1 //===- Local.cpp - Functions to perform local transformations -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This family of functions perform various local transformations to the
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/Local.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/Hashing.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/LazyValueInfo.h"
33 #include "llvm/Analysis/MemoryBuiltins.h"
34 #include "llvm/Analysis/MemorySSAUpdater.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/BinaryFormat/Dwarf.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/CFG.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/ConstantRange.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DIBuilder.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalObject.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Metadata.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/KnownBits.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Utils/ValueMapper.h"
88 using namespace llvm::PatternMatch
;
90 #define DEBUG_TYPE "local"
92 STATISTIC(NumRemoved
, "Number of unreachable basic blocks removed");
94 // Max recursion depth for collectBitParts used when detecting bswap and
96 static const unsigned BitPartRecursionMaxDepth
= 64;
98 //===----------------------------------------------------------------------===//
99 // Local constant propagation.
102 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
103 /// constant value, convert it into an unconditional branch to the constant
104 /// destination. This is a nontrivial operation because the successors of this
105 /// basic block must have their PHI nodes updated.
106 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
107 /// conditions and indirectbr addresses this might make dead if
108 /// DeleteDeadConditions is true.
109 bool llvm::ConstantFoldTerminator(BasicBlock
*BB
, bool DeleteDeadConditions
,
110 const TargetLibraryInfo
*TLI
,
111 DomTreeUpdater
*DTU
) {
112 Instruction
*T
= BB
->getTerminator();
113 IRBuilder
<> Builder(T
);
115 // Branch - See if we are conditional jumping on constant
116 if (auto *BI
= dyn_cast
<BranchInst
>(T
)) {
117 if (BI
->isUnconditional()) return false; // Can't optimize uncond branch
118 BasicBlock
*Dest1
= BI
->getSuccessor(0);
119 BasicBlock
*Dest2
= BI
->getSuccessor(1);
121 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
122 // Are we branching on constant?
123 // YES. Change to unconditional branch...
124 BasicBlock
*Destination
= Cond
->getZExtValue() ? Dest1
: Dest2
;
125 BasicBlock
*OldDest
= Cond
->getZExtValue() ? Dest2
: Dest1
;
127 // Let the basic block know that we are letting go of it. Based on this,
128 // it will adjust it's PHI nodes.
129 OldDest
->removePredecessor(BB
);
131 // Replace the conditional branch with an unconditional one.
132 Builder
.CreateBr(Destination
);
133 BI
->eraseFromParent();
135 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, OldDest
}});
139 if (Dest2
== Dest1
) { // Conditional branch to same location?
140 // This branch matches something like this:
141 // br bool %cond, label %Dest, label %Dest
142 // and changes it into: br label %Dest
144 // Let the basic block know that we are letting go of one copy of it.
145 assert(BI
->getParent() && "Terminator not inserted in block!");
146 Dest1
->removePredecessor(BI
->getParent());
148 // Replace the conditional branch with an unconditional one.
149 Builder
.CreateBr(Dest1
);
150 Value
*Cond
= BI
->getCondition();
151 BI
->eraseFromParent();
152 if (DeleteDeadConditions
)
153 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
159 if (auto *SI
= dyn_cast
<SwitchInst
>(T
)) {
160 // If we are switching on a constant, we can convert the switch to an
161 // unconditional branch.
162 auto *CI
= dyn_cast
<ConstantInt
>(SI
->getCondition());
163 BasicBlock
*DefaultDest
= SI
->getDefaultDest();
164 BasicBlock
*TheOnlyDest
= DefaultDest
;
166 // If the default is unreachable, ignore it when searching for TheOnlyDest.
167 if (isa
<UnreachableInst
>(DefaultDest
->getFirstNonPHIOrDbg()) &&
168 SI
->getNumCases() > 0) {
169 TheOnlyDest
= SI
->case_begin()->getCaseSuccessor();
172 // Figure out which case it goes to.
173 for (auto i
= SI
->case_begin(), e
= SI
->case_end(); i
!= e
;) {
174 // Found case matching a constant operand?
175 if (i
->getCaseValue() == CI
) {
176 TheOnlyDest
= i
->getCaseSuccessor();
180 // Check to see if this branch is going to the same place as the default
181 // dest. If so, eliminate it as an explicit compare.
182 if (i
->getCaseSuccessor() == DefaultDest
) {
183 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
184 unsigned NCases
= SI
->getNumCases();
185 // Fold the case metadata into the default if there will be any branches
186 // left, unless the metadata doesn't match the switch.
187 if (NCases
> 1 && MD
&& MD
->getNumOperands() == 2 + NCases
) {
188 // Collect branch weights into a vector.
189 SmallVector
<uint32_t, 8> Weights
;
190 for (unsigned MD_i
= 1, MD_e
= MD
->getNumOperands(); MD_i
< MD_e
;
192 auto *CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(MD_i
));
193 Weights
.push_back(CI
->getValue().getZExtValue());
195 // Merge weight of this case to the default weight.
196 unsigned idx
= i
->getCaseIndex();
197 Weights
[0] += Weights
[idx
+1];
198 // Remove weight for this case.
199 std::swap(Weights
[idx
+1], Weights
.back());
201 SI
->setMetadata(LLVMContext::MD_prof
,
202 MDBuilder(BB
->getContext()).
203 createBranchWeights(Weights
));
205 // Remove this entry.
206 BasicBlock
*ParentBB
= SI
->getParent();
207 DefaultDest
->removePredecessor(ParentBB
);
208 i
= SI
->removeCase(i
);
211 DTU
->applyUpdatesPermissive(
212 {{DominatorTree::Delete
, ParentBB
, DefaultDest
}});
216 // Otherwise, check to see if the switch only branches to one destination.
217 // We do this by reseting "TheOnlyDest" to null when we find two non-equal
219 if (i
->getCaseSuccessor() != TheOnlyDest
)
220 TheOnlyDest
= nullptr;
222 // Increment this iterator as we haven't removed the case.
226 if (CI
&& !TheOnlyDest
) {
227 // Branching on a constant, but not any of the cases, go to the default
229 TheOnlyDest
= SI
->getDefaultDest();
232 // If we found a single destination that we can fold the switch into, do so
235 // Insert the new branch.
236 Builder
.CreateBr(TheOnlyDest
);
237 BasicBlock
*BB
= SI
->getParent();
238 std::vector
<DominatorTree::UpdateType
> Updates
;
240 Updates
.reserve(SI
->getNumSuccessors() - 1);
242 // Remove entries from PHI nodes which we no longer branch to...
243 for (BasicBlock
*Succ
: successors(SI
)) {
244 // Found case matching a constant operand?
245 if (Succ
== TheOnlyDest
) {
246 TheOnlyDest
= nullptr; // Don't modify the first branch to TheOnlyDest
248 Succ
->removePredecessor(BB
);
250 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
254 // Delete the old switch.
255 Value
*Cond
= SI
->getCondition();
256 SI
->eraseFromParent();
257 if (DeleteDeadConditions
)
258 RecursivelyDeleteTriviallyDeadInstructions(Cond
, TLI
);
260 DTU
->applyUpdatesPermissive(Updates
);
264 if (SI
->getNumCases() == 1) {
265 // Otherwise, we can fold this switch into a conditional branch
266 // instruction if it has only one non-default destination.
267 auto FirstCase
= *SI
->case_begin();
268 Value
*Cond
= Builder
.CreateICmpEQ(SI
->getCondition(),
269 FirstCase
.getCaseValue(), "cond");
271 // Insert the new branch.
272 BranchInst
*NewBr
= Builder
.CreateCondBr(Cond
,
273 FirstCase
.getCaseSuccessor(),
274 SI
->getDefaultDest());
275 MDNode
*MD
= SI
->getMetadata(LLVMContext::MD_prof
);
276 if (MD
&& MD
->getNumOperands() == 3) {
277 ConstantInt
*SICase
=
278 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
280 mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(1));
281 assert(SICase
&& SIDef
);
282 // The TrueWeight should be the weight for the single case of SI.
283 NewBr
->setMetadata(LLVMContext::MD_prof
,
284 MDBuilder(BB
->getContext()).
285 createBranchWeights(SICase
->getValue().getZExtValue(),
286 SIDef
->getValue().getZExtValue()));
289 // Update make.implicit metadata to the newly-created conditional branch.
290 MDNode
*MakeImplicitMD
= SI
->getMetadata(LLVMContext::MD_make_implicit
);
292 NewBr
->setMetadata(LLVMContext::MD_make_implicit
, MakeImplicitMD
);
294 // Delete the old switch.
295 SI
->eraseFromParent();
301 if (auto *IBI
= dyn_cast
<IndirectBrInst
>(T
)) {
302 // indirectbr blockaddress(@F, @BB) -> br label @BB
304 dyn_cast
<BlockAddress
>(IBI
->getAddress()->stripPointerCasts())) {
305 BasicBlock
*TheOnlyDest
= BA
->getBasicBlock();
306 std::vector
<DominatorTree::UpdateType
> Updates
;
308 Updates
.reserve(IBI
->getNumDestinations() - 1);
310 // Insert the new branch.
311 Builder
.CreateBr(TheOnlyDest
);
313 for (unsigned i
= 0, e
= IBI
->getNumDestinations(); i
!= e
; ++i
) {
314 if (IBI
->getDestination(i
) == TheOnlyDest
) {
315 TheOnlyDest
= nullptr;
317 BasicBlock
*ParentBB
= IBI
->getParent();
318 BasicBlock
*DestBB
= IBI
->getDestination(i
);
319 DestBB
->removePredecessor(ParentBB
);
321 Updates
.push_back({DominatorTree::Delete
, ParentBB
, DestBB
});
324 Value
*Address
= IBI
->getAddress();
325 IBI
->eraseFromParent();
326 if (DeleteDeadConditions
)
327 RecursivelyDeleteTriviallyDeadInstructions(Address
, TLI
);
329 // If we didn't find our destination in the IBI successor list, then we
330 // have undefined behavior. Replace the unconditional branch with an
331 // 'unreachable' instruction.
333 BB
->getTerminator()->eraseFromParent();
334 new UnreachableInst(BB
->getContext(), BB
);
338 DTU
->applyUpdatesPermissive(Updates
);
346 //===----------------------------------------------------------------------===//
347 // Local dead code elimination.
350 /// isInstructionTriviallyDead - Return true if the result produced by the
351 /// instruction is not used, and the instruction has no side effects.
353 bool llvm::isInstructionTriviallyDead(Instruction
*I
,
354 const TargetLibraryInfo
*TLI
) {
357 return wouldInstructionBeTriviallyDead(I
, TLI
);
360 bool llvm::wouldInstructionBeTriviallyDead(Instruction
*I
,
361 const TargetLibraryInfo
*TLI
) {
362 if (I
->isTerminator())
365 // We don't want the landingpad-like instructions removed by anything this
370 // We don't want debug info removed by anything this general, unless
371 // debug info is empty.
372 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(I
)) {
373 if (DDI
->getAddress())
377 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(I
)) {
382 if (DbgLabelInst
*DLI
= dyn_cast
<DbgLabelInst
>(I
)) {
388 if (!I
->mayHaveSideEffects())
391 // Special case intrinsics that "may have side effects" but can be deleted
393 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
394 // Safe to delete llvm.stacksave and launder.invariant.group if dead.
395 if (II
->getIntrinsicID() == Intrinsic::stacksave
||
396 II
->getIntrinsicID() == Intrinsic::launder_invariant_group
)
399 // Lifetime intrinsics are dead when their right-hand is undef.
400 if (II
->isLifetimeStartOrEnd())
401 return isa
<UndefValue
>(II
->getArgOperand(1));
403 // Assumptions are dead if their condition is trivially true. Guards on
404 // true are operationally no-ops. In the future we can consider more
405 // sophisticated tradeoffs for guards considering potential for check
406 // widening, but for now we keep things simple.
407 if (II
->getIntrinsicID() == Intrinsic::assume
||
408 II
->getIntrinsicID() == Intrinsic::experimental_guard
) {
409 if (ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
410 return !Cond
->isZero();
416 if (isAllocLikeFn(I
, TLI
))
419 if (CallInst
*CI
= isFreeCall(I
, TLI
))
420 if (Constant
*C
= dyn_cast
<Constant
>(CI
->getArgOperand(0)))
421 return C
->isNullValue() || isa
<UndefValue
>(C
);
423 if (auto *Call
= dyn_cast
<CallBase
>(I
))
424 if (isMathLibCallNoop(Call
, TLI
))
430 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
431 /// trivially dead instruction, delete it. If that makes any of its operands
432 /// trivially dead, delete them too, recursively. Return true if any
433 /// instructions were deleted.
434 bool llvm::RecursivelyDeleteTriviallyDeadInstructions(
435 Value
*V
, const TargetLibraryInfo
*TLI
, MemorySSAUpdater
*MSSAU
) {
436 Instruction
*I
= dyn_cast
<Instruction
>(V
);
437 if (!I
|| !isInstructionTriviallyDead(I
, TLI
))
440 SmallVector
<Instruction
*, 16> DeadInsts
;
441 DeadInsts
.push_back(I
);
442 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts
, TLI
, MSSAU
);
447 void llvm::RecursivelyDeleteTriviallyDeadInstructions(
448 SmallVectorImpl
<Instruction
*> &DeadInsts
, const TargetLibraryInfo
*TLI
,
449 MemorySSAUpdater
*MSSAU
) {
450 // Process the dead instruction list until empty.
451 while (!DeadInsts
.empty()) {
452 Instruction
&I
= *DeadInsts
.pop_back_val();
453 assert(I
.use_empty() && "Instructions with uses are not dead.");
454 assert(isInstructionTriviallyDead(&I
, TLI
) &&
455 "Live instruction found in dead worklist!");
457 // Don't lose the debug info while deleting the instructions.
460 // Null out all of the instruction's operands to see if any operand becomes
462 for (Use
&OpU
: I
.operands()) {
463 Value
*OpV
= OpU
.get();
466 if (!OpV
->use_empty())
469 // If the operand is an instruction that became dead as we nulled out the
470 // operand, and if it is 'trivially' dead, delete it in a future loop
472 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
473 if (isInstructionTriviallyDead(OpI
, TLI
))
474 DeadInsts
.push_back(OpI
);
477 MSSAU
->removeMemoryAccess(&I
);
483 bool llvm::replaceDbgUsesWithUndef(Instruction
*I
) {
484 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
485 findDbgUsers(DbgUsers
, I
);
486 for (auto *DII
: DbgUsers
) {
487 Value
*Undef
= UndefValue::get(I
->getType());
488 DII
->setOperand(0, MetadataAsValue::get(DII
->getContext(),
489 ValueAsMetadata::get(Undef
)));
491 return !DbgUsers
.empty();
494 /// areAllUsesEqual - Check whether the uses of a value are all the same.
495 /// This is similar to Instruction::hasOneUse() except this will also return
496 /// true when there are no uses or multiple uses that all refer to the same
498 static bool areAllUsesEqual(Instruction
*I
) {
499 Value::user_iterator UI
= I
->user_begin();
500 Value::user_iterator UE
= I
->user_end();
505 for (++UI
; UI
!= UE
; ++UI
) {
512 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
513 /// dead PHI node, due to being a def-use chain of single-use nodes that
514 /// either forms a cycle or is terminated by a trivially dead instruction,
515 /// delete it. If that makes any of its operands trivially dead, delete them
516 /// too, recursively. Return true if a change was made.
517 bool llvm::RecursivelyDeleteDeadPHINode(PHINode
*PN
,
518 const TargetLibraryInfo
*TLI
) {
519 SmallPtrSet
<Instruction
*, 4> Visited
;
520 for (Instruction
*I
= PN
; areAllUsesEqual(I
) && !I
->mayHaveSideEffects();
521 I
= cast
<Instruction
>(*I
->user_begin())) {
523 return RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
525 // If we find an instruction more than once, we're on a cycle that
526 // won't prove fruitful.
527 if (!Visited
.insert(I
).second
) {
528 // Break the cycle and delete the instruction and its operands.
529 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
530 (void)RecursivelyDeleteTriviallyDeadInstructions(I
, TLI
);
538 simplifyAndDCEInstruction(Instruction
*I
,
539 SmallSetVector
<Instruction
*, 16> &WorkList
,
540 const DataLayout
&DL
,
541 const TargetLibraryInfo
*TLI
) {
542 if (isInstructionTriviallyDead(I
, TLI
)) {
543 salvageDebugInfo(*I
);
545 // Null out all of the instruction's operands to see if any operand becomes
547 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
548 Value
*OpV
= I
->getOperand(i
);
549 I
->setOperand(i
, nullptr);
551 if (!OpV
->use_empty() || I
== OpV
)
554 // If the operand is an instruction that became dead as we nulled out the
555 // operand, and if it is 'trivially' dead, delete it in a future loop
557 if (Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
))
558 if (isInstructionTriviallyDead(OpI
, TLI
))
559 WorkList
.insert(OpI
);
562 I
->eraseFromParent();
567 if (Value
*SimpleV
= SimplifyInstruction(I
, DL
)) {
568 // Add the users to the worklist. CAREFUL: an instruction can use itself,
569 // in the case of a phi node.
570 for (User
*U
: I
->users()) {
572 WorkList
.insert(cast
<Instruction
>(U
));
576 // Replace the instruction with its simplified value.
577 bool Changed
= false;
578 if (!I
->use_empty()) {
579 I
->replaceAllUsesWith(SimpleV
);
582 if (isInstructionTriviallyDead(I
, TLI
)) {
583 I
->eraseFromParent();
591 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
592 /// simplify any instructions in it and recursively delete dead instructions.
594 /// This returns true if it changed the code, note that it can delete
595 /// instructions in other blocks as well in this block.
596 bool llvm::SimplifyInstructionsInBlock(BasicBlock
*BB
,
597 const TargetLibraryInfo
*TLI
) {
598 bool MadeChange
= false;
599 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
602 // In debug builds, ensure that the terminator of the block is never replaced
603 // or deleted by these simplifications. The idea of simplification is that it
604 // cannot introduce new instructions, and there is no way to replace the
605 // terminator of a block without introducing a new instruction.
606 AssertingVH
<Instruction
> TerminatorVH(&BB
->back());
609 SmallSetVector
<Instruction
*, 16> WorkList
;
610 // Iterate over the original function, only adding insts to the worklist
611 // if they actually need to be revisited. This avoids having to pre-init
612 // the worklist with the entire function's worth of instructions.
613 for (BasicBlock::iterator BI
= BB
->begin(), E
= std::prev(BB
->end());
615 assert(!BI
->isTerminator());
616 Instruction
*I
= &*BI
;
619 // We're visiting this instruction now, so make sure it's not in the
620 // worklist from an earlier visit.
621 if (!WorkList
.count(I
))
622 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
625 while (!WorkList
.empty()) {
626 Instruction
*I
= WorkList
.pop_back_val();
627 MadeChange
|= simplifyAndDCEInstruction(I
, WorkList
, DL
, TLI
);
632 //===----------------------------------------------------------------------===//
633 // Control Flow Graph Restructuring.
636 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
637 /// method is called when we're about to delete Pred as a predecessor of BB. If
638 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
640 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
641 /// nodes that collapse into identity values. For example, if we have:
642 /// x = phi(1, 0, 0, 0)
645 /// .. and delete the predecessor corresponding to the '1', this will attempt to
646 /// recursively fold the and to 0.
647 void llvm::RemovePredecessorAndSimplify(BasicBlock
*BB
, BasicBlock
*Pred
,
648 DomTreeUpdater
*DTU
) {
649 // This only adjusts blocks with PHI nodes.
650 if (!isa
<PHINode
>(BB
->begin()))
653 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
654 // them down. This will leave us with single entry phi nodes and other phis
655 // that can be removed.
656 BB
->removePredecessor(Pred
, true);
658 WeakTrackingVH PhiIt
= &BB
->front();
659 while (PHINode
*PN
= dyn_cast
<PHINode
>(PhiIt
)) {
660 PhiIt
= &*++BasicBlock::iterator(cast
<Instruction
>(PhiIt
));
661 Value
*OldPhiIt
= PhiIt
;
663 if (!recursivelySimplifyInstruction(PN
))
666 // If recursive simplification ended up deleting the next PHI node we would
667 // iterate to, then our iterator is invalid, restart scanning from the top
669 if (PhiIt
!= OldPhiIt
) PhiIt
= &BB
->front();
672 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, Pred
, BB
}});
675 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
676 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
677 /// between them, moving the instructions in the predecessor into DestBB and
678 /// deleting the predecessor block.
679 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock
*DestBB
,
680 DomTreeUpdater
*DTU
) {
682 // If BB has single-entry PHI nodes, fold them.
683 while (PHINode
*PN
= dyn_cast
<PHINode
>(DestBB
->begin())) {
684 Value
*NewVal
= PN
->getIncomingValue(0);
685 // Replace self referencing PHI with undef, it must be dead.
686 if (NewVal
== PN
) NewVal
= UndefValue::get(PN
->getType());
687 PN
->replaceAllUsesWith(NewVal
);
688 PN
->eraseFromParent();
691 BasicBlock
*PredBB
= DestBB
->getSinglePredecessor();
692 assert(PredBB
&& "Block doesn't have a single predecessor!");
694 bool ReplaceEntryBB
= false;
695 if (PredBB
== &DestBB
->getParent()->getEntryBlock())
696 ReplaceEntryBB
= true;
698 // DTU updates: Collect all the edges that enter
699 // PredBB. These dominator edges will be redirected to DestBB.
700 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
703 Updates
.push_back({DominatorTree::Delete
, PredBB
, DestBB
});
704 for (auto I
= pred_begin(PredBB
), E
= pred_end(PredBB
); I
!= E
; ++I
) {
705 Updates
.push_back({DominatorTree::Delete
, *I
, PredBB
});
706 // This predecessor of PredBB may already have DestBB as a successor.
707 if (llvm::find(successors(*I
), DestBB
) == succ_end(*I
))
708 Updates
.push_back({DominatorTree::Insert
, *I
, DestBB
});
712 // Zap anything that took the address of DestBB. Not doing this will give the
713 // address an invalid value.
714 if (DestBB
->hasAddressTaken()) {
715 BlockAddress
*BA
= BlockAddress::get(DestBB
);
716 Constant
*Replacement
=
717 ConstantInt::get(Type::getInt32Ty(BA
->getContext()), 1);
718 BA
->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement
,
720 BA
->destroyConstant();
723 // Anything that branched to PredBB now branches to DestBB.
724 PredBB
->replaceAllUsesWith(DestBB
);
726 // Splice all the instructions from PredBB to DestBB.
727 PredBB
->getTerminator()->eraseFromParent();
728 DestBB
->getInstList().splice(DestBB
->begin(), PredBB
->getInstList());
729 new UnreachableInst(PredBB
->getContext(), PredBB
);
731 // If the PredBB is the entry block of the function, move DestBB up to
732 // become the entry block after we erase PredBB.
734 DestBB
->moveAfter(PredBB
);
737 assert(PredBB
->getInstList().size() == 1 &&
738 isa
<UnreachableInst
>(PredBB
->getTerminator()) &&
739 "The successor list of PredBB isn't empty before "
740 "applying corresponding DTU updates.");
741 DTU
->applyUpdatesPermissive(Updates
);
742 DTU
->deleteBB(PredBB
);
743 // Recalculation of DomTree is needed when updating a forward DomTree and
744 // the Entry BB is replaced.
745 if (ReplaceEntryBB
&& DTU
->hasDomTree()) {
746 // The entry block was removed and there is no external interface for
747 // the dominator tree to be notified of this change. In this corner-case
748 // we recalculate the entire tree.
749 DTU
->recalculate(*(DestBB
->getParent()));
754 PredBB
->eraseFromParent(); // Nuke BB if DTU is nullptr.
758 /// CanMergeValues - Return true if we can choose one of these values to use
759 /// in place of the other. Note that we will always choose the non-undef
761 static bool CanMergeValues(Value
*First
, Value
*Second
) {
762 return First
== Second
|| isa
<UndefValue
>(First
) || isa
<UndefValue
>(Second
);
765 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
766 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
768 /// Assumption: Succ is the single successor for BB.
769 static bool CanPropagatePredecessorsForPHIs(BasicBlock
*BB
, BasicBlock
*Succ
) {
770 assert(*succ_begin(BB
) == Succ
&& "Succ is not successor of BB!");
772 LLVM_DEBUG(dbgs() << "Looking to fold " << BB
->getName() << " into "
773 << Succ
->getName() << "\n");
774 // Shortcut, if there is only a single predecessor it must be BB and merging
776 if (Succ
->getSinglePredecessor()) return true;
778 // Make a list of the predecessors of BB
779 SmallPtrSet
<BasicBlock
*, 16> BBPreds(pred_begin(BB
), pred_end(BB
));
781 // Look at all the phi nodes in Succ, to see if they present a conflict when
782 // merging these blocks
783 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
784 PHINode
*PN
= cast
<PHINode
>(I
);
786 // If the incoming value from BB is again a PHINode in
787 // BB which has the same incoming value for *PI as PN does, we can
788 // merge the phi nodes and then the blocks can still be merged
789 PHINode
*BBPN
= dyn_cast
<PHINode
>(PN
->getIncomingValueForBlock(BB
));
790 if (BBPN
&& BBPN
->getParent() == BB
) {
791 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
792 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
793 if (BBPreds
.count(IBB
) &&
794 !CanMergeValues(BBPN
->getIncomingValueForBlock(IBB
),
795 PN
->getIncomingValue(PI
))) {
797 << "Can't fold, phi node " << PN
->getName() << " in "
798 << Succ
->getName() << " is conflicting with "
799 << BBPN
->getName() << " with regard to common predecessor "
800 << IBB
->getName() << "\n");
805 Value
* Val
= PN
->getIncomingValueForBlock(BB
);
806 for (unsigned PI
= 0, PE
= PN
->getNumIncomingValues(); PI
!= PE
; ++PI
) {
807 // See if the incoming value for the common predecessor is equal to the
808 // one for BB, in which case this phi node will not prevent the merging
810 BasicBlock
*IBB
= PN
->getIncomingBlock(PI
);
811 if (BBPreds
.count(IBB
) &&
812 !CanMergeValues(Val
, PN
->getIncomingValue(PI
))) {
813 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN
->getName()
814 << " in " << Succ
->getName()
815 << " is conflicting with regard to common "
816 << "predecessor " << IBB
->getName() << "\n");
826 using PredBlockVector
= SmallVector
<BasicBlock
*, 16>;
827 using IncomingValueMap
= DenseMap
<BasicBlock
*, Value
*>;
829 /// Determines the value to use as the phi node input for a block.
831 /// Select between \p OldVal any value that we know flows from \p BB
832 /// to a particular phi on the basis of which one (if either) is not
833 /// undef. Update IncomingValues based on the selected value.
835 /// \param OldVal The value we are considering selecting.
836 /// \param BB The block that the value flows in from.
837 /// \param IncomingValues A map from block-to-value for other phi inputs
838 /// that we have examined.
840 /// \returns the selected value.
841 static Value
*selectIncomingValueForBlock(Value
*OldVal
, BasicBlock
*BB
,
842 IncomingValueMap
&IncomingValues
) {
843 if (!isa
<UndefValue
>(OldVal
)) {
844 assert((!IncomingValues
.count(BB
) ||
845 IncomingValues
.find(BB
)->second
== OldVal
) &&
846 "Expected OldVal to match incoming value from BB!");
848 IncomingValues
.insert(std::make_pair(BB
, OldVal
));
852 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
853 if (It
!= IncomingValues
.end()) return It
->second
;
858 /// Create a map from block to value for the operands of a
861 /// Create a map from block to value for each non-undef value flowing
864 /// \param PN The phi we are collecting the map for.
865 /// \param IncomingValues [out] The map from block to value for this phi.
866 static void gatherIncomingValuesToPhi(PHINode
*PN
,
867 IncomingValueMap
&IncomingValues
) {
868 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
869 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
870 Value
*V
= PN
->getIncomingValue(i
);
872 if (!isa
<UndefValue
>(V
))
873 IncomingValues
.insert(std::make_pair(BB
, V
));
877 /// Replace the incoming undef values to a phi with the values
878 /// from a block-to-value map.
880 /// \param PN The phi we are replacing the undefs in.
881 /// \param IncomingValues A map from block to value.
882 static void replaceUndefValuesInPhi(PHINode
*PN
,
883 const IncomingValueMap
&IncomingValues
) {
884 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
885 Value
*V
= PN
->getIncomingValue(i
);
887 if (!isa
<UndefValue
>(V
)) continue;
889 BasicBlock
*BB
= PN
->getIncomingBlock(i
);
890 IncomingValueMap::const_iterator It
= IncomingValues
.find(BB
);
891 if (It
== IncomingValues
.end()) continue;
893 PN
->setIncomingValue(i
, It
->second
);
897 /// Replace a value flowing from a block to a phi with
898 /// potentially multiple instances of that value flowing from the
899 /// block's predecessors to the phi.
901 /// \param BB The block with the value flowing into the phi.
902 /// \param BBPreds The predecessors of BB.
903 /// \param PN The phi that we are updating.
904 static void redirectValuesFromPredecessorsToPhi(BasicBlock
*BB
,
905 const PredBlockVector
&BBPreds
,
907 Value
*OldVal
= PN
->removeIncomingValue(BB
, false);
908 assert(OldVal
&& "No entry in PHI for Pred BB!");
910 IncomingValueMap IncomingValues
;
912 // We are merging two blocks - BB, and the block containing PN - and
913 // as a result we need to redirect edges from the predecessors of BB
914 // to go to the block containing PN, and update PN
915 // accordingly. Since we allow merging blocks in the case where the
916 // predecessor and successor blocks both share some predecessors,
917 // and where some of those common predecessors might have undef
918 // values flowing into PN, we want to rewrite those values to be
919 // consistent with the non-undef values.
921 gatherIncomingValuesToPhi(PN
, IncomingValues
);
923 // If this incoming value is one of the PHI nodes in BB, the new entries
924 // in the PHI node are the entries from the old PHI.
925 if (isa
<PHINode
>(OldVal
) && cast
<PHINode
>(OldVal
)->getParent() == BB
) {
926 PHINode
*OldValPN
= cast
<PHINode
>(OldVal
);
927 for (unsigned i
= 0, e
= OldValPN
->getNumIncomingValues(); i
!= e
; ++i
) {
928 // Note that, since we are merging phi nodes and BB and Succ might
929 // have common predecessors, we could end up with a phi node with
930 // identical incoming branches. This will be cleaned up later (and
931 // will trigger asserts if we try to clean it up now, without also
932 // simplifying the corresponding conditional branch).
933 BasicBlock
*PredBB
= OldValPN
->getIncomingBlock(i
);
934 Value
*PredVal
= OldValPN
->getIncomingValue(i
);
935 Value
*Selected
= selectIncomingValueForBlock(PredVal
, PredBB
,
938 // And add a new incoming value for this predecessor for the
939 // newly retargeted branch.
940 PN
->addIncoming(Selected
, PredBB
);
943 for (unsigned i
= 0, e
= BBPreds
.size(); i
!= e
; ++i
) {
944 // Update existing incoming values in PN for this
945 // predecessor of BB.
946 BasicBlock
*PredBB
= BBPreds
[i
];
947 Value
*Selected
= selectIncomingValueForBlock(OldVal
, PredBB
,
950 // And add a new incoming value for this predecessor for the
951 // newly retargeted branch.
952 PN
->addIncoming(Selected
, PredBB
);
956 replaceUndefValuesInPhi(PN
, IncomingValues
);
959 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
960 /// unconditional branch, and contains no instructions other than PHI nodes,
961 /// potential side-effect free intrinsics and the branch. If possible,
962 /// eliminate BB by rewriting all the predecessors to branch to the successor
963 /// block and return true. If we can't transform, return false.
964 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock
*BB
,
965 DomTreeUpdater
*DTU
) {
966 assert(BB
!= &BB
->getParent()->getEntryBlock() &&
967 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
969 // We can't eliminate infinite loops.
970 BasicBlock
*Succ
= cast
<BranchInst
>(BB
->getTerminator())->getSuccessor(0);
971 if (BB
== Succ
) return false;
973 // Check to see if merging these blocks would cause conflicts for any of the
974 // phi nodes in BB or Succ. If not, we can safely merge.
975 if (!CanPropagatePredecessorsForPHIs(BB
, Succ
)) return false;
977 // Check for cases where Succ has multiple predecessors and a PHI node in BB
978 // has uses which will not disappear when the PHI nodes are merged. It is
979 // possible to handle such cases, but difficult: it requires checking whether
980 // BB dominates Succ, which is non-trivial to calculate in the case where
981 // Succ has multiple predecessors. Also, it requires checking whether
982 // constructing the necessary self-referential PHI node doesn't introduce any
983 // conflicts; this isn't too difficult, but the previous code for doing this
986 // Note that if this check finds a live use, BB dominates Succ, so BB is
987 // something like a loop pre-header (or rarely, a part of an irreducible CFG);
988 // folding the branch isn't profitable in that case anyway.
989 if (!Succ
->getSinglePredecessor()) {
990 BasicBlock::iterator BBI
= BB
->begin();
991 while (isa
<PHINode
>(*BBI
)) {
992 for (Use
&U
: BBI
->uses()) {
993 if (PHINode
* PN
= dyn_cast
<PHINode
>(U
.getUser())) {
994 if (PN
->getIncomingBlock(U
) != BB
)
1004 // We cannot fold the block if it's a branch to an already present callbr
1005 // successor because that creates duplicate successors.
1006 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1007 if (auto *CBI
= dyn_cast
<CallBrInst
>((*I
)->getTerminator())) {
1008 if (Succ
== CBI
->getDefaultDest())
1010 for (unsigned i
= 0, e
= CBI
->getNumIndirectDests(); i
!= e
; ++i
)
1011 if (Succ
== CBI
->getIndirectDest(i
))
1016 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB
);
1018 SmallVector
<DominatorTree::UpdateType
, 32> Updates
;
1020 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1021 // All predecessors of BB will be moved to Succ.
1022 for (auto I
= pred_begin(BB
), E
= pred_end(BB
); I
!= E
; ++I
) {
1023 Updates
.push_back({DominatorTree::Delete
, *I
, BB
});
1024 // This predecessor of BB may already have Succ as a successor.
1025 if (llvm::find(successors(*I
), Succ
) == succ_end(*I
))
1026 Updates
.push_back({DominatorTree::Insert
, *I
, Succ
});
1030 if (isa
<PHINode
>(Succ
->begin())) {
1031 // If there is more than one pred of succ, and there are PHI nodes in
1032 // the successor, then we need to add incoming edges for the PHI nodes
1034 const PredBlockVector
BBPreds(pred_begin(BB
), pred_end(BB
));
1036 // Loop over all of the PHI nodes in the successor of BB.
1037 for (BasicBlock::iterator I
= Succ
->begin(); isa
<PHINode
>(I
); ++I
) {
1038 PHINode
*PN
= cast
<PHINode
>(I
);
1040 redirectValuesFromPredecessorsToPhi(BB
, BBPreds
, PN
);
1044 if (Succ
->getSinglePredecessor()) {
1045 // BB is the only predecessor of Succ, so Succ will end up with exactly
1046 // the same predecessors BB had.
1048 // Copy over any phi, debug or lifetime instruction.
1049 BB
->getTerminator()->eraseFromParent();
1050 Succ
->getInstList().splice(Succ
->getFirstNonPHI()->getIterator(),
1053 while (PHINode
*PN
= dyn_cast
<PHINode
>(&BB
->front())) {
1054 // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
1055 assert(PN
->use_empty() && "There shouldn't be any uses here!");
1056 PN
->eraseFromParent();
1060 // If the unconditional branch we replaced contains llvm.loop metadata, we
1061 // add the metadata to the branch instructions in the predecessors.
1062 unsigned LoopMDKind
= BB
->getContext().getMDKindID("llvm.loop");
1063 Instruction
*TI
= BB
->getTerminator();
1065 if (MDNode
*LoopMD
= TI
->getMetadata(LoopMDKind
))
1066 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
1067 BasicBlock
*Pred
= *PI
;
1068 Pred
->getTerminator()->setMetadata(LoopMDKind
, LoopMD
);
1071 // Everything that jumped to BB now goes to Succ.
1072 BB
->replaceAllUsesWith(Succ
);
1073 if (!Succ
->hasName()) Succ
->takeName(BB
);
1075 // Clear the successor list of BB to match updates applying to DTU later.
1076 if (BB
->getTerminator())
1077 BB
->getInstList().pop_back();
1078 new UnreachableInst(BB
->getContext(), BB
);
1079 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
1080 "applying corresponding DTU updates.");
1083 DTU
->applyUpdatesPermissive(Updates
);
1086 BB
->eraseFromParent(); // Delete the old basic block.
1091 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
1092 /// nodes in this block. This doesn't try to be clever about PHI nodes
1093 /// which differ only in the order of the incoming values, but instcombine
1094 /// orders them so it usually won't matter.
1095 bool llvm::EliminateDuplicatePHINodes(BasicBlock
*BB
) {
1096 // This implementation doesn't currently consider undef operands
1097 // specially. Theoretically, two phis which are identical except for
1098 // one having an undef where the other doesn't could be collapsed.
1100 struct PHIDenseMapInfo
{
1101 static PHINode
*getEmptyKey() {
1102 return DenseMapInfo
<PHINode
*>::getEmptyKey();
1105 static PHINode
*getTombstoneKey() {
1106 return DenseMapInfo
<PHINode
*>::getTombstoneKey();
1109 static unsigned getHashValue(PHINode
*PN
) {
1110 // Compute a hash value on the operands. Instcombine will likely have
1111 // sorted them, which helps expose duplicates, but we have to check all
1112 // the operands to be safe in case instcombine hasn't run.
1113 return static_cast<unsigned>(hash_combine(
1114 hash_combine_range(PN
->value_op_begin(), PN
->value_op_end()),
1115 hash_combine_range(PN
->block_begin(), PN
->block_end())));
1118 static bool isEqual(PHINode
*LHS
, PHINode
*RHS
) {
1119 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
1120 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1122 return LHS
->isIdenticalTo(RHS
);
1126 // Set of unique PHINodes.
1127 DenseSet
<PHINode
*, PHIDenseMapInfo
> PHISet
;
1129 // Examine each PHI.
1130 bool Changed
= false;
1131 for (auto I
= BB
->begin(); PHINode
*PN
= dyn_cast
<PHINode
>(I
++);) {
1132 auto Inserted
= PHISet
.insert(PN
);
1133 if (!Inserted
.second
) {
1134 // A duplicate. Replace this PHI with its duplicate.
1135 PN
->replaceAllUsesWith(*Inserted
.first
);
1136 PN
->eraseFromParent();
1139 // The RAUW can change PHIs that we already visited. Start over from the
1149 /// enforceKnownAlignment - If the specified pointer points to an object that
1150 /// we control, modify the object's alignment to PrefAlign. This isn't
1151 /// often possible though. If alignment is important, a more reliable approach
1152 /// is to simply align all global variables and allocation instructions to
1153 /// their preferred alignment from the beginning.
1154 static unsigned enforceKnownAlignment(Value
*V
, unsigned Align
,
1156 const DataLayout
&DL
) {
1157 assert(PrefAlign
> Align
);
1159 V
= V
->stripPointerCasts();
1161 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1162 // TODO: ideally, computeKnownBits ought to have used
1163 // AllocaInst::getAlignment() in its computation already, making
1164 // the below max redundant. But, as it turns out,
1165 // stripPointerCasts recurses through infinite layers of bitcasts,
1166 // while computeKnownBits is not allowed to traverse more than 6
1168 Align
= std::max(AI
->getAlignment(), Align
);
1169 if (PrefAlign
<= Align
)
1172 // If the preferred alignment is greater than the natural stack alignment
1173 // then don't round up. This avoids dynamic stack realignment.
1174 if (DL
.exceedsNaturalStackAlignment(PrefAlign
))
1176 AI
->setAlignment(PrefAlign
);
1180 if (auto *GO
= dyn_cast
<GlobalObject
>(V
)) {
1181 // TODO: as above, this shouldn't be necessary.
1182 Align
= std::max(GO
->getAlignment(), Align
);
1183 if (PrefAlign
<= Align
)
1186 // If there is a large requested alignment and we can, bump up the alignment
1187 // of the global. If the memory we set aside for the global may not be the
1188 // memory used by the final program then it is impossible for us to reliably
1189 // enforce the preferred alignment.
1190 if (!GO
->canIncreaseAlignment())
1193 GO
->setAlignment(PrefAlign
);
1200 unsigned llvm::getOrEnforceKnownAlignment(Value
*V
, unsigned PrefAlign
,
1201 const DataLayout
&DL
,
1202 const Instruction
*CxtI
,
1203 AssumptionCache
*AC
,
1204 const DominatorTree
*DT
) {
1205 assert(V
->getType()->isPointerTy() &&
1206 "getOrEnforceKnownAlignment expects a pointer!");
1208 KnownBits Known
= computeKnownBits(V
, DL
, 0, AC
, CxtI
, DT
);
1209 unsigned TrailZ
= Known
.countMinTrailingZeros();
1211 // Avoid trouble with ridiculously large TrailZ values, such as
1212 // those computed from a null pointer.
1213 TrailZ
= std::min(TrailZ
, unsigned(sizeof(unsigned) * CHAR_BIT
- 1));
1215 unsigned Align
= 1u << std::min(Known
.getBitWidth() - 1, TrailZ
);
1217 // LLVM doesn't support alignments larger than this currently.
1218 Align
= std::min(Align
, +Value::MaximumAlignment
);
1220 if (PrefAlign
> Align
)
1221 Align
= enforceKnownAlignment(V
, Align
, PrefAlign
, DL
);
1223 // We don't need to make any adjustment.
1227 ///===---------------------------------------------------------------------===//
1228 /// Dbg Intrinsic utilities
1231 /// See if there is a dbg.value intrinsic for DIVar before I.
1232 static bool LdStHasDebugValue(DILocalVariable
*DIVar
, DIExpression
*DIExpr
,
1234 // Since we can't guarantee that the original dbg.declare instrinsic
1235 // is removed by LowerDbgDeclare(), we need to make sure that we are
1236 // not inserting the same dbg.value intrinsic over and over.
1237 BasicBlock::InstListType::iterator
PrevI(I
);
1238 if (PrevI
!= I
->getParent()->getInstList().begin()) {
1240 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(PrevI
))
1241 if (DVI
->getValue() == I
->getOperand(0) &&
1242 DVI
->getVariable() == DIVar
&&
1243 DVI
->getExpression() == DIExpr
)
1249 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1250 static bool PhiHasDebugValue(DILocalVariable
*DIVar
,
1251 DIExpression
*DIExpr
,
1253 // Since we can't guarantee that the original dbg.declare instrinsic
1254 // is removed by LowerDbgDeclare(), we need to make sure that we are
1255 // not inserting the same dbg.value intrinsic over and over.
1256 SmallVector
<DbgValueInst
*, 1> DbgValues
;
1257 findDbgValues(DbgValues
, APN
);
1258 for (auto *DVI
: DbgValues
) {
1259 assert(DVI
->getValue() == APN
);
1260 if ((DVI
->getVariable() == DIVar
) && (DVI
->getExpression() == DIExpr
))
1266 /// Check if the alloc size of \p ValTy is large enough to cover the variable
1267 /// (or fragment of the variable) described by \p DII.
1269 /// This is primarily intended as a helper for the different
1270 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is
1271 /// converted describes an alloca'd variable, so we need to use the
1272 /// alloc size of the value when doing the comparison. E.g. an i1 value will be
1273 /// identified as covering an n-bit fragment, if the store size of i1 is at
1275 static bool valueCoversEntireFragment(Type
*ValTy
, DbgVariableIntrinsic
*DII
) {
1276 const DataLayout
&DL
= DII
->getModule()->getDataLayout();
1277 uint64_t ValueSize
= DL
.getTypeAllocSizeInBits(ValTy
);
1278 if (auto FragmentSize
= DII
->getFragmentSizeInBits())
1279 return ValueSize
>= *FragmentSize
;
1280 // We can't always calculate the size of the DI variable (e.g. if it is a
1281 // VLA). Try to use the size of the alloca that the dbg intrinsic describes
1283 if (DII
->isAddressOfVariable())
1284 if (auto *AI
= dyn_cast_or_null
<AllocaInst
>(DII
->getVariableLocation()))
1285 if (auto FragmentSize
= AI
->getAllocationSizeInBits(DL
))
1286 return ValueSize
>= *FragmentSize
;
1287 // Could not determine size of variable. Conservatively return false.
1291 /// Produce a DebugLoc to use for each dbg.declare/inst pair that are promoted
1292 /// to a dbg.value. Because no machine insts can come from debug intrinsics,
1293 /// only the scope and inlinedAt is significant. Zero line numbers are used in
1294 /// case this DebugLoc leaks into any adjacent instructions.
1295 static DebugLoc
getDebugValueLoc(DbgVariableIntrinsic
*DII
, Instruction
*Src
) {
1296 // Original dbg.declare must have a location.
1297 DebugLoc DeclareLoc
= DII
->getDebugLoc();
1298 MDNode
*Scope
= DeclareLoc
.getScope();
1299 DILocation
*InlinedAt
= DeclareLoc
.getInlinedAt();
1300 // Produce an unknown location with the correct scope / inlinedAt fields.
1301 return DebugLoc::get(0, 0, Scope
, InlinedAt
);
1304 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1305 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1306 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1307 StoreInst
*SI
, DIBuilder
&Builder
) {
1308 assert(DII
->isAddressOfVariable());
1309 auto *DIVar
= DII
->getVariable();
1310 assert(DIVar
&& "Missing variable");
1311 auto *DIExpr
= DII
->getExpression();
1312 Value
*DV
= SI
->getValueOperand();
1314 DebugLoc NewLoc
= getDebugValueLoc(DII
, SI
);
1316 if (!valueCoversEntireFragment(DV
->getType(), DII
)) {
1317 // FIXME: If storing to a part of the variable described by the dbg.declare,
1318 // then we want to insert a dbg.value for the corresponding fragment.
1319 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1321 // For now, when there is a store to parts of the variable (but we do not
1322 // know which part) we insert an dbg.value instrinsic to indicate that we
1323 // know nothing about the variable's content.
1324 DV
= UndefValue::get(DV
->getType());
1325 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1326 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1330 if (!LdStHasDebugValue(DIVar
, DIExpr
, SI
))
1331 Builder
.insertDbgValueIntrinsic(DV
, DIVar
, DIExpr
, NewLoc
, SI
);
1334 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1335 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
1336 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1337 LoadInst
*LI
, DIBuilder
&Builder
) {
1338 auto *DIVar
= DII
->getVariable();
1339 auto *DIExpr
= DII
->getExpression();
1340 assert(DIVar
&& "Missing variable");
1342 if (LdStHasDebugValue(DIVar
, DIExpr
, LI
))
1345 if (!valueCoversEntireFragment(LI
->getType(), DII
)) {
1346 // FIXME: If only referring to a part of the variable described by the
1347 // dbg.declare, then we want to insert a dbg.value for the corresponding
1349 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1354 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1356 // We are now tracking the loaded value instead of the address. In the
1357 // future if multi-location support is added to the IR, it might be
1358 // preferable to keep tracking both the loaded value and the original
1359 // address in case the alloca can not be elided.
1360 Instruction
*DbgValue
= Builder
.insertDbgValueIntrinsic(
1361 LI
, DIVar
, DIExpr
, NewLoc
, (Instruction
*)nullptr);
1362 DbgValue
->insertAfter(LI
);
1365 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
1366 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
1367 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic
*DII
,
1368 PHINode
*APN
, DIBuilder
&Builder
) {
1369 auto *DIVar
= DII
->getVariable();
1370 auto *DIExpr
= DII
->getExpression();
1371 assert(DIVar
&& "Missing variable");
1373 if (PhiHasDebugValue(DIVar
, DIExpr
, APN
))
1376 if (!valueCoversEntireFragment(APN
->getType(), DII
)) {
1377 // FIXME: If only referring to a part of the variable described by the
1378 // dbg.declare, then we want to insert a dbg.value for the corresponding
1380 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: "
1385 BasicBlock
*BB
= APN
->getParent();
1386 auto InsertionPt
= BB
->getFirstInsertionPt();
1388 DebugLoc NewLoc
= getDebugValueLoc(DII
, nullptr);
1390 // The block may be a catchswitch block, which does not have a valid
1392 // FIXME: Insert dbg.value markers in the successors when appropriate.
1393 if (InsertionPt
!= BB
->end())
1394 Builder
.insertDbgValueIntrinsic(APN
, DIVar
, DIExpr
, NewLoc
, &*InsertionPt
);
1397 /// Determine whether this alloca is either a VLA or an array.
1398 static bool isArray(AllocaInst
*AI
) {
1399 return AI
->isArrayAllocation() ||
1400 AI
->getType()->getElementType()->isArrayTy();
1403 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1404 /// of llvm.dbg.value intrinsics.
1405 bool llvm::LowerDbgDeclare(Function
&F
) {
1406 DIBuilder
DIB(*F
.getParent(), /*AllowUnresolved*/ false);
1407 SmallVector
<DbgDeclareInst
*, 4> Dbgs
;
1409 for (Instruction
&BI
: FI
)
1410 if (auto DDI
= dyn_cast
<DbgDeclareInst
>(&BI
))
1411 Dbgs
.push_back(DDI
);
1416 for (auto &I
: Dbgs
) {
1417 DbgDeclareInst
*DDI
= I
;
1418 AllocaInst
*AI
= dyn_cast_or_null
<AllocaInst
>(DDI
->getAddress());
1419 // If this is an alloca for a scalar variable, insert a dbg.value
1420 // at each load and store to the alloca and erase the dbg.declare.
1421 // The dbg.values allow tracking a variable even if it is not
1422 // stored on the stack, while the dbg.declare can only describe
1423 // the stack slot (and at a lexical-scope granularity). Later
1424 // passes will attempt to elide the stack slot.
1425 if (!AI
|| isArray(AI
))
1428 // A volatile load/store means that the alloca can't be elided anyway.
1429 if (llvm::any_of(AI
->users(), [](User
*U
) -> bool {
1430 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
))
1431 return LI
->isVolatile();
1432 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
))
1433 return SI
->isVolatile();
1438 for (auto &AIUse
: AI
->uses()) {
1439 User
*U
= AIUse
.getUser();
1440 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1441 if (AIUse
.getOperandNo() == 1)
1442 ConvertDebugDeclareToDebugValue(DDI
, SI
, DIB
);
1443 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1444 ConvertDebugDeclareToDebugValue(DDI
, LI
, DIB
);
1445 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
1446 // This is a call by-value or some other instruction that takes a
1447 // pointer to the variable. Insert a *value* intrinsic that describes
1448 // the variable by dereferencing the alloca.
1449 DebugLoc NewLoc
= getDebugValueLoc(DDI
, nullptr);
1451 DIExpression::append(DDI
->getExpression(), dwarf::DW_OP_deref
);
1452 DIB
.insertDbgValueIntrinsic(AI
, DDI
->getVariable(), DerefExpr
, NewLoc
,
1456 DDI
->eraseFromParent();
1461 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
1462 void llvm::insertDebugValuesForPHIs(BasicBlock
*BB
,
1463 SmallVectorImpl
<PHINode
*> &InsertedPHIs
) {
1464 assert(BB
&& "No BasicBlock to clone dbg.value(s) from.");
1465 if (InsertedPHIs
.size() == 0)
1468 // Map existing PHI nodes to their dbg.values.
1469 ValueToValueMapTy DbgValueMap
;
1470 for (auto &I
: *BB
) {
1471 if (auto DbgII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
1472 if (auto *Loc
= dyn_cast_or_null
<PHINode
>(DbgII
->getVariableLocation()))
1473 DbgValueMap
.insert({Loc
, DbgII
});
1476 if (DbgValueMap
.size() == 0)
1479 // Then iterate through the new PHIs and look to see if they use one of the
1480 // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will
1481 // propagate the info through the new PHI.
1482 LLVMContext
&C
= BB
->getContext();
1483 for (auto PHI
: InsertedPHIs
) {
1484 BasicBlock
*Parent
= PHI
->getParent();
1485 // Avoid inserting an intrinsic into an EH block.
1486 if (Parent
->getFirstNonPHI()->isEHPad())
1488 auto PhiMAV
= MetadataAsValue::get(C
, ValueAsMetadata::get(PHI
));
1489 for (auto VI
: PHI
->operand_values()) {
1490 auto V
= DbgValueMap
.find(VI
);
1491 if (V
!= DbgValueMap
.end()) {
1492 auto *DbgII
= cast
<DbgVariableIntrinsic
>(V
->second
);
1493 Instruction
*NewDbgII
= DbgII
->clone();
1494 NewDbgII
->setOperand(0, PhiMAV
);
1495 auto InsertionPt
= Parent
->getFirstInsertionPt();
1496 assert(InsertionPt
!= Parent
->end() && "Ill-formed basic block");
1497 NewDbgII
->insertBefore(&*InsertionPt
);
1503 /// Finds all intrinsics declaring local variables as living in the memory that
1504 /// 'V' points to. This may include a mix of dbg.declare and
1505 /// dbg.addr intrinsics.
1506 TinyPtrVector
<DbgVariableIntrinsic
*> llvm::FindDbgAddrUses(Value
*V
) {
1507 // This function is hot. Check whether the value has any metadata to avoid a
1509 if (!V
->isUsedByMetadata())
1511 auto *L
= LocalAsMetadata::getIfExists(V
);
1514 auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
);
1518 TinyPtrVector
<DbgVariableIntrinsic
*> Declares
;
1519 for (User
*U
: MDV
->users()) {
1520 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1521 if (DII
->isAddressOfVariable())
1522 Declares
.push_back(DII
);
1528 void llvm::findDbgValues(SmallVectorImpl
<DbgValueInst
*> &DbgValues
, Value
*V
) {
1529 // This function is hot. Check whether the value has any metadata to avoid a
1531 if (!V
->isUsedByMetadata())
1533 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1534 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1535 for (User
*U
: MDV
->users())
1536 if (DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(U
))
1537 DbgValues
.push_back(DVI
);
1540 void llvm::findDbgUsers(SmallVectorImpl
<DbgVariableIntrinsic
*> &DbgUsers
,
1542 // This function is hot. Check whether the value has any metadata to avoid a
1544 if (!V
->isUsedByMetadata())
1546 if (auto *L
= LocalAsMetadata::getIfExists(V
))
1547 if (auto *MDV
= MetadataAsValue::getIfExists(V
->getContext(), L
))
1548 for (User
*U
: MDV
->users())
1549 if (DbgVariableIntrinsic
*DII
= dyn_cast
<DbgVariableIntrinsic
>(U
))
1550 DbgUsers
.push_back(DII
);
1553 bool llvm::replaceDbgDeclare(Value
*Address
, Value
*NewAddress
,
1554 Instruction
*InsertBefore
, DIBuilder
&Builder
,
1555 uint8_t DIExprFlags
, int Offset
) {
1556 auto DbgAddrs
= FindDbgAddrUses(Address
);
1557 for (DbgVariableIntrinsic
*DII
: DbgAddrs
) {
1558 DebugLoc Loc
= DII
->getDebugLoc();
1559 auto *DIVar
= DII
->getVariable();
1560 auto *DIExpr
= DII
->getExpression();
1561 assert(DIVar
&& "Missing variable");
1562 DIExpr
= DIExpression::prepend(DIExpr
, DIExprFlags
, Offset
);
1563 // Insert llvm.dbg.declare immediately before InsertBefore, and remove old
1564 // llvm.dbg.declare.
1565 Builder
.insertDeclare(NewAddress
, DIVar
, DIExpr
, Loc
, InsertBefore
);
1566 if (DII
== InsertBefore
)
1567 InsertBefore
= InsertBefore
->getNextNode();
1568 DII
->eraseFromParent();
1570 return !DbgAddrs
.empty();
1573 bool llvm::replaceDbgDeclareForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1574 DIBuilder
&Builder
, uint8_t DIExprFlags
,
1576 return replaceDbgDeclare(AI
, NewAllocaAddress
, AI
->getNextNode(), Builder
,
1577 DIExprFlags
, Offset
);
1580 static void replaceOneDbgValueForAlloca(DbgValueInst
*DVI
, Value
*NewAddress
,
1581 DIBuilder
&Builder
, int Offset
) {
1582 DebugLoc Loc
= DVI
->getDebugLoc();
1583 auto *DIVar
= DVI
->getVariable();
1584 auto *DIExpr
= DVI
->getExpression();
1585 assert(DIVar
&& "Missing variable");
1587 // This is an alloca-based llvm.dbg.value. The first thing it should do with
1588 // the alloca pointer is dereference it. Otherwise we don't know how to handle
1590 if (!DIExpr
|| DIExpr
->getNumElements() < 1 ||
1591 DIExpr
->getElement(0) != dwarf::DW_OP_deref
)
1594 // Insert the offset immediately after the first deref.
1595 // We could just change the offset argument of dbg.value, but it's unsigned...
1597 SmallVector
<uint64_t, 4> Ops
;
1598 Ops
.push_back(dwarf::DW_OP_deref
);
1599 DIExpression::appendOffset(Ops
, Offset
);
1600 Ops
.append(DIExpr
->elements_begin() + 1, DIExpr
->elements_end());
1601 DIExpr
= Builder
.createExpression(Ops
);
1604 Builder
.insertDbgValueIntrinsic(NewAddress
, DIVar
, DIExpr
, Loc
, DVI
);
1605 DVI
->eraseFromParent();
1608 void llvm::replaceDbgValueForAlloca(AllocaInst
*AI
, Value
*NewAllocaAddress
,
1609 DIBuilder
&Builder
, int Offset
) {
1610 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
1611 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
1612 for (auto UI
= MDV
->use_begin(), UE
= MDV
->use_end(); UI
!= UE
;) {
1614 if (auto *DVI
= dyn_cast
<DbgValueInst
>(U
.getUser()))
1615 replaceOneDbgValueForAlloca(DVI
, NewAllocaAddress
, Builder
, Offset
);
1619 /// Wrap \p V in a ValueAsMetadata instance.
1620 static MetadataAsValue
*wrapValueInMetadata(LLVMContext
&C
, Value
*V
) {
1621 return MetadataAsValue::get(C
, ValueAsMetadata::get(V
));
1624 bool llvm::salvageDebugInfo(Instruction
&I
) {
1625 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
1626 findDbgUsers(DbgUsers
, &I
);
1627 if (DbgUsers
.empty())
1630 return salvageDebugInfoForDbgValues(I
, DbgUsers
);
1633 bool llvm::salvageDebugInfoForDbgValues(
1634 Instruction
&I
, ArrayRef
<DbgVariableIntrinsic
*> DbgUsers
) {
1635 auto &Ctx
= I
.getContext();
1636 auto wrapMD
= [&](Value
*V
) { return wrapValueInMetadata(Ctx
, V
); };
1638 for (auto *DII
: DbgUsers
) {
1639 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they
1640 // are implicitly pointing out the value as a DWARF memory location
1642 bool StackValue
= isa
<DbgValueInst
>(DII
);
1644 DIExpression
*DIExpr
=
1645 salvageDebugInfoImpl(I
, DII
->getExpression(), StackValue
);
1647 // salvageDebugInfoImpl should fail on examining the first element of
1648 // DbgUsers, or none of them.
1652 DII
->setOperand(0, wrapMD(I
.getOperand(0)));
1653 DII
->setOperand(2, MetadataAsValue::get(Ctx
, DIExpr
));
1654 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII
<< '\n');
1660 DIExpression
*llvm::salvageDebugInfoImpl(Instruction
&I
,
1661 DIExpression
*SrcDIExpr
,
1662 bool WithStackValue
) {
1663 auto &M
= *I
.getModule();
1664 auto &DL
= M
.getDataLayout();
1666 // Apply a vector of opcodes to the source DIExpression.
1667 auto doSalvage
= [&](SmallVectorImpl
<uint64_t> &Ops
) -> DIExpression
* {
1668 DIExpression
*DIExpr
= SrcDIExpr
;
1670 DIExpr
= DIExpression::prependOpcodes(DIExpr
, Ops
, WithStackValue
);
1675 // Apply the given offset to the source DIExpression.
1676 auto applyOffset
= [&](uint64_t Offset
) -> DIExpression
* {
1677 SmallVector
<uint64_t, 8> Ops
;
1678 DIExpression::appendOffset(Ops
, Offset
);
1679 return doSalvage(Ops
);
1682 // initializer-list helper for applying operators to the source DIExpression.
1684 [&](std::initializer_list
<uint64_t> Opcodes
) -> DIExpression
* {
1685 SmallVector
<uint64_t, 8> Ops(Opcodes
);
1686 return doSalvage(Ops
);
1689 if (auto *CI
= dyn_cast
<CastInst
>(&I
)) {
1690 // No-op casts and zexts are irrelevant for debug info.
1691 if (CI
->isNoopCast(DL
) || isa
<ZExtInst
>(&I
))
1694 Type
*Type
= CI
->getType();
1695 // Casts other than Trunc or SExt to scalar types cannot be salvaged.
1696 if (Type
->isVectorTy() || (!isa
<TruncInst
>(&I
) && !isa
<SExtInst
>(&I
)))
1699 Value
*FromValue
= CI
->getOperand(0);
1700 unsigned FromTypeBitSize
= FromValue
->getType()->getScalarSizeInBits();
1702 unsigned ToTypeBitSize
= Type
->getScalarSizeInBits();
1704 // The result of the cast will be sign extended iff the instruction is a
1705 // SExt; signedness is otherwise irrelevant on the expression stack.
1707 isa
<SExtInst
>(&I
) ? dwarf::DW_ATE_signed
: dwarf::DW_ATE_unsigned
;
1709 return applyOps({dwarf::DW_OP_LLVM_convert
, FromTypeBitSize
, Encoding
,
1710 dwarf::DW_OP_LLVM_convert
, ToTypeBitSize
, Encoding
});
1713 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
1715 M
.getDataLayout().getIndexSizeInBits(GEP
->getPointerAddressSpace());
1716 // Rewrite a constant GEP into a DIExpression.
1717 APInt
Offset(BitWidth
, 0);
1718 if (GEP
->accumulateConstantOffset(M
.getDataLayout(), Offset
)) {
1719 return applyOffset(Offset
.getSExtValue());
1723 } else if (auto *BI
= dyn_cast
<BinaryOperator
>(&I
)) {
1724 // Rewrite binary operations with constant integer operands.
1725 auto *ConstInt
= dyn_cast
<ConstantInt
>(I
.getOperand(1));
1726 if (!ConstInt
|| ConstInt
->getBitWidth() > 64)
1729 uint64_t Val
= ConstInt
->getSExtValue();
1730 switch (BI
->getOpcode()) {
1731 case Instruction::Add
:
1732 return applyOffset(Val
);
1733 case Instruction::Sub
:
1734 return applyOffset(-int64_t(Val
));
1735 case Instruction::Mul
:
1736 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mul
});
1737 case Instruction::SDiv
:
1738 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_div
});
1739 case Instruction::SRem
:
1740 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_mod
});
1741 case Instruction::Or
:
1742 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_or
});
1743 case Instruction::And
:
1744 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_and
});
1745 case Instruction::Xor
:
1746 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_xor
});
1747 case Instruction::Shl
:
1748 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shl
});
1749 case Instruction::LShr
:
1750 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shr
});
1751 case Instruction::AShr
:
1752 return applyOps({dwarf::DW_OP_constu
, Val
, dwarf::DW_OP_shra
});
1754 // TODO: Salvage constants from each kind of binop we know about.
1757 // *Not* to do: we should not attempt to salvage load instructions,
1758 // because the validity and lifetime of a dbg.value containing
1759 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples.
1764 /// A replacement for a dbg.value expression.
1765 using DbgValReplacement
= Optional
<DIExpression
*>;
1767 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr,
1768 /// possibly moving/deleting users to prevent use-before-def. Returns true if
1769 /// changes are made.
1770 static bool rewriteDebugUsers(
1771 Instruction
&From
, Value
&To
, Instruction
&DomPoint
, DominatorTree
&DT
,
1772 function_ref
<DbgValReplacement(DbgVariableIntrinsic
&DII
)> RewriteExpr
) {
1773 // Find debug users of From.
1774 SmallVector
<DbgVariableIntrinsic
*, 1> Users
;
1775 findDbgUsers(Users
, &From
);
1779 // Prevent use-before-def of To.
1780 bool Changed
= false;
1781 SmallPtrSet
<DbgVariableIntrinsic
*, 1> DeleteOrSalvage
;
1782 if (isa
<Instruction
>(&To
)) {
1783 bool DomPointAfterFrom
= From
.getNextNonDebugInstruction() == &DomPoint
;
1785 for (auto *DII
: Users
) {
1786 // It's common to see a debug user between From and DomPoint. Move it
1787 // after DomPoint to preserve the variable update without any reordering.
1788 if (DomPointAfterFrom
&& DII
->getNextNonDebugInstruction() == &DomPoint
) {
1789 LLVM_DEBUG(dbgs() << "MOVE: " << *DII
<< '\n');
1790 DII
->moveAfter(&DomPoint
);
1793 // Users which otherwise aren't dominated by the replacement value must
1794 // be salvaged or deleted.
1795 } else if (!DT
.dominates(&DomPoint
, DII
)) {
1796 DeleteOrSalvage
.insert(DII
);
1801 // Update debug users without use-before-def risk.
1802 for (auto *DII
: Users
) {
1803 if (DeleteOrSalvage
.count(DII
))
1806 LLVMContext
&Ctx
= DII
->getContext();
1807 DbgValReplacement DVR
= RewriteExpr(*DII
);
1811 DII
->setOperand(0, wrapValueInMetadata(Ctx
, &To
));
1812 DII
->setOperand(2, MetadataAsValue::get(Ctx
, *DVR
));
1813 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII
<< '\n');
1817 if (!DeleteOrSalvage
.empty()) {
1818 // Try to salvage the remaining debug users.
1819 Changed
|= salvageDebugInfo(From
);
1821 // Delete the debug users which weren't salvaged.
1822 for (auto *DII
: DeleteOrSalvage
) {
1823 if (DII
->getVariableLocation() == &From
) {
1824 LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII
<< '\n');
1825 DII
->eraseFromParent();
1834 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would
1835 /// losslessly preserve the bits and semantics of the value. This predicate is
1836 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result.
1838 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it
1839 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>,
1840 /// and also does not allow lossless pointer <-> integer conversions.
1841 static bool isBitCastSemanticsPreserving(const DataLayout
&DL
, Type
*FromTy
,
1843 // Trivially compatible types.
1847 // Handle compatible pointer <-> integer conversions.
1848 if (FromTy
->isIntOrPtrTy() && ToTy
->isIntOrPtrTy()) {
1849 bool SameSize
= DL
.getTypeSizeInBits(FromTy
) == DL
.getTypeSizeInBits(ToTy
);
1850 bool LosslessConversion
= !DL
.isNonIntegralPointerType(FromTy
) &&
1851 !DL
.isNonIntegralPointerType(ToTy
);
1852 return SameSize
&& LosslessConversion
;
1855 // TODO: This is not exhaustive.
1859 bool llvm::replaceAllDbgUsesWith(Instruction
&From
, Value
&To
,
1860 Instruction
&DomPoint
, DominatorTree
&DT
) {
1861 // Exit early if From has no debug users.
1862 if (!From
.isUsedByMetadata())
1865 assert(&From
!= &To
&& "Can't replace something with itself");
1867 Type
*FromTy
= From
.getType();
1868 Type
*ToTy
= To
.getType();
1870 auto Identity
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1871 return DII
.getExpression();
1874 // Handle no-op conversions.
1875 Module
&M
= *From
.getModule();
1876 const DataLayout
&DL
= M
.getDataLayout();
1877 if (isBitCastSemanticsPreserving(DL
, FromTy
, ToTy
))
1878 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1880 // Handle integer-to-integer widening and narrowing.
1881 // FIXME: Use DW_OP_convert when it's available everywhere.
1882 if (FromTy
->isIntegerTy() && ToTy
->isIntegerTy()) {
1883 uint64_t FromBits
= FromTy
->getPrimitiveSizeInBits();
1884 uint64_t ToBits
= ToTy
->getPrimitiveSizeInBits();
1885 assert(FromBits
!= ToBits
&& "Unexpected no-op conversion");
1887 // When the width of the result grows, assume that a debugger will only
1888 // access the low `FromBits` bits when inspecting the source variable.
1889 if (FromBits
< ToBits
)
1890 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, Identity
);
1892 // The width of the result has shrunk. Use sign/zero extension to describe
1893 // the source variable's high bits.
1894 auto SignOrZeroExt
= [&](DbgVariableIntrinsic
&DII
) -> DbgValReplacement
{
1895 DILocalVariable
*Var
= DII
.getVariable();
1897 // Without knowing signedness, sign/zero extension isn't possible.
1898 auto Signedness
= Var
->getSignedness();
1902 bool Signed
= *Signedness
== DIBasicType::Signedness::Signed
;
1903 dwarf::TypeKind TK
= Signed
? dwarf::DW_ATE_signed
: dwarf::DW_ATE_unsigned
;
1904 SmallVector
<uint64_t, 8> Ops({dwarf::DW_OP_LLVM_convert
, ToBits
, TK
,
1905 dwarf::DW_OP_LLVM_convert
, FromBits
, TK
});
1906 return DIExpression::appendToStack(DII
.getExpression(), Ops
);
1908 return rewriteDebugUsers(From
, To
, DomPoint
, DT
, SignOrZeroExt
);
1911 // TODO: Floating-point conversions, vectors.
1915 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock
*BB
) {
1916 unsigned NumDeadInst
= 0;
1917 // Delete the instructions backwards, as it has a reduced likelihood of
1918 // having to update as many def-use and use-def chains.
1919 Instruction
*EndInst
= BB
->getTerminator(); // Last not to be deleted.
1920 while (EndInst
!= &BB
->front()) {
1921 // Delete the next to last instruction.
1922 Instruction
*Inst
= &*--EndInst
->getIterator();
1923 if (!Inst
->use_empty() && !Inst
->getType()->isTokenTy())
1924 Inst
->replaceAllUsesWith(UndefValue::get(Inst
->getType()));
1925 if (Inst
->isEHPad() || Inst
->getType()->isTokenTy()) {
1929 if (!isa
<DbgInfoIntrinsic
>(Inst
))
1931 Inst
->eraseFromParent();
1936 unsigned llvm::changeToUnreachable(Instruction
*I
, bool UseLLVMTrap
,
1937 bool PreserveLCSSA
, DomTreeUpdater
*DTU
,
1938 MemorySSAUpdater
*MSSAU
) {
1939 BasicBlock
*BB
= I
->getParent();
1940 std::vector
<DominatorTree::UpdateType
> Updates
;
1943 MSSAU
->changeToUnreachable(I
);
1945 // Loop over all of the successors, removing BB's entry from any PHI
1948 Updates
.reserve(BB
->getTerminator()->getNumSuccessors());
1949 for (BasicBlock
*Successor
: successors(BB
)) {
1950 Successor
->removePredecessor(BB
, PreserveLCSSA
);
1952 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
1954 // Insert a call to llvm.trap right before this. This turns the undefined
1955 // behavior into a hard fail instead of falling through into random code.
1958 Intrinsic::getDeclaration(BB
->getParent()->getParent(), Intrinsic::trap
);
1959 CallInst
*CallTrap
= CallInst::Create(TrapFn
, "", I
);
1960 CallTrap
->setDebugLoc(I
->getDebugLoc());
1962 auto *UI
= new UnreachableInst(I
->getContext(), I
);
1963 UI
->setDebugLoc(I
->getDebugLoc());
1965 // All instructions after this are dead.
1966 unsigned NumInstrsRemoved
= 0;
1967 BasicBlock::iterator BBI
= I
->getIterator(), BBE
= BB
->end();
1968 while (BBI
!= BBE
) {
1969 if (!BBI
->use_empty())
1970 BBI
->replaceAllUsesWith(UndefValue::get(BBI
->getType()));
1971 BB
->getInstList().erase(BBI
++);
1975 DTU
->applyUpdatesPermissive(Updates
);
1976 return NumInstrsRemoved
;
1979 /// changeToCall - Convert the specified invoke into a normal call.
1980 static void changeToCall(InvokeInst
*II
, DomTreeUpdater
*DTU
= nullptr) {
1981 SmallVector
<Value
*, 8> Args(II
->arg_begin(), II
->arg_end());
1982 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1983 II
->getOperandBundlesAsDefs(OpBundles
);
1984 CallInst
*NewCall
= CallInst::Create(
1985 II
->getFunctionType(), II
->getCalledValue(), Args
, OpBundles
, "", II
);
1986 NewCall
->takeName(II
);
1987 NewCall
->setCallingConv(II
->getCallingConv());
1988 NewCall
->setAttributes(II
->getAttributes());
1989 NewCall
->setDebugLoc(II
->getDebugLoc());
1990 NewCall
->copyMetadata(*II
);
1991 II
->replaceAllUsesWith(NewCall
);
1993 // Follow the call by a branch to the normal destination.
1994 BasicBlock
*NormalDestBB
= II
->getNormalDest();
1995 BranchInst::Create(NormalDestBB
, II
);
1997 // Update PHI nodes in the unwind destination
1998 BasicBlock
*BB
= II
->getParent();
1999 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2000 UnwindDestBB
->removePredecessor(BB
);
2001 II
->eraseFromParent();
2003 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDestBB
}});
2006 BasicBlock
*llvm::changeToInvokeAndSplitBasicBlock(CallInst
*CI
,
2007 BasicBlock
*UnwindEdge
) {
2008 BasicBlock
*BB
= CI
->getParent();
2010 // Convert this function call into an invoke instruction. First, split the
2013 BB
->splitBasicBlock(CI
->getIterator(), CI
->getName() + ".noexc");
2015 // Delete the unconditional branch inserted by splitBasicBlock
2016 BB
->getInstList().pop_back();
2018 // Create the new invoke instruction.
2019 SmallVector
<Value
*, 8> InvokeArgs(CI
->arg_begin(), CI
->arg_end());
2020 SmallVector
<OperandBundleDef
, 1> OpBundles
;
2022 CI
->getOperandBundlesAsDefs(OpBundles
);
2024 // Note: we're round tripping operand bundles through memory here, and that
2025 // can potentially be avoided with a cleverer API design that we do not have
2029 InvokeInst::Create(CI
->getFunctionType(), CI
->getCalledValue(), Split
,
2030 UnwindEdge
, InvokeArgs
, OpBundles
, CI
->getName(), BB
);
2031 II
->setDebugLoc(CI
->getDebugLoc());
2032 II
->setCallingConv(CI
->getCallingConv());
2033 II
->setAttributes(CI
->getAttributes());
2035 // Make sure that anything using the call now uses the invoke! This also
2036 // updates the CallGraph if present, because it uses a WeakTrackingVH.
2037 CI
->replaceAllUsesWith(II
);
2039 // Delete the original call
2040 Split
->getInstList().pop_front();
2044 static bool markAliveBlocks(Function
&F
,
2045 SmallPtrSetImpl
<BasicBlock
*> &Reachable
,
2046 DomTreeUpdater
*DTU
= nullptr) {
2047 SmallVector
<BasicBlock
*, 128> Worklist
;
2048 BasicBlock
*BB
= &F
.front();
2049 Worklist
.push_back(BB
);
2050 Reachable
.insert(BB
);
2051 bool Changed
= false;
2053 BB
= Worklist
.pop_back_val();
2055 // Do a quick scan of the basic block, turning any obviously unreachable
2056 // instructions into LLVM unreachable insts. The instruction combining pass
2057 // canonicalizes unreachable insts into stores to null or undef.
2058 for (Instruction
&I
: *BB
) {
2059 if (auto *CI
= dyn_cast
<CallInst
>(&I
)) {
2060 Value
*Callee
= CI
->getCalledValue();
2061 // Handle intrinsic calls.
2062 if (Function
*F
= dyn_cast
<Function
>(Callee
)) {
2063 auto IntrinsicID
= F
->getIntrinsicID();
2064 // Assumptions that are known to be false are equivalent to
2065 // unreachable. Also, if the condition is undefined, then we make the
2066 // choice most beneficial to the optimizer, and choose that to also be
2068 if (IntrinsicID
== Intrinsic::assume
) {
2069 if (match(CI
->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
2070 // Don't insert a call to llvm.trap right before the unreachable.
2071 changeToUnreachable(CI
, false, false, DTU
);
2075 } else if (IntrinsicID
== Intrinsic::experimental_guard
) {
2076 // A call to the guard intrinsic bails out of the current
2077 // compilation unit if the predicate passed to it is false. If the
2078 // predicate is a constant false, then we know the guard will bail
2079 // out of the current compile unconditionally, so all code following
2082 // Note: unlike in llvm.assume, it is not "obviously profitable" for
2083 // guards to treat `undef` as `false` since a guard on `undef` can
2084 // still be useful for widening.
2085 if (match(CI
->getArgOperand(0), m_Zero()))
2086 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2087 changeToUnreachable(CI
->getNextNode(), /*UseLLVMTrap=*/false,
2093 } else if ((isa
<ConstantPointerNull
>(Callee
) &&
2094 !NullPointerIsDefined(CI
->getFunction())) ||
2095 isa
<UndefValue
>(Callee
)) {
2096 changeToUnreachable(CI
, /*UseLLVMTrap=*/false, false, DTU
);
2100 if (CI
->doesNotReturn() && !CI
->isMustTailCall()) {
2101 // If we found a call to a no-return function, insert an unreachable
2102 // instruction after it. Make sure there isn't *already* one there
2104 if (!isa
<UnreachableInst
>(CI
->getNextNode())) {
2105 // Don't insert a call to llvm.trap right before the unreachable.
2106 changeToUnreachable(CI
->getNextNode(), false, false, DTU
);
2111 } else if (auto *SI
= dyn_cast
<StoreInst
>(&I
)) {
2112 // Store to undef and store to null are undefined and used to signal
2113 // that they should be changed to unreachable by passes that can't
2116 // Don't touch volatile stores.
2117 if (SI
->isVolatile()) continue;
2119 Value
*Ptr
= SI
->getOperand(1);
2121 if (isa
<UndefValue
>(Ptr
) ||
2122 (isa
<ConstantPointerNull
>(Ptr
) &&
2123 !NullPointerIsDefined(SI
->getFunction(),
2124 SI
->getPointerAddressSpace()))) {
2125 changeToUnreachable(SI
, true, false, DTU
);
2132 Instruction
*Terminator
= BB
->getTerminator();
2133 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
)) {
2134 // Turn invokes that call 'nounwind' functions into ordinary calls.
2135 Value
*Callee
= II
->getCalledValue();
2136 if ((isa
<ConstantPointerNull
>(Callee
) &&
2137 !NullPointerIsDefined(BB
->getParent())) ||
2138 isa
<UndefValue
>(Callee
)) {
2139 changeToUnreachable(II
, true, false, DTU
);
2141 } else if (II
->doesNotThrow() && canSimplifyInvokeNoUnwind(&F
)) {
2142 if (II
->use_empty() && II
->onlyReadsMemory()) {
2143 // jump to the normal destination branch.
2144 BasicBlock
*NormalDestBB
= II
->getNormalDest();
2145 BasicBlock
*UnwindDestBB
= II
->getUnwindDest();
2146 BranchInst::Create(NormalDestBB
, II
);
2147 UnwindDestBB
->removePredecessor(II
->getParent());
2148 II
->eraseFromParent();
2150 DTU
->applyUpdatesPermissive(
2151 {{DominatorTree::Delete
, BB
, UnwindDestBB
}});
2153 changeToCall(II
, DTU
);
2156 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Terminator
)) {
2157 // Remove catchpads which cannot be reached.
2158 struct CatchPadDenseMapInfo
{
2159 static CatchPadInst
*getEmptyKey() {
2160 return DenseMapInfo
<CatchPadInst
*>::getEmptyKey();
2163 static CatchPadInst
*getTombstoneKey() {
2164 return DenseMapInfo
<CatchPadInst
*>::getTombstoneKey();
2167 static unsigned getHashValue(CatchPadInst
*CatchPad
) {
2168 return static_cast<unsigned>(hash_combine_range(
2169 CatchPad
->value_op_begin(), CatchPad
->value_op_end()));
2172 static bool isEqual(CatchPadInst
*LHS
, CatchPadInst
*RHS
) {
2173 if (LHS
== getEmptyKey() || LHS
== getTombstoneKey() ||
2174 RHS
== getEmptyKey() || RHS
== getTombstoneKey())
2176 return LHS
->isIdenticalTo(RHS
);
2180 // Set of unique CatchPads.
2181 SmallDenseMap
<CatchPadInst
*, detail::DenseSetEmpty
, 4,
2182 CatchPadDenseMapInfo
, detail::DenseSetPair
<CatchPadInst
*>>
2184 detail::DenseSetEmpty Empty
;
2185 for (CatchSwitchInst::handler_iterator I
= CatchSwitch
->handler_begin(),
2186 E
= CatchSwitch
->handler_end();
2188 BasicBlock
*HandlerBB
= *I
;
2189 auto *CatchPad
= cast
<CatchPadInst
>(HandlerBB
->getFirstNonPHI());
2190 if (!HandlerSet
.insert({CatchPad
, Empty
}).second
) {
2191 CatchSwitch
->removeHandler(I
);
2199 Changed
|= ConstantFoldTerminator(BB
, true, nullptr, DTU
);
2200 for (BasicBlock
*Successor
: successors(BB
))
2201 if (Reachable
.insert(Successor
).second
)
2202 Worklist
.push_back(Successor
);
2203 } while (!Worklist
.empty());
2207 void llvm::removeUnwindEdge(BasicBlock
*BB
, DomTreeUpdater
*DTU
) {
2208 Instruction
*TI
= BB
->getTerminator();
2210 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
2211 changeToCall(II
, DTU
);
2216 BasicBlock
*UnwindDest
;
2218 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
2219 NewTI
= CleanupReturnInst::Create(CRI
->getCleanupPad(), nullptr, CRI
);
2220 UnwindDest
= CRI
->getUnwindDest();
2221 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(TI
)) {
2222 auto *NewCatchSwitch
= CatchSwitchInst::Create(
2223 CatchSwitch
->getParentPad(), nullptr, CatchSwitch
->getNumHandlers(),
2224 CatchSwitch
->getName(), CatchSwitch
);
2225 for (BasicBlock
*PadBB
: CatchSwitch
->handlers())
2226 NewCatchSwitch
->addHandler(PadBB
);
2228 NewTI
= NewCatchSwitch
;
2229 UnwindDest
= CatchSwitch
->getUnwindDest();
2231 llvm_unreachable("Could not find unwind successor");
2234 NewTI
->takeName(TI
);
2235 NewTI
->setDebugLoc(TI
->getDebugLoc());
2236 UnwindDest
->removePredecessor(BB
);
2237 TI
->replaceAllUsesWith(NewTI
);
2238 TI
->eraseFromParent();
2240 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, UnwindDest
}});
2243 /// removeUnreachableBlocks - Remove blocks that are not reachable, even
2244 /// if they are in a dead cycle. Return true if a change was made, false
2245 /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo
2246 /// after modifying the CFG.
2247 bool llvm::removeUnreachableBlocks(Function
&F
, LazyValueInfo
*LVI
,
2248 DomTreeUpdater
*DTU
,
2249 MemorySSAUpdater
*MSSAU
) {
2250 SmallPtrSet
<BasicBlock
*, 16> Reachable
;
2251 bool Changed
= markAliveBlocks(F
, Reachable
, DTU
);
2253 // If there are unreachable blocks in the CFG...
2254 if (Reachable
.size() == F
.size())
2257 assert(Reachable
.size() < F
.size());
2258 NumRemoved
+= F
.size()-Reachable
.size();
2260 SmallPtrSet
<BasicBlock
*, 16> DeadBlockSet
;
2261 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ++I
) {
2263 if (Reachable
.count(BB
))
2265 DeadBlockSet
.insert(BB
);
2269 MSSAU
->removeBlocks(DeadBlockSet
);
2271 // Loop over all of the basic blocks that are not reachable, dropping all of
2272 // their internal references. Update DTU and LVI if available.
2273 std::vector
<DominatorTree::UpdateType
> Updates
;
2274 for (auto *BB
: DeadBlockSet
) {
2275 for (BasicBlock
*Successor
: successors(BB
)) {
2276 if (!DeadBlockSet
.count(Successor
))
2277 Successor
->removePredecessor(BB
);
2279 Updates
.push_back({DominatorTree::Delete
, BB
, Successor
});
2282 LVI
->eraseBlock(BB
);
2283 BB
->dropAllReferences();
2285 for (Function::iterator I
= ++F
.begin(); I
!= F
.end();) {
2287 if (Reachable
.count(BB
)) {
2292 // Remove the terminator of BB to clear the successor list of BB.
2293 if (BB
->getTerminator())
2294 BB
->getInstList().pop_back();
2295 new UnreachableInst(BB
->getContext(), BB
);
2296 assert(succ_empty(BB
) && "The successor list of BB isn't empty before "
2297 "applying corresponding DTU updates.");
2300 I
= F
.getBasicBlockList().erase(I
);
2305 DTU
->applyUpdatesPermissive(Updates
);
2306 bool Deleted
= false;
2307 for (auto *BB
: DeadBlockSet
) {
2308 if (DTU
->isBBPendingDeletion(BB
))
2320 void llvm::combineMetadata(Instruction
*K
, const Instruction
*J
,
2321 ArrayRef
<unsigned> KnownIDs
, bool DoesKMove
) {
2322 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> Metadata
;
2323 K
->dropUnknownNonDebugMetadata(KnownIDs
);
2324 K
->getAllMetadataOtherThanDebugLoc(Metadata
);
2325 for (const auto &MD
: Metadata
) {
2326 unsigned Kind
= MD
.first
;
2327 MDNode
*JMD
= J
->getMetadata(Kind
);
2328 MDNode
*KMD
= MD
.second
;
2332 K
->setMetadata(Kind
, nullptr); // Remove unknown metadata
2334 case LLVMContext::MD_dbg
:
2335 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
2336 case LLVMContext::MD_tbaa
:
2337 K
->setMetadata(Kind
, MDNode::getMostGenericTBAA(JMD
, KMD
));
2339 case LLVMContext::MD_alias_scope
:
2340 K
->setMetadata(Kind
, MDNode::getMostGenericAliasScope(JMD
, KMD
));
2342 case LLVMContext::MD_noalias
:
2343 case LLVMContext::MD_mem_parallel_loop_access
:
2344 K
->setMetadata(Kind
, MDNode::intersect(JMD
, KMD
));
2346 case LLVMContext::MD_access_group
:
2347 K
->setMetadata(LLVMContext::MD_access_group
,
2348 intersectAccessGroups(K
, J
));
2350 case LLVMContext::MD_range
:
2352 // If K does move, use most generic range. Otherwise keep the range of
2355 // FIXME: If K does move, we should drop the range info and nonnull.
2356 // Currently this function is used with DoesKMove in passes
2357 // doing hoisting/sinking and the current behavior of using the
2358 // most generic range is correct in those cases.
2359 K
->setMetadata(Kind
, MDNode::getMostGenericRange(JMD
, KMD
));
2361 case LLVMContext::MD_fpmath
:
2362 K
->setMetadata(Kind
, MDNode::getMostGenericFPMath(JMD
, KMD
));
2364 case LLVMContext::MD_invariant_load
:
2365 // Only set the !invariant.load if it is present in both instructions.
2366 K
->setMetadata(Kind
, JMD
);
2368 case LLVMContext::MD_nonnull
:
2369 // If K does move, keep nonull if it is present in both instructions.
2371 K
->setMetadata(Kind
, JMD
);
2373 case LLVMContext::MD_invariant_group
:
2374 // Preserve !invariant.group in K.
2376 case LLVMContext::MD_align
:
2377 K
->setMetadata(Kind
,
2378 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2380 case LLVMContext::MD_dereferenceable
:
2381 case LLVMContext::MD_dereferenceable_or_null
:
2382 K
->setMetadata(Kind
,
2383 MDNode::getMostGenericAlignmentOrDereferenceable(JMD
, KMD
));
2387 // Set !invariant.group from J if J has it. If both instructions have it
2388 // then we will just pick it from J - even when they are different.
2389 // Also make sure that K is load or store - f.e. combining bitcast with load
2390 // could produce bitcast with invariant.group metadata, which is invalid.
2391 // FIXME: we should try to preserve both invariant.group md if they are
2392 // different, but right now instruction can only have one invariant.group.
2393 if (auto *JMD
= J
->getMetadata(LLVMContext::MD_invariant_group
))
2394 if (isa
<LoadInst
>(K
) || isa
<StoreInst
>(K
))
2395 K
->setMetadata(LLVMContext::MD_invariant_group
, JMD
);
2398 void llvm::combineMetadataForCSE(Instruction
*K
, const Instruction
*J
,
2400 unsigned KnownIDs
[] = {
2401 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2402 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2403 LLVMContext::MD_invariant_load
, LLVMContext::MD_nonnull
,
2404 LLVMContext::MD_invariant_group
, LLVMContext::MD_align
,
2405 LLVMContext::MD_dereferenceable
,
2406 LLVMContext::MD_dereferenceable_or_null
,
2407 LLVMContext::MD_access_group
};
2408 combineMetadata(K
, J
, KnownIDs
, KDominatesJ
);
2411 void llvm::patchReplacementInstruction(Instruction
*I
, Value
*Repl
) {
2412 auto *ReplInst
= dyn_cast
<Instruction
>(Repl
);
2416 // Patch the replacement so that it is not more restrictive than the value
2418 // Note that if 'I' is a load being replaced by some operation,
2419 // for example, by an arithmetic operation, then andIRFlags()
2420 // would just erase all math flags from the original arithmetic
2421 // operation, which is clearly not wanted and not needed.
2422 if (!isa
<LoadInst
>(I
))
2423 ReplInst
->andIRFlags(I
);
2425 // FIXME: If both the original and replacement value are part of the
2426 // same control-flow region (meaning that the execution of one
2427 // guarantees the execution of the other), then we can combine the
2428 // noalias scopes here and do better than the general conservative
2429 // answer used in combineMetadata().
2431 // In general, GVN unifies expressions over different control-flow
2432 // regions, and so we need a conservative combination of the noalias
2434 static const unsigned KnownIDs
[] = {
2435 LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
2436 LLVMContext::MD_noalias
, LLVMContext::MD_range
,
2437 LLVMContext::MD_fpmath
, LLVMContext::MD_invariant_load
,
2438 LLVMContext::MD_invariant_group
, LLVMContext::MD_nonnull
,
2439 LLVMContext::MD_access_group
};
2440 combineMetadata(ReplInst
, I
, KnownIDs
, false);
2443 template <typename RootType
, typename DominatesFn
>
2444 static unsigned replaceDominatedUsesWith(Value
*From
, Value
*To
,
2445 const RootType
&Root
,
2446 const DominatesFn
&Dominates
) {
2447 assert(From
->getType() == To
->getType());
2450 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2453 if (!Dominates(Root
, U
))
2456 LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From
->getName()
2457 << "' as " << *To
<< " in " << *U
<< "\n");
2463 unsigned llvm::replaceNonLocalUsesWith(Instruction
*From
, Value
*To
) {
2464 assert(From
->getType() == To
->getType());
2465 auto *BB
= From
->getParent();
2468 for (Value::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
2471 auto *I
= cast
<Instruction
>(U
.getUser());
2472 if (I
->getParent() == BB
)
2480 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2482 const BasicBlockEdge
&Root
) {
2483 auto Dominates
= [&DT
](const BasicBlockEdge
&Root
, const Use
&U
) {
2484 return DT
.dominates(Root
, U
);
2486 return ::replaceDominatedUsesWith(From
, To
, Root
, Dominates
);
2489 unsigned llvm::replaceDominatedUsesWith(Value
*From
, Value
*To
,
2491 const BasicBlock
*BB
) {
2492 auto ProperlyDominates
= [&DT
](const BasicBlock
*BB
, const Use
&U
) {
2493 auto *I
= cast
<Instruction
>(U
.getUser())->getParent();
2494 return DT
.properlyDominates(BB
, I
);
2496 return ::replaceDominatedUsesWith(From
, To
, BB
, ProperlyDominates
);
2499 bool llvm::callsGCLeafFunction(const CallBase
*Call
,
2500 const TargetLibraryInfo
&TLI
) {
2501 // Check if the function is specifically marked as a gc leaf function.
2502 if (Call
->hasFnAttr("gc-leaf-function"))
2504 if (const Function
*F
= Call
->getCalledFunction()) {
2505 if (F
->hasFnAttribute("gc-leaf-function"))
2508 if (auto IID
= F
->getIntrinsicID())
2509 // Most LLVM intrinsics do not take safepoints.
2510 return IID
!= Intrinsic::experimental_gc_statepoint
&&
2511 IID
!= Intrinsic::experimental_deoptimize
;
2514 // Lib calls can be materialized by some passes, and won't be
2515 // marked as 'gc-leaf-function.' All available Libcalls are
2518 if (TLI
.getLibFunc(ImmutableCallSite(Call
), LF
)) {
2525 void llvm::copyNonnullMetadata(const LoadInst
&OldLI
, MDNode
*N
,
2527 auto *NewTy
= NewLI
.getType();
2529 // This only directly applies if the new type is also a pointer.
2530 if (NewTy
->isPointerTy()) {
2531 NewLI
.setMetadata(LLVMContext::MD_nonnull
, N
);
2535 // The only other translation we can do is to integral loads with !range
2537 if (!NewTy
->isIntegerTy())
2540 MDBuilder
MDB(NewLI
.getContext());
2541 const Value
*Ptr
= OldLI
.getPointerOperand();
2542 auto *ITy
= cast
<IntegerType
>(NewTy
);
2543 auto *NullInt
= ConstantExpr::getPtrToInt(
2544 ConstantPointerNull::get(cast
<PointerType
>(Ptr
->getType())), ITy
);
2545 auto *NonNullInt
= ConstantExpr::getAdd(NullInt
, ConstantInt::get(ITy
, 1));
2546 NewLI
.setMetadata(LLVMContext::MD_range
,
2547 MDB
.createRange(NonNullInt
, NullInt
));
2550 void llvm::copyRangeMetadata(const DataLayout
&DL
, const LoadInst
&OldLI
,
2551 MDNode
*N
, LoadInst
&NewLI
) {
2552 auto *NewTy
= NewLI
.getType();
2554 // Give up unless it is converted to a pointer where there is a single very
2555 // valuable mapping we can do reliably.
2556 // FIXME: It would be nice to propagate this in more ways, but the type
2557 // conversions make it hard.
2558 if (!NewTy
->isPointerTy())
2561 unsigned BitWidth
= DL
.getIndexTypeSizeInBits(NewTy
);
2562 if (!getConstantRangeFromMetadata(*N
).contains(APInt(BitWidth
, 0))) {
2563 MDNode
*NN
= MDNode::get(OldLI
.getContext(), None
);
2564 NewLI
.setMetadata(LLVMContext::MD_nonnull
, NN
);
2568 void llvm::dropDebugUsers(Instruction
&I
) {
2569 SmallVector
<DbgVariableIntrinsic
*, 1> DbgUsers
;
2570 findDbgUsers(DbgUsers
, &I
);
2571 for (auto *DII
: DbgUsers
)
2572 DII
->eraseFromParent();
2575 void llvm::hoistAllInstructionsInto(BasicBlock
*DomBlock
, Instruction
*InsertPt
,
2577 // Since we are moving the instructions out of its basic block, we do not
2578 // retain their original debug locations (DILocations) and debug intrinsic
2581 // Doing so would degrade the debugging experience and adversely affect the
2582 // accuracy of profiling information.
2584 // Currently, when hoisting the instructions, we take the following actions:
2585 // - Remove their debug intrinsic instructions.
2586 // - Set their debug locations to the values from the insertion point.
2588 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values
2589 // need to be deleted, is because there will not be any instructions with a
2590 // DILocation in either branch left after performing the transformation. We
2591 // can only insert a dbg.value after the two branches are joined again.
2593 // See PR38762, PR39243 for more details.
2595 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to
2596 // encode predicated DIExpressions that yield different results on different
2598 for (BasicBlock::iterator II
= BB
->begin(), IE
= BB
->end(); II
!= IE
;) {
2599 Instruction
*I
= &*II
;
2600 I
->dropUnknownNonDebugMetadata();
2601 if (I
->isUsedByMetadata())
2603 if (isa
<DbgInfoIntrinsic
>(I
)) {
2604 // Remove DbgInfo Intrinsics.
2605 II
= I
->eraseFromParent();
2608 I
->setDebugLoc(InsertPt
->getDebugLoc());
2611 DomBlock
->getInstList().splice(InsertPt
->getIterator(), BB
->getInstList(),
2613 BB
->getTerminator()->getIterator());
2618 /// A potential constituent of a bitreverse or bswap expression. See
2619 /// collectBitParts for a fuller explanation.
2621 BitPart(Value
*P
, unsigned BW
) : Provider(P
) {
2622 Provenance
.resize(BW
);
2625 /// The Value that this is a bitreverse/bswap of.
2628 /// The "provenance" of each bit. Provenance[A] = B means that bit A
2629 /// in Provider becomes bit B in the result of this expression.
2630 SmallVector
<int8_t, 32> Provenance
; // int8_t means max size is i128.
2632 enum { Unset
= -1 };
2635 } // end anonymous namespace
2637 /// Analyze the specified subexpression and see if it is capable of providing
2638 /// pieces of a bswap or bitreverse. The subexpression provides a potential
2639 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
2640 /// the output of the expression came from a corresponding bit in some other
2641 /// value. This function is recursive, and the end result is a mapping of
2642 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
2643 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
2645 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
2646 /// that the expression deposits the low byte of %X into the high byte of the
2647 /// result and that all other bits are zero. This expression is accepted and a
2648 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
2651 /// To avoid revisiting values, the BitPart results are memoized into the
2652 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
2653 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
2654 /// store BitParts objects, not pointers. As we need the concept of a nullptr
2655 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
2656 /// type instead to provide the same functionality.
2658 /// Because we pass around references into \c BPS, we must use a container that
2659 /// does not invalidate internal references (std::map instead of DenseMap).
2660 static const Optional
<BitPart
> &
2661 collectBitParts(Value
*V
, bool MatchBSwaps
, bool MatchBitReversals
,
2662 std::map
<Value
*, Optional
<BitPart
>> &BPS
, int Depth
) {
2663 auto I
= BPS
.find(V
);
2667 auto &Result
= BPS
[V
] = None
;
2668 auto BitWidth
= cast
<IntegerType
>(V
->getType())->getBitWidth();
2670 // Prevent stack overflow by limiting the recursion depth
2671 if (Depth
== BitPartRecursionMaxDepth
) {
2672 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n");
2676 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
2677 // If this is an or instruction, it may be an inner node of the bswap.
2678 if (I
->getOpcode() == Instruction::Or
) {
2679 auto &A
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2680 MatchBitReversals
, BPS
, Depth
+ 1);
2681 auto &B
= collectBitParts(I
->getOperand(1), MatchBSwaps
,
2682 MatchBitReversals
, BPS
, Depth
+ 1);
2686 // Try and merge the two together.
2687 if (!A
->Provider
|| A
->Provider
!= B
->Provider
)
2690 Result
= BitPart(A
->Provider
, BitWidth
);
2691 for (unsigned i
= 0; i
< A
->Provenance
.size(); ++i
) {
2692 if (A
->Provenance
[i
] != BitPart::Unset
&&
2693 B
->Provenance
[i
] != BitPart::Unset
&&
2694 A
->Provenance
[i
] != B
->Provenance
[i
])
2695 return Result
= None
;
2697 if (A
->Provenance
[i
] == BitPart::Unset
)
2698 Result
->Provenance
[i
] = B
->Provenance
[i
];
2700 Result
->Provenance
[i
] = A
->Provenance
[i
];
2706 // If this is a logical shift by a constant, recurse then shift the result.
2707 if (I
->isLogicalShift() && isa
<ConstantInt
>(I
->getOperand(1))) {
2709 cast
<ConstantInt
>(I
->getOperand(1))->getLimitedValue(~0U);
2710 // Ensure the shift amount is defined.
2711 if (BitShift
> BitWidth
)
2714 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2715 MatchBitReversals
, BPS
, Depth
+ 1);
2720 // Perform the "shift" on BitProvenance.
2721 auto &P
= Result
->Provenance
;
2722 if (I
->getOpcode() == Instruction::Shl
) {
2723 P
.erase(std::prev(P
.end(), BitShift
), P
.end());
2724 P
.insert(P
.begin(), BitShift
, BitPart::Unset
);
2726 P
.erase(P
.begin(), std::next(P
.begin(), BitShift
));
2727 P
.insert(P
.end(), BitShift
, BitPart::Unset
);
2733 // If this is a logical 'and' with a mask that clears bits, recurse then
2734 // unset the appropriate bits.
2735 if (I
->getOpcode() == Instruction::And
&&
2736 isa
<ConstantInt
>(I
->getOperand(1))) {
2737 APInt
Bit(I
->getType()->getPrimitiveSizeInBits(), 1);
2738 const APInt
&AndMask
= cast
<ConstantInt
>(I
->getOperand(1))->getValue();
2740 // Check that the mask allows a multiple of 8 bits for a bswap, for an
2742 unsigned NumMaskedBits
= AndMask
.countPopulation();
2743 if (!MatchBitReversals
&& NumMaskedBits
% 8 != 0)
2746 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2747 MatchBitReversals
, BPS
, Depth
+ 1);
2752 for (unsigned i
= 0; i
< BitWidth
; ++i
, Bit
<<= 1)
2753 // If the AndMask is zero for this bit, clear the bit.
2754 if ((AndMask
& Bit
) == 0)
2755 Result
->Provenance
[i
] = BitPart::Unset
;
2759 // If this is a zext instruction zero extend the result.
2760 if (I
->getOpcode() == Instruction::ZExt
) {
2761 auto &Res
= collectBitParts(I
->getOperand(0), MatchBSwaps
,
2762 MatchBitReversals
, BPS
, Depth
+ 1);
2766 Result
= BitPart(Res
->Provider
, BitWidth
);
2767 auto NarrowBitWidth
=
2768 cast
<IntegerType
>(cast
<ZExtInst
>(I
)->getSrcTy())->getBitWidth();
2769 for (unsigned i
= 0; i
< NarrowBitWidth
; ++i
)
2770 Result
->Provenance
[i
] = Res
->Provenance
[i
];
2771 for (unsigned i
= NarrowBitWidth
; i
< BitWidth
; ++i
)
2772 Result
->Provenance
[i
] = BitPart::Unset
;
2777 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
2778 // the input value to the bswap/bitreverse.
2779 Result
= BitPart(V
, BitWidth
);
2780 for (unsigned i
= 0; i
< BitWidth
; ++i
)
2781 Result
->Provenance
[i
] = i
;
2785 static bool bitTransformIsCorrectForBSwap(unsigned From
, unsigned To
,
2786 unsigned BitWidth
) {
2787 if (From
% 8 != To
% 8)
2789 // Convert from bit indices to byte indices and check for a byte reversal.
2793 return From
== BitWidth
- To
- 1;
2796 static bool bitTransformIsCorrectForBitReverse(unsigned From
, unsigned To
,
2797 unsigned BitWidth
) {
2798 return From
== BitWidth
- To
- 1;
2801 bool llvm::recognizeBSwapOrBitReverseIdiom(
2802 Instruction
*I
, bool MatchBSwaps
, bool MatchBitReversals
,
2803 SmallVectorImpl
<Instruction
*> &InsertedInsts
) {
2804 if (Operator::getOpcode(I
) != Instruction::Or
)
2806 if (!MatchBSwaps
&& !MatchBitReversals
)
2808 IntegerType
*ITy
= dyn_cast
<IntegerType
>(I
->getType());
2809 if (!ITy
|| ITy
->getBitWidth() > 128)
2810 return false; // Can't do vectors or integers > 128 bits.
2811 unsigned BW
= ITy
->getBitWidth();
2813 unsigned DemandedBW
= BW
;
2814 IntegerType
*DemandedTy
= ITy
;
2815 if (I
->hasOneUse()) {
2816 if (TruncInst
*Trunc
= dyn_cast
<TruncInst
>(I
->user_back())) {
2817 DemandedTy
= cast
<IntegerType
>(Trunc
->getType());
2818 DemandedBW
= DemandedTy
->getBitWidth();
2822 // Try to find all the pieces corresponding to the bswap.
2823 std::map
<Value
*, Optional
<BitPart
>> BPS
;
2824 auto Res
= collectBitParts(I
, MatchBSwaps
, MatchBitReversals
, BPS
, 0);
2827 auto &BitProvenance
= Res
->Provenance
;
2829 // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2830 // only byteswap values with an even number of bytes.
2831 bool OKForBSwap
= DemandedBW
% 16 == 0, OKForBitReverse
= true;
2832 for (unsigned i
= 0; i
< DemandedBW
; ++i
) {
2834 bitTransformIsCorrectForBSwap(BitProvenance
[i
], i
, DemandedBW
);
2836 bitTransformIsCorrectForBitReverse(BitProvenance
[i
], i
, DemandedBW
);
2839 Intrinsic::ID Intrin
;
2840 if (OKForBSwap
&& MatchBSwaps
)
2841 Intrin
= Intrinsic::bswap
;
2842 else if (OKForBitReverse
&& MatchBitReversals
)
2843 Intrin
= Intrinsic::bitreverse
;
2847 if (ITy
!= DemandedTy
) {
2848 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, DemandedTy
);
2849 Value
*Provider
= Res
->Provider
;
2850 IntegerType
*ProviderTy
= cast
<IntegerType
>(Provider
->getType());
2851 // We may need to truncate the provider.
2852 if (DemandedTy
!= ProviderTy
) {
2853 auto *Trunc
= CastInst::Create(Instruction::Trunc
, Provider
, DemandedTy
,
2855 InsertedInsts
.push_back(Trunc
);
2858 auto *CI
= CallInst::Create(F
, Provider
, "rev", I
);
2859 InsertedInsts
.push_back(CI
);
2860 auto *ExtInst
= CastInst::Create(Instruction::ZExt
, CI
, ITy
, "zext", I
);
2861 InsertedInsts
.push_back(ExtInst
);
2865 Function
*F
= Intrinsic::getDeclaration(I
->getModule(), Intrin
, ITy
);
2866 InsertedInsts
.push_back(CallInst::Create(F
, Res
->Provider
, "rev", I
));
2870 // CodeGen has special handling for some string functions that may replace
2871 // them with target-specific intrinsics. Since that'd skip our interceptors
2872 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2873 // we mark affected calls as NoBuiltin, which will disable optimization
2875 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2876 CallInst
*CI
, const TargetLibraryInfo
*TLI
) {
2877 Function
*F
= CI
->getCalledFunction();
2879 if (F
&& !F
->hasLocalLinkage() && F
->hasName() &&
2880 TLI
->getLibFunc(F
->getName(), Func
) && TLI
->hasOptimizedCodeGen(Func
) &&
2881 !F
->doesNotAccessMemory())
2882 CI
->addAttribute(AttributeList::FunctionIndex
, Attribute::NoBuiltin
);
2885 bool llvm::canReplaceOperandWithVariable(const Instruction
*I
, unsigned OpIdx
) {
2886 // We can't have a PHI with a metadata type.
2887 if (I
->getOperand(OpIdx
)->getType()->isMetadataTy())
2891 if (!isa
<Constant
>(I
->getOperand(OpIdx
)))
2894 switch (I
->getOpcode()) {
2897 case Instruction::Call
:
2898 case Instruction::Invoke
:
2899 // Can't handle inline asm. Skip it.
2900 if (isa
<InlineAsm
>(ImmutableCallSite(I
).getCalledValue()))
2902 // Many arithmetic intrinsics have no issue taking a
2903 // variable, however it's hard to distingish these from
2904 // specials such as @llvm.frameaddress that require a constant.
2905 if (isa
<IntrinsicInst
>(I
))
2908 // Constant bundle operands may need to retain their constant-ness for
2910 if (ImmutableCallSite(I
).isBundleOperand(OpIdx
))
2913 case Instruction::ShuffleVector
:
2914 // Shufflevector masks are constant.
2916 case Instruction::Switch
:
2917 case Instruction::ExtractValue
:
2918 // All operands apart from the first are constant.
2920 case Instruction::InsertValue
:
2921 // All operands apart from the first and the second are constant.
2923 case Instruction::Alloca
:
2924 // Static allocas (constant size in the entry block) are handled by
2925 // prologue/epilogue insertion so they're free anyway. We definitely don't
2926 // want to make them non-constant.
2927 return !cast
<AllocaInst
>(I
)->isStaticAlloca();
2928 case Instruction::GetElementPtr
:
2931 gep_type_iterator It
= gep_type_begin(I
);
2932 for (auto E
= std::next(It
, OpIdx
); It
!= E
; ++It
)
2939 using AllocaForValueMapTy
= DenseMap
<Value
*, AllocaInst
*>;
2940 AllocaInst
*llvm::findAllocaForValue(Value
*V
,
2941 AllocaForValueMapTy
&AllocaForValue
) {
2942 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2944 // See if we've already calculated (or started to calculate) alloca for a
2946 AllocaForValueMapTy::iterator I
= AllocaForValue
.find(V
);
2947 if (I
!= AllocaForValue
.end())
2949 // Store 0 while we're calculating alloca for value V to avoid
2950 // infinite recursion if the value references itself.
2951 AllocaForValue
[V
] = nullptr;
2952 AllocaInst
*Res
= nullptr;
2953 if (CastInst
*CI
= dyn_cast
<CastInst
>(V
))
2954 Res
= findAllocaForValue(CI
->getOperand(0), AllocaForValue
);
2955 else if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
2956 for (Value
*IncValue
: PN
->incoming_values()) {
2957 // Allow self-referencing phi-nodes.
2960 AllocaInst
*IncValueAI
= findAllocaForValue(IncValue
, AllocaForValue
);
2961 // AI for incoming values should exist and should all be equal.
2962 if (IncValueAI
== nullptr || (Res
!= nullptr && IncValueAI
!= Res
))
2966 } else if (GetElementPtrInst
*EP
= dyn_cast
<GetElementPtrInst
>(V
)) {
2967 Res
= findAllocaForValue(EP
->getPointerOperand(), AllocaForValue
);
2969 LLVM_DEBUG(dbgs() << "Alloca search cancelled on unknown instruction: "
2973 AllocaForValue
[V
] = Res
;