1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file provides loop vectorization legality analysis. Original code
11 // resided in LoopVectorize.cpp for a long time.
13 // At this point, it is implemented as a utility class, not as an analysis
14 // pass. It should be easy to create an analysis pass around it if there
15 // is a need (but D45420 needs to happen first).
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/IntrinsicInst.h"
23 #define LV_NAME "loop-vectorize"
24 #define DEBUG_TYPE LV_NAME
27 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden
,
28 cl::desc("Enable if-conversion during vectorization."));
30 static cl::opt
<unsigned> PragmaVectorizeMemoryCheckThreshold(
31 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden
,
32 cl::desc("The maximum allowed number of runtime memory checks with a "
33 "vectorize(enable) pragma."));
35 static cl::opt
<unsigned> VectorizeSCEVCheckThreshold(
36 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden
,
37 cl::desc("The maximum number of SCEV checks allowed."));
39 static cl::opt
<unsigned> PragmaVectorizeSCEVCheckThreshold(
40 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden
,
41 cl::desc("The maximum number of SCEV checks allowed with a "
42 "vectorize(enable) pragma"));
44 /// Maximum vectorization interleave count.
45 static const unsigned MaxInterleaveFactor
= 16;
49 OptimizationRemarkAnalysis
createLVMissedAnalysis(const char *PassName
,
53 Value
*CodeRegion
= TheLoop
->getHeader();
54 DebugLoc DL
= TheLoop
->getStartLoc();
57 CodeRegion
= I
->getParent();
58 // If there is no debug location attached to the instruction, revert back to
61 DL
= I
->getDebugLoc();
64 OptimizationRemarkAnalysis
R(PassName
, RemarkName
, DL
, CodeRegion
);
65 R
<< "loop not vectorized: ";
69 bool LoopVectorizeHints::Hint::validate(unsigned Val
) {
72 return isPowerOf2_32(Val
) && Val
<= VectorizerParams::MaxVectorWidth
;
74 return isPowerOf2_32(Val
) && Val
<= MaxInterleaveFactor
;
78 return (Val
== 0 || Val
== 1);
83 LoopVectorizeHints::LoopVectorizeHints(const Loop
*L
, bool DisableInterleaving
,
84 OptimizationRemarkEmitter
&ORE
)
85 : Width("vectorize.width", VectorizerParams::VectorizationFactor
, HK_WIDTH
),
86 Interleave("interleave.count", DisableInterleaving
, HK_UNROLL
),
87 Force("vectorize.enable", FK_Undefined
, HK_FORCE
),
88 IsVectorized("isvectorized", 0, HK_ISVECTORIZED
), TheLoop(L
), ORE(ORE
) {
89 // Populate values with existing loop metadata.
90 getHintsFromMetadata();
92 // force-vector-interleave overrides DisableInterleaving.
93 if (VectorizerParams::isInterleaveForced())
94 Interleave
.Value
= VectorizerParams::VectorizationInterleave
;
96 if (IsVectorized
.Value
!= 1)
97 // If the vectorization width and interleaving count are both 1 then
98 // consider the loop to have been already vectorized because there's
99 // nothing more that we can do.
100 IsVectorized
.Value
= Width
.Value
== 1 && Interleave
.Value
== 1;
101 LLVM_DEBUG(if (DisableInterleaving
&& Interleave
.Value
== 1) dbgs()
102 << "LV: Interleaving disabled by the pass manager\n");
105 bool LoopVectorizeHints::allowVectorization(Function
*F
, Loop
*L
,
106 bool AlwaysVectorize
) const {
107 if (getForce() == LoopVectorizeHints::FK_Disabled
) {
108 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
109 emitRemarkWithHints();
113 if (!AlwaysVectorize
&& getForce() != LoopVectorizeHints::FK_Enabled
) {
114 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
115 emitRemarkWithHints();
119 if (getIsVectorized() == 1) {
120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
121 // FIXME: Add interleave.disable metadata. This will allow
122 // vectorize.disable to be used without disabling the pass and errors
123 // to differentiate between disabled vectorization and a width of 1.
125 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
126 "AllDisabled", L
->getStartLoc(),
128 << "loop not vectorized: vectorization and interleaving are "
129 "explicitly disabled, or the loop has already been "
138 void LoopVectorizeHints::emitRemarkWithHints() const {
142 if (Force
.Value
== LoopVectorizeHints::FK_Disabled
)
143 return OptimizationRemarkMissed(LV_NAME
, "MissedExplicitlyDisabled",
144 TheLoop
->getStartLoc(),
145 TheLoop
->getHeader())
146 << "loop not vectorized: vectorization is explicitly disabled";
148 OptimizationRemarkMissed
R(LV_NAME
, "MissedDetails",
149 TheLoop
->getStartLoc(), TheLoop
->getHeader());
150 R
<< "loop not vectorized";
151 if (Force
.Value
== LoopVectorizeHints::FK_Enabled
) {
152 R
<< " (Force=" << NV("Force", true);
153 if (Width
.Value
!= 0)
154 R
<< ", Vector Width=" << NV("VectorWidth", Width
.Value
);
155 if (Interleave
.Value
!= 0)
156 R
<< ", Interleave Count=" << NV("InterleaveCount", Interleave
.Value
);
164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
167 if (getForce() == LoopVectorizeHints::FK_Disabled
)
169 if (getForce() == LoopVectorizeHints::FK_Undefined
&& getWidth() == 0)
171 return OptimizationRemarkAnalysis::AlwaysPrint
;
174 void LoopVectorizeHints::getHintsFromMetadata() {
175 MDNode
*LoopID
= TheLoop
->getLoopID();
179 // First operand should refer to the loop id itself.
180 assert(LoopID
->getNumOperands() > 0 && "requires at least one operand");
181 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop id");
183 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
184 const MDString
*S
= nullptr;
185 SmallVector
<Metadata
*, 4> Args
;
187 // The expected hint is either a MDString or a MDNode with the first
188 // operand a MDString.
189 if (const MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
))) {
190 if (!MD
|| MD
->getNumOperands() == 0)
192 S
= dyn_cast
<MDString
>(MD
->getOperand(0));
193 for (unsigned i
= 1, ie
= MD
->getNumOperands(); i
< ie
; ++i
)
194 Args
.push_back(MD
->getOperand(i
));
196 S
= dyn_cast
<MDString
>(LoopID
->getOperand(i
));
197 assert(Args
.size() == 0 && "too many arguments for MDString");
203 // Check if the hint starts with the loop metadata prefix.
204 StringRef Name
= S
->getString();
205 if (Args
.size() == 1)
206 setHint(Name
, Args
[0]);
210 void LoopVectorizeHints::setHint(StringRef Name
, Metadata
*Arg
) {
211 if (!Name
.startswith(Prefix()))
213 Name
= Name
.substr(Prefix().size(), StringRef::npos
);
215 const ConstantInt
*C
= mdconst::dyn_extract
<ConstantInt
>(Arg
);
218 unsigned Val
= C
->getZExtValue();
220 Hint
*Hints
[] = {&Width
, &Interleave
, &Force
, &IsVectorized
};
221 for (auto H
: Hints
) {
222 if (Name
== H
->Name
) {
223 if (H
->validate(Val
))
226 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name
<< "'\n");
232 MDNode
*LoopVectorizeHints::createHintMetadata(StringRef Name
,
234 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
236 MDString::get(Context
, Name
),
237 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context
), V
))};
238 return MDNode::get(Context
, MDs
);
241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode
*Node
,
242 ArrayRef
<Hint
> HintTypes
) {
243 MDString
*Name
= dyn_cast
<MDString
>(Node
->getOperand(0));
247 for (auto H
: HintTypes
)
248 if (Name
->getString().endswith(H
.Name
))
253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef
<Hint
> HintTypes
) {
254 if (HintTypes
.empty())
257 // Reserve the first element to LoopID (see below).
258 SmallVector
<Metadata
*, 4> MDs(1);
259 // If the loop already has metadata, then ignore the existing operands.
260 MDNode
*LoopID
= TheLoop
->getLoopID();
262 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
263 MDNode
*Node
= cast
<MDNode
>(LoopID
->getOperand(i
));
264 // If node in update list, ignore old value.
265 if (!matchesHintMetadataName(Node
, HintTypes
))
270 // Now, add the missing hints.
271 for (auto H
: HintTypes
)
272 MDs
.push_back(createHintMetadata(Twine(Prefix(), H
.Name
).str(), H
.Value
));
274 // Replace current metadata node with new one.
275 LLVMContext
&Context
= TheLoop
->getHeader()->getContext();
276 MDNode
*NewLoopID
= MDNode::get(Context
, MDs
);
277 // Set operand 0 to refer to the loop id itself.
278 NewLoopID
->replaceOperandWith(0, NewLoopID
);
280 TheLoop
->setLoopID(NewLoopID
);
283 bool LoopVectorizationRequirements::doesNotMeet(
284 Function
*F
, Loop
*L
, const LoopVectorizeHints
&Hints
) {
285 const char *PassName
= Hints
.vectorizeAnalysisPassName();
287 if (UnsafeAlgebraInst
&& !Hints
.allowReordering()) {
289 return OptimizationRemarkAnalysisFPCommute(
290 PassName
, "CantReorderFPOps", UnsafeAlgebraInst
->getDebugLoc(),
291 UnsafeAlgebraInst
->getParent())
292 << "loop not vectorized: cannot prove it is safe to reorder "
293 "floating-point operations";
298 // Test if runtime memcheck thresholds are exceeded.
299 bool PragmaThresholdReached
=
300 NumRuntimePointerChecks
> PragmaVectorizeMemoryCheckThreshold
;
301 bool ThresholdReached
=
302 NumRuntimePointerChecks
> VectorizerParams::RuntimeMemoryCheckThreshold
;
303 if ((ThresholdReached
&& !Hints
.allowReordering()) ||
304 PragmaThresholdReached
) {
306 return OptimizationRemarkAnalysisAliasing(PassName
, "CantReorderMemOps",
309 << "loop not vectorized: cannot prove it is safe to reorder "
312 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
321 // executing the inner loop will execute the same iterations). This check is
322 // very constrained for now but it will be relaxed in the future. \p Lp is
323 // considered uniform if it meets all the following conditions:
324 // 1) it has a canonical IV (starting from 0 and with stride 1),
325 // 2) its latch terminator is a conditional branch and,
326 // 3) its latch condition is a compare instruction whose operands are the
327 // canonical IV and an OuterLp invariant.
328 // This check doesn't take into account the uniformity of other conditions not
329 // related to the loop latch because they don't affect the loop uniformity.
331 // NOTE: We decided to keep all these checks and its associated documentation
332 // together so that we can easily have a picture of the current supported loop
333 // nests. However, some of the current checks don't depend on \p OuterLp and
334 // would be redundantly executed for each \p Lp if we invoked this function for
335 // different candidate outer loops. This is not the case for now because we
336 // don't currently have the infrastructure to evaluate multiple candidate outer
337 // loops and \p OuterLp will be a fixed parameter while we only support explicit
338 // outer loop vectorization. It's also very likely that these checks go away
339 // before introducing the aforementioned infrastructure. However, if this is not
340 // the case, we should move the \p OuterLp independent checks to a separate
341 // function that is only executed once for each \p Lp.
342 static bool isUniformLoop(Loop
*Lp
, Loop
*OuterLp
) {
343 assert(Lp
->getLoopLatch() && "Expected loop with a single latch.");
345 // If Lp is the outer loop, it's uniform by definition.
348 assert(OuterLp
->contains(Lp
) && "OuterLp must contain Lp.");
351 PHINode
*IV
= Lp
->getCanonicalInductionVariable();
353 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
358 BasicBlock
*Latch
= Lp
->getLoopLatch();
359 auto *LatchBr
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
360 if (!LatchBr
|| LatchBr
->isUnconditional()) {
361 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
366 auto *LatchCmp
= dyn_cast
<CmpInst
>(LatchBr
->getCondition());
369 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
373 Value
*CondOp0
= LatchCmp
->getOperand(0);
374 Value
*CondOp1
= LatchCmp
->getOperand(1);
375 Value
*IVUpdate
= IV
->getIncomingValueForBlock(Latch
);
376 if (!(CondOp0
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp1
)) &&
377 !(CondOp1
== IVUpdate
&& OuterLp
->isLoopInvariant(CondOp0
))) {
378 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
385 // Return true if \p Lp and all its nested loops are uniform with regard to \p
387 static bool isUniformLoopNest(Loop
*Lp
, Loop
*OuterLp
) {
388 if (!isUniformLoop(Lp
, OuterLp
))
391 // Check if nested loops are uniform.
392 for (Loop
*SubLp
: *Lp
)
393 if (!isUniformLoopNest(SubLp
, OuterLp
))
399 /// Check whether it is safe to if-convert this phi node.
401 /// Phi nodes with constant expressions that can trap are not safe to if
403 static bool canIfConvertPHINodes(BasicBlock
*BB
) {
404 for (PHINode
&Phi
: BB
->phis()) {
405 for (Value
*V
: Phi
.incoming_values())
406 if (auto *C
= dyn_cast
<Constant
>(V
))
413 static Type
*convertPointerToIntegerType(const DataLayout
&DL
, Type
*Ty
) {
414 if (Ty
->isPointerTy())
415 return DL
.getIntPtrType(Ty
);
417 // It is possible that char's or short's overflow when we ask for the loop's
418 // trip count, work around this by changing the type size.
419 if (Ty
->getScalarSizeInBits() < 32)
420 return Type::getInt32Ty(Ty
->getContext());
425 static Type
*getWiderType(const DataLayout
&DL
, Type
*Ty0
, Type
*Ty1
) {
426 Ty0
= convertPointerToIntegerType(DL
, Ty0
);
427 Ty1
= convertPointerToIntegerType(DL
, Ty1
);
428 if (Ty0
->getScalarSizeInBits() > Ty1
->getScalarSizeInBits())
433 /// Check that the instruction has outside loop users and is not an
434 /// identified reduction variable.
435 static bool hasOutsideLoopUser(const Loop
*TheLoop
, Instruction
*Inst
,
436 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
437 // Reductions, Inductions and non-header phis are allowed to have exit users. All
438 // other instructions must not have external users.
439 if (!AllowedExit
.count(Inst
))
440 // Check that all of the users of the loop are inside the BB.
441 for (User
*U
: Inst
->users()) {
442 Instruction
*UI
= cast
<Instruction
>(U
);
443 // This user may be a reduction exit value.
444 if (!TheLoop
->contains(UI
)) {
445 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI
<< '\n');
452 int LoopVectorizationLegality::isConsecutivePtr(Value
*Ptr
) {
453 const ValueToValueMap
&Strides
=
454 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
456 int Stride
= getPtrStride(PSE
, Ptr
, TheLoop
, Strides
, true, false);
457 if (Stride
== 1 || Stride
== -1)
462 bool LoopVectorizationLegality::isUniform(Value
*V
) {
463 return LAI
->isUniform(V
);
466 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
467 assert(!TheLoop
->empty() && "We are not vectorizing an outer loop.");
468 // Store the result and return it at the end instead of exiting early, in case
469 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
471 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
473 for (BasicBlock
*BB
: TheLoop
->blocks()) {
474 // Check whether the BB terminator is a BranchInst. Any other terminator is
475 // not supported yet.
476 auto *Br
= dyn_cast
<BranchInst
>(BB
->getTerminator());
478 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
479 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
480 << "loop control flow is not understood by vectorizer");
487 // Check whether the BranchInst is a supported one. Only unconditional
488 // branches, conditional branches with an outer loop invariant condition or
489 // backedges are supported.
490 if (Br
&& Br
->isConditional() &&
491 !TheLoop
->isLoopInvariant(Br
->getCondition()) &&
492 !LI
->isLoopHeader(Br
->getSuccessor(0)) &&
493 !LI
->isLoopHeader(Br
->getSuccessor(1))) {
494 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
495 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
496 << "loop control flow is not understood by vectorizer");
504 // Check whether inner loops are uniform. At this point, we only support
505 // simple outer loops scenarios with uniform nested loops.
506 if (!isUniformLoopNest(TheLoop
/*loop nest*/,
507 TheLoop
/*context outer loop*/)) {
510 << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
511 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
512 << "loop control flow is not understood by vectorizer");
519 // Check whether we are able to set up outer loop induction.
520 if (!setupOuterLoopInductions()) {
522 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
523 ORE
->emit(createMissedAnalysis("UnsupportedPhi")
524 << "Unsupported outer loop Phi(s)");
534 void LoopVectorizationLegality::addInductionPhi(
535 PHINode
*Phi
, const InductionDescriptor
&ID
,
536 SmallPtrSetImpl
<Value
*> &AllowedExit
) {
537 Inductions
[Phi
] = ID
;
539 // In case this induction also comes with casts that we know we can ignore
540 // in the vectorized loop body, record them here. All casts could be recorded
541 // here for ignoring, but suffices to record only the first (as it is the
542 // only one that may bw used outside the cast sequence).
543 const SmallVectorImpl
<Instruction
*> &Casts
= ID
.getCastInsts();
545 InductionCastsToIgnore
.insert(*Casts
.begin());
547 Type
*PhiTy
= Phi
->getType();
548 const DataLayout
&DL
= Phi
->getModule()->getDataLayout();
550 // Get the widest type.
551 if (!PhiTy
->isFloatingPointTy()) {
553 WidestIndTy
= convertPointerToIntegerType(DL
, PhiTy
);
555 WidestIndTy
= getWiderType(DL
, PhiTy
, WidestIndTy
);
558 // Int inductions are special because we only allow one IV.
559 if (ID
.getKind() == InductionDescriptor::IK_IntInduction
&&
560 ID
.getConstIntStepValue() && ID
.getConstIntStepValue()->isOne() &&
561 isa
<Constant
>(ID
.getStartValue()) &&
562 cast
<Constant
>(ID
.getStartValue())->isNullValue()) {
564 // Use the phi node with the widest type as induction. Use the last
565 // one if there are multiple (no good reason for doing this other
566 // than it is expedient). We've checked that it begins at zero and
567 // steps by one, so this is a canonical induction variable.
568 if (!PrimaryInduction
|| PhiTy
== WidestIndTy
)
569 PrimaryInduction
= Phi
;
572 // Both the PHI node itself, and the "post-increment" value feeding
573 // back into the PHI node may have external users.
574 // We can allow those uses, except if the SCEVs we have for them rely
575 // on predicates that only hold within the loop, since allowing the exit
576 // currently means re-using this SCEV outside the loop (see PR33706 for more
578 if (PSE
.getUnionPredicate().isAlwaysTrue()) {
579 AllowedExit
.insert(Phi
);
580 AllowedExit
.insert(Phi
->getIncomingValueForBlock(TheLoop
->getLoopLatch()));
583 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
586 bool LoopVectorizationLegality::setupOuterLoopInductions() {
587 BasicBlock
*Header
= TheLoop
->getHeader();
589 // Returns true if a given Phi is a supported induction.
590 auto isSupportedPhi
= [&](PHINode
&Phi
) -> bool {
591 InductionDescriptor ID
;
592 if (InductionDescriptor::isInductionPHI(&Phi
, TheLoop
, PSE
, ID
) &&
593 ID
.getKind() == InductionDescriptor::IK_IntInduction
) {
594 addInductionPhi(&Phi
, ID
, AllowedExit
);
597 // Bail out for any Phi in the outer loop header that is not a supported
601 << "LV: Found unsupported PHI for outer loop vectorization.\n");
606 if (llvm::all_of(Header
->phis(), isSupportedPhi
))
612 bool LoopVectorizationLegality::canVectorizeInstrs() {
613 BasicBlock
*Header
= TheLoop
->getHeader();
615 // Look for the attribute signaling the absence of NaNs.
616 Function
&F
= *Header
->getParent();
618 F
.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
620 // For each block in the loop.
621 for (BasicBlock
*BB
: TheLoop
->blocks()) {
622 // Scan the instructions in the block and look for hazards.
623 for (Instruction
&I
: *BB
) {
624 if (auto *Phi
= dyn_cast
<PHINode
>(&I
)) {
625 Type
*PhiTy
= Phi
->getType();
626 // Check that this PHI type is allowed.
627 if (!PhiTy
->isIntegerTy() && !PhiTy
->isFloatingPointTy() &&
628 !PhiTy
->isPointerTy()) {
629 ORE
->emit(createMissedAnalysis("CFGNotUnderstood", Phi
)
630 << "loop control flow is not understood by vectorizer");
631 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
635 // If this PHINode is not in the header block, then we know that we
636 // can convert it to select during if-conversion. No need to check if
637 // the PHIs in this block are induction or reduction variables.
639 // Non-header phi nodes that have outside uses can be vectorized. Add
640 // them to the list of allowed exits.
641 // Unsafe cyclic dependencies with header phis are identified during
642 // legalization for reduction, induction and first order
647 // We only allow if-converted PHIs with exactly two incoming values.
648 if (Phi
->getNumIncomingValues() != 2) {
649 ORE
->emit(createMissedAnalysis("CFGNotUnderstood", Phi
)
650 << "control flow not understood by vectorizer");
651 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
655 RecurrenceDescriptor RedDes
;
656 if (RecurrenceDescriptor::isReductionPHI(Phi
, TheLoop
, RedDes
, DB
, AC
,
658 if (RedDes
.hasUnsafeAlgebra())
659 Requirements
->addUnsafeAlgebraInst(RedDes
.getUnsafeAlgebraInst());
660 AllowedExit
.insert(RedDes
.getLoopExitInstr());
661 Reductions
[Phi
] = RedDes
;
665 // TODO: Instead of recording the AllowedExit, it would be good to record the
666 // complementary set: NotAllowedExit. These include (but may not be
668 // 1. Reduction phis as they represent the one-before-last value, which
669 // is not available when vectorized
670 // 2. Induction phis and increment when SCEV predicates cannot be used
671 // outside the loop - see addInductionPhi
672 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
673 // outside the loop - see call to hasOutsideLoopUser in the non-phi
675 // 4. FirstOrderRecurrence phis that can possibly be handled by
677 // By recording these, we can then reason about ways to vectorize each
678 // of these NotAllowedExit.
679 InductionDescriptor ID
;
680 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
)) {
681 addInductionPhi(Phi
, ID
, AllowedExit
);
682 if (ID
.hasUnsafeAlgebra() && !HasFunNoNaNAttr
)
683 Requirements
->addUnsafeAlgebraInst(ID
.getUnsafeAlgebraInst());
687 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi
, TheLoop
,
689 FirstOrderRecurrences
.insert(Phi
);
693 // As a last resort, coerce the PHI to a AddRec expression
694 // and re-try classifying it a an induction PHI.
695 if (InductionDescriptor::isInductionPHI(Phi
, TheLoop
, PSE
, ID
, true)) {
696 addInductionPhi(Phi
, ID
, AllowedExit
);
700 ORE
->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi
)
701 << "value that could not be identified as "
702 "reduction is used outside the loop");
703 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi
<< "\n");
705 } // end of PHI handling
707 // We handle calls that:
708 // * Are debug info intrinsics.
709 // * Have a mapping to an IR intrinsic.
710 // * Have a vector version available.
711 auto *CI
= dyn_cast
<CallInst
>(&I
);
712 if (CI
&& !getVectorIntrinsicIDForCall(CI
, TLI
) &&
713 !isa
<DbgInfoIntrinsic
>(CI
) &&
714 !(CI
->getCalledFunction() && TLI
&&
715 TLI
->isFunctionVectorizable(CI
->getCalledFunction()->getName()))) {
716 ORE
->emit(createMissedAnalysis("CantVectorizeCall", CI
)
717 << "call instruction cannot be vectorized");
719 dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
723 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
724 // second argument is the same (i.e. loop invariant)
725 if (CI
&& hasVectorInstrinsicScalarOpd(
726 getVectorIntrinsicIDForCall(CI
, TLI
), 1)) {
727 auto *SE
= PSE
.getSE();
728 if (!SE
->isLoopInvariant(PSE
.getSCEV(CI
->getOperand(1)), TheLoop
)) {
729 ORE
->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI
)
730 << "intrinsic instruction cannot be vectorized");
732 << "LV: Found unvectorizable intrinsic " << *CI
<< "\n");
737 // Check that the instruction return type is vectorizable.
738 // Also, we can't vectorize extractelement instructions.
739 if ((!VectorType::isValidElementType(I
.getType()) &&
740 !I
.getType()->isVoidTy()) ||
741 isa
<ExtractElementInst
>(I
)) {
742 ORE
->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I
)
743 << "instruction return type cannot be vectorized");
744 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
748 // Check that the stored type is vectorizable.
749 if (auto *ST
= dyn_cast
<StoreInst
>(&I
)) {
750 Type
*T
= ST
->getValueOperand()->getType();
751 if (!VectorType::isValidElementType(T
)) {
752 ORE
->emit(createMissedAnalysis("CantVectorizeStore", ST
)
753 << "store instruction cannot be vectorized");
757 // FP instructions can allow unsafe algebra, thus vectorizable by
758 // non-IEEE-754 compliant SIMD units.
759 // This applies to floating-point math operations and calls, not memory
760 // operations, shuffles, or casts, as they don't change precision or
762 } else if (I
.getType()->isFloatingPointTy() && (CI
|| I
.isBinaryOp()) &&
764 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
765 Hints
->setPotentiallyUnsafe();
768 // Reduction instructions are allowed to have exit users.
769 // All other instructions must not have external users.
770 if (hasOutsideLoopUser(TheLoop
, &I
, AllowedExit
)) {
771 // We can safely vectorize loops where instructions within the loop are
772 // used outside the loop only if the SCEV predicates within the loop is
773 // same as outside the loop. Allowing the exit means reusing the SCEV
775 if (PSE
.getUnionPredicate().isAlwaysTrue()) {
776 AllowedExit
.insert(&I
);
779 ORE
->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I
)
780 << "value cannot be used outside the loop");
786 if (!PrimaryInduction
) {
787 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
788 if (Inductions
.empty()) {
789 ORE
->emit(createMissedAnalysis("NoInductionVariable")
790 << "loop induction variable could not be identified");
795 // Now we know the widest induction type, check if our found induction
796 // is the same size. If it's not, unset it here and InnerLoopVectorizer
797 // will create another.
798 if (PrimaryInduction
&& WidestIndTy
!= PrimaryInduction
->getType())
799 PrimaryInduction
= nullptr;
804 bool LoopVectorizationLegality::canVectorizeMemory() {
805 LAI
= &(*GetLAA
)(*TheLoop
);
806 const OptimizationRemarkAnalysis
*LAR
= LAI
->getReport();
809 return OptimizationRemarkAnalysis(Hints
->vectorizeAnalysisPassName(),
810 "loop not vectorized: ", *LAR
);
813 if (!LAI
->canVectorizeMemory())
816 if (LAI
->hasStoreToLoopInvariantAddress()) {
817 ORE
->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
818 << "write to a loop invariant address could not be vectorized");
819 LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
823 Requirements
->addRuntimePointerChecks(LAI
->getNumRuntimePointerChecks());
824 PSE
.addPredicate(LAI
->getPSE().getUnionPredicate());
829 bool LoopVectorizationLegality::isInductionPhi(const Value
*V
) {
830 Value
*In0
= const_cast<Value
*>(V
);
831 PHINode
*PN
= dyn_cast_or_null
<PHINode
>(In0
);
835 return Inductions
.count(PN
);
838 bool LoopVectorizationLegality::isCastedInductionVariable(const Value
*V
) {
839 auto *Inst
= dyn_cast
<Instruction
>(V
);
840 return (Inst
&& InductionCastsToIgnore
.count(Inst
));
843 bool LoopVectorizationLegality::isInductionVariable(const Value
*V
) {
844 return isInductionPhi(V
) || isCastedInductionVariable(V
);
847 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode
*Phi
) {
848 return FirstOrderRecurrences
.count(Phi
);
851 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock
*BB
) {
852 return LoopAccessInfo::blockNeedsPredication(BB
, TheLoop
, DT
);
855 bool LoopVectorizationLegality::blockCanBePredicated(
856 BasicBlock
*BB
, SmallPtrSetImpl
<Value
*> &SafePtrs
) {
857 const bool IsAnnotatedParallel
= TheLoop
->isAnnotatedParallel();
859 for (Instruction
&I
: *BB
) {
860 // Check that we don't have a constant expression that can trap as operand.
861 for (Value
*Operand
: I
.operands()) {
862 if (auto *C
= dyn_cast
<Constant
>(Operand
))
866 // We might be able to hoist the load.
867 if (I
.mayReadFromMemory()) {
868 auto *LI
= dyn_cast
<LoadInst
>(&I
);
871 if (!SafePtrs
.count(LI
->getPointerOperand())) {
872 // !llvm.mem.parallel_loop_access implies if-conversion safety.
873 // Otherwise, record that the load needs (real or emulated) masking
874 // and let the cost model decide.
875 if (!IsAnnotatedParallel
)
881 if (I
.mayWriteToMemory()) {
882 auto *SI
= dyn_cast
<StoreInst
>(&I
);
885 // Predicated store requires some form of masking:
886 // 1) masked store HW instruction,
887 // 2) emulation via load-blend-store (only if safe and legal to do so,
888 // be aware on the race conditions), or
889 // 3) element-by-element predicate check and scalar store.
900 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
901 if (!EnableIfConversion
) {
902 ORE
->emit(createMissedAnalysis("IfConversionDisabled")
903 << "if-conversion is disabled");
907 assert(TheLoop
->getNumBlocks() > 1 && "Single block loops are vectorizable");
909 // A list of pointers that we can safely read and write to.
910 SmallPtrSet
<Value
*, 8> SafePointes
;
912 // Collect safe addresses.
913 for (BasicBlock
*BB
: TheLoop
->blocks()) {
914 if (blockNeedsPredication(BB
))
917 for (Instruction
&I
: *BB
)
918 if (auto *Ptr
= getLoadStorePointerOperand(&I
))
919 SafePointes
.insert(Ptr
);
922 // Collect the blocks that need predication.
923 BasicBlock
*Header
= TheLoop
->getHeader();
924 for (BasicBlock
*BB
: TheLoop
->blocks()) {
925 // We don't support switch statements inside loops.
926 if (!isa
<BranchInst
>(BB
->getTerminator())) {
927 ORE
->emit(createMissedAnalysis("LoopContainsSwitch", BB
->getTerminator())
928 << "loop contains a switch statement");
932 // We must be able to predicate all blocks that need to be predicated.
933 if (blockNeedsPredication(BB
)) {
934 if (!blockCanBePredicated(BB
, SafePointes
)) {
935 ORE
->emit(createMissedAnalysis("NoCFGForSelect", BB
->getTerminator())
936 << "control flow cannot be substituted for a select");
939 } else if (BB
!= Header
&& !canIfConvertPHINodes(BB
)) {
940 ORE
->emit(createMissedAnalysis("NoCFGForSelect", BB
->getTerminator())
941 << "control flow cannot be substituted for a select");
946 // We can if-convert this loop.
950 // Helper function to canVectorizeLoopNestCFG.
951 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop
*Lp
,
952 bool UseVPlanNativePath
) {
953 assert((UseVPlanNativePath
|| Lp
->empty()) &&
954 "VPlan-native path is not enabled.");
956 // TODO: ORE should be improved to show more accurate information when an
957 // outer loop can't be vectorized because a nested loop is not understood or
958 // legal. Something like: "outer_loop_location: loop not vectorized:
959 // (inner_loop_location) loop control flow is not understood by vectorizer".
961 // Store the result and return it at the end instead of exiting early, in case
962 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
964 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
966 // We must have a loop in canonical form. Loops with indirectbr in them cannot
968 if (!Lp
->getLoopPreheader()) {
969 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
970 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
971 << "loop control flow is not understood by vectorizer");
978 // We must have a single backedge.
979 if (Lp
->getNumBackEdges() != 1) {
980 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
981 << "loop control flow is not understood by vectorizer");
988 // We must have a single exiting block.
989 if (!Lp
->getExitingBlock()) {
990 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
991 << "loop control flow is not understood by vectorizer");
998 // We only handle bottom-tested loops, i.e. loop in which the condition is
999 // checked at the end of each iteration. With that we can assume that all
1000 // instructions in the loop are executed the same number of times.
1001 if (Lp
->getExitingBlock() != Lp
->getLoopLatch()) {
1002 ORE
->emit(createMissedAnalysis("CFGNotUnderstood")
1003 << "loop control flow is not understood by vectorizer");
1004 if (DoExtraAnalysis
)
1013 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1014 Loop
*Lp
, bool UseVPlanNativePath
) {
1015 // Store the result and return it at the end instead of exiting early, in case
1016 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1018 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1019 if (!canVectorizeLoopCFG(Lp
, UseVPlanNativePath
)) {
1020 if (DoExtraAnalysis
)
1026 // Recursively check whether the loop control flow of nested loops is
1028 for (Loop
*SubLp
: *Lp
)
1029 if (!canVectorizeLoopNestCFG(SubLp
, UseVPlanNativePath
)) {
1030 if (DoExtraAnalysis
)
1039 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath
) {
1040 // Store the result and return it at the end instead of exiting early, in case
1041 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1044 bool DoExtraAnalysis
= ORE
->allowExtraAnalysis(DEBUG_TYPE
);
1045 // Check whether the loop-related control flow in the loop nest is expected by
1047 if (!canVectorizeLoopNestCFG(TheLoop
, UseVPlanNativePath
)) {
1048 if (DoExtraAnalysis
)
1054 // We need to have a loop header.
1055 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop
->getHeader()->getName()
1058 // Specific checks for outer loops. We skip the remaining legal checks at this
1059 // point because they don't support outer loops.
1060 if (!TheLoop
->empty()) {
1061 assert(UseVPlanNativePath
&& "VPlan-native path is not enabled.");
1063 if (!canVectorizeOuterLoop()) {
1064 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1065 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1070 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1074 assert(TheLoop
->empty() && "Inner loop expected.");
1075 // Check if we can if-convert non-single-bb loops.
1076 unsigned NumBlocks
= TheLoop
->getNumBlocks();
1077 if (NumBlocks
!= 1 && !canVectorizeWithIfConvert()) {
1078 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1079 if (DoExtraAnalysis
)
1085 // Check if we can vectorize the instructions and CFG in this loop.
1086 if (!canVectorizeInstrs()) {
1087 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1088 if (DoExtraAnalysis
)
1094 // Go over each instruction and look at memory deps.
1095 if (!canVectorizeMemory()) {
1096 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1097 if (DoExtraAnalysis
)
1103 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1104 << (LAI
->getRuntimePointerChecking()->Need
1105 ? " (with a runtime bound check)"
1109 unsigned SCEVThreshold
= VectorizeSCEVCheckThreshold
;
1110 if (Hints
->getForce() == LoopVectorizeHints::FK_Enabled
)
1111 SCEVThreshold
= PragmaVectorizeSCEVCheckThreshold
;
1113 if (PSE
.getUnionPredicate().getComplexity() > SCEVThreshold
) {
1114 ORE
->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1115 << "Too many SCEV assumptions need to be made and checked "
1117 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1118 if (DoExtraAnalysis
)
1124 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1125 // we can vectorize, and at this point we don't have any other mem analysis
1126 // which may limit our maximum vectorization factor, so just return true with