrIndicator) {
2334 // With local aliases, we need to provide another externally visible
2335 // symbol __odr_asan_XXX to detect ODR violation.
2336 auto *ODRIndicatorSym =
2337 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2338 Constant::getNullValue(IRB.getInt8Ty()),
2339 kODRGenPrefix + NameForGlobal, nullptr,
2340 NewGlobal->getThreadLocalMode());
2342 // Set meaningful attributes for indicator symbol.
2343 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2344 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2345 ODRIndicatorSym->setAlignment(1);
2346 ODRIndicator = ODRIndicatorSym;
2349 Constant *Initializer = ConstantStruct::get(
2350 GlobalStructTy,
2351 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2352 ConstantInt::get(IntptrTy, SizeInBytes),
2353 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2354 ConstantExpr::getPointerCast(Name, IntptrTy),
2355 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2356 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2357 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2359 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2361 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2363 Initializers[i] = Initializer;
2366 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2367 // ConstantMerge'ing them.
2368 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2369 for (size_t i = 0; i < n; i++) {
2370 GlobalVariable *G = NewGlobals[i];
2371 if (G->getName().empty()) continue;
2372 GlobalsToAddToUsedList.push_back(G);
2374 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2376 std::string ELFUniqueModuleId =
2377 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2378 : "";
2380 if (!ELFUniqueModuleId.empty()) {
2381 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2382 *CtorComdat = true;
2383 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2384 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2385 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2386 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2387 } else {
2388 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2391 // Create calls for poisoning before initializers run and unpoisoning after.
2392 if (HasDynamicallyInitializedGlobals)
2393 createInitializerPoisonCalls(M, ModuleName);
2395 LLVM_DEBUG(dbgs() << M);
2396 return true;
2399 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2400 int LongSize = M.getDataLayout().getPointerSizeInBits();
2401 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2402 int Version = 8;
2403 // 32-bit Android is one version ahead because of the switch to dynamic
2404 // shadow.
2405 Version += (LongSize == 32 && isAndroid);
2406 return Version;
2409 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2410 initializeCallbacks(M);
2412 if (CompileKernel)
2413 return false;
2415 // Create a module constructor. A destructor is created lazily because not all
2416 // platforms, and not all modules need it.
2417 std::string VersionCheckName =
2418 kAsanVersionCheckNamePrefix + std::to_string(GetAsanVersion(M));
2419 std::tie(AsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
2420 M, kAsanModuleCtorName, kAsanInitName, /*InitArgTypes=*/{},
2421 /*InitArgs=*/{}, VersionCheckName);
2423 bool CtorComdat = true;
2424 bool Changed = false;
2425 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2426 if (ClGlobals) {
2427 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2428 Changed |= InstrumentGlobals(IRB, M, &CtorComdat);
2431 // Put the constructor and destructor in comdat if both
2432 // (1) global instrumentation is not TU-specific
2433 // (2) target is ELF.
2434 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2435 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2436 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority,
2437 AsanCtorFunction);
2438 if (AsanDtorFunction) {
2439 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2440 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority,
2441 AsanDtorFunction);
2443 } else {
2444 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
2445 if (AsanDtorFunction)
2446 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
2449 return Changed;
2452 void AddressSanitizer::initializeCallbacks(Module &M) {
2453 IRBuilder<> IRB(*C);
2454 // Create __asan_report* callbacks.
2455 // IsWrite, TypeSize and Exp are encoded in the function name.
2456 for (int Exp = 0; Exp < 2; Exp++) {
2457 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2458 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2459 const std::string ExpStr = Exp ? "exp_" : "";
2460 const std::string EndingStr = Recover ? "_noabort" : "";
2462 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2463 SmallVector<Type *, 2> Args1{1, IntptrTy};
2464 if (Exp) {
2465 Type *ExpType = Type::getInt32Ty(*C);
2466 Args2.push_back(ExpType);
2467 Args1.push_back(ExpType);
2469 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2470 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2471 FunctionType::get(IRB.getVoidTy(), Args2, false));
2473 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2474 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2475 FunctionType::get(IRB.getVoidTy(), Args2, false));
2477 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2478 AccessSizeIndex++) {
2479 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2480 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2481 M.getOrInsertFunction(
2482 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2483 FunctionType::get(IRB.getVoidTy(), Args1, false));
2485 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2486 M.getOrInsertFunction(
2487 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2488 FunctionType::get(IRB.getVoidTy(), Args1, false));
2493 const std::string MemIntrinCallbackPrefix =
2494 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2495 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2496 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2497 IRB.getInt8PtrTy(), IntptrTy);
2498 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2499 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2500 IRB.getInt8PtrTy(), IntptrTy);
2501 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2502 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2503 IRB.getInt32Ty(), IntptrTy);
2505 AsanHandleNoReturnFunc =
2506 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2508 AsanPtrCmpFunction =
2509 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2510 AsanPtrSubFunction =
2511 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2512 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2513 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
2514 StringRef(""), StringRef(""),
2515 /*hasSideEffects=*/true);
2516 if (Mapping.InGlobal)
2517 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2518 ArrayType::get(IRB.getInt8Ty(), 0));
2521 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2522 // For each NSObject descendant having a +load method, this method is invoked
2523 // by the ObjC runtime before any of the static constructors is called.
2524 // Therefore we need to instrument such methods with a call to __asan_init
2525 // at the beginning in order to initialize our runtime before any access to
2526 // the shadow memory.
2527 // We cannot just ignore these methods, because they may call other
2528 // instrumented functions.
2529 if (F.getName().find(" load]") != std::string::npos) {
2530 FunctionCallee AsanInitFunction =
2531 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2532 IRBuilder<> IRB(&F.front(), F.front().begin());
2533 IRB.CreateCall(AsanInitFunction, {});
2534 return true;
2536 return false;
2539 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2540 // Generate code only when dynamic addressing is needed.
2541 if (Mapping.Offset != kDynamicShadowSentinel)
2542 return;
2544 IRBuilder<> IRB(&F.front().front());
2545 if (Mapping.InGlobal) {
2546 if (ClWithIfuncSuppressRemat) {
2547 // An empty inline asm with input reg == output reg.
2548 // An opaque pointer-to-int cast, basically.
2549 InlineAsm *Asm = InlineAsm::get(
2550 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2551 StringRef(""), StringRef("=r,0"),
2552 /*hasSideEffects=*/false);
2553 LocalDynamicShadow =
2554 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2555 } else {
2556 LocalDynamicShadow =
2557 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2559 } else {
2560 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2561 kAsanShadowMemoryDynamicAddress, IntptrTy);
2562 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2566 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2567 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2568 // to it as uninteresting. This assumes we haven't started processing allocas
2569 // yet. This check is done up front because iterating the use list in
2570 // isInterestingAlloca would be algorithmically slower.
2571 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2573 // Try to get the declaration of llvm.localescape. If it's not in the module,
2574 // we can exit early.
2575 if (!F.getParent()->getFunction("llvm.localescape")) return;
2577 // Look for a call to llvm.localescape call in the entry block. It can't be in
2578 // any other block.
2579 for (Instruction &I : F.getEntryBlock()) {
2580 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2581 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2582 // We found a call. Mark all the allocas passed in as uninteresting.
2583 for (Value *Arg : II->arg_operands()) {
2584 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2585 assert(AI && AI->isStaticAlloca() &&
2586 "non-static alloca arg to localescape");
2587 ProcessedAllocas[AI] = false;
2589 break;
2594 bool AddressSanitizer::instrumentFunction(Function &F,
2595 const TargetLibraryInfo *TLI) {
2596 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2597 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2598 if (F.getName().startswith("__asan_")) return false;
2600 bool FunctionModified = false;
2602 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2603 // This function needs to be called even if the function body is not
2604 // instrumented.
2605 if (maybeInsertAsanInitAtFunctionEntry(F))
2606 FunctionModified = true;
2608 // Leave if the function doesn't need instrumentation.
2609 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2611 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2613 initializeCallbacks(*F.getParent());
2615 FunctionStateRAII CleanupObj(this);
2617 maybeInsertDynamicShadowAtFunctionEntry(F);
2619 // We can't instrument allocas used with llvm.localescape. Only static allocas
2620 // can be passed to that intrinsic.
2621 markEscapedLocalAllocas(F);
2623 // We want to instrument every address only once per basic block (unless there
2624 // are calls between uses).
2625 SmallPtrSet<Value *, 16> TempsToInstrument;
2626 SmallVector<Instruction *, 16> ToInstrument;
2627 SmallVector<Instruction *, 8> NoReturnCalls;
2628 SmallVector<BasicBlock *, 16> AllBlocks;
2629 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2630 int NumAllocas = 0;
2631 bool IsWrite;
2632 unsigned Alignment;
2633 uint64_t TypeSize;
2635 // Fill the set of memory operations to instrument.
2636 for (auto &BB : F) {
2637 AllBlocks.push_back(&BB);
2638 TempsToInstrument.clear();
2639 int NumInsnsPerBB = 0;
2640 for (auto &Inst : BB) {
2641 if (LooksLikeCodeInBug11395(&Inst)) return false;
2642 Value *MaybeMask = nullptr;
2643 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
2644 &Alignment, &MaybeMask)) {
2645 if (ClOpt && ClOptSameTemp) {
2646 // If we have a mask, skip instrumentation if we've already
2647 // instrumented the full object. But don't add to TempsToInstrument
2648 // because we might get another load/store with a different mask.
2649 if (MaybeMask) {
2650 if (TempsToInstrument.count(Addr))
2651 continue; // We've seen this (whole) temp in the current BB.
2652 } else {
2653 if (!TempsToInstrument.insert(Addr).second)
2654 continue; // We've seen this temp in the current BB.
2657 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2658 isInterestingPointerComparison(&Inst)) ||
2659 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2660 isInterestingPointerSubtraction(&Inst))) {
2661 PointerComparisonsOrSubtracts.push_back(&Inst);
2662 continue;
2663 } else if (isa<MemIntrinsic>(Inst)) {
2664 // ok, take it.
2665 } else {
2666 if (isa<AllocaInst>(Inst)) NumAllocas++;
2667 CallSite CS(&Inst);
2668 if (CS) {
2669 // A call inside BB.
2670 TempsToInstrument.clear();
2671 if (CS.doesNotReturn() && !CS->getMetadata("nosanitize"))
2672 NoReturnCalls.push_back(CS.getInstruction());
2674 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2675 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2676 continue;
2678 ToInstrument.push_back(&Inst);
2679 NumInsnsPerBB++;
2680 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2684 bool UseCalls =
2685 (ClInstrumentationWithCallsThreshold >= 0 &&
2686 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
2687 const DataLayout &DL = F.getParent()->getDataLayout();
2688 ObjectSizeOpts ObjSizeOpts;
2689 ObjSizeOpts.RoundToAlign = true;
2690 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2692 // Instrument.
2693 int NumInstrumented = 0;
2694 for (auto Inst : ToInstrument) {
2695 if (ClDebugMin < 0 || ClDebugMax < 0 ||
2696 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
2697 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
2698 instrumentMop(ObjSizeVis, Inst, UseCalls,
2699 F.getParent()->getDataLayout());
2700 else
2701 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
2703 NumInstrumented++;
2706 FunctionStackPoisoner FSP(F, *this);
2707 bool ChangedStack = FSP.runOnFunction();
2709 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2710 // See e.g. https://github.com/google/sanitizers/issues/37
2711 for (auto CI : NoReturnCalls) {
2712 IRBuilder<> IRB(CI);
2713 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2716 for (auto Inst : PointerComparisonsOrSubtracts) {
2717 instrumentPointerComparisonOrSubtraction(Inst);
2718 NumInstrumented++;
2721 if (NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty())
2722 FunctionModified = true;
2724 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2725 << F << "\n");
2727 return FunctionModified;
2730 // Workaround for bug 11395: we don't want to instrument stack in functions
2731 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2732 // FIXME: remove once the bug 11395 is fixed.
2733 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2734 if (LongSize != 32) return false;
2735 CallInst *CI = dyn_cast<CallInst>(I);
2736 if (!CI || !CI->isInlineAsm()) return false;
2737 if (CI->getNumArgOperands() <= 5) return false;
2738 // We have inline assembly with quite a few arguments.
2739 return true;
2742 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2743 IRBuilder<> IRB(*C);
2744 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2745 std::string Suffix = itostr(i);
2746 AsanStackMallocFunc[i] = M.getOrInsertFunction(
2747 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2748 AsanStackFreeFunc[i] =
2749 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2750 IRB.getVoidTy(), IntptrTy, IntptrTy);
2752 if (ASan.UseAfterScope) {
2753 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2754 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2755 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2756 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2759 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2760 std::ostringstream Name;
2761 Name << kAsanSetShadowPrefix;
2762 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2763 AsanSetShadowFunc[Val] =
2764 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2767 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2768 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2769 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2770 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2773 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2774 ArrayRef<uint8_t> ShadowBytes,
2775 size_t Begin, size_t End,
2776 IRBuilder<> &IRB,
2777 Value *ShadowBase) {
2778 if (Begin >= End)
2779 return;
2781 const size_t LargestStoreSizeInBytes =
2782 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2784 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2786 // Poison given range in shadow using larges store size with out leading and
2787 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2788 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2789 // middle of a store.
2790 for (size_t i = Begin; i < End;) {
2791 if (!ShadowMask[i]) {
2792 assert(!ShadowBytes[i]);
2793 ++i;
2794 continue;
2797 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2798 // Fit store size into the range.
2799 while (StoreSizeInBytes > End - i)
2800 StoreSizeInBytes /= 2;
2802 // Minimize store size by trimming trailing zeros.
2803 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2804 while (j <= StoreSizeInBytes / 2)
2805 StoreSizeInBytes /= 2;
2808 uint64_t Val = 0;
2809 for (size_t j = 0; j < StoreSizeInBytes; j++) {
2810 if (IsLittleEndian)
2811 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
2812 else
2813 Val = (Val << 8) | ShadowBytes[i + j];
2816 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
2817 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
2818 IRB.CreateAlignedStore(
2819 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), 1);
2821 i += StoreSizeInBytes;
2825 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2826 ArrayRef<uint8_t> ShadowBytes,
2827 IRBuilder<> &IRB, Value *ShadowBase) {
2828 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
2831 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
2832 ArrayRef<uint8_t> ShadowBytes,
2833 size_t Begin, size_t End,
2834 IRBuilder<> &IRB, Value *ShadowBase) {
2835 assert(ShadowMask.size() == ShadowBytes.size());
2836 size_t Done = Begin;
2837 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
2838 if (!ShadowMask[i]) {
2839 assert(!ShadowBytes[i]);
2840 continue;
2842 uint8_t Val = ShadowBytes[i];
2843 if (!AsanSetShadowFunc[Val])
2844 continue;
2846 // Skip same values.
2847 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
2850 if (j - i >= ClMaxInlinePoisoningSize) {
2851 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
2852 IRB.CreateCall(AsanSetShadowFunc[Val],
2853 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
2854 ConstantInt::get(IntptrTy, j - i)});
2855 Done = j;
2859 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
2862 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2863 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2864 static int StackMallocSizeClass(uint64_t LocalStackSize) {
2865 assert(LocalStackSize <= kMaxStackMallocSize);
2866 uint64_t MaxSize = kMinStackMallocSize;
2867 for (int i = 0;; i++, MaxSize *= 2)
2868 if (LocalStackSize <= MaxSize) return i;
2869 llvm_unreachable("impossible LocalStackSize");
2872 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2873 Instruction *CopyInsertPoint = &F.front().front();
2874 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
2875 // Insert after the dynamic shadow location is determined
2876 CopyInsertPoint = CopyInsertPoint->getNextNode();
2877 assert(CopyInsertPoint);
2879 IRBuilder<> IRB(CopyInsertPoint);
2880 const DataLayout &DL = F.getParent()->getDataLayout();
2881 for (Argument &Arg : F.args()) {
2882 if (Arg.hasByValAttr()) {
2883 Type *Ty = Arg.getType()->getPointerElementType();
2884 unsigned Align = Arg.getParamAlignment();
2885 if (Align == 0) Align = DL.getABITypeAlignment(Ty);
2887 AllocaInst *AI = IRB.CreateAlloca(
2888 Ty, nullptr,
2889 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
2890 ".byval");
2891 AI->setAlignment(Align);
2892 Arg.replaceAllUsesWith(AI);
2894 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2895 IRB.CreateMemCpy(AI, Align, &Arg, Align, AllocSize);
2900 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
2901 Value *ValueIfTrue,
2902 Instruction *ThenTerm,
2903 Value *ValueIfFalse) {
2904 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
2905 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
2906 PHI->addIncoming(ValueIfFalse, CondBlock);
2907 BasicBlock *ThenBlock = ThenTerm->getParent();
2908 PHI->addIncoming(ValueIfTrue, ThenBlock);
2909 return PHI;
2912 Value *FunctionStackPoisoner::createAllocaForLayout(
2913 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
2914 AllocaInst *Alloca;
2915 if (Dynamic) {
2916 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
2917 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
2918 "MyAlloca");
2919 } else {
2920 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2921 nullptr, "MyAlloca");
2922 assert(Alloca->isStaticAlloca());
2924 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2925 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2926 Alloca->setAlignment(FrameAlignment);
2927 return IRB.CreatePointerCast(Alloca, IntptrTy);
2930 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2931 BasicBlock &FirstBB = *F.begin();
2932 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2933 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2934 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2935 DynamicAllocaLayout->setAlignment(32);
2938 void FunctionStackPoisoner::processDynamicAllocas() {
2939 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
2940 assert(DynamicAllocaPoisonCallVec.empty());
2941 return;
2944 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2945 for (const auto &APC : DynamicAllocaPoisonCallVec) {
2946 assert(APC.InsBefore);
2947 assert(APC.AI);
2948 assert(ASan.isInterestingAlloca(*APC.AI));
2949 assert(!APC.AI->isStaticAlloca());
2951 IRBuilder<> IRB(APC.InsBefore);
2952 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2953 // Dynamic allocas will be unpoisoned unconditionally below in
2954 // unpoisonDynamicAllocas.
2955 // Flag that we need unpoison static allocas.
2958 // Handle dynamic allocas.
2959 createDynamicAllocasInitStorage();
2960 for (auto &AI : DynamicAllocaVec)
2961 handleDynamicAllocaCall(AI);
2962 unpoisonDynamicAllocas();
2965 void FunctionStackPoisoner::processStaticAllocas() {
2966 if (AllocaVec.empty()) {
2967 assert(StaticAllocaPoisonCallVec.empty());
2968 return;
2971 int StackMallocIdx = -1;
2972 DebugLoc EntryDebugLocation;
2973 if (auto SP = F.getSubprogram())
2974 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2976 Instruction *InsBefore = AllocaVec[0];
2977 IRBuilder<> IRB(InsBefore);
2978 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2980 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2981 // debug info is broken, because only entry-block allocas are treated as
2982 // regular stack slots.
2983 auto InsBeforeB = InsBefore->getParent();
2984 assert(InsBeforeB == &F.getEntryBlock());
2985 for (auto *AI : StaticAllocasToMoveUp)
2986 if (AI->getParent() == InsBeforeB)
2987 AI->moveBefore(InsBefore);
2989 // If we have a call to llvm.localescape, keep it in the entry block.
2990 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2992 SmallVector<ASanStackVariableDescription, 16> SVD;
2993 SVD.reserve(AllocaVec.size());
2994 for (AllocaInst *AI : AllocaVec) {
2995 ASanStackVariableDescription D = {AI->getName().data(),
2996 ASan.getAllocaSizeInBytes(*AI),
2998 AI->getAlignment(),
3002 SVD.push_back(D);
3005 // Minimal header size (left redzone) is 4 pointers,
3006 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3007 size_t Granularity = 1ULL << Mapping.Scale;
3008 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3009 const ASanStackFrameLayout &L =
3010 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3012 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3013 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3014 for (auto &Desc : SVD)
3015 AllocaToSVDMap[Desc.AI] = &Desc;
3017 // Update SVD with information from lifetime intrinsics.
3018 for (const auto &APC : StaticAllocaPoisonCallVec) {
3019 assert(APC.InsBefore);
3020 assert(APC.AI);
3021 assert(ASan.isInterestingAlloca(*APC.AI));
3022 assert(APC.AI->isStaticAlloca());
3024 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3025 Desc.LifetimeSize = Desc.Size;
3026 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3027 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3028 if (LifetimeLoc->getFile() == FnLoc->getFile())
3029 if (unsigned Line = LifetimeLoc->getLine())
3030 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3035 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3036 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3037 uint64_t LocalStackSize = L.FrameSize;
3038 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3039 LocalStackSize <= kMaxStackMallocSize;
3040 bool DoDynamicAlloca = ClDynamicAllocaStack;
3041 // Don't do dynamic alloca or stack malloc if:
3042 // 1) There is inline asm: too often it makes assumptions on which registers
3043 // are available.
3044 // 2) There is a returns_twice call (typically setjmp), which is
3045 // optimization-hostile, and doesn't play well with introduced indirect
3046 // register-relative calculation of local variable addresses.
3047 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3048 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
3050 Value *StaticAlloca =
3051 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3053 Value *FakeStack;
3054 Value *LocalStackBase;
3055 Value *LocalStackBaseAlloca;
3056 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3058 if (DoStackMalloc) {
3059 LocalStackBaseAlloca =
3060 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3061 // void *FakeStack = __asan_option_detect_stack_use_after_return
3062 // ? __asan_stack_malloc_N(LocalStackSize)
3063 // : nullptr;
3064 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3065 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3066 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3067 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3068 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3069 Constant::getNullValue(IRB.getInt32Ty()));
3070 Instruction *Term =
3071 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3072 IRBuilder<> IRBIf(Term);
3073 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3074 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3075 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3076 Value *FakeStackValue =
3077 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3078 ConstantInt::get(IntptrTy, LocalStackSize));
3079 IRB.SetInsertPoint(InsBefore);
3080 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3081 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3082 ConstantInt::get(IntptrTy, 0));
3084 Value *NoFakeStack =
3085 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3086 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3087 IRBIf.SetInsertPoint(Term);
3088 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
3089 Value *AllocaValue =
3090 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3092 IRB.SetInsertPoint(InsBefore);
3093 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3094 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3095 IRB.SetCurrentDebugLocation(EntryDebugLocation);
3096 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3097 DIExprFlags |= DIExpression::DerefBefore;
3098 } else {
3099 // void *FakeStack = nullptr;
3100 // void *LocalStackBase = alloca(LocalStackSize);
3101 FakeStack = ConstantInt::get(IntptrTy, 0);
3102 LocalStackBase =
3103 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3104 LocalStackBaseAlloca = LocalStackBase;
3107 // Replace Alloca instructions with base+offset.
3108 for (const auto &Desc : SVD) {
3109 AllocaInst *AI = Desc.AI;
3110 replaceDbgDeclareForAlloca(AI, LocalStackBaseAlloca, DIB, DIExprFlags,
3111 Desc.Offset);
3112 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3113 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3114 AI->getType());
3115 AI->replaceAllUsesWith(NewAllocaPtr);
3118 // The left-most redzone has enough space for at least 4 pointers.
3119 // Write the Magic value to redzone[0].
3120 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3121 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3122 BasePlus0);
3123 // Write the frame description constant to redzone[1].
3124 Value *BasePlus1 = IRB.CreateIntToPtr(
3125 IRB.CreateAdd(LocalStackBase,
3126 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3127 IntptrPtrTy);
3128 GlobalVariable *StackDescriptionGlobal =
3129 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3130 /*AllowMerging*/ true, kAsanGenPrefix);
3131 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3132 IRB.CreateStore(Description, BasePlus1);
3133 // Write the PC to redzone[2].
3134 Value *BasePlus2 = IRB.CreateIntToPtr(
3135 IRB.CreateAdd(LocalStackBase,
3136 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3137 IntptrPtrTy);
3138 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3140 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3142 // Poison the stack red zones at the entry.
3143 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3144 // As mask we must use most poisoned case: red zones and after scope.
3145 // As bytes we can use either the same or just red zones only.
3146 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3148 if (!StaticAllocaPoisonCallVec.empty()) {
3149 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3151 // Poison static allocas near lifetime intrinsics.
3152 for (const auto &APC : StaticAllocaPoisonCallVec) {
3153 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3154 assert(Desc.Offset % L.Granularity == 0);
3155 size_t Begin = Desc.Offset / L.Granularity;
3156 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3158 IRBuilder<> IRB(APC.InsBefore);
3159 copyToShadow(ShadowAfterScope,
3160 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3161 IRB, ShadowBase);
3165 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3166 SmallVector<uint8_t, 64> ShadowAfterReturn;
3168 // (Un)poison the stack before all ret instructions.
3169 for (auto Ret : RetVec) {
3170 IRBuilder<> IRBRet(Ret);
3171 // Mark the current frame as retired.
3172 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3173 BasePlus0);
3174 if (DoStackMalloc) {
3175 assert(StackMallocIdx >= 0);
3176 // if FakeStack != 0 // LocalStackBase == FakeStack
3177 // // In use-after-return mode, poison the whole stack frame.
3178 // if StackMallocIdx <= 4
3179 // // For small sizes inline the whole thing:
3180 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3181 // **SavedFlagPtr(FakeStack) = 0
3182 // else
3183 // __asan_stack_free_N(FakeStack, LocalStackSize)
3184 // else
3185 // <This is not a fake stack; unpoison the redzones>
3186 Value *Cmp =
3187 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3188 Instruction *ThenTerm, *ElseTerm;
3189 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3191 IRBuilder<> IRBPoison(ThenTerm);
3192 if (StackMallocIdx <= 4) {
3193 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3194 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3195 kAsanStackUseAfterReturnMagic);
3196 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3197 ShadowBase);
3198 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3199 FakeStack,
3200 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3201 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3202 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3203 IRBPoison.CreateStore(
3204 Constant::getNullValue(IRBPoison.getInt8Ty()),
3205 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3206 } else {
3207 // For larger frames call __asan_stack_free_*.
3208 IRBPoison.CreateCall(
3209 AsanStackFreeFunc[StackMallocIdx],
3210 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3213 IRBuilder<> IRBElse(ElseTerm);
3214 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3215 } else {
3216 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3220 // We are done. Remove the old unused alloca instructions.
3221 for (auto AI : AllocaVec) AI->eraseFromParent();
3224 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3225 IRBuilder<> &IRB, bool DoPoison) {
3226 // For now just insert the call to ASan runtime.
3227 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3228 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3229 IRB.CreateCall(
3230 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3231 {AddrArg, SizeArg});
3234 // Handling llvm.lifetime intrinsics for a given %alloca:
3235 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3236 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3237 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3238 // could be poisoned by previous llvm.lifetime.end instruction, as the
3239 // variable may go in and out of scope several times, e.g. in loops).
3240 // (3) if we poisoned at least one %alloca in a function,
3241 // unpoison the whole stack frame at function exit.
3242 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3243 IRBuilder<> IRB(AI);
3245 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
3246 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3248 Value *Zero = Constant::getNullValue(IntptrTy);
3249 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3250 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3252 // Since we need to extend alloca with additional memory to locate
3253 // redzones, and OldSize is number of allocated blocks with
3254 // ElementSize size, get allocated memory size in bytes by
3255 // OldSize * ElementSize.
3256 const unsigned ElementSize =
3257 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3258 Value *OldSize =
3259 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3260 ConstantInt::get(IntptrTy, ElementSize));
3262 // PartialSize = OldSize % 32
3263 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3265 // Misalign = kAllocaRzSize - PartialSize;
3266 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3268 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3269 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3270 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3272 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3273 // Align is added to locate left redzone, PartialPadding for possible
3274 // partial redzone and kAllocaRzSize for right redzone respectively.
3275 Value *AdditionalChunkSize = IRB.CreateAdd(
3276 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
3278 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3280 // Insert new alloca with new NewSize and Align params.
3281 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3282 NewAlloca->setAlignment(Align);
3284 // NewAddress = Address + Align
3285 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3286 ConstantInt::get(IntptrTy, Align));
3288 // Insert __asan_alloca_poison call for new created alloca.
3289 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3291 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3292 // for unpoisoning stuff.
3293 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3295 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3297 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3298 AI->replaceAllUsesWith(NewAddressPtr);
3300 // We are done. Erase old alloca from parent.
3301 AI->eraseFromParent();
3304 // isSafeAccess returns true if Addr is always inbounds with respect to its
3305 // base object. For example, it is a field access or an array access with
3306 // constant inbounds index.
3307 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3308 Value *Addr, uint64_t TypeSize) const {
3309 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3310 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3311 uint64_t Size = SizeOffset.first.getZExtValue();
3312 int64_t Offset = SizeOffset.second.getSExtValue();
3313 // Three checks are required to ensure safety:
3314 // . Offset >= 0 (since the offset is given from the base ptr)
3315 // . Size >= Offset (unsigned)
3316 // . Size - Offset >= NeededSize (unsigned)
3317 return Offset >= 0 && Size >= uint64_t(Offset) &&
3318 Size - uint64_t(Offset) >= TypeSize / 8;