Improve Register Setup
[llvm-core.git] / lib / Transforms / Vectorize / LoopVectorizationLegality.cpp
blobb77108d598f59c44d5c638337e47d29a5a388df3
1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides loop vectorization legality analysis. Original code
11 // resided in LoopVectorize.cpp for a long time.
13 // At this point, it is implemented as a utility class, not as an analysis
14 // pass. It should be easy to create an analysis pass around it if there
15 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/IntrinsicInst.h"
21 using namespace llvm;
23 #define LV_NAME "loop-vectorize"
24 #define DEBUG_TYPE LV_NAME
26 static cl::opt<bool>
27 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
28 cl::desc("Enable if-conversion during vectorization."));
30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
31 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
32 cl::desc("The maximum allowed number of runtime memory checks with a "
33 "vectorize(enable) pragma."));
35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
36 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
37 cl::desc("The maximum number of SCEV checks allowed."));
39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
40 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
41 cl::desc("The maximum number of SCEV checks allowed with a "
42 "vectorize(enable) pragma"));
44 /// Maximum vectorization interleave count.
45 static const unsigned MaxInterleaveFactor = 16;
47 namespace llvm {
49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
50 StringRef RemarkName,
51 Loop *TheLoop,
52 Instruction *I) {
53 Value *CodeRegion = TheLoop->getHeader();
54 DebugLoc DL = TheLoop->getStartLoc();
56 if (I) {
57 CodeRegion = I->getParent();
58 // If there is no debug location attached to the instruction, revert back to
59 // using the loop's.
60 if (I->getDebugLoc())
61 DL = I->getDebugLoc();
64 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
65 R << "loop not vectorized: ";
66 return R;
69 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
70 switch (Kind) {
71 case HK_WIDTH:
72 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
73 case HK_UNROLL:
74 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
75 case HK_FORCE:
76 return (Val <= 1);
77 case HK_ISVECTORIZED:
78 return (Val == 0 || Val == 1);
80 return false;
83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
84 OptimizationRemarkEmitter &ORE)
85 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
86 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
87 Force("vectorize.enable", FK_Undefined, HK_FORCE),
88 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
89 // Populate values with existing loop metadata.
90 getHintsFromMetadata();
92 // force-vector-interleave overrides DisableInterleaving.
93 if (VectorizerParams::isInterleaveForced())
94 Interleave.Value = VectorizerParams::VectorizationInterleave;
96 if (IsVectorized.Value != 1)
97 // If the vectorization width and interleaving count are both 1 then
98 // consider the loop to have been already vectorized because there's
99 // nothing more that we can do.
100 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
101 LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
102 << "LV: Interleaving disabled by the pass manager\n");
105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
106 bool AlwaysVectorize) const {
107 if (getForce() == LoopVectorizeHints::FK_Disabled) {
108 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
109 emitRemarkWithHints();
110 return false;
113 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
114 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
115 emitRemarkWithHints();
116 return false;
119 if (getIsVectorized() == 1) {
120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
121 // FIXME: Add interleave.disable metadata. This will allow
122 // vectorize.disable to be used without disabling the pass and errors
123 // to differentiate between disabled vectorization and a width of 1.
124 ORE.emit([&]() {
125 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
126 "AllDisabled", L->getStartLoc(),
127 L->getHeader())
128 << "loop not vectorized: vectorization and interleaving are "
129 "explicitly disabled, or the loop has already been "
130 "vectorized";
132 return false;
135 return true;
138 void LoopVectorizeHints::emitRemarkWithHints() const {
139 using namespace ore;
141 ORE.emit([&]() {
142 if (Force.Value == LoopVectorizeHints::FK_Disabled)
143 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
144 TheLoop->getStartLoc(),
145 TheLoop->getHeader())
146 << "loop not vectorized: vectorization is explicitly disabled";
147 else {
148 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
149 TheLoop->getStartLoc(), TheLoop->getHeader());
150 R << "loop not vectorized";
151 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
152 R << " (Force=" << NV("Force", true);
153 if (Width.Value != 0)
154 R << ", Vector Width=" << NV("VectorWidth", Width.Value);
155 if (Interleave.Value != 0)
156 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
157 R << ")";
159 return R;
164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
165 if (getWidth() == 1)
166 return LV_NAME;
167 if (getForce() == LoopVectorizeHints::FK_Disabled)
168 return LV_NAME;
169 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
170 return LV_NAME;
171 return OptimizationRemarkAnalysis::AlwaysPrint;
174 void LoopVectorizeHints::getHintsFromMetadata() {
175 MDNode *LoopID = TheLoop->getLoopID();
176 if (!LoopID)
177 return;
179 // First operand should refer to the loop id itself.
180 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
181 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
184 const MDString *S = nullptr;
185 SmallVector<Metadata *, 4> Args;
187 // The expected hint is either a MDString or a MDNode with the first
188 // operand a MDString.
189 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
190 if (!MD || MD->getNumOperands() == 0)
191 continue;
192 S = dyn_cast<MDString>(MD->getOperand(0));
193 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
194 Args.push_back(MD->getOperand(i));
195 } else {
196 S = dyn_cast<MDString>(LoopID->getOperand(i));
197 assert(Args.size() == 0 && "too many arguments for MDString");
200 if (!S)
201 continue;
203 // Check if the hint starts with the loop metadata prefix.
204 StringRef Name = S->getString();
205 if (Args.size() == 1)
206 setHint(Name, Args[0]);
210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
211 if (!Name.startswith(Prefix()))
212 return;
213 Name = Name.substr(Prefix().size(), StringRef::npos);
215 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
216 if (!C)
217 return;
218 unsigned Val = C->getZExtValue();
220 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
221 for (auto H : Hints) {
222 if (Name == H->Name) {
223 if (H->validate(Val))
224 H->Value = Val;
225 else
226 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
227 break;
232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
233 unsigned V) const {
234 LLVMContext &Context = TheLoop->getHeader()->getContext();
235 Metadata *MDs[] = {
236 MDString::get(Context, Name),
237 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
238 return MDNode::get(Context, MDs);
241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
242 ArrayRef<Hint> HintTypes) {
243 MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
244 if (!Name)
245 return false;
247 for (auto H : HintTypes)
248 if (Name->getString().endswith(H.Name))
249 return true;
250 return false;
253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
254 if (HintTypes.empty())
255 return;
257 // Reserve the first element to LoopID (see below).
258 SmallVector<Metadata *, 4> MDs(1);
259 // If the loop already has metadata, then ignore the existing operands.
260 MDNode *LoopID = TheLoop->getLoopID();
261 if (LoopID) {
262 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
263 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
264 // If node in update list, ignore old value.
265 if (!matchesHintMetadataName(Node, HintTypes))
266 MDs.push_back(Node);
270 // Now, add the missing hints.
271 for (auto H : HintTypes)
272 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
274 // Replace current metadata node with new one.
275 LLVMContext &Context = TheLoop->getHeader()->getContext();
276 MDNode *NewLoopID = MDNode::get(Context, MDs);
277 // Set operand 0 to refer to the loop id itself.
278 NewLoopID->replaceOperandWith(0, NewLoopID);
280 TheLoop->setLoopID(NewLoopID);
283 bool LoopVectorizationRequirements::doesNotMeet(
284 Function *F, Loop *L, const LoopVectorizeHints &Hints) {
285 const char *PassName = Hints.vectorizeAnalysisPassName();
286 bool Failed = false;
287 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
288 ORE.emit([&]() {
289 return OptimizationRemarkAnalysisFPCommute(
290 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
291 UnsafeAlgebraInst->getParent())
292 << "loop not vectorized: cannot prove it is safe to reorder "
293 "floating-point operations";
295 Failed = true;
298 // Test if runtime memcheck thresholds are exceeded.
299 bool PragmaThresholdReached =
300 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
301 bool ThresholdReached =
302 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
303 if ((ThresholdReached && !Hints.allowReordering()) ||
304 PragmaThresholdReached) {
305 ORE.emit([&]() {
306 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
307 L->getStartLoc(),
308 L->getHeader())
309 << "loop not vectorized: cannot prove it is safe to reorder "
310 "memory operations";
312 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
313 Failed = true;
316 return Failed;
319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
321 // executing the inner loop will execute the same iterations). This check is
322 // very constrained for now but it will be relaxed in the future. \p Lp is
323 // considered uniform if it meets all the following conditions:
324 // 1) it has a canonical IV (starting from 0 and with stride 1),
325 // 2) its latch terminator is a conditional branch and,
326 // 3) its latch condition is a compare instruction whose operands are the
327 // canonical IV and an OuterLp invariant.
328 // This check doesn't take into account the uniformity of other conditions not
329 // related to the loop latch because they don't affect the loop uniformity.
331 // NOTE: We decided to keep all these checks and its associated documentation
332 // together so that we can easily have a picture of the current supported loop
333 // nests. However, some of the current checks don't depend on \p OuterLp and
334 // would be redundantly executed for each \p Lp if we invoked this function for
335 // different candidate outer loops. This is not the case for now because we
336 // don't currently have the infrastructure to evaluate multiple candidate outer
337 // loops and \p OuterLp will be a fixed parameter while we only support explicit
338 // outer loop vectorization. It's also very likely that these checks go away
339 // before introducing the aforementioned infrastructure. However, if this is not
340 // the case, we should move the \p OuterLp independent checks to a separate
341 // function that is only executed once for each \p Lp.
342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
343 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
345 // If Lp is the outer loop, it's uniform by definition.
346 if (Lp == OuterLp)
347 return true;
348 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
350 // 1.
351 PHINode *IV = Lp->getCanonicalInductionVariable();
352 if (!IV) {
353 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
354 return false;
357 // 2.
358 BasicBlock *Latch = Lp->getLoopLatch();
359 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
360 if (!LatchBr || LatchBr->isUnconditional()) {
361 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
362 return false;
365 // 3.
366 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
367 if (!LatchCmp) {
368 LLVM_DEBUG(
369 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
370 return false;
373 Value *CondOp0 = LatchCmp->getOperand(0);
374 Value *CondOp1 = LatchCmp->getOperand(1);
375 Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
376 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
377 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
378 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
379 return false;
382 return true;
385 // Return true if \p Lp and all its nested loops are uniform with regard to \p
386 // OuterLp.
387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
388 if (!isUniformLoop(Lp, OuterLp))
389 return false;
391 // Check if nested loops are uniform.
392 for (Loop *SubLp : *Lp)
393 if (!isUniformLoopNest(SubLp, OuterLp))
394 return false;
396 return true;
399 /// Check whether it is safe to if-convert this phi node.
401 /// Phi nodes with constant expressions that can trap are not safe to if
402 /// convert.
403 static bool canIfConvertPHINodes(BasicBlock *BB) {
404 for (PHINode &Phi : BB->phis()) {
405 for (Value *V : Phi.incoming_values())
406 if (auto *C = dyn_cast<Constant>(V))
407 if (C->canTrap())
408 return false;
410 return true;
413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
414 if (Ty->isPointerTy())
415 return DL.getIntPtrType(Ty);
417 // It is possible that char's or short's overflow when we ask for the loop's
418 // trip count, work around this by changing the type size.
419 if (Ty->getScalarSizeInBits() < 32)
420 return Type::getInt32Ty(Ty->getContext());
422 return Ty;
425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
426 Ty0 = convertPointerToIntegerType(DL, Ty0);
427 Ty1 = convertPointerToIntegerType(DL, Ty1);
428 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
429 return Ty0;
430 return Ty1;
433 /// Check that the instruction has outside loop users and is not an
434 /// identified reduction variable.
435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
436 SmallPtrSetImpl<Value *> &AllowedExit) {
437 // Reductions, Inductions and non-header phis are allowed to have exit users. All
438 // other instructions must not have external users.
439 if (!AllowedExit.count(Inst))
440 // Check that all of the users of the loop are inside the BB.
441 for (User *U : Inst->users()) {
442 Instruction *UI = cast<Instruction>(U);
443 // This user may be a reduction exit value.
444 if (!TheLoop->contains(UI)) {
445 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
446 return true;
449 return false;
452 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
453 const ValueToValueMap &Strides =
454 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
456 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
457 if (Stride == 1 || Stride == -1)
458 return Stride;
459 return 0;
462 bool LoopVectorizationLegality::isUniform(Value *V) {
463 return LAI->isUniform(V);
466 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
467 assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
468 // Store the result and return it at the end instead of exiting early, in case
469 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
470 bool Result = true;
471 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
473 for (BasicBlock *BB : TheLoop->blocks()) {
474 // Check whether the BB terminator is a BranchInst. Any other terminator is
475 // not supported yet.
476 auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
477 if (!Br) {
478 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
479 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
480 << "loop control flow is not understood by vectorizer");
481 if (DoExtraAnalysis)
482 Result = false;
483 else
484 return false;
487 // Check whether the BranchInst is a supported one. Only unconditional
488 // branches, conditional branches with an outer loop invariant condition or
489 // backedges are supported.
490 if (Br && Br->isConditional() &&
491 !TheLoop->isLoopInvariant(Br->getCondition()) &&
492 !LI->isLoopHeader(Br->getSuccessor(0)) &&
493 !LI->isLoopHeader(Br->getSuccessor(1))) {
494 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
495 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
496 << "loop control flow is not understood by vectorizer");
497 if (DoExtraAnalysis)
498 Result = false;
499 else
500 return false;
504 // Check whether inner loops are uniform. At this point, we only support
505 // simple outer loops scenarios with uniform nested loops.
506 if (!isUniformLoopNest(TheLoop /*loop nest*/,
507 TheLoop /*context outer loop*/)) {
508 LLVM_DEBUG(
509 dbgs()
510 << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
511 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
512 << "loop control flow is not understood by vectorizer");
513 if (DoExtraAnalysis)
514 Result = false;
515 else
516 return false;
519 // Check whether we are able to set up outer loop induction.
520 if (!setupOuterLoopInductions()) {
521 LLVM_DEBUG(
522 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
523 ORE->emit(createMissedAnalysis("UnsupportedPhi")
524 << "Unsupported outer loop Phi(s)");
525 if (DoExtraAnalysis)
526 Result = false;
527 else
528 return false;
531 return Result;
534 void LoopVectorizationLegality::addInductionPhi(
535 PHINode *Phi, const InductionDescriptor &ID,
536 SmallPtrSetImpl<Value *> &AllowedExit) {
537 Inductions[Phi] = ID;
539 // In case this induction also comes with casts that we know we can ignore
540 // in the vectorized loop body, record them here. All casts could be recorded
541 // here for ignoring, but suffices to record only the first (as it is the
542 // only one that may bw used outside the cast sequence).
543 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
544 if (!Casts.empty())
545 InductionCastsToIgnore.insert(*Casts.begin());
547 Type *PhiTy = Phi->getType();
548 const DataLayout &DL = Phi->getModule()->getDataLayout();
550 // Get the widest type.
551 if (!PhiTy->isFloatingPointTy()) {
552 if (!WidestIndTy)
553 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
554 else
555 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
558 // Int inductions are special because we only allow one IV.
559 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
560 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
561 isa<Constant>(ID.getStartValue()) &&
562 cast<Constant>(ID.getStartValue())->isNullValue()) {
564 // Use the phi node with the widest type as induction. Use the last
565 // one if there are multiple (no good reason for doing this other
566 // than it is expedient). We've checked that it begins at zero and
567 // steps by one, so this is a canonical induction variable.
568 if (!PrimaryInduction || PhiTy == WidestIndTy)
569 PrimaryInduction = Phi;
572 // Both the PHI node itself, and the "post-increment" value feeding
573 // back into the PHI node may have external users.
574 // We can allow those uses, except if the SCEVs we have for them rely
575 // on predicates that only hold within the loop, since allowing the exit
576 // currently means re-using this SCEV outside the loop (see PR33706 for more
577 // details).
578 if (PSE.getUnionPredicate().isAlwaysTrue()) {
579 AllowedExit.insert(Phi);
580 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
583 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
586 bool LoopVectorizationLegality::setupOuterLoopInductions() {
587 BasicBlock *Header = TheLoop->getHeader();
589 // Returns true if a given Phi is a supported induction.
590 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
591 InductionDescriptor ID;
592 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
593 ID.getKind() == InductionDescriptor::IK_IntInduction) {
594 addInductionPhi(&Phi, ID, AllowedExit);
595 return true;
596 } else {
597 // Bail out for any Phi in the outer loop header that is not a supported
598 // induction.
599 LLVM_DEBUG(
600 dbgs()
601 << "LV: Found unsupported PHI for outer loop vectorization.\n");
602 return false;
606 if (llvm::all_of(Header->phis(), isSupportedPhi))
607 return true;
608 else
609 return false;
612 bool LoopVectorizationLegality::canVectorizeInstrs() {
613 BasicBlock *Header = TheLoop->getHeader();
615 // Look for the attribute signaling the absence of NaNs.
616 Function &F = *Header->getParent();
617 HasFunNoNaNAttr =
618 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
620 // For each block in the loop.
621 for (BasicBlock *BB : TheLoop->blocks()) {
622 // Scan the instructions in the block and look for hazards.
623 for (Instruction &I : *BB) {
624 if (auto *Phi = dyn_cast<PHINode>(&I)) {
625 Type *PhiTy = Phi->getType();
626 // Check that this PHI type is allowed.
627 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
628 !PhiTy->isPointerTy()) {
629 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
630 << "loop control flow is not understood by vectorizer");
631 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
632 return false;
635 // If this PHINode is not in the header block, then we know that we
636 // can convert it to select during if-conversion. No need to check if
637 // the PHIs in this block are induction or reduction variables.
638 if (BB != Header) {
639 // Non-header phi nodes that have outside uses can be vectorized. Add
640 // them to the list of allowed exits.
641 // Unsafe cyclic dependencies with header phis are identified during
642 // legalization for reduction, induction and first order
643 // recurrences.
644 continue;
647 // We only allow if-converted PHIs with exactly two incoming values.
648 if (Phi->getNumIncomingValues() != 2) {
649 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
650 << "control flow not understood by vectorizer");
651 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
652 return false;
655 RecurrenceDescriptor RedDes;
656 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
657 DT)) {
658 if (RedDes.hasUnsafeAlgebra())
659 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
660 AllowedExit.insert(RedDes.getLoopExitInstr());
661 Reductions[Phi] = RedDes;
662 continue;
665 // TODO: Instead of recording the AllowedExit, it would be good to record the
666 // complementary set: NotAllowedExit. These include (but may not be
667 // limited to):
668 // 1. Reduction phis as they represent the one-before-last value, which
669 // is not available when vectorized
670 // 2. Induction phis and increment when SCEV predicates cannot be used
671 // outside the loop - see addInductionPhi
672 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
673 // outside the loop - see call to hasOutsideLoopUser in the non-phi
674 // handling below
675 // 4. FirstOrderRecurrence phis that can possibly be handled by
676 // extraction.
677 // By recording these, we can then reason about ways to vectorize each
678 // of these NotAllowedExit.
679 InductionDescriptor ID;
680 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
681 addInductionPhi(Phi, ID, AllowedExit);
682 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
683 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
684 continue;
687 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
688 SinkAfter, DT)) {
689 FirstOrderRecurrences.insert(Phi);
690 continue;
693 // As a last resort, coerce the PHI to a AddRec expression
694 // and re-try classifying it a an induction PHI.
695 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
696 addInductionPhi(Phi, ID, AllowedExit);
697 continue;
700 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
701 << "value that could not be identified as "
702 "reduction is used outside the loop");
703 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
704 return false;
705 } // end of PHI handling
707 // We handle calls that:
708 // * Are debug info intrinsics.
709 // * Have a mapping to an IR intrinsic.
710 // * Have a vector version available.
711 auto *CI = dyn_cast<CallInst>(&I);
712 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
713 !isa<DbgInfoIntrinsic>(CI) &&
714 !(CI->getCalledFunction() && TLI &&
715 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
716 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
717 << "call instruction cannot be vectorized");
718 LLVM_DEBUG(
719 dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
720 return false;
723 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
724 // second argument is the same (i.e. loop invariant)
725 if (CI && hasVectorInstrinsicScalarOpd(
726 getVectorIntrinsicIDForCall(CI, TLI), 1)) {
727 auto *SE = PSE.getSE();
728 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
729 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
730 << "intrinsic instruction cannot be vectorized");
731 LLVM_DEBUG(dbgs()
732 << "LV: Found unvectorizable intrinsic " << *CI << "\n");
733 return false;
737 // Check that the instruction return type is vectorizable.
738 // Also, we can't vectorize extractelement instructions.
739 if ((!VectorType::isValidElementType(I.getType()) &&
740 !I.getType()->isVoidTy()) ||
741 isa<ExtractElementInst>(I)) {
742 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
743 << "instruction return type cannot be vectorized");
744 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
745 return false;
748 // Check that the stored type is vectorizable.
749 if (auto *ST = dyn_cast<StoreInst>(&I)) {
750 Type *T = ST->getValueOperand()->getType();
751 if (!VectorType::isValidElementType(T)) {
752 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
753 << "store instruction cannot be vectorized");
754 return false;
757 // FP instructions can allow unsafe algebra, thus vectorizable by
758 // non-IEEE-754 compliant SIMD units.
759 // This applies to floating-point math operations and calls, not memory
760 // operations, shuffles, or casts, as they don't change precision or
761 // semantics.
762 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
763 !I.isFast()) {
764 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
765 Hints->setPotentiallyUnsafe();
768 // Reduction instructions are allowed to have exit users.
769 // All other instructions must not have external users.
770 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
771 // We can safely vectorize loops where instructions within the loop are
772 // used outside the loop only if the SCEV predicates within the loop is
773 // same as outside the loop. Allowing the exit means reusing the SCEV
774 // outside the loop.
775 if (PSE.getUnionPredicate().isAlwaysTrue()) {
776 AllowedExit.insert(&I);
777 continue;
779 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
780 << "value cannot be used outside the loop");
781 return false;
783 } // next instr.
786 if (!PrimaryInduction) {
787 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
788 if (Inductions.empty()) {
789 ORE->emit(createMissedAnalysis("NoInductionVariable")
790 << "loop induction variable could not be identified");
791 return false;
795 // Now we know the widest induction type, check if our found induction
796 // is the same size. If it's not, unset it here and InnerLoopVectorizer
797 // will create another.
798 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
799 PrimaryInduction = nullptr;
801 return true;
804 bool LoopVectorizationLegality::canVectorizeMemory() {
805 LAI = &(*GetLAA)(*TheLoop);
806 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
807 if (LAR) {
808 ORE->emit([&]() {
809 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
810 "loop not vectorized: ", *LAR);
813 if (!LAI->canVectorizeMemory())
814 return false;
816 if (LAI->hasStoreToLoopInvariantAddress()) {
817 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
818 << "write to a loop invariant address could not be vectorized");
819 LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
820 return false;
823 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
824 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
826 return true;
829 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
830 Value *In0 = const_cast<Value *>(V);
831 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
832 if (!PN)
833 return false;
835 return Inductions.count(PN);
838 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
839 auto *Inst = dyn_cast<Instruction>(V);
840 return (Inst && InductionCastsToIgnore.count(Inst));
843 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
844 return isInductionPhi(V) || isCastedInductionVariable(V);
847 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
848 return FirstOrderRecurrences.count(Phi);
851 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
852 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
855 bool LoopVectorizationLegality::blockCanBePredicated(
856 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
857 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
859 for (Instruction &I : *BB) {
860 // Check that we don't have a constant expression that can trap as operand.
861 for (Value *Operand : I.operands()) {
862 if (auto *C = dyn_cast<Constant>(Operand))
863 if (C->canTrap())
864 return false;
866 // We might be able to hoist the load.
867 if (I.mayReadFromMemory()) {
868 auto *LI = dyn_cast<LoadInst>(&I);
869 if (!LI)
870 return false;
871 if (!SafePtrs.count(LI->getPointerOperand())) {
872 // !llvm.mem.parallel_loop_access implies if-conversion safety.
873 // Otherwise, record that the load needs (real or emulated) masking
874 // and let the cost model decide.
875 if (!IsAnnotatedParallel)
876 MaskedOp.insert(LI);
877 continue;
881 if (I.mayWriteToMemory()) {
882 auto *SI = dyn_cast<StoreInst>(&I);
883 if (!SI)
884 return false;
885 // Predicated store requires some form of masking:
886 // 1) masked store HW instruction,
887 // 2) emulation via load-blend-store (only if safe and legal to do so,
888 // be aware on the race conditions), or
889 // 3) element-by-element predicate check and scalar store.
890 MaskedOp.insert(SI);
891 continue;
893 if (I.mayThrow())
894 return false;
897 return true;
900 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
901 if (!EnableIfConversion) {
902 ORE->emit(createMissedAnalysis("IfConversionDisabled")
903 << "if-conversion is disabled");
904 return false;
907 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
909 // A list of pointers that we can safely read and write to.
910 SmallPtrSet<Value *, 8> SafePointes;
912 // Collect safe addresses.
913 for (BasicBlock *BB : TheLoop->blocks()) {
914 if (blockNeedsPredication(BB))
915 continue;
917 for (Instruction &I : *BB)
918 if (auto *Ptr = getLoadStorePointerOperand(&I))
919 SafePointes.insert(Ptr);
922 // Collect the blocks that need predication.
923 BasicBlock *Header = TheLoop->getHeader();
924 for (BasicBlock *BB : TheLoop->blocks()) {
925 // We don't support switch statements inside loops.
926 if (!isa<BranchInst>(BB->getTerminator())) {
927 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
928 << "loop contains a switch statement");
929 return false;
932 // We must be able to predicate all blocks that need to be predicated.
933 if (blockNeedsPredication(BB)) {
934 if (!blockCanBePredicated(BB, SafePointes)) {
935 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
936 << "control flow cannot be substituted for a select");
937 return false;
939 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
940 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
941 << "control flow cannot be substituted for a select");
942 return false;
946 // We can if-convert this loop.
947 return true;
950 // Helper function to canVectorizeLoopNestCFG.
951 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
952 bool UseVPlanNativePath) {
953 assert((UseVPlanNativePath || Lp->empty()) &&
954 "VPlan-native path is not enabled.");
956 // TODO: ORE should be improved to show more accurate information when an
957 // outer loop can't be vectorized because a nested loop is not understood or
958 // legal. Something like: "outer_loop_location: loop not vectorized:
959 // (inner_loop_location) loop control flow is not understood by vectorizer".
961 // Store the result and return it at the end instead of exiting early, in case
962 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
963 bool Result = true;
964 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
966 // We must have a loop in canonical form. Loops with indirectbr in them cannot
967 // be canonicalized.
968 if (!Lp->getLoopPreheader()) {
969 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
970 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
971 << "loop control flow is not understood by vectorizer");
972 if (DoExtraAnalysis)
973 Result = false;
974 else
975 return false;
978 // We must have a single backedge.
979 if (Lp->getNumBackEdges() != 1) {
980 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
981 << "loop control flow is not understood by vectorizer");
982 if (DoExtraAnalysis)
983 Result = false;
984 else
985 return false;
988 // We must have a single exiting block.
989 if (!Lp->getExitingBlock()) {
990 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
991 << "loop control flow is not understood by vectorizer");
992 if (DoExtraAnalysis)
993 Result = false;
994 else
995 return false;
998 // We only handle bottom-tested loops, i.e. loop in which the condition is
999 // checked at the end of each iteration. With that we can assume that all
1000 // instructions in the loop are executed the same number of times.
1001 if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1002 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
1003 << "loop control flow is not understood by vectorizer");
1004 if (DoExtraAnalysis)
1005 Result = false;
1006 else
1007 return false;
1010 return Result;
1013 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1014 Loop *Lp, bool UseVPlanNativePath) {
1015 // Store the result and return it at the end instead of exiting early, in case
1016 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1017 bool Result = true;
1018 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1019 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1020 if (DoExtraAnalysis)
1021 Result = false;
1022 else
1023 return false;
1026 // Recursively check whether the loop control flow of nested loops is
1027 // understood.
1028 for (Loop *SubLp : *Lp)
1029 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1030 if (DoExtraAnalysis)
1031 Result = false;
1032 else
1033 return false;
1036 return Result;
1039 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1040 // Store the result and return it at the end instead of exiting early, in case
1041 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1042 bool Result = true;
1044 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1045 // Check whether the loop-related control flow in the loop nest is expected by
1046 // vectorizer.
1047 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1048 if (DoExtraAnalysis)
1049 Result = false;
1050 else
1051 return false;
1054 // We need to have a loop header.
1055 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1056 << '\n');
1058 // Specific checks for outer loops. We skip the remaining legal checks at this
1059 // point because they don't support outer loops.
1060 if (!TheLoop->empty()) {
1061 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1063 if (!canVectorizeOuterLoop()) {
1064 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1065 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1066 // outer loops.
1067 return false;
1070 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1071 return Result;
1074 assert(TheLoop->empty() && "Inner loop expected.");
1075 // Check if we can if-convert non-single-bb loops.
1076 unsigned NumBlocks = TheLoop->getNumBlocks();
1077 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1078 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1079 if (DoExtraAnalysis)
1080 Result = false;
1081 else
1082 return false;
1085 // Check if we can vectorize the instructions and CFG in this loop.
1086 if (!canVectorizeInstrs()) {
1087 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1088 if (DoExtraAnalysis)
1089 Result = false;
1090 else
1091 return false;
1094 // Go over each instruction and look at memory deps.
1095 if (!canVectorizeMemory()) {
1096 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1097 if (DoExtraAnalysis)
1098 Result = false;
1099 else
1100 return false;
1103 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1104 << (LAI->getRuntimePointerChecking()->Need
1105 ? " (with a runtime bound check)"
1106 : "")
1107 << "!\n");
1109 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1110 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1111 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1113 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1114 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1115 << "Too many SCEV assumptions need to be made and checked "
1116 << "at runtime");
1117 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1118 if (DoExtraAnalysis)
1119 Result = false;
1120 else
1121 return false;
1124 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1125 // we can vectorize, and at this point we don't have any other mem analysis
1126 // which may limit our maximum vectorization factor, so just return true with
1127 // no restrictions.
1128 return Result;
1131 } // namespace llvm