1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/BinaryFormat/MachO.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/Comdat.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DIBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GlobalAlias.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstVisitor.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/MDBuilder.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/MC/MCSectionMachO.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Transforms/Instrumentation.h"
72 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
90 #define DEBUG_TYPE "asan"
92 static const uint64_t kDefaultShadowScale
= 3;
93 static const uint64_t kDefaultShadowOffset32
= 1ULL << 29;
94 static const uint64_t kDefaultShadowOffset64
= 1ULL << 44;
95 static const uint64_t kDynamicShadowSentinel
=
96 std::numeric_limits
<uint64_t>::max();
97 static const uint64_t kIOSShadowOffset32
= 1ULL << 30;
98 static const uint64_t kIOSSimShadowOffset32
= 1ULL << 30;
99 static const uint64_t kIOSSimShadowOffset64
= kDefaultShadowOffset64
;
100 static const uint64_t kSmallX86_64ShadowOffsetBase
= 0x7FFFFFFF; // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask
= ~0xFFFULL
;
102 static const uint64_t kLinuxKasan_ShadowOffset64
= 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64
= 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64
= 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32
= 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64
= 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64
= 1ULL << 36;
108 static const uint64_t kFreeBSD_ShadowOffset32
= 1ULL << 30;
109 static const uint64_t kFreeBSD_ShadowOffset64
= 1ULL << 46;
110 static const uint64_t kNetBSD_ShadowOffset32
= 1ULL << 30;
111 static const uint64_t kNetBSD_ShadowOffset64
= 1ULL << 46;
112 static const uint64_t kNetBSDKasan_ShadowOffset64
= 0xdfff900000000000;
113 static const uint64_t kPS4CPU_ShadowOffset64
= 1ULL << 40;
114 static const uint64_t kWindowsShadowOffset32
= 3ULL << 28;
116 static const uint64_t kMyriadShadowScale
= 5;
117 static const uint64_t kMyriadMemoryOffset32
= 0x80000000ULL
;
118 static const uint64_t kMyriadMemorySize32
= 0x20000000ULL
;
119 static const uint64_t kMyriadTagShift
= 29;
120 static const uint64_t kMyriadDDRTag
= 4;
121 static const uint64_t kMyriadCacheBitMask32
= 0x40000000ULL
;
123 // The shadow memory space is dynamically allocated.
124 static const uint64_t kWindowsShadowOffset64
= kDynamicShadowSentinel
;
126 static const size_t kMinStackMallocSize
= 1 << 6; // 64B
127 static const size_t kMaxStackMallocSize
= 1 << 16; // 64K
128 static const uintptr_t kCurrentStackFrameMagic
= 0x41B58AB3;
129 static const uintptr_t kRetiredStackFrameMagic
= 0x45E0360E;
131 static const char *const kAsanModuleCtorName
= "asan.module_ctor";
132 static const char *const kAsanModuleDtorName
= "asan.module_dtor";
133 static const uint64_t kAsanCtorAndDtorPriority
= 1;
134 static const char *const kAsanReportErrorTemplate
= "__asan_report_";
135 static const char *const kAsanRegisterGlobalsName
= "__asan_register_globals";
136 static const char *const kAsanUnregisterGlobalsName
=
137 "__asan_unregister_globals";
138 static const char *const kAsanRegisterImageGlobalsName
=
139 "__asan_register_image_globals";
140 static const char *const kAsanUnregisterImageGlobalsName
=
141 "__asan_unregister_image_globals";
142 static const char *const kAsanRegisterElfGlobalsName
=
143 "__asan_register_elf_globals";
144 static const char *const kAsanUnregisterElfGlobalsName
=
145 "__asan_unregister_elf_globals";
146 static const char *const kAsanPoisonGlobalsName
= "__asan_before_dynamic_init";
147 static const char *const kAsanUnpoisonGlobalsName
= "__asan_after_dynamic_init";
148 static const char *const kAsanInitName
= "__asan_init";
149 static const char *const kAsanVersionCheckNamePrefix
=
150 "__asan_version_mismatch_check_v";
151 static const char *const kAsanPtrCmp
= "__sanitizer_ptr_cmp";
152 static const char *const kAsanPtrSub
= "__sanitizer_ptr_sub";
153 static const char *const kAsanHandleNoReturnName
= "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass
= 10;
155 static const char *const kAsanStackMallocNameTemplate
= "__asan_stack_malloc_";
156 static const char *const kAsanStackFreeNameTemplate
= "__asan_stack_free_";
157 static const char *const kAsanGenPrefix
= "___asan_gen_";
158 static const char *const kODRGenPrefix
= "__odr_asan_gen_";
159 static const char *const kSanCovGenPrefix
= "__sancov_gen_";
160 static const char *const kAsanSetShadowPrefix
= "__asan_set_shadow_";
161 static const char *const kAsanPoisonStackMemoryName
=
162 "__asan_poison_stack_memory";
163 static const char *const kAsanUnpoisonStackMemoryName
=
164 "__asan_unpoison_stack_memory";
166 // ASan version script has __asan_* wildcard. Triple underscore prevents a
167 // linker (gold) warning about attempting to export a local symbol.
168 static const char *const kAsanGlobalsRegisteredFlagName
=
169 "___asan_globals_registered";
171 static const char *const kAsanOptionDetectUseAfterReturn
=
172 "__asan_option_detect_stack_use_after_return";
174 static const char *const kAsanShadowMemoryDynamicAddress
=
175 "__asan_shadow_memory_dynamic_address";
177 static const char *const kAsanAllocaPoison
= "__asan_alloca_poison";
178 static const char *const kAsanAllocasUnpoison
= "__asan_allocas_unpoison";
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes
= 5;
183 static const unsigned kAllocaRzSize
= 32;
185 // Command-line flags.
187 static cl::opt
<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden
, cl::init(false));
191 static cl::opt
<bool> ClRecover(
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden
, cl::init(false));
196 // This flag may need to be replaced with -f[no-]asan-reads.
197 static cl::opt
<bool> ClInstrumentReads("asan-instrument-reads",
198 cl::desc("instrument read instructions"),
199 cl::Hidden
, cl::init(true));
201 static cl::opt
<bool> ClInstrumentWrites(
202 "asan-instrument-writes", cl::desc("instrument write instructions"),
203 cl::Hidden
, cl::init(true));
205 static cl::opt
<bool> ClInstrumentAtomics(
206 "asan-instrument-atomics",
207 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden
,
210 static cl::opt
<bool> ClAlwaysSlowPath(
211 "asan-always-slow-path",
212 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden
,
215 static cl::opt
<bool> ClForceDynamicShadow(
216 "asan-force-dynamic-shadow",
217 cl::desc("Load shadow address into a local variable for each function"),
218 cl::Hidden
, cl::init(false));
221 ClWithIfunc("asan-with-ifunc",
222 cl::desc("Access dynamic shadow through an ifunc global on "
223 "platforms that support this"),
224 cl::Hidden
, cl::init(true));
226 static cl::opt
<bool> ClWithIfuncSuppressRemat(
227 "asan-with-ifunc-suppress-remat",
228 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
229 "it through inline asm in prologue."),
230 cl::Hidden
, cl::init(true));
232 // This flag limits the number of instructions to be instrumented
233 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
234 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
236 static cl::opt
<int> ClMaxInsnsToInstrumentPerBB(
237 "asan-max-ins-per-bb", cl::init(10000),
238 cl::desc("maximal number of instructions to instrument in any given BB"),
241 // This flag may need to be replaced with -f[no]asan-stack.
242 static cl::opt
<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
243 cl::Hidden
, cl::init(true));
244 static cl::opt
<uint32_t> ClMaxInlinePoisoningSize(
245 "asan-max-inline-poisoning-size",
247 "Inline shadow poisoning for blocks up to the given size in bytes."),
248 cl::Hidden
, cl::init(64));
250 static cl::opt
<bool> ClUseAfterReturn("asan-use-after-return",
251 cl::desc("Check stack-use-after-return"),
252 cl::Hidden
, cl::init(true));
254 static cl::opt
<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
255 cl::desc("Create redzones for byval "
256 "arguments (extra copy "
257 "required)"), cl::Hidden
,
260 static cl::opt
<bool> ClUseAfterScope("asan-use-after-scope",
261 cl::desc("Check stack-use-after-scope"),
262 cl::Hidden
, cl::init(false));
264 // This flag may need to be replaced with -f[no]asan-globals.
265 static cl::opt
<bool> ClGlobals("asan-globals",
266 cl::desc("Handle global objects"), cl::Hidden
,
269 static cl::opt
<bool> ClInitializers("asan-initialization-order",
270 cl::desc("Handle C++ initializer order"),
271 cl::Hidden
, cl::init(true));
273 static cl::opt
<bool> ClInvalidPointerPairs(
274 "asan-detect-invalid-pointer-pair",
275 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden
,
278 static cl::opt
<bool> ClInvalidPointerCmp(
279 "asan-detect-invalid-pointer-cmp",
280 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden
,
283 static cl::opt
<bool> ClInvalidPointerSub(
284 "asan-detect-invalid-pointer-sub",
285 cl::desc("Instrument - operations with pointer operands"), cl::Hidden
,
288 static cl::opt
<unsigned> ClRealignStack(
289 "asan-realign-stack",
290 cl::desc("Realign stack to the value of this flag (power of two)"),
291 cl::Hidden
, cl::init(32));
293 static cl::opt
<int> ClInstrumentationWithCallsThreshold(
294 "asan-instrumentation-with-call-threshold",
296 "If the function being instrumented contains more than "
297 "this number of memory accesses, use callbacks instead of "
298 "inline checks (-1 means never use callbacks)."),
299 cl::Hidden
, cl::init(7000));
301 static cl::opt
<std::string
> ClMemoryAccessCallbackPrefix(
302 "asan-memory-access-callback-prefix",
303 cl::desc("Prefix for memory access callbacks"), cl::Hidden
,
304 cl::init("__asan_"));
307 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
308 cl::desc("instrument dynamic allocas"),
309 cl::Hidden
, cl::init(true));
311 static cl::opt
<bool> ClSkipPromotableAllocas(
312 "asan-skip-promotable-allocas",
313 cl::desc("Do not instrument promotable allocas"), cl::Hidden
,
316 // These flags allow to change the shadow mapping.
317 // The shadow mapping looks like
318 // Shadow = (Mem >> scale) + offset
320 static cl::opt
<int> ClMappingScale("asan-mapping-scale",
321 cl::desc("scale of asan shadow mapping"),
322 cl::Hidden
, cl::init(0));
324 static cl::opt
<uint64_t>
325 ClMappingOffset("asan-mapping-offset",
326 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
327 cl::Hidden
, cl::init(0));
329 // Optimization flags. Not user visible, used mostly for testing
330 // and benchmarking the tool.
332 static cl::opt
<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
333 cl::Hidden
, cl::init(true));
335 static cl::opt
<bool> ClOptSameTemp(
336 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
337 cl::Hidden
, cl::init(true));
339 static cl::opt
<bool> ClOptGlobals("asan-opt-globals",
340 cl::desc("Don't instrument scalar globals"),
341 cl::Hidden
, cl::init(true));
343 static cl::opt
<bool> ClOptStack(
344 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
345 cl::Hidden
, cl::init(false));
347 static cl::opt
<bool> ClDynamicAllocaStack(
348 "asan-stack-dynamic-alloca",
349 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden
,
352 static cl::opt
<uint32_t> ClForceExperiment(
353 "asan-force-experiment",
354 cl::desc("Force optimization experiment (for testing)"), cl::Hidden
,
358 ClUsePrivateAlias("asan-use-private-alias",
359 cl::desc("Use private aliases for global variables"),
360 cl::Hidden
, cl::init(false));
363 ClUseOdrIndicator("asan-use-odr-indicator",
364 cl::desc("Use odr indicators to improve ODR reporting"),
365 cl::Hidden
, cl::init(false));
368 ClUseGlobalsGC("asan-globals-live-support",
369 cl::desc("Use linker features to support dead "
370 "code stripping of globals"),
371 cl::Hidden
, cl::init(true));
373 // This is on by default even though there is a bug in gold:
374 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
376 ClWithComdat("asan-with-comdat",
377 cl::desc("Place ASan constructors in comdat sections"),
378 cl::Hidden
, cl::init(true));
382 static cl::opt
<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden
,
385 static cl::opt
<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
386 cl::Hidden
, cl::init(0));
388 static cl::opt
<std::string
> ClDebugFunc("asan-debug-func", cl::Hidden
,
389 cl::desc("Debug func"));
391 static cl::opt
<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
392 cl::Hidden
, cl::init(-1));
394 static cl::opt
<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
395 cl::Hidden
, cl::init(-1));
397 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
398 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
399 STATISTIC(NumOptimizedAccessesToGlobalVar
,
400 "Number of optimized accesses to global vars");
401 STATISTIC(NumOptimizedAccessesToStackVar
,
402 "Number of optimized accesses to stack vars");
406 /// This struct defines the shadow mapping using the rule:
407 /// shadow = (mem >> Scale) ADD-or-OR Offset.
408 /// If InGlobal is true, then
409 /// extern char __asan_shadow[];
410 /// shadow = (mem >> Scale) + &__asan_shadow
411 struct ShadowMapping
{
418 } // end anonymous namespace
420 static ShadowMapping
getShadowMapping(Triple
&TargetTriple
, int LongSize
,
422 bool IsAndroid
= TargetTriple
.isAndroid();
423 bool IsIOS
= TargetTriple
.isiOS() || TargetTriple
.isWatchOS();
424 bool IsFreeBSD
= TargetTriple
.isOSFreeBSD();
425 bool IsNetBSD
= TargetTriple
.isOSNetBSD();
426 bool IsPS4CPU
= TargetTriple
.isPS4CPU();
427 bool IsLinux
= TargetTriple
.isOSLinux();
428 bool IsPPC64
= TargetTriple
.getArch() == Triple::ppc64
||
429 TargetTriple
.getArch() == Triple::ppc64le
;
430 bool IsSystemZ
= TargetTriple
.getArch() == Triple::systemz
;
431 bool IsX86
= TargetTriple
.getArch() == Triple::x86
;
432 bool IsX86_64
= TargetTriple
.getArch() == Triple::x86_64
;
433 bool IsMIPS32
= TargetTriple
.isMIPS32();
434 bool IsMIPS64
= TargetTriple
.isMIPS64();
435 bool IsArmOrThumb
= TargetTriple
.isARM() || TargetTriple
.isThumb();
436 bool IsAArch64
= TargetTriple
.getArch() == Triple::aarch64
;
437 bool IsWindows
= TargetTriple
.isOSWindows();
438 bool IsFuchsia
= TargetTriple
.isOSFuchsia();
439 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
441 ShadowMapping Mapping
;
443 Mapping
.Scale
= IsMyriad
? kMyriadShadowScale
: kDefaultShadowScale
;
444 if (ClMappingScale
.getNumOccurrences() > 0) {
445 Mapping
.Scale
= ClMappingScale
;
448 if (LongSize
== 32) {
450 Mapping
.Offset
= kDynamicShadowSentinel
;
452 Mapping
.Offset
= kMIPS32_ShadowOffset32
;
454 Mapping
.Offset
= kFreeBSD_ShadowOffset32
;
456 Mapping
.Offset
= kNetBSD_ShadowOffset32
;
458 // If we're targeting iOS and x86, the binary is built for iOS simulator.
459 Mapping
.Offset
= IsX86
? kIOSSimShadowOffset32
: kIOSShadowOffset32
;
461 Mapping
.Offset
= kWindowsShadowOffset32
;
463 uint64_t ShadowOffset
= (kMyriadMemoryOffset32
+ kMyriadMemorySize32
-
464 (kMyriadMemorySize32
>> Mapping
.Scale
));
465 Mapping
.Offset
= ShadowOffset
- (kMyriadMemoryOffset32
>> Mapping
.Scale
);
468 Mapping
.Offset
= kDefaultShadowOffset32
;
469 } else { // LongSize == 64
470 // Fuchsia is always PIE, which means that the beginning of the address
471 // space is always available.
475 Mapping
.Offset
= kPPC64_ShadowOffset64
;
477 Mapping
.Offset
= kSystemZ_ShadowOffset64
;
478 else if (IsFreeBSD
&& !IsMIPS64
)
479 Mapping
.Offset
= kFreeBSD_ShadowOffset64
;
482 Mapping
.Offset
= kNetBSDKasan_ShadowOffset64
;
484 Mapping
.Offset
= kNetBSD_ShadowOffset64
;
486 Mapping
.Offset
= kPS4CPU_ShadowOffset64
;
487 else if (IsLinux
&& IsX86_64
) {
489 Mapping
.Offset
= kLinuxKasan_ShadowOffset64
;
491 Mapping
.Offset
= (kSmallX86_64ShadowOffsetBase
&
492 (kSmallX86_64ShadowOffsetAlignMask
<< Mapping
.Scale
));
493 } else if (IsWindows
&& IsX86_64
) {
494 Mapping
.Offset
= kWindowsShadowOffset64
;
496 Mapping
.Offset
= kMIPS64_ShadowOffset64
;
498 // If we're targeting iOS and x86, the binary is built for iOS simulator.
499 // We are using dynamic shadow offset on the 64-bit devices.
501 IsX86_64
? kIOSSimShadowOffset64
: kDynamicShadowSentinel
;
503 Mapping
.Offset
= kAArch64_ShadowOffset64
;
505 Mapping
.Offset
= kDefaultShadowOffset64
;
508 if (ClForceDynamicShadow
) {
509 Mapping
.Offset
= kDynamicShadowSentinel
;
512 if (ClMappingOffset
.getNumOccurrences() > 0) {
513 Mapping
.Offset
= ClMappingOffset
;
516 // OR-ing shadow offset if more efficient (at least on x86) if the offset
517 // is a power of two, but on ppc64 we have to use add since the shadow
518 // offset is not necessary 1/8-th of the address space. On SystemZ,
519 // we could OR the constant in a single instruction, but it's more
520 // efficient to load it once and use indexed addressing.
521 Mapping
.OrShadowOffset
= !IsAArch64
&& !IsPPC64
&& !IsSystemZ
&& !IsPS4CPU
&&
522 !(Mapping
.Offset
& (Mapping
.Offset
- 1)) &&
523 Mapping
.Offset
!= kDynamicShadowSentinel
;
524 bool IsAndroidWithIfuncSupport
=
525 IsAndroid
&& !TargetTriple
.isAndroidVersionLT(21);
526 Mapping
.InGlobal
= ClWithIfunc
&& IsAndroidWithIfuncSupport
&& IsArmOrThumb
;
531 static size_t RedzoneSizeForScale(int MappingScale
) {
532 // Redzone used for stack and globals is at least 32 bytes.
533 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
534 return std::max(32U, 1U << MappingScale
);
539 /// Module analysis for getting various metadata about the module.
540 class ASanGlobalsMetadataWrapperPass
: public ModulePass
{
544 ASanGlobalsMetadataWrapperPass() : ModulePass(ID
) {
545 initializeASanGlobalsMetadataWrapperPassPass(
546 *PassRegistry::getPassRegistry());
549 bool runOnModule(Module
&M
) override
{
550 GlobalsMD
= GlobalsMetadata(M
);
554 StringRef
getPassName() const override
{
555 return "ASanGlobalsMetadataWrapperPass";
558 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
559 AU
.setPreservesAll();
562 GlobalsMetadata
&getGlobalsMD() { return GlobalsMD
; }
565 GlobalsMetadata GlobalsMD
;
568 char ASanGlobalsMetadataWrapperPass::ID
= 0;
570 /// AddressSanitizer: instrument the code in module to find memory bugs.
571 struct AddressSanitizer
{
572 AddressSanitizer(Module
&M
, GlobalsMetadata
&GlobalsMD
,
573 bool CompileKernel
= false, bool Recover
= false,
574 bool UseAfterScope
= false)
575 : UseAfterScope(UseAfterScope
|| ClUseAfterScope
), GlobalsMD(GlobalsMD
) {
576 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
577 this->CompileKernel
=
578 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
580 C
= &(M
.getContext());
581 LongSize
= M
.getDataLayout().getPointerSizeInBits();
582 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
583 TargetTriple
= Triple(M
.getTargetTriple());
585 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
588 uint64_t getAllocaSizeInBytes(const AllocaInst
&AI
) const {
589 uint64_t ArraySize
= 1;
590 if (AI
.isArrayAllocation()) {
591 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AI
.getArraySize());
592 assert(CI
&& "non-constant array size");
593 ArraySize
= CI
->getZExtValue();
595 Type
*Ty
= AI
.getAllocatedType();
596 uint64_t SizeInBytes
=
597 AI
.getModule()->getDataLayout().getTypeAllocSize(Ty
);
598 return SizeInBytes
* ArraySize
;
601 /// Check if we want (and can) handle this alloca.
602 bool isInterestingAlloca(const AllocaInst
&AI
);
604 /// If it is an interesting memory access, return the PointerOperand
605 /// and set IsWrite/Alignment. Otherwise return nullptr.
606 /// MaybeMask is an output parameter for the mask Value, if we're looking at a
607 /// masked load/store.
608 Value
*isInterestingMemoryAccess(Instruction
*I
, bool *IsWrite
,
609 uint64_t *TypeSize
, unsigned *Alignment
,
610 Value
**MaybeMask
= nullptr);
612 void instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
, Instruction
*I
,
613 bool UseCalls
, const DataLayout
&DL
);
614 void instrumentPointerComparisonOrSubtraction(Instruction
*I
);
615 void instrumentAddress(Instruction
*OrigIns
, Instruction
*InsertBefore
,
616 Value
*Addr
, uint32_t TypeSize
, bool IsWrite
,
617 Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
);
618 void instrumentUnusualSizeOrAlignment(Instruction
*I
,
619 Instruction
*InsertBefore
, Value
*Addr
,
620 uint32_t TypeSize
, bool IsWrite
,
621 Value
*SizeArgument
, bool UseCalls
,
623 Value
*createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
624 Value
*ShadowValue
, uint32_t TypeSize
);
625 Instruction
*generateCrashCode(Instruction
*InsertBefore
, Value
*Addr
,
626 bool IsWrite
, size_t AccessSizeIndex
,
627 Value
*SizeArgument
, uint32_t Exp
);
628 void instrumentMemIntrinsic(MemIntrinsic
*MI
);
629 Value
*memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
);
630 bool instrumentFunction(Function
&F
, const TargetLibraryInfo
*TLI
);
631 bool maybeInsertAsanInitAtFunctionEntry(Function
&F
);
632 void maybeInsertDynamicShadowAtFunctionEntry(Function
&F
);
633 void markEscapedLocalAllocas(Function
&F
);
636 friend struct FunctionStackPoisoner
;
638 void initializeCallbacks(Module
&M
);
640 bool LooksLikeCodeInBug11395(Instruction
*I
);
641 bool GlobalIsLinkerInitialized(GlobalVariable
*G
);
642 bool isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
, Value
*Addr
,
643 uint64_t TypeSize
) const;
645 /// Helper to cleanup per-function state.
646 struct FunctionStateRAII
{
647 AddressSanitizer
*Pass
;
649 FunctionStateRAII(AddressSanitizer
*Pass
) : Pass(Pass
) {
650 assert(Pass
->ProcessedAllocas
.empty() &&
651 "last pass forgot to clear cache");
652 assert(!Pass
->LocalDynamicShadow
);
655 ~FunctionStateRAII() {
656 Pass
->LocalDynamicShadow
= nullptr;
657 Pass
->ProcessedAllocas
.clear();
668 ShadowMapping Mapping
;
669 FunctionCallee AsanHandleNoReturnFunc
;
670 FunctionCallee AsanPtrCmpFunction
, AsanPtrSubFunction
;
671 Constant
*AsanShadowGlobal
;
673 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
674 FunctionCallee AsanErrorCallback
[2][2][kNumberOfAccessSizes
];
675 FunctionCallee AsanMemoryAccessCallback
[2][2][kNumberOfAccessSizes
];
677 // These arrays is indexed by AccessIsWrite and Experiment.
678 FunctionCallee AsanErrorCallbackSized
[2][2];
679 FunctionCallee AsanMemoryAccessCallbackSized
[2][2];
681 FunctionCallee AsanMemmove
, AsanMemcpy
, AsanMemset
;
683 Value
*LocalDynamicShadow
= nullptr;
684 GlobalsMetadata GlobalsMD
;
685 DenseMap
<const AllocaInst
*, bool> ProcessedAllocas
;
688 class AddressSanitizerLegacyPass
: public FunctionPass
{
692 explicit AddressSanitizerLegacyPass(bool CompileKernel
= false,
693 bool Recover
= false,
694 bool UseAfterScope
= false)
695 : FunctionPass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
696 UseAfterScope(UseAfterScope
) {
697 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
700 StringRef
getPassName() const override
{
701 return "AddressSanitizerFunctionPass";
704 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
705 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
706 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
709 bool runOnFunction(Function
&F
) override
{
710 GlobalsMetadata
&GlobalsMD
=
711 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
712 const TargetLibraryInfo
*TLI
=
713 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
714 AddressSanitizer
ASan(*F
.getParent(), GlobalsMD
, CompileKernel
, Recover
,
716 return ASan
.instrumentFunction(F
, TLI
);
725 class ModuleAddressSanitizer
{
727 ModuleAddressSanitizer(Module
&M
, GlobalsMetadata
&GlobalsMD
,
728 bool CompileKernel
= false, bool Recover
= false,
729 bool UseGlobalsGC
= true, bool UseOdrIndicator
= false)
730 : GlobalsMD(GlobalsMD
), UseGlobalsGC(UseGlobalsGC
&& ClUseGlobalsGC
),
731 // Enable aliases as they should have no downside with ODR indicators.
732 UsePrivateAlias(UseOdrIndicator
|| ClUsePrivateAlias
),
733 UseOdrIndicator(UseOdrIndicator
|| ClUseOdrIndicator
),
734 // Not a typo: ClWithComdat is almost completely pointless without
735 // ClUseGlobalsGC (because then it only works on modules without
736 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
737 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
738 // argument is designed as workaround. Therefore, disable both
739 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
741 UseCtorComdat(UseGlobalsGC
&& ClWithComdat
) {
742 this->Recover
= ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
;
743 this->CompileKernel
=
744 ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
: CompileKernel
;
746 C
= &(M
.getContext());
747 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
748 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
749 TargetTriple
= Triple(M
.getTargetTriple());
750 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
753 bool instrumentModule(Module
&);
756 void initializeCallbacks(Module
&M
);
758 bool InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
, bool *CtorComdat
);
759 void InstrumentGlobalsCOFF(IRBuilder
<> &IRB
, Module
&M
,
760 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
761 ArrayRef
<Constant
*> MetadataInitializers
);
762 void InstrumentGlobalsELF(IRBuilder
<> &IRB
, Module
&M
,
763 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
764 ArrayRef
<Constant
*> MetadataInitializers
,
765 const std::string
&UniqueModuleId
);
766 void InstrumentGlobalsMachO(IRBuilder
<> &IRB
, Module
&M
,
767 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
768 ArrayRef
<Constant
*> MetadataInitializers
);
770 InstrumentGlobalsWithMetadataArray(IRBuilder
<> &IRB
, Module
&M
,
771 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
772 ArrayRef
<Constant
*> MetadataInitializers
);
774 GlobalVariable
*CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
775 StringRef OriginalName
);
776 void SetComdatForGlobalMetadata(GlobalVariable
*G
, GlobalVariable
*Metadata
,
777 StringRef InternalSuffix
);
778 IRBuilder
<> CreateAsanModuleDtor(Module
&M
);
780 bool ShouldInstrumentGlobal(GlobalVariable
*G
);
781 bool ShouldUseMachOGlobalsSection() const;
782 StringRef
getGlobalMetadataSection() const;
783 void poisonOneInitializer(Function
&GlobalInit
, GlobalValue
*ModuleName
);
784 void createInitializerPoisonCalls(Module
&M
, GlobalValue
*ModuleName
);
785 size_t MinRedzoneSizeForGlobal() const {
786 return RedzoneSizeForScale(Mapping
.Scale
);
788 int GetAsanVersion(const Module
&M
) const;
790 GlobalsMetadata GlobalsMD
;
794 bool UsePrivateAlias
;
795 bool UseOdrIndicator
;
800 ShadowMapping Mapping
;
801 FunctionCallee AsanPoisonGlobals
;
802 FunctionCallee AsanUnpoisonGlobals
;
803 FunctionCallee AsanRegisterGlobals
;
804 FunctionCallee AsanUnregisterGlobals
;
805 FunctionCallee AsanRegisterImageGlobals
;
806 FunctionCallee AsanUnregisterImageGlobals
;
807 FunctionCallee AsanRegisterElfGlobals
;
808 FunctionCallee AsanUnregisterElfGlobals
;
810 Function
*AsanCtorFunction
= nullptr;
811 Function
*AsanDtorFunction
= nullptr;
814 class ModuleAddressSanitizerLegacyPass
: public ModulePass
{
818 explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel
= false,
819 bool Recover
= false,
820 bool UseGlobalGC
= true,
821 bool UseOdrIndicator
= false)
822 : ModulePass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
823 UseGlobalGC(UseGlobalGC
), UseOdrIndicator(UseOdrIndicator
) {
824 initializeModuleAddressSanitizerLegacyPassPass(
825 *PassRegistry::getPassRegistry());
828 StringRef
getPassName() const override
{ return "ModuleAddressSanitizer"; }
830 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
831 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
834 bool runOnModule(Module
&M
) override
{
835 GlobalsMetadata
&GlobalsMD
=
836 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
837 ModuleAddressSanitizer
ASanModule(M
, GlobalsMD
, CompileKernel
, Recover
,
838 UseGlobalGC
, UseOdrIndicator
);
839 return ASanModule
.instrumentModule(M
);
846 bool UseOdrIndicator
;
849 // Stack poisoning does not play well with exception handling.
850 // When an exception is thrown, we essentially bypass the code
851 // that unpoisones the stack. This is why the run-time library has
852 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
853 // stack in the interceptor. This however does not work inside the
854 // actual function which catches the exception. Most likely because the
855 // compiler hoists the load of the shadow value somewhere too high.
856 // This causes asan to report a non-existing bug on 453.povray.
857 // It sounds like an LLVM bug.
858 struct FunctionStackPoisoner
: public InstVisitor
<FunctionStackPoisoner
> {
860 AddressSanitizer
&ASan
;
865 ShadowMapping Mapping
;
867 SmallVector
<AllocaInst
*, 16> AllocaVec
;
868 SmallVector
<AllocaInst
*, 16> StaticAllocasToMoveUp
;
869 SmallVector
<Instruction
*, 8> RetVec
;
870 unsigned StackAlignment
;
872 FunctionCallee AsanStackMallocFunc
[kMaxAsanStackMallocSizeClass
+ 1],
873 AsanStackFreeFunc
[kMaxAsanStackMallocSizeClass
+ 1];
874 FunctionCallee AsanSetShadowFunc
[0x100] = {};
875 FunctionCallee AsanPoisonStackMemoryFunc
, AsanUnpoisonStackMemoryFunc
;
876 FunctionCallee AsanAllocaPoisonFunc
, AsanAllocasUnpoisonFunc
;
878 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
879 struct AllocaPoisonCall
{
880 IntrinsicInst
*InsBefore
;
885 SmallVector
<AllocaPoisonCall
, 8> DynamicAllocaPoisonCallVec
;
886 SmallVector
<AllocaPoisonCall
, 8> StaticAllocaPoisonCallVec
;
887 bool HasUntracedLifetimeIntrinsic
= false;
889 SmallVector
<AllocaInst
*, 1> DynamicAllocaVec
;
890 SmallVector
<IntrinsicInst
*, 1> StackRestoreVec
;
891 AllocaInst
*DynamicAllocaLayout
= nullptr;
892 IntrinsicInst
*LocalEscapeCall
= nullptr;
894 // Maps Value to an AllocaInst from which the Value is originated.
895 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
896 AllocaForValueMapTy AllocaForValue
;
898 bool HasNonEmptyInlineAsm
= false;
899 bool HasReturnsTwiceCall
= false;
900 std::unique_ptr
<CallInst
> EmptyInlineAsm
;
902 FunctionStackPoisoner(Function
&F
, AddressSanitizer
&ASan
)
903 : F(F
), ASan(ASan
), DIB(*F
.getParent(), /*AllowUnresolved*/ false),
904 C(ASan
.C
), IntptrTy(ASan
.IntptrTy
),
905 IntptrPtrTy(PointerType::get(IntptrTy
, 0)), Mapping(ASan
.Mapping
),
906 StackAlignment(1 << Mapping
.Scale
),
907 EmptyInlineAsm(CallInst::Create(ASan
.EmptyAsm
)) {}
909 bool runOnFunction() {
910 if (!ClStack
) return false;
912 if (ClRedzoneByvalArgs
)
913 copyArgsPassedByValToAllocas();
915 // Collect alloca, ret, lifetime instructions etc.
916 for (BasicBlock
*BB
: depth_first(&F
.getEntryBlock())) visit(*BB
);
918 if (AllocaVec
.empty() && DynamicAllocaVec
.empty()) return false;
920 initializeCallbacks(*F
.getParent());
922 if (HasUntracedLifetimeIntrinsic
) {
923 // If there are lifetime intrinsics which couldn't be traced back to an
924 // alloca, we may not know exactly when a variable enters scope, and
925 // therefore should "fail safe" by not poisoning them.
926 StaticAllocaPoisonCallVec
.clear();
927 DynamicAllocaPoisonCallVec
.clear();
930 processDynamicAllocas();
931 processStaticAllocas();
934 LLVM_DEBUG(dbgs() << F
);
939 // Arguments marked with the "byval" attribute are implicitly copied without
940 // using an alloca instruction. To produce redzones for those arguments, we
941 // copy them a second time into memory allocated with an alloca instruction.
942 void copyArgsPassedByValToAllocas();
944 // Finds all Alloca instructions and puts
945 // poisoned red zones around all of them.
946 // Then unpoison everything back before the function returns.
947 void processStaticAllocas();
948 void processDynamicAllocas();
950 void createDynamicAllocasInitStorage();
952 // ----------------------- Visitors.
953 /// Collect all Ret instructions.
954 void visitReturnInst(ReturnInst
&RI
) { RetVec
.push_back(&RI
); }
956 /// Collect all Resume instructions.
957 void visitResumeInst(ResumeInst
&RI
) { RetVec
.push_back(&RI
); }
959 /// Collect all CatchReturnInst instructions.
960 void visitCleanupReturnInst(CleanupReturnInst
&CRI
) { RetVec
.push_back(&CRI
); }
962 void unpoisonDynamicAllocasBeforeInst(Instruction
*InstBefore
,
964 IRBuilder
<> IRB(InstBefore
);
965 Value
*DynamicAreaPtr
= IRB
.CreatePtrToInt(SavedStack
, IntptrTy
);
966 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
967 // need to adjust extracted SP to compute the address of the most recent
968 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
970 if (!isa
<ReturnInst
>(InstBefore
)) {
971 Function
*DynamicAreaOffsetFunc
= Intrinsic::getDeclaration(
972 InstBefore
->getModule(), Intrinsic::get_dynamic_area_offset
,
975 Value
*DynamicAreaOffset
= IRB
.CreateCall(DynamicAreaOffsetFunc
, {});
977 DynamicAreaPtr
= IRB
.CreateAdd(IRB
.CreatePtrToInt(SavedStack
, IntptrTy
),
982 AsanAllocasUnpoisonFunc
,
983 {IRB
.CreateLoad(IntptrTy
, DynamicAllocaLayout
), DynamicAreaPtr
});
986 // Unpoison dynamic allocas redzones.
987 void unpoisonDynamicAllocas() {
988 for (auto &Ret
: RetVec
)
989 unpoisonDynamicAllocasBeforeInst(Ret
, DynamicAllocaLayout
);
991 for (auto &StackRestoreInst
: StackRestoreVec
)
992 unpoisonDynamicAllocasBeforeInst(StackRestoreInst
,
993 StackRestoreInst
->getOperand(0));
996 // Deploy and poison redzones around dynamic alloca call. To do this, we
997 // should replace this call with another one with changed parameters and
998 // replace all its uses with new address, so
999 // addr = alloca type, old_size, align
1001 // new_size = (old_size + additional_size) * sizeof(type)
1002 // tmp = alloca i8, new_size, max(align, 32)
1003 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1004 // Additional_size is added to make new memory allocation contain not only
1005 // requested memory, but also left, partial and right redzones.
1006 void handleDynamicAllocaCall(AllocaInst
*AI
);
1008 /// Collect Alloca instructions we want (and can) handle.
1009 void visitAllocaInst(AllocaInst
&AI
) {
1010 if (!ASan
.isInterestingAlloca(AI
)) {
1011 if (AI
.isStaticAlloca()) {
1012 // Skip over allocas that are present *before* the first instrumented
1013 // alloca, we don't want to move those around.
1014 if (AllocaVec
.empty())
1017 StaticAllocasToMoveUp
.push_back(&AI
);
1022 StackAlignment
= std::max(StackAlignment
, AI
.getAlignment());
1023 if (!AI
.isStaticAlloca())
1024 DynamicAllocaVec
.push_back(&AI
);
1026 AllocaVec
.push_back(&AI
);
1029 /// Collect lifetime intrinsic calls to check for use-after-scope
1031 void visitIntrinsicInst(IntrinsicInst
&II
) {
1032 Intrinsic::ID ID
= II
.getIntrinsicID();
1033 if (ID
== Intrinsic::stackrestore
) StackRestoreVec
.push_back(&II
);
1034 if (ID
== Intrinsic::localescape
) LocalEscapeCall
= &II
;
1035 if (!ASan
.UseAfterScope
)
1037 if (!II
.isLifetimeStartOrEnd())
1039 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1040 ConstantInt
*Size
= dyn_cast
<ConstantInt
>(II
.getArgOperand(0));
1041 // If size argument is undefined, don't do anything.
1042 if (Size
->isMinusOne()) return;
1043 // Check that size doesn't saturate uint64_t and can
1044 // be stored in IntptrTy.
1045 const uint64_t SizeValue
= Size
->getValue().getLimitedValue();
1046 if (SizeValue
== ~0ULL ||
1047 !ConstantInt::isValueValidForType(IntptrTy
, SizeValue
))
1049 // Find alloca instruction that corresponds to llvm.lifetime argument.
1051 llvm::findAllocaForValue(II
.getArgOperand(1), AllocaForValue
);
1053 HasUntracedLifetimeIntrinsic
= true;
1056 // We're interested only in allocas we can handle.
1057 if (!ASan
.isInterestingAlloca(*AI
))
1059 bool DoPoison
= (ID
== Intrinsic::lifetime_end
);
1060 AllocaPoisonCall APC
= {&II
, AI
, SizeValue
, DoPoison
};
1061 if (AI
->isStaticAlloca())
1062 StaticAllocaPoisonCallVec
.push_back(APC
);
1063 else if (ClInstrumentDynamicAllocas
)
1064 DynamicAllocaPoisonCallVec
.push_back(APC
);
1067 void visitCallSite(CallSite CS
) {
1068 Instruction
*I
= CS
.getInstruction();
1069 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
1070 HasNonEmptyInlineAsm
|= CI
->isInlineAsm() &&
1071 !CI
->isIdenticalTo(EmptyInlineAsm
.get()) &&
1072 I
!= ASan
.LocalDynamicShadow
;
1073 HasReturnsTwiceCall
|= CI
->canReturnTwice();
1077 // ---------------------- Helpers.
1078 void initializeCallbacks(Module
&M
);
1080 // Copies bytes from ShadowBytes into shadow memory for indexes where
1081 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1082 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1083 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1084 IRBuilder
<> &IRB
, Value
*ShadowBase
);
1085 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1086 size_t Begin
, size_t End
, IRBuilder
<> &IRB
,
1088 void copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
1089 ArrayRef
<uint8_t> ShadowBytes
, size_t Begin
,
1090 size_t End
, IRBuilder
<> &IRB
, Value
*ShadowBase
);
1092 void poisonAlloca(Value
*V
, uint64_t Size
, IRBuilder
<> &IRB
, bool DoPoison
);
1094 Value
*createAllocaForLayout(IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
,
1096 PHINode
*createPHI(IRBuilder
<> &IRB
, Value
*Cond
, Value
*ValueIfTrue
,
1097 Instruction
*ThenTerm
, Value
*ValueIfFalse
);
1100 } // end anonymous namespace
1102 void LocationMetadata::parse(MDNode
*MDN
) {
1103 assert(MDN
->getNumOperands() == 3);
1104 MDString
*DIFilename
= cast
<MDString
>(MDN
->getOperand(0));
1105 Filename
= DIFilename
->getString();
1106 LineNo
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(1))->getLimitedValue();
1108 mdconst::extract
<ConstantInt
>(MDN
->getOperand(2))->getLimitedValue();
1111 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1112 // we want to sanitize instead and reading this metadata on each pass over a
1113 // function instead of reading module level metadata at first.
1114 GlobalsMetadata::GlobalsMetadata(Module
&M
) {
1115 NamedMDNode
*Globals
= M
.getNamedMetadata("llvm.asan.globals");
1118 for (auto MDN
: Globals
->operands()) {
1119 // Metadata node contains the global and the fields of "Entry".
1120 assert(MDN
->getNumOperands() == 5);
1121 auto *V
= mdconst::extract_or_null
<Constant
>(MDN
->getOperand(0));
1122 // The optimizer may optimize away a global entirely.
1125 auto *StrippedV
= V
->stripPointerCasts();
1126 auto *GV
= dyn_cast
<GlobalVariable
>(StrippedV
);
1129 // We can already have an entry for GV if it was merged with another
1131 Entry
&E
= Entries
[GV
];
1132 if (auto *Loc
= cast_or_null
<MDNode
>(MDN
->getOperand(1)))
1133 E
.SourceLoc
.parse(Loc
);
1134 if (auto *Name
= cast_or_null
<MDString
>(MDN
->getOperand(2)))
1135 E
.Name
= Name
->getString();
1136 ConstantInt
*IsDynInit
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(3));
1137 E
.IsDynInit
|= IsDynInit
->isOne();
1138 ConstantInt
*IsBlacklisted
=
1139 mdconst::extract
<ConstantInt
>(MDN
->getOperand(4));
1140 E
.IsBlacklisted
|= IsBlacklisted
->isOne();
1144 AnalysisKey
ASanGlobalsMetadataAnalysis::Key
;
1146 GlobalsMetadata
ASanGlobalsMetadataAnalysis::run(Module
&M
,
1147 ModuleAnalysisManager
&AM
) {
1148 return GlobalsMetadata(M
);
1151 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel
, bool Recover
,
1153 : CompileKernel(CompileKernel
), Recover(Recover
),
1154 UseAfterScope(UseAfterScope
) {}
1156 PreservedAnalyses
AddressSanitizerPass::run(Function
&F
,
1157 AnalysisManager
<Function
> &AM
) {
1158 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1159 auto &MAM
= MAMProxy
.getManager();
1160 Module
&M
= *F
.getParent();
1161 if (auto *R
= MAM
.getCachedResult
<ASanGlobalsMetadataAnalysis
>(M
)) {
1162 const TargetLibraryInfo
*TLI
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
1163 AddressSanitizer
Sanitizer(M
, *R
, CompileKernel
, Recover
, UseAfterScope
);
1164 if (Sanitizer
.instrumentFunction(F
, TLI
))
1165 return PreservedAnalyses::none();
1166 return PreservedAnalyses::all();
1170 "The ASanGlobalsMetadataAnalysis is required to run before "
1171 "AddressSanitizer can run");
1172 return PreservedAnalyses::all();
1175 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel
,
1178 bool UseOdrIndicator
)
1179 : CompileKernel(CompileKernel
), Recover(Recover
), UseGlobalGC(UseGlobalGC
),
1180 UseOdrIndicator(UseOdrIndicator
) {}
1182 PreservedAnalyses
ModuleAddressSanitizerPass::run(Module
&M
,
1183 AnalysisManager
<Module
> &AM
) {
1184 GlobalsMetadata
&GlobalsMD
= AM
.getResult
<ASanGlobalsMetadataAnalysis
>(M
);
1185 ModuleAddressSanitizer
Sanitizer(M
, GlobalsMD
, CompileKernel
, Recover
,
1186 UseGlobalGC
, UseOdrIndicator
);
1187 if (Sanitizer
.instrumentModule(M
))
1188 return PreservedAnalyses::none();
1189 return PreservedAnalyses::all();
1192 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass
, "asan-globals-md",
1193 "Read metadata to mark which globals should be instrumented "
1194 "when running ASan.",
1197 char AddressSanitizerLegacyPass::ID
= 0;
1199 INITIALIZE_PASS_BEGIN(
1200 AddressSanitizerLegacyPass
, "asan",
1201 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1203 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass
)
1204 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1205 INITIALIZE_PASS_END(
1206 AddressSanitizerLegacyPass
, "asan",
1207 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1210 FunctionPass
*llvm::createAddressSanitizerFunctionPass(bool CompileKernel
,
1212 bool UseAfterScope
) {
1213 assert(!CompileKernel
|| Recover
);
1214 return new AddressSanitizerLegacyPass(CompileKernel
, Recover
, UseAfterScope
);
1217 char ModuleAddressSanitizerLegacyPass::ID
= 0;
1220 ModuleAddressSanitizerLegacyPass
, "asan-module",
1221 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1225 ModulePass
*llvm::createModuleAddressSanitizerLegacyPassPass(
1226 bool CompileKernel
, bool Recover
, bool UseGlobalsGC
, bool UseOdrIndicator
) {
1227 assert(!CompileKernel
|| Recover
);
1228 return new ModuleAddressSanitizerLegacyPass(CompileKernel
, Recover
,
1229 UseGlobalsGC
, UseOdrIndicator
);
1232 static size_t TypeSizeToSizeIndex(uint32_t TypeSize
) {
1233 size_t Res
= countTrailingZeros(TypeSize
/ 8);
1234 assert(Res
< kNumberOfAccessSizes
);
1238 /// Create a global describing a source location.
1239 static GlobalVariable
*createPrivateGlobalForSourceLoc(Module
&M
,
1240 LocationMetadata MD
) {
1241 Constant
*LocData
[] = {
1242 createPrivateGlobalForString(M
, MD
.Filename
, true, kAsanGenPrefix
),
1243 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.LineNo
),
1244 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.ColumnNo
),
1246 auto LocStruct
= ConstantStruct::getAnon(LocData
);
1247 auto GV
= new GlobalVariable(M
, LocStruct
->getType(), true,
1248 GlobalValue::PrivateLinkage
, LocStruct
,
1250 GV
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
1254 /// Check if \p G has been created by a trusted compiler pass.
1255 static bool GlobalWasGeneratedByCompiler(GlobalVariable
*G
) {
1256 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1257 if (G
->getName().startswith("llvm."))
1260 // Do not instrument asan globals.
1261 if (G
->getName().startswith(kAsanGenPrefix
) ||
1262 G
->getName().startswith(kSanCovGenPrefix
) ||
1263 G
->getName().startswith(kODRGenPrefix
))
1266 // Do not instrument gcov counter arrays.
1267 if (G
->getName() == "__llvm_gcov_ctr")
1273 Value
*AddressSanitizer::memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
) {
1275 Shadow
= IRB
.CreateLShr(Shadow
, Mapping
.Scale
);
1276 if (Mapping
.Offset
== 0) return Shadow
;
1277 // (Shadow >> scale) | offset
1279 if (LocalDynamicShadow
)
1280 ShadowBase
= LocalDynamicShadow
;
1282 ShadowBase
= ConstantInt::get(IntptrTy
, Mapping
.Offset
);
1283 if (Mapping
.OrShadowOffset
)
1284 return IRB
.CreateOr(Shadow
, ShadowBase
);
1286 return IRB
.CreateAdd(Shadow
, ShadowBase
);
1289 // Instrument memset/memmove/memcpy
1290 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic
*MI
) {
1291 IRBuilder
<> IRB(MI
);
1292 if (isa
<MemTransferInst
>(MI
)) {
1294 isa
<MemMoveInst
>(MI
) ? AsanMemmove
: AsanMemcpy
,
1295 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1296 IRB
.CreatePointerCast(MI
->getOperand(1), IRB
.getInt8PtrTy()),
1297 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1298 } else if (isa
<MemSetInst
>(MI
)) {
1301 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1302 IRB
.CreateIntCast(MI
->getOperand(1), IRB
.getInt32Ty(), false),
1303 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1305 MI
->eraseFromParent();
1308 /// Check if we want (and can) handle this alloca.
1309 bool AddressSanitizer::isInterestingAlloca(const AllocaInst
&AI
) {
1310 auto PreviouslySeenAllocaInfo
= ProcessedAllocas
.find(&AI
);
1312 if (PreviouslySeenAllocaInfo
!= ProcessedAllocas
.end())
1313 return PreviouslySeenAllocaInfo
->getSecond();
1315 bool IsInteresting
=
1316 (AI
.getAllocatedType()->isSized() &&
1317 // alloca() may be called with 0 size, ignore it.
1318 ((!AI
.isStaticAlloca()) || getAllocaSizeInBytes(AI
) > 0) &&
1319 // We are only interested in allocas not promotable to registers.
1320 // Promotable allocas are common under -O0.
1321 (!ClSkipPromotableAllocas
|| !isAllocaPromotable(&AI
)) &&
1322 // inalloca allocas are not treated as static, and we don't want
1323 // dynamic alloca instrumentation for them as well.
1324 !AI
.isUsedWithInAlloca() &&
1325 // swifterror allocas are register promoted by ISel
1326 !AI
.isSwiftError());
1328 ProcessedAllocas
[&AI
] = IsInteresting
;
1329 return IsInteresting
;
1332 Value
*AddressSanitizer::isInterestingMemoryAccess(Instruction
*I
,
1335 unsigned *Alignment
,
1336 Value
**MaybeMask
) {
1337 // Skip memory accesses inserted by another instrumentation.
1338 if (I
->getMetadata("nosanitize")) return nullptr;
1340 // Do not instrument the load fetching the dynamic shadow address.
1341 if (LocalDynamicShadow
== I
)
1344 Value
*PtrOperand
= nullptr;
1345 const DataLayout
&DL
= I
->getModule()->getDataLayout();
1346 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1347 if (!ClInstrumentReads
) return nullptr;
1349 *TypeSize
= DL
.getTypeStoreSizeInBits(LI
->getType());
1350 *Alignment
= LI
->getAlignment();
1351 PtrOperand
= LI
->getPointerOperand();
1352 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1353 if (!ClInstrumentWrites
) return nullptr;
1355 *TypeSize
= DL
.getTypeStoreSizeInBits(SI
->getValueOperand()->getType());
1356 *Alignment
= SI
->getAlignment();
1357 PtrOperand
= SI
->getPointerOperand();
1358 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
1359 if (!ClInstrumentAtomics
) return nullptr;
1361 *TypeSize
= DL
.getTypeStoreSizeInBits(RMW
->getValOperand()->getType());
1363 PtrOperand
= RMW
->getPointerOperand();
1364 } else if (AtomicCmpXchgInst
*XCHG
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
1365 if (!ClInstrumentAtomics
) return nullptr;
1367 *TypeSize
= DL
.getTypeStoreSizeInBits(XCHG
->getCompareOperand()->getType());
1369 PtrOperand
= XCHG
->getPointerOperand();
1370 } else if (auto CI
= dyn_cast
<CallInst
>(I
)) {
1371 auto *F
= dyn_cast
<Function
>(CI
->getCalledValue());
1372 if (F
&& (F
->getName().startswith("llvm.masked.load.") ||
1373 F
->getName().startswith("llvm.masked.store."))) {
1374 unsigned OpOffset
= 0;
1375 if (F
->getName().startswith("llvm.masked.store.")) {
1376 if (!ClInstrumentWrites
)
1378 // Masked store has an initial operand for the value.
1382 if (!ClInstrumentReads
)
1387 auto BasePtr
= CI
->getOperand(0 + OpOffset
);
1388 auto Ty
= cast
<PointerType
>(BasePtr
->getType())->getElementType();
1389 *TypeSize
= DL
.getTypeStoreSizeInBits(Ty
);
1390 if (auto AlignmentConstant
=
1391 dyn_cast
<ConstantInt
>(CI
->getOperand(1 + OpOffset
)))
1392 *Alignment
= (unsigned)AlignmentConstant
->getZExtValue();
1394 *Alignment
= 1; // No alignment guarantees. We probably got Undef
1396 *MaybeMask
= CI
->getOperand(2 + OpOffset
);
1397 PtrOperand
= BasePtr
;
1402 // Do not instrument acesses from different address spaces; we cannot deal
1404 Type
*PtrTy
= cast
<PointerType
>(PtrOperand
->getType()->getScalarType());
1405 if (PtrTy
->getPointerAddressSpace() != 0)
1408 // Ignore swifterror addresses.
1409 // swifterror memory addresses are mem2reg promoted by instruction
1410 // selection. As such they cannot have regular uses like an instrumentation
1411 // function and it makes no sense to track them as memory.
1412 if (PtrOperand
->isSwiftError())
1416 // Treat memory accesses to promotable allocas as non-interesting since they
1417 // will not cause memory violations. This greatly speeds up the instrumented
1418 // executable at -O0.
1419 if (ClSkipPromotableAllocas
)
1420 if (auto AI
= dyn_cast_or_null
<AllocaInst
>(PtrOperand
))
1421 return isInterestingAlloca(*AI
) ? AI
: nullptr;
1426 static bool isPointerOperand(Value
*V
) {
1427 return V
->getType()->isPointerTy() || isa
<PtrToIntInst
>(V
);
1430 // This is a rough heuristic; it may cause both false positives and
1431 // false negatives. The proper implementation requires cooperation with
1433 static bool isInterestingPointerComparison(Instruction
*I
) {
1434 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(I
)) {
1435 if (!Cmp
->isRelational())
1440 return isPointerOperand(I
->getOperand(0)) &&
1441 isPointerOperand(I
->getOperand(1));
1444 // This is a rough heuristic; it may cause both false positives and
1445 // false negatives. The proper implementation requires cooperation with
1447 static bool isInterestingPointerSubtraction(Instruction
*I
) {
1448 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1449 if (BO
->getOpcode() != Instruction::Sub
)
1454 return isPointerOperand(I
->getOperand(0)) &&
1455 isPointerOperand(I
->getOperand(1));
1458 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable
*G
) {
1459 // If a global variable does not have dynamic initialization we don't
1460 // have to instrument it. However, if a global does not have initializer
1461 // at all, we assume it has dynamic initializer (in other TU).
1463 // FIXME: Metadata should be attched directly to the global directly instead
1464 // of being added to llvm.asan.globals.
1465 return G
->hasInitializer() && !GlobalsMD
.get(G
).IsDynInit
;
1468 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1471 FunctionCallee F
= isa
<ICmpInst
>(I
) ? AsanPtrCmpFunction
: AsanPtrSubFunction
;
1472 Value
*Param
[2] = {I
->getOperand(0), I
->getOperand(1)};
1473 for (Value
*&i
: Param
) {
1474 if (i
->getType()->isPointerTy())
1475 i
= IRB
.CreatePointerCast(i
, IntptrTy
);
1477 IRB
.CreateCall(F
, Param
);
1480 static void doInstrumentAddress(AddressSanitizer
*Pass
, Instruction
*I
,
1481 Instruction
*InsertBefore
, Value
*Addr
,
1482 unsigned Alignment
, unsigned Granularity
,
1483 uint32_t TypeSize
, bool IsWrite
,
1484 Value
*SizeArgument
, bool UseCalls
,
1486 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1487 // if the data is properly aligned.
1488 if ((TypeSize
== 8 || TypeSize
== 16 || TypeSize
== 32 || TypeSize
== 64 ||
1490 (Alignment
>= Granularity
|| Alignment
== 0 || Alignment
>= TypeSize
/ 8))
1491 return Pass
->instrumentAddress(I
, InsertBefore
, Addr
, TypeSize
, IsWrite
,
1492 nullptr, UseCalls
, Exp
);
1493 Pass
->instrumentUnusualSizeOrAlignment(I
, InsertBefore
, Addr
, TypeSize
,
1494 IsWrite
, nullptr, UseCalls
, Exp
);
1497 static void instrumentMaskedLoadOrStore(AddressSanitizer
*Pass
,
1498 const DataLayout
&DL
, Type
*IntptrTy
,
1499 Value
*Mask
, Instruction
*I
,
1500 Value
*Addr
, unsigned Alignment
,
1501 unsigned Granularity
, uint32_t TypeSize
,
1502 bool IsWrite
, Value
*SizeArgument
,
1503 bool UseCalls
, uint32_t Exp
) {
1504 auto *VTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
1505 uint64_t ElemTypeSize
= DL
.getTypeStoreSizeInBits(VTy
->getScalarType());
1506 unsigned Num
= VTy
->getVectorNumElements();
1507 auto Zero
= ConstantInt::get(IntptrTy
, 0);
1508 for (unsigned Idx
= 0; Idx
< Num
; ++Idx
) {
1509 Value
*InstrumentedAddress
= nullptr;
1510 Instruction
*InsertBefore
= I
;
1511 if (auto *Vector
= dyn_cast
<ConstantVector
>(Mask
)) {
1512 // dyn_cast as we might get UndefValue
1513 if (auto *Masked
= dyn_cast
<ConstantInt
>(Vector
->getOperand(Idx
))) {
1514 if (Masked
->isZero())
1515 // Mask is constant false, so no instrumentation needed.
1517 // If we have a true or undef value, fall through to doInstrumentAddress
1518 // with InsertBefore == I
1522 Value
*MaskElem
= IRB
.CreateExtractElement(Mask
, Idx
);
1523 Instruction
*ThenTerm
= SplitBlockAndInsertIfThen(MaskElem
, I
, false);
1524 InsertBefore
= ThenTerm
;
1527 IRBuilder
<> IRB(InsertBefore
);
1528 InstrumentedAddress
=
1529 IRB
.CreateGEP(VTy
, Addr
, {Zero
, ConstantInt::get(IntptrTy
, Idx
)});
1530 doInstrumentAddress(Pass
, I
, InsertBefore
, InstrumentedAddress
, Alignment
,
1531 Granularity
, ElemTypeSize
, IsWrite
, SizeArgument
,
1536 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
,
1537 Instruction
*I
, bool UseCalls
,
1538 const DataLayout
&DL
) {
1539 bool IsWrite
= false;
1540 unsigned Alignment
= 0;
1541 uint64_t TypeSize
= 0;
1542 Value
*MaybeMask
= nullptr;
1544 isInterestingMemoryAccess(I
, &IsWrite
, &TypeSize
, &Alignment
, &MaybeMask
);
1547 // Optimization experiments.
1548 // The experiments can be used to evaluate potential optimizations that remove
1549 // instrumentation (assess false negatives). Instead of completely removing
1550 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1551 // experiments that want to remove instrumentation of this instruction).
1552 // If Exp is non-zero, this pass will emit special calls into runtime
1553 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1554 // make runtime terminate the program in a special way (with a different
1555 // exit status). Then you run the new compiler on a buggy corpus, collect
1556 // the special terminations (ideally, you don't see them at all -- no false
1557 // negatives) and make the decision on the optimization.
1558 uint32_t Exp
= ClForceExperiment
;
1560 if (ClOpt
&& ClOptGlobals
) {
1561 // If initialization order checking is disabled, a simple access to a
1562 // dynamically initialized global is always valid.
1563 GlobalVariable
*G
= dyn_cast
<GlobalVariable
>(GetUnderlyingObject(Addr
, DL
));
1564 if (G
&& (!ClInitializers
|| GlobalIsLinkerInitialized(G
)) &&
1565 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1566 NumOptimizedAccessesToGlobalVar
++;
1571 if (ClOpt
&& ClOptStack
) {
1572 // A direct inbounds access to a stack variable is always valid.
1573 if (isa
<AllocaInst
>(GetUnderlyingObject(Addr
, DL
)) &&
1574 isSafeAccess(ObjSizeVis
, Addr
, TypeSize
)) {
1575 NumOptimizedAccessesToStackVar
++;
1581 NumInstrumentedWrites
++;
1583 NumInstrumentedReads
++;
1585 unsigned Granularity
= 1 << Mapping
.Scale
;
1587 instrumentMaskedLoadOrStore(this, DL
, IntptrTy
, MaybeMask
, I
, Addr
,
1588 Alignment
, Granularity
, TypeSize
, IsWrite
,
1589 nullptr, UseCalls
, Exp
);
1591 doInstrumentAddress(this, I
, I
, Addr
, Alignment
, Granularity
, TypeSize
,
1592 IsWrite
, nullptr, UseCalls
, Exp
);
1596 Instruction
*AddressSanitizer::generateCrashCode(Instruction
*InsertBefore
,
1597 Value
*Addr
, bool IsWrite
,
1598 size_t AccessSizeIndex
,
1599 Value
*SizeArgument
,
1601 IRBuilder
<> IRB(InsertBefore
);
1602 Value
*ExpVal
= Exp
== 0 ? nullptr : ConstantInt::get(IRB
.getInt32Ty(), Exp
);
1603 CallInst
*Call
= nullptr;
1606 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][0],
1607 {Addr
, SizeArgument
});
1609 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][1],
1610 {Addr
, SizeArgument
, ExpVal
});
1614 IRB
.CreateCall(AsanErrorCallback
[IsWrite
][0][AccessSizeIndex
], Addr
);
1616 Call
= IRB
.CreateCall(AsanErrorCallback
[IsWrite
][1][AccessSizeIndex
],
1620 // We don't do Call->setDoesNotReturn() because the BB already has
1621 // UnreachableInst at the end.
1622 // This EmptyAsm is required to avoid callback merge.
1623 IRB
.CreateCall(EmptyAsm
, {});
1627 Value
*AddressSanitizer::createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
1629 uint32_t TypeSize
) {
1630 size_t Granularity
= static_cast<size_t>(1) << Mapping
.Scale
;
1631 // Addr & (Granularity - 1)
1632 Value
*LastAccessedByte
=
1633 IRB
.CreateAnd(AddrLong
, ConstantInt::get(IntptrTy
, Granularity
- 1));
1634 // (Addr & (Granularity - 1)) + size - 1
1635 if (TypeSize
/ 8 > 1)
1636 LastAccessedByte
= IRB
.CreateAdd(
1637 LastAccessedByte
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1));
1638 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1640 IRB
.CreateIntCast(LastAccessedByte
, ShadowValue
->getType(), false);
1641 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1642 return IRB
.CreateICmpSGE(LastAccessedByte
, ShadowValue
);
1645 void AddressSanitizer::instrumentAddress(Instruction
*OrigIns
,
1646 Instruction
*InsertBefore
, Value
*Addr
,
1647 uint32_t TypeSize
, bool IsWrite
,
1648 Value
*SizeArgument
, bool UseCalls
,
1650 bool IsMyriad
= TargetTriple
.getVendor() == llvm::Triple::Myriad
;
1652 IRBuilder
<> IRB(InsertBefore
);
1653 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1654 size_t AccessSizeIndex
= TypeSizeToSizeIndex(TypeSize
);
1658 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][0][AccessSizeIndex
],
1661 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][1][AccessSizeIndex
],
1662 {AddrLong
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1667 // Strip the cache bit and do range check.
1668 // AddrLong &= ~kMyriadCacheBitMask32
1669 AddrLong
= IRB
.CreateAnd(AddrLong
, ~kMyriadCacheBitMask32
);
1670 // Tag = AddrLong >> kMyriadTagShift
1671 Value
*Tag
= IRB
.CreateLShr(AddrLong
, kMyriadTagShift
);
1672 // Tag == kMyriadDDRTag
1674 IRB
.CreateICmpEQ(Tag
, ConstantInt::get(IntptrTy
, kMyriadDDRTag
));
1676 Instruction
*TagCheckTerm
=
1677 SplitBlockAndInsertIfThen(TagCheck
, InsertBefore
, false,
1678 MDBuilder(*C
).createBranchWeights(1, 100000));
1679 assert(cast
<BranchInst
>(TagCheckTerm
)->isUnconditional());
1680 IRB
.SetInsertPoint(TagCheckTerm
);
1681 InsertBefore
= TagCheckTerm
;
1685 IntegerType::get(*C
, std::max(8U, TypeSize
>> Mapping
.Scale
));
1686 Type
*ShadowPtrTy
= PointerType::get(ShadowTy
, 0);
1687 Value
*ShadowPtr
= memToShadow(AddrLong
, IRB
);
1688 Value
*CmpVal
= Constant::getNullValue(ShadowTy
);
1689 Value
*ShadowValue
=
1690 IRB
.CreateLoad(ShadowTy
, IRB
.CreateIntToPtr(ShadowPtr
, ShadowPtrTy
));
1692 Value
*Cmp
= IRB
.CreateICmpNE(ShadowValue
, CmpVal
);
1693 size_t Granularity
= 1ULL << Mapping
.Scale
;
1694 Instruction
*CrashTerm
= nullptr;
1696 if (ClAlwaysSlowPath
|| (TypeSize
< 8 * Granularity
)) {
1697 // We use branch weights for the slow path check, to indicate that the slow
1698 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1699 Instruction
*CheckTerm
= SplitBlockAndInsertIfThen(
1700 Cmp
, InsertBefore
, false, MDBuilder(*C
).createBranchWeights(1, 100000));
1701 assert(cast
<BranchInst
>(CheckTerm
)->isUnconditional());
1702 BasicBlock
*NextBB
= CheckTerm
->getSuccessor(0);
1703 IRB
.SetInsertPoint(CheckTerm
);
1704 Value
*Cmp2
= createSlowPathCmp(IRB
, AddrLong
, ShadowValue
, TypeSize
);
1706 CrashTerm
= SplitBlockAndInsertIfThen(Cmp2
, CheckTerm
, false);
1708 BasicBlock
*CrashBlock
=
1709 BasicBlock::Create(*C
, "", NextBB
->getParent(), NextBB
);
1710 CrashTerm
= new UnreachableInst(*C
, CrashBlock
);
1711 BranchInst
*NewTerm
= BranchInst::Create(CrashBlock
, NextBB
, Cmp2
);
1712 ReplaceInstWithInst(CheckTerm
, NewTerm
);
1715 CrashTerm
= SplitBlockAndInsertIfThen(Cmp
, InsertBefore
, !Recover
);
1718 Instruction
*Crash
= generateCrashCode(CrashTerm
, AddrLong
, IsWrite
,
1719 AccessSizeIndex
, SizeArgument
, Exp
);
1720 Crash
->setDebugLoc(OrigIns
->getDebugLoc());
1723 // Instrument unusual size or unusual alignment.
1724 // We can not do it with a single check, so we do 1-byte check for the first
1725 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1726 // to report the actual access size.
1727 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1728 Instruction
*I
, Instruction
*InsertBefore
, Value
*Addr
, uint32_t TypeSize
,
1729 bool IsWrite
, Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
) {
1730 IRBuilder
<> IRB(InsertBefore
);
1731 Value
*Size
= ConstantInt::get(IntptrTy
, TypeSize
/ 8);
1732 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1735 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][0],
1738 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][1],
1739 {AddrLong
, Size
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1741 Value
*LastByte
= IRB
.CreateIntToPtr(
1742 IRB
.CreateAdd(AddrLong
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1)),
1744 instrumentAddress(I
, InsertBefore
, Addr
, 8, IsWrite
, Size
, false, Exp
);
1745 instrumentAddress(I
, InsertBefore
, LastByte
, 8, IsWrite
, Size
, false, Exp
);
1749 void ModuleAddressSanitizer::poisonOneInitializer(Function
&GlobalInit
,
1750 GlobalValue
*ModuleName
) {
1751 // Set up the arguments to our poison/unpoison functions.
1752 IRBuilder
<> IRB(&GlobalInit
.front(),
1753 GlobalInit
.front().getFirstInsertionPt());
1755 // Add a call to poison all external globals before the given function starts.
1756 Value
*ModuleNameAddr
= ConstantExpr::getPointerCast(ModuleName
, IntptrTy
);
1757 IRB
.CreateCall(AsanPoisonGlobals
, ModuleNameAddr
);
1759 // Add calls to unpoison all globals before each return instruction.
1760 for (auto &BB
: GlobalInit
.getBasicBlockList())
1761 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1762 CallInst::Create(AsanUnpoisonGlobals
, "", RI
);
1765 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1766 Module
&M
, GlobalValue
*ModuleName
) {
1767 GlobalVariable
*GV
= M
.getGlobalVariable("llvm.global_ctors");
1771 ConstantArray
*CA
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1775 for (Use
&OP
: CA
->operands()) {
1776 if (isa
<ConstantAggregateZero
>(OP
)) continue;
1777 ConstantStruct
*CS
= cast
<ConstantStruct
>(OP
);
1779 // Must have a function or null ptr.
1780 if (Function
*F
= dyn_cast
<Function
>(CS
->getOperand(1))) {
1781 if (F
->getName() == kAsanModuleCtorName
) continue;
1782 ConstantInt
*Priority
= dyn_cast
<ConstantInt
>(CS
->getOperand(0));
1783 // Don't instrument CTORs that will run before asan.module_ctor.
1784 if (Priority
->getLimitedValue() <= kAsanCtorAndDtorPriority
) continue;
1785 poisonOneInitializer(*F
, ModuleName
);
1790 bool ModuleAddressSanitizer::ShouldInstrumentGlobal(GlobalVariable
*G
) {
1791 Type
*Ty
= G
->getValueType();
1792 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G
<< "\n");
1794 // FIXME: Metadata should be attched directly to the global directly instead
1795 // of being added to llvm.asan.globals.
1796 if (GlobalsMD
.get(G
).IsBlacklisted
) return false;
1797 if (!Ty
->isSized()) return false;
1798 if (!G
->hasInitializer()) return false;
1799 if (GlobalWasGeneratedByCompiler(G
)) return false; // Our own globals.
1800 // Two problems with thread-locals:
1801 // - The address of the main thread's copy can't be computed at link-time.
1802 // - Need to poison all copies, not just the main thread's one.
1803 if (G
->isThreadLocal()) return false;
1804 // For now, just ignore this Global if the alignment is large.
1805 if (G
->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1807 // For non-COFF targets, only instrument globals known to be defined by this
1809 // FIXME: We can instrument comdat globals on ELF if we are using the
1810 // GC-friendly metadata scheme.
1811 if (!TargetTriple
.isOSBinFormatCOFF()) {
1812 if (!G
->hasExactDefinition() || G
->hasComdat())
1815 // On COFF, don't instrument non-ODR linkages.
1816 if (G
->isInterposable())
1820 // If a comdat is present, it must have a selection kind that implies ODR
1821 // semantics: no duplicates, any, or exact match.
1822 if (Comdat
*C
= G
->getComdat()) {
1823 switch (C
->getSelectionKind()) {
1825 case Comdat::ExactMatch
:
1826 case Comdat::NoDuplicates
:
1828 case Comdat::Largest
:
1829 case Comdat::SameSize
:
1834 if (G
->hasSection()) {
1835 StringRef Section
= G
->getSection();
1837 // Globals from llvm.metadata aren't emitted, do not instrument them.
1838 if (Section
== "llvm.metadata") return false;
1839 // Do not instrument globals from special LLVM sections.
1840 if (Section
.find("__llvm") != StringRef::npos
|| Section
.find("__LLVM") != StringRef::npos
) return false;
1842 // Do not instrument function pointers to initialization and termination
1843 // routines: dynamic linker will not properly handle redzones.
1844 if (Section
.startswith(".preinit_array") ||
1845 Section
.startswith(".init_array") ||
1846 Section
.startswith(".fini_array")) {
1850 // On COFF, if the section name contains '$', it is highly likely that the
1851 // user is using section sorting to create an array of globals similar to
1852 // the way initialization callbacks are registered in .init_array and
1853 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1854 // to such globals is counterproductive, because the intent is that they
1855 // will form an array, and out-of-bounds accesses are expected.
1856 // See https://github.com/google/sanitizers/issues/305
1857 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1858 if (TargetTriple
.isOSBinFormatCOFF() && Section
.contains('$')) {
1859 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1864 if (TargetTriple
.isOSBinFormatMachO()) {
1865 StringRef ParsedSegment
, ParsedSection
;
1866 unsigned TAA
= 0, StubSize
= 0;
1868 std::string ErrorCode
= MCSectionMachO::ParseSectionSpecifier(
1869 Section
, ParsedSegment
, ParsedSection
, TAA
, TAAParsed
, StubSize
);
1870 assert(ErrorCode
.empty() && "Invalid section specifier.");
1872 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1873 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1875 if (ParsedSegment
== "__OBJC" ||
1876 (ParsedSegment
== "__DATA" && ParsedSection
.startswith("__objc_"))) {
1877 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G
<< "\n");
1880 // See https://github.com/google/sanitizers/issues/32
1881 // Constant CFString instances are compiled in the following way:
1882 // -- the string buffer is emitted into
1883 // __TEXT,__cstring,cstring_literals
1884 // -- the constant NSConstantString structure referencing that buffer
1885 // is placed into __DATA,__cfstring
1886 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1887 // Moreover, it causes the linker to crash on OS X 10.7
1888 if (ParsedSegment
== "__DATA" && ParsedSection
== "__cfstring") {
1889 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G
<< "\n");
1892 // The linker merges the contents of cstring_literals and removes the
1894 if (ParsedSegment
== "__TEXT" && (TAA
& MachO::S_CSTRING_LITERALS
)) {
1895 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G
<< "\n");
1904 // On Mach-O platforms, we emit global metadata in a separate section of the
1905 // binary in order to allow the linker to properly dead strip. This is only
1906 // supported on recent versions of ld64.
1907 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
1908 if (!TargetTriple
.isOSBinFormatMachO())
1911 if (TargetTriple
.isMacOSX() && !TargetTriple
.isMacOSXVersionLT(10, 11))
1913 if (TargetTriple
.isiOS() /* or tvOS */ && !TargetTriple
.isOSVersionLT(9))
1915 if (TargetTriple
.isWatchOS() && !TargetTriple
.isOSVersionLT(2))
1921 StringRef
ModuleAddressSanitizer::getGlobalMetadataSection() const {
1922 switch (TargetTriple
.getObjectFormat()) {
1923 case Triple::COFF
: return ".ASAN$GL";
1924 case Triple::ELF
: return "asan_globals";
1925 case Triple::MachO
: return "__DATA,__asan_globals,regular";
1928 llvm_unreachable("unsupported object format");
1931 void ModuleAddressSanitizer::initializeCallbacks(Module
&M
) {
1932 IRBuilder
<> IRB(*C
);
1934 // Declare our poisoning and unpoisoning functions.
1936 M
.getOrInsertFunction(kAsanPoisonGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1937 AsanUnpoisonGlobals
=
1938 M
.getOrInsertFunction(kAsanUnpoisonGlobalsName
, IRB
.getVoidTy());
1940 // Declare functions that register/unregister globals.
1941 AsanRegisterGlobals
= M
.getOrInsertFunction(
1942 kAsanRegisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1943 AsanUnregisterGlobals
= M
.getOrInsertFunction(
1944 kAsanUnregisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
1946 // Declare the functions that find globals in a shared object and then invoke
1947 // the (un)register function on them.
1948 AsanRegisterImageGlobals
= M
.getOrInsertFunction(
1949 kAsanRegisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1950 AsanUnregisterImageGlobals
= M
.getOrInsertFunction(
1951 kAsanUnregisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
1953 AsanRegisterElfGlobals
=
1954 M
.getOrInsertFunction(kAsanRegisterElfGlobalsName
, IRB
.getVoidTy(),
1955 IntptrTy
, IntptrTy
, IntptrTy
);
1956 AsanUnregisterElfGlobals
=
1957 M
.getOrInsertFunction(kAsanUnregisterElfGlobalsName
, IRB
.getVoidTy(),
1958 IntptrTy
, IntptrTy
, IntptrTy
);
1961 // Put the metadata and the instrumented global in the same group. This ensures
1962 // that the metadata is discarded if the instrumented global is discarded.
1963 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
1964 GlobalVariable
*G
, GlobalVariable
*Metadata
, StringRef InternalSuffix
) {
1965 Module
&M
= *G
->getParent();
1966 Comdat
*C
= G
->getComdat();
1968 if (!G
->hasName()) {
1969 // If G is unnamed, it must be internal. Give it an artificial name
1970 // so we can put it in a comdat.
1971 assert(G
->hasLocalLinkage());
1972 G
->setName(Twine(kAsanGenPrefix
) + "_anon_global");
1975 if (!InternalSuffix
.empty() && G
->hasLocalLinkage()) {
1976 std::string Name
= G
->getName();
1977 Name
+= InternalSuffix
;
1978 C
= M
.getOrInsertComdat(Name
);
1980 C
= M
.getOrInsertComdat(G
->getName());
1983 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
1984 // linkage to internal linkage so that a symbol table entry is emitted. This
1985 // is necessary in order to create the comdat group.
1986 if (TargetTriple
.isOSBinFormatCOFF()) {
1987 C
->setSelectionKind(Comdat::NoDuplicates
);
1988 if (G
->hasPrivateLinkage())
1989 G
->setLinkage(GlobalValue::InternalLinkage
);
1994 assert(G
->hasComdat());
1995 Metadata
->setComdat(G
->getComdat());
1998 // Create a separate metadata global and put it in the appropriate ASan
1999 // global registration section.
2001 ModuleAddressSanitizer::CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
2002 StringRef OriginalName
) {
2003 auto Linkage
= TargetTriple
.isOSBinFormatMachO()
2004 ? GlobalVariable::InternalLinkage
2005 : GlobalVariable::PrivateLinkage
;
2006 GlobalVariable
*Metadata
= new GlobalVariable(
2007 M
, Initializer
->getType(), false, Linkage
, Initializer
,
2008 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName
));
2009 Metadata
->setSection(getGlobalMetadataSection());
2013 IRBuilder
<> ModuleAddressSanitizer::CreateAsanModuleDtor(Module
&M
) {
2015 Function::Create(FunctionType::get(Type::getVoidTy(*C
), false),
2016 GlobalValue::InternalLinkage
, kAsanModuleDtorName
, &M
);
2017 BasicBlock
*AsanDtorBB
= BasicBlock::Create(*C
, "", AsanDtorFunction
);
2019 return IRBuilder
<>(ReturnInst::Create(*C
, AsanDtorBB
));
2022 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2023 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2024 ArrayRef
<Constant
*> MetadataInitializers
) {
2025 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2026 auto &DL
= M
.getDataLayout();
2028 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2029 Constant
*Initializer
= MetadataInitializers
[i
];
2030 GlobalVariable
*G
= ExtendedGlobals
[i
];
2031 GlobalVariable
*Metadata
=
2032 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2034 // The MSVC linker always inserts padding when linking incrementally. We
2035 // cope with that by aligning each struct to its size, which must be a power
2037 unsigned SizeOfGlobalStruct
= DL
.getTypeAllocSize(Initializer
->getType());
2038 assert(isPowerOf2_32(SizeOfGlobalStruct
) &&
2039 "global metadata will not be padded appropriately");
2040 Metadata
->setAlignment(SizeOfGlobalStruct
);
2042 SetComdatForGlobalMetadata(G
, Metadata
, "");
2046 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2047 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2048 ArrayRef
<Constant
*> MetadataInitializers
,
2049 const std::string
&UniqueModuleId
) {
2050 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2052 SmallVector
<GlobalValue
*, 16> MetadataGlobals(ExtendedGlobals
.size());
2053 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2054 GlobalVariable
*G
= ExtendedGlobals
[i
];
2055 GlobalVariable
*Metadata
=
2056 CreateMetadataGlobal(M
, MetadataInitializers
[i
], G
->getName());
2057 MDNode
*MD
= MDNode::get(M
.getContext(), ValueAsMetadata::get(G
));
2058 Metadata
->setMetadata(LLVMContext::MD_associated
, MD
);
2059 MetadataGlobals
[i
] = Metadata
;
2061 SetComdatForGlobalMetadata(G
, Metadata
, UniqueModuleId
);
2064 // Update llvm.compiler.used, adding the new metadata globals. This is
2065 // needed so that during LTO these variables stay alive.
2066 if (!MetadataGlobals
.empty())
2067 appendToCompilerUsed(M
, MetadataGlobals
);
2069 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2070 // to look up the loaded image that contains it. Second, we can store in it
2071 // whether registration has already occurred, to prevent duplicate
2074 // Common linkage ensures that there is only one global per shared library.
2075 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2076 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2077 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2078 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2080 // Create start and stop symbols.
2081 GlobalVariable
*StartELFMetadata
= new GlobalVariable(
2082 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2083 "__start_" + getGlobalMetadataSection());
2084 StartELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2085 GlobalVariable
*StopELFMetadata
= new GlobalVariable(
2086 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2087 "__stop_" + getGlobalMetadataSection());
2088 StopELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2090 // Create a call to register the globals with the runtime.
2091 IRB
.CreateCall(AsanRegisterElfGlobals
,
2092 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2093 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2094 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2096 // We also need to unregister globals at the end, e.g., when a shared library
2098 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2099 IRB_Dtor
.CreateCall(AsanUnregisterElfGlobals
,
2100 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2101 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2102 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2105 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2106 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2107 ArrayRef
<Constant
*> MetadataInitializers
) {
2108 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2110 // On recent Mach-O platforms, use a structure which binds the liveness of
2111 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2112 // created to be added to llvm.compiler.used
2113 StructType
*LivenessTy
= StructType::get(IntptrTy
, IntptrTy
);
2114 SmallVector
<GlobalValue
*, 16> LivenessGlobals(ExtendedGlobals
.size());
2116 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2117 Constant
*Initializer
= MetadataInitializers
[i
];
2118 GlobalVariable
*G
= ExtendedGlobals
[i
];
2119 GlobalVariable
*Metadata
=
2120 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2122 // On recent Mach-O platforms, we emit the global metadata in a way that
2123 // allows the linker to properly strip dead globals.
2124 auto LivenessBinder
=
2125 ConstantStruct::get(LivenessTy
, Initializer
->getAggregateElement(0u),
2126 ConstantExpr::getPointerCast(Metadata
, IntptrTy
));
2127 GlobalVariable
*Liveness
= new GlobalVariable(
2128 M
, LivenessTy
, false, GlobalVariable::InternalLinkage
, LivenessBinder
,
2129 Twine("__asan_binder_") + G
->getName());
2130 Liveness
->setSection("__DATA,__asan_liveness,regular,live_support");
2131 LivenessGlobals
[i
] = Liveness
;
2134 // Update llvm.compiler.used, adding the new liveness globals. This is
2135 // needed so that during LTO these variables stay alive. The alternative
2136 // would be to have the linker handling the LTO symbols, but libLTO
2137 // current API does not expose access to the section for each symbol.
2138 if (!LivenessGlobals
.empty())
2139 appendToCompilerUsed(M
, LivenessGlobals
);
2141 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2142 // to look up the loaded image that contains it. Second, we can store in it
2143 // whether registration has already occurred, to prevent duplicate
2146 // common linkage ensures that there is only one global per shared library.
2147 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2148 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2149 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2150 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2152 IRB
.CreateCall(AsanRegisterImageGlobals
,
2153 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2155 // We also need to unregister globals at the end, e.g., when a shared library
2157 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2158 IRB_Dtor
.CreateCall(AsanUnregisterImageGlobals
,
2159 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2162 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2163 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2164 ArrayRef
<Constant
*> MetadataInitializers
) {
2165 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2166 unsigned N
= ExtendedGlobals
.size();
2169 // On platforms that don't have a custom metadata section, we emit an array
2170 // of global metadata structures.
2171 ArrayType
*ArrayOfGlobalStructTy
=
2172 ArrayType::get(MetadataInitializers
[0]->getType(), N
);
2173 auto AllGlobals
= new GlobalVariable(
2174 M
, ArrayOfGlobalStructTy
, false, GlobalVariable::InternalLinkage
,
2175 ConstantArray::get(ArrayOfGlobalStructTy
, MetadataInitializers
), "");
2176 if (Mapping
.Scale
> 3)
2177 AllGlobals
->setAlignment(1ULL << Mapping
.Scale
);
2179 IRB
.CreateCall(AsanRegisterGlobals
,
2180 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2181 ConstantInt::get(IntptrTy
, N
)});
2183 // We also need to unregister globals at the end, e.g., when a shared library
2185 IRBuilder
<> IRB_Dtor
= CreateAsanModuleDtor(M
);
2186 IRB_Dtor
.CreateCall(AsanUnregisterGlobals
,
2187 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2188 ConstantInt::get(IntptrTy
, N
)});
2191 // This function replaces all global variables with new variables that have
2192 // trailing redzones. It also creates a function that poisons
2193 // redzones and inserts this function into llvm.global_ctors.
2194 // Sets *CtorComdat to true if the global registration code emitted into the
2195 // asan constructor is comdat-compatible.
2196 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
,
2198 *CtorComdat
= false;
2200 SmallVector
<GlobalVariable
*, 16> GlobalsToChange
;
2202 for (auto &G
: M
.globals()) {
2203 if (ShouldInstrumentGlobal(&G
)) GlobalsToChange
.push_back(&G
);
2206 size_t n
= GlobalsToChange
.size();
2212 auto &DL
= M
.getDataLayout();
2214 // A global is described by a structure
2217 // size_t size_with_redzone;
2218 // const char *name;
2219 // const char *module_name;
2220 // size_t has_dynamic_init;
2221 // void *source_location;
2222 // size_t odr_indicator;
2223 // We initialize an array of such structures and pass it to a run-time call.
2224 StructType
*GlobalStructTy
=
2225 StructType::get(IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
,
2226 IntptrTy
, IntptrTy
, IntptrTy
);
2227 SmallVector
<GlobalVariable
*, 16> NewGlobals(n
);
2228 SmallVector
<Constant
*, 16> Initializers(n
);
2230 bool HasDynamicallyInitializedGlobals
= false;
2232 // We shouldn't merge same module names, as this string serves as unique
2233 // module ID in runtime.
2234 GlobalVariable
*ModuleName
= createPrivateGlobalForString(
2235 M
, M
.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix
);
2237 for (size_t i
= 0; i
< n
; i
++) {
2238 static const uint64_t kMaxGlobalRedzone
= 1 << 18;
2239 GlobalVariable
*G
= GlobalsToChange
[i
];
2241 // FIXME: Metadata should be attched directly to the global directly instead
2242 // of being added to llvm.asan.globals.
2243 auto MD
= GlobalsMD
.get(G
);
2244 StringRef NameForGlobal
= G
->getName();
2245 // Create string holding the global name (use global name from metadata
2246 // if it's available, otherwise just write the name of global variable).
2247 GlobalVariable
*Name
= createPrivateGlobalForString(
2248 M
, MD
.Name
.empty() ? NameForGlobal
: MD
.Name
,
2249 /*AllowMerging*/ true, kAsanGenPrefix
);
2251 Type
*Ty
= G
->getValueType();
2252 uint64_t SizeInBytes
= DL
.getTypeAllocSize(Ty
);
2253 uint64_t MinRZ
= MinRedzoneSizeForGlobal();
2254 // MinRZ <= RZ <= kMaxGlobalRedzone
2255 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
2256 uint64_t RZ
= std::max(
2257 MinRZ
, std::min(kMaxGlobalRedzone
, (SizeInBytes
/ MinRZ
/ 4) * MinRZ
));
2258 uint64_t RightRedzoneSize
= RZ
;
2259 // Round up to MinRZ
2260 if (SizeInBytes
% MinRZ
) RightRedzoneSize
+= MinRZ
- (SizeInBytes
% MinRZ
);
2261 assert(((RightRedzoneSize
+ SizeInBytes
) % MinRZ
) == 0);
2262 Type
*RightRedZoneTy
= ArrayType::get(IRB
.getInt8Ty(), RightRedzoneSize
);
2264 StructType
*NewTy
= StructType::get(Ty
, RightRedZoneTy
);
2265 Constant
*NewInitializer
= ConstantStruct::get(
2266 NewTy
, G
->getInitializer(), Constant::getNullValue(RightRedZoneTy
));
2268 // Create a new global variable with enough space for a redzone.
2269 GlobalValue::LinkageTypes Linkage
= G
->getLinkage();
2270 if (G
->isConstant() && Linkage
== GlobalValue::PrivateLinkage
)
2271 Linkage
= GlobalValue::InternalLinkage
;
2272 GlobalVariable
*NewGlobal
=
2273 new GlobalVariable(M
, NewTy
, G
->isConstant(), Linkage
, NewInitializer
,
2274 "", G
, G
->getThreadLocalMode());
2275 NewGlobal
->copyAttributesFrom(G
);
2276 NewGlobal
->setComdat(G
->getComdat());
2277 NewGlobal
->setAlignment(MinRZ
);
2278 // Don't fold globals with redzones. ODR violation detector and redzone
2279 // poisoning implicitly creates a dependence on the global's address, so it
2280 // is no longer valid for it to be marked unnamed_addr.
2281 NewGlobal
->setUnnamedAddr(GlobalValue::UnnamedAddr::None
);
2283 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2284 if (TargetTriple
.isOSBinFormatMachO() && !G
->hasSection() &&
2286 auto Seq
= dyn_cast
<ConstantDataSequential
>(G
->getInitializer());
2287 if (Seq
&& Seq
->isCString())
2288 NewGlobal
->setSection("__TEXT,__asan_cstring,regular");
2291 // Transfer the debug info. The payload starts at offset zero so we can
2292 // copy the debug info over as is.
2293 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
2294 G
->getDebugInfo(GVs
);
2295 for (auto *GV
: GVs
)
2296 NewGlobal
->addDebugInfo(GV
);
2299 Indices2
[0] = IRB
.getInt32(0);
2300 Indices2
[1] = IRB
.getInt32(0);
2302 G
->replaceAllUsesWith(
2303 ConstantExpr::getGetElementPtr(NewTy
, NewGlobal
, Indices2
, true));
2304 NewGlobal
->takeName(G
);
2305 G
->eraseFromParent();
2306 NewGlobals
[i
] = NewGlobal
;
2308 Constant
*SourceLoc
;
2309 if (!MD
.SourceLoc
.empty()) {
2310 auto SourceLocGlobal
= createPrivateGlobalForSourceLoc(M
, MD
.SourceLoc
);
2311 SourceLoc
= ConstantExpr::getPointerCast(SourceLocGlobal
, IntptrTy
);
2313 SourceLoc
= ConstantInt::get(IntptrTy
, 0);
2316 Constant
*ODRIndicator
= ConstantExpr::getNullValue(IRB
.getInt8PtrTy());
2317 GlobalValue
*InstrumentedGlobal
= NewGlobal
;
2319 bool CanUsePrivateAliases
=
2320 TargetTriple
.isOSBinFormatELF() || TargetTriple
.isOSBinFormatMachO() ||
2321 TargetTriple
.isOSBinFormatWasm();
2322 if (CanUsePrivateAliases
&& UsePrivateAlias
) {
2323 // Create local alias for NewGlobal to avoid crash on ODR between
2324 // instrumented and non-instrumented libraries.
2325 InstrumentedGlobal
=
2326 GlobalAlias::create(GlobalValue::PrivateLinkage
, "", NewGlobal
);
2329 // ODR should not happen for local linkage.
2330 if (NewGlobal
->hasLocalLinkage()) {
2331 ODRIndicator
= ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy
, -1),
2332 IRB
.getInt8PtrTy());
2333 } else if (UseOdrIndicator
) {
2334 // With local aliases, we need to provide another externally visible
2335 // symbol __odr_asan_XXX to detect ODR violation.
2336 auto *ODRIndicatorSym
=
2337 new GlobalVariable(M
, IRB
.getInt8Ty(), false, Linkage
,
2338 Constant::getNullValue(IRB
.getInt8Ty()),
2339 kODRGenPrefix
+ NameForGlobal
, nullptr,
2340 NewGlobal
->getThreadLocalMode());
2342 // Set meaningful attributes for indicator symbol.
2343 ODRIndicatorSym
->setVisibility(NewGlobal
->getVisibility());
2344 ODRIndicatorSym
->setDLLStorageClass(NewGlobal
->getDLLStorageClass());
2345 ODRIndicatorSym
->setAlignment(1);
2346 ODRIndicator
= ODRIndicatorSym
;
2349 Constant
*Initializer
= ConstantStruct::get(
2351 ConstantExpr::getPointerCast(InstrumentedGlobal
, IntptrTy
),
2352 ConstantInt::get(IntptrTy
, SizeInBytes
),
2353 ConstantInt::get(IntptrTy
, SizeInBytes
+ RightRedzoneSize
),
2354 ConstantExpr::getPointerCast(Name
, IntptrTy
),
2355 ConstantExpr::getPointerCast(ModuleName
, IntptrTy
),
2356 ConstantInt::get(IntptrTy
, MD
.IsDynInit
), SourceLoc
,
2357 ConstantExpr::getPointerCast(ODRIndicator
, IntptrTy
));
2359 if (ClInitializers
&& MD
.IsDynInit
) HasDynamicallyInitializedGlobals
= true;
2361 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal
<< "\n");
2363 Initializers
[i
] = Initializer
;
2366 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2367 // ConstantMerge'ing them.
2368 SmallVector
<GlobalValue
*, 16> GlobalsToAddToUsedList
;
2369 for (size_t i
= 0; i
< n
; i
++) {
2370 GlobalVariable
*G
= NewGlobals
[i
];
2371 if (G
->getName().empty()) continue;
2372 GlobalsToAddToUsedList
.push_back(G
);
2374 appendToCompilerUsed(M
, ArrayRef
<GlobalValue
*>(GlobalsToAddToUsedList
));
2376 std::string ELFUniqueModuleId
=
2377 (UseGlobalsGC
&& TargetTriple
.isOSBinFormatELF()) ? getUniqueModuleId(&M
)
2380 if (!ELFUniqueModuleId
.empty()) {
2381 InstrumentGlobalsELF(IRB
, M
, NewGlobals
, Initializers
, ELFUniqueModuleId
);
2383 } else if (UseGlobalsGC
&& TargetTriple
.isOSBinFormatCOFF()) {
2384 InstrumentGlobalsCOFF(IRB
, M
, NewGlobals
, Initializers
);
2385 } else if (UseGlobalsGC
&& ShouldUseMachOGlobalsSection()) {
2386 InstrumentGlobalsMachO(IRB
, M
, NewGlobals
, Initializers
);
2388 InstrumentGlobalsWithMetadataArray(IRB
, M
, NewGlobals
, Initializers
);
2391 // Create calls for poisoning before initializers run and unpoisoning after.
2392 if (HasDynamicallyInitializedGlobals
)
2393 createInitializerPoisonCalls(M
, ModuleName
);
2395 LLVM_DEBUG(dbgs() << M
);
2399 int ModuleAddressSanitizer::GetAsanVersion(const Module
&M
) const {
2400 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
2401 bool isAndroid
= Triple(M
.getTargetTriple()).isAndroid();
2403 // 32-bit Android is one version ahead because of the switch to dynamic
2405 Version
+= (LongSize
== 32 && isAndroid
);
2409 bool ModuleAddressSanitizer::instrumentModule(Module
&M
) {
2410 initializeCallbacks(M
);
2415 // Create a module constructor. A destructor is created lazily because not all
2416 // platforms, and not all modules need it.
2417 std::string VersionCheckName
=
2418 kAsanVersionCheckNamePrefix
+ std::to_string(GetAsanVersion(M
));
2419 std::tie(AsanCtorFunction
, std::ignore
) = createSanitizerCtorAndInitFunctions(
2420 M
, kAsanModuleCtorName
, kAsanInitName
, /*InitArgTypes=*/{},
2421 /*InitArgs=*/{}, VersionCheckName
);
2423 bool CtorComdat
= true;
2424 bool Changed
= false;
2425 // TODO(glider): temporarily disabled globals instrumentation for KASan.
2427 IRBuilder
<> IRB(AsanCtorFunction
->getEntryBlock().getTerminator());
2428 Changed
|= InstrumentGlobals(IRB
, M
, &CtorComdat
);
2431 // Put the constructor and destructor in comdat if both
2432 // (1) global instrumentation is not TU-specific
2433 // (2) target is ELF.
2434 if (UseCtorComdat
&& TargetTriple
.isOSBinFormatELF() && CtorComdat
) {
2435 AsanCtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleCtorName
));
2436 appendToGlobalCtors(M
, AsanCtorFunction
, kAsanCtorAndDtorPriority
,
2438 if (AsanDtorFunction
) {
2439 AsanDtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleDtorName
));
2440 appendToGlobalDtors(M
, AsanDtorFunction
, kAsanCtorAndDtorPriority
,
2444 appendToGlobalCtors(M
, AsanCtorFunction
, kAsanCtorAndDtorPriority
);
2445 if (AsanDtorFunction
)
2446 appendToGlobalDtors(M
, AsanDtorFunction
, kAsanCtorAndDtorPriority
);
2452 void AddressSanitizer::initializeCallbacks(Module
&M
) {
2453 IRBuilder
<> IRB(*C
);
2454 // Create __asan_report* callbacks.
2455 // IsWrite, TypeSize and Exp are encoded in the function name.
2456 for (int Exp
= 0; Exp
< 2; Exp
++) {
2457 for (size_t AccessIsWrite
= 0; AccessIsWrite
<= 1; AccessIsWrite
++) {
2458 const std::string TypeStr
= AccessIsWrite
? "store" : "load";
2459 const std::string ExpStr
= Exp
? "exp_" : "";
2460 const std::string EndingStr
= Recover
? "_noabort" : "";
2462 SmallVector
<Type
*, 3> Args2
= {IntptrTy
, IntptrTy
};
2463 SmallVector
<Type
*, 2> Args1
{1, IntptrTy
};
2465 Type
*ExpType
= Type::getInt32Ty(*C
);
2466 Args2
.push_back(ExpType
);
2467 Args1
.push_back(ExpType
);
2469 AsanErrorCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2470 kAsanReportErrorTemplate
+ ExpStr
+ TypeStr
+ "_n" + EndingStr
,
2471 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2473 AsanMemoryAccessCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2474 ClMemoryAccessCallbackPrefix
+ ExpStr
+ TypeStr
+ "N" + EndingStr
,
2475 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2477 for (size_t AccessSizeIndex
= 0; AccessSizeIndex
< kNumberOfAccessSizes
;
2478 AccessSizeIndex
++) {
2479 const std::string Suffix
= TypeStr
+ itostr(1ULL << AccessSizeIndex
);
2480 AsanErrorCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2481 M
.getOrInsertFunction(
2482 kAsanReportErrorTemplate
+ ExpStr
+ Suffix
+ EndingStr
,
2483 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2485 AsanMemoryAccessCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2486 M
.getOrInsertFunction(
2487 ClMemoryAccessCallbackPrefix
+ ExpStr
+ Suffix
+ EndingStr
,
2488 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2493 const std::string MemIntrinCallbackPrefix
=
2494 CompileKernel
? std::string("") : ClMemoryAccessCallbackPrefix
;
2495 AsanMemmove
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memmove",
2496 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2497 IRB
.getInt8PtrTy(), IntptrTy
);
2498 AsanMemcpy
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memcpy",
2499 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2500 IRB
.getInt8PtrTy(), IntptrTy
);
2501 AsanMemset
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memset",
2502 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2503 IRB
.getInt32Ty(), IntptrTy
);
2505 AsanHandleNoReturnFunc
=
2506 M
.getOrInsertFunction(kAsanHandleNoReturnName
, IRB
.getVoidTy());
2508 AsanPtrCmpFunction
=
2509 M
.getOrInsertFunction(kAsanPtrCmp
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2510 AsanPtrSubFunction
=
2511 M
.getOrInsertFunction(kAsanPtrSub
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2512 // We insert an empty inline asm after __asan_report* to avoid callback merge.
2513 EmptyAsm
= InlineAsm::get(FunctionType::get(IRB
.getVoidTy(), false),
2514 StringRef(""), StringRef(""),
2515 /*hasSideEffects=*/true);
2516 if (Mapping
.InGlobal
)
2517 AsanShadowGlobal
= M
.getOrInsertGlobal("__asan_shadow",
2518 ArrayType::get(IRB
.getInt8Ty(), 0));
2521 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function
&F
) {
2522 // For each NSObject descendant having a +load method, this method is invoked
2523 // by the ObjC runtime before any of the static constructors is called.
2524 // Therefore we need to instrument such methods with a call to __asan_init
2525 // at the beginning in order to initialize our runtime before any access to
2526 // the shadow memory.
2527 // We cannot just ignore these methods, because they may call other
2528 // instrumented functions.
2529 if (F
.getName().find(" load]") != std::string::npos
) {
2530 FunctionCallee AsanInitFunction
=
2531 declareSanitizerInitFunction(*F
.getParent(), kAsanInitName
, {});
2532 IRBuilder
<> IRB(&F
.front(), F
.front().begin());
2533 IRB
.CreateCall(AsanInitFunction
, {});
2539 void AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function
&F
) {
2540 // Generate code only when dynamic addressing is needed.
2541 if (Mapping
.Offset
!= kDynamicShadowSentinel
)
2544 IRBuilder
<> IRB(&F
.front().front());
2545 if (Mapping
.InGlobal
) {
2546 if (ClWithIfuncSuppressRemat
) {
2547 // An empty inline asm with input reg == output reg.
2548 // An opaque pointer-to-int cast, basically.
2549 InlineAsm
*Asm
= InlineAsm::get(
2550 FunctionType::get(IntptrTy
, {AsanShadowGlobal
->getType()}, false),
2551 StringRef(""), StringRef("=r,0"),
2552 /*hasSideEffects=*/false);
2553 LocalDynamicShadow
=
2554 IRB
.CreateCall(Asm
, {AsanShadowGlobal
}, ".asan.shadow");
2556 LocalDynamicShadow
=
2557 IRB
.CreatePointerCast(AsanShadowGlobal
, IntptrTy
, ".asan.shadow");
2560 Value
*GlobalDynamicAddress
= F
.getParent()->getOrInsertGlobal(
2561 kAsanShadowMemoryDynamicAddress
, IntptrTy
);
2562 LocalDynamicShadow
= IRB
.CreateLoad(IntptrTy
, GlobalDynamicAddress
);
2566 void AddressSanitizer::markEscapedLocalAllocas(Function
&F
) {
2567 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2568 // to it as uninteresting. This assumes we haven't started processing allocas
2569 // yet. This check is done up front because iterating the use list in
2570 // isInterestingAlloca would be algorithmically slower.
2571 assert(ProcessedAllocas
.empty() && "must process localescape before allocas");
2573 // Try to get the declaration of llvm.localescape. If it's not in the module,
2574 // we can exit early.
2575 if (!F
.getParent()->getFunction("llvm.localescape")) return;
2577 // Look for a call to llvm.localescape call in the entry block. It can't be in
2579 for (Instruction
&I
: F
.getEntryBlock()) {
2580 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
);
2581 if (II
&& II
->getIntrinsicID() == Intrinsic::localescape
) {
2582 // We found a call. Mark all the allocas passed in as uninteresting.
2583 for (Value
*Arg
: II
->arg_operands()) {
2584 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
2585 assert(AI
&& AI
->isStaticAlloca() &&
2586 "non-static alloca arg to localescape");
2587 ProcessedAllocas
[AI
] = false;
2594 bool AddressSanitizer::instrumentFunction(Function
&F
,
2595 const TargetLibraryInfo
*TLI
) {
2596 if (F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
) return false;
2597 if (!ClDebugFunc
.empty() && ClDebugFunc
== F
.getName()) return false;
2598 if (F
.getName().startswith("__asan_")) return false;
2600 bool FunctionModified
= false;
2602 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2603 // This function needs to be called even if the function body is not
2605 if (maybeInsertAsanInitAtFunctionEntry(F
))
2606 FunctionModified
= true;
2608 // Leave if the function doesn't need instrumentation.
2609 if (!F
.hasFnAttribute(Attribute::SanitizeAddress
)) return FunctionModified
;
2611 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F
<< "\n");
2613 initializeCallbacks(*F
.getParent());
2615 FunctionStateRAII
CleanupObj(this);
2617 maybeInsertDynamicShadowAtFunctionEntry(F
);
2619 // We can't instrument allocas used with llvm.localescape. Only static allocas
2620 // can be passed to that intrinsic.
2621 markEscapedLocalAllocas(F
);
2623 // We want to instrument every address only once per basic block (unless there
2624 // are calls between uses).
2625 SmallPtrSet
<Value
*, 16> TempsToInstrument
;
2626 SmallVector
<Instruction
*, 16> ToInstrument
;
2627 SmallVector
<Instruction
*, 8> NoReturnCalls
;
2628 SmallVector
<BasicBlock
*, 16> AllBlocks
;
2629 SmallVector
<Instruction
*, 16> PointerComparisonsOrSubtracts
;
2635 // Fill the set of memory operations to instrument.
2636 for (auto &BB
: F
) {
2637 AllBlocks
.push_back(&BB
);
2638 TempsToInstrument
.clear();
2639 int NumInsnsPerBB
= 0;
2640 for (auto &Inst
: BB
) {
2641 if (LooksLikeCodeInBug11395(&Inst
)) return false;
2642 Value
*MaybeMask
= nullptr;
2643 if (Value
*Addr
= isInterestingMemoryAccess(&Inst
, &IsWrite
, &TypeSize
,
2644 &Alignment
, &MaybeMask
)) {
2645 if (ClOpt
&& ClOptSameTemp
) {
2646 // If we have a mask, skip instrumentation if we've already
2647 // instrumented the full object. But don't add to TempsToInstrument
2648 // because we might get another load/store with a different mask.
2650 if (TempsToInstrument
.count(Addr
))
2651 continue; // We've seen this (whole) temp in the current BB.
2653 if (!TempsToInstrument
.insert(Addr
).second
)
2654 continue; // We've seen this temp in the current BB.
2657 } else if (((ClInvalidPointerPairs
|| ClInvalidPointerCmp
) &&
2658 isInterestingPointerComparison(&Inst
)) ||
2659 ((ClInvalidPointerPairs
|| ClInvalidPointerSub
) &&
2660 isInterestingPointerSubtraction(&Inst
))) {
2661 PointerComparisonsOrSubtracts
.push_back(&Inst
);
2663 } else if (isa
<MemIntrinsic
>(Inst
)) {
2666 if (isa
<AllocaInst
>(Inst
)) NumAllocas
++;
2669 // A call inside BB.
2670 TempsToInstrument
.clear();
2671 if (CS
.doesNotReturn() && !CS
->getMetadata("nosanitize"))
2672 NoReturnCalls
.push_back(CS
.getInstruction());
2674 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
2675 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, TLI
);
2678 ToInstrument
.push_back(&Inst
);
2680 if (NumInsnsPerBB
>= ClMaxInsnsToInstrumentPerBB
) break;
2685 (ClInstrumentationWithCallsThreshold
>= 0 &&
2686 ToInstrument
.size() > (unsigned)ClInstrumentationWithCallsThreshold
);
2687 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2688 ObjectSizeOpts ObjSizeOpts
;
2689 ObjSizeOpts
.RoundToAlign
= true;
2690 ObjectSizeOffsetVisitor
ObjSizeVis(DL
, TLI
, F
.getContext(), ObjSizeOpts
);
2693 int NumInstrumented
= 0;
2694 for (auto Inst
: ToInstrument
) {
2695 if (ClDebugMin
< 0 || ClDebugMax
< 0 ||
2696 (NumInstrumented
>= ClDebugMin
&& NumInstrumented
<= ClDebugMax
)) {
2697 if (isInterestingMemoryAccess(Inst
, &IsWrite
, &TypeSize
, &Alignment
))
2698 instrumentMop(ObjSizeVis
, Inst
, UseCalls
,
2699 F
.getParent()->getDataLayout());
2701 instrumentMemIntrinsic(cast
<MemIntrinsic
>(Inst
));
2706 FunctionStackPoisoner
FSP(F
, *this);
2707 bool ChangedStack
= FSP
.runOnFunction();
2709 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2710 // See e.g. https://github.com/google/sanitizers/issues/37
2711 for (auto CI
: NoReturnCalls
) {
2712 IRBuilder
<> IRB(CI
);
2713 IRB
.CreateCall(AsanHandleNoReturnFunc
, {});
2716 for (auto Inst
: PointerComparisonsOrSubtracts
) {
2717 instrumentPointerComparisonOrSubtraction(Inst
);
2721 if (NumInstrumented
> 0 || ChangedStack
|| !NoReturnCalls
.empty())
2722 FunctionModified
= true;
2724 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified
<< " "
2727 return FunctionModified
;
2730 // Workaround for bug 11395: we don't want to instrument stack in functions
2731 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2732 // FIXME: remove once the bug 11395 is fixed.
2733 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction
*I
) {
2734 if (LongSize
!= 32) return false;
2735 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2736 if (!CI
|| !CI
->isInlineAsm()) return false;
2737 if (CI
->getNumArgOperands() <= 5) return false;
2738 // We have inline assembly with quite a few arguments.
2742 void FunctionStackPoisoner::initializeCallbacks(Module
&M
) {
2743 IRBuilder
<> IRB(*C
);
2744 for (int i
= 0; i
<= kMaxAsanStackMallocSizeClass
; i
++) {
2745 std::string Suffix
= itostr(i
);
2746 AsanStackMallocFunc
[i
] = M
.getOrInsertFunction(
2747 kAsanStackMallocNameTemplate
+ Suffix
, IntptrTy
, IntptrTy
);
2748 AsanStackFreeFunc
[i
] =
2749 M
.getOrInsertFunction(kAsanStackFreeNameTemplate
+ Suffix
,
2750 IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2752 if (ASan
.UseAfterScope
) {
2753 AsanPoisonStackMemoryFunc
= M
.getOrInsertFunction(
2754 kAsanPoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2755 AsanUnpoisonStackMemoryFunc
= M
.getOrInsertFunction(
2756 kAsanUnpoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2759 for (size_t Val
: {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2760 std::ostringstream Name
;
2761 Name
<< kAsanSetShadowPrefix
;
2762 Name
<< std::setw(2) << std::setfill('0') << std::hex
<< Val
;
2763 AsanSetShadowFunc
[Val
] =
2764 M
.getOrInsertFunction(Name
.str(), IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2767 AsanAllocaPoisonFunc
= M
.getOrInsertFunction(
2768 kAsanAllocaPoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2769 AsanAllocasUnpoisonFunc
= M
.getOrInsertFunction(
2770 kAsanAllocasUnpoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2773 void FunctionStackPoisoner::copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
2774 ArrayRef
<uint8_t> ShadowBytes
,
2775 size_t Begin
, size_t End
,
2777 Value
*ShadowBase
) {
2781 const size_t LargestStoreSizeInBytes
=
2782 std::min
<size_t>(sizeof(uint64_t), ASan
.LongSize
/ 8);
2784 const bool IsLittleEndian
= F
.getParent()->getDataLayout().isLittleEndian();
2786 // Poison given range in shadow using larges store size with out leading and
2787 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2788 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2789 // middle of a store.
2790 for (size_t i
= Begin
; i
< End
;) {
2791 if (!ShadowMask
[i
]) {
2792 assert(!ShadowBytes
[i
]);
2797 size_t StoreSizeInBytes
= LargestStoreSizeInBytes
;
2798 // Fit store size into the range.
2799 while (StoreSizeInBytes
> End
- i
)
2800 StoreSizeInBytes
/= 2;
2802 // Minimize store size by trimming trailing zeros.
2803 for (size_t j
= StoreSizeInBytes
- 1; j
&& !ShadowMask
[i
+ j
]; --j
) {
2804 while (j
<= StoreSizeInBytes
/ 2)
2805 StoreSizeInBytes
/= 2;
2809 for (size_t j
= 0; j
< StoreSizeInBytes
; j
++) {
2811 Val
|= (uint64_t)ShadowBytes
[i
+ j
] << (8 * j
);
2813 Val
= (Val
<< 8) | ShadowBytes
[i
+ j
];
2816 Value
*Ptr
= IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
));
2817 Value
*Poison
= IRB
.getIntN(StoreSizeInBytes
* 8, Val
);
2818 IRB
.CreateAlignedStore(
2819 Poison
, IRB
.CreateIntToPtr(Ptr
, Poison
->getType()->getPointerTo()), 1);
2821 i
+= StoreSizeInBytes
;
2825 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2826 ArrayRef
<uint8_t> ShadowBytes
,
2827 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2828 copyToShadow(ShadowMask
, ShadowBytes
, 0, ShadowMask
.size(), IRB
, ShadowBase
);
2831 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
2832 ArrayRef
<uint8_t> ShadowBytes
,
2833 size_t Begin
, size_t End
,
2834 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
2835 assert(ShadowMask
.size() == ShadowBytes
.size());
2836 size_t Done
= Begin
;
2837 for (size_t i
= Begin
, j
= Begin
+ 1; i
< End
; i
= j
++) {
2838 if (!ShadowMask
[i
]) {
2839 assert(!ShadowBytes
[i
]);
2842 uint8_t Val
= ShadowBytes
[i
];
2843 if (!AsanSetShadowFunc
[Val
])
2846 // Skip same values.
2847 for (; j
< End
&& ShadowMask
[j
] && Val
== ShadowBytes
[j
]; ++j
) {
2850 if (j
- i
>= ClMaxInlinePoisoningSize
) {
2851 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, i
, IRB
, ShadowBase
);
2852 IRB
.CreateCall(AsanSetShadowFunc
[Val
],
2853 {IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
)),
2854 ConstantInt::get(IntptrTy
, j
- i
)});
2859 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, End
, IRB
, ShadowBase
);
2862 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
2863 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
2864 static int StackMallocSizeClass(uint64_t LocalStackSize
) {
2865 assert(LocalStackSize
<= kMaxStackMallocSize
);
2866 uint64_t MaxSize
= kMinStackMallocSize
;
2867 for (int i
= 0;; i
++, MaxSize
*= 2)
2868 if (LocalStackSize
<= MaxSize
) return i
;
2869 llvm_unreachable("impossible LocalStackSize");
2872 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
2873 Instruction
*CopyInsertPoint
= &F
.front().front();
2874 if (CopyInsertPoint
== ASan
.LocalDynamicShadow
) {
2875 // Insert after the dynamic shadow location is determined
2876 CopyInsertPoint
= CopyInsertPoint
->getNextNode();
2877 assert(CopyInsertPoint
);
2879 IRBuilder
<> IRB(CopyInsertPoint
);
2880 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2881 for (Argument
&Arg
: F
.args()) {
2882 if (Arg
.hasByValAttr()) {
2883 Type
*Ty
= Arg
.getType()->getPointerElementType();
2884 unsigned Align
= Arg
.getParamAlignment();
2885 if (Align
== 0) Align
= DL
.getABITypeAlignment(Ty
);
2887 AllocaInst
*AI
= IRB
.CreateAlloca(
2889 (Arg
.hasName() ? Arg
.getName() : "Arg" + Twine(Arg
.getArgNo())) +
2891 AI
->setAlignment(Align
);
2892 Arg
.replaceAllUsesWith(AI
);
2894 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
);
2895 IRB
.CreateMemCpy(AI
, Align
, &Arg
, Align
, AllocSize
);
2900 PHINode
*FunctionStackPoisoner::createPHI(IRBuilder
<> &IRB
, Value
*Cond
,
2902 Instruction
*ThenTerm
,
2903 Value
*ValueIfFalse
) {
2904 PHINode
*PHI
= IRB
.CreatePHI(IntptrTy
, 2);
2905 BasicBlock
*CondBlock
= cast
<Instruction
>(Cond
)->getParent();
2906 PHI
->addIncoming(ValueIfFalse
, CondBlock
);
2907 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
2908 PHI
->addIncoming(ValueIfTrue
, ThenBlock
);
2912 Value
*FunctionStackPoisoner::createAllocaForLayout(
2913 IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
, bool Dynamic
) {
2916 Alloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(),
2917 ConstantInt::get(IRB
.getInt64Ty(), L
.FrameSize
),
2920 Alloca
= IRB
.CreateAlloca(ArrayType::get(IRB
.getInt8Ty(), L
.FrameSize
),
2921 nullptr, "MyAlloca");
2922 assert(Alloca
->isStaticAlloca());
2924 assert((ClRealignStack
& (ClRealignStack
- 1)) == 0);
2925 size_t FrameAlignment
= std::max(L
.FrameAlignment
, (size_t)ClRealignStack
);
2926 Alloca
->setAlignment(FrameAlignment
);
2927 return IRB
.CreatePointerCast(Alloca
, IntptrTy
);
2930 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2931 BasicBlock
&FirstBB
= *F
.begin();
2932 IRBuilder
<> IRB(dyn_cast
<Instruction
>(FirstBB
.begin()));
2933 DynamicAllocaLayout
= IRB
.CreateAlloca(IntptrTy
, nullptr);
2934 IRB
.CreateStore(Constant::getNullValue(IntptrTy
), DynamicAllocaLayout
);
2935 DynamicAllocaLayout
->setAlignment(32);
2938 void FunctionStackPoisoner::processDynamicAllocas() {
2939 if (!ClInstrumentDynamicAllocas
|| DynamicAllocaVec
.empty()) {
2940 assert(DynamicAllocaPoisonCallVec
.empty());
2944 // Insert poison calls for lifetime intrinsics for dynamic allocas.
2945 for (const auto &APC
: DynamicAllocaPoisonCallVec
) {
2946 assert(APC
.InsBefore
);
2948 assert(ASan
.isInterestingAlloca(*APC
.AI
));
2949 assert(!APC
.AI
->isStaticAlloca());
2951 IRBuilder
<> IRB(APC
.InsBefore
);
2952 poisonAlloca(APC
.AI
, APC
.Size
, IRB
, APC
.DoPoison
);
2953 // Dynamic allocas will be unpoisoned unconditionally below in
2954 // unpoisonDynamicAllocas.
2955 // Flag that we need unpoison static allocas.
2958 // Handle dynamic allocas.
2959 createDynamicAllocasInitStorage();
2960 for (auto &AI
: DynamicAllocaVec
)
2961 handleDynamicAllocaCall(AI
);
2962 unpoisonDynamicAllocas();
2965 void FunctionStackPoisoner::processStaticAllocas() {
2966 if (AllocaVec
.empty()) {
2967 assert(StaticAllocaPoisonCallVec
.empty());
2971 int StackMallocIdx
= -1;
2972 DebugLoc EntryDebugLocation
;
2973 if (auto SP
= F
.getSubprogram())
2974 EntryDebugLocation
= DebugLoc::get(SP
->getScopeLine(), 0, SP
);
2976 Instruction
*InsBefore
= AllocaVec
[0];
2977 IRBuilder
<> IRB(InsBefore
);
2978 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
2980 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2981 // debug info is broken, because only entry-block allocas are treated as
2982 // regular stack slots.
2983 auto InsBeforeB
= InsBefore
->getParent();
2984 assert(InsBeforeB
== &F
.getEntryBlock());
2985 for (auto *AI
: StaticAllocasToMoveUp
)
2986 if (AI
->getParent() == InsBeforeB
)
2987 AI
->moveBefore(InsBefore
);
2989 // If we have a call to llvm.localescape, keep it in the entry block.
2990 if (LocalEscapeCall
) LocalEscapeCall
->moveBefore(InsBefore
);
2992 SmallVector
<ASanStackVariableDescription
, 16> SVD
;
2993 SVD
.reserve(AllocaVec
.size());
2994 for (AllocaInst
*AI
: AllocaVec
) {
2995 ASanStackVariableDescription D
= {AI
->getName().data(),
2996 ASan
.getAllocaSizeInBytes(*AI
),
3005 // Minimal header size (left redzone) is 4 pointers,
3006 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3007 size_t Granularity
= 1ULL << Mapping
.Scale
;
3008 size_t MinHeaderSize
= std::max((size_t)ASan
.LongSize
/ 2, Granularity
);
3009 const ASanStackFrameLayout
&L
=
3010 ComputeASanStackFrameLayout(SVD
, Granularity
, MinHeaderSize
);
3012 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3013 DenseMap
<const AllocaInst
*, ASanStackVariableDescription
*> AllocaToSVDMap
;
3014 for (auto &Desc
: SVD
)
3015 AllocaToSVDMap
[Desc
.AI
] = &Desc
;
3017 // Update SVD with information from lifetime intrinsics.
3018 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3019 assert(APC
.InsBefore
);
3021 assert(ASan
.isInterestingAlloca(*APC
.AI
));
3022 assert(APC
.AI
->isStaticAlloca());
3024 ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3025 Desc
.LifetimeSize
= Desc
.Size
;
3026 if (const DILocation
*FnLoc
= EntryDebugLocation
.get()) {
3027 if (const DILocation
*LifetimeLoc
= APC
.InsBefore
->getDebugLoc().get()) {
3028 if (LifetimeLoc
->getFile() == FnLoc
->getFile())
3029 if (unsigned Line
= LifetimeLoc
->getLine())
3030 Desc
.Line
= std::min(Desc
.Line
? Desc
.Line
: Line
, Line
);
3035 auto DescriptionString
= ComputeASanStackFrameDescription(SVD
);
3036 LLVM_DEBUG(dbgs() << DescriptionString
<< " --- " << L
.FrameSize
<< "\n");
3037 uint64_t LocalStackSize
= L
.FrameSize
;
3038 bool DoStackMalloc
= ClUseAfterReturn
&& !ASan
.CompileKernel
&&
3039 LocalStackSize
<= kMaxStackMallocSize
;
3040 bool DoDynamicAlloca
= ClDynamicAllocaStack
;
3041 // Don't do dynamic alloca or stack malloc if:
3042 // 1) There is inline asm: too often it makes assumptions on which registers
3044 // 2) There is a returns_twice call (typically setjmp), which is
3045 // optimization-hostile, and doesn't play well with introduced indirect
3046 // register-relative calculation of local variable addresses.
3047 DoDynamicAlloca
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3048 DoStackMalloc
&= !HasNonEmptyInlineAsm
&& !HasReturnsTwiceCall
;
3050 Value
*StaticAlloca
=
3051 DoDynamicAlloca
? nullptr : createAllocaForLayout(IRB
, L
, false);
3054 Value
*LocalStackBase
;
3055 Value
*LocalStackBaseAlloca
;
3056 uint8_t DIExprFlags
= DIExpression::ApplyOffset
;
3058 if (DoStackMalloc
) {
3059 LocalStackBaseAlloca
=
3060 IRB
.CreateAlloca(IntptrTy
, nullptr, "asan_local_stack_base");
3061 // void *FakeStack = __asan_option_detect_stack_use_after_return
3062 // ? __asan_stack_malloc_N(LocalStackSize)
3064 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3065 Constant
*OptionDetectUseAfterReturn
= F
.getParent()->getOrInsertGlobal(
3066 kAsanOptionDetectUseAfterReturn
, IRB
.getInt32Ty());
3067 Value
*UseAfterReturnIsEnabled
= IRB
.CreateICmpNE(
3068 IRB
.CreateLoad(IRB
.getInt32Ty(), OptionDetectUseAfterReturn
),
3069 Constant::getNullValue(IRB
.getInt32Ty()));
3071 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled
, InsBefore
, false);
3072 IRBuilder
<> IRBIf(Term
);
3073 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3074 StackMallocIdx
= StackMallocSizeClass(LocalStackSize
);
3075 assert(StackMallocIdx
<= kMaxAsanStackMallocSizeClass
);
3076 Value
*FakeStackValue
=
3077 IRBIf
.CreateCall(AsanStackMallocFunc
[StackMallocIdx
],
3078 ConstantInt::get(IntptrTy
, LocalStackSize
));
3079 IRB
.SetInsertPoint(InsBefore
);
3080 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3081 FakeStack
= createPHI(IRB
, UseAfterReturnIsEnabled
, FakeStackValue
, Term
,
3082 ConstantInt::get(IntptrTy
, 0));
3084 Value
*NoFakeStack
=
3085 IRB
.CreateICmpEQ(FakeStack
, Constant::getNullValue(IntptrTy
));
3086 Term
= SplitBlockAndInsertIfThen(NoFakeStack
, InsBefore
, false);
3087 IRBIf
.SetInsertPoint(Term
);
3088 IRBIf
.SetCurrentDebugLocation(EntryDebugLocation
);
3089 Value
*AllocaValue
=
3090 DoDynamicAlloca
? createAllocaForLayout(IRBIf
, L
, true) : StaticAlloca
;
3092 IRB
.SetInsertPoint(InsBefore
);
3093 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3094 LocalStackBase
= createPHI(IRB
, NoFakeStack
, AllocaValue
, Term
, FakeStack
);
3095 IRB
.SetCurrentDebugLocation(EntryDebugLocation
);
3096 IRB
.CreateStore(LocalStackBase
, LocalStackBaseAlloca
);
3097 DIExprFlags
|= DIExpression::DerefBefore
;
3099 // void *FakeStack = nullptr;
3100 // void *LocalStackBase = alloca(LocalStackSize);
3101 FakeStack
= ConstantInt::get(IntptrTy
, 0);
3103 DoDynamicAlloca
? createAllocaForLayout(IRB
, L
, true) : StaticAlloca
;
3104 LocalStackBaseAlloca
= LocalStackBase
;
3107 // Replace Alloca instructions with base+offset.
3108 for (const auto &Desc
: SVD
) {
3109 AllocaInst
*AI
= Desc
.AI
;
3110 replaceDbgDeclareForAlloca(AI
, LocalStackBaseAlloca
, DIB
, DIExprFlags
,
3112 Value
*NewAllocaPtr
= IRB
.CreateIntToPtr(
3113 IRB
.CreateAdd(LocalStackBase
, ConstantInt::get(IntptrTy
, Desc
.Offset
)),
3115 AI
->replaceAllUsesWith(NewAllocaPtr
);
3118 // The left-most redzone has enough space for at least 4 pointers.
3119 // Write the Magic value to redzone[0].
3120 Value
*BasePlus0
= IRB
.CreateIntToPtr(LocalStackBase
, IntptrPtrTy
);
3121 IRB
.CreateStore(ConstantInt::get(IntptrTy
, kCurrentStackFrameMagic
),
3123 // Write the frame description constant to redzone[1].
3124 Value
*BasePlus1
= IRB
.CreateIntToPtr(
3125 IRB
.CreateAdd(LocalStackBase
,
3126 ConstantInt::get(IntptrTy
, ASan
.LongSize
/ 8)),
3128 GlobalVariable
*StackDescriptionGlobal
=
3129 createPrivateGlobalForString(*F
.getParent(), DescriptionString
,
3130 /*AllowMerging*/ true, kAsanGenPrefix
);
3131 Value
*Description
= IRB
.CreatePointerCast(StackDescriptionGlobal
, IntptrTy
);
3132 IRB
.CreateStore(Description
, BasePlus1
);
3133 // Write the PC to redzone[2].
3134 Value
*BasePlus2
= IRB
.CreateIntToPtr(
3135 IRB
.CreateAdd(LocalStackBase
,
3136 ConstantInt::get(IntptrTy
, 2 * ASan
.LongSize
/ 8)),
3138 IRB
.CreateStore(IRB
.CreatePointerCast(&F
, IntptrTy
), BasePlus2
);
3140 const auto &ShadowAfterScope
= GetShadowBytesAfterScope(SVD
, L
);
3142 // Poison the stack red zones at the entry.
3143 Value
*ShadowBase
= ASan
.memToShadow(LocalStackBase
, IRB
);
3144 // As mask we must use most poisoned case: red zones and after scope.
3145 // As bytes we can use either the same or just red zones only.
3146 copyToShadow(ShadowAfterScope
, ShadowAfterScope
, IRB
, ShadowBase
);
3148 if (!StaticAllocaPoisonCallVec
.empty()) {
3149 const auto &ShadowInScope
= GetShadowBytes(SVD
, L
);
3151 // Poison static allocas near lifetime intrinsics.
3152 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3153 const ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3154 assert(Desc
.Offset
% L
.Granularity
== 0);
3155 size_t Begin
= Desc
.Offset
/ L
.Granularity
;
3156 size_t End
= Begin
+ (APC
.Size
+ L
.Granularity
- 1) / L
.Granularity
;
3158 IRBuilder
<> IRB(APC
.InsBefore
);
3159 copyToShadow(ShadowAfterScope
,
3160 APC
.DoPoison
? ShadowAfterScope
: ShadowInScope
, Begin
, End
,
3165 SmallVector
<uint8_t, 64> ShadowClean(ShadowAfterScope
.size(), 0);
3166 SmallVector
<uint8_t, 64> ShadowAfterReturn
;
3168 // (Un)poison the stack before all ret instructions.
3169 for (auto Ret
: RetVec
) {
3170 IRBuilder
<> IRBRet(Ret
);
3171 // Mark the current frame as retired.
3172 IRBRet
.CreateStore(ConstantInt::get(IntptrTy
, kRetiredStackFrameMagic
),
3174 if (DoStackMalloc
) {
3175 assert(StackMallocIdx
>= 0);
3176 // if FakeStack != 0 // LocalStackBase == FakeStack
3177 // // In use-after-return mode, poison the whole stack frame.
3178 // if StackMallocIdx <= 4
3179 // // For small sizes inline the whole thing:
3180 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3181 // **SavedFlagPtr(FakeStack) = 0
3183 // __asan_stack_free_N(FakeStack, LocalStackSize)
3185 // <This is not a fake stack; unpoison the redzones>
3187 IRBRet
.CreateICmpNE(FakeStack
, Constant::getNullValue(IntptrTy
));
3188 Instruction
*ThenTerm
, *ElseTerm
;
3189 SplitBlockAndInsertIfThenElse(Cmp
, Ret
, &ThenTerm
, &ElseTerm
);
3191 IRBuilder
<> IRBPoison(ThenTerm
);
3192 if (StackMallocIdx
<= 4) {
3193 int ClassSize
= kMinStackMallocSize
<< StackMallocIdx
;
3194 ShadowAfterReturn
.resize(ClassSize
/ L
.Granularity
,
3195 kAsanStackUseAfterReturnMagic
);
3196 copyToShadow(ShadowAfterReturn
, ShadowAfterReturn
, IRBPoison
,
3198 Value
*SavedFlagPtrPtr
= IRBPoison
.CreateAdd(
3200 ConstantInt::get(IntptrTy
, ClassSize
- ASan
.LongSize
/ 8));
3201 Value
*SavedFlagPtr
= IRBPoison
.CreateLoad(
3202 IntptrTy
, IRBPoison
.CreateIntToPtr(SavedFlagPtrPtr
, IntptrPtrTy
));
3203 IRBPoison
.CreateStore(
3204 Constant::getNullValue(IRBPoison
.getInt8Ty()),
3205 IRBPoison
.CreateIntToPtr(SavedFlagPtr
, IRBPoison
.getInt8PtrTy()));
3207 // For larger frames call __asan_stack_free_*.
3208 IRBPoison
.CreateCall(
3209 AsanStackFreeFunc
[StackMallocIdx
],
3210 {FakeStack
, ConstantInt::get(IntptrTy
, LocalStackSize
)});
3213 IRBuilder
<> IRBElse(ElseTerm
);
3214 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBElse
, ShadowBase
);
3216 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBRet
, ShadowBase
);
3220 // We are done. Remove the old unused alloca instructions.
3221 for (auto AI
: AllocaVec
) AI
->eraseFromParent();
3224 void FunctionStackPoisoner::poisonAlloca(Value
*V
, uint64_t Size
,
3225 IRBuilder
<> &IRB
, bool DoPoison
) {
3226 // For now just insert the call to ASan runtime.
3227 Value
*AddrArg
= IRB
.CreatePointerCast(V
, IntptrTy
);
3228 Value
*SizeArg
= ConstantInt::get(IntptrTy
, Size
);
3230 DoPoison
? AsanPoisonStackMemoryFunc
: AsanUnpoisonStackMemoryFunc
,
3231 {AddrArg
, SizeArg
});
3234 // Handling llvm.lifetime intrinsics for a given %alloca:
3235 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3236 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3237 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3238 // could be poisoned by previous llvm.lifetime.end instruction, as the
3239 // variable may go in and out of scope several times, e.g. in loops).
3240 // (3) if we poisoned at least one %alloca in a function,
3241 // unpoison the whole stack frame at function exit.
3242 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst
*AI
) {
3243 IRBuilder
<> IRB(AI
);
3245 const unsigned Align
= std::max(kAllocaRzSize
, AI
->getAlignment());
3246 const uint64_t AllocaRedzoneMask
= kAllocaRzSize
- 1;
3248 Value
*Zero
= Constant::getNullValue(IntptrTy
);
3249 Value
*AllocaRzSize
= ConstantInt::get(IntptrTy
, kAllocaRzSize
);
3250 Value
*AllocaRzMask
= ConstantInt::get(IntptrTy
, AllocaRedzoneMask
);
3252 // Since we need to extend alloca with additional memory to locate
3253 // redzones, and OldSize is number of allocated blocks with
3254 // ElementSize size, get allocated memory size in bytes by
3255 // OldSize * ElementSize.
3256 const unsigned ElementSize
=
3257 F
.getParent()->getDataLayout().getTypeAllocSize(AI
->getAllocatedType());
3259 IRB
.CreateMul(IRB
.CreateIntCast(AI
->getArraySize(), IntptrTy
, false),
3260 ConstantInt::get(IntptrTy
, ElementSize
));
3262 // PartialSize = OldSize % 32
3263 Value
*PartialSize
= IRB
.CreateAnd(OldSize
, AllocaRzMask
);
3265 // Misalign = kAllocaRzSize - PartialSize;
3266 Value
*Misalign
= IRB
.CreateSub(AllocaRzSize
, PartialSize
);
3268 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3269 Value
*Cond
= IRB
.CreateICmpNE(Misalign
, AllocaRzSize
);
3270 Value
*PartialPadding
= IRB
.CreateSelect(Cond
, Misalign
, Zero
);
3272 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
3273 // Align is added to locate left redzone, PartialPadding for possible
3274 // partial redzone and kAllocaRzSize for right redzone respectively.
3275 Value
*AdditionalChunkSize
= IRB
.CreateAdd(
3276 ConstantInt::get(IntptrTy
, Align
+ kAllocaRzSize
), PartialPadding
);
3278 Value
*NewSize
= IRB
.CreateAdd(OldSize
, AdditionalChunkSize
);
3280 // Insert new alloca with new NewSize and Align params.
3281 AllocaInst
*NewAlloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(), NewSize
);
3282 NewAlloca
->setAlignment(Align
);
3284 // NewAddress = Address + Align
3285 Value
*NewAddress
= IRB
.CreateAdd(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
),
3286 ConstantInt::get(IntptrTy
, Align
));
3288 // Insert __asan_alloca_poison call for new created alloca.
3289 IRB
.CreateCall(AsanAllocaPoisonFunc
, {NewAddress
, OldSize
});
3291 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3292 // for unpoisoning stuff.
3293 IRB
.CreateStore(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
), DynamicAllocaLayout
);
3295 Value
*NewAddressPtr
= IRB
.CreateIntToPtr(NewAddress
, AI
->getType());
3297 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3298 AI
->replaceAllUsesWith(NewAddressPtr
);
3300 // We are done. Erase old alloca from parent.
3301 AI
->eraseFromParent();
3304 // isSafeAccess returns true if Addr is always inbounds with respect to its
3305 // base object. For example, it is a field access or an array access with
3306 // constant inbounds index.
3307 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
,
3308 Value
*Addr
, uint64_t TypeSize
) const {
3309 SizeOffsetType SizeOffset
= ObjSizeVis
.compute(Addr
);
3310 if (!ObjSizeVis
.bothKnown(SizeOffset
)) return false;
3311 uint64_t Size
= SizeOffset
.first
.getZExtValue();
3312 int64_t Offset
= SizeOffset
.second
.getSExtValue();
3313 // Three checks are required to ensure safety:
3314 // . Offset >= 0 (since the offset is given from the base ptr)
3315 // . Size >= Offset (unsigned)
3316 // . Size - Offset >= NeededSize (unsigned)
3317 return Offset
>= 0 && Size
>= uint64_t(Offset
) &&
3318 Size
- uint64_t(Offset
) >= TypeSize
/ 8;