1 //===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
11 // both before and after the DAG is legalized.
13 // This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14 // primarily intended to handle simplification opportunities that are implicit
15 // in the LLVM IR and exposed by the various codegen lowering phases.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/None.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallBitVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/CodeGen/DAGCombine.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/RuntimeLibcalls.h"
40 #include "llvm/CodeGen/SelectionDAG.h"
41 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Support/MachineValueType.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Target/TargetMachine.h"
66 #include "llvm/Target/TargetOptions.h"
78 #define DEBUG_TYPE "dagcombine"
80 STATISTIC(NodesCombined
, "Number of dag nodes combined");
81 STATISTIC(PreIndexedNodes
, "Number of pre-indexed nodes created");
82 STATISTIC(PostIndexedNodes
, "Number of post-indexed nodes created");
83 STATISTIC(OpsNarrowed
, "Number of load/op/store narrowed");
84 STATISTIC(LdStFP2Int
, "Number of fp load/store pairs transformed to int");
85 STATISTIC(SlicedLoads
, "Number of load sliced");
88 CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden
,
89 cl::desc("Enable DAG combiner's use of IR alias analysis"));
92 UseTBAA("combiner-use-tbaa", cl::Hidden
, cl::init(true),
93 cl::desc("Enable DAG combiner's use of TBAA"));
96 static cl::opt
<std::string
>
97 CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden
,
98 cl::desc("Only use DAG-combiner alias analysis in this"
102 /// Hidden option to stress test load slicing, i.e., when this option
103 /// is enabled, load slicing bypasses most of its profitability guards.
105 StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden
,
106 cl::desc("Bypass the profitability model of load slicing"),
110 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden
, cl::init(true),
111 cl::desc("DAG combiner may split indexing from loads"));
117 const TargetLowering
&TLI
;
119 CodeGenOpt::Level OptLevel
;
120 bool LegalOperations
= false;
121 bool LegalTypes
= false;
124 /// Worklist of all of the nodes that need to be simplified.
126 /// This must behave as a stack -- new nodes to process are pushed onto the
127 /// back and when processing we pop off of the back.
129 /// The worklist will not contain duplicates but may contain null entries
130 /// due to nodes being deleted from the underlying DAG.
131 SmallVector
<SDNode
*, 64> Worklist
;
133 /// Mapping from an SDNode to its position on the worklist.
135 /// This is used to find and remove nodes from the worklist (by nulling
136 /// them) when they are deleted from the underlying DAG. It relies on
137 /// stable indices of nodes within the worklist.
138 DenseMap
<SDNode
*, unsigned> WorklistMap
;
140 /// Set of nodes which have been combined (at least once).
142 /// This is used to allow us to reliably add any operands of a DAG node
143 /// which have not yet been combined to the worklist.
144 SmallPtrSet
<SDNode
*, 32> CombinedNodes
;
146 // AA - Used for DAG load/store alias analysis.
149 /// When an instruction is simplified, add all users of the instruction to
150 /// the work lists because they might get more simplified now.
151 void AddUsersToWorklist(SDNode
*N
) {
152 for (SDNode
*Node
: N
->uses())
156 /// Call the node-specific routine that folds each particular type of node.
157 SDValue
visit(SDNode
*N
);
160 DAGCombiner(SelectionDAG
&D
, AliasAnalysis
*AA
, CodeGenOpt::Level OL
)
161 : DAG(D
), TLI(D
.getTargetLoweringInfo()), Level(BeforeLegalizeTypes
),
162 OptLevel(OL
), AA(AA
) {
163 ForCodeSize
= DAG
.getMachineFunction().getFunction().optForSize();
165 MaximumLegalStoreInBits
= 0;
166 for (MVT VT
: MVT::all_valuetypes())
167 if (EVT(VT
).isSimple() && VT
!= MVT::Other
&&
168 TLI
.isTypeLegal(EVT(VT
)) &&
169 VT
.getSizeInBits() >= MaximumLegalStoreInBits
)
170 MaximumLegalStoreInBits
= VT
.getSizeInBits();
173 /// Add to the worklist making sure its instance is at the back (next to be
175 void AddToWorklist(SDNode
*N
) {
176 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
177 "Deleted Node added to Worklist");
179 // Skip handle nodes as they can't usefully be combined and confuse the
180 // zero-use deletion strategy.
181 if (N
->getOpcode() == ISD::HANDLENODE
)
184 if (WorklistMap
.insert(std::make_pair(N
, Worklist
.size())).second
)
185 Worklist
.push_back(N
);
188 /// Remove all instances of N from the worklist.
189 void removeFromWorklist(SDNode
*N
) {
190 CombinedNodes
.erase(N
);
192 auto It
= WorklistMap
.find(N
);
193 if (It
== WorklistMap
.end())
194 return; // Not in the worklist.
196 // Null out the entry rather than erasing it to avoid a linear operation.
197 Worklist
[It
->second
] = nullptr;
198 WorklistMap
.erase(It
);
201 void deleteAndRecombine(SDNode
*N
);
202 bool recursivelyDeleteUnusedNodes(SDNode
*N
);
204 /// Replaces all uses of the results of one DAG node with new values.
205 SDValue
CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
208 /// Replaces all uses of the results of one DAG node with new values.
209 SDValue
CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
= true) {
210 return CombineTo(N
, &Res
, 1, AddTo
);
213 /// Replaces all uses of the results of one DAG node with new values.
214 SDValue
CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
,
216 SDValue To
[] = { Res0
, Res1
};
217 return CombineTo(N
, To
, 2, AddTo
);
220 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
);
223 unsigned MaximumLegalStoreInBits
;
225 /// Check the specified integer node value to see if it can be simplified or
226 /// if things it uses can be simplified by bit propagation.
227 /// If so, return true.
228 bool SimplifyDemandedBits(SDValue Op
) {
229 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
230 APInt Demanded
= APInt::getAllOnesValue(BitWidth
);
231 return SimplifyDemandedBits(Op
, Demanded
);
234 /// Check the specified vector node value to see if it can be simplified or
235 /// if things it uses can be simplified as it only uses some of the
236 /// elements. If so, return true.
237 bool SimplifyDemandedVectorElts(SDValue Op
) {
238 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
239 APInt Demanded
= APInt::getAllOnesValue(NumElts
);
240 return SimplifyDemandedVectorElts(Op
, Demanded
);
243 bool SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
);
244 bool SimplifyDemandedVectorElts(SDValue Op
, const APInt
&Demanded
,
245 bool AssumeSingleUse
= false);
247 bool CombineToPreIndexedLoadStore(SDNode
*N
);
248 bool CombineToPostIndexedLoadStore(SDNode
*N
);
249 SDValue
SplitIndexingFromLoad(LoadSDNode
*LD
);
250 bool SliceUpLoad(SDNode
*N
);
252 /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
255 /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
256 /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
257 /// \param EltNo index of the vector element to load.
258 /// \param OriginalLoad load that EVE came from to be replaced.
259 /// \returns EVE on success SDValue() on failure.
260 SDValue
ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
261 SDNode
*EVE
, EVT InVecVT
, SDValue EltNo
, LoadSDNode
*OriginalLoad
);
262 void ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
);
263 SDValue
PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
);
264 SDValue
SExtPromoteOperand(SDValue Op
, EVT PVT
);
265 SDValue
ZExtPromoteOperand(SDValue Op
, EVT PVT
);
266 SDValue
PromoteIntBinOp(SDValue Op
);
267 SDValue
PromoteIntShiftOp(SDValue Op
);
268 SDValue
PromoteExtend(SDValue Op
);
269 bool PromoteLoad(SDValue Op
);
271 /// Call the node-specific routine that knows how to fold each
272 /// particular type of node. If that doesn't do anything, try the
273 /// target-specific DAG combines.
274 SDValue
combine(SDNode
*N
);
276 // Visitation implementation - Implement dag node combining for different
277 // node types. The semantics are as follows:
279 // SDValue.getNode() == 0 - No change was made
280 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
281 // otherwise - N should be replaced by the returned Operand.
283 SDValue
visitTokenFactor(SDNode
*N
);
284 SDValue
visitMERGE_VALUES(SDNode
*N
);
285 SDValue
visitADD(SDNode
*N
);
286 SDValue
visitADDLike(SDValue N0
, SDValue N1
, SDNode
*LocReference
);
287 SDValue
visitSUB(SDNode
*N
);
288 SDValue
visitADDC(SDNode
*N
);
289 SDValue
visitUADDO(SDNode
*N
);
290 SDValue
visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
);
291 SDValue
visitSUBC(SDNode
*N
);
292 SDValue
visitUSUBO(SDNode
*N
);
293 SDValue
visitADDE(SDNode
*N
);
294 SDValue
visitADDCARRY(SDNode
*N
);
295 SDValue
visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
, SDNode
*N
);
296 SDValue
visitSUBE(SDNode
*N
);
297 SDValue
visitSUBCARRY(SDNode
*N
);
298 SDValue
visitMUL(SDNode
*N
);
299 SDValue
useDivRem(SDNode
*N
);
300 SDValue
visitSDIV(SDNode
*N
);
301 SDValue
visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
302 SDValue
visitUDIV(SDNode
*N
);
303 SDValue
visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
);
304 SDValue
visitREM(SDNode
*N
);
305 SDValue
visitMULHU(SDNode
*N
);
306 SDValue
visitMULHS(SDNode
*N
);
307 SDValue
visitSMUL_LOHI(SDNode
*N
);
308 SDValue
visitUMUL_LOHI(SDNode
*N
);
309 SDValue
visitSMULO(SDNode
*N
);
310 SDValue
visitUMULO(SDNode
*N
);
311 SDValue
visitIMINMAX(SDNode
*N
);
312 SDValue
visitAND(SDNode
*N
);
313 SDValue
visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
);
314 SDValue
visitOR(SDNode
*N
);
315 SDValue
visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
);
316 SDValue
visitXOR(SDNode
*N
);
317 SDValue
SimplifyVBinOp(SDNode
*N
);
318 SDValue
visitSHL(SDNode
*N
);
319 SDValue
visitSRA(SDNode
*N
);
320 SDValue
visitSRL(SDNode
*N
);
321 SDValue
visitRotate(SDNode
*N
);
322 SDValue
visitABS(SDNode
*N
);
323 SDValue
visitBSWAP(SDNode
*N
);
324 SDValue
visitBITREVERSE(SDNode
*N
);
325 SDValue
visitCTLZ(SDNode
*N
);
326 SDValue
visitCTLZ_ZERO_UNDEF(SDNode
*N
);
327 SDValue
visitCTTZ(SDNode
*N
);
328 SDValue
visitCTTZ_ZERO_UNDEF(SDNode
*N
);
329 SDValue
visitCTPOP(SDNode
*N
);
330 SDValue
visitSELECT(SDNode
*N
);
331 SDValue
visitVSELECT(SDNode
*N
);
332 SDValue
visitSELECT_CC(SDNode
*N
);
333 SDValue
visitSETCC(SDNode
*N
);
334 SDValue
visitSETCCCARRY(SDNode
*N
);
335 SDValue
visitSIGN_EXTEND(SDNode
*N
);
336 SDValue
visitZERO_EXTEND(SDNode
*N
);
337 SDValue
visitANY_EXTEND(SDNode
*N
);
338 SDValue
visitAssertExt(SDNode
*N
);
339 SDValue
visitSIGN_EXTEND_INREG(SDNode
*N
);
340 SDValue
visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
);
341 SDValue
visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
);
342 SDValue
visitTRUNCATE(SDNode
*N
);
343 SDValue
visitBITCAST(SDNode
*N
);
344 SDValue
visitBUILD_PAIR(SDNode
*N
);
345 SDValue
visitFADD(SDNode
*N
);
346 SDValue
visitFSUB(SDNode
*N
);
347 SDValue
visitFMUL(SDNode
*N
);
348 SDValue
visitFMA(SDNode
*N
);
349 SDValue
visitFDIV(SDNode
*N
);
350 SDValue
visitFREM(SDNode
*N
);
351 SDValue
visitFSQRT(SDNode
*N
);
352 SDValue
visitFCOPYSIGN(SDNode
*N
);
353 SDValue
visitSINT_TO_FP(SDNode
*N
);
354 SDValue
visitUINT_TO_FP(SDNode
*N
);
355 SDValue
visitFP_TO_SINT(SDNode
*N
);
356 SDValue
visitFP_TO_UINT(SDNode
*N
);
357 SDValue
visitFP_ROUND(SDNode
*N
);
358 SDValue
visitFP_ROUND_INREG(SDNode
*N
);
359 SDValue
visitFP_EXTEND(SDNode
*N
);
360 SDValue
visitFNEG(SDNode
*N
);
361 SDValue
visitFABS(SDNode
*N
);
362 SDValue
visitFCEIL(SDNode
*N
);
363 SDValue
visitFTRUNC(SDNode
*N
);
364 SDValue
visitFFLOOR(SDNode
*N
);
365 SDValue
visitFMINNUM(SDNode
*N
);
366 SDValue
visitFMAXNUM(SDNode
*N
);
367 SDValue
visitBRCOND(SDNode
*N
);
368 SDValue
visitBR_CC(SDNode
*N
);
369 SDValue
visitLOAD(SDNode
*N
);
371 SDValue
replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
);
372 SDValue
replaceStoreOfFPConstant(StoreSDNode
*ST
);
374 SDValue
visitSTORE(SDNode
*N
);
375 SDValue
visitINSERT_VECTOR_ELT(SDNode
*N
);
376 SDValue
visitEXTRACT_VECTOR_ELT(SDNode
*N
);
377 SDValue
visitBUILD_VECTOR(SDNode
*N
);
378 SDValue
visitCONCAT_VECTORS(SDNode
*N
);
379 SDValue
visitEXTRACT_SUBVECTOR(SDNode
*N
);
380 SDValue
visitVECTOR_SHUFFLE(SDNode
*N
);
381 SDValue
visitSCALAR_TO_VECTOR(SDNode
*N
);
382 SDValue
visitINSERT_SUBVECTOR(SDNode
*N
);
383 SDValue
visitMLOAD(SDNode
*N
);
384 SDValue
visitMSTORE(SDNode
*N
);
385 SDValue
visitMGATHER(SDNode
*N
);
386 SDValue
visitMSCATTER(SDNode
*N
);
387 SDValue
visitFP_TO_FP16(SDNode
*N
);
388 SDValue
visitFP16_TO_FP(SDNode
*N
);
390 SDValue
visitFADDForFMACombine(SDNode
*N
);
391 SDValue
visitFSUBForFMACombine(SDNode
*N
);
392 SDValue
visitFMULForFMADistributiveCombine(SDNode
*N
);
394 SDValue
XformToShuffleWithZero(SDNode
*N
);
395 SDValue
ReassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
396 SDValue N1
, SDNodeFlags Flags
);
398 SDValue
visitShiftByConstant(SDNode
*N
, ConstantSDNode
*Amt
);
400 SDValue
foldSelectOfConstants(SDNode
*N
);
401 SDValue
foldVSelectOfConstants(SDNode
*N
);
402 SDValue
foldBinOpIntoSelect(SDNode
*BO
);
403 bool SimplifySelectOps(SDNode
*SELECT
, SDValue LHS
, SDValue RHS
);
404 SDValue
SimplifyBinOpWithSameOpcodeHands(SDNode
*N
);
405 SDValue
SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
, SDValue N2
);
406 SDValue
SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
407 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
408 bool NotExtCompare
= false);
409 SDValue
foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
410 SDValue N2
, SDValue N3
, ISD::CondCode CC
);
411 SDValue
foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
413 SDValue
unfoldMaskedMerge(SDNode
*N
);
414 SDValue
unfoldExtremeBitClearingToShifts(SDNode
*N
);
415 SDValue
SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
,
416 const SDLoc
&DL
, bool foldBooleans
);
417 SDValue
rebuildSetCC(SDValue N
);
419 bool isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
421 bool isOneUseSetCC(SDValue N
) const;
423 SDValue
SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
425 SDValue
CombineConsecutiveLoads(SDNode
*N
, EVT VT
);
426 SDValue
CombineExtLoad(SDNode
*N
);
427 SDValue
CombineZExtLogicopShiftLoad(SDNode
*N
);
428 SDValue
combineRepeatedFPDivisors(SDNode
*N
);
429 SDValue
combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
);
430 SDValue
ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*, EVT
);
431 SDValue
BuildSDIV(SDNode
*N
);
432 SDValue
BuildSDIVPow2(SDNode
*N
);
433 SDValue
BuildUDIV(SDNode
*N
);
434 SDValue
BuildLogBase2(SDValue V
, const SDLoc
&DL
);
435 SDValue
BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
);
436 SDValue
buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
437 SDValue
buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
);
438 SDValue
buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
, bool Recip
);
439 SDValue
buildSqrtNROneConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
440 SDNodeFlags Flags
, bool Reciprocal
);
441 SDValue
buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
, unsigned Iterations
,
442 SDNodeFlags Flags
, bool Reciprocal
);
443 SDValue
MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
444 bool DemandHighBits
= true);
445 SDValue
MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
);
446 SDNode
*MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
, SDValue Neg
,
447 SDValue InnerPos
, SDValue InnerNeg
,
448 unsigned PosOpcode
, unsigned NegOpcode
,
450 SDNode
*MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
);
451 SDValue
MatchLoadCombine(SDNode
*N
);
452 SDValue
ReduceLoadWidth(SDNode
*N
);
453 SDValue
ReduceLoadOpStoreWidth(SDNode
*N
);
454 SDValue
splitMergedValStore(StoreSDNode
*ST
);
455 SDValue
TransformFPLoadStorePair(SDNode
*N
);
456 SDValue
convertBuildVecZextToZext(SDNode
*N
);
457 SDValue
reduceBuildVecExtToExtBuildVec(SDNode
*N
);
458 SDValue
reduceBuildVecConvertToConvertBuildVec(SDNode
*N
);
459 SDValue
reduceBuildVecToShuffle(SDNode
*N
);
460 SDValue
createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
461 ArrayRef
<int> VectorMask
, SDValue VecIn1
,
462 SDValue VecIn2
, unsigned LeftIdx
);
463 SDValue
matchVSelectOpSizesWithSetCC(SDNode
*Cast
);
465 /// Walk up chain skipping non-aliasing memory nodes,
466 /// looking for aliasing nodes and adding them to the Aliases vector.
467 void GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
468 SmallVectorImpl
<SDValue
> &Aliases
);
470 /// Return true if there is any possibility that the two addresses overlap.
471 bool isAlias(LSBaseSDNode
*Op0
, LSBaseSDNode
*Op1
) const;
473 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
474 /// chain (aliasing node.)
475 SDValue
FindBetterChain(SDNode
*N
, SDValue Chain
);
477 /// Try to replace a store and any possibly adjacent stores on
478 /// consecutive chains with better chains. Return true only if St is
481 /// Notice that other chains may still be replaced even if the function
483 bool findBetterNeighborChains(StoreSDNode
*St
);
485 /// Holds a pointer to an LSBaseSDNode as well as information on where it
486 /// is located in a sequence of memory operations connected by a chain.
488 // Ptr to the mem node.
489 LSBaseSDNode
*MemNode
;
491 // Offset from the base ptr.
492 int64_t OffsetFromBase
;
494 MemOpLink(LSBaseSDNode
*N
, int64_t Offset
)
495 : MemNode(N
), OffsetFromBase(Offset
) {}
498 /// This is a helper function for visitMUL to check the profitability
499 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
500 /// MulNode is the original multiply, AddNode is (add x, c1),
501 /// and ConstNode is c2.
502 bool isMulAddWithConstProfitable(SDNode
*MulNode
,
506 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
507 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
508 /// the type of the loaded value to be extended.
509 bool isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
510 EVT LoadResultTy
, EVT
&ExtVT
);
512 /// Helper function to calculate whether the given Load/Store can have its
513 /// width reduced to ExtVT.
514 bool isLegalNarrowLdSt(LSBaseSDNode
*LDSTN
, ISD::LoadExtType ExtType
,
515 EVT
&MemVT
, unsigned ShAmt
= 0);
517 /// Used by BackwardsPropagateMask to find suitable loads.
518 bool SearchForAndLoads(SDNode
*N
, SmallPtrSetImpl
<LoadSDNode
*> &Loads
,
519 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
520 ConstantSDNode
*Mask
, SDNode
*&NodeToMask
);
521 /// Attempt to propagate a given AND node back to load leaves so that they
522 /// can be combined into narrow loads.
523 bool BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
);
525 /// Helper function for MergeConsecutiveStores which merges the
526 /// component store chains.
527 SDValue
getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
530 /// This is a helper function for MergeConsecutiveStores. When the
531 /// source elements of the consecutive stores are all constants or
532 /// all extracted vector elements, try to merge them into one
533 /// larger store introducing bitcasts if necessary. \return True
534 /// if a merged store was created.
535 bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
536 EVT MemVT
, unsigned NumStores
,
537 bool IsConstantSrc
, bool UseVector
,
540 /// This is a helper function for MergeConsecutiveStores. Stores
541 /// that potentially may be merged with St are placed in
542 /// StoreNodes. RootNode is a chain predecessor to all store
544 void getStoreMergeCandidates(StoreSDNode
*St
,
545 SmallVectorImpl
<MemOpLink
> &StoreNodes
,
548 /// Helper function for MergeConsecutiveStores. Checks if
549 /// candidate stores have indirect dependency through their
550 /// operands. RootNode is the predecessor to all stores calculated
551 /// by getStoreMergeCandidates and is used to prune the dependency check.
552 /// \return True if safe to merge.
553 bool checkMergeStoreCandidatesForDependencies(
554 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
557 /// Merge consecutive store operations into a wide store.
558 /// This optimization uses wide integers or vectors when possible.
559 /// \return number of stores that were merged into a merged store (the
560 /// affected nodes are stored as a prefix in \p StoreNodes).
561 bool MergeConsecutiveStores(StoreSDNode
*St
);
563 /// Try to transform a truncation where C is a constant:
564 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
566 /// \p N needs to be a truncation and its first operand an AND. Other
567 /// requirements are checked by the function (e.g. that trunc is
568 /// single-use) and if missed an empty SDValue is returned.
569 SDValue
distributeTruncateThroughAnd(SDNode
*N
);
571 /// Helper function to determine whether the target supports operation
572 /// given by \p Opcode for type \p VT, that is, whether the operation
573 /// is legal or custom before legalizing operations, and whether is
574 /// legal (but not custom) after legalization.
575 bool hasOperation(unsigned Opcode
, EVT VT
) {
577 return TLI
.isOperationLegal(Opcode
, VT
);
578 return TLI
.isOperationLegalOrCustom(Opcode
, VT
);
582 /// Runs the dag combiner on all nodes in the work list
583 void Run(CombineLevel AtLevel
);
585 SelectionDAG
&getDAG() const { return DAG
; }
587 /// Returns a type large enough to hold any valid shift amount - before type
588 /// legalization these can be huge.
589 EVT
getShiftAmountTy(EVT LHSTy
) {
590 assert(LHSTy
.isInteger() && "Shift amount is not an integer type!");
591 return TLI
.getShiftAmountTy(LHSTy
, DAG
.getDataLayout(), LegalTypes
);
594 /// This method returns true if we are running before type legalization or
595 /// if the specified VT is legal.
596 bool isTypeLegal(const EVT
&VT
) {
597 if (!LegalTypes
) return true;
598 return TLI
.isTypeLegal(VT
);
601 /// Convenience wrapper around TargetLowering::getSetCCResultType
602 EVT
getSetCCResultType(EVT VT
) const {
603 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
606 void ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
607 SDValue OrigLoad
, SDValue ExtLoad
,
608 ISD::NodeType ExtType
);
611 /// This class is a DAGUpdateListener that removes any deleted
612 /// nodes from the worklist.
613 class WorklistRemover
: public SelectionDAG::DAGUpdateListener
{
617 explicit WorklistRemover(DAGCombiner
&dc
)
618 : SelectionDAG::DAGUpdateListener(dc
.getDAG()), DC(dc
) {}
620 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
621 DC
.removeFromWorklist(N
);
625 } // end anonymous namespace
627 //===----------------------------------------------------------------------===//
628 // TargetLowering::DAGCombinerInfo implementation
629 //===----------------------------------------------------------------------===//
631 void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode
*N
) {
632 ((DAGCombiner
*)DC
)->AddToWorklist(N
);
635 SDValue
TargetLowering::DAGCombinerInfo::
636 CombineTo(SDNode
*N
, ArrayRef
<SDValue
> To
, bool AddTo
) {
637 return ((DAGCombiner
*)DC
)->CombineTo(N
, &To
[0], To
.size(), AddTo
);
640 SDValue
TargetLowering::DAGCombinerInfo::
641 CombineTo(SDNode
*N
, SDValue Res
, bool AddTo
) {
642 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res
, AddTo
);
645 SDValue
TargetLowering::DAGCombinerInfo::
646 CombineTo(SDNode
*N
, SDValue Res0
, SDValue Res1
, bool AddTo
) {
647 return ((DAGCombiner
*)DC
)->CombineTo(N
, Res0
, Res1
, AddTo
);
650 void TargetLowering::DAGCombinerInfo::
651 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
652 return ((DAGCombiner
*)DC
)->CommitTargetLoweringOpt(TLO
);
655 //===----------------------------------------------------------------------===//
657 //===----------------------------------------------------------------------===//
659 void DAGCombiner::deleteAndRecombine(SDNode
*N
) {
660 removeFromWorklist(N
);
662 // If the operands of this node are only used by the node, they will now be
663 // dead. Make sure to re-visit them and recursively delete dead nodes.
664 for (const SDValue
&Op
: N
->ops())
665 // For an operand generating multiple values, one of the values may
666 // become dead allowing further simplification (e.g. split index
667 // arithmetic from an indexed load).
668 if (Op
->hasOneUse() || Op
->getNumValues() > 1)
669 AddToWorklist(Op
.getNode());
674 /// Return 1 if we can compute the negated form of the specified expression for
675 /// the same cost as the expression itself, or 2 if we can compute the negated
676 /// form more cheaply than the expression itself.
677 static char isNegatibleForFree(SDValue Op
, bool LegalOperations
,
678 const TargetLowering
&TLI
,
679 const TargetOptions
*Options
,
680 unsigned Depth
= 0) {
681 // fneg is removable even if it has multiple uses.
682 if (Op
.getOpcode() == ISD::FNEG
) return 2;
684 // Don't allow anything with multiple uses unless we know it is free.
685 EVT VT
= Op
.getValueType();
686 const SDNodeFlags Flags
= Op
->getFlags();
688 if (!(Op
.getOpcode() == ISD::FP_EXTEND
&&
689 TLI
.isFPExtFree(VT
, Op
.getOperand(0).getValueType())))
692 // Don't recurse exponentially.
693 if (Depth
> 6) return 0;
695 switch (Op
.getOpcode()) {
696 default: return false;
697 case ISD::ConstantFP
: {
698 if (!LegalOperations
)
701 // Don't invert constant FP values after legalization unless the target says
702 // the negated constant is legal.
703 return TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
704 TLI
.isFPImmLegal(neg(cast
<ConstantFPSDNode
>(Op
)->getValueAPF()), VT
);
707 if (!Options
->UnsafeFPMath
&& !Flags
.hasNoSignedZeros())
710 // After operation legalization, it might not be legal to create new FSUBs.
711 if (LegalOperations
&& !TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
))
714 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
715 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
718 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
719 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
722 // We can't turn -(A-B) into B-A when we honor signed zeros.
723 if (!Options
->NoSignedZerosFPMath
&&
724 !Flags
.hasNoSignedZeros())
727 // fold (fneg (fsub A, B)) -> (fsub B, A)
732 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
733 if (char V
= isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
,
737 return isNegatibleForFree(Op
.getOperand(1), LegalOperations
, TLI
, Options
,
743 return isNegatibleForFree(Op
.getOperand(0), LegalOperations
, TLI
, Options
,
748 /// If isNegatibleForFree returns true, return the newly negated expression.
749 static SDValue
GetNegatedExpression(SDValue Op
, SelectionDAG
&DAG
,
750 bool LegalOperations
, unsigned Depth
= 0) {
751 const TargetOptions
&Options
= DAG
.getTarget().Options
;
752 // fneg is removable even if it has multiple uses.
753 if (Op
.getOpcode() == ISD::FNEG
) return Op
.getOperand(0);
755 assert(Depth
<= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
757 const SDNodeFlags Flags
= Op
.getNode()->getFlags();
759 switch (Op
.getOpcode()) {
760 default: llvm_unreachable("Unknown code");
761 case ISD::ConstantFP
: {
762 APFloat V
= cast
<ConstantFPSDNode
>(Op
)->getValueAPF();
764 return DAG
.getConstantFP(V
, SDLoc(Op
), Op
.getValueType());
767 assert(Options
.UnsafeFPMath
|| Flags
.hasNoSignedZeros());
769 // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
770 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
771 DAG
.getTargetLoweringInfo(), &Options
, Depth
+1))
772 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
773 GetNegatedExpression(Op
.getOperand(0), DAG
,
774 LegalOperations
, Depth
+1),
775 Op
.getOperand(1), Flags
);
776 // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
777 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
778 GetNegatedExpression(Op
.getOperand(1), DAG
,
779 LegalOperations
, Depth
+1),
780 Op
.getOperand(0), Flags
);
782 // fold (fneg (fsub 0, B)) -> B
783 if (ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(Op
.getOperand(0)))
785 return Op
.getOperand(1);
787 // fold (fneg (fsub A, B)) -> (fsub B, A)
788 return DAG
.getNode(ISD::FSUB
, SDLoc(Op
), Op
.getValueType(),
789 Op
.getOperand(1), Op
.getOperand(0), Flags
);
793 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
794 if (isNegatibleForFree(Op
.getOperand(0), LegalOperations
,
795 DAG
.getTargetLoweringInfo(), &Options
, Depth
+1))
796 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
797 GetNegatedExpression(Op
.getOperand(0), DAG
,
798 LegalOperations
, Depth
+1),
799 Op
.getOperand(1), Flags
);
801 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
802 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
804 GetNegatedExpression(Op
.getOperand(1), DAG
,
805 LegalOperations
, Depth
+1), Flags
);
809 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), Op
.getValueType(),
810 GetNegatedExpression(Op
.getOperand(0), DAG
,
811 LegalOperations
, Depth
+1));
813 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(Op
), Op
.getValueType(),
814 GetNegatedExpression(Op
.getOperand(0), DAG
,
815 LegalOperations
, Depth
+1),
820 // APInts must be the same size for most operations, this helper
821 // function zero extends the shorter of the pair so that they match.
822 // We provide an Offset so that we can create bitwidths that won't overflow.
823 static void zeroExtendToMatch(APInt
&LHS
, APInt
&RHS
, unsigned Offset
= 0) {
824 unsigned Bits
= Offset
+ std::max(LHS
.getBitWidth(), RHS
.getBitWidth());
825 LHS
= LHS
.zextOrSelf(Bits
);
826 RHS
= RHS
.zextOrSelf(Bits
);
829 // Return true if this node is a setcc, or is a select_cc
830 // that selects between the target values used for true and false, making it
831 // equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
832 // the appropriate nodes based on the type of node we are checking. This
833 // simplifies life a bit for the callers.
834 bool DAGCombiner::isSetCCEquivalent(SDValue N
, SDValue
&LHS
, SDValue
&RHS
,
836 if (N
.getOpcode() == ISD::SETCC
) {
837 LHS
= N
.getOperand(0);
838 RHS
= N
.getOperand(1);
839 CC
= N
.getOperand(2);
843 if (N
.getOpcode() != ISD::SELECT_CC
||
844 !TLI
.isConstTrueVal(N
.getOperand(2).getNode()) ||
845 !TLI
.isConstFalseVal(N
.getOperand(3).getNode()))
848 if (TLI
.getBooleanContents(N
.getValueType()) ==
849 TargetLowering::UndefinedBooleanContent
)
852 LHS
= N
.getOperand(0);
853 RHS
= N
.getOperand(1);
854 CC
= N
.getOperand(4);
858 /// Return true if this is a SetCC-equivalent operation with only one use.
859 /// If this is true, it allows the users to invert the operation for free when
860 /// it is profitable to do so.
861 bool DAGCombiner::isOneUseSetCC(SDValue N
) const {
863 if (isSetCCEquivalent(N
, N0
, N1
, N2
) && N
.getNode()->hasOneUse())
868 static SDValue
peekThroughBitcast(SDValue V
) {
869 while (V
.getOpcode() == ISD::BITCAST
)
874 // Returns the SDNode if it is a constant float BuildVector
875 // or constant float.
876 static SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
) {
877 if (isa
<ConstantFPSDNode
>(N
))
879 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
884 // Determines if it is a constant integer or a build vector of constant
885 // integers (and undefs).
886 // Do not permit build vector implicit truncation.
887 static bool isConstantOrConstantVector(SDValue N
, bool NoOpaques
= false) {
888 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
))
889 return !(Const
->isOpaque() && NoOpaques
);
890 if (N
.getOpcode() != ISD::BUILD_VECTOR
)
892 unsigned BitWidth
= N
.getScalarValueSizeInBits();
893 for (const SDValue
&Op
: N
->op_values()) {
896 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Op
);
897 if (!Const
|| Const
->getAPIntValue().getBitWidth() != BitWidth
||
898 (Const
->isOpaque() && NoOpaques
))
904 // Determines if it is a constant null integer or a splatted vector of a
905 // constant null integer (with no undefs).
906 // Build vector implicit truncation is not an issue for null values.
907 static bool isNullConstantOrNullSplatConstant(SDValue N
) {
908 // TODO: may want to use peekThroughBitcast() here.
909 if (ConstantSDNode
*Splat
= isConstOrConstSplat(N
))
910 return Splat
->isNullValue();
914 // Determines if it is a constant integer of one or a splatted vector of a
915 // constant integer of one (with no undefs).
916 // Do not permit build vector implicit truncation.
917 static bool isOneConstantOrOneSplatConstant(SDValue N
) {
918 // TODO: may want to use peekThroughBitcast() here.
919 unsigned BitWidth
= N
.getScalarValueSizeInBits();
920 if (ConstantSDNode
*Splat
= isConstOrConstSplat(N
))
921 return Splat
->isOne() && Splat
->getAPIntValue().getBitWidth() == BitWidth
;
925 // Determines if it is a constant integer of all ones or a splatted vector of a
926 // constant integer of all ones (with no undefs).
927 // Do not permit build vector implicit truncation.
928 static bool isAllOnesConstantOrAllOnesSplatConstant(SDValue N
) {
929 N
= peekThroughBitcast(N
);
930 unsigned BitWidth
= N
.getScalarValueSizeInBits();
931 if (ConstantSDNode
*Splat
= isConstOrConstSplat(N
))
932 return Splat
->isAllOnesValue() &&
933 Splat
->getAPIntValue().getBitWidth() == BitWidth
;
937 // Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
939 static bool isAnyConstantBuildVector(const SDNode
*N
) {
940 return ISD::isBuildVectorOfConstantSDNodes(N
) ||
941 ISD::isBuildVectorOfConstantFPSDNodes(N
);
944 SDValue
DAGCombiner::ReassociateOps(unsigned Opc
, const SDLoc
&DL
, SDValue N0
,
945 SDValue N1
, SDNodeFlags Flags
) {
946 // Don't reassociate reductions.
947 if (Flags
.hasVectorReduction())
950 EVT VT
= N0
.getValueType();
951 if (N0
.getOpcode() == Opc
&& !N0
->getFlags().hasVectorReduction()) {
952 if (SDNode
*L
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1))) {
953 if (SDNode
*R
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
954 // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
955 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, L
, R
))
956 return DAG
.getNode(Opc
, DL
, VT
, N0
.getOperand(0), OpNode
);
959 if (N0
.hasOneUse()) {
960 // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
962 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
963 if (!OpNode
.getNode())
965 AddToWorklist(OpNode
.getNode());
966 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N0
.getOperand(1));
971 if (N1
.getOpcode() == Opc
&& !N1
->getFlags().hasVectorReduction()) {
972 if (SDNode
*R
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
.getOperand(1))) {
973 if (SDNode
*L
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
974 // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
975 if (SDValue OpNode
= DAG
.FoldConstantArithmetic(Opc
, DL
, VT
, R
, L
))
976 return DAG
.getNode(Opc
, DL
, VT
, N1
.getOperand(0), OpNode
);
979 if (N1
.hasOneUse()) {
980 // reassoc. (op x, (op y, c1)) -> (op (op x, y), c1) iff x+c1 has one
982 SDValue OpNode
= DAG
.getNode(Opc
, SDLoc(N0
), VT
, N0
, N1
.getOperand(0));
983 if (!OpNode
.getNode())
985 AddToWorklist(OpNode
.getNode());
986 return DAG
.getNode(Opc
, DL
, VT
, OpNode
, N1
.getOperand(1));
994 SDValue
DAGCombiner::CombineTo(SDNode
*N
, const SDValue
*To
, unsigned NumTo
,
996 assert(N
->getNumValues() == NumTo
&& "Broken CombineTo call!");
998 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
999 To
[0].getNode()->dump(&DAG
);
1000 dbgs() << " and " << NumTo
- 1 << " other values\n");
1001 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
)
1002 assert((!To
[i
].getNode() ||
1003 N
->getValueType(i
) == To
[i
].getValueType()) &&
1004 "Cannot combine value to value of different type!");
1006 WorklistRemover
DeadNodes(*this);
1007 DAG
.ReplaceAllUsesWith(N
, To
);
1009 // Push the new nodes and any users onto the worklist
1010 for (unsigned i
= 0, e
= NumTo
; i
!= e
; ++i
) {
1011 if (To
[i
].getNode()) {
1012 AddToWorklist(To
[i
].getNode());
1013 AddUsersToWorklist(To
[i
].getNode());
1018 // Finally, if the node is now dead, remove it from the graph. The node
1019 // may not be dead if the replacement process recursively simplified to
1020 // something else needing this node.
1022 deleteAndRecombine(N
);
1023 return SDValue(N
, 0);
1027 CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO
) {
1028 // Replace all uses. If any nodes become isomorphic to other nodes and
1029 // are deleted, make sure to remove them from our worklist.
1030 WorklistRemover
DeadNodes(*this);
1031 DAG
.ReplaceAllUsesOfValueWith(TLO
.Old
, TLO
.New
);
1033 // Push the new node and any (possibly new) users onto the worklist.
1034 AddToWorklist(TLO
.New
.getNode());
1035 AddUsersToWorklist(TLO
.New
.getNode());
1037 // Finally, if the node is now dead, remove it from the graph. The node
1038 // may not be dead if the replacement process recursively simplified to
1039 // something else needing this node.
1040 if (TLO
.Old
.getNode()->use_empty())
1041 deleteAndRecombine(TLO
.Old
.getNode());
1044 /// Check the specified integer node value to see if it can be simplified or if
1045 /// things it uses can be simplified by bit propagation. If so, return true.
1046 bool DAGCombiner::SimplifyDemandedBits(SDValue Op
, const APInt
&Demanded
) {
1047 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1049 if (!TLI
.SimplifyDemandedBits(Op
, Demanded
, Known
, TLO
))
1052 // Revisit the node.
1053 AddToWorklist(Op
.getNode());
1055 // Replace the old value with the new one.
1057 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1058 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1061 CommitTargetLoweringOpt(TLO
);
1065 /// Check the specified vector node value to see if it can be simplified or
1066 /// if things it uses can be simplified as it only uses some of the elements.
1067 /// If so, return true.
1068 bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op
, const APInt
&Demanded
,
1069 bool AssumeSingleUse
) {
1070 TargetLowering::TargetLoweringOpt
TLO(DAG
, LegalTypes
, LegalOperations
);
1071 APInt KnownUndef
, KnownZero
;
1072 if (!TLI
.SimplifyDemandedVectorElts(Op
, Demanded
, KnownUndef
, KnownZero
, TLO
,
1073 0, AssumeSingleUse
))
1076 // Revisit the node.
1077 AddToWorklist(Op
.getNode());
1079 // Replace the old value with the new one.
1081 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO
.Old
.getNode()->dump(&DAG
);
1082 dbgs() << "\nWith: "; TLO
.New
.getNode()->dump(&DAG
);
1085 CommitTargetLoweringOpt(TLO
);
1089 void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode
*Load
, SDNode
*ExtLoad
) {
1091 EVT VT
= Load
->getValueType(0);
1092 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SDValue(ExtLoad
, 0));
1094 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load
->dump(&DAG
); dbgs() << "\nWith: ";
1095 Trunc
.getNode()->dump(&DAG
); dbgs() << '\n');
1096 WorklistRemover
DeadNodes(*this);
1097 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), Trunc
);
1098 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), SDValue(ExtLoad
, 1));
1099 deleteAndRecombine(Load
);
1100 AddToWorklist(Trunc
.getNode());
1103 SDValue
DAGCombiner::PromoteOperand(SDValue Op
, EVT PVT
, bool &Replace
) {
1106 if (ISD::isUNINDEXEDLoad(Op
.getNode())) {
1107 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1108 EVT MemVT
= LD
->getMemoryVT();
1109 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1110 : LD
->getExtensionType();
1112 return DAG
.getExtLoad(ExtType
, DL
, PVT
,
1113 LD
->getChain(), LD
->getBasePtr(),
1114 MemVT
, LD
->getMemOperand());
1117 unsigned Opc
= Op
.getOpcode();
1120 case ISD::AssertSext
:
1121 if (SDValue Op0
= SExtPromoteOperand(Op
.getOperand(0), PVT
))
1122 return DAG
.getNode(ISD::AssertSext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1124 case ISD::AssertZext
:
1125 if (SDValue Op0
= ZExtPromoteOperand(Op
.getOperand(0), PVT
))
1126 return DAG
.getNode(ISD::AssertZext
, DL
, PVT
, Op0
, Op
.getOperand(1));
1128 case ISD::Constant
: {
1130 Op
.getValueType().isByteSized() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1131 return DAG
.getNode(ExtOpc
, DL
, PVT
, Op
);
1135 if (!TLI
.isOperationLegal(ISD::ANY_EXTEND
, PVT
))
1137 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, PVT
, Op
);
1140 SDValue
DAGCombiner::SExtPromoteOperand(SDValue Op
, EVT PVT
) {
1141 if (!TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, PVT
))
1143 EVT OldVT
= Op
.getValueType();
1145 bool Replace
= false;
1146 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1147 if (!NewOp
.getNode())
1149 AddToWorklist(NewOp
.getNode());
1152 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1153 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, NewOp
.getValueType(), NewOp
,
1154 DAG
.getValueType(OldVT
));
1157 SDValue
DAGCombiner::ZExtPromoteOperand(SDValue Op
, EVT PVT
) {
1158 EVT OldVT
= Op
.getValueType();
1160 bool Replace
= false;
1161 SDValue NewOp
= PromoteOperand(Op
, PVT
, Replace
);
1162 if (!NewOp
.getNode())
1164 AddToWorklist(NewOp
.getNode());
1167 ReplaceLoadWithPromotedLoad(Op
.getNode(), NewOp
.getNode());
1168 return DAG
.getZeroExtendInReg(NewOp
, DL
, OldVT
);
1171 /// Promote the specified integer binary operation if the target indicates it is
1172 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1173 /// i32 since i16 instructions are longer.
1174 SDValue
DAGCombiner::PromoteIntBinOp(SDValue Op
) {
1175 if (!LegalOperations
)
1178 EVT VT
= Op
.getValueType();
1179 if (VT
.isVector() || !VT
.isInteger())
1182 // If operation type is 'undesirable', e.g. i16 on x86, consider
1184 unsigned Opc
= Op
.getOpcode();
1185 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1189 // Consult target whether it is a good idea to promote this operation and
1190 // what's the right type to promote it to.
1191 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1192 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1194 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1196 bool Replace0
= false;
1197 SDValue N0
= Op
.getOperand(0);
1198 SDValue NN0
= PromoteOperand(N0
, PVT
, Replace0
);
1200 bool Replace1
= false;
1201 SDValue N1
= Op
.getOperand(1);
1202 SDValue NN1
= PromoteOperand(N1
, PVT
, Replace1
);
1206 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, NN0
, NN1
));
1208 // We are always replacing N0/N1's use in N and only need
1209 // additional replacements if there are additional uses.
1210 Replace0
&= !N0
->hasOneUse();
1211 Replace1
&= (N0
!= N1
) && !N1
->hasOneUse();
1213 // Combine Op here so it is preserved past replacements.
1214 CombineTo(Op
.getNode(), RV
);
1216 // If operands have a use ordering, make sure we deal with
1217 // predecessor first.
1218 if (Replace0
&& Replace1
&& N0
.getNode()->isPredecessorOf(N1
.getNode())) {
1220 std::swap(NN0
, NN1
);
1224 AddToWorklist(NN0
.getNode());
1225 ReplaceLoadWithPromotedLoad(N0
.getNode(), NN0
.getNode());
1228 AddToWorklist(NN1
.getNode());
1229 ReplaceLoadWithPromotedLoad(N1
.getNode(), NN1
.getNode());
1236 /// Promote the specified integer shift operation if the target indicates it is
1237 /// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1238 /// i32 since i16 instructions are longer.
1239 SDValue
DAGCombiner::PromoteIntShiftOp(SDValue Op
) {
1240 if (!LegalOperations
)
1243 EVT VT
= Op
.getValueType();
1244 if (VT
.isVector() || !VT
.isInteger())
1247 // If operation type is 'undesirable', e.g. i16 on x86, consider
1249 unsigned Opc
= Op
.getOpcode();
1250 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1254 // Consult target whether it is a good idea to promote this operation and
1255 // what's the right type to promote it to.
1256 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1257 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1259 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1261 bool Replace
= false;
1262 SDValue N0
= Op
.getOperand(0);
1263 SDValue N1
= Op
.getOperand(1);
1264 if (Opc
== ISD::SRA
)
1265 N0
= SExtPromoteOperand(N0
, PVT
);
1266 else if (Opc
== ISD::SRL
)
1267 N0
= ZExtPromoteOperand(N0
, PVT
);
1269 N0
= PromoteOperand(N0
, PVT
, Replace
);
1276 DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, DAG
.getNode(Opc
, DL
, PVT
, N0
, N1
));
1278 AddToWorklist(N0
.getNode());
1280 ReplaceLoadWithPromotedLoad(Op
.getOperand(0).getNode(), N0
.getNode());
1282 // Deal with Op being deleted.
1283 if (Op
&& Op
.getOpcode() != ISD::DELETED_NODE
)
1289 SDValue
DAGCombiner::PromoteExtend(SDValue Op
) {
1290 if (!LegalOperations
)
1293 EVT VT
= Op
.getValueType();
1294 if (VT
.isVector() || !VT
.isInteger())
1297 // If operation type is 'undesirable', e.g. i16 on x86, consider
1299 unsigned Opc
= Op
.getOpcode();
1300 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1304 // Consult target whether it is a good idea to promote this operation and
1305 // what's the right type to promote it to.
1306 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1307 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1308 // fold (aext (aext x)) -> (aext x)
1309 // fold (aext (zext x)) -> (zext x)
1310 // fold (aext (sext x)) -> (sext x)
1311 LLVM_DEBUG(dbgs() << "\nPromoting "; Op
.getNode()->dump(&DAG
));
1312 return DAG
.getNode(Op
.getOpcode(), SDLoc(Op
), VT
, Op
.getOperand(0));
1317 bool DAGCombiner::PromoteLoad(SDValue Op
) {
1318 if (!LegalOperations
)
1321 if (!ISD::isUNINDEXEDLoad(Op
.getNode()))
1324 EVT VT
= Op
.getValueType();
1325 if (VT
.isVector() || !VT
.isInteger())
1328 // If operation type is 'undesirable', e.g. i16 on x86, consider
1330 unsigned Opc
= Op
.getOpcode();
1331 if (TLI
.isTypeDesirableForOp(Opc
, VT
))
1335 // Consult target whether it is a good idea to promote this operation and
1336 // what's the right type to promote it to.
1337 if (TLI
.IsDesirableToPromoteOp(Op
, PVT
)) {
1338 assert(PVT
!= VT
&& "Don't know what type to promote to!");
1341 SDNode
*N
= Op
.getNode();
1342 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1343 EVT MemVT
= LD
->getMemoryVT();
1344 ISD::LoadExtType ExtType
= ISD::isNON_EXTLoad(LD
) ? ISD::EXTLOAD
1345 : LD
->getExtensionType();
1346 SDValue NewLD
= DAG
.getExtLoad(ExtType
, DL
, PVT
,
1347 LD
->getChain(), LD
->getBasePtr(),
1348 MemVT
, LD
->getMemOperand());
1349 SDValue Result
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, NewLD
);
1351 LLVM_DEBUG(dbgs() << "\nPromoting "; N
->dump(&DAG
); dbgs() << "\nTo: ";
1352 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
1353 WorklistRemover
DeadNodes(*this);
1354 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
);
1355 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), NewLD
.getValue(1));
1356 deleteAndRecombine(N
);
1357 AddToWorklist(Result
.getNode());
1363 /// Recursively delete a node which has no uses and any operands for
1364 /// which it is the only use.
1366 /// Note that this both deletes the nodes and removes them from the worklist.
1367 /// It also adds any nodes who have had a user deleted to the worklist as they
1368 /// may now have only one use and subject to other combines.
1369 bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode
*N
) {
1370 if (!N
->use_empty())
1373 SmallSetVector
<SDNode
*, 16> Nodes
;
1376 N
= Nodes
.pop_back_val();
1380 if (N
->use_empty()) {
1381 for (const SDValue
&ChildN
: N
->op_values())
1382 Nodes
.insert(ChildN
.getNode());
1384 removeFromWorklist(N
);
1389 } while (!Nodes
.empty());
1393 //===----------------------------------------------------------------------===//
1394 // Main DAG Combiner implementation
1395 //===----------------------------------------------------------------------===//
1397 void DAGCombiner::Run(CombineLevel AtLevel
) {
1398 // set the instance variables, so that the various visit routines may use it.
1400 LegalOperations
= Level
>= AfterLegalizeVectorOps
;
1401 LegalTypes
= Level
>= AfterLegalizeTypes
;
1403 // Add all the dag nodes to the worklist.
1404 for (SDNode
&Node
: DAG
.allnodes())
1405 AddToWorklist(&Node
);
1407 // Create a dummy node (which is not added to allnodes), that adds a reference
1408 // to the root node, preventing it from being deleted, and tracking any
1409 // changes of the root.
1410 HandleSDNode
Dummy(DAG
.getRoot());
1412 // While the worklist isn't empty, find a node and try to combine it.
1413 while (!WorklistMap
.empty()) {
1415 // The Worklist holds the SDNodes in order, but it may contain null entries.
1417 N
= Worklist
.pop_back_val();
1420 bool GoodWorklistEntry
= WorklistMap
.erase(N
);
1421 (void)GoodWorklistEntry
;
1422 assert(GoodWorklistEntry
&&
1423 "Found a worklist entry without a corresponding map entry!");
1425 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1426 // N is deleted from the DAG, since they too may now be dead or may have a
1427 // reduced number of uses, allowing other xforms.
1428 if (recursivelyDeleteUnusedNodes(N
))
1431 WorklistRemover
DeadNodes(*this);
1433 // If this combine is running after legalizing the DAG, re-legalize any
1434 // nodes pulled off the worklist.
1435 if (Level
== AfterLegalizeDAG
) {
1436 SmallSetVector
<SDNode
*, 16> UpdatedNodes
;
1437 bool NIsValid
= DAG
.LegalizeOp(N
, UpdatedNodes
);
1439 for (SDNode
*LN
: UpdatedNodes
) {
1441 AddUsersToWorklist(LN
);
1447 LLVM_DEBUG(dbgs() << "\nCombining: "; N
->dump(&DAG
));
1449 // Add any operands of the new node which have not yet been combined to the
1450 // worklist as well. Because the worklist uniques things already, this
1451 // won't repeatedly process the same operand.
1452 CombinedNodes
.insert(N
);
1453 for (const SDValue
&ChildN
: N
->op_values())
1454 if (!CombinedNodes
.count(ChildN
.getNode()))
1455 AddToWorklist(ChildN
.getNode());
1457 SDValue RV
= combine(N
);
1464 // If we get back the same node we passed in, rather than a new node or
1465 // zero, we know that the node must have defined multiple values and
1466 // CombineTo was used. Since CombineTo takes care of the worklist
1467 // mechanics for us, we have no work to do in this case.
1468 if (RV
.getNode() == N
)
1471 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1472 RV
.getOpcode() != ISD::DELETED_NODE
&&
1473 "Node was deleted but visit returned new node!");
1475 LLVM_DEBUG(dbgs() << " ... into: "; RV
.getNode()->dump(&DAG
));
1477 if (N
->getNumValues() == RV
.getNode()->getNumValues())
1478 DAG
.ReplaceAllUsesWith(N
, RV
.getNode());
1480 assert(N
->getValueType(0) == RV
.getValueType() &&
1481 N
->getNumValues() == 1 && "Type mismatch");
1482 DAG
.ReplaceAllUsesWith(N
, &RV
);
1485 // Push the new node and any users onto the worklist
1486 AddToWorklist(RV
.getNode());
1487 AddUsersToWorklist(RV
.getNode());
1489 // Finally, if the node is now dead, remove it from the graph. The node
1490 // may not be dead if the replacement process recursively simplified to
1491 // something else needing this node. This will also take care of adding any
1492 // operands which have lost a user to the worklist.
1493 recursivelyDeleteUnusedNodes(N
);
1496 // If the root changed (e.g. it was a dead load, update the root).
1497 DAG
.setRoot(Dummy
.getValue());
1498 DAG
.RemoveDeadNodes();
1501 SDValue
DAGCombiner::visit(SDNode
*N
) {
1502 switch (N
->getOpcode()) {
1504 case ISD::TokenFactor
: return visitTokenFactor(N
);
1505 case ISD::MERGE_VALUES
: return visitMERGE_VALUES(N
);
1506 case ISD::ADD
: return visitADD(N
);
1507 case ISD::SUB
: return visitSUB(N
);
1508 case ISD::ADDC
: return visitADDC(N
);
1509 case ISD::UADDO
: return visitUADDO(N
);
1510 case ISD::SUBC
: return visitSUBC(N
);
1511 case ISD::USUBO
: return visitUSUBO(N
);
1512 case ISD::ADDE
: return visitADDE(N
);
1513 case ISD::ADDCARRY
: return visitADDCARRY(N
);
1514 case ISD::SUBE
: return visitSUBE(N
);
1515 case ISD::SUBCARRY
: return visitSUBCARRY(N
);
1516 case ISD::MUL
: return visitMUL(N
);
1517 case ISD::SDIV
: return visitSDIV(N
);
1518 case ISD::UDIV
: return visitUDIV(N
);
1520 case ISD::UREM
: return visitREM(N
);
1521 case ISD::MULHU
: return visitMULHU(N
);
1522 case ISD::MULHS
: return visitMULHS(N
);
1523 case ISD::SMUL_LOHI
: return visitSMUL_LOHI(N
);
1524 case ISD::UMUL_LOHI
: return visitUMUL_LOHI(N
);
1525 case ISD::SMULO
: return visitSMULO(N
);
1526 case ISD::UMULO
: return visitUMULO(N
);
1530 case ISD::UMAX
: return visitIMINMAX(N
);
1531 case ISD::AND
: return visitAND(N
);
1532 case ISD::OR
: return visitOR(N
);
1533 case ISD::XOR
: return visitXOR(N
);
1534 case ISD::SHL
: return visitSHL(N
);
1535 case ISD::SRA
: return visitSRA(N
);
1536 case ISD::SRL
: return visitSRL(N
);
1538 case ISD::ROTL
: return visitRotate(N
);
1539 case ISD::ABS
: return visitABS(N
);
1540 case ISD::BSWAP
: return visitBSWAP(N
);
1541 case ISD::BITREVERSE
: return visitBITREVERSE(N
);
1542 case ISD::CTLZ
: return visitCTLZ(N
);
1543 case ISD::CTLZ_ZERO_UNDEF
: return visitCTLZ_ZERO_UNDEF(N
);
1544 case ISD::CTTZ
: return visitCTTZ(N
);
1545 case ISD::CTTZ_ZERO_UNDEF
: return visitCTTZ_ZERO_UNDEF(N
);
1546 case ISD::CTPOP
: return visitCTPOP(N
);
1547 case ISD::SELECT
: return visitSELECT(N
);
1548 case ISD::VSELECT
: return visitVSELECT(N
);
1549 case ISD::SELECT_CC
: return visitSELECT_CC(N
);
1550 case ISD::SETCC
: return visitSETCC(N
);
1551 case ISD::SETCCCARRY
: return visitSETCCCARRY(N
);
1552 case ISD::SIGN_EXTEND
: return visitSIGN_EXTEND(N
);
1553 case ISD::ZERO_EXTEND
: return visitZERO_EXTEND(N
);
1554 case ISD::ANY_EXTEND
: return visitANY_EXTEND(N
);
1555 case ISD::AssertSext
:
1556 case ISD::AssertZext
: return visitAssertExt(N
);
1557 case ISD::SIGN_EXTEND_INREG
: return visitSIGN_EXTEND_INREG(N
);
1558 case ISD::SIGN_EXTEND_VECTOR_INREG
: return visitSIGN_EXTEND_VECTOR_INREG(N
);
1559 case ISD::ZERO_EXTEND_VECTOR_INREG
: return visitZERO_EXTEND_VECTOR_INREG(N
);
1560 case ISD::TRUNCATE
: return visitTRUNCATE(N
);
1561 case ISD::BITCAST
: return visitBITCAST(N
);
1562 case ISD::BUILD_PAIR
: return visitBUILD_PAIR(N
);
1563 case ISD::FADD
: return visitFADD(N
);
1564 case ISD::FSUB
: return visitFSUB(N
);
1565 case ISD::FMUL
: return visitFMUL(N
);
1566 case ISD::FMA
: return visitFMA(N
);
1567 case ISD::FDIV
: return visitFDIV(N
);
1568 case ISD::FREM
: return visitFREM(N
);
1569 case ISD::FSQRT
: return visitFSQRT(N
);
1570 case ISD::FCOPYSIGN
: return visitFCOPYSIGN(N
);
1571 case ISD::SINT_TO_FP
: return visitSINT_TO_FP(N
);
1572 case ISD::UINT_TO_FP
: return visitUINT_TO_FP(N
);
1573 case ISD::FP_TO_SINT
: return visitFP_TO_SINT(N
);
1574 case ISD::FP_TO_UINT
: return visitFP_TO_UINT(N
);
1575 case ISD::FP_ROUND
: return visitFP_ROUND(N
);
1576 case ISD::FP_ROUND_INREG
: return visitFP_ROUND_INREG(N
);
1577 case ISD::FP_EXTEND
: return visitFP_EXTEND(N
);
1578 case ISD::FNEG
: return visitFNEG(N
);
1579 case ISD::FABS
: return visitFABS(N
);
1580 case ISD::FFLOOR
: return visitFFLOOR(N
);
1581 case ISD::FMINNUM
: return visitFMINNUM(N
);
1582 case ISD::FMAXNUM
: return visitFMAXNUM(N
);
1583 case ISD::FCEIL
: return visitFCEIL(N
);
1584 case ISD::FTRUNC
: return visitFTRUNC(N
);
1585 case ISD::BRCOND
: return visitBRCOND(N
);
1586 case ISD::BR_CC
: return visitBR_CC(N
);
1587 case ISD::LOAD
: return visitLOAD(N
);
1588 case ISD::STORE
: return visitSTORE(N
);
1589 case ISD::INSERT_VECTOR_ELT
: return visitINSERT_VECTOR_ELT(N
);
1590 case ISD::EXTRACT_VECTOR_ELT
: return visitEXTRACT_VECTOR_ELT(N
);
1591 case ISD::BUILD_VECTOR
: return visitBUILD_VECTOR(N
);
1592 case ISD::CONCAT_VECTORS
: return visitCONCAT_VECTORS(N
);
1593 case ISD::EXTRACT_SUBVECTOR
: return visitEXTRACT_SUBVECTOR(N
);
1594 case ISD::VECTOR_SHUFFLE
: return visitVECTOR_SHUFFLE(N
);
1595 case ISD::SCALAR_TO_VECTOR
: return visitSCALAR_TO_VECTOR(N
);
1596 case ISD::INSERT_SUBVECTOR
: return visitINSERT_SUBVECTOR(N
);
1597 case ISD::MGATHER
: return visitMGATHER(N
);
1598 case ISD::MLOAD
: return visitMLOAD(N
);
1599 case ISD::MSCATTER
: return visitMSCATTER(N
);
1600 case ISD::MSTORE
: return visitMSTORE(N
);
1601 case ISD::FP_TO_FP16
: return visitFP_TO_FP16(N
);
1602 case ISD::FP16_TO_FP
: return visitFP16_TO_FP(N
);
1607 SDValue
DAGCombiner::combine(SDNode
*N
) {
1608 SDValue RV
= visit(N
);
1610 // If nothing happened, try a target-specific DAG combine.
1611 if (!RV
.getNode()) {
1612 assert(N
->getOpcode() != ISD::DELETED_NODE
&&
1613 "Node was deleted but visit returned NULL!");
1615 if (N
->getOpcode() >= ISD::BUILTIN_OP_END
||
1616 TLI
.hasTargetDAGCombine((ISD::NodeType
)N
->getOpcode())) {
1618 // Expose the DAG combiner to the target combiner impls.
1619 TargetLowering::DAGCombinerInfo
1620 DagCombineInfo(DAG
, Level
, false, this);
1622 RV
= TLI
.PerformDAGCombine(N
, DagCombineInfo
);
1626 // If nothing happened still, try promoting the operation.
1627 if (!RV
.getNode()) {
1628 switch (N
->getOpcode()) {
1636 RV
= PromoteIntBinOp(SDValue(N
, 0));
1641 RV
= PromoteIntShiftOp(SDValue(N
, 0));
1643 case ISD::SIGN_EXTEND
:
1644 case ISD::ZERO_EXTEND
:
1645 case ISD::ANY_EXTEND
:
1646 RV
= PromoteExtend(SDValue(N
, 0));
1649 if (PromoteLoad(SDValue(N
, 0)))
1655 // If N is a commutative binary node, try eliminate it if the commuted
1656 // version is already present in the DAG.
1657 if (!RV
.getNode() && TLI
.isCommutativeBinOp(N
->getOpcode()) &&
1658 N
->getNumValues() == 1) {
1659 SDValue N0
= N
->getOperand(0);
1660 SDValue N1
= N
->getOperand(1);
1662 // Constant operands are canonicalized to RHS.
1663 if (N0
!= N1
&& (isa
<ConstantSDNode
>(N0
) || !isa
<ConstantSDNode
>(N1
))) {
1664 SDValue Ops
[] = {N1
, N0
};
1665 SDNode
*CSENode
= DAG
.getNodeIfExists(N
->getOpcode(), N
->getVTList(), Ops
,
1668 return SDValue(CSENode
, 0);
1675 /// Given a node, return its input chain if it has one, otherwise return a null
1677 static SDValue
getInputChainForNode(SDNode
*N
) {
1678 if (unsigned NumOps
= N
->getNumOperands()) {
1679 if (N
->getOperand(0).getValueType() == MVT::Other
)
1680 return N
->getOperand(0);
1681 if (N
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
1682 return N
->getOperand(NumOps
-1);
1683 for (unsigned i
= 1; i
< NumOps
-1; ++i
)
1684 if (N
->getOperand(i
).getValueType() == MVT::Other
)
1685 return N
->getOperand(i
);
1690 SDValue
DAGCombiner::visitTokenFactor(SDNode
*N
) {
1691 // If N has two operands, where one has an input chain equal to the other,
1692 // the 'other' chain is redundant.
1693 if (N
->getNumOperands() == 2) {
1694 if (getInputChainForNode(N
->getOperand(0).getNode()) == N
->getOperand(1))
1695 return N
->getOperand(0);
1696 if (getInputChainForNode(N
->getOperand(1).getNode()) == N
->getOperand(0))
1697 return N
->getOperand(1);
1700 // Don't simplify token factors if optnone.
1701 if (OptLevel
== CodeGenOpt::None
)
1704 SmallVector
<SDNode
*, 8> TFs
; // List of token factors to visit.
1705 SmallVector
<SDValue
, 8> Ops
; // Ops for replacing token factor.
1706 SmallPtrSet
<SDNode
*, 16> SeenOps
;
1707 bool Changed
= false; // If we should replace this token factor.
1709 // Start out with this token factor.
1712 // Iterate through token factors. The TFs grows when new token factors are
1714 for (unsigned i
= 0; i
< TFs
.size(); ++i
) {
1715 SDNode
*TF
= TFs
[i
];
1717 // Check each of the operands.
1718 for (const SDValue
&Op
: TF
->op_values()) {
1719 switch (Op
.getOpcode()) {
1720 case ISD::EntryToken
:
1721 // Entry tokens don't need to be added to the list. They are
1726 case ISD::TokenFactor
:
1727 if (Op
.hasOneUse() && !is_contained(TFs
, Op
.getNode())) {
1728 // Queue up for processing.
1729 TFs
.push_back(Op
.getNode());
1730 // Clean up in case the token factor is removed.
1731 AddToWorklist(Op
.getNode());
1738 // Only add if it isn't already in the list.
1739 if (SeenOps
.insert(Op
.getNode()).second
)
1748 // Remove Nodes that are chained to another node in the list. Do so
1749 // by walking up chains breath-first stopping when we've seen
1750 // another operand. In general we must climb to the EntryNode, but we can exit
1751 // early if we find all remaining work is associated with just one operand as
1752 // no further pruning is possible.
1754 // List of nodes to search through and original Ops from which they originate.
1755 SmallVector
<std::pair
<SDNode
*, unsigned>, 8> Worklist
;
1756 SmallVector
<unsigned, 8> OpWorkCount
; // Count of work for each Op.
1757 SmallPtrSet
<SDNode
*, 16> SeenChains
;
1758 bool DidPruneOps
= false;
1760 unsigned NumLeftToConsider
= 0;
1761 for (const SDValue
&Op
: Ops
) {
1762 Worklist
.push_back(std::make_pair(Op
.getNode(), NumLeftToConsider
++));
1763 OpWorkCount
.push_back(1);
1766 auto AddToWorklist
= [&](unsigned CurIdx
, SDNode
*Op
, unsigned OpNumber
) {
1767 // If this is an Op, we can remove the op from the list. Remark any
1768 // search associated with it as from the current OpNumber.
1769 if (SeenOps
.count(Op
) != 0) {
1772 unsigned OrigOpNumber
= 0;
1773 while (OrigOpNumber
< Ops
.size() && Ops
[OrigOpNumber
].getNode() != Op
)
1775 assert((OrigOpNumber
!= Ops
.size()) &&
1776 "expected to find TokenFactor Operand");
1777 // Re-mark worklist from OrigOpNumber to OpNumber
1778 for (unsigned i
= CurIdx
+ 1; i
< Worklist
.size(); ++i
) {
1779 if (Worklist
[i
].second
== OrigOpNumber
) {
1780 Worklist
[i
].second
= OpNumber
;
1783 OpWorkCount
[OpNumber
] += OpWorkCount
[OrigOpNumber
];
1784 OpWorkCount
[OrigOpNumber
] = 0;
1785 NumLeftToConsider
--;
1787 // Add if it's a new chain
1788 if (SeenChains
.insert(Op
).second
) {
1789 OpWorkCount
[OpNumber
]++;
1790 Worklist
.push_back(std::make_pair(Op
, OpNumber
));
1794 for (unsigned i
= 0; i
< Worklist
.size() && i
< 1024; ++i
) {
1795 // We need at least be consider at least 2 Ops to prune.
1796 if (NumLeftToConsider
<= 1)
1798 auto CurNode
= Worklist
[i
].first
;
1799 auto CurOpNumber
= Worklist
[i
].second
;
1800 assert((OpWorkCount
[CurOpNumber
] > 0) &&
1801 "Node should not appear in worklist");
1802 switch (CurNode
->getOpcode()) {
1803 case ISD::EntryToken
:
1804 // Hitting EntryToken is the only way for the search to terminate without
1806 // another operand's search. Prevent us from marking this operand
1808 NumLeftToConsider
++;
1810 case ISD::TokenFactor
:
1811 for (const SDValue
&Op
: CurNode
->op_values())
1812 AddToWorklist(i
, Op
.getNode(), CurOpNumber
);
1814 case ISD::CopyFromReg
:
1815 case ISD::CopyToReg
:
1816 AddToWorklist(i
, CurNode
->getOperand(0).getNode(), CurOpNumber
);
1819 if (auto *MemNode
= dyn_cast
<MemSDNode
>(CurNode
))
1820 AddToWorklist(i
, MemNode
->getChain().getNode(), CurOpNumber
);
1823 OpWorkCount
[CurOpNumber
]--;
1824 if (OpWorkCount
[CurOpNumber
] == 0)
1825 NumLeftToConsider
--;
1828 // If we've changed things around then replace token factor.
1832 // The entry token is the only possible outcome.
1833 Result
= DAG
.getEntryNode();
1836 SmallVector
<SDValue
, 8> PrunedOps
;
1838 for (const SDValue
&Op
: Ops
) {
1839 if (SeenChains
.count(Op
.getNode()) == 0)
1840 PrunedOps
.push_back(Op
);
1842 Result
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
), MVT::Other
, PrunedOps
);
1844 Result
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
), MVT::Other
, Ops
);
1852 /// MERGE_VALUES can always be eliminated.
1853 SDValue
DAGCombiner::visitMERGE_VALUES(SDNode
*N
) {
1854 WorklistRemover
DeadNodes(*this);
1855 // Replacing results may cause a different MERGE_VALUES to suddenly
1856 // be CSE'd with N, and carry its uses with it. Iterate until no
1857 // uses remain, to ensure that the node can be safely deleted.
1858 // First add the users of this node to the work list so that they
1859 // can be tried again once they have new operands.
1860 AddUsersToWorklist(N
);
1862 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
1863 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, i
), N
->getOperand(i
));
1864 } while (!N
->use_empty());
1865 deleteAndRecombine(N
);
1866 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
1869 /// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
1870 /// ConstantSDNode pointer else nullptr.
1871 static ConstantSDNode
*getAsNonOpaqueConstant(SDValue N
) {
1872 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
);
1873 return Const
!= nullptr && !Const
->isOpaque() ? Const
: nullptr;
1876 SDValue
DAGCombiner::foldBinOpIntoSelect(SDNode
*BO
) {
1877 auto BinOpcode
= BO
->getOpcode();
1878 assert((BinOpcode
== ISD::ADD
|| BinOpcode
== ISD::SUB
||
1879 BinOpcode
== ISD::MUL
|| BinOpcode
== ISD::SDIV
||
1880 BinOpcode
== ISD::UDIV
|| BinOpcode
== ISD::SREM
||
1881 BinOpcode
== ISD::UREM
|| BinOpcode
== ISD::AND
||
1882 BinOpcode
== ISD::OR
|| BinOpcode
== ISD::XOR
||
1883 BinOpcode
== ISD::SHL
|| BinOpcode
== ISD::SRL
||
1884 BinOpcode
== ISD::SRA
|| BinOpcode
== ISD::FADD
||
1885 BinOpcode
== ISD::FSUB
|| BinOpcode
== ISD::FMUL
||
1886 BinOpcode
== ISD::FDIV
|| BinOpcode
== ISD::FREM
) &&
1887 "Unexpected binary operator");
1889 // Don't do this unless the old select is going away. We want to eliminate the
1890 // binary operator, not replace a binop with a select.
1891 // TODO: Handle ISD::SELECT_CC.
1892 unsigned SelOpNo
= 0;
1893 SDValue Sel
= BO
->getOperand(0);
1894 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse()) {
1896 Sel
= BO
->getOperand(1);
1899 if (Sel
.getOpcode() != ISD::SELECT
|| !Sel
.hasOneUse())
1902 SDValue CT
= Sel
.getOperand(1);
1903 if (!isConstantOrConstantVector(CT
, true) &&
1904 !isConstantFPBuildVectorOrConstantFP(CT
))
1907 SDValue CF
= Sel
.getOperand(2);
1908 if (!isConstantOrConstantVector(CF
, true) &&
1909 !isConstantFPBuildVectorOrConstantFP(CF
))
1912 // Bail out if any constants are opaque because we can't constant fold those.
1913 // The exception is "and" and "or" with either 0 or -1 in which case we can
1914 // propagate non constant operands into select. I.e.:
1915 // and (select Cond, 0, -1), X --> select Cond, 0, X
1916 // or X, (select Cond, -1, 0) --> select Cond, -1, X
1917 bool CanFoldNonConst
= (BinOpcode
== ISD::AND
|| BinOpcode
== ISD::OR
) &&
1918 (isNullConstantOrNullSplatConstant(CT
) ||
1919 isAllOnesConstantOrAllOnesSplatConstant(CT
)) &&
1920 (isNullConstantOrNullSplatConstant(CF
) ||
1921 isAllOnesConstantOrAllOnesSplatConstant(CF
));
1923 SDValue CBO
= BO
->getOperand(SelOpNo
^ 1);
1924 if (!CanFoldNonConst
&&
1925 !isConstantOrConstantVector(CBO
, true) &&
1926 !isConstantFPBuildVectorOrConstantFP(CBO
))
1929 EVT VT
= Sel
.getValueType();
1931 // In case of shift value and shift amount may have different VT. For instance
1932 // on x86 shift amount is i8 regardles of LHS type. Bail out if we have
1933 // swapped operands and value types do not match. NB: x86 is fine if operands
1934 // are not swapped with shift amount VT being not bigger than shifted value.
1935 // TODO: that is possible to check for a shift operation, correct VTs and
1936 // still perform optimization on x86 if needed.
1937 if (SelOpNo
&& VT
!= CBO
.getValueType())
1940 // We have a select-of-constants followed by a binary operator with a
1941 // constant. Eliminate the binop by pulling the constant math into the select.
1942 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
1944 SDValue NewCT
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CT
)
1945 : DAG
.getNode(BinOpcode
, DL
, VT
, CT
, CBO
);
1946 if (!CanFoldNonConst
&& !NewCT
.isUndef() &&
1947 !isConstantOrConstantVector(NewCT
, true) &&
1948 !isConstantFPBuildVectorOrConstantFP(NewCT
))
1951 SDValue NewCF
= SelOpNo
? DAG
.getNode(BinOpcode
, DL
, VT
, CBO
, CF
)
1952 : DAG
.getNode(BinOpcode
, DL
, VT
, CF
, CBO
);
1953 if (!CanFoldNonConst
&& !NewCF
.isUndef() &&
1954 !isConstantOrConstantVector(NewCF
, true) &&
1955 !isConstantFPBuildVectorOrConstantFP(NewCF
))
1958 return DAG
.getSelect(DL
, VT
, Sel
.getOperand(0), NewCT
, NewCF
);
1961 static SDValue
foldAddSubBoolOfMaskedVal(SDNode
*N
, SelectionDAG
&DAG
) {
1962 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
1963 "Expecting add or sub");
1965 // Match a constant operand and a zext operand for the math instruction:
1968 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
1969 SDValue C
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
1970 SDValue Z
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
1971 auto *CN
= dyn_cast
<ConstantSDNode
>(C
);
1972 if (!CN
|| Z
.getOpcode() != ISD::ZERO_EXTEND
)
1975 // Match the zext operand as a setcc of a boolean.
1976 if (Z
.getOperand(0).getOpcode() != ISD::SETCC
||
1977 Z
.getOperand(0).getValueType() != MVT::i1
)
1980 // Match the compare as: setcc (X & 1), 0, eq.
1981 SDValue SetCC
= Z
.getOperand(0);
1982 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
1983 if (CC
!= ISD::SETEQ
|| !isNullConstant(SetCC
.getOperand(1)) ||
1984 SetCC
.getOperand(0).getOpcode() != ISD::AND
||
1985 !isOneConstant(SetCC
.getOperand(0).getOperand(1)))
1988 // We are adding/subtracting a constant and an inverted low bit. Turn that
1989 // into a subtract/add of the low bit with incremented/decremented constant:
1990 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
1991 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
1992 EVT VT
= C
.getValueType();
1994 SDValue LowBit
= DAG
.getZExtOrTrunc(SetCC
.getOperand(0), DL
, VT
);
1995 SDValue C1
= IsAdd
? DAG
.getConstant(CN
->getAPIntValue() + 1, DL
, VT
) :
1996 DAG
.getConstant(CN
->getAPIntValue() - 1, DL
, VT
);
1997 return DAG
.getNode(IsAdd
? ISD::SUB
: ISD::ADD
, DL
, VT
, C1
, LowBit
);
2000 /// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2001 /// a shift and add with a different constant.
2002 static SDValue
foldAddSubOfSignBit(SDNode
*N
, SelectionDAG
&DAG
) {
2003 assert((N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
2004 "Expecting add or sub");
2006 // We need a constant operand for the add/sub, and the other operand is a
2007 // logical shift right: add (srl), C or sub C, (srl).
2008 bool IsAdd
= N
->getOpcode() == ISD::ADD
;
2009 SDValue ConstantOp
= IsAdd
? N
->getOperand(1) : N
->getOperand(0);
2010 SDValue ShiftOp
= IsAdd
? N
->getOperand(0) : N
->getOperand(1);
2011 ConstantSDNode
*C
= isConstOrConstSplat(ConstantOp
);
2012 if (!C
|| ShiftOp
.getOpcode() != ISD::SRL
)
2015 // The shift must be of a 'not' value.
2016 // TODO: Use isBitwiseNot() if it works with vectors.
2017 SDValue Not
= ShiftOp
.getOperand(0);
2018 if (!Not
.hasOneUse() || Not
.getOpcode() != ISD::XOR
||
2019 !isAllOnesConstantOrAllOnesSplatConstant(Not
.getOperand(1)))
2022 // The shift must be moving the sign bit to the least-significant-bit.
2023 EVT VT
= ShiftOp
.getValueType();
2024 SDValue ShAmt
= ShiftOp
.getOperand(1);
2025 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2026 if (!ShAmtC
|| ShAmtC
->getZExtValue() != VT
.getScalarSizeInBits() - 1)
2029 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2030 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2031 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2033 auto ShOpcode
= IsAdd
? ISD::SRA
: ISD::SRL
;
2034 SDValue NewShift
= DAG
.getNode(ShOpcode
, DL
, VT
, Not
.getOperand(0), ShAmt
);
2035 APInt NewC
= IsAdd
? C
->getAPIntValue() + 1 : C
->getAPIntValue() - 1;
2036 return DAG
.getNode(ISD::ADD
, DL
, VT
, NewShift
, DAG
.getConstant(NewC
, DL
, VT
));
2039 SDValue
DAGCombiner::visitADD(SDNode
*N
) {
2040 SDValue N0
= N
->getOperand(0);
2041 SDValue N1
= N
->getOperand(1);
2042 EVT VT
= N0
.getValueType();
2046 if (VT
.isVector()) {
2047 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2050 // fold (add x, 0) -> x, vector edition
2051 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2053 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
2057 // fold (add x, undef) -> undef
2064 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
2065 // canonicalize constant to RHS
2066 if (!DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2067 return DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
);
2068 // fold (add c1, c2) -> c1+c2
2069 return DAG
.FoldConstantArithmetic(ISD::ADD
, DL
, VT
, N0
.getNode(),
2073 // fold (add x, 0) -> x
2074 if (isNullConstant(N1
))
2077 if (isConstantOrConstantVector(N1
, /* NoOpaque */ true)) {
2078 // fold ((c1-A)+c2) -> (c1+c2)-A
2079 if (N0
.getOpcode() == ISD::SUB
&&
2080 isConstantOrConstantVector(N0
.getOperand(0), /* NoOpaque */ true)) {
2081 // FIXME: Adding 2 constants should be handled by FoldConstantArithmetic.
2082 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2083 DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(0)),
2087 // add (sext i1 X), 1 -> zext (not i1 X)
2088 // We don't transform this pattern:
2089 // add (zext i1 X), -1 -> sext (not i1 X)
2090 // because most (?) targets generate better code for the zext form.
2091 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&& N0
.hasOneUse() &&
2092 isOneConstantOrOneSplatConstant(N1
)) {
2093 SDValue X
= N0
.getOperand(0);
2094 if ((!LegalOperations
||
2095 (TLI
.isOperationLegal(ISD::XOR
, X
.getValueType()) &&
2096 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) &&
2097 X
.getScalarValueSizeInBits() == 1) {
2098 SDValue Not
= DAG
.getNOT(DL
, X
, X
.getValueType());
2099 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Not
);
2103 // Undo the add -> or combine to merge constant offsets from a frame index.
2104 if (N0
.getOpcode() == ISD::OR
&&
2105 isa
<FrameIndexSDNode
>(N0
.getOperand(0)) &&
2106 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
2107 DAG
.haveNoCommonBitsSet(N0
.getOperand(0), N0
.getOperand(1))) {
2108 SDValue Add0
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, N0
.getOperand(1));
2109 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0), Add0
);
2113 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2117 if (SDValue RADD
= ReassociateOps(ISD::ADD
, DL
, N0
, N1
, N
->getFlags()))
2120 // fold ((0-A) + B) -> B-A
2121 if (N0
.getOpcode() == ISD::SUB
&&
2122 isNullConstantOrNullSplatConstant(N0
.getOperand(0)))
2123 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, N0
.getOperand(1));
2125 // fold (A + (0-B)) -> A-B
2126 if (N1
.getOpcode() == ISD::SUB
&&
2127 isNullConstantOrNullSplatConstant(N1
.getOperand(0)))
2128 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
.getOperand(1));
2130 // fold (A+(B-A)) -> B
2131 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(1))
2132 return N1
.getOperand(0);
2134 // fold ((B-A)+A) -> B
2135 if (N0
.getOpcode() == ISD::SUB
&& N1
== N0
.getOperand(1))
2136 return N0
.getOperand(0);
2138 // fold (A+(B-(A+C))) to (B-C)
2139 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2140 N0
== N1
.getOperand(1).getOperand(0))
2141 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2142 N1
.getOperand(1).getOperand(1));
2144 // fold (A+(B-(C+A))) to (B-C)
2145 if (N1
.getOpcode() == ISD::SUB
&& N1
.getOperand(1).getOpcode() == ISD::ADD
&&
2146 N0
== N1
.getOperand(1).getOperand(1))
2147 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(0),
2148 N1
.getOperand(1).getOperand(0));
2150 // fold (A+((B-A)+or-C)) to (B+or-C)
2151 if ((N1
.getOpcode() == ISD::SUB
|| N1
.getOpcode() == ISD::ADD
) &&
2152 N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2153 N0
== N1
.getOperand(0).getOperand(1))
2154 return DAG
.getNode(N1
.getOpcode(), DL
, VT
, N1
.getOperand(0).getOperand(0),
2157 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
2158 if (N0
.getOpcode() == ISD::SUB
&& N1
.getOpcode() == ISD::SUB
) {
2159 SDValue N00
= N0
.getOperand(0);
2160 SDValue N01
= N0
.getOperand(1);
2161 SDValue N10
= N1
.getOperand(0);
2162 SDValue N11
= N1
.getOperand(1);
2164 if (isConstantOrConstantVector(N00
) || isConstantOrConstantVector(N10
))
2165 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2166 DAG
.getNode(ISD::ADD
, SDLoc(N0
), VT
, N00
, N10
),
2167 DAG
.getNode(ISD::ADD
, SDLoc(N1
), VT
, N01
, N11
));
2170 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2173 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2176 if (SimplifyDemandedBits(SDValue(N
, 0)))
2177 return SDValue(N
, 0);
2179 // fold (a+b) -> (a|b) iff a and b share no bits.
2180 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::OR
, VT
)) &&
2181 DAG
.haveNoCommonBitsSet(N0
, N1
))
2182 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N1
);
2184 // fold (add (xor a, -1), 1) -> (sub 0, a)
2185 if (isBitwiseNot(N0
) && isOneConstantOrOneSplatConstant(N1
))
2186 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
2189 if (SDValue Combined
= visitADDLike(N0
, N1
, N
))
2192 if (SDValue Combined
= visitADDLike(N1
, N0
, N
))
2198 static SDValue
getAsCarry(const TargetLowering
&TLI
, SDValue V
) {
2199 bool Masked
= false;
2201 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
2203 if (V
.getOpcode() == ISD::TRUNCATE
|| V
.getOpcode() == ISD::ZERO_EXTEND
) {
2204 V
= V
.getOperand(0);
2208 if (V
.getOpcode() == ISD::AND
&& isOneConstant(V
.getOperand(1))) {
2210 V
= V
.getOperand(0);
2217 // If this is not a carry, return.
2218 if (V
.getResNo() != 1)
2221 if (V
.getOpcode() != ISD::ADDCARRY
&& V
.getOpcode() != ISD::SUBCARRY
&&
2222 V
.getOpcode() != ISD::UADDO
&& V
.getOpcode() != ISD::USUBO
)
2225 // If the result is masked, then no matter what kind of bool it is we can
2226 // return. If it isn't, then we need to make sure the bool type is either 0 or
2227 // 1 and not other values.
2229 TLI
.getBooleanContents(V
.getValueType()) ==
2230 TargetLoweringBase::ZeroOrOneBooleanContent
)
2236 SDValue
DAGCombiner::visitADDLike(SDValue N0
, SDValue N1
, SDNode
*LocReference
) {
2237 EVT VT
= N0
.getValueType();
2238 SDLoc
DL(LocReference
);
2240 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
2241 if (N1
.getOpcode() == ISD::SHL
&& N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2242 isNullConstantOrNullSplatConstant(N1
.getOperand(0).getOperand(0)))
2243 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
,
2244 DAG
.getNode(ISD::SHL
, DL
, VT
,
2245 N1
.getOperand(0).getOperand(1),
2248 if (N1
.getOpcode() == ISD::AND
) {
2249 SDValue AndOp0
= N1
.getOperand(0);
2250 unsigned NumSignBits
= DAG
.ComputeNumSignBits(AndOp0
);
2251 unsigned DestBits
= VT
.getScalarSizeInBits();
2253 // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
2254 // and similar xforms where the inner op is either ~0 or 0.
2255 if (NumSignBits
== DestBits
&&
2256 isOneConstantOrOneSplatConstant(N1
->getOperand(1)))
2257 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, AndOp0
);
2260 // add (sext i1), X -> sub X, (zext i1)
2261 if (N0
.getOpcode() == ISD::SIGN_EXTEND
&&
2262 N0
.getOperand(0).getValueType() == MVT::i1
&&
2263 !TLI
.isOperationLegal(ISD::SIGN_EXTEND
, MVT::i1
)) {
2264 SDValue ZExt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0));
2265 return DAG
.getNode(ISD::SUB
, DL
, VT
, N1
, ZExt
);
2268 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
2269 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2270 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2271 if (TN
->getVT() == MVT::i1
) {
2272 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2273 DAG
.getConstant(1, DL
, VT
));
2274 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, ZExt
);
2278 // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2279 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1)) &&
2281 return DAG
.getNode(ISD::ADDCARRY
, DL
, N1
->getVTList(),
2282 N0
, N1
.getOperand(0), N1
.getOperand(2));
2284 // (add X, Carry) -> (addcarry X, 0, Carry)
2285 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2286 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2287 return DAG
.getNode(ISD::ADDCARRY
, DL
,
2288 DAG
.getVTList(VT
, Carry
.getValueType()), N0
,
2289 DAG
.getConstant(0, DL
, VT
), Carry
);
2294 SDValue
DAGCombiner::visitADDC(SDNode
*N
) {
2295 SDValue N0
= N
->getOperand(0);
2296 SDValue N1
= N
->getOperand(1);
2297 EVT VT
= N0
.getValueType();
2300 // If the flag result is dead, turn this into an ADD.
2301 if (!N
->hasAnyUseOfValue(1))
2302 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2303 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2305 // canonicalize constant to RHS.
2306 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2307 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2309 return DAG
.getNode(ISD::ADDC
, DL
, N
->getVTList(), N1
, N0
);
2311 // fold (addc x, 0) -> x + no carry out
2312 if (isNullConstant(N1
))
2313 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
,
2316 // If it cannot overflow, transform into an add.
2317 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2318 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2319 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2324 static SDValue
flipBoolean(SDValue V
, const SDLoc
&DL
, EVT VT
,
2325 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
2327 switch (TLI
.getBooleanContents(VT
)) {
2328 case TargetLowering::ZeroOrOneBooleanContent
:
2329 case TargetLowering::UndefinedBooleanContent
:
2330 Cst
= DAG
.getConstant(1, DL
, VT
);
2332 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2333 Cst
= DAG
.getConstant(-1, DL
, VT
);
2337 return DAG
.getNode(ISD::XOR
, DL
, VT
, V
, Cst
);
2340 static bool isBooleanFlip(SDValue V
, EVT VT
, const TargetLowering
&TLI
) {
2341 if (V
.getOpcode() != ISD::XOR
) return false;
2342 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
2343 if (!Const
) return false;
2345 switch(TLI
.getBooleanContents(VT
)) {
2346 case TargetLowering::ZeroOrOneBooleanContent
:
2347 return Const
->isOne();
2348 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2349 return Const
->isAllOnesValue();
2350 case TargetLowering::UndefinedBooleanContent
:
2351 return (Const
->getAPIntValue() & 0x01) == 1;
2353 llvm_unreachable("Unsupported boolean content");
2356 SDValue
DAGCombiner::visitUADDO(SDNode
*N
) {
2357 SDValue N0
= N
->getOperand(0);
2358 SDValue N1
= N
->getOperand(1);
2359 EVT VT
= N0
.getValueType();
2363 EVT CarryVT
= N
->getValueType(1);
2366 // If the flag result is dead, turn this into an ADD.
2367 if (!N
->hasAnyUseOfValue(1))
2368 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2369 DAG
.getUNDEF(CarryVT
));
2371 // canonicalize constant to RHS.
2372 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2373 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2375 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N1
, N0
);
2377 // fold (uaddo x, 0) -> x + no carry out
2378 if (isNullConstant(N1
))
2379 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2381 // If it cannot overflow, transform into an add.
2382 if (DAG
.computeOverflowKind(N0
, N1
) == SelectionDAG::OFK_Never
)
2383 return CombineTo(N
, DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
),
2384 DAG
.getConstant(0, DL
, CarryVT
));
2386 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
2387 if (isBitwiseNot(N0
) && isOneConstantOrOneSplatConstant(N1
)) {
2388 SDValue Sub
= DAG
.getNode(ISD::USUBO
, DL
, N
->getVTList(),
2389 DAG
.getConstant(0, DL
, VT
),
2391 return CombineTo(N
, Sub
,
2392 flipBoolean(Sub
.getValue(1), DL
, CarryVT
, DAG
, TLI
));
2395 if (SDValue Combined
= visitUADDOLike(N0
, N1
, N
))
2398 if (SDValue Combined
= visitUADDOLike(N1
, N0
, N
))
2404 SDValue
DAGCombiner::visitUADDOLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
2405 auto VT
= N0
.getValueType();
2407 // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
2408 // If Y + 1 cannot overflow.
2409 if (N1
.getOpcode() == ISD::ADDCARRY
&& isNullConstant(N1
.getOperand(1))) {
2410 SDValue Y
= N1
.getOperand(0);
2411 SDValue One
= DAG
.getConstant(1, SDLoc(N
), Y
.getValueType());
2412 if (DAG
.computeOverflowKind(Y
, One
) == SelectionDAG::OFK_Never
)
2413 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
, Y
,
2417 // (uaddo X, Carry) -> (addcarry X, 0, Carry)
2418 if (TLI
.isOperationLegalOrCustom(ISD::ADDCARRY
, VT
))
2419 if (SDValue Carry
= getAsCarry(TLI
, N1
))
2420 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2421 DAG
.getConstant(0, SDLoc(N
), VT
), Carry
);
2426 SDValue
DAGCombiner::visitADDE(SDNode
*N
) {
2427 SDValue N0
= N
->getOperand(0);
2428 SDValue N1
= N
->getOperand(1);
2429 SDValue CarryIn
= N
->getOperand(2);
2431 // canonicalize constant to RHS
2432 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2433 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2435 return DAG
.getNode(ISD::ADDE
, SDLoc(N
), N
->getVTList(),
2438 // fold (adde x, y, false) -> (addc x, y)
2439 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2440 return DAG
.getNode(ISD::ADDC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2445 SDValue
DAGCombiner::visitADDCARRY(SDNode
*N
) {
2446 SDValue N0
= N
->getOperand(0);
2447 SDValue N1
= N
->getOperand(1);
2448 SDValue CarryIn
= N
->getOperand(2);
2451 // canonicalize constant to RHS
2452 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
2453 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2455 return DAG
.getNode(ISD::ADDCARRY
, DL
, N
->getVTList(), N1
, N0
, CarryIn
);
2457 // fold (addcarry x, y, false) -> (uaddo x, y)
2458 if (isNullConstant(CarryIn
)) {
2459 if (!LegalOperations
||
2460 TLI
.isOperationLegalOrCustom(ISD::UADDO
, N
->getValueType(0)))
2461 return DAG
.getNode(ISD::UADDO
, DL
, N
->getVTList(), N0
, N1
);
2464 EVT CarryVT
= CarryIn
.getValueType();
2466 // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
2467 if (isNullConstant(N0
) && isNullConstant(N1
)) {
2468 EVT VT
= N0
.getValueType();
2469 SDValue CarryExt
= DAG
.getBoolExtOrTrunc(CarryIn
, DL
, VT
, CarryVT
);
2470 AddToWorklist(CarryExt
.getNode());
2471 return CombineTo(N
, DAG
.getNode(ISD::AND
, DL
, VT
, CarryExt
,
2472 DAG
.getConstant(1, DL
, VT
)),
2473 DAG
.getConstant(0, DL
, CarryVT
));
2476 // fold (addcarry (xor a, -1), 0, !b) -> (subcarry 0, a, b) and flip carry.
2477 if (isBitwiseNot(N0
) && isNullConstant(N1
) &&
2478 isBooleanFlip(CarryIn
, CarryVT
, TLI
)) {
2479 SDValue Sub
= DAG
.getNode(ISD::SUBCARRY
, DL
, N
->getVTList(),
2480 DAG
.getConstant(0, DL
, N0
.getValueType()),
2481 N0
.getOperand(0), CarryIn
.getOperand(0));
2482 return CombineTo(N
, Sub
,
2483 flipBoolean(Sub
.getValue(1), DL
, CarryVT
, DAG
, TLI
));
2486 if (SDValue Combined
= visitADDCARRYLike(N0
, N1
, CarryIn
, N
))
2489 if (SDValue Combined
= visitADDCARRYLike(N1
, N0
, CarryIn
, N
))
2495 SDValue
DAGCombiner::visitADDCARRYLike(SDValue N0
, SDValue N1
, SDValue CarryIn
,
2497 // Iff the flag result is dead:
2498 // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
2499 if ((N0
.getOpcode() == ISD::ADD
||
2500 (N0
.getOpcode() == ISD::UADDO
&& N0
.getResNo() == 0)) &&
2501 isNullConstant(N1
) && !N
->hasAnyUseOfValue(1))
2502 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(),
2503 N0
.getOperand(0), N0
.getOperand(1), CarryIn
);
2506 * When one of the addcarry argument is itself a carry, we may be facing
2507 * a diamond carry propagation. In which case we try to transform the DAG
2508 * to ensure linear carry propagation if that is possible.
2510 * We are trying to get:
2511 * (addcarry X, 0, (addcarry A, B, Z):Carry)
2513 if (auto Y
= getAsCarry(TLI
, N1
)) {
2519 * | (addcarry *, 0, Z)
2523 * (addcarry X, *, *)
2525 if (Y
.getOpcode() == ISD::UADDO
&&
2526 CarryIn
.getResNo() == 1 &&
2527 CarryIn
.getOpcode() == ISD::ADDCARRY
&&
2528 isNullConstant(CarryIn
.getOperand(1)) &&
2529 CarryIn
.getOperand(0) == Y
.getValue(0)) {
2530 auto NewY
= DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), Y
->getVTList(),
2531 Y
.getOperand(0), Y
.getOperand(1),
2532 CarryIn
.getOperand(2));
2533 AddToWorklist(NewY
.getNode());
2534 return DAG
.getNode(ISD::ADDCARRY
, SDLoc(N
), N
->getVTList(), N0
,
2535 DAG
.getConstant(0, SDLoc(N
), N0
.getValueType()),
2543 // Since it may not be valid to emit a fold to zero for vector initializers
2544 // check if we can before folding.
2545 static SDValue
tryFoldToZero(const SDLoc
&DL
, const TargetLowering
&TLI
, EVT VT
,
2546 SelectionDAG
&DAG
, bool LegalOperations
,
2549 return DAG
.getConstant(0, DL
, VT
);
2550 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
2551 return DAG
.getConstant(0, DL
, VT
);
2555 SDValue
DAGCombiner::visitSUB(SDNode
*N
) {
2556 SDValue N0
= N
->getOperand(0);
2557 SDValue N1
= N
->getOperand(1);
2558 EVT VT
= N0
.getValueType();
2562 if (VT
.isVector()) {
2563 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2566 // fold (sub x, 0) -> x, vector edition
2567 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
2571 // fold (sub x, x) -> 0
2572 // FIXME: Refactor this and xor and other similar operations together.
2574 return tryFoldToZero(DL
, TLI
, VT
, DAG
, LegalOperations
, LegalTypes
);
2575 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2576 DAG
.isConstantIntBuildVectorOrConstantInt(N1
)) {
2577 // fold (sub c1, c2) -> c1-c2
2578 return DAG
.FoldConstantArithmetic(ISD::SUB
, DL
, VT
, N0
.getNode(),
2582 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2585 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
2587 // fold (sub x, c) -> (add x, -c)
2589 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
2590 DAG
.getConstant(-N1C
->getAPIntValue(), DL
, VT
));
2593 if (isNullConstantOrNullSplatConstant(N0
)) {
2594 unsigned BitWidth
= VT
.getScalarSizeInBits();
2595 // Right-shifting everything out but the sign bit followed by negation is
2596 // the same as flipping arithmetic/logical shift type without the negation:
2597 // -(X >>u 31) -> (X >>s 31)
2598 // -(X >>s 31) -> (X >>u 31)
2599 if (N1
->getOpcode() == ISD::SRA
|| N1
->getOpcode() == ISD::SRL
) {
2600 ConstantSDNode
*ShiftAmt
= isConstOrConstSplat(N1
.getOperand(1));
2601 if (ShiftAmt
&& ShiftAmt
->getZExtValue() == BitWidth
- 1) {
2602 auto NewSh
= N1
->getOpcode() == ISD::SRA
? ISD::SRL
: ISD::SRA
;
2603 if (!LegalOperations
|| TLI
.isOperationLegal(NewSh
, VT
))
2604 return DAG
.getNode(NewSh
, DL
, VT
, N1
.getOperand(0), N1
.getOperand(1));
2608 // 0 - X --> 0 if the sub is NUW.
2609 if (N
->getFlags().hasNoUnsignedWrap())
2612 if (DAG
.MaskedValueIsZero(N1
, ~APInt::getSignMask(BitWidth
))) {
2613 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
2614 // N1 must be 0 because negating the minimum signed value is undefined.
2615 if (N
->getFlags().hasNoSignedWrap())
2618 // 0 - X --> X if X is 0 or the minimum signed value.
2623 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
2624 if (isAllOnesConstantOrAllOnesSplatConstant(N0
))
2625 return DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
);
2627 // fold (A - (0-B)) -> A+B
2628 if (N1
.getOpcode() == ISD::SUB
&&
2629 isNullConstantOrNullSplatConstant(N1
.getOperand(0)))
2630 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, N1
.getOperand(1));
2632 // fold A-(A-B) -> B
2633 if (N1
.getOpcode() == ISD::SUB
&& N0
== N1
.getOperand(0))
2634 return N1
.getOperand(1);
2636 // fold (A+B)-A -> B
2637 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(0) == N1
)
2638 return N0
.getOperand(1);
2640 // fold (A+B)-B -> A
2641 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
)
2642 return N0
.getOperand(0);
2644 // fold C2-(A+C1) -> (C2-C1)-A
2645 if (N1
.getOpcode() == ISD::ADD
) {
2646 SDValue N11
= N1
.getOperand(1);
2647 if (isConstantOrConstantVector(N0
, /* NoOpaques */ true) &&
2648 isConstantOrConstantVector(N11
, /* NoOpaques */ true)) {
2649 SDValue NewC
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N11
);
2650 return DAG
.getNode(ISD::SUB
, DL
, VT
, NewC
, N1
.getOperand(0));
2654 // fold ((A+(B+or-C))-B) -> A+or-C
2655 if (N0
.getOpcode() == ISD::ADD
&&
2656 (N0
.getOperand(1).getOpcode() == ISD::SUB
||
2657 N0
.getOperand(1).getOpcode() == ISD::ADD
) &&
2658 N0
.getOperand(1).getOperand(0) == N1
)
2659 return DAG
.getNode(N0
.getOperand(1).getOpcode(), DL
, VT
, N0
.getOperand(0),
2660 N0
.getOperand(1).getOperand(1));
2662 // fold ((A+(C+B))-B) -> A+C
2663 if (N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1).getOpcode() == ISD::ADD
&&
2664 N0
.getOperand(1).getOperand(1) == N1
)
2665 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
.getOperand(0),
2666 N0
.getOperand(1).getOperand(0));
2668 // fold ((A-(B-C))-C) -> A-B
2669 if (N0
.getOpcode() == ISD::SUB
&& N0
.getOperand(1).getOpcode() == ISD::SUB
&&
2670 N0
.getOperand(1).getOperand(1) == N1
)
2671 return DAG
.getNode(ISD::SUB
, DL
, VT
, N0
.getOperand(0),
2672 N0
.getOperand(1).getOperand(0));
2674 // fold (A-(B-C)) -> A+(C-B)
2675 if (N1
.getOpcode() == ISD::SUB
&& N1
.hasOneUse())
2676 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
,
2677 DAG
.getNode(ISD::SUB
, DL
, VT
, N1
.getOperand(1),
2680 // fold (X - (-Y * Z)) -> (X + (Y * Z))
2681 if (N1
.getOpcode() == ISD::MUL
&& N1
.hasOneUse()) {
2682 if (N1
.getOperand(0).getOpcode() == ISD::SUB
&&
2683 isNullConstantOrNullSplatConstant(N1
.getOperand(0).getOperand(0))) {
2684 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
2685 N1
.getOperand(0).getOperand(1),
2687 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
2689 if (N1
.getOperand(1).getOpcode() == ISD::SUB
&&
2690 isNullConstantOrNullSplatConstant(N1
.getOperand(1).getOperand(0))) {
2691 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
,
2693 N1
.getOperand(1).getOperand(1));
2694 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Mul
);
2698 // If either operand of a sub is undef, the result is undef
2704 if (SDValue V
= foldAddSubBoolOfMaskedVal(N
, DAG
))
2707 if (SDValue V
= foldAddSubOfSignBit(N
, DAG
))
2710 // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
2711 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
2712 if (N0
.getOpcode() == ISD::XOR
&& N1
.getOpcode() == ISD::SRA
) {
2713 SDValue X0
= N0
.getOperand(0), X1
= N0
.getOperand(1);
2714 SDValue S0
= N1
.getOperand(0);
2715 if ((X0
== S0
&& X1
== N1
) || (X0
== N1
&& X1
== S0
)) {
2716 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
2717 if (ConstantSDNode
*C
= isConstOrConstSplat(N1
.getOperand(1)))
2718 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
2719 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
2724 // If the relocation model supports it, consider symbol offsets.
2725 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N0
))
2726 if (!LegalOperations
&& TLI
.isOffsetFoldingLegal(GA
)) {
2727 // fold (sub Sym, c) -> Sym-c
2728 if (N1C
&& GA
->getOpcode() == ISD::GlobalAddress
)
2729 return DAG
.getGlobalAddress(GA
->getGlobal(), SDLoc(N1C
), VT
,
2731 (uint64_t)N1C
->getSExtValue());
2732 // fold (sub Sym+c1, Sym+c2) -> c1-c2
2733 if (GlobalAddressSDNode
*GB
= dyn_cast
<GlobalAddressSDNode
>(N1
))
2734 if (GA
->getGlobal() == GB
->getGlobal())
2735 return DAG
.getConstant((uint64_t)GA
->getOffset() - GB
->getOffset(),
2739 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
2740 if (N1
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2741 VTSDNode
*TN
= cast
<VTSDNode
>(N1
.getOperand(1));
2742 if (TN
->getVT() == MVT::i1
) {
2743 SDValue ZExt
= DAG
.getNode(ISD::AND
, DL
, VT
, N1
.getOperand(0),
2744 DAG
.getConstant(1, DL
, VT
));
2745 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, ZExt
);
2749 // Prefer an add for more folding potential and possibly better codegen:
2750 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
2751 if (!LegalOperations
&& N1
.getOpcode() == ISD::SRL
&& N1
.hasOneUse()) {
2752 SDValue ShAmt
= N1
.getOperand(1);
2753 ConstantSDNode
*ShAmtC
= isConstOrConstSplat(ShAmt
);
2754 if (ShAmtC
&& ShAmtC
->getZExtValue() == N1
.getScalarValueSizeInBits() - 1) {
2755 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, VT
, N1
.getOperand(0), ShAmt
);
2756 return DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, SRA
);
2763 SDValue
DAGCombiner::visitSUBC(SDNode
*N
) {
2764 SDValue N0
= N
->getOperand(0);
2765 SDValue N1
= N
->getOperand(1);
2766 EVT VT
= N0
.getValueType();
2769 // If the flag result is dead, turn this into an SUB.
2770 if (!N
->hasAnyUseOfValue(1))
2771 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
2772 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2774 // fold (subc x, x) -> 0 + no borrow
2776 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
2777 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2779 // fold (subc x, 0) -> x + no borrow
2780 if (isNullConstant(N1
))
2781 return CombineTo(N
, N0
, DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2783 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
2784 if (isAllOnesConstant(N0
))
2785 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
2786 DAG
.getNode(ISD::CARRY_FALSE
, DL
, MVT::Glue
));
2791 SDValue
DAGCombiner::visitUSUBO(SDNode
*N
) {
2792 SDValue N0
= N
->getOperand(0);
2793 SDValue N1
= N
->getOperand(1);
2794 EVT VT
= N0
.getValueType();
2798 EVT CarryVT
= N
->getValueType(1);
2801 // If the flag result is dead, turn this into an SUB.
2802 if (!N
->hasAnyUseOfValue(1))
2803 return CombineTo(N
, DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, N1
),
2804 DAG
.getUNDEF(CarryVT
));
2806 // fold (usubo x, x) -> 0 + no borrow
2808 return CombineTo(N
, DAG
.getConstant(0, DL
, VT
),
2809 DAG
.getConstant(0, DL
, CarryVT
));
2811 // fold (usubo x, 0) -> x + no borrow
2812 if (isNullConstant(N1
))
2813 return CombineTo(N
, N0
, DAG
.getConstant(0, DL
, CarryVT
));
2815 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
2816 if (isAllOnesConstant(N0
))
2817 return CombineTo(N
, DAG
.getNode(ISD::XOR
, DL
, VT
, N1
, N0
),
2818 DAG
.getConstant(0, DL
, CarryVT
));
2823 SDValue
DAGCombiner::visitSUBE(SDNode
*N
) {
2824 SDValue N0
= N
->getOperand(0);
2825 SDValue N1
= N
->getOperand(1);
2826 SDValue CarryIn
= N
->getOperand(2);
2828 // fold (sube x, y, false) -> (subc x, y)
2829 if (CarryIn
.getOpcode() == ISD::CARRY_FALSE
)
2830 return DAG
.getNode(ISD::SUBC
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2835 SDValue
DAGCombiner::visitSUBCARRY(SDNode
*N
) {
2836 SDValue N0
= N
->getOperand(0);
2837 SDValue N1
= N
->getOperand(1);
2838 SDValue CarryIn
= N
->getOperand(2);
2840 // fold (subcarry x, y, false) -> (usubo x, y)
2841 if (isNullConstant(CarryIn
)) {
2842 if (!LegalOperations
||
2843 TLI
.isOperationLegalOrCustom(ISD::USUBO
, N
->getValueType(0)))
2844 return DAG
.getNode(ISD::USUBO
, SDLoc(N
), N
->getVTList(), N0
, N1
);
2850 SDValue
DAGCombiner::visitMUL(SDNode
*N
) {
2851 SDValue N0
= N
->getOperand(0);
2852 SDValue N1
= N
->getOperand(1);
2853 EVT VT
= N0
.getValueType();
2855 // fold (mul x, undef) -> 0
2856 if (N0
.isUndef() || N1
.isUndef())
2857 return DAG
.getConstant(0, SDLoc(N
), VT
);
2859 bool N0IsConst
= false;
2860 bool N1IsConst
= false;
2861 bool N1IsOpaqueConst
= false;
2862 bool N0IsOpaqueConst
= false;
2863 APInt ConstValue0
, ConstValue1
;
2865 if (VT
.isVector()) {
2866 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
2869 N0IsConst
= ISD::isConstantSplatVector(N0
.getNode(), ConstValue0
);
2870 N1IsConst
= ISD::isConstantSplatVector(N1
.getNode(), ConstValue1
);
2871 assert((!N0IsConst
||
2872 ConstValue0
.getBitWidth() == VT
.getScalarSizeInBits()) &&
2873 "Splat APInt should be element width");
2874 assert((!N1IsConst
||
2875 ConstValue1
.getBitWidth() == VT
.getScalarSizeInBits()) &&
2876 "Splat APInt should be element width");
2878 N0IsConst
= isa
<ConstantSDNode
>(N0
);
2880 ConstValue0
= cast
<ConstantSDNode
>(N0
)->getAPIntValue();
2881 N0IsOpaqueConst
= cast
<ConstantSDNode
>(N0
)->isOpaque();
2883 N1IsConst
= isa
<ConstantSDNode
>(N1
);
2885 ConstValue1
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
2886 N1IsOpaqueConst
= cast
<ConstantSDNode
>(N1
)->isOpaque();
2890 // fold (mul c1, c2) -> c1*c2
2891 if (N0IsConst
&& N1IsConst
&& !N0IsOpaqueConst
&& !N1IsOpaqueConst
)
2892 return DAG
.FoldConstantArithmetic(ISD::MUL
, SDLoc(N
), VT
,
2893 N0
.getNode(), N1
.getNode());
2895 // canonicalize constant to RHS (vector doesn't have to splat)
2896 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
2897 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
2898 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N1
, N0
);
2899 // fold (mul x, 0) -> 0
2900 if (N1IsConst
&& ConstValue1
.isNullValue())
2902 // fold (mul x, 1) -> x
2903 if (N1IsConst
&& ConstValue1
.isOneValue())
2906 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
2909 // fold (mul x, -1) -> 0-x
2910 if (N1IsConst
&& ConstValue1
.isAllOnesValue()) {
2912 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2913 DAG
.getConstant(0, DL
, VT
), N0
);
2915 // fold (mul x, (1 << c)) -> x << c
2916 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
2917 DAG
.isKnownToBeAPowerOfTwo(N1
) &&
2918 (!VT
.isVector() || Level
<= AfterLegalizeVectorOps
)) {
2920 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
2921 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
2922 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
2923 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
, Trunc
);
2925 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
2926 if (N1IsConst
&& !N1IsOpaqueConst
&& (-ConstValue1
).isPowerOf2()) {
2927 unsigned Log2Val
= (-ConstValue1
).logBase2();
2929 // FIXME: If the input is something that is easily negated (e.g. a
2930 // single-use add), we should put the negate there.
2931 return DAG
.getNode(ISD::SUB
, DL
, VT
,
2932 DAG
.getConstant(0, DL
, VT
),
2933 DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
2934 DAG
.getConstant(Log2Val
, DL
,
2935 getShiftAmountTy(N0
.getValueType()))));
2938 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
2939 if (N0
.getOpcode() == ISD::SHL
&&
2940 isConstantOrConstantVector(N1
, /* NoOpaques */ true) &&
2941 isConstantOrConstantVector(N0
.getOperand(1), /* NoOpaques */ true)) {
2942 SDValue C3
= DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N1
, N0
.getOperand(1));
2943 if (isConstantOrConstantVector(C3
))
2944 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), C3
);
2947 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
2950 SDValue
Sh(nullptr, 0), Y(nullptr, 0);
2952 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
2953 if (N0
.getOpcode() == ISD::SHL
&&
2954 isConstantOrConstantVector(N0
.getOperand(1)) &&
2955 N0
.getNode()->hasOneUse()) {
2957 } else if (N1
.getOpcode() == ISD::SHL
&&
2958 isConstantOrConstantVector(N1
.getOperand(1)) &&
2959 N1
.getNode()->hasOneUse()) {
2964 SDValue Mul
= DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, Sh
.getOperand(0), Y
);
2965 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, Mul
, Sh
.getOperand(1));
2969 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
2970 if (DAG
.isConstantIntBuildVectorOrConstantInt(N1
) &&
2971 N0
.getOpcode() == ISD::ADD
&&
2972 DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1)) &&
2973 isMulAddWithConstProfitable(N
, N0
, N1
))
2974 return DAG
.getNode(ISD::ADD
, SDLoc(N
), VT
,
2975 DAG
.getNode(ISD::MUL
, SDLoc(N0
), VT
,
2976 N0
.getOperand(0), N1
),
2977 DAG
.getNode(ISD::MUL
, SDLoc(N1
), VT
,
2978 N0
.getOperand(1), N1
));
2981 if (SDValue RMUL
= ReassociateOps(ISD::MUL
, SDLoc(N
), N0
, N1
, N
->getFlags()))
2987 /// Return true if divmod libcall is available.
2988 static bool isDivRemLibcallAvailable(SDNode
*Node
, bool isSigned
,
2989 const TargetLowering
&TLI
) {
2991 EVT NodeType
= Node
->getValueType(0);
2992 if (!NodeType
.isSimple())
2994 switch (NodeType
.getSimpleVT().SimpleTy
) {
2995 default: return false; // No libcall for vector types.
2996 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
2997 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
2998 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
2999 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
3000 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
3003 return TLI
.getLibcallName(LC
) != nullptr;
3006 /// Issue divrem if both quotient and remainder are needed.
3007 SDValue
DAGCombiner::useDivRem(SDNode
*Node
) {
3008 if (Node
->use_empty())
3009 return SDValue(); // This is a dead node, leave it alone.
3011 unsigned Opcode
= Node
->getOpcode();
3012 bool isSigned
= (Opcode
== ISD::SDIV
) || (Opcode
== ISD::SREM
);
3013 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3015 // DivMod lib calls can still work on non-legal types if using lib-calls.
3016 EVT VT
= Node
->getValueType(0);
3017 if (VT
.isVector() || !VT
.isInteger())
3020 if (!TLI
.isTypeLegal(VT
) && !TLI
.isOperationCustom(DivRemOpc
, VT
))
3023 // If DIVREM is going to get expanded into a libcall,
3024 // but there is no libcall available, then don't combine.
3025 if (!TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
) &&
3026 !isDivRemLibcallAvailable(Node
, isSigned
, TLI
))
3029 // If div is legal, it's better to do the normal expansion
3030 unsigned OtherOpcode
= 0;
3031 if ((Opcode
== ISD::SDIV
) || (Opcode
== ISD::UDIV
)) {
3032 OtherOpcode
= isSigned
? ISD::SREM
: ISD::UREM
;
3033 if (TLI
.isOperationLegalOrCustom(Opcode
, VT
))
3036 OtherOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3037 if (TLI
.isOperationLegalOrCustom(OtherOpcode
, VT
))
3041 SDValue Op0
= Node
->getOperand(0);
3042 SDValue Op1
= Node
->getOperand(1);
3044 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
3045 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
3047 if (User
== Node
|| User
->getOpcode() == ISD::DELETED_NODE
||
3050 // Convert the other matching node(s), too;
3051 // otherwise, the DIVREM may get target-legalized into something
3052 // target-specific that we won't be able to recognize.
3053 unsigned UserOpc
= User
->getOpcode();
3054 if ((UserOpc
== Opcode
|| UserOpc
== OtherOpcode
|| UserOpc
== DivRemOpc
) &&
3055 User
->getOperand(0) == Op0
&&
3056 User
->getOperand(1) == Op1
) {
3058 if (UserOpc
== OtherOpcode
) {
3059 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3060 combined
= DAG
.getNode(DivRemOpc
, SDLoc(Node
), VTs
, Op0
, Op1
);
3061 } else if (UserOpc
== DivRemOpc
) {
3062 combined
= SDValue(User
, 0);
3064 assert(UserOpc
== Opcode
);
3068 if (UserOpc
== ISD::SDIV
|| UserOpc
== ISD::UDIV
)
3069 CombineTo(User
, combined
);
3070 else if (UserOpc
== ISD::SREM
|| UserOpc
== ISD::UREM
)
3071 CombineTo(User
, combined
.getValue(1));
3077 static SDValue
simplifyDivRem(SDNode
*N
, SelectionDAG
&DAG
) {
3078 SDValue N0
= N
->getOperand(0);
3079 SDValue N1
= N
->getOperand(1);
3080 EVT VT
= N
->getValueType(0);
3083 // X / undef -> undef
3084 // X % undef -> undef
3087 // NOTE: This includes vectors where any divisor element is zero/undef.
3088 if (DAG
.isUndef(N
->getOpcode(), {N0
, N1
}))
3089 return DAG
.getUNDEF(VT
);
3094 return DAG
.getConstant(0, DL
, VT
);
3099 SDValue
DAGCombiner::visitSDIV(SDNode
*N
) {
3100 SDValue N0
= N
->getOperand(0);
3101 SDValue N1
= N
->getOperand(1);
3102 EVT VT
= N
->getValueType(0);
3103 EVT CCVT
= getSetCCResultType(VT
);
3107 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3112 // fold (sdiv c1, c2) -> c1/c2
3113 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3114 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3115 if (N0C
&& N1C
&& !N0C
->isOpaque() && !N1C
->isOpaque())
3116 return DAG
.FoldConstantArithmetic(ISD::SDIV
, DL
, VT
, N0C
, N1C
);
3117 // fold (sdiv X, 1) -> X
3118 if (N1C
&& N1C
->isOne())
3120 // fold (sdiv X, -1) -> 0-X
3121 if (N1C
&& N1C
->isAllOnesValue())
3122 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), N0
);
3123 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
3124 if (N1C
&& N1C
->getAPIntValue().isMinSignedValue())
3125 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3126 DAG
.getConstant(1, DL
, VT
),
3127 DAG
.getConstant(0, DL
, VT
));
3129 if (SDValue V
= simplifyDivRem(N
, DAG
))
3132 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3135 // If we know the sign bits of both operands are zero, strength reduce to a
3136 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
3137 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3138 return DAG
.getNode(ISD::UDIV
, DL
, N1
.getValueType(), N0
, N1
);
3140 if (SDValue V
= visitSDIVLike(N0
, N1
, N
))
3143 // sdiv, srem -> sdivrem
3144 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3145 // true. Otherwise, we break the simplification logic in visitREM().
3146 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3147 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3148 if (SDValue DivRem
= useDivRem(N
))
3154 SDValue
DAGCombiner::visitSDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3156 EVT VT
= N
->getValueType(0);
3157 EVT CCVT
= getSetCCResultType(VT
);
3158 unsigned BitWidth
= VT
.getScalarSizeInBits();
3160 // Helper for determining whether a value is a power-2 constant scalar or a
3161 // vector of such elements.
3162 auto IsPowerOfTwo
= [](ConstantSDNode
*C
) {
3163 if (C
->isNullValue() || C
->isOpaque())
3165 if (C
->getAPIntValue().isPowerOf2())
3167 if ((-C
->getAPIntValue()).isPowerOf2())
3172 // fold (sdiv X, pow2) -> simple ops after legalize
3173 // FIXME: We check for the exact bit here because the generic lowering gives
3174 // better results in that case. The target-specific lowering should learn how
3175 // to handle exact sdivs efficiently.
3176 if (!N
->getFlags().hasExact() && ISD::matchUnaryPredicate(N1
, IsPowerOfTwo
)) {
3177 // Target-specific implementation of sdiv x, pow2.
3178 if (SDValue Res
= BuildSDIVPow2(N
))
3181 // Create constants that are functions of the shift amount value.
3182 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
3183 SDValue Bits
= DAG
.getConstant(BitWidth
, DL
, ShiftAmtTy
);
3184 SDValue C1
= DAG
.getNode(ISD::CTTZ
, DL
, VT
, N1
);
3185 C1
= DAG
.getZExtOrTrunc(C1
, DL
, ShiftAmtTy
);
3186 SDValue Inexact
= DAG
.getNode(ISD::SUB
, DL
, ShiftAmtTy
, Bits
, C1
);
3187 if (!isConstantOrConstantVector(Inexact
))
3190 // Splat the sign bit into the register
3191 SDValue Sign
= DAG
.getNode(ISD::SRA
, DL
, VT
, N0
,
3192 DAG
.getConstant(BitWidth
- 1, DL
, ShiftAmtTy
));
3193 AddToWorklist(Sign
.getNode());
3195 // Add (N0 < 0) ? abs2 - 1 : 0;
3196 SDValue Srl
= DAG
.getNode(ISD::SRL
, DL
, VT
, Sign
, Inexact
);
3197 AddToWorklist(Srl
.getNode());
3198 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Srl
);
3199 AddToWorklist(Add
.getNode());
3200 SDValue Sra
= DAG
.getNode(ISD::SRA
, DL
, VT
, Add
, C1
);
3201 AddToWorklist(Sra
.getNode());
3203 // Special case: (sdiv X, 1) -> X
3204 // Special Case: (sdiv X, -1) -> 0-X
3205 SDValue One
= DAG
.getConstant(1, DL
, VT
);
3206 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
3207 SDValue IsOne
= DAG
.getSetCC(DL
, CCVT
, N1
, One
, ISD::SETEQ
);
3208 SDValue IsAllOnes
= DAG
.getSetCC(DL
, CCVT
, N1
, AllOnes
, ISD::SETEQ
);
3209 SDValue IsOneOrAllOnes
= DAG
.getNode(ISD::OR
, DL
, CCVT
, IsOne
, IsAllOnes
);
3210 Sra
= DAG
.getSelect(DL
, VT
, IsOneOrAllOnes
, N0
, Sra
);
3212 // If dividing by a positive value, we're done. Otherwise, the result must
3214 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
3215 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, Zero
, Sra
);
3217 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
3218 SDValue IsNeg
= DAG
.getSetCC(DL
, CCVT
, N1
, Zero
, ISD::SETLT
);
3219 SDValue Res
= DAG
.getSelect(DL
, VT
, IsNeg
, Sub
, Sra
);
3223 // If integer divide is expensive and we satisfy the requirements, emit an
3224 // alternate sequence. Targets may check function attributes for size/speed
3226 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3227 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3228 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3229 if (SDValue Op
= BuildSDIV(N
))
3235 SDValue
DAGCombiner::visitUDIV(SDNode
*N
) {
3236 SDValue N0
= N
->getOperand(0);
3237 SDValue N1
= N
->getOperand(1);
3238 EVT VT
= N
->getValueType(0);
3239 EVT CCVT
= getSetCCResultType(VT
);
3243 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3248 // fold (udiv c1, c2) -> c1/c2
3249 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3250 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3252 if (SDValue Folded
= DAG
.FoldConstantArithmetic(ISD::UDIV
, DL
, VT
,
3255 // fold (udiv X, 1) -> X
3256 if (N1C
&& N1C
->isOne())
3258 // fold (udiv X, -1) -> select(X == -1, 1, 0)
3259 if (N1C
&& N1C
->getAPIntValue().isAllOnesValue())
3260 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3261 DAG
.getConstant(1, DL
, VT
),
3262 DAG
.getConstant(0, DL
, VT
));
3264 if (SDValue V
= simplifyDivRem(N
, DAG
))
3267 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3270 if (SDValue V
= visitUDIVLike(N0
, N1
, N
))
3273 // sdiv, srem -> sdivrem
3274 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
3275 // true. Otherwise, we break the simplification logic in visitREM().
3276 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3277 if (!N1C
|| TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3278 if (SDValue DivRem
= useDivRem(N
))
3284 SDValue
DAGCombiner::visitUDIVLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3286 EVT VT
= N
->getValueType(0);
3288 // fold (udiv x, (1 << c)) -> x >>u c
3289 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3290 DAG
.isKnownToBeAPowerOfTwo(N1
)) {
3291 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3292 AddToWorklist(LogBase2
.getNode());
3294 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3295 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ShiftVT
);
3296 AddToWorklist(Trunc
.getNode());
3297 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
3300 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
3301 if (N1
.getOpcode() == ISD::SHL
) {
3302 SDValue N10
= N1
.getOperand(0);
3303 if (isConstantOrConstantVector(N10
, /*NoOpaques*/ true) &&
3304 DAG
.isKnownToBeAPowerOfTwo(N10
)) {
3305 SDValue LogBase2
= BuildLogBase2(N10
, DL
);
3306 AddToWorklist(LogBase2
.getNode());
3308 EVT ADDVT
= N1
.getOperand(1).getValueType();
3309 SDValue Trunc
= DAG
.getZExtOrTrunc(LogBase2
, DL
, ADDVT
);
3310 AddToWorklist(Trunc
.getNode());
3311 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, ADDVT
, N1
.getOperand(1), Trunc
);
3312 AddToWorklist(Add
.getNode());
3313 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Add
);
3317 // fold (udiv x, c) -> alternate
3318 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3319 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3320 !TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
3321 if (SDValue Op
= BuildUDIV(N
))
3327 // handles ISD::SREM and ISD::UREM
3328 SDValue
DAGCombiner::visitREM(SDNode
*N
) {
3329 unsigned Opcode
= N
->getOpcode();
3330 SDValue N0
= N
->getOperand(0);
3331 SDValue N1
= N
->getOperand(1);
3332 EVT VT
= N
->getValueType(0);
3333 EVT CCVT
= getSetCCResultType(VT
);
3335 bool isSigned
= (Opcode
== ISD::SREM
);
3338 // fold (rem c1, c2) -> c1%c2
3339 ConstantSDNode
*N0C
= isConstOrConstSplat(N0
);
3340 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
3342 if (SDValue Folded
= DAG
.FoldConstantArithmetic(Opcode
, DL
, VT
, N0C
, N1C
))
3344 // fold (urem X, -1) -> select(X == -1, 0, x)
3345 if (!isSigned
&& N1C
&& N1C
->getAPIntValue().isAllOnesValue())
3346 return DAG
.getSelect(DL
, VT
, DAG
.getSetCC(DL
, CCVT
, N0
, N1
, ISD::SETEQ
),
3347 DAG
.getConstant(0, DL
, VT
), N0
);
3349 if (SDValue V
= simplifyDivRem(N
, DAG
))
3352 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
3356 // If we know the sign bits of both operands are zero, strength reduce to a
3357 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
3358 if (DAG
.SignBitIsZero(N1
) && DAG
.SignBitIsZero(N0
))
3359 return DAG
.getNode(ISD::UREM
, DL
, VT
, N0
, N1
);
3361 SDValue NegOne
= DAG
.getAllOnesConstant(DL
, VT
);
3362 if (DAG
.isKnownToBeAPowerOfTwo(N1
)) {
3363 // fold (urem x, pow2) -> (and x, pow2-1)
3364 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
3365 AddToWorklist(Add
.getNode());
3366 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
3368 if (N1
.getOpcode() == ISD::SHL
&&
3369 DAG
.isKnownToBeAPowerOfTwo(N1
.getOperand(0))) {
3370 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
3371 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N1
, NegOne
);
3372 AddToWorklist(Add
.getNode());
3373 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, Add
);
3377 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3379 // If X/C can be simplified by the division-by-constant logic, lower
3380 // X%C to the equivalent of X-X/C*C.
3381 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
3382 // speculative DIV must not cause a DIVREM conversion. We guard against this
3383 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
3384 // combine will not return a DIVREM. Regardless, checking cheapness here
3385 // makes sense since the simplification results in fatter code.
3386 if (DAG
.isKnownNeverZero(N1
) && !TLI
.isIntDivCheap(VT
, Attr
)) {
3387 SDValue OptimizedDiv
=
3388 isSigned
? visitSDIVLike(N0
, N1
, N
) : visitUDIVLike(N0
, N1
, N
);
3389 if (OptimizedDiv
.getNode() && OptimizedDiv
.getOpcode() != ISD::UDIVREM
&&
3390 OptimizedDiv
.getOpcode() != ISD::SDIVREM
) {
3391 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, VT
, OptimizedDiv
, N1
);
3392 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, VT
, N0
, Mul
);
3393 AddToWorklist(OptimizedDiv
.getNode());
3394 AddToWorklist(Mul
.getNode());
3399 // sdiv, srem -> sdivrem
3400 if (SDValue DivRem
= useDivRem(N
))
3401 return DivRem
.getValue(1);
3406 SDValue
DAGCombiner::visitMULHS(SDNode
*N
) {
3407 SDValue N0
= N
->getOperand(0);
3408 SDValue N1
= N
->getOperand(1);
3409 EVT VT
= N
->getValueType(0);
3412 if (VT
.isVector()) {
3413 // fold (mulhs x, 0) -> 0
3414 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3416 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
3420 // fold (mulhs x, 0) -> 0
3421 if (isNullConstant(N1
))
3423 // fold (mulhs x, 1) -> (sra x, size(x)-1)
3424 if (isOneConstant(N1
))
3425 return DAG
.getNode(ISD::SRA
, DL
, N0
.getValueType(), N0
,
3426 DAG
.getConstant(N0
.getValueSizeInBits() - 1, DL
,
3427 getShiftAmountTy(N0
.getValueType())));
3429 // fold (mulhs x, undef) -> 0
3430 if (N0
.isUndef() || N1
.isUndef())
3431 return DAG
.getConstant(0, DL
, VT
);
3433 // If the type twice as wide is legal, transform the mulhs to a wider multiply
3435 if (VT
.isSimple() && !VT
.isVector()) {
3436 MVT Simple
= VT
.getSimpleVT();
3437 unsigned SimpleSize
= Simple
.getSizeInBits();
3438 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
3439 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
3440 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N0
);
3441 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N1
);
3442 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
3443 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
3444 DAG
.getConstant(SimpleSize
, DL
,
3445 getShiftAmountTy(N1
.getValueType())));
3446 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
3453 SDValue
DAGCombiner::visitMULHU(SDNode
*N
) {
3454 SDValue N0
= N
->getOperand(0);
3455 SDValue N1
= N
->getOperand(1);
3456 EVT VT
= N
->getValueType(0);
3459 if (VT
.isVector()) {
3460 // fold (mulhu x, 0) -> 0
3461 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
3463 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
3467 // fold (mulhu x, 0) -> 0
3468 if (isNullConstant(N1
))
3470 // fold (mulhu x, 1) -> 0
3471 if (isOneConstant(N1
))
3472 return DAG
.getConstant(0, DL
, N0
.getValueType());
3473 // fold (mulhu x, undef) -> 0
3474 if (N0
.isUndef() || N1
.isUndef())
3475 return DAG
.getConstant(0, DL
, VT
);
3477 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
3478 if (isConstantOrConstantVector(N1
, /*NoOpaques*/ true) &&
3479 DAG
.isKnownToBeAPowerOfTwo(N1
) && hasOperation(ISD::SRL
, VT
)) {
3481 unsigned NumEltBits
= VT
.getScalarSizeInBits();
3482 SDValue LogBase2
= BuildLogBase2(N1
, DL
);
3483 SDValue SRLAmt
= DAG
.getNode(
3484 ISD::SUB
, DL
, VT
, DAG
.getConstant(NumEltBits
, DL
, VT
), LogBase2
);
3485 EVT ShiftVT
= getShiftAmountTy(N0
.getValueType());
3486 SDValue Trunc
= DAG
.getZExtOrTrunc(SRLAmt
, DL
, ShiftVT
);
3487 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
, Trunc
);
3490 // If the type twice as wide is legal, transform the mulhu to a wider multiply
3492 if (VT
.isSimple() && !VT
.isVector()) {
3493 MVT Simple
= VT
.getSimpleVT();
3494 unsigned SimpleSize
= Simple
.getSizeInBits();
3495 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
3496 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
3497 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N0
);
3498 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N1
);
3499 N1
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, N0
, N1
);
3500 N1
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, N1
,
3501 DAG
.getConstant(SimpleSize
, DL
,
3502 getShiftAmountTy(N1
.getValueType())));
3503 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, N1
);
3510 /// Perform optimizations common to nodes that compute two values. LoOp and HiOp
3511 /// give the opcodes for the two computations that are being performed. Return
3512 /// true if a simplification was made.
3513 SDValue
DAGCombiner::SimplifyNodeWithTwoResults(SDNode
*N
, unsigned LoOp
,
3515 // If the high half is not needed, just compute the low half.
3516 bool HiExists
= N
->hasAnyUseOfValue(1);
3518 (!LegalOperations
||
3519 TLI
.isOperationLegalOrCustom(LoOp
, N
->getValueType(0)))) {
3520 SDValue Res
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
3521 return CombineTo(N
, Res
, Res
);
3524 // If the low half is not needed, just compute the high half.
3525 bool LoExists
= N
->hasAnyUseOfValue(0);
3527 (!LegalOperations
||
3528 TLI
.isOperationLegal(HiOp
, N
->getValueType(1)))) {
3529 SDValue Res
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
3530 return CombineTo(N
, Res
, Res
);
3533 // If both halves are used, return as it is.
3534 if (LoExists
&& HiExists
)
3537 // If the two computed results can be simplified separately, separate them.
3539 SDValue Lo
= DAG
.getNode(LoOp
, SDLoc(N
), N
->getValueType(0), N
->ops());
3540 AddToWorklist(Lo
.getNode());
3541 SDValue LoOpt
= combine(Lo
.getNode());
3542 if (LoOpt
.getNode() && LoOpt
.getNode() != Lo
.getNode() &&
3543 (!LegalOperations
||
3544 TLI
.isOperationLegal(LoOpt
.getOpcode(), LoOpt
.getValueType())))
3545 return CombineTo(N
, LoOpt
, LoOpt
);
3549 SDValue Hi
= DAG
.getNode(HiOp
, SDLoc(N
), N
->getValueType(1), N
->ops());
3550 AddToWorklist(Hi
.getNode());
3551 SDValue HiOpt
= combine(Hi
.getNode());
3552 if (HiOpt
.getNode() && HiOpt
!= Hi
&&
3553 (!LegalOperations
||
3554 TLI
.isOperationLegal(HiOpt
.getOpcode(), HiOpt
.getValueType())))
3555 return CombineTo(N
, HiOpt
, HiOpt
);
3561 SDValue
DAGCombiner::visitSMUL_LOHI(SDNode
*N
) {
3562 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHS
))
3565 EVT VT
= N
->getValueType(0);
3568 // If the type is twice as wide is legal, transform the mulhu to a wider
3569 // multiply plus a shift.
3570 if (VT
.isSimple() && !VT
.isVector()) {
3571 MVT Simple
= VT
.getSimpleVT();
3572 unsigned SimpleSize
= Simple
.getSizeInBits();
3573 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
3574 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
3575 SDValue Lo
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(0));
3576 SDValue Hi
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, NewVT
, N
->getOperand(1));
3577 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
3578 // Compute the high part as N1.
3579 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
3580 DAG
.getConstant(SimpleSize
, DL
,
3581 getShiftAmountTy(Lo
.getValueType())));
3582 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
3583 // Compute the low part as N0.
3584 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
3585 return CombineTo(N
, Lo
, Hi
);
3592 SDValue
DAGCombiner::visitUMUL_LOHI(SDNode
*N
) {
3593 if (SDValue Res
= SimplifyNodeWithTwoResults(N
, ISD::MUL
, ISD::MULHU
))
3596 EVT VT
= N
->getValueType(0);
3599 // If the type is twice as wide is legal, transform the mulhu to a wider
3600 // multiply plus a shift.
3601 if (VT
.isSimple() && !VT
.isVector()) {
3602 MVT Simple
= VT
.getSimpleVT();
3603 unsigned SimpleSize
= Simple
.getSizeInBits();
3604 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), SimpleSize
*2);
3605 if (TLI
.isOperationLegal(ISD::MUL
, NewVT
)) {
3606 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(0));
3607 SDValue Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, NewVT
, N
->getOperand(1));
3608 Lo
= DAG
.getNode(ISD::MUL
, DL
, NewVT
, Lo
, Hi
);
3609 // Compute the high part as N1.
3610 Hi
= DAG
.getNode(ISD::SRL
, DL
, NewVT
, Lo
,
3611 DAG
.getConstant(SimpleSize
, DL
,
3612 getShiftAmountTy(Lo
.getValueType())));
3613 Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Hi
);
3614 // Compute the low part as N0.
3615 Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Lo
);
3616 return CombineTo(N
, Lo
, Hi
);
3623 SDValue
DAGCombiner::visitSMULO(SDNode
*N
) {
3624 // (smulo x, 2) -> (saddo x, x)
3625 if (ConstantSDNode
*C2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1)))
3626 if (C2
->getAPIntValue() == 2)
3627 return DAG
.getNode(ISD::SADDO
, SDLoc(N
), N
->getVTList(),
3628 N
->getOperand(0), N
->getOperand(0));
3633 SDValue
DAGCombiner::visitUMULO(SDNode
*N
) {
3634 // (umulo x, 2) -> (uaddo x, x)
3635 if (ConstantSDNode
*C2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1)))
3636 if (C2
->getAPIntValue() == 2)
3637 return DAG
.getNode(ISD::UADDO
, SDLoc(N
), N
->getVTList(),
3638 N
->getOperand(0), N
->getOperand(0));
3643 SDValue
DAGCombiner::visitIMINMAX(SDNode
*N
) {
3644 SDValue N0
= N
->getOperand(0);
3645 SDValue N1
= N
->getOperand(1);
3646 EVT VT
= N0
.getValueType();
3650 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
3653 // fold operation with constant operands.
3654 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
3655 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
3657 return DAG
.FoldConstantArithmetic(N
->getOpcode(), SDLoc(N
), VT
, N0C
, N1C
);
3659 // canonicalize constant to RHS
3660 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
3661 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
3662 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, N1
, N0
);
3664 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
3665 // Only do this if the current op isn't legal and the flipped is.
3666 unsigned Opcode
= N
->getOpcode();
3667 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3668 if (!TLI
.isOperationLegal(Opcode
, VT
) &&
3669 (N0
.isUndef() || DAG
.SignBitIsZero(N0
)) &&
3670 (N1
.isUndef() || DAG
.SignBitIsZero(N1
))) {
3673 case ISD::SMIN
: AltOpcode
= ISD::UMIN
; break;
3674 case ISD::SMAX
: AltOpcode
= ISD::UMAX
; break;
3675 case ISD::UMIN
: AltOpcode
= ISD::SMIN
; break;
3676 case ISD::UMAX
: AltOpcode
= ISD::SMAX
; break;
3677 default: llvm_unreachable("Unknown MINMAX opcode");
3679 if (TLI
.isOperationLegal(AltOpcode
, VT
))
3680 return DAG
.getNode(AltOpcode
, SDLoc(N
), VT
, N0
, N1
);
3686 /// If this is a binary operator with two operands of the same opcode, try to
3688 SDValue
DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode
*N
) {
3689 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
3690 EVT VT
= N0
.getValueType();
3691 assert(N0
.getOpcode() == N1
.getOpcode() && "Bad input!");
3693 // Bail early if none of these transforms apply.
3694 if (N0
.getNumOperands() == 0) return SDValue();
3696 // For each of OP in AND/OR/XOR:
3697 // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
3698 // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
3699 // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
3700 // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
3701 // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
3703 // do not sink logical op inside of a vector extend, since it may combine
3705 EVT Op0VT
= N0
.getOperand(0).getValueType();
3706 if ((N0
.getOpcode() == ISD::ZERO_EXTEND
||
3707 N0
.getOpcode() == ISD::SIGN_EXTEND
||
3708 N0
.getOpcode() == ISD::BSWAP
||
3709 // Avoid infinite looping with PromoteIntBinOp.
3710 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
3711 (!LegalTypes
|| TLI
.isTypeDesirableForOp(N
->getOpcode(), Op0VT
))) ||
3712 (N0
.getOpcode() == ISD::TRUNCATE
&&
3713 (!TLI
.isZExtFree(VT
, Op0VT
) ||
3714 !TLI
.isTruncateFree(Op0VT
, VT
)) &&
3715 TLI
.isTypeLegal(Op0VT
))) &&
3717 Op0VT
== N1
.getOperand(0).getValueType() &&
3718 (!LegalOperations
|| TLI
.isOperationLegal(N
->getOpcode(), Op0VT
))) {
3719 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), SDLoc(N0
),
3720 N0
.getOperand(0).getValueType(),
3721 N0
.getOperand(0), N1
.getOperand(0));
3722 AddToWorklist(ORNode
.getNode());
3723 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, ORNode
);
3726 // For each of OP in SHL/SRL/SRA/AND...
3727 // fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
3728 // fold (or (OP x, z), (OP y, z)) -> (OP (or x, y), z)
3729 // fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
3730 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
||
3731 N0
.getOpcode() == ISD::SRA
|| N0
.getOpcode() == ISD::AND
) &&
3732 N0
.getOperand(1) == N1
.getOperand(1)) {
3733 SDValue ORNode
= DAG
.getNode(N
->getOpcode(), SDLoc(N0
),
3734 N0
.getOperand(0).getValueType(),
3735 N0
.getOperand(0), N1
.getOperand(0));
3736 AddToWorklist(ORNode
.getNode());
3737 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
,
3738 ORNode
, N0
.getOperand(1));
3741 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
3742 // Only perform this optimization up until type legalization, before
3743 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
3744 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
3745 // we don't want to undo this promotion.
3746 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
3748 if ((N0
.getOpcode() == ISD::BITCAST
||
3749 N0
.getOpcode() == ISD::SCALAR_TO_VECTOR
) &&
3750 Level
<= AfterLegalizeTypes
) {
3751 SDValue In0
= N0
.getOperand(0);
3752 SDValue In1
= N1
.getOperand(0);
3753 EVT In0Ty
= In0
.getValueType();
3754 EVT In1Ty
= In1
.getValueType();
3756 // If both incoming values are integers, and the original types are the
3758 if (In0Ty
.isInteger() && In1Ty
.isInteger() && In0Ty
== In1Ty
) {
3759 SDValue Op
= DAG
.getNode(N
->getOpcode(), DL
, In0Ty
, In0
, In1
);
3760 SDValue BC
= DAG
.getNode(N0
.getOpcode(), DL
, VT
, Op
);
3761 AddToWorklist(Op
.getNode());
3766 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
3767 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
3768 // If both shuffles use the same mask, and both shuffle within a single
3769 // vector, then it is worthwhile to move the swizzle after the operation.
3770 // The type-legalizer generates this pattern when loading illegal
3771 // vector types from memory. In many cases this allows additional shuffle
3773 // There are other cases where moving the shuffle after the xor/and/or
3774 // is profitable even if shuffles don't perform a swizzle.
3775 // If both shuffles use the same mask, and both shuffles have the same first
3776 // or second operand, then it might still be profitable to move the shuffle
3777 // after the xor/and/or operation.
3778 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
) {
3779 ShuffleVectorSDNode
*SVN0
= cast
<ShuffleVectorSDNode
>(N0
);
3780 ShuffleVectorSDNode
*SVN1
= cast
<ShuffleVectorSDNode
>(N1
);
3782 assert(N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType() &&
3783 "Inputs to shuffles are not the same type");
3785 // Check that both shuffles use the same mask. The masks are known to be of
3786 // the same length because the result vector type is the same.
3787 // Check also that shuffles have only one use to avoid introducing extra
3789 if (SVN0
->hasOneUse() && SVN1
->hasOneUse() &&
3790 SVN0
->getMask().equals(SVN1
->getMask())) {
3791 SDValue ShOp
= N0
->getOperand(1);
3793 // Don't try to fold this node if it requires introducing a
3794 // build vector of all zeros that might be illegal at this stage.
3795 if (N
->getOpcode() == ISD::XOR
&& !ShOp
.isUndef()) {
3797 ShOp
= DAG
.getConstant(0, SDLoc(N
), VT
);
3802 // (AND (shuf (A, C), shuf (B, C))) -> shuf (AND (A, B), C)
3803 // (OR (shuf (A, C), shuf (B, C))) -> shuf (OR (A, B), C)
3804 // (XOR (shuf (A, C), shuf (B, C))) -> shuf (XOR (A, B), V_0)
3805 if (N0
.getOperand(1) == N1
.getOperand(1) && ShOp
.getNode()) {
3806 SDValue NewNode
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
3807 N0
->getOperand(0), N1
->getOperand(0));
3808 AddToWorklist(NewNode
.getNode());
3809 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewNode
, ShOp
,
3813 // Don't try to fold this node if it requires introducing a
3814 // build vector of all zeros that might be illegal at this stage.
3815 ShOp
= N0
->getOperand(0);
3816 if (N
->getOpcode() == ISD::XOR
&& !ShOp
.isUndef()) {
3818 ShOp
= DAG
.getConstant(0, SDLoc(N
), VT
);
3823 // (AND (shuf (C, A), shuf (C, B))) -> shuf (C, AND (A, B))
3824 // (OR (shuf (C, A), shuf (C, B))) -> shuf (C, OR (A, B))
3825 // (XOR (shuf (C, A), shuf (C, B))) -> shuf (V_0, XOR (A, B))
3826 if (N0
->getOperand(0) == N1
->getOperand(0) && ShOp
.getNode()) {
3827 SDValue NewNode
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
3828 N0
->getOperand(1), N1
->getOperand(1));
3829 AddToWorklist(NewNode
.getNode());
3830 return DAG
.getVectorShuffle(VT
, SDLoc(N
), ShOp
, NewNode
,
3839 /// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
3840 SDValue
DAGCombiner::foldLogicOfSetCCs(bool IsAnd
, SDValue N0
, SDValue N1
,
3842 SDValue LL
, LR
, RL
, RR
, N0CC
, N1CC
;
3843 if (!isSetCCEquivalent(N0
, LL
, LR
, N0CC
) ||
3844 !isSetCCEquivalent(N1
, RL
, RR
, N1CC
))
3847 assert(N0
.getValueType() == N1
.getValueType() &&
3848 "Unexpected operand types for bitwise logic op");
3849 assert(LL
.getValueType() == LR
.getValueType() &&
3850 RL
.getValueType() == RR
.getValueType() &&
3851 "Unexpected operand types for setcc");
3853 // If we're here post-legalization or the logic op type is not i1, the logic
3854 // op type must match a setcc result type. Also, all folds require new
3855 // operations on the left and right operands, so those types must match.
3856 EVT VT
= N0
.getValueType();
3857 EVT OpVT
= LL
.getValueType();
3858 if (LegalOperations
|| VT
.getScalarType() != MVT::i1
)
3859 if (VT
!= getSetCCResultType(OpVT
))
3861 if (OpVT
!= RL
.getValueType())
3864 ISD::CondCode CC0
= cast
<CondCodeSDNode
>(N0CC
)->get();
3865 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(N1CC
)->get();
3866 bool IsInteger
= OpVT
.isInteger();
3867 if (LR
== RR
&& CC0
== CC1
&& IsInteger
) {
3868 bool IsZero
= isNullConstantOrNullSplatConstant(LR
);
3869 bool IsNeg1
= isAllOnesConstantOrAllOnesSplatConstant(LR
);
3872 bool AndEqZero
= IsAnd
&& CC1
== ISD::SETEQ
&& IsZero
;
3873 // All sign bits clear?
3874 bool AndGtNeg1
= IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
3876 bool OrNeZero
= !IsAnd
&& CC1
== ISD::SETNE
&& IsZero
;
3877 // Any sign bits set?
3878 bool OrLtZero
= !IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
3880 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
3881 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
3882 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
3883 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
3884 if (AndEqZero
|| AndGtNeg1
|| OrNeZero
|| OrLtZero
) {
3885 SDValue Or
= DAG
.getNode(ISD::OR
, SDLoc(N0
), OpVT
, LL
, RL
);
3886 AddToWorklist(Or
.getNode());
3887 return DAG
.getSetCC(DL
, VT
, Or
, LR
, CC1
);
3891 bool AndEqNeg1
= IsAnd
&& CC1
== ISD::SETEQ
&& IsNeg1
;
3892 // All sign bits set?
3893 bool AndLtZero
= IsAnd
&& CC1
== ISD::SETLT
&& IsZero
;
3895 bool OrNeNeg1
= !IsAnd
&& CC1
== ISD::SETNE
&& IsNeg1
;
3896 // Any sign bits clear?
3897 bool OrGtNeg1
= !IsAnd
&& CC1
== ISD::SETGT
&& IsNeg1
;
3899 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
3900 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
3901 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
3902 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
3903 if (AndEqNeg1
|| AndLtZero
|| OrNeNeg1
|| OrGtNeg1
) {
3904 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, LL
, RL
);
3905 AddToWorklist(And
.getNode());
3906 return DAG
.getSetCC(DL
, VT
, And
, LR
, CC1
);
3910 // TODO: What is the 'or' equivalent of this fold?
3911 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
3912 if (IsAnd
&& LL
== RL
&& CC0
== CC1
&& OpVT
.getScalarSizeInBits() > 1 &&
3913 IsInteger
&& CC0
== ISD::SETNE
&&
3914 ((isNullConstant(LR
) && isAllOnesConstant(RR
)) ||
3915 (isAllOnesConstant(LR
) && isNullConstant(RR
)))) {
3916 SDValue One
= DAG
.getConstant(1, DL
, OpVT
);
3917 SDValue Two
= DAG
.getConstant(2, DL
, OpVT
);
3918 SDValue Add
= DAG
.getNode(ISD::ADD
, SDLoc(N0
), OpVT
, LL
, One
);
3919 AddToWorklist(Add
.getNode());
3920 return DAG
.getSetCC(DL
, VT
, Add
, Two
, ISD::SETUGE
);
3923 // Try more general transforms if the predicates match and the only user of
3924 // the compares is the 'and' or 'or'.
3925 if (IsInteger
&& TLI
.convertSetCCLogicToBitwiseLogic(OpVT
) && CC0
== CC1
&&
3926 N0
.hasOneUse() && N1
.hasOneUse()) {
3927 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
3928 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
3929 if ((IsAnd
&& CC1
== ISD::SETEQ
) || (!IsAnd
&& CC1
== ISD::SETNE
)) {
3930 SDValue XorL
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), OpVT
, LL
, LR
);
3931 SDValue XorR
= DAG
.getNode(ISD::XOR
, SDLoc(N1
), OpVT
, RL
, RR
);
3932 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, OpVT
, XorL
, XorR
);
3933 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
3934 return DAG
.getSetCC(DL
, VT
, Or
, Zero
, CC1
);
3938 // Canonicalize equivalent operands to LL == RL.
3939 if (LL
== RR
&& LR
== RL
) {
3940 CC1
= ISD::getSetCCSwappedOperands(CC1
);
3944 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
3945 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
3946 if (LL
== RL
&& LR
== RR
) {
3947 ISD::CondCode NewCC
= IsAnd
? ISD::getSetCCAndOperation(CC0
, CC1
, IsInteger
)
3948 : ISD::getSetCCOrOperation(CC0
, CC1
, IsInteger
);
3949 if (NewCC
!= ISD::SETCC_INVALID
&&
3950 (!LegalOperations
||
3951 (TLI
.isCondCodeLegal(NewCC
, LL
.getSimpleValueType()) &&
3952 TLI
.isOperationLegal(ISD::SETCC
, OpVT
))))
3953 return DAG
.getSetCC(DL
, VT
, LL
, LR
, NewCC
);
3959 /// This contains all DAGCombine rules which reduce two values combined by
3960 /// an And operation to a single value. This makes them reusable in the context
3961 /// of visitSELECT(). Rules involving constants are not included as
3962 /// visitSELECT() already handles those cases.
3963 SDValue
DAGCombiner::visitANDLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
3964 EVT VT
= N1
.getValueType();
3967 // fold (and x, undef) -> 0
3968 if (N0
.isUndef() || N1
.isUndef())
3969 return DAG
.getConstant(0, DL
, VT
);
3971 if (SDValue V
= foldLogicOfSetCCs(true, N0
, N1
, DL
))
3974 if (N0
.getOpcode() == ISD::ADD
&& N1
.getOpcode() == ISD::SRL
&&
3975 VT
.getSizeInBits() <= 64) {
3976 if (ConstantSDNode
*ADDI
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3977 if (ConstantSDNode
*SRLI
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1))) {
3978 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
3979 // immediate for an add, but it is legal if its top c2 bits are set,
3980 // transform the ADD so the immediate doesn't need to be materialized
3982 APInt ADDC
= ADDI
->getAPIntValue();
3983 APInt SRLC
= SRLI
->getAPIntValue();
3984 if (ADDC
.getMinSignedBits() <= 64 &&
3985 SRLC
.ult(VT
.getSizeInBits()) &&
3986 !TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
3987 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
3988 SRLC
.getZExtValue());
3989 if (DAG
.MaskedValueIsZero(N0
.getOperand(1), Mask
)) {
3991 if (TLI
.isLegalAddImmediate(ADDC
.getSExtValue())) {
3994 DAG
.getNode(ISD::ADD
, DL0
, VT
,
3995 N0
.getOperand(0), DAG
.getConstant(ADDC
, DL
, VT
));
3996 CombineTo(N0
.getNode(), NewAdd
);
3997 // Return N so it doesn't get rechecked!
3998 return SDValue(N
, 0);
4006 // Reduce bit extract of low half of an integer to the narrower type.
4007 // (and (srl i64:x, K), KMask) ->
4008 // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
4009 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
4010 if (ConstantSDNode
*CAnd
= dyn_cast
<ConstantSDNode
>(N1
)) {
4011 if (ConstantSDNode
*CShift
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
4012 unsigned Size
= VT
.getSizeInBits();
4013 const APInt
&AndMask
= CAnd
->getAPIntValue();
4014 unsigned ShiftBits
= CShift
->getZExtValue();
4016 // Bail out, this node will probably disappear anyway.
4020 unsigned MaskBits
= AndMask
.countTrailingOnes();
4021 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), Size
/ 2);
4023 if (AndMask
.isMask() &&
4024 // Required bits must not span the two halves of the integer and
4025 // must fit in the half size type.
4026 (ShiftBits
+ MaskBits
<= Size
/ 2) &&
4027 TLI
.isNarrowingProfitable(VT
, HalfVT
) &&
4028 TLI
.isTypeDesirableForOp(ISD::AND
, HalfVT
) &&
4029 TLI
.isTypeDesirableForOp(ISD::SRL
, HalfVT
) &&
4030 TLI
.isTruncateFree(VT
, HalfVT
) &&
4031 TLI
.isZExtFree(HalfVT
, VT
)) {
4032 // The isNarrowingProfitable is to avoid regressions on PPC and
4033 // AArch64 which match a few 64-bit bit insert / bit extract patterns
4034 // on downstream users of this. Those patterns could probably be
4035 // extended to handle extensions mixed in.
4038 assert(MaskBits
<= Size
);
4040 // Extracting the highest bit of the low half.
4041 EVT ShiftVT
= TLI
.getShiftAmountTy(HalfVT
, DAG
.getDataLayout());
4042 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, HalfVT
,
4045 SDValue NewMask
= DAG
.getConstant(AndMask
.trunc(Size
/ 2), SL
, HalfVT
);
4046 SDValue ShiftK
= DAG
.getConstant(ShiftBits
, SL
, ShiftVT
);
4047 SDValue Shift
= DAG
.getNode(ISD::SRL
, SL
, HalfVT
, Trunc
, ShiftK
);
4048 SDValue And
= DAG
.getNode(ISD::AND
, SL
, HalfVT
, Shift
, NewMask
);
4049 return DAG
.getNode(ISD::ZERO_EXTEND
, SL
, VT
, And
);
4058 bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode
*AndC
, LoadSDNode
*LoadN
,
4059 EVT LoadResultTy
, EVT
&ExtVT
) {
4060 if (!AndC
->getAPIntValue().isMask())
4063 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
4065 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4066 EVT LoadedVT
= LoadN
->getMemoryVT();
4068 if (ExtVT
== LoadedVT
&&
4069 (!LegalOperations
||
4070 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))) {
4071 // ZEXTLOAD will match without needing to change the size of the value being
4076 // Do not change the width of a volatile load.
4077 if (LoadN
->isVolatile())
4080 // Do not generate loads of non-round integer types since these can
4081 // be expensive (and would be wrong if the type is not byte sized).
4082 if (!LoadedVT
.bitsGT(ExtVT
) || !ExtVT
.isRound())
4085 if (LegalOperations
&&
4086 !TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultTy
, ExtVT
))
4089 if (!TLI
.shouldReduceLoadWidth(LoadN
, ISD::ZEXTLOAD
, ExtVT
))
4095 bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode
*LDST
,
4096 ISD::LoadExtType ExtType
, EVT
&MemVT
,
4100 // Only allow byte offsets.
4104 // Do not generate loads of non-round integer types since these can
4105 // be expensive (and would be wrong if the type is not byte sized).
4106 if (!MemVT
.isRound())
4109 // Don't change the width of a volatile load.
4110 if (LDST
->isVolatile())
4113 // Verify that we are actually reducing a load width here.
4114 if (LDST
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits())
4117 // Ensure that this isn't going to produce an unsupported unaligned access.
4119 !TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), MemVT
,
4120 LDST
->getAddressSpace(), ShAmt
/ 8))
4123 // It's not possible to generate a constant of extended or untyped type.
4124 EVT PtrType
= LDST
->getBasePtr().getValueType();
4125 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
4128 if (isa
<LoadSDNode
>(LDST
)) {
4129 LoadSDNode
*Load
= cast
<LoadSDNode
>(LDST
);
4130 // Don't transform one with multiple uses, this would require adding a new
4132 if (!SDValue(Load
, 0).hasOneUse())
4135 if (LegalOperations
&&
4136 !TLI
.isLoadExtLegal(ExtType
, Load
->getValueType(0), MemVT
))
4139 // For the transform to be legal, the load must produce only two values
4140 // (the value loaded and the chain). Don't transform a pre-increment
4141 // load, for example, which produces an extra value. Otherwise the
4142 // transformation is not equivalent, and the downstream logic to replace
4143 // uses gets things wrong.
4144 if (Load
->getNumValues() > 2)
4147 // If the load that we're shrinking is an extload and we're not just
4148 // discarding the extension we can't simply shrink the load. Bail.
4149 // TODO: It would be possible to merge the extensions in some cases.
4150 if (Load
->getExtensionType() != ISD::NON_EXTLOAD
&&
4151 Load
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4154 if (!TLI
.shouldReduceLoadWidth(Load
, ExtType
, MemVT
))
4157 assert(isa
<StoreSDNode
>(LDST
) && "It is not a Load nor a Store SDNode");
4158 StoreSDNode
*Store
= cast
<StoreSDNode
>(LDST
);
4159 // Can't write outside the original store
4160 if (Store
->getMemoryVT().getSizeInBits() < MemVT
.getSizeInBits() + ShAmt
)
4163 if (LegalOperations
&&
4164 !TLI
.isTruncStoreLegal(Store
->getValue().getValueType(), MemVT
))
4170 bool DAGCombiner::SearchForAndLoads(SDNode
*N
,
4171 SmallPtrSetImpl
<LoadSDNode
*> &Loads
,
4172 SmallPtrSetImpl
<SDNode
*> &NodesWithConsts
,
4173 ConstantSDNode
*Mask
,
4174 SDNode
*&NodeToMask
) {
4175 // Recursively search for the operands, looking for loads which can be
4177 for (unsigned i
= 0, e
= N
->getNumOperands(); i
< e
; ++i
) {
4178 SDValue Op
= N
->getOperand(i
);
4180 if (Op
.getValueType().isVector())
4183 // Some constants may need fixing up later if they are too large.
4184 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4185 if ((N
->getOpcode() == ISD::OR
|| N
->getOpcode() == ISD::XOR
) &&
4186 (Mask
->getAPIntValue() & C
->getAPIntValue()) != C
->getAPIntValue())
4187 NodesWithConsts
.insert(N
);
4191 if (!Op
.hasOneUse())
4194 switch(Op
.getOpcode()) {
4196 auto *Load
= cast
<LoadSDNode
>(Op
);
4198 if (isAndLoadExtLoad(Mask
, Load
, Load
->getValueType(0), ExtVT
) &&
4199 isLegalNarrowLdSt(Load
, ISD::ZEXTLOAD
, ExtVT
)) {
4201 // ZEXTLOAD is already small enough.
4202 if (Load
->getExtensionType() == ISD::ZEXTLOAD
&&
4203 ExtVT
.bitsGE(Load
->getMemoryVT()))
4206 // Use LE to convert equal sized loads to zext.
4207 if (ExtVT
.bitsLE(Load
->getMemoryVT()))
4214 case ISD::ZERO_EXTEND
:
4215 case ISD::AssertZext
: {
4216 unsigned ActiveBits
= Mask
->getAPIntValue().countTrailingOnes();
4217 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
4218 EVT VT
= Op
.getOpcode() == ISD::AssertZext
?
4219 cast
<VTSDNode
>(Op
.getOperand(1))->getVT() :
4220 Op
.getOperand(0).getValueType();
4222 // We can accept extending nodes if the mask is wider or an equal
4223 // width to the original type.
4224 if (ExtVT
.bitsGE(VT
))
4231 if (!SearchForAndLoads(Op
.getNode(), Loads
, NodesWithConsts
, Mask
,
4237 // Allow one node which will masked along with any loads found.
4241 // Also ensure that the node to be masked only produces one data result.
4242 NodeToMask
= Op
.getNode();
4243 if (NodeToMask
->getNumValues() > 1) {
4244 bool HasValue
= false;
4245 for (unsigned i
= 0, e
= NodeToMask
->getNumValues(); i
< e
; ++i
) {
4246 MVT VT
= SDValue(NodeToMask
, i
).getSimpleValueType();
4247 if (VT
!= MVT::Glue
&& VT
!= MVT::Other
) {
4249 NodeToMask
= nullptr;
4255 assert(HasValue
&& "Node to be masked has no data result?");
4261 bool DAGCombiner::BackwardsPropagateMask(SDNode
*N
, SelectionDAG
&DAG
) {
4262 auto *Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
4266 if (!Mask
->getAPIntValue().isMask())
4269 // No need to do anything if the and directly uses a load.
4270 if (isa
<LoadSDNode
>(N
->getOperand(0)))
4273 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
4274 SmallPtrSet
<SDNode
*, 2> NodesWithConsts
;
4275 SDNode
*FixupNode
= nullptr;
4276 if (SearchForAndLoads(N
, Loads
, NodesWithConsts
, Mask
, FixupNode
)) {
4277 if (Loads
.size() == 0)
4280 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N
->dump());
4281 SDValue MaskOp
= N
->getOperand(1);
4283 // If it exists, fixup the single node we allow in the tree that needs
4286 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode
->dump());
4287 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(FixupNode
),
4288 FixupNode
->getValueType(0),
4289 SDValue(FixupNode
, 0), MaskOp
);
4290 DAG
.ReplaceAllUsesOfValueWith(SDValue(FixupNode
, 0), And
);
4291 if (And
.getOpcode() == ISD ::AND
)
4292 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(FixupNode
, 0), MaskOp
);
4295 // Narrow any constants that need it.
4296 for (auto *LogicN
: NodesWithConsts
) {
4297 SDValue Op0
= LogicN
->getOperand(0);
4298 SDValue Op1
= LogicN
->getOperand(1);
4300 if (isa
<ConstantSDNode
>(Op0
))
4301 std::swap(Op0
, Op1
);
4303 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Op1
), Op1
.getValueType(),
4306 DAG
.UpdateNodeOperands(LogicN
, Op0
, And
);
4309 // Create narrow loads.
4310 for (auto *Load
: Loads
) {
4311 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load
->dump());
4312 SDValue And
= DAG
.getNode(ISD::AND
, SDLoc(Load
), Load
->getValueType(0),
4313 SDValue(Load
, 0), MaskOp
);
4314 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 0), And
);
4315 if (And
.getOpcode() == ISD ::AND
)
4317 DAG
.UpdateNodeOperands(And
.getNode(), SDValue(Load
, 0), MaskOp
), 0);
4318 SDValue NewLoad
= ReduceLoadWidth(And
.getNode());
4320 "Shouldn't be masking the load if it can't be narrowed");
4321 CombineTo(Load
, NewLoad
, NewLoad
.getValue(1));
4323 DAG
.ReplaceAllUsesWith(N
, N
->getOperand(0).getNode());
4330 // x & (-1 'logical shift' y)
4332 // (x 'opposite logical shift' y) 'logical shift' y
4333 // if it is better for performance.
4334 SDValue
DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode
*N
) {
4335 assert(N
->getOpcode() == ISD::AND
);
4337 SDValue N0
= N
->getOperand(0);
4338 SDValue N1
= N
->getOperand(1);
4340 // Do we actually prefer shifts over mask?
4341 if (!TLI
.preferShiftsToClearExtremeBits(N0
))
4344 // Try to match (-1 '[outer] logical shift' y)
4345 unsigned OuterShift
;
4346 unsigned InnerShift
; // The opposite direction to the OuterShift.
4347 SDValue Y
; // Shift amount.
4348 auto matchMask
= [&OuterShift
, &InnerShift
, &Y
](SDValue M
) -> bool {
4351 OuterShift
= M
->getOpcode();
4352 if (OuterShift
== ISD::SHL
)
4353 InnerShift
= ISD::SRL
;
4354 else if (OuterShift
== ISD::SRL
)
4355 InnerShift
= ISD::SHL
;
4358 if (!isAllOnesConstant(M
->getOperand(0)))
4360 Y
= M
->getOperand(1);
4367 else if (matchMask(N0
))
4373 EVT VT
= N
->getValueType(0);
4375 // tmp = x 'opposite logical shift' y
4376 SDValue T0
= DAG
.getNode(InnerShift
, DL
, VT
, X
, Y
);
4377 // ret = tmp 'logical shift' y
4378 SDValue T1
= DAG
.getNode(OuterShift
, DL
, VT
, T0
, Y
);
4383 SDValue
DAGCombiner::visitAND(SDNode
*N
) {
4384 SDValue N0
= N
->getOperand(0);
4385 SDValue N1
= N
->getOperand(1);
4386 EVT VT
= N1
.getValueType();
4393 if (VT
.isVector()) {
4394 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
4397 // fold (and x, 0) -> 0, vector edition
4398 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
4399 // do not return N0, because undef node may exist in N0
4400 return DAG
.getConstant(APInt::getNullValue(N0
.getScalarValueSizeInBits()),
4401 SDLoc(N
), N0
.getValueType());
4402 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
4403 // do not return N1, because undef node may exist in N1
4404 return DAG
.getConstant(APInt::getNullValue(N1
.getScalarValueSizeInBits()),
4405 SDLoc(N
), N1
.getValueType());
4407 // fold (and x, -1) -> x, vector edition
4408 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
4410 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
4414 // fold (and c1, c2) -> c1&c2
4415 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
4416 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
4417 if (N0C
&& N1C
&& !N1C
->isOpaque())
4418 return DAG
.FoldConstantArithmetic(ISD::AND
, SDLoc(N
), VT
, N0C
, N1C
);
4419 // canonicalize constant to RHS
4420 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
4421 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
4422 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N1
, N0
);
4423 // fold (and x, -1) -> x
4424 if (isAllOnesConstant(N1
))
4426 // if (and x, c) is known to be zero, return 0
4427 unsigned BitWidth
= VT
.getScalarSizeInBits();
4428 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
4429 APInt::getAllOnesValue(BitWidth
)))
4430 return DAG
.getConstant(0, SDLoc(N
), VT
);
4432 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
4436 if (SDValue RAND
= ReassociateOps(ISD::AND
, SDLoc(N
), N0
, N1
, N
->getFlags()))
4439 // Try to convert a constant mask AND into a shuffle clear mask.
4441 if (SDValue Shuffle
= XformToShuffleWithZero(N
))
4444 // fold (and (or x, C), D) -> D if (C & D) == D
4445 auto MatchSubset
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
4446 return RHS
->getAPIntValue().isSubsetOf(LHS
->getAPIntValue());
4448 if (N0
.getOpcode() == ISD::OR
&&
4449 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchSubset
))
4451 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
4452 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
4453 SDValue N0Op0
= N0
.getOperand(0);
4454 APInt Mask
= ~N1C
->getAPIntValue();
4455 Mask
= Mask
.trunc(N0Op0
.getScalarValueSizeInBits());
4456 if (DAG
.MaskedValueIsZero(N0Op0
, Mask
)) {
4457 SDValue Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
),
4458 N0
.getValueType(), N0Op0
);
4460 // Replace uses of the AND with uses of the Zero extend node.
4463 // We actually want to replace all uses of the any_extend with the
4464 // zero_extend, to avoid duplicating things. This will later cause this
4465 // AND to be folded.
4466 CombineTo(N0
.getNode(), Zext
);
4467 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4470 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
4471 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
4472 // already be zero by virtue of the width of the base type of the load.
4474 // the 'X' node here can either be nothing or an extract_vector_elt to catch
4476 if ((N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
4477 N0
.getValueSizeInBits() == N0
.getOperand(0).getScalarValueSizeInBits() &&
4478 N0
.getOperand(0).getOpcode() == ISD::LOAD
&&
4479 N0
.getOperand(0).getResNo() == 0) ||
4480 (N0
.getOpcode() == ISD::LOAD
&& N0
.getResNo() == 0)) {
4481 LoadSDNode
*Load
= cast
<LoadSDNode
>( (N0
.getOpcode() == ISD::LOAD
) ?
4482 N0
: N0
.getOperand(0) );
4484 // Get the constant (if applicable) the zero'th operand is being ANDed with.
4485 // This can be a pure constant or a vector splat, in which case we treat the
4486 // vector as a scalar and use the splat value.
4487 APInt Constant
= APInt::getNullValue(1);
4488 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
4489 Constant
= C
->getAPIntValue();
4490 } else if (BuildVectorSDNode
*Vector
= dyn_cast
<BuildVectorSDNode
>(N1
)) {
4491 APInt SplatValue
, SplatUndef
;
4492 unsigned SplatBitSize
;
4494 bool IsSplat
= Vector
->isConstantSplat(SplatValue
, SplatUndef
,
4495 SplatBitSize
, HasAnyUndefs
);
4497 // Undef bits can contribute to a possible optimisation if set, so
4499 SplatValue
|= SplatUndef
;
4501 // The splat value may be something like "0x00FFFFFF", which means 0 for
4502 // the first vector value and FF for the rest, repeating. We need a mask
4503 // that will apply equally to all members of the vector, so AND all the
4504 // lanes of the constant together.
4505 EVT VT
= Vector
->getValueType(0);
4506 unsigned BitWidth
= VT
.getScalarSizeInBits();
4508 // If the splat value has been compressed to a bitlength lower
4509 // than the size of the vector lane, we need to re-expand it to
4511 if (BitWidth
> SplatBitSize
)
4512 for (SplatValue
= SplatValue
.zextOrTrunc(BitWidth
);
4513 SplatBitSize
< BitWidth
;
4514 SplatBitSize
= SplatBitSize
* 2)
4515 SplatValue
|= SplatValue
.shl(SplatBitSize
);
4517 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
4518 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
4519 if (SplatBitSize
% BitWidth
== 0) {
4520 Constant
= APInt::getAllOnesValue(BitWidth
);
4521 for (unsigned i
= 0, n
= SplatBitSize
/BitWidth
; i
< n
; ++i
)
4522 Constant
&= SplatValue
.lshr(i
*BitWidth
).zextOrTrunc(BitWidth
);
4527 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
4528 // actually legal and isn't going to get expanded, else this is a false
4530 bool CanZextLoadProfitably
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
,
4531 Load
->getValueType(0),
4532 Load
->getMemoryVT());
4534 // Resize the constant to the same size as the original memory access before
4535 // extension. If it is still the AllOnesValue then this AND is completely
4537 Constant
= Constant
.zextOrTrunc(Load
->getMemoryVT().getScalarSizeInBits());
4540 switch (Load
->getExtensionType()) {
4541 default: B
= false; break;
4542 case ISD::EXTLOAD
: B
= CanZextLoadProfitably
; break;
4544 case ISD::NON_EXTLOAD
: B
= true; break;
4547 if (B
&& Constant
.isAllOnesValue()) {
4548 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
4549 // preserve semantics once we get rid of the AND.
4550 SDValue
NewLoad(Load
, 0);
4552 // Fold the AND away. NewLoad may get replaced immediately.
4553 CombineTo(N
, (N0
.getNode() == Load
) ? NewLoad
: N0
);
4555 if (Load
->getExtensionType() == ISD::EXTLOAD
) {
4556 NewLoad
= DAG
.getLoad(Load
->getAddressingMode(), ISD::ZEXTLOAD
,
4557 Load
->getValueType(0), SDLoc(Load
),
4558 Load
->getChain(), Load
->getBasePtr(),
4559 Load
->getOffset(), Load
->getMemoryVT(),
4560 Load
->getMemOperand());
4561 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
4562 if (Load
->getNumValues() == 3) {
4563 // PRE/POST_INC loads have 3 values.
4564 SDValue To
[] = { NewLoad
.getValue(0), NewLoad
.getValue(1),
4565 NewLoad
.getValue(2) };
4566 CombineTo(Load
, To
, 3, true);
4568 CombineTo(Load
, NewLoad
.getValue(0), NewLoad
.getValue(1));
4572 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4576 // fold (and (load x), 255) -> (zextload x, i8)
4577 // fold (and (extload x, i16), 255) -> (zextload x, i8)
4578 // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
4579 if (!VT
.isVector() && N1C
&& (N0
.getOpcode() == ISD::LOAD
||
4580 (N0
.getOpcode() == ISD::ANY_EXTEND
&&
4581 N0
.getOperand(0).getOpcode() == ISD::LOAD
))) {
4582 if (SDValue Res
= ReduceLoadWidth(N
)) {
4583 LoadSDNode
*LN0
= N0
->getOpcode() == ISD::ANY_EXTEND
4584 ? cast
<LoadSDNode
>(N0
.getOperand(0)) : cast
<LoadSDNode
>(N0
);
4587 CombineTo(LN0
, Res
, Res
.getValue(1));
4588 return SDValue(N
, 0);
4592 if (Level
>= AfterLegalizeTypes
) {
4593 // Attempt to propagate the AND back up to the leaves which, if they're
4594 // loads, can be combined to narrow loads and the AND node can be removed.
4595 // Perform after legalization so that extend nodes will already be
4596 // combined into the loads.
4597 if (BackwardsPropagateMask(N
, DAG
)) {
4598 return SDValue(N
, 0);
4602 if (SDValue Combined
= visitANDLike(N0
, N1
, N
))
4605 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
4606 if (N0
.getOpcode() == N1
.getOpcode())
4607 if (SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
))
4610 // Masking the negated extension of a boolean is just the zero-extended
4612 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
4613 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
4615 // Note: the SimplifyDemandedBits fold below can make an information-losing
4616 // transform, and then we have no way to find this better fold.
4617 if (N1C
&& N1C
->isOne() && N0
.getOpcode() == ISD::SUB
) {
4618 if (isNullConstantOrNullSplatConstant(N0
.getOperand(0))) {
4619 SDValue SubRHS
= N0
.getOperand(1);
4620 if (SubRHS
.getOpcode() == ISD::ZERO_EXTEND
&&
4621 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
4623 if (SubRHS
.getOpcode() == ISD::SIGN_EXTEND
&&
4624 SubRHS
.getOperand(0).getScalarValueSizeInBits() == 1)
4625 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, SubRHS
.getOperand(0));
4629 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
4630 // fold (and (sra)) -> (and (srl)) when possible.
4631 if (SimplifyDemandedBits(SDValue(N
, 0)))
4632 return SDValue(N
, 0);
4634 // fold (zext_inreg (extload x)) -> (zextload x)
4635 if (ISD::isEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode())) {
4636 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4637 EVT MemVT
= LN0
->getMemoryVT();
4638 // If we zero all the possible extended bits, then we can turn this into
4639 // a zextload if we are running before legalize or the operation is legal.
4640 unsigned BitWidth
= N1
.getScalarValueSizeInBits();
4641 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
4642 BitWidth
- MemVT
.getScalarSizeInBits())) &&
4643 ((!LegalOperations
&& !LN0
->isVolatile()) ||
4644 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
4645 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
,
4646 LN0
->getChain(), LN0
->getBasePtr(),
4647 MemVT
, LN0
->getMemOperand());
4649 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
4650 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4653 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
4654 if (ISD::isSEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
4656 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
4657 EVT MemVT
= LN0
->getMemoryVT();
4658 // If we zero all the possible extended bits, then we can turn this into
4659 // a zextload if we are running before legalize or the operation is legal.
4660 unsigned BitWidth
= N1
.getScalarValueSizeInBits();
4661 if (DAG
.MaskedValueIsZero(N1
, APInt::getHighBitsSet(BitWidth
,
4662 BitWidth
- MemVT
.getScalarSizeInBits())) &&
4663 ((!LegalOperations
&& !LN0
->isVolatile()) ||
4664 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
))) {
4665 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N0
), VT
,
4666 LN0
->getChain(), LN0
->getBasePtr(),
4667 MemVT
, LN0
->getMemOperand());
4669 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
4670 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
4673 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
4674 if (N1C
&& N1C
->getAPIntValue() == 0xffff && N0
.getOpcode() == ISD::OR
) {
4675 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
4676 N0
.getOperand(1), false))
4680 if (SDValue Shifts
= unfoldExtremeBitClearingToShifts(N
))
4686 /// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
4687 SDValue
DAGCombiner::MatchBSwapHWordLow(SDNode
*N
, SDValue N0
, SDValue N1
,
4688 bool DemandHighBits
) {
4689 if (!LegalOperations
)
4692 EVT VT
= N
->getValueType(0);
4693 if (VT
!= MVT::i64
&& VT
!= MVT::i32
&& VT
!= MVT::i16
)
4695 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
4698 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
4699 bool LookPassAnd0
= false;
4700 bool LookPassAnd1
= false;
4701 if (N0
.getOpcode() == ISD::AND
&& N0
.getOperand(0).getOpcode() == ISD::SRL
)
4703 if (N1
.getOpcode() == ISD::AND
&& N1
.getOperand(0).getOpcode() == ISD::SHL
)
4705 if (N0
.getOpcode() == ISD::AND
) {
4706 if (!N0
.getNode()->hasOneUse())
4708 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4709 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
4710 // This is needed for X86.
4711 if (!N01C
|| (N01C
->getZExtValue() != 0xFF00 &&
4712 N01C
->getZExtValue() != 0xFFFF))
4714 N0
= N0
.getOperand(0);
4715 LookPassAnd0
= true;
4718 if (N1
.getOpcode() == ISD::AND
) {
4719 if (!N1
.getNode()->hasOneUse())
4721 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
4722 if (!N11C
|| N11C
->getZExtValue() != 0xFF)
4724 N1
= N1
.getOperand(0);
4725 LookPassAnd1
= true;
4728 if (N0
.getOpcode() == ISD::SRL
&& N1
.getOpcode() == ISD::SHL
)
4730 if (N0
.getOpcode() != ISD::SHL
|| N1
.getOpcode() != ISD::SRL
)
4732 if (!N0
.getNode()->hasOneUse() || !N1
.getNode()->hasOneUse())
4735 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4736 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
4739 if (N01C
->getZExtValue() != 8 || N11C
->getZExtValue() != 8)
4742 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
4743 SDValue N00
= N0
->getOperand(0);
4744 if (!LookPassAnd0
&& N00
.getOpcode() == ISD::AND
) {
4745 if (!N00
.getNode()->hasOneUse())
4747 ConstantSDNode
*N001C
= dyn_cast
<ConstantSDNode
>(N00
.getOperand(1));
4748 if (!N001C
|| N001C
->getZExtValue() != 0xFF)
4750 N00
= N00
.getOperand(0);
4751 LookPassAnd0
= true;
4754 SDValue N10
= N1
->getOperand(0);
4755 if (!LookPassAnd1
&& N10
.getOpcode() == ISD::AND
) {
4756 if (!N10
.getNode()->hasOneUse())
4758 ConstantSDNode
*N101C
= dyn_cast
<ConstantSDNode
>(N10
.getOperand(1));
4759 // Also allow 0xFFFF since the bits will be shifted out. This is needed
4761 if (!N101C
|| (N101C
->getZExtValue() != 0xFF00 &&
4762 N101C
->getZExtValue() != 0xFFFF))
4764 N10
= N10
.getOperand(0);
4765 LookPassAnd1
= true;
4771 // Make sure everything beyond the low halfword gets set to zero since the SRL
4772 // 16 will clear the top bits.
4773 unsigned OpSizeInBits
= VT
.getSizeInBits();
4774 if (DemandHighBits
&& OpSizeInBits
> 16) {
4775 // If the left-shift isn't masked out then the only way this is a bswap is
4776 // if all bits beyond the low 8 are 0. In that case the entire pattern
4777 // reduces to a left shift anyway: leave it for other parts of the combiner.
4781 // However, if the right shift isn't masked out then it might be because
4782 // it's not needed. See if we can spot that too.
4783 if (!LookPassAnd1
&&
4784 !DAG
.MaskedValueIsZero(
4785 N10
, APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- 16)))
4789 SDValue Res
= DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N00
);
4790 if (OpSizeInBits
> 16) {
4792 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, Res
,
4793 DAG
.getConstant(OpSizeInBits
- 16, DL
,
4794 getShiftAmountTy(VT
)));
4799 /// Return true if the specified node is an element that makes up a 32-bit
4800 /// packed halfword byteswap.
4801 /// ((x & 0x000000ff) << 8) |
4802 /// ((x & 0x0000ff00) >> 8) |
4803 /// ((x & 0x00ff0000) << 8) |
4804 /// ((x & 0xff000000) >> 8)
4805 static bool isBSwapHWordElement(SDValue N
, MutableArrayRef
<SDNode
*> Parts
) {
4806 if (!N
.getNode()->hasOneUse())
4809 unsigned Opc
= N
.getOpcode();
4810 if (Opc
!= ISD::AND
&& Opc
!= ISD::SHL
&& Opc
!= ISD::SRL
)
4813 SDValue N0
= N
.getOperand(0);
4814 unsigned Opc0
= N0
.getOpcode();
4815 if (Opc0
!= ISD::AND
&& Opc0
!= ISD::SHL
&& Opc0
!= ISD::SRL
)
4818 ConstantSDNode
*N1C
= nullptr;
4819 // SHL or SRL: look upstream for AND mask operand
4820 if (Opc
== ISD::AND
)
4821 N1C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
4822 else if (Opc0
== ISD::AND
)
4823 N1C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4827 unsigned MaskByteOffset
;
4828 switch (N1C
->getZExtValue()) {
4831 case 0xFF: MaskByteOffset
= 0; break;
4832 case 0xFF00: MaskByteOffset
= 1; break;
4834 // In case demanded bits didn't clear the bits that will be shifted out.
4835 // This is needed for X86.
4836 if (Opc
== ISD::SRL
|| (Opc
== ISD::AND
&& Opc0
== ISD::SHL
)) {
4841 case 0xFF0000: MaskByteOffset
= 2; break;
4842 case 0xFF000000: MaskByteOffset
= 3; break;
4845 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
4846 if (Opc
== ISD::AND
) {
4847 if (MaskByteOffset
== 0 || MaskByteOffset
== 2) {
4849 // (x >> 8) & 0xff0000
4850 if (Opc0
!= ISD::SRL
)
4852 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4853 if (!C
|| C
->getZExtValue() != 8)
4856 // (x << 8) & 0xff00
4857 // (x << 8) & 0xff000000
4858 if (Opc0
!= ISD::SHL
)
4860 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
4861 if (!C
|| C
->getZExtValue() != 8)
4864 } else if (Opc
== ISD::SHL
) {
4866 // (x & 0xff0000) << 8
4867 if (MaskByteOffset
!= 0 && MaskByteOffset
!= 2)
4869 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
4870 if (!C
|| C
->getZExtValue() != 8)
4872 } else { // Opc == ISD::SRL
4873 // (x & 0xff00) >> 8
4874 // (x & 0xff000000) >> 8
4875 if (MaskByteOffset
!= 1 && MaskByteOffset
!= 3)
4877 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
4878 if (!C
|| C
->getZExtValue() != 8)
4882 if (Parts
[MaskByteOffset
])
4885 Parts
[MaskByteOffset
] = N0
.getOperand(0).getNode();
4889 /// Match a 32-bit packed halfword bswap. That is
4890 /// ((x & 0x000000ff) << 8) |
4891 /// ((x & 0x0000ff00) >> 8) |
4892 /// ((x & 0x00ff0000) << 8) |
4893 /// ((x & 0xff000000) >> 8)
4894 /// => (rotl (bswap x), 16)
4895 SDValue
DAGCombiner::MatchBSwapHWord(SDNode
*N
, SDValue N0
, SDValue N1
) {
4896 if (!LegalOperations
)
4899 EVT VT
= N
->getValueType(0);
4902 if (!TLI
.isOperationLegalOrCustom(ISD::BSWAP
, VT
))
4906 // (or (or (and), (and)), (or (and), (and)))
4907 // (or (or (or (and), (and)), (and)), (and))
4908 if (N0
.getOpcode() != ISD::OR
)
4910 SDValue N00
= N0
.getOperand(0);
4911 SDValue N01
= N0
.getOperand(1);
4912 SDNode
*Parts
[4] = {};
4914 if (N1
.getOpcode() == ISD::OR
&&
4915 N00
.getNumOperands() == 2 && N01
.getNumOperands() == 2) {
4916 // (or (or (and), (and)), (or (and), (and)))
4917 if (!isBSwapHWordElement(N00
, Parts
))
4920 if (!isBSwapHWordElement(N01
, Parts
))
4922 SDValue N10
= N1
.getOperand(0);
4923 if (!isBSwapHWordElement(N10
, Parts
))
4925 SDValue N11
= N1
.getOperand(1);
4926 if (!isBSwapHWordElement(N11
, Parts
))
4929 // (or (or (or (and), (and)), (and)), (and))
4930 if (!isBSwapHWordElement(N1
, Parts
))
4932 if (!isBSwapHWordElement(N01
, Parts
))
4934 if (N00
.getOpcode() != ISD::OR
)
4936 SDValue N000
= N00
.getOperand(0);
4937 if (!isBSwapHWordElement(N000
, Parts
))
4939 SDValue N001
= N00
.getOperand(1);
4940 if (!isBSwapHWordElement(N001
, Parts
))
4944 // Make sure the parts are all coming from the same node.
4945 if (Parts
[0] != Parts
[1] || Parts
[0] != Parts
[2] || Parts
[0] != Parts
[3])
4949 SDValue BSwap
= DAG
.getNode(ISD::BSWAP
, DL
, VT
,
4950 SDValue(Parts
[0], 0));
4952 // Result of the bswap should be rotated by 16. If it's not legal, then
4953 // do (x << 16) | (x >> 16).
4954 SDValue ShAmt
= DAG
.getConstant(16, DL
, getShiftAmountTy(VT
));
4955 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
))
4956 return DAG
.getNode(ISD::ROTL
, DL
, VT
, BSwap
, ShAmt
);
4957 if (TLI
.isOperationLegalOrCustom(ISD::ROTR
, VT
))
4958 return DAG
.getNode(ISD::ROTR
, DL
, VT
, BSwap
, ShAmt
);
4959 return DAG
.getNode(ISD::OR
, DL
, VT
,
4960 DAG
.getNode(ISD::SHL
, DL
, VT
, BSwap
, ShAmt
),
4961 DAG
.getNode(ISD::SRL
, DL
, VT
, BSwap
, ShAmt
));
4964 /// This contains all DAGCombine rules which reduce two values combined by
4965 /// an Or operation to a single value \see visitANDLike().
4966 SDValue
DAGCombiner::visitORLike(SDValue N0
, SDValue N1
, SDNode
*N
) {
4967 EVT VT
= N1
.getValueType();
4970 // fold (or x, undef) -> -1
4971 if (!LegalOperations
&& (N0
.isUndef() || N1
.isUndef()))
4972 return DAG
.getAllOnesConstant(DL
, VT
);
4974 if (SDValue V
= foldLogicOfSetCCs(false, N0
, N1
, DL
))
4977 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
4978 if (N0
.getOpcode() == ISD::AND
&& N1
.getOpcode() == ISD::AND
&&
4979 // Don't increase # computations.
4980 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
4981 // We can only do this xform if we know that bits from X that are set in C2
4982 // but not in C1 are already zero. Likewise for Y.
4983 if (const ConstantSDNode
*N0O1C
=
4984 getAsNonOpaqueConstant(N0
.getOperand(1))) {
4985 if (const ConstantSDNode
*N1O1C
=
4986 getAsNonOpaqueConstant(N1
.getOperand(1))) {
4987 // We can only do this xform if we know that bits from X that are set in
4988 // C2 but not in C1 are already zero. Likewise for Y.
4989 const APInt
&LHSMask
= N0O1C
->getAPIntValue();
4990 const APInt
&RHSMask
= N1O1C
->getAPIntValue();
4992 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), RHSMask
&~LHSMask
) &&
4993 DAG
.MaskedValueIsZero(N1
.getOperand(0), LHSMask
&~RHSMask
)) {
4994 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
4995 N0
.getOperand(0), N1
.getOperand(0));
4996 return DAG
.getNode(ISD::AND
, DL
, VT
, X
,
4997 DAG
.getConstant(LHSMask
| RHSMask
, DL
, VT
));
5003 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
5004 if (N0
.getOpcode() == ISD::AND
&&
5005 N1
.getOpcode() == ISD::AND
&&
5006 N0
.getOperand(0) == N1
.getOperand(0) &&
5007 // Don't increase # computations.
5008 (N0
.getNode()->hasOneUse() || N1
.getNode()->hasOneUse())) {
5009 SDValue X
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
,
5010 N0
.getOperand(1), N1
.getOperand(1));
5011 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), X
);
5017 SDValue
DAGCombiner::visitOR(SDNode
*N
) {
5018 SDValue N0
= N
->getOperand(0);
5019 SDValue N1
= N
->getOperand(1);
5020 EVT VT
= N1
.getValueType();
5027 if (VT
.isVector()) {
5028 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5031 // fold (or x, 0) -> x, vector edition
5032 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5034 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5037 // fold (or x, -1) -> -1, vector edition
5038 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
5039 // do not return N0, because undef node may exist in N0
5040 return DAG
.getAllOnesConstant(SDLoc(N
), N0
.getValueType());
5041 if (ISD::isBuildVectorAllOnes(N1
.getNode()))
5042 // do not return N1, because undef node may exist in N1
5043 return DAG
.getAllOnesConstant(SDLoc(N
), N1
.getValueType());
5045 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
5046 // Do this only if the resulting shuffle is legal.
5047 if (isa
<ShuffleVectorSDNode
>(N0
) &&
5048 isa
<ShuffleVectorSDNode
>(N1
) &&
5049 // Avoid folding a node with illegal type.
5050 TLI
.isTypeLegal(VT
)) {
5051 bool ZeroN00
= ISD::isBuildVectorAllZeros(N0
.getOperand(0).getNode());
5052 bool ZeroN01
= ISD::isBuildVectorAllZeros(N0
.getOperand(1).getNode());
5053 bool ZeroN10
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
5054 bool ZeroN11
= ISD::isBuildVectorAllZeros(N1
.getOperand(1).getNode());
5055 // Ensure both shuffles have a zero input.
5056 if ((ZeroN00
!= ZeroN01
) && (ZeroN10
!= ZeroN11
)) {
5057 assert((!ZeroN00
|| !ZeroN01
) && "Both inputs zero!");
5058 assert((!ZeroN10
|| !ZeroN11
) && "Both inputs zero!");
5059 const ShuffleVectorSDNode
*SV0
= cast
<ShuffleVectorSDNode
>(N0
);
5060 const ShuffleVectorSDNode
*SV1
= cast
<ShuffleVectorSDNode
>(N1
);
5061 bool CanFold
= true;
5062 int NumElts
= VT
.getVectorNumElements();
5063 SmallVector
<int, 4> Mask(NumElts
);
5065 for (int i
= 0; i
!= NumElts
; ++i
) {
5066 int M0
= SV0
->getMaskElt(i
);
5067 int M1
= SV1
->getMaskElt(i
);
5069 // Determine if either index is pointing to a zero vector.
5070 bool M0Zero
= M0
< 0 || (ZeroN00
== (M0
< NumElts
));
5071 bool M1Zero
= M1
< 0 || (ZeroN10
== (M1
< NumElts
));
5073 // If one element is zero and the otherside is undef, keep undef.
5074 // This also handles the case that both are undef.
5075 if ((M0Zero
&& M1
< 0) || (M1Zero
&& M0
< 0)) {
5080 // Make sure only one of the elements is zero.
5081 if (M0Zero
== M1Zero
) {
5086 assert((M0
>= 0 || M1
>= 0) && "Undef index!");
5088 // We have a zero and non-zero element. If the non-zero came from
5089 // SV0 make the index a LHS index. If it came from SV1, make it
5090 // a RHS index. We need to mod by NumElts because we don't care
5091 // which operand it came from in the original shuffles.
5092 Mask
[i
] = M1Zero
? M0
% NumElts
: (M1
% NumElts
) + NumElts
;
5096 SDValue NewLHS
= ZeroN00
? N0
.getOperand(1) : N0
.getOperand(0);
5097 SDValue NewRHS
= ZeroN10
? N1
.getOperand(1) : N1
.getOperand(0);
5099 bool LegalMask
= TLI
.isShuffleMaskLegal(Mask
, VT
);
5101 std::swap(NewLHS
, NewRHS
);
5102 ShuffleVectorSDNode::commuteMask(Mask
);
5103 LegalMask
= TLI
.isShuffleMaskLegal(Mask
, VT
);
5107 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewLHS
, NewRHS
, Mask
);
5113 // fold (or c1, c2) -> c1|c2
5114 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
5115 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
5116 if (N0C
&& N1C
&& !N1C
->isOpaque())
5117 return DAG
.FoldConstantArithmetic(ISD::OR
, SDLoc(N
), VT
, N0C
, N1C
);
5118 // canonicalize constant to RHS
5119 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
5120 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
5121 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, N1
, N0
);
5122 // fold (or x, 0) -> x
5123 if (isNullConstant(N1
))
5125 // fold (or x, -1) -> -1
5126 if (isAllOnesConstant(N1
))
5129 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
5132 // fold (or x, c) -> c iff (x & ~c) == 0
5133 if (N1C
&& DAG
.MaskedValueIsZero(N0
, ~N1C
->getAPIntValue()))
5136 if (SDValue Combined
= visitORLike(N0
, N1
, N
))
5139 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
5140 if (SDValue BSwap
= MatchBSwapHWord(N
, N0
, N1
))
5142 if (SDValue BSwap
= MatchBSwapHWordLow(N
, N0
, N1
))
5146 if (SDValue ROR
= ReassociateOps(ISD::OR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
5149 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
5150 // iff (c1 & c2) != 0.
5151 auto MatchIntersect
= [](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
5152 return LHS
->getAPIntValue().intersects(RHS
->getAPIntValue());
5154 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
5155 ISD::matchBinaryPredicate(N0
.getOperand(1), N1
, MatchIntersect
)) {
5156 if (SDValue COR
= DAG
.FoldConstantArithmetic(
5157 ISD::OR
, SDLoc(N1
), VT
, N1
.getNode(), N0
.getOperand(1).getNode())) {
5158 SDValue IOR
= DAG
.getNode(ISD::OR
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
5159 AddToWorklist(IOR
.getNode());
5160 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, COR
, IOR
);
5164 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
5165 if (N0
.getOpcode() == N1
.getOpcode())
5166 if (SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
))
5169 // See if this is some rotate idiom.
5170 if (SDNode
*Rot
= MatchRotate(N0
, N1
, SDLoc(N
)))
5171 return SDValue(Rot
, 0);
5173 if (SDValue Load
= MatchLoadCombine(N
))
5176 // Simplify the operands using demanded-bits information.
5177 if (SimplifyDemandedBits(SDValue(N
, 0)))
5178 return SDValue(N
, 0);
5183 static SDValue
stripConstantMask(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Mask
) {
5184 if (Op
.getOpcode() == ISD::AND
&&
5185 DAG
.isConstantIntBuildVectorOrConstantInt(Op
.getOperand(1))) {
5186 Mask
= Op
.getOperand(1);
5187 return Op
.getOperand(0);
5192 /// Match "(X shl/srl V1) & V2" where V2 may not be present.
5193 static bool matchRotateHalf(SelectionDAG
&DAG
, SDValue Op
, SDValue
&Shift
,
5195 Op
= stripConstantMask(DAG
, Op
, Mask
);
5196 if (Op
.getOpcode() == ISD::SRL
|| Op
.getOpcode() == ISD::SHL
) {
5203 /// Helper function for visitOR to extract the needed side of a rotate idiom
5204 /// from a shl/srl/mul/udiv. This is meant to handle cases where
5205 /// InstCombine merged some outside op with one of the shifts from
5206 /// the rotate pattern.
5207 /// \returns An empty \c SDValue if the needed shift couldn't be extracted.
5208 /// Otherwise, returns an expansion of \p ExtractFrom based on the following
5211 /// (or (mul v c0) (shrl (mul v c1) c2)):
5212 /// expands (mul v c0) -> (shl (mul v c1) c3)
5214 /// (or (udiv v c0) (shl (udiv v c1) c2)):
5215 /// expands (udiv v c0) -> (shrl (udiv v c1) c3)
5217 /// (or (shl v c0) (shrl (shl v c1) c2)):
5218 /// expands (shl v c0) -> (shl (shl v c1) c3)
5220 /// (or (shrl v c0) (shl (shrl v c1) c2)):
5221 /// expands (shrl v c0) -> (shrl (shrl v c1) c3)
5223 /// Such that in all cases, c3+c2==bitwidth(op v c1).
5224 static SDValue
extractShiftForRotate(SelectionDAG
&DAG
, SDValue OppShift
,
5225 SDValue ExtractFrom
, SDValue
&Mask
,
5227 assert(OppShift
&& ExtractFrom
&& "Empty SDValue");
5229 (OppShift
.getOpcode() == ISD::SHL
|| OppShift
.getOpcode() == ISD::SRL
) &&
5230 "Existing shift must be valid as a rotate half");
5232 ExtractFrom
= stripConstantMask(DAG
, ExtractFrom
, Mask
);
5234 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
5236 // Find opcode of the needed shift to be extracted from (op0 v c0).
5237 unsigned Opcode
= ISD::DELETED_NODE
;
5238 bool IsMulOrDiv
= false;
5239 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
5240 // opcode or its arithmetic (mul or udiv) variant.
5241 auto SelectOpcode
= [&](unsigned NeededShift
, unsigned MulOrDivVariant
) {
5242 IsMulOrDiv
= ExtractFrom
.getOpcode() == MulOrDivVariant
;
5243 if (!IsMulOrDiv
&& ExtractFrom
.getOpcode() != NeededShift
)
5245 Opcode
= NeededShift
;
5248 // op0 must be either the needed shift opcode or the mul/udiv equivalent
5249 // that the needed shift can be extracted from.
5250 if ((OppShift
.getOpcode() != ISD::SRL
|| !SelectOpcode(ISD::SHL
, ISD::MUL
)) &&
5251 (OppShift
.getOpcode() != ISD::SHL
|| !SelectOpcode(ISD::SRL
, ISD::UDIV
)))
5254 // op0 must be the same opcode on both sides, have the same LHS argument,
5255 // and produce the same value type.
5256 SDValue OppShiftLHS
= OppShift
.getOperand(0);
5257 EVT ShiftedVT
= OppShiftLHS
.getValueType();
5258 if (OppShiftLHS
.getOpcode() != ExtractFrom
.getOpcode() ||
5259 OppShiftLHS
.getOperand(0) != ExtractFrom
.getOperand(0) ||
5260 ShiftedVT
!= ExtractFrom
.getValueType())
5263 // Amount of the existing shift.
5264 ConstantSDNode
*OppShiftCst
= isConstOrConstSplat(OppShift
.getOperand(1));
5265 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
5266 ConstantSDNode
*OppLHSCst
= isConstOrConstSplat(OppShiftLHS
.getOperand(1));
5267 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
5268 ConstantSDNode
*ExtractFromCst
=
5269 isConstOrConstSplat(ExtractFrom
.getOperand(1));
5270 // TODO: We should be able to handle non-uniform constant vectors for these values
5271 // Check that we have constant values.
5272 if (!OppShiftCst
|| !OppShiftCst
->getAPIntValue() ||
5273 !OppLHSCst
|| !OppLHSCst
->getAPIntValue() ||
5274 !ExtractFromCst
|| !ExtractFromCst
->getAPIntValue())
5277 // Compute the shift amount we need to extract to complete the rotate.
5278 const unsigned VTWidth
= ShiftedVT
.getScalarSizeInBits();
5279 if (OppShiftCst
->getAPIntValue().ugt(VTWidth
))
5281 APInt NeededShiftAmt
= VTWidth
- OppShiftCst
->getAPIntValue();
5282 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
5283 APInt ExtractFromAmt
= ExtractFromCst
->getAPIntValue();
5284 APInt OppLHSAmt
= OppLHSCst
->getAPIntValue();
5285 zeroExtendToMatch(ExtractFromAmt
, OppLHSAmt
);
5287 // Now try extract the needed shift from the ExtractFrom op and see if the
5288 // result matches up with the existing shift's LHS op.
5290 // Op to extract from is a mul or udiv by a constant.
5292 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
5293 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
5294 const APInt ExtractDiv
= APInt::getOneBitSet(ExtractFromAmt
.getBitWidth(),
5295 NeededShiftAmt
.getZExtValue());
5298 APInt::udivrem(ExtractFromAmt
, ExtractDiv
, ResultAmt
, Rem
);
5299 if (Rem
!= 0 || ResultAmt
!= OppLHSAmt
)
5302 // Op to extract from is a shift by a constant.
5304 // c2 - (bitwidth(op0 v c0) - c1) == c0
5305 if (OppLHSAmt
!= ExtractFromAmt
- NeededShiftAmt
.zextOrTrunc(
5306 ExtractFromAmt
.getBitWidth()))
5310 // Return the expanded shift op that should allow a rotate to be formed.
5311 EVT ShiftVT
= OppShift
.getOperand(1).getValueType();
5312 EVT ResVT
= ExtractFrom
.getValueType();
5313 SDValue NewShiftNode
= DAG
.getConstant(NeededShiftAmt
, DL
, ShiftVT
);
5314 return DAG
.getNode(Opcode
, DL
, ResVT
, OppShiftLHS
, NewShiftNode
);
5317 // Return true if we can prove that, whenever Neg and Pos are both in the
5318 // range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
5319 // for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
5321 // (or (shift1 X, Neg), (shift2 X, Pos))
5323 // reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
5324 // in direction shift1 by Neg. The range [0, EltSize) means that we only need
5325 // to consider shift amounts with defined behavior.
5326 static bool matchRotateSub(SDValue Pos
, SDValue Neg
, unsigned EltSize
,
5327 SelectionDAG
&DAG
) {
5328 // If EltSize is a power of 2 then:
5330 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
5331 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
5333 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
5334 // for the stronger condition:
5336 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
5338 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
5339 // we can just replace Neg with Neg' for the rest of the function.
5341 // In other cases we check for the even stronger condition:
5343 // Neg == EltSize - Pos [B]
5345 // for all Neg and Pos. Note that the (or ...) then invokes undefined
5346 // behavior if Pos == 0 (and consequently Neg == EltSize).
5348 // We could actually use [A] whenever EltSize is a power of 2, but the
5349 // only extra cases that it would match are those uninteresting ones
5350 // where Neg and Pos are never in range at the same time. E.g. for
5351 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
5352 // as well as (sub 32, Pos), but:
5354 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
5356 // always invokes undefined behavior for 32-bit X.
5358 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
5359 unsigned MaskLoBits
= 0;
5360 if (Neg
.getOpcode() == ISD::AND
&& isPowerOf2_64(EltSize
)) {
5361 if (ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(1))) {
5363 DAG
.computeKnownBits(Neg
.getOperand(0), Known
);
5364 unsigned Bits
= Log2_64(EltSize
);
5365 if (NegC
->getAPIntValue().getActiveBits() <= Bits
&&
5366 ((NegC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >= Bits
)) {
5367 Neg
= Neg
.getOperand(0);
5373 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
5374 if (Neg
.getOpcode() != ISD::SUB
)
5376 ConstantSDNode
*NegC
= isConstOrConstSplat(Neg
.getOperand(0));
5379 SDValue NegOp1
= Neg
.getOperand(1);
5381 // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
5382 // Pos'. The truncation is redundant for the purpose of the equality.
5383 if (MaskLoBits
&& Pos
.getOpcode() == ISD::AND
) {
5384 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1))) {
5386 DAG
.computeKnownBits(Pos
.getOperand(0), Known
);
5387 if (PosC
->getAPIntValue().getActiveBits() <= MaskLoBits
&&
5388 ((PosC
->getAPIntValue() | Known
.Zero
).countTrailingOnes() >=
5390 Pos
= Pos
.getOperand(0);
5394 // The condition we need is now:
5396 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
5398 // If NegOp1 == Pos then we need:
5400 // EltSize & Mask == NegC & Mask
5402 // (because "x & Mask" is a truncation and distributes through subtraction).
5405 Width
= NegC
->getAPIntValue();
5407 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
5408 // Then the condition we want to prove becomes:
5410 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
5412 // which, again because "x & Mask" is a truncation, becomes:
5414 // NegC & Mask == (EltSize - PosC) & Mask
5415 // EltSize & Mask == (NegC + PosC) & Mask
5416 else if (Pos
.getOpcode() == ISD::ADD
&& Pos
.getOperand(0) == NegOp1
) {
5417 if (ConstantSDNode
*PosC
= isConstOrConstSplat(Pos
.getOperand(1)))
5418 Width
= PosC
->getAPIntValue() + NegC
->getAPIntValue();
5424 // Now we just need to check that EltSize & Mask == Width & Mask.
5426 // EltSize & Mask is 0 since Mask is EltSize - 1.
5427 return Width
.getLoBits(MaskLoBits
) == 0;
5428 return Width
== EltSize
;
5431 // A subroutine of MatchRotate used once we have found an OR of two opposite
5432 // shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
5433 // to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
5434 // former being preferred if supported. InnerPos and InnerNeg are Pos and
5435 // Neg with outer conversions stripped away.
5436 SDNode
*DAGCombiner::MatchRotatePosNeg(SDValue Shifted
, SDValue Pos
,
5437 SDValue Neg
, SDValue InnerPos
,
5438 SDValue InnerNeg
, unsigned PosOpcode
,
5439 unsigned NegOpcode
, const SDLoc
&DL
) {
5440 // fold (or (shl x, (*ext y)),
5441 // (srl x, (*ext (sub 32, y)))) ->
5442 // (rotl x, y) or (rotr x, (sub 32, y))
5444 // fold (or (shl x, (*ext (sub 32, y))),
5445 // (srl x, (*ext y))) ->
5446 // (rotr x, y) or (rotl x, (sub 32, y))
5447 EVT VT
= Shifted
.getValueType();
5448 if (matchRotateSub(InnerPos
, InnerNeg
, VT
.getScalarSizeInBits(), DAG
)) {
5449 bool HasPos
= TLI
.isOperationLegalOrCustom(PosOpcode
, VT
);
5450 return DAG
.getNode(HasPos
? PosOpcode
: NegOpcode
, DL
, VT
, Shifted
,
5451 HasPos
? Pos
: Neg
).getNode();
5457 // MatchRotate - Handle an 'or' of two operands. If this is one of the many
5458 // idioms for rotate, and if the target supports rotation instructions, generate
5460 SDNode
*DAGCombiner::MatchRotate(SDValue LHS
, SDValue RHS
, const SDLoc
&DL
) {
5461 // Must be a legal type. Expanded 'n promoted things won't work with rotates.
5462 EVT VT
= LHS
.getValueType();
5463 if (!TLI
.isTypeLegal(VT
)) return nullptr;
5465 // The target must have at least one rotate flavor.
5466 bool HasROTL
= hasOperation(ISD::ROTL
, VT
);
5467 bool HasROTR
= hasOperation(ISD::ROTR
, VT
);
5468 if (!HasROTL
&& !HasROTR
) return nullptr;
5470 // Check for truncated rotate.
5471 if (LHS
.getOpcode() == ISD::TRUNCATE
&& RHS
.getOpcode() == ISD::TRUNCATE
&&
5472 LHS
.getOperand(0).getValueType() == RHS
.getOperand(0).getValueType()) {
5473 assert(LHS
.getValueType() == RHS
.getValueType());
5474 if (SDNode
*Rot
= MatchRotate(LHS
.getOperand(0), RHS
.getOperand(0), DL
)) {
5475 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(LHS
), LHS
.getValueType(),
5476 SDValue(Rot
, 0)).getNode();
5480 // Match "(X shl/srl V1) & V2" where V2 may not be present.
5481 SDValue LHSShift
; // The shift.
5482 SDValue LHSMask
; // AND value if any.
5483 matchRotateHalf(DAG
, LHS
, LHSShift
, LHSMask
);
5485 SDValue RHSShift
; // The shift.
5486 SDValue RHSMask
; // AND value if any.
5487 matchRotateHalf(DAG
, RHS
, RHSShift
, RHSMask
);
5489 // If neither side matched a rotate half, bail
5490 if (!LHSShift
&& !RHSShift
)
5493 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
5494 // side of the rotate, so try to handle that here. In all cases we need to
5495 // pass the matched shift from the opposite side to compute the opcode and
5496 // needed shift amount to extract. We still want to do this if both sides
5497 // matched a rotate half because one half may be a potential overshift that
5498 // can be broken down (ie if InstCombine merged two shl or srl ops into a
5501 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
5503 if (SDValue NewRHSShift
=
5504 extractShiftForRotate(DAG
, LHSShift
, RHS
, RHSMask
, DL
))
5505 RHSShift
= NewRHSShift
;
5506 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
5508 if (SDValue NewLHSShift
=
5509 extractShiftForRotate(DAG
, RHSShift
, LHS
, LHSMask
, DL
))
5510 LHSShift
= NewLHSShift
;
5512 // If a side is still missing, nothing else we can do.
5513 if (!RHSShift
|| !LHSShift
)
5516 // At this point we've matched or extracted a shift op on each side.
5518 if (LHSShift
.getOperand(0) != RHSShift
.getOperand(0))
5519 return nullptr; // Not shifting the same value.
5521 if (LHSShift
.getOpcode() == RHSShift
.getOpcode())
5522 return nullptr; // Shifts must disagree.
5524 // Canonicalize shl to left side in a shl/srl pair.
5525 if (RHSShift
.getOpcode() == ISD::SHL
) {
5526 std::swap(LHS
, RHS
);
5527 std::swap(LHSShift
, RHSShift
);
5528 std::swap(LHSMask
, RHSMask
);
5531 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
5532 SDValue LHSShiftArg
= LHSShift
.getOperand(0);
5533 SDValue LHSShiftAmt
= LHSShift
.getOperand(1);
5534 SDValue RHSShiftArg
= RHSShift
.getOperand(0);
5535 SDValue RHSShiftAmt
= RHSShift
.getOperand(1);
5537 // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
5538 // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
5539 auto MatchRotateSum
= [EltSizeInBits
](ConstantSDNode
*LHS
,
5540 ConstantSDNode
*RHS
) {
5541 return (LHS
->getAPIntValue() + RHS
->getAPIntValue()) == EltSizeInBits
;
5543 if (ISD::matchBinaryPredicate(LHSShiftAmt
, RHSShiftAmt
, MatchRotateSum
)) {
5544 SDValue Rot
= DAG
.getNode(HasROTL
? ISD::ROTL
: ISD::ROTR
, DL
, VT
,
5545 LHSShiftArg
, HasROTL
? LHSShiftAmt
: RHSShiftAmt
);
5547 // If there is an AND of either shifted operand, apply it to the result.
5548 if (LHSMask
.getNode() || RHSMask
.getNode()) {
5549 SDValue AllOnes
= DAG
.getAllOnesConstant(DL
, VT
);
5550 SDValue Mask
= AllOnes
;
5552 if (LHSMask
.getNode()) {
5553 SDValue RHSBits
= DAG
.getNode(ISD::SRL
, DL
, VT
, AllOnes
, RHSShiftAmt
);
5554 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
5555 DAG
.getNode(ISD::OR
, DL
, VT
, LHSMask
, RHSBits
));
5557 if (RHSMask
.getNode()) {
5558 SDValue LHSBits
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllOnes
, LHSShiftAmt
);
5559 Mask
= DAG
.getNode(ISD::AND
, DL
, VT
, Mask
,
5560 DAG
.getNode(ISD::OR
, DL
, VT
, RHSMask
, LHSBits
));
5563 Rot
= DAG
.getNode(ISD::AND
, DL
, VT
, Rot
, Mask
);
5566 return Rot
.getNode();
5569 // If there is a mask here, and we have a variable shift, we can't be sure
5570 // that we're masking out the right stuff.
5571 if (LHSMask
.getNode() || RHSMask
.getNode())
5574 // If the shift amount is sign/zext/any-extended just peel it off.
5575 SDValue LExtOp0
= LHSShiftAmt
;
5576 SDValue RExtOp0
= RHSShiftAmt
;
5577 if ((LHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
5578 LHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
5579 LHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
5580 LHSShiftAmt
.getOpcode() == ISD::TRUNCATE
) &&
5581 (RHSShiftAmt
.getOpcode() == ISD::SIGN_EXTEND
||
5582 RHSShiftAmt
.getOpcode() == ISD::ZERO_EXTEND
||
5583 RHSShiftAmt
.getOpcode() == ISD::ANY_EXTEND
||
5584 RHSShiftAmt
.getOpcode() == ISD::TRUNCATE
)) {
5585 LExtOp0
= LHSShiftAmt
.getOperand(0);
5586 RExtOp0
= RHSShiftAmt
.getOperand(0);
5589 SDNode
*TryL
= MatchRotatePosNeg(LHSShiftArg
, LHSShiftAmt
, RHSShiftAmt
,
5590 LExtOp0
, RExtOp0
, ISD::ROTL
, ISD::ROTR
, DL
);
5594 SDNode
*TryR
= MatchRotatePosNeg(RHSShiftArg
, RHSShiftAmt
, LHSShiftAmt
,
5595 RExtOp0
, LExtOp0
, ISD::ROTR
, ISD::ROTL
, DL
);
5604 /// Represents known origin of an individual byte in load combine pattern. The
5605 /// value of the byte is either constant zero or comes from memory.
5606 struct ByteProvider
{
5607 // For constant zero providers Load is set to nullptr. For memory providers
5608 // Load represents the node which loads the byte from memory.
5609 // ByteOffset is the offset of the byte in the value produced by the load.
5610 LoadSDNode
*Load
= nullptr;
5611 unsigned ByteOffset
= 0;
5613 ByteProvider() = default;
5615 static ByteProvider
getMemory(LoadSDNode
*Load
, unsigned ByteOffset
) {
5616 return ByteProvider(Load
, ByteOffset
);
5619 static ByteProvider
getConstantZero() { return ByteProvider(nullptr, 0); }
5621 bool isConstantZero() const { return !Load
; }
5622 bool isMemory() const { return Load
; }
5624 bool operator==(const ByteProvider
&Other
) const {
5625 return Other
.Load
== Load
&& Other
.ByteOffset
== ByteOffset
;
5629 ByteProvider(LoadSDNode
*Load
, unsigned ByteOffset
)
5630 : Load(Load
), ByteOffset(ByteOffset
) {}
5633 } // end anonymous namespace
5635 /// Recursively traverses the expression calculating the origin of the requested
5636 /// byte of the given value. Returns None if the provider can't be calculated.
5638 /// For all the values except the root of the expression verifies that the value
5639 /// has exactly one use and if it's not true return None. This way if the origin
5640 /// of the byte is returned it's guaranteed that the values which contribute to
5641 /// the byte are not used outside of this expression.
5643 /// Because the parts of the expression are not allowed to have more than one
5644 /// use this function iterates over trees, not DAGs. So it never visits the same
5645 /// node more than once.
5646 static const Optional
<ByteProvider
>
5647 calculateByteProvider(SDValue Op
, unsigned Index
, unsigned Depth
,
5648 bool Root
= false) {
5649 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
5653 if (!Root
&& !Op
.hasOneUse())
5656 assert(Op
.getValueType().isScalarInteger() && "can't handle other types");
5657 unsigned BitWidth
= Op
.getValueSizeInBits();
5658 if (BitWidth
% 8 != 0)
5660 unsigned ByteWidth
= BitWidth
/ 8;
5661 assert(Index
< ByteWidth
&& "invalid index requested");
5664 switch (Op
.getOpcode()) {
5666 auto LHS
= calculateByteProvider(Op
->getOperand(0), Index
, Depth
+ 1);
5669 auto RHS
= calculateByteProvider(Op
->getOperand(1), Index
, Depth
+ 1);
5673 if (LHS
->isConstantZero())
5675 if (RHS
->isConstantZero())
5680 auto ShiftOp
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
5684 uint64_t BitShift
= ShiftOp
->getZExtValue();
5685 if (BitShift
% 8 != 0)
5687 uint64_t ByteShift
= BitShift
/ 8;
5689 return Index
< ByteShift
5690 ? ByteProvider::getConstantZero()
5691 : calculateByteProvider(Op
->getOperand(0), Index
- ByteShift
,
5694 case ISD::ANY_EXTEND
:
5695 case ISD::SIGN_EXTEND
:
5696 case ISD::ZERO_EXTEND
: {
5697 SDValue NarrowOp
= Op
->getOperand(0);
5698 unsigned NarrowBitWidth
= NarrowOp
.getScalarValueSizeInBits();
5699 if (NarrowBitWidth
% 8 != 0)
5701 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
5703 if (Index
>= NarrowByteWidth
)
5704 return Op
.getOpcode() == ISD::ZERO_EXTEND
5705 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
5707 return calculateByteProvider(NarrowOp
, Index
, Depth
+ 1);
5710 return calculateByteProvider(Op
->getOperand(0), ByteWidth
- Index
- 1,
5713 auto L
= cast
<LoadSDNode
>(Op
.getNode());
5714 if (L
->isVolatile() || L
->isIndexed())
5717 unsigned NarrowBitWidth
= L
->getMemoryVT().getSizeInBits();
5718 if (NarrowBitWidth
% 8 != 0)
5720 uint64_t NarrowByteWidth
= NarrowBitWidth
/ 8;
5722 if (Index
>= NarrowByteWidth
)
5723 return L
->getExtensionType() == ISD::ZEXTLOAD
5724 ? Optional
<ByteProvider
>(ByteProvider::getConstantZero())
5726 return ByteProvider::getMemory(L
, Index
);
5733 /// Match a pattern where a wide type scalar value is loaded by several narrow
5734 /// loads and combined by shifts and ors. Fold it into a single load or a load
5735 /// and a BSWAP if the targets supports it.
5737 /// Assuming little endian target:
5739 /// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
5741 /// i32 val = *((i32)a)
5744 /// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
5746 /// i32 val = BSWAP(*((i32)a))
5748 /// TODO: This rule matches complex patterns with OR node roots and doesn't
5749 /// interact well with the worklist mechanism. When a part of the pattern is
5750 /// updated (e.g. one of the loads) its direct users are put into the worklist,
5751 /// but the root node of the pattern which triggers the load combine is not
5752 /// necessarily a direct user of the changed node. For example, once the address
5753 /// of t28 load is reassociated load combine won't be triggered:
5754 /// t25: i32 = add t4, Constant:i32<2>
5755 /// t26: i64 = sign_extend t25
5756 /// t27: i64 = add t2, t26
5757 /// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
5758 /// t29: i32 = zero_extend t28
5759 /// t32: i32 = shl t29, Constant:i8<8>
5760 /// t33: i32 = or t23, t32
5761 /// As a possible fix visitLoad can check if the load can be a part of a load
5762 /// combine pattern and add corresponding OR roots to the worklist.
5763 SDValue
DAGCombiner::MatchLoadCombine(SDNode
*N
) {
5764 assert(N
->getOpcode() == ISD::OR
&&
5765 "Can only match load combining against OR nodes");
5767 // Handles simple types only
5768 EVT VT
= N
->getValueType(0);
5769 if (VT
!= MVT::i16
&& VT
!= MVT::i32
&& VT
!= MVT::i64
)
5771 unsigned ByteWidth
= VT
.getSizeInBits() / 8;
5773 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5774 // Before legalize we can introduce too wide illegal loads which will be later
5775 // split into legal sized loads. This enables us to combine i64 load by i8
5776 // patterns to a couple of i32 loads on 32 bit targets.
5777 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::LOAD
, VT
))
5780 std::function
<unsigned(unsigned, unsigned)> LittleEndianByteAt
= [](
5781 unsigned BW
, unsigned i
) { return i
; };
5782 std::function
<unsigned(unsigned, unsigned)> BigEndianByteAt
= [](
5783 unsigned BW
, unsigned i
) { return BW
- i
- 1; };
5785 bool IsBigEndianTarget
= DAG
.getDataLayout().isBigEndian();
5786 auto MemoryByteOffset
= [&] (ByteProvider P
) {
5787 assert(P
.isMemory() && "Must be a memory byte provider");
5788 unsigned LoadBitWidth
= P
.Load
->getMemoryVT().getSizeInBits();
5789 assert(LoadBitWidth
% 8 == 0 &&
5790 "can only analyze providers for individual bytes not bit");
5791 unsigned LoadByteWidth
= LoadBitWidth
/ 8;
5792 return IsBigEndianTarget
5793 ? BigEndianByteAt(LoadByteWidth
, P
.ByteOffset
)
5794 : LittleEndianByteAt(LoadByteWidth
, P
.ByteOffset
);
5797 Optional
<BaseIndexOffset
> Base
;
5800 SmallPtrSet
<LoadSDNode
*, 8> Loads
;
5801 Optional
<ByteProvider
> FirstByteProvider
;
5802 int64_t FirstOffset
= INT64_MAX
;
5804 // Check if all the bytes of the OR we are looking at are loaded from the same
5805 // base address. Collect bytes offsets from Base address in ByteOffsets.
5806 SmallVector
<int64_t, 4> ByteOffsets(ByteWidth
);
5807 for (unsigned i
= 0; i
< ByteWidth
; i
++) {
5808 auto P
= calculateByteProvider(SDValue(N
, 0), i
, 0, /*Root=*/true);
5809 if (!P
|| !P
->isMemory()) // All the bytes must be loaded from memory
5812 LoadSDNode
*L
= P
->Load
;
5813 assert(L
->hasNUsesOfValue(1, 0) && !L
->isVolatile() && !L
->isIndexed() &&
5814 "Must be enforced by calculateByteProvider");
5815 assert(L
->getOffset().isUndef() && "Unindexed load must have undef offset");
5817 // All loads must share the same chain
5818 SDValue LChain
= L
->getChain();
5821 else if (Chain
!= LChain
)
5824 // Loads must share the same base address
5825 BaseIndexOffset Ptr
= BaseIndexOffset::match(L
, DAG
);
5826 int64_t ByteOffsetFromBase
= 0;
5829 else if (!Base
->equalBaseIndex(Ptr
, DAG
, ByteOffsetFromBase
))
5832 // Calculate the offset of the current byte from the base address
5833 ByteOffsetFromBase
+= MemoryByteOffset(*P
);
5834 ByteOffsets
[i
] = ByteOffsetFromBase
;
5836 // Remember the first byte load
5837 if (ByteOffsetFromBase
< FirstOffset
) {
5838 FirstByteProvider
= P
;
5839 FirstOffset
= ByteOffsetFromBase
;
5844 assert(!Loads
.empty() && "All the bytes of the value must be loaded from "
5845 "memory, so there must be at least one load which produces the value");
5846 assert(Base
&& "Base address of the accessed memory location must be set");
5847 assert(FirstOffset
!= INT64_MAX
&& "First byte offset must be set");
5849 // Check if the bytes of the OR we are looking at match with either big or
5850 // little endian value load
5851 bool BigEndian
= true, LittleEndian
= true;
5852 for (unsigned i
= 0; i
< ByteWidth
; i
++) {
5853 int64_t CurrentByteOffset
= ByteOffsets
[i
] - FirstOffset
;
5854 LittleEndian
&= CurrentByteOffset
== LittleEndianByteAt(ByteWidth
, i
);
5855 BigEndian
&= CurrentByteOffset
== BigEndianByteAt(ByteWidth
, i
);
5856 if (!BigEndian
&& !LittleEndian
)
5859 assert((BigEndian
!= LittleEndian
) && "should be either or");
5860 assert(FirstByteProvider
&& "must be set");
5862 // Ensure that the first byte is loaded from zero offset of the first load.
5863 // So the combined value can be loaded from the first load address.
5864 if (MemoryByteOffset(*FirstByteProvider
) != 0)
5866 LoadSDNode
*FirstLoad
= FirstByteProvider
->Load
;
5868 // The node we are looking at matches with the pattern, check if we can
5869 // replace it with a single load and bswap if needed.
5871 // If the load needs byte swap check if the target supports it
5872 bool NeedsBswap
= IsBigEndianTarget
!= BigEndian
;
5874 // Before legalize we can introduce illegal bswaps which will be later
5875 // converted to an explicit bswap sequence. This way we end up with a single
5876 // load and byte shuffling instead of several loads and byte shuffling.
5877 if (NeedsBswap
&& LegalOperations
&& !TLI
.isOperationLegal(ISD::BSWAP
, VT
))
5880 // Check that a load of the wide type is both allowed and fast on the target
5882 bool Allowed
= TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(),
5883 VT
, FirstLoad
->getAddressSpace(),
5884 FirstLoad
->getAlignment(), &Fast
);
5885 if (!Allowed
|| !Fast
)
5889 DAG
.getLoad(VT
, SDLoc(N
), Chain
, FirstLoad
->getBasePtr(),
5890 FirstLoad
->getPointerInfo(), FirstLoad
->getAlignment());
5892 // Transfer chain users from old loads to the new load.
5893 for (LoadSDNode
*L
: Loads
)
5894 DAG
.ReplaceAllUsesOfValueWith(SDValue(L
, 1), SDValue(NewLoad
.getNode(), 1));
5896 return NeedsBswap
? DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, NewLoad
) : NewLoad
;
5899 // If the target has andn, bsl, or a similar bit-select instruction,
5900 // we want to unfold masked merge, with canonical pattern of:
5902 // ((x ^ y) & m) ^ y
5905 // (x & m) | (y & ~m)
5906 // If y is a constant, and the 'andn' does not work with immediates,
5907 // we unfold into a different pattern:
5908 // ~(~x & m) & (m | y)
5909 // NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
5910 // the very least that breaks andnpd / andnps patterns, and because those
5911 // patterns are simplified in IR and shouldn't be created in the DAG
5912 SDValue
DAGCombiner::unfoldMaskedMerge(SDNode
*N
) {
5913 assert(N
->getOpcode() == ISD::XOR
);
5915 // Don't touch 'not' (i.e. where y = -1).
5916 if (isAllOnesConstantOrAllOnesSplatConstant(N
->getOperand(1)))
5919 EVT VT
= N
->getValueType(0);
5921 // There are 3 commutable operators in the pattern,
5922 // so we have to deal with 8 possible variants of the basic pattern.
5924 auto matchAndXor
= [&X
, &Y
, &M
](SDValue And
, unsigned XorIdx
, SDValue Other
) {
5925 if (And
.getOpcode() != ISD::AND
|| !And
.hasOneUse())
5927 SDValue Xor
= And
.getOperand(XorIdx
);
5928 if (Xor
.getOpcode() != ISD::XOR
|| !Xor
.hasOneUse())
5930 SDValue Xor0
= Xor
.getOperand(0);
5931 SDValue Xor1
= Xor
.getOperand(1);
5932 // Don't touch 'not' (i.e. where y = -1).
5933 if (isAllOnesConstantOrAllOnesSplatConstant(Xor1
))
5936 std::swap(Xor0
, Xor1
);
5941 M
= And
.getOperand(XorIdx
? 0 : 1);
5945 SDValue N0
= N
->getOperand(0);
5946 SDValue N1
= N
->getOperand(1);
5947 if (!matchAndXor(N0
, 0, N1
) && !matchAndXor(N0
, 1, N1
) &&
5948 !matchAndXor(N1
, 0, N0
) && !matchAndXor(N1
, 1, N0
))
5951 // Don't do anything if the mask is constant. This should not be reachable.
5952 // InstCombine should have already unfolded this pattern, and DAGCombiner
5953 // probably shouldn't produce it, too.
5954 if (isa
<ConstantSDNode
>(M
.getNode()))
5957 // We can transform if the target has AndNot
5958 if (!TLI
.hasAndNot(M
))
5963 // If Y is a constant, check that 'andn' works with immediates.
5964 if (!TLI
.hasAndNot(Y
)) {
5965 assert(TLI
.hasAndNot(X
) && "Only mask is a variable? Unreachable.");
5966 // If not, we need to do a bit more work to make sure andn is still used.
5967 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
5968 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, NotX
, M
);
5969 SDValue NotLHS
= DAG
.getNOT(DL
, LHS
, VT
);
5970 SDValue RHS
= DAG
.getNode(ISD::OR
, DL
, VT
, M
, Y
);
5971 return DAG
.getNode(ISD::AND
, DL
, VT
, NotLHS
, RHS
);
5974 SDValue LHS
= DAG
.getNode(ISD::AND
, DL
, VT
, X
, M
);
5975 SDValue NotM
= DAG
.getNOT(DL
, M
, VT
);
5976 SDValue RHS
= DAG
.getNode(ISD::AND
, DL
, VT
, Y
, NotM
);
5978 return DAG
.getNode(ISD::OR
, DL
, VT
, LHS
, RHS
);
5981 SDValue
DAGCombiner::visitXOR(SDNode
*N
) {
5982 SDValue N0
= N
->getOperand(0);
5983 SDValue N1
= N
->getOperand(1);
5984 EVT VT
= N0
.getValueType();
5987 if (VT
.isVector()) {
5988 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
5991 // fold (xor x, 0) -> x, vector edition
5992 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
5994 if (ISD::isBuildVectorAllZeros(N1
.getNode()))
5998 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
5999 if (N0
.isUndef() && N1
.isUndef())
6000 return DAG
.getConstant(0, SDLoc(N
), VT
);
6001 // fold (xor x, undef) -> undef
6006 // fold (xor c1, c2) -> c1^c2
6007 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6008 ConstantSDNode
*N1C
= getAsNonOpaqueConstant(N1
);
6010 return DAG
.FoldConstantArithmetic(ISD::XOR
, SDLoc(N
), VT
, N0C
, N1C
);
6011 // canonicalize constant to RHS
6012 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
6013 !DAG
.isConstantIntBuildVectorOrConstantInt(N1
))
6014 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, N1
, N0
);
6015 // fold (xor x, 0) -> x
6016 if (isNullConstant(N1
))
6019 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6023 if (SDValue RXOR
= ReassociateOps(ISD::XOR
, SDLoc(N
), N0
, N1
, N
->getFlags()))
6026 // fold !(x cc y) -> (x !cc y)
6027 SDValue LHS
, RHS
, CC
;
6028 if (TLI
.isConstTrueVal(N1
.getNode()) && isSetCCEquivalent(N0
, LHS
, RHS
, CC
)) {
6029 bool isInt
= LHS
.getValueType().isInteger();
6030 ISD::CondCode NotCC
= ISD::getSetCCInverse(cast
<CondCodeSDNode
>(CC
)->get(),
6033 if (!LegalOperations
||
6034 TLI
.isCondCodeLegal(NotCC
, LHS
.getSimpleValueType())) {
6035 switch (N0
.getOpcode()) {
6037 llvm_unreachable("Unhandled SetCC Equivalent!");
6039 return DAG
.getSetCC(SDLoc(N0
), VT
, LHS
, RHS
, NotCC
);
6040 case ISD::SELECT_CC
:
6041 return DAG
.getSelectCC(SDLoc(N0
), LHS
, RHS
, N0
.getOperand(2),
6042 N0
.getOperand(3), NotCC
);
6047 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
6048 if (isOneConstant(N1
) && N0
.getOpcode() == ISD::ZERO_EXTEND
&&
6049 N0
.getNode()->hasOneUse() &&
6050 isSetCCEquivalent(N0
.getOperand(0), LHS
, RHS
, CC
)){
6051 SDValue V
= N0
.getOperand(0);
6053 V
= DAG
.getNode(ISD::XOR
, DL
, V
.getValueType(), V
,
6054 DAG
.getConstant(1, DL
, V
.getValueType()));
6055 AddToWorklist(V
.getNode());
6056 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
, V
);
6059 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
6060 if (isOneConstant(N1
) && VT
== MVT::i1
&& N0
.hasOneUse() &&
6061 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
6062 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
6063 if (isOneUseSetCC(RHS
) || isOneUseSetCC(LHS
)) {
6064 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
6065 LHS
= DAG
.getNode(ISD::XOR
, SDLoc(LHS
), VT
, LHS
, N1
); // LHS = ~LHS
6066 RHS
= DAG
.getNode(ISD::XOR
, SDLoc(RHS
), VT
, RHS
, N1
); // RHS = ~RHS
6067 AddToWorklist(LHS
.getNode()); AddToWorklist(RHS
.getNode());
6068 return DAG
.getNode(NewOpcode
, SDLoc(N
), VT
, LHS
, RHS
);
6071 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
6072 if (isAllOnesConstant(N1
) && N0
.hasOneUse() &&
6073 (N0
.getOpcode() == ISD::OR
|| N0
.getOpcode() == ISD::AND
)) {
6074 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
6075 if (isa
<ConstantSDNode
>(RHS
) || isa
<ConstantSDNode
>(LHS
)) {
6076 unsigned NewOpcode
= N0
.getOpcode() == ISD::AND
? ISD::OR
: ISD::AND
;
6077 LHS
= DAG
.getNode(ISD::XOR
, SDLoc(LHS
), VT
, LHS
, N1
); // LHS = ~LHS
6078 RHS
= DAG
.getNode(ISD::XOR
, SDLoc(RHS
), VT
, RHS
, N1
); // RHS = ~RHS
6079 AddToWorklist(LHS
.getNode()); AddToWorklist(RHS
.getNode());
6080 return DAG
.getNode(NewOpcode
, SDLoc(N
), VT
, LHS
, RHS
);
6083 // fold (xor (and x, y), y) -> (and (not x), y)
6084 if (N0
.getOpcode() == ISD::AND
&& N0
.getNode()->hasOneUse() &&
6085 N0
->getOperand(1) == N1
) {
6086 SDValue X
= N0
->getOperand(0);
6087 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, VT
);
6088 AddToWorklist(NotX
.getNode());
6089 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, NotX
, N1
);
6092 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
6093 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
)) {
6094 SDValue A
= N0
.getOpcode() == ISD::ADD
? N0
: N1
;
6095 SDValue S
= N0
.getOpcode() == ISD::SRA
? N0
: N1
;
6096 if (A
.getOpcode() == ISD::ADD
&& S
.getOpcode() == ISD::SRA
) {
6097 SDValue A0
= A
.getOperand(0), A1
= A
.getOperand(1);
6098 SDValue S0
= S
.getOperand(0);
6099 if ((A0
== S
&& A1
== S0
) || (A1
== S
&& A0
== S0
)) {
6100 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
6101 if (ConstantSDNode
*C
= isConstOrConstSplat(S
.getOperand(1)))
6102 if (C
->getAPIntValue() == (OpSizeInBits
- 1))
6103 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, S0
);
6108 // fold (xor x, x) -> 0
6110 return tryFoldToZero(SDLoc(N
), TLI
, VT
, DAG
, LegalOperations
, LegalTypes
);
6112 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
6113 // Here is a concrete example of this equivalence:
6115 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
6116 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
6120 // i16 ~1 == 0b1111111111111110
6121 // i16 rol(~1, 14) == 0b1011111111111111
6123 // Some additional tips to help conceptualize this transform:
6124 // - Try to see the operation as placing a single zero in a value of all ones.
6125 // - There exists no value for x which would allow the result to contain zero.
6126 // - Values of x larger than the bitwidth are undefined and do not require a
6127 // consistent result.
6128 // - Pushing the zero left requires shifting one bits in from the right.
6129 // A rotate left of ~1 is a nice way of achieving the desired result.
6130 if (TLI
.isOperationLegalOrCustom(ISD::ROTL
, VT
) && N0
.getOpcode() == ISD::SHL
6131 && isAllOnesConstant(N1
) && isOneConstant(N0
.getOperand(0))) {
6133 return DAG
.getNode(ISD::ROTL
, DL
, VT
, DAG
.getConstant(~1, DL
, VT
),
6137 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
6138 if (N0
.getOpcode() == N1
.getOpcode())
6139 if (SDValue Tmp
= SimplifyBinOpWithSameOpcodeHands(N
))
6142 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
6143 if (SDValue MM
= unfoldMaskedMerge(N
))
6146 // Simplify the expression using non-local knowledge.
6147 if (SimplifyDemandedBits(SDValue(N
, 0)))
6148 return SDValue(N
, 0);
6153 /// Handle transforms common to the three shifts, when the shift amount is a
6155 SDValue
DAGCombiner::visitShiftByConstant(SDNode
*N
, ConstantSDNode
*Amt
) {
6156 SDNode
*LHS
= N
->getOperand(0).getNode();
6157 if (!LHS
->hasOneUse()) return SDValue();
6159 // We want to pull some binops through shifts, so that we have (and (shift))
6160 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
6161 // thing happens with address calculations, so it's important to canonicalize
6163 bool HighBitSet
= false; // Can we transform this if the high bit is set?
6165 switch (LHS
->getOpcode()) {
6166 default: return SDValue();
6169 HighBitSet
= false; // We can only transform sra if the high bit is clear.
6172 HighBitSet
= true; // We can only transform sra if the high bit is set.
6175 if (N
->getOpcode() != ISD::SHL
)
6176 return SDValue(); // only shl(add) not sr[al](add).
6177 HighBitSet
= false; // We can only transform sra if the high bit is clear.
6181 // We require the RHS of the binop to be a constant and not opaque as well.
6182 ConstantSDNode
*BinOpCst
= getAsNonOpaqueConstant(LHS
->getOperand(1));
6183 if (!BinOpCst
) return SDValue();
6185 // FIXME: disable this unless the input to the binop is a shift by a constant
6186 // or is copy/select.Enable this in other cases when figure out it's exactly profitable.
6187 SDNode
*BinOpLHSVal
= LHS
->getOperand(0).getNode();
6188 bool isShift
= BinOpLHSVal
->getOpcode() == ISD::SHL
||
6189 BinOpLHSVal
->getOpcode() == ISD::SRA
||
6190 BinOpLHSVal
->getOpcode() == ISD::SRL
;
6191 bool isCopyOrSelect
= BinOpLHSVal
->getOpcode() == ISD::CopyFromReg
||
6192 BinOpLHSVal
->getOpcode() == ISD::SELECT
;
6194 if ((!isShift
|| !isa
<ConstantSDNode
>(BinOpLHSVal
->getOperand(1))) &&
6198 if (isCopyOrSelect
&& N
->hasOneUse())
6201 EVT VT
= N
->getValueType(0);
6203 // If this is a signed shift right, and the high bit is modified by the
6204 // logical operation, do not perform the transformation. The highBitSet
6205 // boolean indicates the value of the high bit of the constant which would
6206 // cause it to be modified for this operation.
6207 if (N
->getOpcode() == ISD::SRA
) {
6208 bool BinOpRHSSignSet
= BinOpCst
->getAPIntValue().isNegative();
6209 if (BinOpRHSSignSet
!= HighBitSet
)
6213 if (!TLI
.isDesirableToCommuteWithShift(N
, Level
))
6216 // Fold the constants, shifting the binop RHS by the shift amount.
6217 SDValue NewRHS
= DAG
.getNode(N
->getOpcode(), SDLoc(LHS
->getOperand(1)),
6219 LHS
->getOperand(1), N
->getOperand(1));
6220 assert(isa
<ConstantSDNode
>(NewRHS
) && "Folding was not successful!");
6222 // Create the new shift.
6223 SDValue NewShift
= DAG
.getNode(N
->getOpcode(),
6224 SDLoc(LHS
->getOperand(0)),
6225 VT
, LHS
->getOperand(0), N
->getOperand(1));
6227 // Create the new binop.
6228 return DAG
.getNode(LHS
->getOpcode(), SDLoc(N
), VT
, NewShift
, NewRHS
);
6231 SDValue
DAGCombiner::distributeTruncateThroughAnd(SDNode
*N
) {
6232 assert(N
->getOpcode() == ISD::TRUNCATE
);
6233 assert(N
->getOperand(0).getOpcode() == ISD::AND
);
6235 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
6236 if (N
->hasOneUse() && N
->getOperand(0).hasOneUse()) {
6237 SDValue N01
= N
->getOperand(0).getOperand(1);
6238 if (isConstantOrConstantVector(N01
, /* NoOpaques */ true)) {
6240 EVT TruncVT
= N
->getValueType(0);
6241 SDValue N00
= N
->getOperand(0).getOperand(0);
6242 SDValue Trunc00
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N00
);
6243 SDValue Trunc01
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
, N01
);
6244 AddToWorklist(Trunc00
.getNode());
6245 AddToWorklist(Trunc01
.getNode());
6246 return DAG
.getNode(ISD::AND
, DL
, TruncVT
, Trunc00
, Trunc01
);
6253 SDValue
DAGCombiner::visitRotate(SDNode
*N
) {
6255 SDValue N0
= N
->getOperand(0);
6256 SDValue N1
= N
->getOperand(1);
6257 EVT VT
= N
->getValueType(0);
6258 unsigned Bitsize
= VT
.getScalarSizeInBits();
6260 // fold (rot x, 0) -> x
6261 if (isNullConstantOrNullSplatConstant(N1
))
6264 // fold (rot x, c) -> (rot x, c % BitSize)
6265 if (ConstantSDNode
*Cst
= isConstOrConstSplat(N1
)) {
6266 if (Cst
->getAPIntValue().uge(Bitsize
)) {
6267 uint64_t RotAmt
= Cst
->getAPIntValue().urem(Bitsize
);
6268 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
,
6269 DAG
.getConstant(RotAmt
, dl
, N1
.getValueType()));
6273 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
6274 if (N1
.getOpcode() == ISD::TRUNCATE
&&
6275 N1
.getOperand(0).getOpcode() == ISD::AND
) {
6276 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
6277 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
, NewOp1
);
6280 unsigned NextOp
= N0
.getOpcode();
6281 // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
6282 if (NextOp
== ISD::ROTL
|| NextOp
== ISD::ROTR
) {
6283 SDNode
*C1
= DAG
.isConstantIntBuildVectorOrConstantInt(N1
);
6284 SDNode
*C2
= DAG
.isConstantIntBuildVectorOrConstantInt(N0
.getOperand(1));
6285 if (C1
&& C2
&& C1
->getValueType(0) == C2
->getValueType(0)) {
6286 EVT ShiftVT
= C1
->getValueType(0);
6287 bool SameSide
= (N
->getOpcode() == NextOp
);
6288 unsigned CombineOp
= SameSide
? ISD::ADD
: ISD::SUB
;
6289 if (SDValue CombinedShift
=
6290 DAG
.FoldConstantArithmetic(CombineOp
, dl
, ShiftVT
, C1
, C2
)) {
6291 SDValue BitsizeC
= DAG
.getConstant(Bitsize
, dl
, ShiftVT
);
6292 SDValue CombinedShiftNorm
= DAG
.FoldConstantArithmetic(
6293 ISD::SREM
, dl
, ShiftVT
, CombinedShift
.getNode(),
6294 BitsizeC
.getNode());
6295 return DAG
.getNode(N
->getOpcode(), dl
, VT
, N0
->getOperand(0),
6303 SDValue
DAGCombiner::visitSHL(SDNode
*N
) {
6304 SDValue N0
= N
->getOperand(0);
6305 SDValue N1
= N
->getOperand(1);
6306 EVT VT
= N0
.getValueType();
6307 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
6310 if (VT
.isVector()) {
6311 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6314 BuildVectorSDNode
*N1CV
= dyn_cast
<BuildVectorSDNode
>(N1
);
6315 // If setcc produces all-one true value then:
6316 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
6317 if (N1CV
&& N1CV
->isConstant()) {
6318 if (N0
.getOpcode() == ISD::AND
) {
6319 SDValue N00
= N0
->getOperand(0);
6320 SDValue N01
= N0
->getOperand(1);
6321 BuildVectorSDNode
*N01CV
= dyn_cast
<BuildVectorSDNode
>(N01
);
6323 if (N01CV
&& N01CV
->isConstant() && N00
.getOpcode() == ISD::SETCC
&&
6324 TLI
.getBooleanContents(N00
.getOperand(0).getValueType()) ==
6325 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
6326 if (SDValue C
= DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
,
6328 return DAG
.getNode(ISD::AND
, SDLoc(N
), VT
, N00
, C
);
6334 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
6336 // fold (shl c1, c2) -> c1<<c2
6337 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6338 if (N0C
&& N1C
&& !N1C
->isOpaque())
6339 return DAG
.FoldConstantArithmetic(ISD::SHL
, SDLoc(N
), VT
, N0C
, N1C
);
6340 // fold (shl 0, x) -> 0
6341 if (isNullConstantOrNullSplatConstant(N0
))
6343 // fold (shl x, c >= size(x)) -> undef
6344 // NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
6345 auto MatchShiftTooBig
= [OpSizeInBits
](ConstantSDNode
*Val
) {
6346 return Val
->getAPIntValue().uge(OpSizeInBits
);
6348 if (ISD::matchUnaryPredicate(N1
, MatchShiftTooBig
))
6349 return DAG
.getUNDEF(VT
);
6350 // fold (shl x, 0) -> x
6351 if (N1C
&& N1C
->isNullValue())
6353 // fold (shl undef, x) -> 0
6355 return DAG
.getConstant(0, SDLoc(N
), VT
);
6357 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6360 // if (shl x, c) is known to be zero, return 0
6361 if (DAG
.MaskedValueIsZero(SDValue(N
, 0),
6362 APInt::getAllOnesValue(OpSizeInBits
)))
6363 return DAG
.getConstant(0, SDLoc(N
), VT
);
6364 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
6365 if (N1
.getOpcode() == ISD::TRUNCATE
&&
6366 N1
.getOperand(0).getOpcode() == ISD::AND
) {
6367 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
6368 return DAG
.getNode(ISD::SHL
, SDLoc(N
), VT
, N0
, NewOp1
);
6371 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
6372 return SDValue(N
, 0);
6374 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
6375 if (N0
.getOpcode() == ISD::SHL
) {
6376 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
6377 ConstantSDNode
*RHS
) {
6378 APInt c1
= LHS
->getAPIntValue();
6379 APInt c2
= RHS
->getAPIntValue();
6380 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6381 return (c1
+ c2
).uge(OpSizeInBits
);
6383 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
6384 return DAG
.getConstant(0, SDLoc(N
), VT
);
6386 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
6387 ConstantSDNode
*RHS
) {
6388 APInt c1
= LHS
->getAPIntValue();
6389 APInt c2
= RHS
->getAPIntValue();
6390 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6391 return (c1
+ c2
).ult(OpSizeInBits
);
6393 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
6395 EVT ShiftVT
= N1
.getValueType();
6396 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
6397 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0), Sum
);
6401 // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
6402 // For this to be valid, the second form must not preserve any of the bits
6403 // that are shifted out by the inner shift in the first form. This means
6404 // the outer shift size must be >= the number of bits added by the ext.
6405 // As a corollary, we don't care what kind of ext it is.
6406 if (N1C
&& (N0
.getOpcode() == ISD::ZERO_EXTEND
||
6407 N0
.getOpcode() == ISD::ANY_EXTEND
||
6408 N0
.getOpcode() == ISD::SIGN_EXTEND
) &&
6409 N0
.getOperand(0).getOpcode() == ISD::SHL
) {
6410 SDValue N0Op0
= N0
.getOperand(0);
6411 if (ConstantSDNode
*N0Op0C1
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
6412 APInt c1
= N0Op0C1
->getAPIntValue();
6413 APInt c2
= N1C
->getAPIntValue();
6414 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6416 EVT InnerShiftVT
= N0Op0
.getValueType();
6417 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
6418 if (c2
.uge(OpSizeInBits
- InnerShiftSize
)) {
6420 APInt Sum
= c1
+ c2
;
6421 if (Sum
.uge(OpSizeInBits
))
6422 return DAG
.getConstant(0, DL
, VT
);
6426 DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0Op0
->getOperand(0)),
6427 DAG
.getConstant(Sum
.getZExtValue(), DL
, N1
.getValueType()));
6432 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
6433 // Only fold this if the inner zext has no other uses to avoid increasing
6434 // the total number of instructions.
6435 if (N1C
&& N0
.getOpcode() == ISD::ZERO_EXTEND
&& N0
.hasOneUse() &&
6436 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
6437 SDValue N0Op0
= N0
.getOperand(0);
6438 if (ConstantSDNode
*N0Op0C1
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
6439 if (N0Op0C1
->getAPIntValue().ult(VT
.getScalarSizeInBits())) {
6440 uint64_t c1
= N0Op0C1
->getZExtValue();
6441 uint64_t c2
= N1C
->getZExtValue();
6443 SDValue NewOp0
= N0
.getOperand(0);
6444 EVT CountVT
= NewOp0
.getOperand(1).getValueType();
6446 SDValue NewSHL
= DAG
.getNode(ISD::SHL
, DL
, NewOp0
.getValueType(),
6448 DAG
.getConstant(c2
, DL
, CountVT
));
6449 AddToWorklist(NewSHL
.getNode());
6450 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N0
), VT
, NewSHL
);
6456 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
6457 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
6458 if (N1C
&& (N0
.getOpcode() == ISD::SRL
|| N0
.getOpcode() == ISD::SRA
) &&
6459 N0
->getFlags().hasExact()) {
6460 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
6461 uint64_t C1
= N0C1
->getZExtValue();
6462 uint64_t C2
= N1C
->getZExtValue();
6465 return DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
6466 DAG
.getConstant(C2
- C1
, DL
, N1
.getValueType()));
6467 return DAG
.getNode(N0
.getOpcode(), DL
, VT
, N0
.getOperand(0),
6468 DAG
.getConstant(C1
- C2
, DL
, N1
.getValueType()));
6472 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
6473 // (and (srl x, (sub c1, c2), MASK)
6474 // Only fold this if the inner shift has no other uses -- if it does, folding
6475 // this will increase the total number of instructions.
6476 if (N1C
&& N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
6477 if (ConstantSDNode
*N0C1
= isConstOrConstSplat(N0
.getOperand(1))) {
6478 uint64_t c1
= N0C1
->getZExtValue();
6479 if (c1
< OpSizeInBits
) {
6480 uint64_t c2
= N1C
->getZExtValue();
6481 APInt Mask
= APInt::getHighBitsSet(OpSizeInBits
, OpSizeInBits
- c1
);
6486 Shift
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
.getOperand(0),
6487 DAG
.getConstant(c2
- c1
, DL
, N1
.getValueType()));
6489 Mask
.lshrInPlace(c1
- c2
);
6491 Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0),
6492 DAG
.getConstant(c1
- c2
, DL
, N1
.getValueType()));
6495 return DAG
.getNode(ISD::AND
, DL
, VT
, Shift
,
6496 DAG
.getConstant(Mask
, DL
, VT
));
6501 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
6502 if (N0
.getOpcode() == ISD::SRA
&& N1
== N0
.getOperand(1) &&
6503 isConstantOrConstantVector(N1
, /* No Opaques */ true)) {
6505 SDValue AllBits
= DAG
.getAllOnesConstant(DL
, VT
);
6506 SDValue HiBitsMask
= DAG
.getNode(ISD::SHL
, DL
, VT
, AllBits
, N1
);
6507 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), HiBitsMask
);
6510 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6511 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6512 // Variant of version done on multiply, except mul by a power of 2 is turned
6514 if ((N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::OR
) &&
6515 N0
.getNode()->hasOneUse() &&
6516 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
6517 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true) &&
6518 TLI
.isDesirableToCommuteWithShift(N
, Level
)) {
6519 SDValue Shl0
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, N0
.getOperand(0), N1
);
6520 SDValue Shl1
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
6521 AddToWorklist(Shl0
.getNode());
6522 AddToWorklist(Shl1
.getNode());
6523 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, Shl0
, Shl1
);
6526 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
6527 if (N0
.getOpcode() == ISD::MUL
&& N0
.getNode()->hasOneUse() &&
6528 isConstantOrConstantVector(N1
, /* No Opaques */ true) &&
6529 isConstantOrConstantVector(N0
.getOperand(1), /* No Opaques */ true)) {
6530 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N1
), VT
, N0
.getOperand(1), N1
);
6531 if (isConstantOrConstantVector(Shl
))
6532 return DAG
.getNode(ISD::MUL
, SDLoc(N
), VT
, N0
.getOperand(0), Shl
);
6535 if (N1C
&& !N1C
->isOpaque())
6536 if (SDValue NewSHL
= visitShiftByConstant(N
, N1C
))
6542 SDValue
DAGCombiner::visitSRA(SDNode
*N
) {
6543 SDValue N0
= N
->getOperand(0);
6544 SDValue N1
= N
->getOperand(1);
6545 EVT VT
= N0
.getValueType();
6546 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
6548 // Arithmetic shifting an all-sign-bit value is a no-op.
6549 // fold (sra 0, x) -> 0
6550 // fold (sra -1, x) -> -1
6551 if (DAG
.ComputeNumSignBits(N0
) == OpSizeInBits
)
6556 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6559 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
6561 // fold (sra c1, c2) -> (sra c1, c2)
6562 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6563 if (N0C
&& N1C
&& !N1C
->isOpaque())
6564 return DAG
.FoldConstantArithmetic(ISD::SRA
, SDLoc(N
), VT
, N0C
, N1C
);
6565 // fold (sra x, c >= size(x)) -> undef
6566 // NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
6567 auto MatchShiftTooBig
= [OpSizeInBits
](ConstantSDNode
*Val
) {
6568 return Val
->getAPIntValue().uge(OpSizeInBits
);
6570 if (ISD::matchUnaryPredicate(N1
, MatchShiftTooBig
))
6571 return DAG
.getUNDEF(VT
);
6572 // fold (sra x, 0) -> x
6573 if (N1C
&& N1C
->isNullValue())
6576 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6579 // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
6581 if (N1C
&& N0
.getOpcode() == ISD::SHL
&& N1
== N0
.getOperand(1)) {
6582 unsigned LowBits
= OpSizeInBits
- (unsigned)N1C
->getZExtValue();
6583 EVT ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), LowBits
);
6585 ExtVT
= EVT::getVectorVT(*DAG
.getContext(),
6586 ExtVT
, VT
.getVectorNumElements());
6587 if ((!LegalOperations
||
6588 TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
, ExtVT
)))
6589 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
6590 N0
.getOperand(0), DAG
.getValueType(ExtVT
));
6593 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
6594 // clamp (add c1, c2) to max shift.
6595 if (N0
.getOpcode() == ISD::SRA
) {
6597 EVT ShiftVT
= N1
.getValueType();
6598 EVT ShiftSVT
= ShiftVT
.getScalarType();
6599 SmallVector
<SDValue
, 16> ShiftValues
;
6601 auto SumOfShifts
= [&](ConstantSDNode
*LHS
, ConstantSDNode
*RHS
) {
6602 APInt c1
= LHS
->getAPIntValue();
6603 APInt c2
= RHS
->getAPIntValue();
6604 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6605 APInt Sum
= c1
+ c2
;
6607 Sum
.uge(OpSizeInBits
) ? (OpSizeInBits
- 1) : Sum
.getZExtValue();
6608 ShiftValues
.push_back(DAG
.getConstant(ShiftSum
, DL
, ShiftSVT
));
6611 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), SumOfShifts
)) {
6614 ShiftValue
= DAG
.getBuildVector(ShiftVT
, DL
, ShiftValues
);
6616 ShiftValue
= ShiftValues
[0];
6617 return DAG
.getNode(ISD::SRA
, DL
, VT
, N0
.getOperand(0), ShiftValue
);
6621 // fold (sra (shl X, m), (sub result_size, n))
6622 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
6623 // result_size - n != m.
6624 // If truncate is free for the target sext(shl) is likely to result in better
6626 if (N0
.getOpcode() == ISD::SHL
&& N1C
) {
6627 // Get the two constanst of the shifts, CN0 = m, CN = n.
6628 const ConstantSDNode
*N01C
= isConstOrConstSplat(N0
.getOperand(1));
6630 LLVMContext
&Ctx
= *DAG
.getContext();
6631 // Determine what the truncate's result bitsize and type would be.
6632 EVT TruncVT
= EVT::getIntegerVT(Ctx
, OpSizeInBits
- N1C
->getZExtValue());
6635 TruncVT
= EVT::getVectorVT(Ctx
, TruncVT
, VT
.getVectorNumElements());
6637 // Determine the residual right-shift amount.
6638 int ShiftAmt
= N1C
->getZExtValue() - N01C
->getZExtValue();
6640 // If the shift is not a no-op (in which case this should be just a sign
6641 // extend already), the truncated to type is legal, sign_extend is legal
6642 // on that type, and the truncate to that type is both legal and free,
6643 // perform the transform.
6644 if ((ShiftAmt
> 0) &&
6645 TLI
.isOperationLegalOrCustom(ISD::SIGN_EXTEND
, TruncVT
) &&
6646 TLI
.isOperationLegalOrCustom(ISD::TRUNCATE
, VT
) &&
6647 TLI
.isTruncateFree(VT
, TruncVT
)) {
6649 SDValue Amt
= DAG
.getConstant(ShiftAmt
, DL
,
6650 getShiftAmountTy(N0
.getOperand(0).getValueType()));
6651 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, VT
,
6652 N0
.getOperand(0), Amt
);
6653 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, TruncVT
,
6655 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
,
6656 N
->getValueType(0), Trunc
);
6661 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
6662 if (N1
.getOpcode() == ISD::TRUNCATE
&&
6663 N1
.getOperand(0).getOpcode() == ISD::AND
) {
6664 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
6665 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
, N0
, NewOp1
);
6668 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
6669 // if c1 is equal to the number of bits the trunc removes
6670 if (N0
.getOpcode() == ISD::TRUNCATE
&&
6671 (N0
.getOperand(0).getOpcode() == ISD::SRL
||
6672 N0
.getOperand(0).getOpcode() == ISD::SRA
) &&
6673 N0
.getOperand(0).hasOneUse() &&
6674 N0
.getOperand(0).getOperand(1).hasOneUse() &&
6676 SDValue N0Op0
= N0
.getOperand(0);
6677 if (ConstantSDNode
*LargeShift
= isConstOrConstSplat(N0Op0
.getOperand(1))) {
6678 unsigned LargeShiftVal
= LargeShift
->getZExtValue();
6679 EVT LargeVT
= N0Op0
.getValueType();
6681 if (LargeVT
.getScalarSizeInBits() - OpSizeInBits
== LargeShiftVal
) {
6684 DAG
.getConstant(LargeShiftVal
+ N1C
->getZExtValue(), DL
,
6685 getShiftAmountTy(N0Op0
.getOperand(0).getValueType()));
6686 SDValue SRA
= DAG
.getNode(ISD::SRA
, DL
, LargeVT
,
6687 N0Op0
.getOperand(0), Amt
);
6688 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, SRA
);
6693 // Simplify, based on bits shifted out of the LHS.
6694 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
6695 return SDValue(N
, 0);
6697 // If the sign bit is known to be zero, switch this to a SRL.
6698 if (DAG
.SignBitIsZero(N0
))
6699 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, N1
);
6701 if (N1C
&& !N1C
->isOpaque())
6702 if (SDValue NewSRA
= visitShiftByConstant(N
, N1C
))
6708 SDValue
DAGCombiner::visitSRL(SDNode
*N
) {
6709 SDValue N0
= N
->getOperand(0);
6710 SDValue N1
= N
->getOperand(1);
6711 EVT VT
= N0
.getValueType();
6712 unsigned OpSizeInBits
= VT
.getScalarSizeInBits();
6716 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
6719 ConstantSDNode
*N1C
= isConstOrConstSplat(N1
);
6721 // fold (srl c1, c2) -> c1 >>u c2
6722 ConstantSDNode
*N0C
= getAsNonOpaqueConstant(N0
);
6723 if (N0C
&& N1C
&& !N1C
->isOpaque())
6724 return DAG
.FoldConstantArithmetic(ISD::SRL
, SDLoc(N
), VT
, N0C
, N1C
);
6725 // fold (srl 0, x) -> 0
6726 if (isNullConstantOrNullSplatConstant(N0
))
6728 // fold (srl x, c >= size(x)) -> undef
6729 // NOTE: ALL vector elements must be too big to avoid partial UNDEFs.
6730 auto MatchShiftTooBig
= [OpSizeInBits
](ConstantSDNode
*Val
) {
6731 return Val
->getAPIntValue().uge(OpSizeInBits
);
6733 if (ISD::matchUnaryPredicate(N1
, MatchShiftTooBig
))
6734 return DAG
.getUNDEF(VT
);
6735 // fold (srl x, 0) -> x
6736 if (N1C
&& N1C
->isNullValue())
6739 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
6742 // if (srl x, c) is known to be zero, return 0
6743 if (N1C
&& DAG
.MaskedValueIsZero(SDValue(N
, 0),
6744 APInt::getAllOnesValue(OpSizeInBits
)))
6745 return DAG
.getConstant(0, SDLoc(N
), VT
);
6747 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
6748 if (N0
.getOpcode() == ISD::SRL
) {
6749 auto MatchOutOfRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
6750 ConstantSDNode
*RHS
) {
6751 APInt c1
= LHS
->getAPIntValue();
6752 APInt c2
= RHS
->getAPIntValue();
6753 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6754 return (c1
+ c2
).uge(OpSizeInBits
);
6756 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchOutOfRange
))
6757 return DAG
.getConstant(0, SDLoc(N
), VT
);
6759 auto MatchInRange
= [OpSizeInBits
](ConstantSDNode
*LHS
,
6760 ConstantSDNode
*RHS
) {
6761 APInt c1
= LHS
->getAPIntValue();
6762 APInt c2
= RHS
->getAPIntValue();
6763 zeroExtendToMatch(c1
, c2
, 1 /* Overflow Bit */);
6764 return (c1
+ c2
).ult(OpSizeInBits
);
6766 if (ISD::matchBinaryPredicate(N1
, N0
.getOperand(1), MatchInRange
)) {
6768 EVT ShiftVT
= N1
.getValueType();
6769 SDValue Sum
= DAG
.getNode(ISD::ADD
, DL
, ShiftVT
, N1
, N0
.getOperand(1));
6770 return DAG
.getNode(ISD::SRL
, DL
, VT
, N0
.getOperand(0), Sum
);
6774 // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
6775 if (N1C
&& N0
.getOpcode() == ISD::TRUNCATE
&&
6776 N0
.getOperand(0).getOpcode() == ISD::SRL
) {
6777 if (auto N001C
= isConstOrConstSplat(N0
.getOperand(0).getOperand(1))) {
6778 uint64_t c1
= N001C
->getZExtValue();
6779 uint64_t c2
= N1C
->getZExtValue();
6780 EVT InnerShiftVT
= N0
.getOperand(0).getValueType();
6781 EVT ShiftCountVT
= N0
.getOperand(0).getOperand(1).getValueType();
6782 uint64_t InnerShiftSize
= InnerShiftVT
.getScalarSizeInBits();
6783 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
6784 if (c1
+ OpSizeInBits
== InnerShiftSize
) {
6786 if (c1
+ c2
>= InnerShiftSize
)
6787 return DAG
.getConstant(0, DL
, VT
);
6788 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
,
6789 DAG
.getNode(ISD::SRL
, DL
, InnerShiftVT
,
6790 N0
.getOperand(0).getOperand(0),
6791 DAG
.getConstant(c1
+ c2
, DL
,
6797 // fold (srl (shl x, c), c) -> (and x, cst2)
6798 if (N0
.getOpcode() == ISD::SHL
&& N0
.getOperand(1) == N1
&&
6799 isConstantOrConstantVector(N1
, /* NoOpaques */ true)) {
6802 DAG
.getNode(ISD::SRL
, DL
, VT
, DAG
.getAllOnesConstant(DL
, VT
), N1
);
6803 AddToWorklist(Mask
.getNode());
6804 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
.getOperand(0), Mask
);
6807 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
6808 if (N1C
&& N0
.getOpcode() == ISD::ANY_EXTEND
) {
6809 // Shifting in all undef bits?
6810 EVT SmallVT
= N0
.getOperand(0).getValueType();
6811 unsigned BitSize
= SmallVT
.getScalarSizeInBits();
6812 if (N1C
->getZExtValue() >= BitSize
)
6813 return DAG
.getUNDEF(VT
);
6815 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(ISD::SRL
, SmallVT
)) {
6816 uint64_t ShiftAmt
= N1C
->getZExtValue();
6818 SDValue SmallShift
= DAG
.getNode(ISD::SRL
, DL0
, SmallVT
,
6820 DAG
.getConstant(ShiftAmt
, DL0
,
6821 getShiftAmountTy(SmallVT
)));
6822 AddToWorklist(SmallShift
.getNode());
6823 APInt Mask
= APInt::getLowBitsSet(OpSizeInBits
, OpSizeInBits
- ShiftAmt
);
6825 return DAG
.getNode(ISD::AND
, DL
, VT
,
6826 DAG
.getNode(ISD::ANY_EXTEND
, DL
, VT
, SmallShift
),
6827 DAG
.getConstant(Mask
, DL
, VT
));
6831 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
6832 // bit, which is unmodified by sra.
6833 if (N1C
&& N1C
->getZExtValue() + 1 == OpSizeInBits
) {
6834 if (N0
.getOpcode() == ISD::SRA
)
6835 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
6838 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
6839 if (N1C
&& N0
.getOpcode() == ISD::CTLZ
&&
6840 N1C
->getAPIntValue() == Log2_32(OpSizeInBits
)) {
6842 DAG
.computeKnownBits(N0
.getOperand(0), Known
);
6844 // If any of the input bits are KnownOne, then the input couldn't be all
6845 // zeros, thus the result of the srl will always be zero.
6846 if (Known
.One
.getBoolValue()) return DAG
.getConstant(0, SDLoc(N0
), VT
);
6848 // If all of the bits input the to ctlz node are known to be zero, then
6849 // the result of the ctlz is "32" and the result of the shift is one.
6850 APInt UnknownBits
= ~Known
.Zero
;
6851 if (UnknownBits
== 0) return DAG
.getConstant(1, SDLoc(N0
), VT
);
6853 // Otherwise, check to see if there is exactly one bit input to the ctlz.
6854 if (UnknownBits
.isPowerOf2()) {
6855 // Okay, we know that only that the single bit specified by UnknownBits
6856 // could be set on input to the CTLZ node. If this bit is set, the SRL
6857 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
6858 // to an SRL/XOR pair, which is likely to simplify more.
6859 unsigned ShAmt
= UnknownBits
.countTrailingZeros();
6860 SDValue Op
= N0
.getOperand(0);
6864 Op
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
,
6865 DAG
.getConstant(ShAmt
, DL
,
6866 getShiftAmountTy(Op
.getValueType())));
6867 AddToWorklist(Op
.getNode());
6871 return DAG
.getNode(ISD::XOR
, DL
, VT
,
6872 Op
, DAG
.getConstant(1, DL
, VT
));
6876 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
6877 if (N1
.getOpcode() == ISD::TRUNCATE
&&
6878 N1
.getOperand(0).getOpcode() == ISD::AND
) {
6879 if (SDValue NewOp1
= distributeTruncateThroughAnd(N1
.getNode()))
6880 return DAG
.getNode(ISD::SRL
, SDLoc(N
), VT
, N0
, NewOp1
);
6883 // fold operands of srl based on knowledge that the low bits are not
6885 if (N1C
&& SimplifyDemandedBits(SDValue(N
, 0)))
6886 return SDValue(N
, 0);
6888 if (N1C
&& !N1C
->isOpaque())
6889 if (SDValue NewSRL
= visitShiftByConstant(N
, N1C
))
6892 // Attempt to convert a srl of a load into a narrower zero-extending load.
6893 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
6896 // Here is a common situation. We want to optimize:
6899 // %b = and i32 %a, 2
6900 // %c = srl i32 %b, 1
6901 // brcond i32 %c ...
6907 // %c = setcc eq %b, 0
6910 // However when after the source operand of SRL is optimized into AND, the SRL
6911 // itself may not be optimized further. Look for it and add the BRCOND into
6913 if (N
->hasOneUse()) {
6914 SDNode
*Use
= *N
->use_begin();
6915 if (Use
->getOpcode() == ISD::BRCOND
)
6917 else if (Use
->getOpcode() == ISD::TRUNCATE
&& Use
->hasOneUse()) {
6918 // Also look pass the truncate.
6919 Use
= *Use
->use_begin();
6920 if (Use
->getOpcode() == ISD::BRCOND
)
6928 SDValue
DAGCombiner::visitABS(SDNode
*N
) {
6929 SDValue N0
= N
->getOperand(0);
6930 EVT VT
= N
->getValueType(0);
6932 // fold (abs c1) -> c2
6933 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
6934 return DAG
.getNode(ISD::ABS
, SDLoc(N
), VT
, N0
);
6935 // fold (abs (abs x)) -> (abs x)
6936 if (N0
.getOpcode() == ISD::ABS
)
6938 // fold (abs x) -> x iff not-negative
6939 if (DAG
.SignBitIsZero(N0
))
6944 SDValue
DAGCombiner::visitBSWAP(SDNode
*N
) {
6945 SDValue N0
= N
->getOperand(0);
6946 EVT VT
= N
->getValueType(0);
6948 // fold (bswap c1) -> c2
6949 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
6950 return DAG
.getNode(ISD::BSWAP
, SDLoc(N
), VT
, N0
);
6951 // fold (bswap (bswap x)) -> x
6952 if (N0
.getOpcode() == ISD::BSWAP
)
6953 return N0
->getOperand(0);
6957 SDValue
DAGCombiner::visitBITREVERSE(SDNode
*N
) {
6958 SDValue N0
= N
->getOperand(0);
6959 EVT VT
= N
->getValueType(0);
6961 // fold (bitreverse c1) -> c2
6962 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
6963 return DAG
.getNode(ISD::BITREVERSE
, SDLoc(N
), VT
, N0
);
6964 // fold (bitreverse (bitreverse x)) -> x
6965 if (N0
.getOpcode() == ISD::BITREVERSE
)
6966 return N0
.getOperand(0);
6970 SDValue
DAGCombiner::visitCTLZ(SDNode
*N
) {
6971 SDValue N0
= N
->getOperand(0);
6972 EVT VT
= N
->getValueType(0);
6974 // fold (ctlz c1) -> c2
6975 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
6976 return DAG
.getNode(ISD::CTLZ
, SDLoc(N
), VT
, N0
);
6978 // If the value is known never to be zero, switch to the undef version.
6979 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
6980 if (DAG
.isKnownNeverZero(N0
))
6981 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
6987 SDValue
DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode
*N
) {
6988 SDValue N0
= N
->getOperand(0);
6989 EVT VT
= N
->getValueType(0);
6991 // fold (ctlz_zero_undef c1) -> c2
6992 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
6993 return DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
6997 SDValue
DAGCombiner::visitCTTZ(SDNode
*N
) {
6998 SDValue N0
= N
->getOperand(0);
6999 EVT VT
= N
->getValueType(0);
7001 // fold (cttz c1) -> c2
7002 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
7003 return DAG
.getNode(ISD::CTTZ
, SDLoc(N
), VT
, N0
);
7005 // If the value is known never to be zero, switch to the undef version.
7006 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
7007 if (DAG
.isKnownNeverZero(N0
))
7008 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
7014 SDValue
DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode
*N
) {
7015 SDValue N0
= N
->getOperand(0);
7016 EVT VT
= N
->getValueType(0);
7018 // fold (cttz_zero_undef c1) -> c2
7019 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
7020 return DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, SDLoc(N
), VT
, N0
);
7024 SDValue
DAGCombiner::visitCTPOP(SDNode
*N
) {
7025 SDValue N0
= N
->getOperand(0);
7026 EVT VT
= N
->getValueType(0);
7028 // fold (ctpop c1) -> c2
7029 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
7030 return DAG
.getNode(ISD::CTPOP
, SDLoc(N
), VT
, N0
);
7034 /// Generate Min/Max node
7035 static SDValue
combineMinNumMaxNum(const SDLoc
&DL
, EVT VT
, SDValue LHS
,
7036 SDValue RHS
, SDValue True
, SDValue False
,
7037 ISD::CondCode CC
, const TargetLowering
&TLI
,
7038 SelectionDAG
&DAG
) {
7039 if (!(LHS
== True
&& RHS
== False
) && !(LHS
== False
&& RHS
== True
))
7049 unsigned Opcode
= (LHS
== True
) ? ISD::FMINNUM
: ISD::FMAXNUM
;
7050 if (TLI
.isOperationLegal(Opcode
, VT
))
7051 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
7060 unsigned Opcode
= (LHS
== True
) ? ISD::FMAXNUM
: ISD::FMINNUM
;
7061 if (TLI
.isOperationLegal(Opcode
, VT
))
7062 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
);
7070 SDValue
DAGCombiner::foldSelectOfConstants(SDNode
*N
) {
7071 SDValue Cond
= N
->getOperand(0);
7072 SDValue N1
= N
->getOperand(1);
7073 SDValue N2
= N
->getOperand(2);
7074 EVT VT
= N
->getValueType(0);
7075 EVT CondVT
= Cond
.getValueType();
7078 if (!VT
.isInteger())
7081 auto *C1
= dyn_cast
<ConstantSDNode
>(N1
);
7082 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
7086 // Only do this before legalization to avoid conflicting with target-specific
7087 // transforms in the other direction (create a select from a zext/sext). There
7088 // is also a target-independent combine here in DAGCombiner in the other
7089 // direction for (select Cond, -1, 0) when the condition is not i1.
7090 if (CondVT
== MVT::i1
&& !LegalOperations
) {
7091 if (C1
->isNullValue() && C2
->isOne()) {
7092 // select Cond, 0, 1 --> zext (!Cond)
7093 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
7095 NotCond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, NotCond
);
7098 if (C1
->isNullValue() && C2
->isAllOnesValue()) {
7099 // select Cond, 0, -1 --> sext (!Cond)
7100 SDValue NotCond
= DAG
.getNOT(DL
, Cond
, MVT::i1
);
7102 NotCond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, NotCond
);
7105 if (C1
->isOne() && C2
->isNullValue()) {
7106 // select Cond, 1, 0 --> zext (Cond)
7108 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
7111 if (C1
->isAllOnesValue() && C2
->isNullValue()) {
7112 // select Cond, -1, 0 --> sext (Cond)
7114 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
7118 // For any constants that differ by 1, we can transform the select into an
7119 // extend and add. Use a target hook because some targets may prefer to
7120 // transform in the other direction.
7121 if (TLI
.convertSelectOfConstantsToMath(VT
)) {
7122 if (C1
->getAPIntValue() - 1 == C2
->getAPIntValue()) {
7123 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
7125 Cond
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Cond
);
7126 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
7128 if (C1
->getAPIntValue() + 1 == C2
->getAPIntValue()) {
7129 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
7131 Cond
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Cond
);
7132 return DAG
.getNode(ISD::ADD
, DL
, VT
, Cond
, N2
);
7139 // fold (select Cond, 0, 1) -> (xor Cond, 1)
7140 // We can't do this reliably if integer based booleans have different contents
7141 // to floating point based booleans. This is because we can't tell whether we
7142 // have an integer-based boolean or a floating-point-based boolean unless we
7143 // can find the SETCC that produced it and inspect its operands. This is
7144 // fairly easy if C is the SETCC node, but it can potentially be
7145 // undiscoverable (or not reasonably discoverable). For example, it could be
7146 // in another basic block or it could require searching a complicated
7148 if (CondVT
.isInteger() &&
7149 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
7150 TargetLowering::ZeroOrOneBooleanContent
&&
7151 TLI
.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
7152 TargetLowering::ZeroOrOneBooleanContent
&&
7153 C1
->isNullValue() && C2
->isOne()) {
7155 DAG
.getNode(ISD::XOR
, DL
, CondVT
, Cond
, DAG
.getConstant(1, DL
, CondVT
));
7156 if (VT
.bitsEq(CondVT
))
7158 return DAG
.getZExtOrTrunc(NotCond
, DL
, VT
);
7164 SDValue
DAGCombiner::visitSELECT(SDNode
*N
) {
7165 SDValue N0
= N
->getOperand(0);
7166 SDValue N1
= N
->getOperand(1);
7167 SDValue N2
= N
->getOperand(2);
7168 EVT VT
= N
->getValueType(0);
7169 EVT VT0
= N0
.getValueType();
7172 // fold (select C, X, X) -> X
7176 if (const ConstantSDNode
*N0C
= dyn_cast
<const ConstantSDNode
>(N0
)) {
7177 // fold (select true, X, Y) -> X
7178 // fold (select false, X, Y) -> Y
7179 return !N0C
->isNullValue() ? N1
: N2
;
7182 // fold (select X, X, Y) -> (or X, Y)
7183 // fold (select X, 1, Y) -> (or C, Y)
7184 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N1
|| isOneConstant(N1
)))
7185 return DAG
.getNode(ISD::OR
, DL
, VT
, N0
, N2
);
7187 if (SDValue V
= foldSelectOfConstants(N
))
7190 // fold (select C, 0, X) -> (and (not C), X)
7191 if (VT
== VT0
&& VT
== MVT::i1
&& isNullConstant(N1
)) {
7192 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
7193 AddToWorklist(NOTNode
.getNode());
7194 return DAG
.getNode(ISD::AND
, DL
, VT
, NOTNode
, N2
);
7196 // fold (select C, X, 1) -> (or (not C), X)
7197 if (VT
== VT0
&& VT
== MVT::i1
&& isOneConstant(N2
)) {
7198 SDValue NOTNode
= DAG
.getNOT(SDLoc(N0
), N0
, VT
);
7199 AddToWorklist(NOTNode
.getNode());
7200 return DAG
.getNode(ISD::OR
, DL
, VT
, NOTNode
, N1
);
7202 // fold (select X, Y, X) -> (and X, Y)
7203 // fold (select X, Y, 0) -> (and X, Y)
7204 if (VT
== VT0
&& VT
== MVT::i1
&& (N0
== N2
|| isNullConstant(N2
)))
7205 return DAG
.getNode(ISD::AND
, DL
, VT
, N0
, N1
);
7207 // If we can fold this based on the true/false value, do so.
7208 if (SimplifySelectOps(N
, N1
, N2
))
7209 return SDValue(N
, 0); // Don't revisit N.
7211 if (VT0
== MVT::i1
) {
7212 // The code in this block deals with the following 2 equivalences:
7213 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
7214 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
7215 // The target can specify its preferred form with the
7216 // shouldNormalizeToSelectSequence() callback. However we always transform
7217 // to the right anyway if we find the inner select exists in the DAG anyway
7218 // and we always transform to the left side if we know that we can further
7219 // optimize the combination of the conditions.
7220 bool normalizeToSequence
=
7221 TLI
.shouldNormalizeToSelectSequence(*DAG
.getContext(), VT
);
7222 // select (and Cond0, Cond1), X, Y
7223 // -> select Cond0, (select Cond1, X, Y), Y
7224 if (N0
->getOpcode() == ISD::AND
&& N0
->hasOneUse()) {
7225 SDValue Cond0
= N0
->getOperand(0);
7226 SDValue Cond1
= N0
->getOperand(1);
7227 SDValue InnerSelect
=
7228 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
);
7229 if (normalizeToSequence
|| !InnerSelect
.use_empty())
7230 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
,
7233 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
7234 if (N0
->getOpcode() == ISD::OR
&& N0
->hasOneUse()) {
7235 SDValue Cond0
= N0
->getOperand(0);
7236 SDValue Cond1
= N0
->getOperand(1);
7237 SDValue InnerSelect
=
7238 DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond1
, N1
, N2
);
7239 if (normalizeToSequence
|| !InnerSelect
.use_empty())
7240 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Cond0
, N1
,
7244 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
7245 if (N1
->getOpcode() == ISD::SELECT
&& N1
->hasOneUse()) {
7246 SDValue N1_0
= N1
->getOperand(0);
7247 SDValue N1_1
= N1
->getOperand(1);
7248 SDValue N1_2
= N1
->getOperand(2);
7249 if (N1_2
== N2
&& N0
.getValueType() == N1_0
.getValueType()) {
7250 // Create the actual and node if we can generate good code for it.
7251 if (!normalizeToSequence
) {
7252 SDValue And
= DAG
.getNode(ISD::AND
, DL
, N0
.getValueType(), N0
, N1_0
);
7253 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), And
, N1_1
, N2
);
7255 // Otherwise see if we can optimize the "and" to a better pattern.
7256 if (SDValue Combined
= visitANDLike(N0
, N1_0
, N
))
7257 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1_1
,
7261 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
7262 if (N2
->getOpcode() == ISD::SELECT
&& N2
->hasOneUse()) {
7263 SDValue N2_0
= N2
->getOperand(0);
7264 SDValue N2_1
= N2
->getOperand(1);
7265 SDValue N2_2
= N2
->getOperand(2);
7266 if (N2_1
== N1
&& N0
.getValueType() == N2_0
.getValueType()) {
7267 // Create the actual or node if we can generate good code for it.
7268 if (!normalizeToSequence
) {
7269 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, N0
.getValueType(), N0
, N2_0
);
7270 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Or
, N1
, N2_2
);
7272 // Otherwise see if we can optimize to a better pattern.
7273 if (SDValue Combined
= visitORLike(N0
, N2_0
, N
))
7274 return DAG
.getNode(ISD::SELECT
, DL
, N1
.getValueType(), Combined
, N1
,
7280 if (VT0
== MVT::i1
) {
7281 // select (not Cond), N1, N2 -> select Cond, N2, N1
7282 if (isBitwiseNot(N0
))
7283 return DAG
.getNode(ISD::SELECT
, DL
, VT
, N0
->getOperand(0), N2
, N1
);
7286 // fold selects based on a setcc into other things, such as min/max/abs
7287 if (N0
.getOpcode() == ISD::SETCC
) {
7288 // select x, y (fcmp lt x, y) -> fminnum x, y
7289 // select x, y (fcmp gt x, y) -> fmaxnum x, y
7291 // This is OK if we don't care about what happens if either operand is a
7295 // FIXME: This should be checking for no signed zeros on individual
7296 // operands, as well as no nans.
7297 const TargetOptions
&Options
= DAG
.getTarget().Options
;
7298 if (Options
.NoSignedZerosFPMath
&& VT
.isFloatingPoint() && N0
.hasOneUse() &&
7299 DAG
.isKnownNeverNaN(N1
) && DAG
.isKnownNeverNaN(N2
)) {
7300 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
7302 if (SDValue FMinMax
= combineMinNumMaxNum(
7303 DL
, VT
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
, CC
, TLI
, DAG
))
7307 if ((!LegalOperations
&&
7308 TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
)) ||
7309 TLI
.isOperationLegal(ISD::SELECT_CC
, VT
))
7310 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, N0
.getOperand(0),
7311 N0
.getOperand(1), N1
, N2
, N0
.getOperand(2));
7312 return SimplifySelect(DL
, N0
, N1
, N2
);
7319 std::pair
<SDValue
, SDValue
> SplitVSETCC(const SDNode
*N
, SelectionDAG
&DAG
) {
7322 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(N
->getValueType(0));
7324 // Split the inputs.
7325 SDValue Lo
, Hi
, LL
, LH
, RL
, RH
;
7326 std::tie(LL
, LH
) = DAG
.SplitVectorOperand(N
, 0);
7327 std::tie(RL
, RH
) = DAG
.SplitVectorOperand(N
, 1);
7329 Lo
= DAG
.getNode(N
->getOpcode(), DL
, LoVT
, LL
, RL
, N
->getOperand(2));
7330 Hi
= DAG
.getNode(N
->getOpcode(), DL
, HiVT
, LH
, RH
, N
->getOperand(2));
7332 return std::make_pair(Lo
, Hi
);
7335 // This function assumes all the vselect's arguments are CONCAT_VECTOR
7336 // nodes and that the condition is a BV of ConstantSDNodes (or undefs).
7337 static SDValue
ConvertSelectToConcatVector(SDNode
*N
, SelectionDAG
&DAG
) {
7339 SDValue Cond
= N
->getOperand(0);
7340 SDValue LHS
= N
->getOperand(1);
7341 SDValue RHS
= N
->getOperand(2);
7342 EVT VT
= N
->getValueType(0);
7343 int NumElems
= VT
.getVectorNumElements();
7344 assert(LHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
7345 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&&
7346 Cond
.getOpcode() == ISD::BUILD_VECTOR
);
7348 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
7349 // binary ones here.
7350 if (LHS
->getNumOperands() != 2 || RHS
->getNumOperands() != 2)
7353 // We're sure we have an even number of elements due to the
7354 // concat_vectors we have as arguments to vselect.
7355 // Skip BV elements until we find one that's not an UNDEF
7356 // After we find an UNDEF element, keep looping until we get to half the
7357 // length of the BV and see if all the non-undef nodes are the same.
7358 ConstantSDNode
*BottomHalf
= nullptr;
7359 for (int i
= 0; i
< NumElems
/ 2; ++i
) {
7360 if (Cond
->getOperand(i
)->isUndef())
7363 if (BottomHalf
== nullptr)
7364 BottomHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
7365 else if (Cond
->getOperand(i
).getNode() != BottomHalf
)
7369 // Do the same for the second half of the BuildVector
7370 ConstantSDNode
*TopHalf
= nullptr;
7371 for (int i
= NumElems
/ 2; i
< NumElems
; ++i
) {
7372 if (Cond
->getOperand(i
)->isUndef())
7375 if (TopHalf
== nullptr)
7376 TopHalf
= cast
<ConstantSDNode
>(Cond
.getOperand(i
));
7377 else if (Cond
->getOperand(i
).getNode() != TopHalf
)
7381 assert(TopHalf
&& BottomHalf
&&
7382 "One half of the selector was all UNDEFs and the other was all the "
7383 "same value. This should have been addressed before this function.");
7385 ISD::CONCAT_VECTORS
, DL
, VT
,
7386 BottomHalf
->isNullValue() ? RHS
->getOperand(0) : LHS
->getOperand(0),
7387 TopHalf
->isNullValue() ? RHS
->getOperand(1) : LHS
->getOperand(1));
7390 SDValue
DAGCombiner::visitMSCATTER(SDNode
*N
) {
7391 if (Level
>= AfterLegalizeTypes
)
7394 MaskedScatterSDNode
*MSC
= cast
<MaskedScatterSDNode
>(N
);
7395 SDValue Mask
= MSC
->getMask();
7396 SDValue Data
= MSC
->getValue();
7399 // If the MSCATTER data type requires splitting and the mask is provided by a
7400 // SETCC, then split both nodes and its operands before legalization. This
7401 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7402 // and enables future optimizations (e.g. min/max pattern matching on X86).
7403 if (Mask
.getOpcode() != ISD::SETCC
)
7406 // Check if any splitting is required.
7407 if (TLI
.getTypeAction(*DAG
.getContext(), Data
.getValueType()) !=
7408 TargetLowering::TypeSplitVector
)
7410 SDValue MaskLo
, MaskHi
;
7411 std::tie(MaskLo
, MaskHi
) = SplitVSETCC(Mask
.getNode(), DAG
);
7414 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(MSC
->getValueType(0));
7416 SDValue Chain
= MSC
->getChain();
7418 EVT MemoryVT
= MSC
->getMemoryVT();
7419 unsigned Alignment
= MSC
->getOriginalAlignment();
7421 EVT LoMemVT
, HiMemVT
;
7422 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemoryVT
);
7424 SDValue DataLo
, DataHi
;
7425 std::tie(DataLo
, DataHi
) = DAG
.SplitVector(Data
, DL
);
7427 SDValue Scale
= MSC
->getScale();
7428 SDValue BasePtr
= MSC
->getBasePtr();
7429 SDValue IndexLo
, IndexHi
;
7430 std::tie(IndexLo
, IndexHi
) = DAG
.SplitVector(MSC
->getIndex(), DL
);
7432 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
7433 getMachineMemOperand(MSC
->getPointerInfo(),
7434 MachineMemOperand::MOStore
, LoMemVT
.getStoreSize(),
7435 Alignment
, MSC
->getAAInfo(), MSC
->getRanges());
7437 SDValue OpsLo
[] = { Chain
, DataLo
, MaskLo
, BasePtr
, IndexLo
, Scale
};
7438 SDValue Lo
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
),
7439 DataLo
.getValueType(), DL
, OpsLo
, MMO
);
7441 // The order of the Scatter operation after split is well defined. The "Hi"
7442 // part comes after the "Lo". So these two operations should be chained one
7444 SDValue OpsHi
[] = { Lo
, DataHi
, MaskHi
, BasePtr
, IndexHi
, Scale
};
7445 return DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), DataHi
.getValueType(),
7449 SDValue
DAGCombiner::visitMSTORE(SDNode
*N
) {
7450 if (Level
>= AfterLegalizeTypes
)
7453 MaskedStoreSDNode
*MST
= dyn_cast
<MaskedStoreSDNode
>(N
);
7454 SDValue Mask
= MST
->getMask();
7455 SDValue Data
= MST
->getValue();
7456 EVT VT
= Data
.getValueType();
7459 // If the MSTORE data type requires splitting and the mask is provided by a
7460 // SETCC, then split both nodes and its operands before legalization. This
7461 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7462 // and enables future optimizations (e.g. min/max pattern matching on X86).
7463 if (Mask
.getOpcode() == ISD::SETCC
) {
7464 // Check if any splitting is required.
7465 if (TLI
.getTypeAction(*DAG
.getContext(), VT
) !=
7466 TargetLowering::TypeSplitVector
)
7469 SDValue MaskLo
, MaskHi
, Lo
, Hi
;
7470 std::tie(MaskLo
, MaskHi
) = SplitVSETCC(Mask
.getNode(), DAG
);
7472 SDValue Chain
= MST
->getChain();
7473 SDValue Ptr
= MST
->getBasePtr();
7475 EVT MemoryVT
= MST
->getMemoryVT();
7476 unsigned Alignment
= MST
->getOriginalAlignment();
7478 // if Alignment is equal to the vector size,
7479 // take the half of it for the second part
7480 unsigned SecondHalfAlignment
=
7481 (Alignment
== VT
.getSizeInBits() / 8) ? Alignment
/ 2 : Alignment
;
7483 EVT LoMemVT
, HiMemVT
;
7484 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemoryVT
);
7486 SDValue DataLo
, DataHi
;
7487 std::tie(DataLo
, DataHi
) = DAG
.SplitVector(Data
, DL
);
7489 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
7490 getMachineMemOperand(MST
->getPointerInfo(),
7491 MachineMemOperand::MOStore
, LoMemVT
.getStoreSize(),
7492 Alignment
, MST
->getAAInfo(), MST
->getRanges());
7494 Lo
= DAG
.getMaskedStore(Chain
, DL
, DataLo
, Ptr
, MaskLo
, LoMemVT
, MMO
,
7495 MST
->isTruncatingStore(),
7496 MST
->isCompressingStore());
7498 Ptr
= TLI
.IncrementMemoryAddress(Ptr
, MaskLo
, DL
, LoMemVT
, DAG
,
7499 MST
->isCompressingStore());
7500 unsigned HiOffset
= LoMemVT
.getStoreSize();
7502 MMO
= DAG
.getMachineFunction().getMachineMemOperand(
7503 MST
->getPointerInfo().getWithOffset(HiOffset
),
7504 MachineMemOperand::MOStore
, HiMemVT
.getStoreSize(), SecondHalfAlignment
,
7505 MST
->getAAInfo(), MST
->getRanges());
7507 Hi
= DAG
.getMaskedStore(Chain
, DL
, DataHi
, Ptr
, MaskHi
, HiMemVT
, MMO
,
7508 MST
->isTruncatingStore(),
7509 MST
->isCompressingStore());
7511 AddToWorklist(Lo
.getNode());
7512 AddToWorklist(Hi
.getNode());
7514 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Lo
, Hi
);
7519 SDValue
DAGCombiner::visitMGATHER(SDNode
*N
) {
7520 if (Level
>= AfterLegalizeTypes
)
7523 MaskedGatherSDNode
*MGT
= cast
<MaskedGatherSDNode
>(N
);
7524 SDValue Mask
= MGT
->getMask();
7527 // If the MGATHER result requires splitting and the mask is provided by a
7528 // SETCC, then split both nodes and its operands before legalization. This
7529 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7530 // and enables future optimizations (e.g. min/max pattern matching on X86).
7532 if (Mask
.getOpcode() != ISD::SETCC
)
7535 EVT VT
= N
->getValueType(0);
7537 // Check if any splitting is required.
7538 if (TLI
.getTypeAction(*DAG
.getContext(), VT
) !=
7539 TargetLowering::TypeSplitVector
)
7542 SDValue MaskLo
, MaskHi
, Lo
, Hi
;
7543 std::tie(MaskLo
, MaskHi
) = SplitVSETCC(Mask
.getNode(), DAG
);
7545 SDValue PassThru
= MGT
->getPassThru();
7546 SDValue PassThruLo
, PassThruHi
;
7547 std::tie(PassThruLo
, PassThruHi
) = DAG
.SplitVector(PassThru
, DL
);
7550 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(VT
);
7552 SDValue Chain
= MGT
->getChain();
7553 EVT MemoryVT
= MGT
->getMemoryVT();
7554 unsigned Alignment
= MGT
->getOriginalAlignment();
7556 EVT LoMemVT
, HiMemVT
;
7557 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemoryVT
);
7559 SDValue Scale
= MGT
->getScale();
7560 SDValue BasePtr
= MGT
->getBasePtr();
7561 SDValue Index
= MGT
->getIndex();
7562 SDValue IndexLo
, IndexHi
;
7563 std::tie(IndexLo
, IndexHi
) = DAG
.SplitVector(Index
, DL
);
7565 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
7566 getMachineMemOperand(MGT
->getPointerInfo(),
7567 MachineMemOperand::MOLoad
, LoMemVT
.getStoreSize(),
7568 Alignment
, MGT
->getAAInfo(), MGT
->getRanges());
7570 SDValue OpsLo
[] = { Chain
, PassThruLo
, MaskLo
, BasePtr
, IndexLo
, Scale
};
7571 Lo
= DAG
.getMaskedGather(DAG
.getVTList(LoVT
, MVT::Other
), LoVT
, DL
, OpsLo
,
7574 SDValue OpsHi
[] = { Chain
, PassThruHi
, MaskHi
, BasePtr
, IndexHi
, Scale
};
7575 Hi
= DAG
.getMaskedGather(DAG
.getVTList(HiVT
, MVT::Other
), HiVT
, DL
, OpsHi
,
7578 AddToWorklist(Lo
.getNode());
7579 AddToWorklist(Hi
.getNode());
7581 // Build a factor node to remember that this load is independent of the
7583 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Lo
.getValue(1),
7586 // Legalized the chain result - switch anything that used the old chain to
7588 DAG
.ReplaceAllUsesOfValueWith(SDValue(MGT
, 1), Chain
);
7590 SDValue GatherRes
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Lo
, Hi
);
7592 SDValue RetOps
[] = { GatherRes
, Chain
};
7593 return DAG
.getMergeValues(RetOps
, DL
);
7596 SDValue
DAGCombiner::visitMLOAD(SDNode
*N
) {
7597 if (Level
>= AfterLegalizeTypes
)
7600 MaskedLoadSDNode
*MLD
= dyn_cast
<MaskedLoadSDNode
>(N
);
7601 SDValue Mask
= MLD
->getMask();
7604 // If the MLOAD result requires splitting and the mask is provided by a
7605 // SETCC, then split both nodes and its operands before legalization. This
7606 // prevents the type legalizer from unrolling SETCC into scalar comparisons
7607 // and enables future optimizations (e.g. min/max pattern matching on X86).
7608 if (Mask
.getOpcode() == ISD::SETCC
) {
7609 EVT VT
= N
->getValueType(0);
7611 // Check if any splitting is required.
7612 if (TLI
.getTypeAction(*DAG
.getContext(), VT
) !=
7613 TargetLowering::TypeSplitVector
)
7616 SDValue MaskLo
, MaskHi
, Lo
, Hi
;
7617 std::tie(MaskLo
, MaskHi
) = SplitVSETCC(Mask
.getNode(), DAG
);
7619 SDValue PassThru
= MLD
->getPassThru();
7620 SDValue PassThruLo
, PassThruHi
;
7621 std::tie(PassThruLo
, PassThruHi
) = DAG
.SplitVector(PassThru
, DL
);
7624 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(MLD
->getValueType(0));
7626 SDValue Chain
= MLD
->getChain();
7627 SDValue Ptr
= MLD
->getBasePtr();
7628 EVT MemoryVT
= MLD
->getMemoryVT();
7629 unsigned Alignment
= MLD
->getOriginalAlignment();
7631 // if Alignment is equal to the vector size,
7632 // take the half of it for the second part
7633 unsigned SecondHalfAlignment
=
7634 (Alignment
== MLD
->getValueType(0).getSizeInBits()/8) ?
7635 Alignment
/2 : Alignment
;
7637 EVT LoMemVT
, HiMemVT
;
7638 std::tie(LoMemVT
, HiMemVT
) = DAG
.GetSplitDestVTs(MemoryVT
);
7640 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
7641 getMachineMemOperand(MLD
->getPointerInfo(),
7642 MachineMemOperand::MOLoad
, LoMemVT
.getStoreSize(),
7643 Alignment
, MLD
->getAAInfo(), MLD
->getRanges());
7645 Lo
= DAG
.getMaskedLoad(LoVT
, DL
, Chain
, Ptr
, MaskLo
, PassThruLo
, LoMemVT
,
7646 MMO
, ISD::NON_EXTLOAD
, MLD
->isExpandingLoad());
7648 Ptr
= TLI
.IncrementMemoryAddress(Ptr
, MaskLo
, DL
, LoMemVT
, DAG
,
7649 MLD
->isExpandingLoad());
7650 unsigned HiOffset
= LoMemVT
.getStoreSize();
7652 MMO
= DAG
.getMachineFunction().getMachineMemOperand(
7653 MLD
->getPointerInfo().getWithOffset(HiOffset
),
7654 MachineMemOperand::MOLoad
, HiMemVT
.getStoreSize(), SecondHalfAlignment
,
7655 MLD
->getAAInfo(), MLD
->getRanges());
7657 Hi
= DAG
.getMaskedLoad(HiVT
, DL
, Chain
, Ptr
, MaskHi
, PassThruHi
, HiMemVT
,
7658 MMO
, ISD::NON_EXTLOAD
, MLD
->isExpandingLoad());
7660 AddToWorklist(Lo
.getNode());
7661 AddToWorklist(Hi
.getNode());
7663 // Build a factor node to remember that this load is independent of the
7665 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Lo
.getValue(1),
7668 // Legalized the chain result - switch anything that used the old chain to
7670 DAG
.ReplaceAllUsesOfValueWith(SDValue(MLD
, 1), Chain
);
7672 SDValue LoadRes
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, Lo
, Hi
);
7674 SDValue RetOps
[] = { LoadRes
, Chain
};
7675 return DAG
.getMergeValues(RetOps
, DL
);
7680 /// A vector select of 2 constant vectors can be simplified to math/logic to
7681 /// avoid a variable select instruction and possibly avoid constant loads.
7682 SDValue
DAGCombiner::foldVSelectOfConstants(SDNode
*N
) {
7683 SDValue Cond
= N
->getOperand(0);
7684 SDValue N1
= N
->getOperand(1);
7685 SDValue N2
= N
->getOperand(2);
7686 EVT VT
= N
->getValueType(0);
7687 if (!Cond
.hasOneUse() || Cond
.getScalarValueSizeInBits() != 1 ||
7688 !TLI
.convertSelectOfConstantsToMath(VT
) ||
7689 !ISD::isBuildVectorOfConstantSDNodes(N1
.getNode()) ||
7690 !ISD::isBuildVectorOfConstantSDNodes(N2
.getNode()))
7693 // Check if we can use the condition value to increment/decrement a single
7694 // constant value. This simplifies a select to an add and removes a constant
7695 // load/materialization from the general case.
7696 bool AllAddOne
= true;
7697 bool AllSubOne
= true;
7698 unsigned Elts
= VT
.getVectorNumElements();
7699 for (unsigned i
= 0; i
!= Elts
; ++i
) {
7700 SDValue N1Elt
= N1
.getOperand(i
);
7701 SDValue N2Elt
= N2
.getOperand(i
);
7702 if (N1Elt
.isUndef() || N2Elt
.isUndef())
7705 const APInt
&C1
= cast
<ConstantSDNode
>(N1Elt
)->getAPIntValue();
7706 const APInt
&C2
= cast
<ConstantSDNode
>(N2Elt
)->getAPIntValue();
7713 // Further simplifications for the extra-special cases where the constants are
7714 // all 0 or all -1 should be implemented as folds of these patterns.
7716 if (AllAddOne
|| AllSubOne
) {
7717 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
7718 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
7719 auto ExtendOpcode
= AllAddOne
? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND
;
7720 SDValue ExtendedCond
= DAG
.getNode(ExtendOpcode
, DL
, VT
, Cond
);
7721 return DAG
.getNode(ISD::ADD
, DL
, VT
, ExtendedCond
, N2
);
7724 // The general case for select-of-constants:
7725 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
7726 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
7727 // leave that to a machine-specific pass.
7731 SDValue
DAGCombiner::visitVSELECT(SDNode
*N
) {
7732 SDValue N0
= N
->getOperand(0);
7733 SDValue N1
= N
->getOperand(1);
7734 SDValue N2
= N
->getOperand(2);
7737 // fold (vselect C, X, X) -> X
7741 // Canonicalize integer abs.
7742 // vselect (setg[te] X, 0), X, -X ->
7743 // vselect (setgt X, -1), X, -X ->
7744 // vselect (setl[te] X, 0), -X, X ->
7745 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
7746 if (N0
.getOpcode() == ISD::SETCC
) {
7747 SDValue LHS
= N0
.getOperand(0), RHS
= N0
.getOperand(1);
7748 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
7750 bool RHSIsAllZeros
= ISD::isBuildVectorAllZeros(RHS
.getNode());
7752 if (((RHSIsAllZeros
&& (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
7753 (ISD::isBuildVectorAllOnes(RHS
.getNode()) && CC
== ISD::SETGT
)) &&
7754 N1
== LHS
&& N2
.getOpcode() == ISD::SUB
&& N1
== N2
.getOperand(1))
7755 isAbs
= ISD::isBuildVectorAllZeros(N2
.getOperand(0).getNode());
7756 else if ((RHSIsAllZeros
&& (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) &&
7757 N2
== LHS
&& N1
.getOpcode() == ISD::SUB
&& N2
== N1
.getOperand(1))
7758 isAbs
= ISD::isBuildVectorAllZeros(N1
.getOperand(0).getNode());
7761 EVT VT
= LHS
.getValueType();
7762 if (TLI
.isOperationLegalOrCustom(ISD::ABS
, VT
))
7763 return DAG
.getNode(ISD::ABS
, DL
, VT
, LHS
);
7765 SDValue Shift
= DAG
.getNode(
7766 ISD::SRA
, DL
, VT
, LHS
,
7767 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, DL
, VT
));
7768 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, LHS
, Shift
);
7769 AddToWorklist(Shift
.getNode());
7770 AddToWorklist(Add
.getNode());
7771 return DAG
.getNode(ISD::XOR
, DL
, VT
, Add
, Shift
);
7774 // If this select has a condition (setcc) with narrower operands than the
7775 // select, try to widen the compare to match the select width.
7776 // TODO: This should be extended to handle any constant.
7777 // TODO: This could be extended to handle non-loading patterns, but that
7778 // requires thorough testing to avoid regressions.
7779 if (isNullConstantOrNullSplatConstant(RHS
)) {
7780 EVT NarrowVT
= LHS
.getValueType();
7781 EVT WideVT
= N1
.getValueType().changeVectorElementTypeToInteger();
7782 EVT SetCCVT
= getSetCCResultType(LHS
.getValueType());
7783 unsigned SetCCWidth
= SetCCVT
.getScalarSizeInBits();
7784 unsigned WideWidth
= WideVT
.getScalarSizeInBits();
7785 bool IsSigned
= isSignedIntSetCC(CC
);
7786 auto LoadExtOpcode
= IsSigned
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
7787 if (LHS
.getOpcode() == ISD::LOAD
&& LHS
.hasOneUse() &&
7788 SetCCWidth
!= 1 && SetCCWidth
< WideWidth
&&
7789 TLI
.isLoadExtLegalOrCustom(LoadExtOpcode
, WideVT
, NarrowVT
) &&
7790 TLI
.isOperationLegalOrCustom(ISD::SETCC
, WideVT
)) {
7791 // Both compare operands can be widened for free. The LHS can use an
7792 // extended load, and the RHS is a constant:
7793 // vselect (ext (setcc load(X), C)), N1, N2 -->
7794 // vselect (setcc extload(X), C'), N1, N2
7795 auto ExtOpcode
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
7796 SDValue WideLHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, LHS
);
7797 SDValue WideRHS
= DAG
.getNode(ExtOpcode
, DL
, WideVT
, RHS
);
7798 EVT WideSetCCVT
= getSetCCResultType(WideVT
);
7799 SDValue WideSetCC
= DAG
.getSetCC(DL
, WideSetCCVT
, WideLHS
, WideRHS
, CC
);
7800 return DAG
.getSelect(DL
, N1
.getValueType(), WideSetCC
, N1
, N2
);
7805 if (SimplifySelectOps(N
, N1
, N2
))
7806 return SDValue(N
, 0); // Don't revisit N.
7808 // Fold (vselect (build_vector all_ones), N1, N2) -> N1
7809 if (ISD::isBuildVectorAllOnes(N0
.getNode()))
7811 // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
7812 if (ISD::isBuildVectorAllZeros(N0
.getNode()))
7815 // The ConvertSelectToConcatVector function is assuming both the above
7816 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
7818 if (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
7819 N2
.getOpcode() == ISD::CONCAT_VECTORS
&&
7820 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())) {
7821 if (SDValue CV
= ConvertSelectToConcatVector(N
, DAG
))
7825 if (SDValue V
= foldVSelectOfConstants(N
))
7831 SDValue
DAGCombiner::visitSELECT_CC(SDNode
*N
) {
7832 SDValue N0
= N
->getOperand(0);
7833 SDValue N1
= N
->getOperand(1);
7834 SDValue N2
= N
->getOperand(2);
7835 SDValue N3
= N
->getOperand(3);
7836 SDValue N4
= N
->getOperand(4);
7837 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N4
)->get();
7839 // fold select_cc lhs, rhs, x, x, cc -> x
7843 // Determine if the condition we're dealing with is constant
7844 if (SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()), N0
, N1
,
7845 CC
, SDLoc(N
), false)) {
7846 AddToWorklist(SCC
.getNode());
7848 if (ConstantSDNode
*SCCC
= dyn_cast
<ConstantSDNode
>(SCC
.getNode())) {
7849 if (!SCCC
->isNullValue())
7850 return N2
; // cond always true -> true val
7852 return N3
; // cond always false -> false val
7853 } else if (SCC
->isUndef()) {
7854 // When the condition is UNDEF, just return the first operand. This is
7855 // coherent the DAG creation, no setcc node is created in this case
7857 } else if (SCC
.getOpcode() == ISD::SETCC
) {
7858 // Fold to a simpler select_cc
7859 return DAG
.getNode(ISD::SELECT_CC
, SDLoc(N
), N2
.getValueType(),
7860 SCC
.getOperand(0), SCC
.getOperand(1), N2
, N3
,
7865 // If we can fold this based on the true/false value, do so.
7866 if (SimplifySelectOps(N
, N2
, N3
))
7867 return SDValue(N
, 0); // Don't revisit N.
7869 // fold select_cc into other things, such as min/max/abs
7870 return SimplifySelectCC(SDLoc(N
), N0
, N1
, N2
, N3
, CC
);
7873 SDValue
DAGCombiner::visitSETCC(SDNode
*N
) {
7874 // setcc is very commonly used as an argument to brcond. This pattern
7875 // also lend itself to numerous combines and, as a result, it is desired
7876 // we keep the argument to a brcond as a setcc as much as possible.
7878 N
->hasOneUse() && N
->use_begin()->getOpcode() == ISD::BRCOND
;
7880 SDValue Combined
= SimplifySetCC(
7881 N
->getValueType(0), N
->getOperand(0), N
->getOperand(1),
7882 cast
<CondCodeSDNode
>(N
->getOperand(2))->get(), SDLoc(N
), !PreferSetCC
);
7887 // If we prefer to have a setcc, and we don't, we'll try our best to
7888 // recreate one using rebuildSetCC.
7889 if (PreferSetCC
&& Combined
.getOpcode() != ISD::SETCC
) {
7890 SDValue NewSetCC
= rebuildSetCC(Combined
);
7892 // We don't have anything interesting to combine to.
7893 if (NewSetCC
.getNode() == N
)
7903 SDValue
DAGCombiner::visitSETCCCARRY(SDNode
*N
) {
7904 SDValue LHS
= N
->getOperand(0);
7905 SDValue RHS
= N
->getOperand(1);
7906 SDValue Carry
= N
->getOperand(2);
7907 SDValue Cond
= N
->getOperand(3);
7909 // If Carry is false, fold to a regular SETCC.
7910 if (isNullConstant(Carry
))
7911 return DAG
.getNode(ISD::SETCC
, SDLoc(N
), N
->getVTList(), LHS
, RHS
, Cond
);
7916 /// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
7917 /// a build_vector of constants.
7918 /// This function is called by the DAGCombiner when visiting sext/zext/aext
7919 /// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
7920 /// Vector extends are not folded if operations are legal; this is to
7921 /// avoid introducing illegal build_vector dag nodes.
7922 static SDNode
*tryToFoldExtendOfConstant(SDNode
*N
, const TargetLowering
&TLI
,
7923 SelectionDAG
&DAG
, bool LegalTypes
,
7924 bool LegalOperations
) {
7925 unsigned Opcode
= N
->getOpcode();
7926 SDValue N0
= N
->getOperand(0);
7927 EVT VT
= N
->getValueType(0);
7929 assert((Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::ZERO_EXTEND
||
7930 Opcode
== ISD::ANY_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
||
7931 Opcode
== ISD::ZERO_EXTEND_VECTOR_INREG
)
7932 && "Expected EXTEND dag node in input!");
7934 // fold (sext c1) -> c1
7935 // fold (zext c1) -> c1
7936 // fold (aext c1) -> c1
7937 if (isa
<ConstantSDNode
>(N0
))
7938 return DAG
.getNode(Opcode
, SDLoc(N
), VT
, N0
).getNode();
7940 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
7941 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
7942 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
7943 EVT SVT
= VT
.getScalarType();
7944 if (!(VT
.isVector() &&
7945 (!LegalTypes
|| (!LegalOperations
&& TLI
.isTypeLegal(SVT
))) &&
7946 ISD::isBuildVectorOfConstantSDNodes(N0
.getNode())))
7949 // We can fold this node into a build_vector.
7950 unsigned VTBits
= SVT
.getSizeInBits();
7951 unsigned EVTBits
= N0
->getValueType(0).getScalarSizeInBits();
7952 SmallVector
<SDValue
, 8> Elts
;
7953 unsigned NumElts
= VT
.getVectorNumElements();
7956 for (unsigned i
=0; i
!= NumElts
; ++i
) {
7957 SDValue Op
= N0
->getOperand(i
);
7958 if (Op
->isUndef()) {
7959 Elts
.push_back(DAG
.getUNDEF(SVT
));
7964 // Get the constant value and if needed trunc it to the size of the type.
7965 // Nodes like build_vector might have constants wider than the scalar type.
7966 APInt C
= cast
<ConstantSDNode
>(Op
)->getAPIntValue().zextOrTrunc(EVTBits
);
7967 if (Opcode
== ISD::SIGN_EXTEND
|| Opcode
== ISD::SIGN_EXTEND_VECTOR_INREG
)
7968 Elts
.push_back(DAG
.getConstant(C
.sext(VTBits
), DL
, SVT
));
7970 Elts
.push_back(DAG
.getConstant(C
.zext(VTBits
), DL
, SVT
));
7973 return DAG
.getBuildVector(VT
, DL
, Elts
).getNode();
7976 // ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
7977 // "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
7978 // transformation. Returns true if extension are possible and the above
7979 // mentioned transformation is profitable.
7980 static bool ExtendUsesToFormExtLoad(EVT VT
, SDNode
*N
, SDValue N0
,
7982 SmallVectorImpl
<SDNode
*> &ExtendNodes
,
7983 const TargetLowering
&TLI
) {
7984 bool HasCopyToRegUses
= false;
7985 bool isTruncFree
= TLI
.isTruncateFree(VT
, N0
.getValueType());
7986 for (SDNode::use_iterator UI
= N0
.getNode()->use_begin(),
7987 UE
= N0
.getNode()->use_end();
7992 if (UI
.getUse().getResNo() != N0
.getResNo())
7994 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
7995 if (ExtOpc
!= ISD::ANY_EXTEND
&& User
->getOpcode() == ISD::SETCC
) {
7996 ISD::CondCode CC
= cast
<CondCodeSDNode
>(User
->getOperand(2))->get();
7997 if (ExtOpc
== ISD::ZERO_EXTEND
&& ISD::isSignedIntSetCC(CC
))
7998 // Sign bits will be lost after a zext.
8001 for (unsigned i
= 0; i
!= 2; ++i
) {
8002 SDValue UseOp
= User
->getOperand(i
);
8005 if (!isa
<ConstantSDNode
>(UseOp
))
8010 ExtendNodes
.push_back(User
);
8013 // If truncates aren't free and there are users we can't
8014 // extend, it isn't worthwhile.
8017 // Remember if this value is live-out.
8018 if (User
->getOpcode() == ISD::CopyToReg
)
8019 HasCopyToRegUses
= true;
8022 if (HasCopyToRegUses
) {
8023 bool BothLiveOut
= false;
8024 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
8026 SDUse
&Use
= UI
.getUse();
8027 if (Use
.getResNo() == 0 && Use
.getUser()->getOpcode() == ISD::CopyToReg
) {
8033 // Both unextended and extended values are live out. There had better be
8034 // a good reason for the transformation.
8035 return ExtendNodes
.size();
8040 void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl
<SDNode
*> &SetCCs
,
8041 SDValue OrigLoad
, SDValue ExtLoad
,
8042 ISD::NodeType ExtType
) {
8043 // Extend SetCC uses if necessary.
8045 for (SDNode
*SetCC
: SetCCs
) {
8046 SmallVector
<SDValue
, 4> Ops
;
8048 for (unsigned j
= 0; j
!= 2; ++j
) {
8049 SDValue SOp
= SetCC
->getOperand(j
);
8050 if (SOp
== OrigLoad
)
8051 Ops
.push_back(ExtLoad
);
8053 Ops
.push_back(DAG
.getNode(ExtType
, DL
, ExtLoad
->getValueType(0), SOp
));
8056 Ops
.push_back(SetCC
->getOperand(2));
8057 CombineTo(SetCC
, DAG
.getNode(ISD::SETCC
, DL
, SetCC
->getValueType(0), Ops
));
8061 // FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
8062 SDValue
DAGCombiner::CombineExtLoad(SDNode
*N
) {
8063 SDValue N0
= N
->getOperand(0);
8064 EVT DstVT
= N
->getValueType(0);
8065 EVT SrcVT
= N0
.getValueType();
8067 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
8068 N
->getOpcode() == ISD::ZERO_EXTEND
) &&
8069 "Unexpected node type (not an extend)!");
8071 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
8072 // For example, on a target with legal v4i32, but illegal v8i32, turn:
8073 // (v8i32 (sext (v8i16 (load x))))
8075 // (v8i32 (concat_vectors (v4i32 (sextload x)),
8076 // (v4i32 (sextload (x + 16)))))
8077 // Where uses of the original load, i.e.:
8079 // are replaced with:
8081 // (v8i32 (concat_vectors (v4i32 (sextload x)),
8082 // (v4i32 (sextload (x + 16)))))))
8084 // This combine is only applicable to illegal, but splittable, vectors.
8085 // All legal types, and illegal non-vector types, are handled elsewhere.
8086 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
8088 if (N0
->getOpcode() != ISD::LOAD
)
8091 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
8093 if (!ISD::isNON_EXTLoad(LN0
) || !ISD::isUNINDEXEDLoad(LN0
) ||
8094 !N0
.hasOneUse() || LN0
->isVolatile() || !DstVT
.isVector() ||
8095 !DstVT
.isPow2VectorType() || !TLI
.isVectorLoadExtDesirable(SDValue(N
, 0)))
8098 SmallVector
<SDNode
*, 4> SetCCs
;
8099 if (!ExtendUsesToFormExtLoad(DstVT
, N
, N0
, N
->getOpcode(), SetCCs
, TLI
))
8102 ISD::LoadExtType ExtType
=
8103 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
8105 // Try to split the vector types to get down to legal types.
8106 EVT SplitSrcVT
= SrcVT
;
8107 EVT SplitDstVT
= DstVT
;
8108 while (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
) &&
8109 SplitSrcVT
.getVectorNumElements() > 1) {
8110 SplitDstVT
= DAG
.GetSplitDestVTs(SplitDstVT
).first
;
8111 SplitSrcVT
= DAG
.GetSplitDestVTs(SplitSrcVT
).first
;
8114 if (!TLI
.isLoadExtLegalOrCustom(ExtType
, SplitDstVT
, SplitSrcVT
))
8118 const unsigned NumSplits
=
8119 DstVT
.getVectorNumElements() / SplitDstVT
.getVectorNumElements();
8120 const unsigned Stride
= SplitSrcVT
.getStoreSize();
8121 SmallVector
<SDValue
, 4> Loads
;
8122 SmallVector
<SDValue
, 4> Chains
;
8124 SDValue BasePtr
= LN0
->getBasePtr();
8125 for (unsigned Idx
= 0; Idx
< NumSplits
; Idx
++) {
8126 const unsigned Offset
= Idx
* Stride
;
8127 const unsigned Align
= MinAlign(LN0
->getAlignment(), Offset
);
8129 SDValue SplitLoad
= DAG
.getExtLoad(
8130 ExtType
, SDLoc(LN0
), SplitDstVT
, LN0
->getChain(), BasePtr
,
8131 LN0
->getPointerInfo().getWithOffset(Offset
), SplitSrcVT
, Align
,
8132 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
8134 BasePtr
= DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
,
8135 DAG
.getConstant(Stride
, DL
, BasePtr
.getValueType()));
8137 Loads
.push_back(SplitLoad
.getValue(0));
8138 Chains
.push_back(SplitLoad
.getValue(1));
8141 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
8142 SDValue NewValue
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, DstVT
, Loads
);
8145 AddToWorklist(NewChain
.getNode());
8147 CombineTo(N
, NewValue
);
8149 // Replace uses of the original load (before extension)
8150 // with a truncate of the concatenated sextloaded vectors.
8152 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), NewValue
);
8153 ExtendSetCCUses(SetCCs
, N0
, NewValue
, (ISD::NodeType
)N
->getOpcode());
8154 CombineTo(N0
.getNode(), Trunc
, NewChain
);
8155 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8158 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
8159 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
8160 SDValue
DAGCombiner::CombineZExtLogicopShiftLoad(SDNode
*N
) {
8161 assert(N
->getOpcode() == ISD::ZERO_EXTEND
);
8162 EVT VT
= N
->getValueType(0);
8165 SDValue N0
= N
->getOperand(0);
8166 if (!(N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
8167 N0
.getOpcode() == ISD::XOR
) ||
8168 N0
.getOperand(1).getOpcode() != ISD::Constant
||
8169 (LegalOperations
&& !TLI
.isOperationLegal(N0
.getOpcode(), VT
)))
8173 SDValue N1
= N0
->getOperand(0);
8174 if (!(N1
.getOpcode() == ISD::SHL
|| N1
.getOpcode() == ISD::SRL
) ||
8175 N1
.getOperand(1).getOpcode() != ISD::Constant
||
8176 (LegalOperations
&& !TLI
.isOperationLegal(N1
.getOpcode(), VT
)))
8180 if (!isa
<LoadSDNode
>(N1
.getOperand(0)))
8182 LoadSDNode
*Load
= cast
<LoadSDNode
>(N1
.getOperand(0));
8183 EVT MemVT
= Load
->getMemoryVT();
8184 if (!TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) ||
8185 Load
->getExtensionType() == ISD::SEXTLOAD
|| Load
->isIndexed())
8189 // If the shift op is SHL, the logic op must be AND, otherwise the result
8191 if (N1
.getOpcode() == ISD::SHL
&& N0
.getOpcode() != ISD::AND
)
8194 if (!N0
.hasOneUse() || !N1
.hasOneUse())
8197 SmallVector
<SDNode
*, 4> SetCCs
;
8198 if (!ExtendUsesToFormExtLoad(VT
, N1
.getNode(), N1
.getOperand(0),
8199 ISD::ZERO_EXTEND
, SetCCs
, TLI
))
8202 // Actually do the transformation.
8203 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(Load
), VT
,
8204 Load
->getChain(), Load
->getBasePtr(),
8205 Load
->getMemoryVT(), Load
->getMemOperand());
8208 SDValue Shift
= DAG
.getNode(N1
.getOpcode(), DL1
, VT
, ExtLoad
,
8211 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
8212 Mask
= Mask
.zext(VT
.getSizeInBits());
8214 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL0
, VT
, Shift
,
8215 DAG
.getConstant(Mask
, DL0
, VT
));
8217 ExtendSetCCUses(SetCCs
, N1
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
8219 if (SDValue(Load
, 0).hasOneUse()) {
8220 DAG
.ReplaceAllUsesOfValueWith(SDValue(Load
, 1), ExtLoad
.getValue(1));
8222 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(Load
),
8223 Load
->getValueType(0), ExtLoad
);
8224 CombineTo(Load
, Trunc
, ExtLoad
.getValue(1));
8226 return SDValue(N
,0); // Return N so it doesn't get rechecked!
8229 /// If we're narrowing or widening the result of a vector select and the final
8230 /// size is the same size as a setcc (compare) feeding the select, then try to
8231 /// apply the cast operation to the select's operands because matching vector
8232 /// sizes for a select condition and other operands should be more efficient.
8233 SDValue
DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode
*Cast
) {
8234 unsigned CastOpcode
= Cast
->getOpcode();
8235 assert((CastOpcode
== ISD::SIGN_EXTEND
|| CastOpcode
== ISD::ZERO_EXTEND
||
8236 CastOpcode
== ISD::TRUNCATE
|| CastOpcode
== ISD::FP_EXTEND
||
8237 CastOpcode
== ISD::FP_ROUND
) &&
8238 "Unexpected opcode for vector select narrowing/widening");
8240 // We only do this transform before legal ops because the pattern may be
8241 // obfuscated by target-specific operations after legalization. Do not create
8242 // an illegal select op, however, because that may be difficult to lower.
8243 EVT VT
= Cast
->getValueType(0);
8244 if (LegalOperations
|| !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
))
8247 SDValue VSel
= Cast
->getOperand(0);
8248 if (VSel
.getOpcode() != ISD::VSELECT
|| !VSel
.hasOneUse() ||
8249 VSel
.getOperand(0).getOpcode() != ISD::SETCC
)
8252 // Does the setcc have the same vector size as the casted select?
8253 SDValue SetCC
= VSel
.getOperand(0);
8254 EVT SetCCVT
= getSetCCResultType(SetCC
.getOperand(0).getValueType());
8255 if (SetCCVT
.getSizeInBits() != VT
.getSizeInBits())
8258 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
8259 SDValue A
= VSel
.getOperand(1);
8260 SDValue B
= VSel
.getOperand(2);
8261 SDValue CastA
, CastB
;
8263 if (CastOpcode
== ISD::FP_ROUND
) {
8264 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
8265 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
, Cast
->getOperand(1));
8266 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
, Cast
->getOperand(1));
8268 CastA
= DAG
.getNode(CastOpcode
, DL
, VT
, A
);
8269 CastB
= DAG
.getNode(CastOpcode
, DL
, VT
, B
);
8271 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, SetCC
, CastA
, CastB
);
8274 // fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8275 // fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8276 static SDValue
tryToFoldExtOfExtload(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
8277 const TargetLowering
&TLI
, EVT VT
,
8278 bool LegalOperations
, SDNode
*N
,
8279 SDValue N0
, ISD::LoadExtType ExtLoadType
) {
8280 SDNode
*N0Node
= N0
.getNode();
8281 bool isAExtLoad
= (ExtLoadType
== ISD::SEXTLOAD
) ? ISD::isSEXTLoad(N0Node
)
8282 : ISD::isZEXTLoad(N0Node
);
8283 if ((!isAExtLoad
&& !ISD::isEXTLoad(N0Node
)) ||
8284 !ISD::isUNINDEXEDLoad(N0Node
) || !N0
.hasOneUse())
8287 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
8288 EVT MemVT
= LN0
->getMemoryVT();
8289 if ((LegalOperations
|| LN0
->isVolatile()) &&
8290 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, MemVT
))
8294 DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
8295 LN0
->getBasePtr(), MemVT
, LN0
->getMemOperand());
8296 Combiner
.CombineTo(N
, ExtLoad
);
8297 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
8298 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8301 // fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
8302 // Only generate vector extloads when 1) they're legal, and 2) they are
8303 // deemed desirable by the target.
8304 static SDValue
tryToFoldExtOfLoad(SelectionDAG
&DAG
, DAGCombiner
&Combiner
,
8305 const TargetLowering
&TLI
, EVT VT
,
8306 bool LegalOperations
, SDNode
*N
, SDValue N0
,
8307 ISD::LoadExtType ExtLoadType
,
8308 ISD::NodeType ExtOpc
) {
8309 if (!ISD::isNON_EXTLoad(N0
.getNode()) ||
8310 !ISD::isUNINDEXEDLoad(N0
.getNode()) ||
8311 ((LegalOperations
|| VT
.isVector() ||
8312 cast
<LoadSDNode
>(N0
)->isVolatile()) &&
8313 !TLI
.isLoadExtLegal(ExtLoadType
, VT
, N0
.getValueType())))
8316 bool DoXform
= true;
8317 SmallVector
<SDNode
*, 4> SetCCs
;
8318 if (!N0
.hasOneUse())
8319 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ExtOpc
, SetCCs
, TLI
);
8321 DoXform
&= TLI
.isVectorLoadExtDesirable(SDValue(N
, 0));
8325 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
8326 SDValue ExtLoad
= DAG
.getExtLoad(ExtLoadType
, SDLoc(LN0
), VT
, LN0
->getChain(),
8327 LN0
->getBasePtr(), N0
.getValueType(),
8328 LN0
->getMemOperand());
8329 Combiner
.ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ExtOpc
);
8330 // If the load value is used only by N, replace it via CombineTo N.
8331 bool NoReplaceTrunc
= SDValue(LN0
, 0).hasOneUse();
8332 Combiner
.CombineTo(N
, ExtLoad
);
8333 if (NoReplaceTrunc
) {
8334 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
8337 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), N0
.getValueType(), ExtLoad
);
8338 Combiner
.CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
8340 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8343 static SDValue
foldExtendedSignBitTest(SDNode
*N
, SelectionDAG
&DAG
,
8344 bool LegalOperations
) {
8345 assert((N
->getOpcode() == ISD::SIGN_EXTEND
||
8346 N
->getOpcode() == ISD::ZERO_EXTEND
) && "Expected sext or zext");
8348 SDValue SetCC
= N
->getOperand(0);
8349 if (LegalOperations
|| SetCC
.getOpcode() != ISD::SETCC
||
8350 !SetCC
.hasOneUse() || SetCC
.getValueType() != MVT::i1
)
8353 SDValue X
= SetCC
.getOperand(0);
8354 SDValue Ones
= SetCC
.getOperand(1);
8355 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
8356 EVT VT
= N
->getValueType(0);
8357 EVT XVT
= X
.getValueType();
8358 // setge X, C is canonicalized to setgt, so we do not need to match that
8359 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
8360 // not require the 'not' op.
8361 if (CC
== ISD::SETGT
&& isAllOnesConstant(Ones
) && VT
== XVT
) {
8362 // Invert and smear/shift the sign bit:
8363 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
8364 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
8366 SDValue NotX
= DAG
.getNOT(DL
, X
, VT
);
8367 SDValue ShiftAmount
= DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
);
8368 auto ShiftOpcode
= N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SRA
: ISD::SRL
;
8369 return DAG
.getNode(ShiftOpcode
, DL
, VT
, NotX
, ShiftAmount
);
8374 SDValue
DAGCombiner::visitSIGN_EXTEND(SDNode
*N
) {
8375 SDValue N0
= N
->getOperand(0);
8376 EVT VT
= N
->getValueType(0);
8379 if (SDNode
*Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
,
8381 return SDValue(Res
, 0);
8383 // fold (sext (sext x)) -> (sext x)
8384 // fold (sext (aext x)) -> (sext x)
8385 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
8386 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, N0
.getOperand(0));
8388 if (N0
.getOpcode() == ISD::TRUNCATE
) {
8389 // fold (sext (truncate (load x))) -> (sext (smaller load x))
8390 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
8391 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
8392 SDNode
*oye
= N0
.getOperand(0).getNode();
8393 if (NarrowLoad
.getNode() != N0
.getNode()) {
8394 CombineTo(N0
.getNode(), NarrowLoad
);
8395 // CombineTo deleted the truncate, if needed, but not what's under it.
8398 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8401 // See if the value being truncated is already sign extended. If so, just
8402 // eliminate the trunc/sext pair.
8403 SDValue Op
= N0
.getOperand(0);
8404 unsigned OpBits
= Op
.getScalarValueSizeInBits();
8405 unsigned MidBits
= N0
.getScalarValueSizeInBits();
8406 unsigned DestBits
= VT
.getScalarSizeInBits();
8407 unsigned NumSignBits
= DAG
.ComputeNumSignBits(Op
);
8409 if (OpBits
== DestBits
) {
8410 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
8411 // bits, it is already ready.
8412 if (NumSignBits
> DestBits
-MidBits
)
8414 } else if (OpBits
< DestBits
) {
8415 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
8416 // bits, just sext from i32.
8417 if (NumSignBits
> OpBits
-MidBits
)
8418 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
);
8420 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
8421 // bits, just truncate to i32.
8422 if (NumSignBits
> OpBits
-MidBits
)
8423 return DAG
.getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
8426 // fold (sext (truncate x)) -> (sextinreg x).
8427 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND_INREG
,
8428 N0
.getValueType())) {
8429 if (OpBits
< DestBits
)
8430 Op
= DAG
.getNode(ISD::ANY_EXTEND
, SDLoc(N0
), VT
, Op
);
8431 else if (OpBits
> DestBits
)
8432 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
), VT
, Op
);
8433 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Op
,
8434 DAG
.getValueType(N0
.getValueType()));
8438 // Try to simplify (sext (load x)).
8439 if (SDValue foldedExt
=
8440 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
8441 ISD::SEXTLOAD
, ISD::SIGN_EXTEND
))
8444 // fold (sext (load x)) to multiple smaller sextloads.
8445 // Only on illegal but splittable vectors.
8446 if (SDValue ExtLoad
= CombineExtLoad(N
))
8449 // Try to simplify (sext (sextload x)).
8450 if (SDValue foldedExt
= tryToFoldExtOfExtload(
8451 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::SEXTLOAD
))
8454 // fold (sext (and/or/xor (load x), cst)) ->
8455 // (and/or/xor (sextload x), (sext cst))
8456 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
8457 N0
.getOpcode() == ISD::XOR
) &&
8458 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
8459 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
8460 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
8461 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
8462 EVT MemVT
= LN00
->getMemoryVT();
8463 if (TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, MemVT
) &&
8464 LN00
->getExtensionType() != ISD::ZEXTLOAD
&& LN00
->isUnindexed()) {
8465 SmallVector
<SDNode
*, 4> SetCCs
;
8466 bool DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
8467 ISD::SIGN_EXTEND
, SetCCs
, TLI
);
8469 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(LN00
), VT
,
8470 LN00
->getChain(), LN00
->getBasePtr(),
8471 LN00
->getMemoryVT(),
8472 LN00
->getMemOperand());
8473 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
8474 Mask
= Mask
.sext(VT
.getSizeInBits());
8475 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
8476 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
8477 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::SIGN_EXTEND
);
8478 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
8479 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
8481 // If N0 has multiple uses, change other uses as well.
8482 if (NoReplaceTruncAnd
) {
8484 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
8485 CombineTo(N0
.getNode(), TruncAnd
);
8487 if (NoReplaceTrunc
) {
8488 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
8490 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
8491 LN00
->getValueType(0), ExtLoad
);
8492 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
8494 return SDValue(N
,0); // Return N so it doesn't get rechecked!
8499 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
8502 if (N0
.getOpcode() == ISD::SETCC
) {
8503 SDValue N00
= N0
.getOperand(0);
8504 SDValue N01
= N0
.getOperand(1);
8505 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
8506 EVT N00VT
= N0
.getOperand(0).getValueType();
8508 // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
8509 // Only do this before legalize for now.
8510 if (VT
.isVector() && !LegalOperations
&&
8511 TLI
.getBooleanContents(N00VT
) ==
8512 TargetLowering::ZeroOrNegativeOneBooleanContent
) {
8513 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
8514 // of the same size as the compared operands. Only optimize sext(setcc())
8515 // if this is the case.
8516 EVT SVT
= getSetCCResultType(N00VT
);
8518 // We know that the # elements of the results is the same as the
8519 // # elements of the compare (and the # elements of the compare result
8520 // for that matter). Check to see that they are the same size. If so,
8521 // we know that the element size of the sext'd result matches the
8522 // element size of the compare operands.
8523 if (VT
.getSizeInBits() == SVT
.getSizeInBits())
8524 return DAG
.getSetCC(DL
, VT
, N00
, N01
, CC
);
8526 // If the desired elements are smaller or larger than the source
8527 // elements, we can use a matching integer vector type and then
8528 // truncate/sign extend.
8529 EVT MatchingVecType
= N00VT
.changeVectorElementTypeToInteger();
8530 if (SVT
== MatchingVecType
) {
8531 SDValue VsetCC
= DAG
.getSetCC(DL
, MatchingVecType
, N00
, N01
, CC
);
8532 return DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
);
8536 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
8537 // Here, T can be 1 or -1, depending on the type of the setcc and
8538 // getBooleanContents().
8539 unsigned SetCCWidth
= N0
.getScalarValueSizeInBits();
8541 // To determine the "true" side of the select, we need to know the high bit
8542 // of the value returned by the setcc if it evaluates to true.
8543 // If the type of the setcc is i1, then the true case of the select is just
8544 // sext(i1 1), that is, -1.
8545 // If the type of the setcc is larger (say, i8) then the value of the high
8546 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
8547 // of the appropriate width.
8548 SDValue ExtTrueVal
= (SetCCWidth
== 1)
8549 ? DAG
.getAllOnesConstant(DL
, VT
)
8550 : DAG
.getBoolConstant(true, DL
, VT
, N00VT
);
8551 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
8553 SimplifySelectCC(DL
, N00
, N01
, ExtTrueVal
, Zero
, CC
, true))
8556 if (!VT
.isVector() && !TLI
.convertSelectOfConstantsToMath(VT
)) {
8557 EVT SetCCVT
= getSetCCResultType(N00VT
);
8558 // Don't do this transform for i1 because there's a select transform
8559 // that would reverse it.
8560 // TODO: We should not do this transform at all without a target hook
8561 // because a sext is likely cheaper than a select?
8562 if (SetCCVT
.getScalarSizeInBits() != 1 &&
8563 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SETCC
, N00VT
))) {
8564 SDValue SetCC
= DAG
.getSetCC(DL
, SetCCVT
, N00
, N01
, CC
);
8565 return DAG
.getSelect(DL
, VT
, SetCC
, ExtTrueVal
, Zero
);
8570 // fold (sext x) -> (zext x) if the sign bit is known zero.
8571 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
)) &&
8572 DAG
.SignBitIsZero(N0
))
8573 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
);
8575 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
8581 // isTruncateOf - If N is a truncate of some other value, return true, record
8582 // the value being truncated in Op and which of Op's bits are zero/one in Known.
8583 // This function computes KnownBits to avoid a duplicated call to
8584 // computeKnownBits in the caller.
8585 static bool isTruncateOf(SelectionDAG
&DAG
, SDValue N
, SDValue
&Op
,
8587 if (N
->getOpcode() == ISD::TRUNCATE
) {
8588 Op
= N
->getOperand(0);
8589 DAG
.computeKnownBits(Op
, Known
);
8593 if (N
->getOpcode() != ISD::SETCC
|| N
->getValueType(0) != MVT::i1
||
8594 cast
<CondCodeSDNode
>(N
->getOperand(2))->get() != ISD::SETNE
)
8597 SDValue Op0
= N
->getOperand(0);
8598 SDValue Op1
= N
->getOperand(1);
8599 assert(Op0
.getValueType() == Op1
.getValueType());
8601 if (isNullConstant(Op0
))
8603 else if (isNullConstant(Op1
))
8608 DAG
.computeKnownBits(Op
, Known
);
8610 if (!(Known
.Zero
| 1).isAllOnesValue())
8616 SDValue
DAGCombiner::visitZERO_EXTEND(SDNode
*N
) {
8617 SDValue N0
= N
->getOperand(0);
8618 EVT VT
= N
->getValueType(0);
8620 if (SDNode
*Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
,
8622 return SDValue(Res
, 0);
8624 // fold (zext (zext x)) -> (zext x)
8625 // fold (zext (aext x)) -> (zext x)
8626 if (N0
.getOpcode() == ISD::ZERO_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
)
8627 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), VT
,
8630 // fold (zext (truncate x)) -> (zext x) or
8631 // (zext (truncate x)) -> (truncate x)
8632 // This is valid when the truncated bits of x are already zero.
8633 // FIXME: We should extend this to work for vectors too.
8636 if (!VT
.isVector() && isTruncateOf(DAG
, N0
, Op
, Known
)) {
8637 APInt TruncatedBits
=
8638 (Op
.getValueSizeInBits() == N0
.getValueSizeInBits()) ?
8639 APInt(Op
.getValueSizeInBits(), 0) :
8640 APInt::getBitsSet(Op
.getValueSizeInBits(),
8641 N0
.getValueSizeInBits(),
8642 std::min(Op
.getValueSizeInBits(),
8643 VT
.getSizeInBits()));
8644 if (TruncatedBits
.isSubsetOf(Known
.Zero
))
8645 return DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
8648 // fold (zext (truncate x)) -> (and x, mask)
8649 if (N0
.getOpcode() == ISD::TRUNCATE
) {
8650 // fold (zext (truncate (load x))) -> (zext (smaller load x))
8651 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
8652 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
8653 SDNode
*oye
= N0
.getOperand(0).getNode();
8654 if (NarrowLoad
.getNode() != N0
.getNode()) {
8655 CombineTo(N0
.getNode(), NarrowLoad
);
8656 // CombineTo deleted the truncate, if needed, but not what's under it.
8659 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8662 EVT SrcVT
= N0
.getOperand(0).getValueType();
8663 EVT MinVT
= N0
.getValueType();
8665 // Try to mask before the extension to avoid having to generate a larger mask,
8666 // possibly over several sub-vectors.
8667 if (SrcVT
.bitsLT(VT
) && VT
.isVector()) {
8668 if (!LegalOperations
|| (TLI
.isOperationLegal(ISD::AND
, SrcVT
) &&
8669 TLI
.isOperationLegal(ISD::ZERO_EXTEND
, VT
))) {
8670 SDValue Op
= N0
.getOperand(0);
8671 Op
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
8672 AddToWorklist(Op
.getNode());
8673 SDValue ZExtOrTrunc
= DAG
.getZExtOrTrunc(Op
, SDLoc(N
), VT
);
8674 // Transfer the debug info; the new node is equivalent to N0.
8675 DAG
.transferDbgValues(N0
, ZExtOrTrunc
);
8680 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::AND
, VT
)) {
8681 SDValue Op
= DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
8682 AddToWorklist(Op
.getNode());
8683 SDValue And
= DAG
.getZeroExtendInReg(Op
, SDLoc(N
), MinVT
.getScalarType());
8684 // We may safely transfer the debug info describing the truncate node over
8685 // to the equivalent and operation.
8686 DAG
.transferDbgValues(N0
, And
);
8691 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
8692 // if either of the casts is not free.
8693 if (N0
.getOpcode() == ISD::AND
&&
8694 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
8695 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
8696 (!TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
8697 N0
.getValueType()) ||
8698 !TLI
.isZExtFree(N0
.getValueType(), VT
))) {
8699 SDValue X
= N0
.getOperand(0).getOperand(0);
8700 X
= DAG
.getAnyExtOrTrunc(X
, SDLoc(X
), VT
);
8701 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
8702 Mask
= Mask
.zext(VT
.getSizeInBits());
8704 return DAG
.getNode(ISD::AND
, DL
, VT
,
8705 X
, DAG
.getConstant(Mask
, DL
, VT
));
8708 // Try to simplify (zext (load x)).
8709 if (SDValue foldedExt
=
8710 tryToFoldExtOfLoad(DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
,
8711 ISD::ZEXTLOAD
, ISD::ZERO_EXTEND
))
8714 // fold (zext (load x)) to multiple smaller zextloads.
8715 // Only on illegal but splittable vectors.
8716 if (SDValue ExtLoad
= CombineExtLoad(N
))
8719 // fold (zext (and/or/xor (load x), cst)) ->
8720 // (and/or/xor (zextload x), (zext cst))
8721 // Unless (and (load x) cst) will match as a zextload already and has
8722 // additional users.
8723 if ((N0
.getOpcode() == ISD::AND
|| N0
.getOpcode() == ISD::OR
||
8724 N0
.getOpcode() == ISD::XOR
) &&
8725 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
8726 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
8727 (!LegalOperations
&& TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
8728 LoadSDNode
*LN00
= cast
<LoadSDNode
>(N0
.getOperand(0));
8729 EVT MemVT
= LN00
->getMemoryVT();
8730 if (TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, VT
, MemVT
) &&
8731 LN00
->getExtensionType() != ISD::SEXTLOAD
&& LN00
->isUnindexed()) {
8732 bool DoXform
= true;
8733 SmallVector
<SDNode
*, 4> SetCCs
;
8734 if (!N0
.hasOneUse()) {
8735 if (N0
.getOpcode() == ISD::AND
) {
8736 auto *AndC
= cast
<ConstantSDNode
>(N0
.getOperand(1));
8737 EVT LoadResultTy
= AndC
->getValueType(0);
8739 if (isAndLoadExtLoad(AndC
, LN00
, LoadResultTy
, ExtVT
))
8744 DoXform
= ExtendUsesToFormExtLoad(VT
, N0
.getNode(), N0
.getOperand(0),
8745 ISD::ZERO_EXTEND
, SetCCs
, TLI
);
8747 SDValue ExtLoad
= DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(LN00
), VT
,
8748 LN00
->getChain(), LN00
->getBasePtr(),
8749 LN00
->getMemoryVT(),
8750 LN00
->getMemOperand());
8751 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
8752 Mask
= Mask
.zext(VT
.getSizeInBits());
8754 SDValue And
= DAG
.getNode(N0
.getOpcode(), DL
, VT
,
8755 ExtLoad
, DAG
.getConstant(Mask
, DL
, VT
));
8756 ExtendSetCCUses(SetCCs
, N0
.getOperand(0), ExtLoad
, ISD::ZERO_EXTEND
);
8757 bool NoReplaceTruncAnd
= !N0
.hasOneUse();
8758 bool NoReplaceTrunc
= SDValue(LN00
, 0).hasOneUse();
8760 // If N0 has multiple uses, change other uses as well.
8761 if (NoReplaceTruncAnd
) {
8763 DAG
.getNode(ISD::TRUNCATE
, DL
, N0
.getValueType(), And
);
8764 CombineTo(N0
.getNode(), TruncAnd
);
8766 if (NoReplaceTrunc
) {
8767 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN00
, 1), ExtLoad
.getValue(1));
8769 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(LN00
),
8770 LN00
->getValueType(0), ExtLoad
);
8771 CombineTo(LN00
, Trunc
, ExtLoad
.getValue(1));
8773 return SDValue(N
,0); // Return N so it doesn't get rechecked!
8778 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
8779 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
8780 if (SDValue ZExtLoad
= CombineZExtLogicopShiftLoad(N
))
8783 // Try to simplify (zext (zextload x)).
8784 if (SDValue foldedExt
= tryToFoldExtOfExtload(
8785 DAG
, *this, TLI
, VT
, LegalOperations
, N
, N0
, ISD::ZEXTLOAD
))
8788 if (SDValue V
= foldExtendedSignBitTest(N
, DAG
, LegalOperations
))
8791 if (N0
.getOpcode() == ISD::SETCC
) {
8792 // Only do this before legalize for now.
8793 if (!LegalOperations
&& VT
.isVector() &&
8794 N0
.getValueType().getVectorElementType() == MVT::i1
) {
8795 EVT N00VT
= N0
.getOperand(0).getValueType();
8796 if (getSetCCResultType(N00VT
) == N0
.getValueType())
8799 // We know that the # elements of the results is the same as the #
8800 // elements of the compare (and the # elements of the compare result for
8801 // that matter). Check to see that they are the same size. If so, we know
8802 // that the element size of the sext'd result matches the element size of
8803 // the compare operands.
8805 SDValue VecOnes
= DAG
.getConstant(1, DL
, VT
);
8806 if (VT
.getSizeInBits() == N00VT
.getSizeInBits()) {
8807 // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
8808 SDValue VSetCC
= DAG
.getNode(ISD::SETCC
, DL
, VT
, N0
.getOperand(0),
8809 N0
.getOperand(1), N0
.getOperand(2));
8810 return DAG
.getNode(ISD::AND
, DL
, VT
, VSetCC
, VecOnes
);
8813 // If the desired elements are smaller or larger than the source
8814 // elements we can use a matching integer vector type and then
8815 // truncate/sign extend.
8816 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
8818 DAG
.getNode(ISD::SETCC
, DL
, MatchingVectorType
, N0
.getOperand(0),
8819 N0
.getOperand(1), N0
.getOperand(2));
8820 return DAG
.getNode(ISD::AND
, DL
, VT
, DAG
.getSExtOrTrunc(VsetCC
, DL
, VT
),
8824 // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
8826 if (SDValue SCC
= SimplifySelectCC(
8827 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
8828 DAG
.getConstant(0, DL
, VT
),
8829 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
8833 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
8834 if ((N0
.getOpcode() == ISD::SHL
|| N0
.getOpcode() == ISD::SRL
) &&
8835 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
8836 N0
.getOperand(0).getOpcode() == ISD::ZERO_EXTEND
&&
8838 SDValue ShAmt
= N0
.getOperand(1);
8839 unsigned ShAmtVal
= cast
<ConstantSDNode
>(ShAmt
)->getZExtValue();
8840 if (N0
.getOpcode() == ISD::SHL
) {
8841 SDValue InnerZExt
= N0
.getOperand(0);
8842 // If the original shl may be shifting out bits, do not perform this
8844 unsigned KnownZeroBits
= InnerZExt
.getValueSizeInBits() -
8845 InnerZExt
.getOperand(0).getValueSizeInBits();
8846 if (ShAmtVal
> KnownZeroBits
)
8852 // Ensure that the shift amount is wide enough for the shifted value.
8853 if (VT
.getSizeInBits() >= 256)
8854 ShAmt
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, ShAmt
);
8856 return DAG
.getNode(N0
.getOpcode(), DL
, VT
,
8857 DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, N0
.getOperand(0)),
8861 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
8867 SDValue
DAGCombiner::visitANY_EXTEND(SDNode
*N
) {
8868 SDValue N0
= N
->getOperand(0);
8869 EVT VT
= N
->getValueType(0);
8871 if (SDNode
*Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
,
8873 return SDValue(Res
, 0);
8875 // fold (aext (aext x)) -> (aext x)
8876 // fold (aext (zext x)) -> (zext x)
8877 // fold (aext (sext x)) -> (sext x)
8878 if (N0
.getOpcode() == ISD::ANY_EXTEND
||
8879 N0
.getOpcode() == ISD::ZERO_EXTEND
||
8880 N0
.getOpcode() == ISD::SIGN_EXTEND
)
8881 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
8883 // fold (aext (truncate (load x))) -> (aext (smaller load x))
8884 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
8885 if (N0
.getOpcode() == ISD::TRUNCATE
) {
8886 if (SDValue NarrowLoad
= ReduceLoadWidth(N0
.getNode())) {
8887 SDNode
*oye
= N0
.getOperand(0).getNode();
8888 if (NarrowLoad
.getNode() != N0
.getNode()) {
8889 CombineTo(N0
.getNode(), NarrowLoad
);
8890 // CombineTo deleted the truncate, if needed, but not what's under it.
8893 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8897 // fold (aext (truncate x))
8898 if (N0
.getOpcode() == ISD::TRUNCATE
)
8899 return DAG
.getAnyExtOrTrunc(N0
.getOperand(0), SDLoc(N
), VT
);
8901 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
8902 // if the trunc is not free.
8903 if (N0
.getOpcode() == ISD::AND
&&
8904 N0
.getOperand(0).getOpcode() == ISD::TRUNCATE
&&
8905 N0
.getOperand(1).getOpcode() == ISD::Constant
&&
8906 !TLI
.isTruncateFree(N0
.getOperand(0).getOperand(0).getValueType(),
8907 N0
.getValueType())) {
8909 SDValue X
= N0
.getOperand(0).getOperand(0);
8910 X
= DAG
.getAnyExtOrTrunc(X
, DL
, VT
);
8911 APInt Mask
= cast
<ConstantSDNode
>(N0
.getOperand(1))->getAPIntValue();
8912 Mask
= Mask
.zext(VT
.getSizeInBits());
8913 return DAG
.getNode(ISD::AND
, DL
, VT
,
8914 X
, DAG
.getConstant(Mask
, DL
, VT
));
8917 // fold (aext (load x)) -> (aext (truncate (extload x)))
8918 // None of the supported targets knows how to perform load and any_ext
8919 // on vectors in one instruction. We only perform this transformation on
8921 if (ISD::isNON_EXTLoad(N0
.getNode()) && !VT
.isVector() &&
8922 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
8923 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
8924 bool DoXform
= true;
8925 SmallVector
<SDNode
*, 4> SetCCs
;
8926 if (!N0
.hasOneUse())
8927 DoXform
= ExtendUsesToFormExtLoad(VT
, N
, N0
, ISD::ANY_EXTEND
, SetCCs
,
8930 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
8931 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
8933 LN0
->getBasePtr(), N0
.getValueType(),
8934 LN0
->getMemOperand());
8935 ExtendSetCCUses(SetCCs
, N0
, ExtLoad
, ISD::ANY_EXTEND
);
8936 // If the load value is used only by N, replace it via CombineTo N.
8937 bool NoReplaceTrunc
= N0
.hasOneUse();
8938 CombineTo(N
, ExtLoad
);
8939 if (NoReplaceTrunc
) {
8940 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
8942 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N0
),
8943 N0
.getValueType(), ExtLoad
);
8944 CombineTo(LN0
, Trunc
, ExtLoad
.getValue(1));
8946 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8950 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
8951 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
8952 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
8953 if (N0
.getOpcode() == ISD::LOAD
&& !ISD::isNON_EXTLoad(N0
.getNode()) &&
8954 ISD::isUNINDEXEDLoad(N0
.getNode()) && N0
.hasOneUse()) {
8955 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
8956 ISD::LoadExtType ExtType
= LN0
->getExtensionType();
8957 EVT MemVT
= LN0
->getMemoryVT();
8958 if (!LegalOperations
|| TLI
.isLoadExtLegal(ExtType
, VT
, MemVT
)) {
8959 SDValue ExtLoad
= DAG
.getExtLoad(ExtType
, SDLoc(N
),
8960 VT
, LN0
->getChain(), LN0
->getBasePtr(),
8961 MemVT
, LN0
->getMemOperand());
8962 CombineTo(N
, ExtLoad
);
8963 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), ExtLoad
.getValue(1));
8964 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
8968 if (N0
.getOpcode() == ISD::SETCC
) {
8970 // aext(setcc) -> vsetcc
8971 // aext(setcc) -> truncate(vsetcc)
8972 // aext(setcc) -> aext(vsetcc)
8973 // Only do this before legalize for now.
8974 if (VT
.isVector() && !LegalOperations
) {
8975 EVT N00VT
= N0
.getOperand(0).getValueType();
8976 if (getSetCCResultType(N00VT
) == N0
.getValueType())
8979 // We know that the # elements of the results is the same as the
8980 // # elements of the compare (and the # elements of the compare result
8981 // for that matter). Check to see that they are the same size. If so,
8982 // we know that the element size of the sext'd result matches the
8983 // element size of the compare operands.
8984 if (VT
.getSizeInBits() == N00VT
.getSizeInBits())
8985 return DAG
.getSetCC(SDLoc(N
), VT
, N0
.getOperand(0),
8987 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
8988 // If the desired elements are smaller or larger than the source
8989 // elements we can use a matching integer vector type and then
8990 // truncate/any extend
8992 EVT MatchingVectorType
= N00VT
.changeVectorElementTypeToInteger();
8994 DAG
.getSetCC(SDLoc(N
), MatchingVectorType
, N0
.getOperand(0),
8996 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
8997 return DAG
.getAnyExtOrTrunc(VsetCC
, SDLoc(N
), VT
);
9001 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
9003 if (SDValue SCC
= SimplifySelectCC(
9004 DL
, N0
.getOperand(0), N0
.getOperand(1), DAG
.getConstant(1, DL
, VT
),
9005 DAG
.getConstant(0, DL
, VT
),
9006 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get(), true))
9013 SDValue
DAGCombiner::visitAssertExt(SDNode
*N
) {
9014 unsigned Opcode
= N
->getOpcode();
9015 SDValue N0
= N
->getOperand(0);
9016 SDValue N1
= N
->getOperand(1);
9017 EVT AssertVT
= cast
<VTSDNode
>(N1
)->getVT();
9019 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
9020 if (N0
.getOpcode() == Opcode
&&
9021 AssertVT
== cast
<VTSDNode
>(N0
.getOperand(1))->getVT())
9024 if (N0
.getOpcode() == ISD::TRUNCATE
&& N0
.hasOneUse() &&
9025 N0
.getOperand(0).getOpcode() == Opcode
) {
9026 // We have an assert, truncate, assert sandwich. Make one stronger assert
9027 // by asserting on the smallest asserted type to the larger source type.
9028 // This eliminates the later assert:
9029 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
9030 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
9031 SDValue BigA
= N0
.getOperand(0);
9032 EVT BigA_AssertVT
= cast
<VTSDNode
>(BigA
.getOperand(1))->getVT();
9033 assert(BigA_AssertVT
.bitsLE(N0
.getValueType()) &&
9034 "Asserting zero/sign-extended bits to a type larger than the "
9035 "truncated destination does not provide information");
9038 EVT MinAssertVT
= AssertVT
.bitsLT(BigA_AssertVT
) ? AssertVT
: BigA_AssertVT
;
9039 SDValue MinAssertVTVal
= DAG
.getValueType(MinAssertVT
);
9040 SDValue NewAssert
= DAG
.getNode(Opcode
, DL
, BigA
.getValueType(),
9041 BigA
.getOperand(0), MinAssertVTVal
);
9042 return DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), NewAssert
);
9048 /// If the result of a wider load is shifted to right of N bits and then
9049 /// truncated to a narrower type and where N is a multiple of number of bits of
9050 /// the narrower type, transform it to a narrower load from address + N / num of
9051 /// bits of new type. Also narrow the load if the result is masked with an AND
9052 /// to effectively produce a smaller type. If the result is to be extended, also
9053 /// fold the extension to form a extending load.
9054 SDValue
DAGCombiner::ReduceLoadWidth(SDNode
*N
) {
9055 unsigned Opc
= N
->getOpcode();
9057 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
9058 SDValue N0
= N
->getOperand(0);
9059 EVT VT
= N
->getValueType(0);
9062 // This transformation isn't valid for vector loads.
9066 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
9068 if (Opc
== ISD::SIGN_EXTEND_INREG
) {
9069 ExtType
= ISD::SEXTLOAD
;
9070 ExtVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
9071 } else if (Opc
== ISD::SRL
) {
9072 // Another special-case: SRL is basically zero-extending a narrower value,
9073 // or it maybe shifting a higher subword, half or byte into the lowest
9075 ExtType
= ISD::ZEXTLOAD
;
9078 auto *LN0
= dyn_cast
<LoadSDNode
>(N0
.getOperand(0));
9079 auto *N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
9083 uint64_t ShiftAmt
= N01
->getZExtValue();
9084 uint64_t MemoryWidth
= LN0
->getMemoryVT().getSizeInBits();
9085 if (LN0
->getExtensionType() != ISD::SEXTLOAD
&& MemoryWidth
> ShiftAmt
)
9086 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), MemoryWidth
- ShiftAmt
);
9088 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(),
9089 VT
.getSizeInBits() - ShiftAmt
);
9090 } else if (Opc
== ISD::AND
) {
9091 // An AND with a constant mask is the same as a truncate + zero-extend.
9092 auto AndC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
9093 if (!AndC
|| !AndC
->getAPIntValue().isMask())
9096 unsigned ActiveBits
= AndC
->getAPIntValue().countTrailingOnes();
9097 ExtType
= ISD::ZEXTLOAD
;
9098 ExtVT
= EVT::getIntegerVT(*DAG
.getContext(), ActiveBits
);
9102 if (N0
.getOpcode() == ISD::SRL
&& N0
.hasOneUse()) {
9104 if (auto *ConstShift
= dyn_cast
<ConstantSDNode
>(SRL
.getOperand(1))) {
9105 ShAmt
= ConstShift
->getZExtValue();
9106 unsigned EVTBits
= ExtVT
.getSizeInBits();
9107 // Is the shift amount a multiple of size of VT?
9108 if ((ShAmt
& (EVTBits
-1)) == 0) {
9109 N0
= N0
.getOperand(0);
9110 // Is the load width a multiple of size of VT?
9111 if ((N0
.getValueSizeInBits() & (EVTBits
-1)) != 0)
9115 // At this point, we must have a load or else we can't do the transform.
9116 if (!isa
<LoadSDNode
>(N0
)) return SDValue();
9118 auto *LN0
= cast
<LoadSDNode
>(N0
);
9120 // Because a SRL must be assumed to *need* to zero-extend the high bits
9121 // (as opposed to anyext the high bits), we can't combine the zextload
9122 // lowering of SRL and an sextload.
9123 if (LN0
->getExtensionType() == ISD::SEXTLOAD
)
9126 // If the shift amount is larger than the input type then we're not
9127 // accessing any of the loaded bytes. If the load was a zextload/extload
9128 // then the result of the shift+trunc is zero/undef (handled elsewhere).
9129 if (ShAmt
>= LN0
->getMemoryVT().getSizeInBits())
9132 // If the SRL is only used by a masking AND, we may be able to adjust
9133 // the ExtVT to make the AND redundant.
9134 SDNode
*Mask
= *(SRL
->use_begin());
9135 if (Mask
->getOpcode() == ISD::AND
&&
9136 isa
<ConstantSDNode
>(Mask
->getOperand(1))) {
9137 const APInt
&ShiftMask
=
9138 cast
<ConstantSDNode
>(Mask
->getOperand(1))->getAPIntValue();
9139 if (ShiftMask
.isMask()) {
9140 EVT MaskedVT
= EVT::getIntegerVT(*DAG
.getContext(),
9141 ShiftMask
.countTrailingOnes());
9142 // If the mask is smaller, recompute the type.
9143 if ((ExtVT
.getSizeInBits() > MaskedVT
.getSizeInBits()) &&
9144 TLI
.isLoadExtLegal(ExtType
, N0
.getValueType(), MaskedVT
))
9151 // If the load is shifted left (and the result isn't shifted back right),
9152 // we can fold the truncate through the shift.
9153 unsigned ShLeftAmt
= 0;
9154 if (ShAmt
== 0 && N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
9155 ExtVT
== VT
&& TLI
.isNarrowingProfitable(N0
.getValueType(), VT
)) {
9156 if (ConstantSDNode
*N01
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
9157 ShLeftAmt
= N01
->getZExtValue();
9158 N0
= N0
.getOperand(0);
9162 // If we haven't found a load, we can't narrow it.
9163 if (!isa
<LoadSDNode
>(N0
))
9166 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9167 if (!isLegalNarrowLdSt(LN0
, ExtType
, ExtVT
, ShAmt
))
9170 // For big endian targets, we need to adjust the offset to the pointer to
9171 // load the correct bytes.
9172 if (DAG
.getDataLayout().isBigEndian()) {
9173 unsigned LVTStoreBits
= LN0
->getMemoryVT().getStoreSizeInBits();
9174 unsigned EVTStoreBits
= ExtVT
.getStoreSizeInBits();
9175 ShAmt
= LVTStoreBits
- EVTStoreBits
- ShAmt
;
9178 EVT PtrType
= N0
.getOperand(1).getValueType();
9179 uint64_t PtrOff
= ShAmt
/ 8;
9180 unsigned NewAlign
= MinAlign(LN0
->getAlignment(), PtrOff
);
9182 // The original load itself didn't wrap, so an offset within it doesn't.
9184 Flags
.setNoUnsignedWrap(true);
9185 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
,
9186 PtrType
, LN0
->getBasePtr(),
9187 DAG
.getConstant(PtrOff
, DL
, PtrType
),
9189 AddToWorklist(NewPtr
.getNode());
9192 if (ExtType
== ISD::NON_EXTLOAD
)
9193 Load
= DAG
.getLoad(VT
, SDLoc(N0
), LN0
->getChain(), NewPtr
,
9194 LN0
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
9195 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
9197 Load
= DAG
.getExtLoad(ExtType
, SDLoc(N0
), VT
, LN0
->getChain(), NewPtr
,
9198 LN0
->getPointerInfo().getWithOffset(PtrOff
), ExtVT
,
9199 NewAlign
, LN0
->getMemOperand()->getFlags(),
9202 // Replace the old load's chain with the new load's chain.
9203 WorklistRemover
DeadNodes(*this);
9204 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
9206 // Shift the result left, if we've swallowed a left shift.
9207 SDValue Result
= Load
;
9208 if (ShLeftAmt
!= 0) {
9209 EVT ShImmTy
= getShiftAmountTy(Result
.getValueType());
9210 if (!isUIntN(ShImmTy
.getSizeInBits(), ShLeftAmt
))
9212 // If the shift amount is as large as the result size (but, presumably,
9213 // no larger than the source) then the useful bits of the result are
9214 // zero; we can't simply return the shortened shift, because the result
9215 // of that operation is undefined.
9217 if (ShLeftAmt
>= VT
.getSizeInBits())
9218 Result
= DAG
.getConstant(0, DL
, VT
);
9220 Result
= DAG
.getNode(ISD::SHL
, DL
, VT
,
9221 Result
, DAG
.getConstant(ShLeftAmt
, DL
, ShImmTy
));
9224 // Return the new loaded value.
9228 SDValue
DAGCombiner::visitSIGN_EXTEND_INREG(SDNode
*N
) {
9229 SDValue N0
= N
->getOperand(0);
9230 SDValue N1
= N
->getOperand(1);
9231 EVT VT
= N
->getValueType(0);
9232 EVT EVT
= cast
<VTSDNode
>(N1
)->getVT();
9233 unsigned VTBits
= VT
.getScalarSizeInBits();
9234 unsigned EVTBits
= EVT
.getScalarSizeInBits();
9237 return DAG
.getUNDEF(VT
);
9239 // fold (sext_in_reg c1) -> c1
9240 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
))
9241 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
, N0
, N1
);
9243 // If the input is already sign extended, just drop the extension.
9244 if (DAG
.ComputeNumSignBits(N0
) >= VTBits
-EVTBits
+1)
9247 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
9248 if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
9249 EVT
.bitsLT(cast
<VTSDNode
>(N0
.getOperand(1))->getVT()))
9250 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
9251 N0
.getOperand(0), N1
);
9253 // fold (sext_in_reg (sext x)) -> (sext x)
9254 // fold (sext_in_reg (aext x)) -> (sext x)
9255 // if x is small enough.
9256 if (N0
.getOpcode() == ISD::SIGN_EXTEND
|| N0
.getOpcode() == ISD::ANY_EXTEND
) {
9257 SDValue N00
= N0
.getOperand(0);
9258 if (N00
.getScalarValueSizeInBits() <= EVTBits
&&
9259 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
9260 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
9263 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
9264 if ((N0
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
||
9265 N0
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
||
9266 N0
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) &&
9267 N0
.getOperand(0).getScalarValueSizeInBits() == EVTBits
) {
9268 if (!LegalOperations
||
9269 TLI
.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG
, VT
))
9270 return DAG
.getSignExtendVectorInReg(N0
.getOperand(0), SDLoc(N
), VT
);
9273 // fold (sext_in_reg (zext x)) -> (sext x)
9274 // iff we are extending the source sign bit.
9275 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
9276 SDValue N00
= N0
.getOperand(0);
9277 if (N00
.getScalarValueSizeInBits() == EVTBits
&&
9278 (!LegalOperations
|| TLI
.isOperationLegal(ISD::SIGN_EXTEND
, VT
)))
9279 return DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, N00
, N1
);
9282 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
9283 if (DAG
.MaskedValueIsZero(N0
, APInt::getOneBitSet(VTBits
, EVTBits
- 1)))
9284 return DAG
.getZeroExtendInReg(N0
, SDLoc(N
), EVT
.getScalarType());
9286 // fold operands of sext_in_reg based on knowledge that the top bits are not
9288 if (SimplifyDemandedBits(SDValue(N
, 0)))
9289 return SDValue(N
, 0);
9291 // fold (sext_in_reg (load x)) -> (smaller sextload x)
9292 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
9293 if (SDValue NarrowLoad
= ReduceLoadWidth(N
))
9296 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
9297 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
9298 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
9299 if (N0
.getOpcode() == ISD::SRL
) {
9300 if (ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1)))
9301 if (ShAmt
->getZExtValue()+EVTBits
<= VTBits
) {
9302 // We can turn this into an SRA iff the input to the SRL is already sign
9304 unsigned InSignBits
= DAG
.ComputeNumSignBits(N0
.getOperand(0));
9305 if (VTBits
-(ShAmt
->getZExtValue()+EVTBits
) < InSignBits
)
9306 return DAG
.getNode(ISD::SRA
, SDLoc(N
), VT
,
9307 N0
.getOperand(0), N0
.getOperand(1));
9311 // fold (sext_inreg (extload x)) -> (sextload x)
9312 // If sextload is not supported by target, we can only do the combine when
9313 // load has one use. Doing otherwise can block folding the extload with other
9314 // extends that the target does support.
9315 if (ISD::isEXTLoad(N0
.getNode()) &&
9316 ISD::isUNINDEXEDLoad(N0
.getNode()) &&
9317 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
9318 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile() &&
9320 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
9321 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9322 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
9324 LN0
->getBasePtr(), EVT
,
9325 LN0
->getMemOperand());
9326 CombineTo(N
, ExtLoad
);
9327 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
9328 AddToWorklist(ExtLoad
.getNode());
9329 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9331 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
9332 if (ISD::isZEXTLoad(N0
.getNode()) && ISD::isUNINDEXEDLoad(N0
.getNode()) &&
9334 EVT
== cast
<LoadSDNode
>(N0
)->getMemoryVT() &&
9335 ((!LegalOperations
&& !cast
<LoadSDNode
>(N0
)->isVolatile()) ||
9336 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, VT
, EVT
))) {
9337 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9338 SDValue ExtLoad
= DAG
.getExtLoad(ISD::SEXTLOAD
, SDLoc(N
), VT
,
9340 LN0
->getBasePtr(), EVT
,
9341 LN0
->getMemOperand());
9342 CombineTo(N
, ExtLoad
);
9343 CombineTo(N0
.getNode(), ExtLoad
, ExtLoad
.getValue(1));
9344 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
9347 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
9348 if (EVTBits
<= 16 && N0
.getOpcode() == ISD::OR
) {
9349 if (SDValue BSwap
= MatchBSwapHWordLow(N0
.getNode(), N0
.getOperand(0),
9350 N0
.getOperand(1), false))
9351 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, SDLoc(N
), VT
,
9358 SDValue
DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode
*N
) {
9359 SDValue N0
= N
->getOperand(0);
9360 EVT VT
= N
->getValueType(0);
9363 return DAG
.getUNDEF(VT
);
9365 if (SDNode
*Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
,
9367 return SDValue(Res
, 0);
9372 SDValue
DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode
*N
) {
9373 SDValue N0
= N
->getOperand(0);
9374 EVT VT
= N
->getValueType(0);
9377 return DAG
.getUNDEF(VT
);
9379 if (SDNode
*Res
= tryToFoldExtendOfConstant(N
, TLI
, DAG
, LegalTypes
,
9381 return SDValue(Res
, 0);
9386 SDValue
DAGCombiner::visitTRUNCATE(SDNode
*N
) {
9387 SDValue N0
= N
->getOperand(0);
9388 EVT VT
= N
->getValueType(0);
9389 bool isLE
= DAG
.getDataLayout().isLittleEndian();
9392 if (N0
.getValueType() == N
->getValueType(0))
9395 // fold (truncate (truncate x)) -> (truncate x)
9396 if (N0
.getOpcode() == ISD::TRUNCATE
)
9397 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
9399 // fold (truncate c1) -> c1
9400 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
)) {
9401 SDValue C
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
);
9402 if (C
.getNode() != N
)
9406 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
9407 if (N0
.getOpcode() == ISD::ZERO_EXTEND
||
9408 N0
.getOpcode() == ISD::SIGN_EXTEND
||
9409 N0
.getOpcode() == ISD::ANY_EXTEND
) {
9410 // if the source is smaller than the dest, we still need an extend.
9411 if (N0
.getOperand(0).getValueType().bitsLT(VT
))
9412 return DAG
.getNode(N0
.getOpcode(), SDLoc(N
), VT
, N0
.getOperand(0));
9413 // if the source is larger than the dest, than we just need the truncate.
9414 if (N0
.getOperand(0).getValueType().bitsGT(VT
))
9415 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, N0
.getOperand(0));
9416 // if the source and dest are the same type, we can drop both the extend
9417 // and the truncate.
9418 return N0
.getOperand(0);
9421 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
9422 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ANY_EXTEND
))
9425 // Fold extract-and-trunc into a narrow extract. For example:
9426 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
9427 // i32 y = TRUNCATE(i64 x)
9429 // v16i8 b = BITCAST (v2i64 val)
9430 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
9432 // Note: We only run this optimization after type legalization (which often
9433 // creates this pattern) and before operation legalization after which
9434 // we need to be more careful about the vector instructions that we generate.
9435 if (N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
9436 LegalTypes
&& !LegalOperations
&& N0
->hasOneUse() && VT
!= MVT::i1
) {
9437 EVT VecTy
= N0
.getOperand(0).getValueType();
9438 EVT ExTy
= N0
.getValueType();
9439 EVT TrTy
= N
->getValueType(0);
9441 unsigned NumElem
= VecTy
.getVectorNumElements();
9442 unsigned SizeRatio
= ExTy
.getSizeInBits()/TrTy
.getSizeInBits();
9444 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), TrTy
, SizeRatio
* NumElem
);
9445 assert(NVT
.getSizeInBits() == VecTy
.getSizeInBits() && "Invalid Size");
9447 SDValue EltNo
= N0
->getOperand(1);
9448 if (isa
<ConstantSDNode
>(EltNo
) && isTypeLegal(NVT
)) {
9449 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
9450 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
9451 int Index
= isLE
? (Elt
*SizeRatio
) : (Elt
*SizeRatio
+ (SizeRatio
-1));
9454 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, TrTy
,
9455 DAG
.getBitcast(NVT
, N0
.getOperand(0)),
9456 DAG
.getConstant(Index
, DL
, IndexTy
));
9460 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
9461 if (N0
.getOpcode() == ISD::SELECT
&& N0
.hasOneUse()) {
9462 EVT SrcVT
= N0
.getValueType();
9463 if ((!LegalOperations
|| TLI
.isOperationLegal(ISD::SELECT
, SrcVT
)) &&
9464 TLI
.isTruncateFree(SrcVT
, VT
)) {
9466 SDValue Cond
= N0
.getOperand(0);
9467 SDValue TruncOp0
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
9468 SDValue TruncOp1
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(2));
9469 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
, Cond
, TruncOp0
, TruncOp1
);
9473 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
9474 if (N0
.getOpcode() == ISD::SHL
&& N0
.hasOneUse() &&
9475 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
)) &&
9476 TLI
.isTypeDesirableForOp(ISD::SHL
, VT
)) {
9477 SDValue Amt
= N0
.getOperand(1);
9479 DAG
.computeKnownBits(Amt
, Known
);
9480 unsigned Size
= VT
.getScalarSizeInBits();
9481 if (Known
.getBitWidth() - Known
.countMinLeadingZeros() <= Log2_32(Size
)) {
9483 EVT AmtVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
9485 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
9486 if (AmtVT
!= Amt
.getValueType()) {
9487 Amt
= DAG
.getZExtOrTrunc(Amt
, SL
, AmtVT
);
9488 AddToWorklist(Amt
.getNode());
9490 return DAG
.getNode(ISD::SHL
, SL
, VT
, Trunc
, Amt
);
9494 // Fold a series of buildvector, bitcast, and truncate if possible.
9496 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
9497 // (2xi32 (buildvector x, y)).
9498 if (Level
== AfterLegalizeVectorOps
&& VT
.isVector() &&
9499 N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
9500 N0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
9501 N0
.getOperand(0).hasOneUse()) {
9502 SDValue BuildVect
= N0
.getOperand(0);
9503 EVT BuildVectEltTy
= BuildVect
.getValueType().getVectorElementType();
9504 EVT TruncVecEltTy
= VT
.getVectorElementType();
9506 // Check that the element types match.
9507 if (BuildVectEltTy
== TruncVecEltTy
) {
9508 // Now we only need to compute the offset of the truncated elements.
9509 unsigned BuildVecNumElts
= BuildVect
.getNumOperands();
9510 unsigned TruncVecNumElts
= VT
.getVectorNumElements();
9511 unsigned TruncEltOffset
= BuildVecNumElts
/ TruncVecNumElts
;
9513 assert((BuildVecNumElts
% TruncVecNumElts
) == 0 &&
9514 "Invalid number of elements");
9516 SmallVector
<SDValue
, 8> Opnds
;
9517 for (unsigned i
= 0, e
= BuildVecNumElts
; i
!= e
; i
+= TruncEltOffset
)
9518 Opnds
.push_back(BuildVect
.getOperand(i
));
9520 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
9524 // See if we can simplify the input to this truncate through knowledge that
9525 // only the low bits are being used.
9526 // For example "trunc (or (shl x, 8), y)" // -> trunc y
9527 // Currently we only perform this optimization on scalars because vectors
9528 // may have different active low bits.
9529 if (!VT
.isVector()) {
9531 APInt::getLowBitsSet(N0
.getValueSizeInBits(), VT
.getSizeInBits());
9532 if (SDValue Shorter
= DAG
.GetDemandedBits(N0
, Mask
))
9533 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Shorter
);
9536 // fold (truncate (load x)) -> (smaller load x)
9537 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
9538 if (!LegalTypes
|| TLI
.isTypeDesirableForOp(N0
.getOpcode(), VT
)) {
9539 if (SDValue Reduced
= ReduceLoadWidth(N
))
9542 // Handle the case where the load remains an extending load even
9543 // after truncation.
9544 if (N0
.hasOneUse() && ISD::isUNINDEXEDLoad(N0
.getNode())) {
9545 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9546 if (!LN0
->isVolatile() &&
9547 LN0
->getMemoryVT().getStoreSizeInBits() < VT
.getSizeInBits()) {
9548 SDValue NewLoad
= DAG
.getExtLoad(LN0
->getExtensionType(), SDLoc(LN0
),
9549 VT
, LN0
->getChain(), LN0
->getBasePtr(),
9551 LN0
->getMemOperand());
9552 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLoad
.getValue(1));
9558 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
9559 // where ... are all 'undef'.
9560 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& !LegalTypes
) {
9561 SmallVector
<EVT
, 8> VTs
;
9564 unsigned NumDefs
= 0;
9566 for (unsigned i
= 0, e
= N0
.getNumOperands(); i
!= e
; ++i
) {
9567 SDValue X
= N0
.getOperand(i
);
9573 // Stop if more than one members are non-undef.
9576 VTs
.push_back(EVT::getVectorVT(*DAG
.getContext(),
9577 VT
.getVectorElementType(),
9578 X
.getValueType().getVectorNumElements()));
9582 return DAG
.getUNDEF(VT
);
9585 assert(V
.getNode() && "The single defined operand is empty!");
9586 SmallVector
<SDValue
, 8> Opnds
;
9587 for (unsigned i
= 0, e
= VTs
.size(); i
!= e
; ++i
) {
9589 Opnds
.push_back(DAG
.getUNDEF(VTs
[i
]));
9592 SDValue NV
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(V
), VTs
[i
], V
);
9593 AddToWorklist(NV
.getNode());
9594 Opnds
.push_back(NV
);
9596 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Opnds
);
9600 // Fold truncate of a bitcast of a vector to an extract of the low vector
9603 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
9604 if (N0
.getOpcode() == ISD::BITCAST
&& !VT
.isVector()) {
9605 SDValue VecSrc
= N0
.getOperand(0);
9606 EVT SrcVT
= VecSrc
.getValueType();
9607 if (SrcVT
.isVector() && SrcVT
.getScalarType() == VT
&&
9608 (!LegalOperations
||
9609 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, SrcVT
))) {
9612 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
9613 unsigned Idx
= isLE
? 0 : SrcVT
.getVectorNumElements() - 1;
9614 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, VT
,
9615 VecSrc
, DAG
.getConstant(Idx
, SL
, IdxVT
));
9619 // Simplify the operands using demanded-bits information.
9620 if (!VT
.isVector() &&
9621 SimplifyDemandedBits(SDValue(N
, 0)))
9622 return SDValue(N
, 0);
9624 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
9625 // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
9626 // When the adde's carry is not used.
9627 if ((N0
.getOpcode() == ISD::ADDE
|| N0
.getOpcode() == ISD::ADDCARRY
) &&
9628 N0
.hasOneUse() && !N0
.getNode()->hasAnyUseOfValue(1) &&
9629 (!LegalOperations
|| TLI
.isOperationLegal(N0
.getOpcode(), VT
))) {
9631 auto X
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(0));
9632 auto Y
= DAG
.getNode(ISD::TRUNCATE
, SL
, VT
, N0
.getOperand(1));
9633 auto VTs
= DAG
.getVTList(VT
, N0
->getValueType(1));
9634 return DAG
.getNode(N0
.getOpcode(), SL
, VTs
, X
, Y
, N0
.getOperand(2));
9637 // fold (truncate (extract_subvector(ext x))) ->
9638 // (extract_subvector x)
9639 // TODO: This can be generalized to cover cases where the truncate and extract
9640 // do not fully cancel each other out.
9641 if (!LegalTypes
&& N0
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
9642 SDValue N00
= N0
.getOperand(0);
9643 if (N00
.getOpcode() == ISD::SIGN_EXTEND
||
9644 N00
.getOpcode() == ISD::ZERO_EXTEND
||
9645 N00
.getOpcode() == ISD::ANY_EXTEND
) {
9646 if (N00
.getOperand(0)->getValueType(0).getVectorElementType() ==
9647 VT
.getVectorElementType())
9648 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N0
->getOperand(0)), VT
,
9649 N00
.getOperand(0), N0
.getOperand(1));
9653 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
9659 static SDNode
*getBuildPairElt(SDNode
*N
, unsigned i
) {
9660 SDValue Elt
= N
->getOperand(i
);
9661 if (Elt
.getOpcode() != ISD::MERGE_VALUES
)
9662 return Elt
.getNode();
9663 return Elt
.getOperand(Elt
.getResNo()).getNode();
9666 /// build_pair (load, load) -> load
9667 /// if load locations are consecutive.
9668 SDValue
DAGCombiner::CombineConsecutiveLoads(SDNode
*N
, EVT VT
) {
9669 assert(N
->getOpcode() == ISD::BUILD_PAIR
);
9671 LoadSDNode
*LD1
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 0));
9672 LoadSDNode
*LD2
= dyn_cast
<LoadSDNode
>(getBuildPairElt(N
, 1));
9674 // A BUILD_PAIR is always having the least significant part in elt 0 and the
9675 // most significant part in elt 1. So when combining into one large load, we
9676 // need to consider the endianness.
9677 if (DAG
.getDataLayout().isBigEndian())
9678 std::swap(LD1
, LD2
);
9680 if (!LD1
|| !LD2
|| !ISD::isNON_EXTLoad(LD1
) || !LD1
->hasOneUse() ||
9681 LD1
->getAddressSpace() != LD2
->getAddressSpace())
9683 EVT LD1VT
= LD1
->getValueType(0);
9684 unsigned LD1Bytes
= LD1VT
.getStoreSize();
9685 if (ISD::isNON_EXTLoad(LD2
) && LD2
->hasOneUse() &&
9686 DAG
.areNonVolatileConsecutiveLoads(LD2
, LD1
, LD1Bytes
, 1)) {
9687 unsigned Align
= LD1
->getAlignment();
9688 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
9689 VT
.getTypeForEVT(*DAG
.getContext()));
9691 if (NewAlign
<= Align
&&
9692 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)))
9693 return DAG
.getLoad(VT
, SDLoc(N
), LD1
->getChain(), LD1
->getBasePtr(),
9694 LD1
->getPointerInfo(), Align
);
9700 static unsigned getPPCf128HiElementSelector(const SelectionDAG
&DAG
) {
9701 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
9702 // and Lo parts; on big-endian machines it doesn't.
9703 return DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9706 static SDValue
foldBitcastedFPLogic(SDNode
*N
, SelectionDAG
&DAG
,
9707 const TargetLowering
&TLI
) {
9708 // If this is not a bitcast to an FP type or if the target doesn't have
9709 // IEEE754-compliant FP logic, we're done.
9710 EVT VT
= N
->getValueType(0);
9711 if (!VT
.isFloatingPoint() || !TLI
.hasBitPreservingFPLogic(VT
))
9714 // TODO: Use splat values for the constant-checking below and remove this
9716 SDValue N0
= N
->getOperand(0);
9717 EVT SourceVT
= N0
.getValueType();
9718 if (SourceVT
.isVector())
9723 switch (N0
.getOpcode()) {
9725 FPOpcode
= ISD::FABS
;
9726 SignMask
= ~APInt::getSignMask(SourceVT
.getSizeInBits());
9729 FPOpcode
= ISD::FNEG
;
9730 SignMask
= APInt::getSignMask(SourceVT
.getSizeInBits());
9732 // TODO: ISD::OR --> ISD::FNABS?
9737 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
9738 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
9739 SDValue LogicOp0
= N0
.getOperand(0);
9740 ConstantSDNode
*LogicOp1
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1));
9741 if (LogicOp1
&& LogicOp1
->getAPIntValue() == SignMask
&&
9742 LogicOp0
.getOpcode() == ISD::BITCAST
&&
9743 LogicOp0
->getOperand(0).getValueType() == VT
)
9744 return DAG
.getNode(FPOpcode
, SDLoc(N
), VT
, LogicOp0
->getOperand(0));
9749 SDValue
DAGCombiner::visitBITCAST(SDNode
*N
) {
9750 SDValue N0
= N
->getOperand(0);
9751 EVT VT
= N
->getValueType(0);
9754 return DAG
.getUNDEF(VT
);
9756 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
9757 // Only do this before legalize, since afterward the target may be depending
9758 // on the bitconvert.
9759 // First check to see if this is all constant.
9761 N0
.getOpcode() == ISD::BUILD_VECTOR
&& N0
.getNode()->hasOneUse() &&
9763 bool isSimple
= cast
<BuildVectorSDNode
>(N0
)->isConstant();
9765 EVT DestEltVT
= N
->getValueType(0).getVectorElementType();
9766 assert(!DestEltVT
.isVector() &&
9767 "Element type of vector ValueType must not be vector!");
9769 return ConstantFoldBITCASTofBUILD_VECTOR(N0
.getNode(), DestEltVT
);
9772 // If the input is a constant, let getNode fold it.
9773 // We always need to check that this is just a fp -> int or int -> conversion
9774 // otherwise we will get back N which will confuse the caller into thinking
9775 // we used CombineTo. This can block target combines from running. If we can't
9776 // allowed legal operations, we need to ensure the resulting operation will be
9778 // TODO: Maybe we should check that the return value isn't N explicitly?
9779 if ((isa
<ConstantSDNode
>(N0
) && VT
.isFloatingPoint() && !VT
.isVector() &&
9780 (!LegalOperations
|| TLI
.isOperationLegal(ISD::ConstantFP
, VT
))) ||
9781 (isa
<ConstantFPSDNode
>(N0
) && VT
.isInteger() && !VT
.isVector() &&
9782 (!LegalOperations
|| TLI
.isOperationLegal(ISD::Constant
, VT
))))
9783 return DAG
.getBitcast(VT
, N0
);
9785 // (conv (conv x, t1), t2) -> (conv x, t2)
9786 if (N0
.getOpcode() == ISD::BITCAST
)
9787 return DAG
.getBitcast(VT
, N0
.getOperand(0));
9789 // fold (conv (load x)) -> (load (conv*)x)
9790 // If the resultant load doesn't need a higher alignment than the original!
9791 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
9792 // Do not change the width of a volatile load.
9793 !cast
<LoadSDNode
>(N0
)->isVolatile() &&
9794 // Do not remove the cast if the types differ in endian layout.
9795 TLI
.hasBigEndianPartOrdering(N0
.getValueType(), DAG
.getDataLayout()) ==
9796 TLI
.hasBigEndianPartOrdering(VT
, DAG
.getDataLayout()) &&
9797 (!LegalOperations
|| TLI
.isOperationLegal(ISD::LOAD
, VT
)) &&
9798 TLI
.isLoadBitCastBeneficial(N0
.getValueType(), VT
)) {
9799 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9800 unsigned OrigAlign
= LN0
->getAlignment();
9803 if (TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), VT
,
9804 LN0
->getAddressSpace(), OrigAlign
, &Fast
) &&
9807 DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
9808 LN0
->getPointerInfo(), OrigAlign
,
9809 LN0
->getMemOperand()->getFlags(), LN0
->getAAInfo());
9810 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
9815 if (SDValue V
= foldBitcastedFPLogic(N
, DAG
, TLI
))
9818 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
9819 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
9822 // fold (bitcast (fneg x)) ->
9823 // flipbit = signbit
9824 // (xor (bitcast x) (build_pair flipbit, flipbit))
9826 // fold (bitcast (fabs x)) ->
9827 // flipbit = (and (extract_element (bitcast x), 0), signbit)
9828 // (xor (bitcast x) (build_pair flipbit, flipbit))
9829 // This often reduces constant pool loads.
9830 if (((N0
.getOpcode() == ISD::FNEG
&& !TLI
.isFNegFree(N0
.getValueType())) ||
9831 (N0
.getOpcode() == ISD::FABS
&& !TLI
.isFAbsFree(N0
.getValueType()))) &&
9832 N0
.getNode()->hasOneUse() && VT
.isInteger() &&
9833 !VT
.isVector() && !N0
.getValueType().isVector()) {
9834 SDValue NewConv
= DAG
.getBitcast(VT
, N0
.getOperand(0));
9835 AddToWorklist(NewConv
.getNode());
9838 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
9839 assert(VT
.getSizeInBits() == 128);
9840 SDValue SignBit
= DAG
.getConstant(
9841 APInt::getSignMask(VT
.getSizeInBits() / 2), SDLoc(N0
), MVT::i64
);
9843 if (N0
.getOpcode() == ISD::FNEG
) {
9845 AddToWorklist(FlipBit
.getNode());
9847 assert(N0
.getOpcode() == ISD::FABS
);
9849 DAG
.getNode(ISD::EXTRACT_ELEMENT
, SDLoc(NewConv
), MVT::i64
, NewConv
,
9850 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
9852 AddToWorklist(Hi
.getNode());
9853 FlipBit
= DAG
.getNode(ISD::AND
, SDLoc(N0
), MVT::i64
, Hi
, SignBit
);
9854 AddToWorklist(FlipBit
.getNode());
9857 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
9858 AddToWorklist(FlipBits
.getNode());
9859 return DAG
.getNode(ISD::XOR
, DL
, VT
, NewConv
, FlipBits
);
9861 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
9862 if (N0
.getOpcode() == ISD::FNEG
)
9863 return DAG
.getNode(ISD::XOR
, DL
, VT
,
9864 NewConv
, DAG
.getConstant(SignBit
, DL
, VT
));
9865 assert(N0
.getOpcode() == ISD::FABS
);
9866 return DAG
.getNode(ISD::AND
, DL
, VT
,
9867 NewConv
, DAG
.getConstant(~SignBit
, DL
, VT
));
9870 // fold (bitconvert (fcopysign cst, x)) ->
9871 // (or (and (bitconvert x), sign), (and cst, (not sign)))
9872 // Note that we don't handle (copysign x, cst) because this can always be
9873 // folded to an fneg or fabs.
9876 // fold (bitcast (fcopysign cst, x)) ->
9877 // flipbit = (and (extract_element
9878 // (xor (bitcast cst), (bitcast x)), 0),
9880 // (xor (bitcast cst) (build_pair flipbit, flipbit))
9881 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse() &&
9882 isa
<ConstantFPSDNode
>(N0
.getOperand(0)) &&
9883 VT
.isInteger() && !VT
.isVector()) {
9884 unsigned OrigXWidth
= N0
.getOperand(1).getValueSizeInBits();
9885 EVT IntXVT
= EVT::getIntegerVT(*DAG
.getContext(), OrigXWidth
);
9886 if (isTypeLegal(IntXVT
)) {
9887 SDValue X
= DAG
.getBitcast(IntXVT
, N0
.getOperand(1));
9888 AddToWorklist(X
.getNode());
9890 // If X has a different width than the result/lhs, sext it or truncate it.
9891 unsigned VTWidth
= VT
.getSizeInBits();
9892 if (OrigXWidth
< VTWidth
) {
9893 X
= DAG
.getNode(ISD::SIGN_EXTEND
, SDLoc(N
), VT
, X
);
9894 AddToWorklist(X
.getNode());
9895 } else if (OrigXWidth
> VTWidth
) {
9896 // To get the sign bit in the right place, we have to shift it right
9897 // before truncating.
9899 X
= DAG
.getNode(ISD::SRL
, DL
,
9900 X
.getValueType(), X
,
9901 DAG
.getConstant(OrigXWidth
-VTWidth
, DL
,
9903 AddToWorklist(X
.getNode());
9904 X
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(X
), VT
, X
);
9905 AddToWorklist(X
.getNode());
9908 if (N0
.getValueType() == MVT::ppcf128
&& !LegalTypes
) {
9909 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits() / 2);
9910 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
9911 AddToWorklist(Cst
.getNode());
9912 SDValue X
= DAG
.getBitcast(VT
, N0
.getOperand(1));
9913 AddToWorklist(X
.getNode());
9914 SDValue XorResult
= DAG
.getNode(ISD::XOR
, SDLoc(N0
), VT
, Cst
, X
);
9915 AddToWorklist(XorResult
.getNode());
9916 SDValue XorResult64
= DAG
.getNode(
9917 ISD::EXTRACT_ELEMENT
, SDLoc(XorResult
), MVT::i64
, XorResult
,
9918 DAG
.getIntPtrConstant(getPPCf128HiElementSelector(DAG
),
9920 AddToWorklist(XorResult64
.getNode());
9922 DAG
.getNode(ISD::AND
, SDLoc(XorResult64
), MVT::i64
, XorResult64
,
9923 DAG
.getConstant(SignBit
, SDLoc(XorResult64
), MVT::i64
));
9924 AddToWorklist(FlipBit
.getNode());
9926 DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N0
), VT
, FlipBit
, FlipBit
);
9927 AddToWorklist(FlipBits
.getNode());
9928 return DAG
.getNode(ISD::XOR
, SDLoc(N
), VT
, Cst
, FlipBits
);
9930 APInt SignBit
= APInt::getSignMask(VT
.getSizeInBits());
9931 X
= DAG
.getNode(ISD::AND
, SDLoc(X
), VT
,
9932 X
, DAG
.getConstant(SignBit
, SDLoc(X
), VT
));
9933 AddToWorklist(X
.getNode());
9935 SDValue Cst
= DAG
.getBitcast(VT
, N0
.getOperand(0));
9936 Cst
= DAG
.getNode(ISD::AND
, SDLoc(Cst
), VT
,
9937 Cst
, DAG
.getConstant(~SignBit
, SDLoc(Cst
), VT
));
9938 AddToWorklist(Cst
.getNode());
9940 return DAG
.getNode(ISD::OR
, SDLoc(N
), VT
, X
, Cst
);
9944 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
9945 if (N0
.getOpcode() == ISD::BUILD_PAIR
)
9946 if (SDValue CombineLD
= CombineConsecutiveLoads(N0
.getNode(), VT
))
9949 // Remove double bitcasts from shuffles - this is often a legacy of
9950 // XformToShuffleWithZero being used to combine bitmaskings (of
9951 // float vectors bitcast to integer vectors) into shuffles.
9952 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
9953 if (Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
) && VT
.isVector() &&
9954 N0
->getOpcode() == ISD::VECTOR_SHUFFLE
&&
9955 VT
.getVectorNumElements() >= N0
.getValueType().getVectorNumElements() &&
9956 !(VT
.getVectorNumElements() % N0
.getValueType().getVectorNumElements())) {
9957 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N0
);
9959 // If operands are a bitcast, peek through if it casts the original VT.
9960 // If operands are a constant, just bitcast back to original VT.
9961 auto PeekThroughBitcast
= [&](SDValue Op
) {
9962 if (Op
.getOpcode() == ISD::BITCAST
&&
9963 Op
.getOperand(0).getValueType() == VT
)
9964 return SDValue(Op
.getOperand(0));
9965 if (Op
.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op
.getNode()) ||
9966 ISD::isBuildVectorOfConstantFPSDNodes(Op
.getNode()))
9967 return DAG
.getBitcast(VT
, Op
);
9971 // FIXME: If either input vector is bitcast, try to convert the shuffle to
9972 // the result type of this bitcast. This would eliminate at least one
9973 // bitcast. See the transform in InstCombine.
9974 SDValue SV0
= PeekThroughBitcast(N0
->getOperand(0));
9975 SDValue SV1
= PeekThroughBitcast(N0
->getOperand(1));
9980 VT
.getVectorNumElements() / N0
.getValueType().getVectorNumElements();
9981 SmallVector
<int, 8> NewMask
;
9982 for (int M
: SVN
->getMask())
9983 for (int i
= 0; i
!= MaskScale
; ++i
)
9984 NewMask
.push_back(M
< 0 ? -1 : M
* MaskScale
+ i
);
9986 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, VT
);
9988 std::swap(SV0
, SV1
);
9989 ShuffleVectorSDNode::commuteMask(NewMask
);
9990 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, VT
);
9994 return DAG
.getVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, NewMask
);
10000 SDValue
DAGCombiner::visitBUILD_PAIR(SDNode
*N
) {
10001 EVT VT
= N
->getValueType(0);
10002 return CombineConsecutiveLoads(N
, VT
);
10005 /// We know that BV is a build_vector node with Constant, ConstantFP or Undef
10006 /// operands. DstEltVT indicates the destination element value type.
10007 SDValue
DAGCombiner::
10008 ConstantFoldBITCASTofBUILD_VECTOR(SDNode
*BV
, EVT DstEltVT
) {
10009 EVT SrcEltVT
= BV
->getValueType(0).getVectorElementType();
10011 // If this is already the right type, we're done.
10012 if (SrcEltVT
== DstEltVT
) return SDValue(BV
, 0);
10014 unsigned SrcBitSize
= SrcEltVT
.getSizeInBits();
10015 unsigned DstBitSize
= DstEltVT
.getSizeInBits();
10017 // If this is a conversion of N elements of one type to N elements of another
10018 // type, convert each element. This handles FP<->INT cases.
10019 if (SrcBitSize
== DstBitSize
) {
10020 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
10021 BV
->getValueType(0).getVectorNumElements());
10023 // Due to the FP element handling below calling this routine recursively,
10024 // we can end up with a scalar-to-vector node here.
10025 if (BV
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
10026 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(BV
), VT
,
10027 DAG
.getBitcast(DstEltVT
, BV
->getOperand(0)));
10029 SmallVector
<SDValue
, 8> Ops
;
10030 for (SDValue Op
: BV
->op_values()) {
10031 // If the vector element type is not legal, the BUILD_VECTOR operands
10032 // are promoted and implicitly truncated. Make that explicit here.
10033 if (Op
.getValueType() != SrcEltVT
)
10034 Op
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(BV
), SrcEltVT
, Op
);
10035 Ops
.push_back(DAG
.getBitcast(DstEltVT
, Op
));
10036 AddToWorklist(Ops
.back().getNode());
10038 return DAG
.getBuildVector(VT
, SDLoc(BV
), Ops
);
10041 // Otherwise, we're growing or shrinking the elements. To avoid having to
10042 // handle annoying details of growing/shrinking FP values, we convert them to
10044 if (SrcEltVT
.isFloatingPoint()) {
10045 // Convert the input float vector to a int vector where the elements are the
10047 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), SrcEltVT
.getSizeInBits());
10048 BV
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, IntVT
).getNode();
10052 // Now we know the input is an integer vector. If the output is a FP type,
10053 // convert to integer first, then to FP of the right size.
10054 if (DstEltVT
.isFloatingPoint()) {
10055 EVT TmpVT
= EVT::getIntegerVT(*DAG
.getContext(), DstEltVT
.getSizeInBits());
10056 SDNode
*Tmp
= ConstantFoldBITCASTofBUILD_VECTOR(BV
, TmpVT
).getNode();
10058 // Next, convert to FP elements of the same size.
10059 return ConstantFoldBITCASTofBUILD_VECTOR(Tmp
, DstEltVT
);
10064 // Okay, we know the src/dst types are both integers of differing types.
10065 // Handling growing first.
10066 assert(SrcEltVT
.isInteger() && DstEltVT
.isInteger());
10067 if (SrcBitSize
< DstBitSize
) {
10068 unsigned NumInputsPerOutput
= DstBitSize
/SrcBitSize
;
10070 SmallVector
<SDValue
, 8> Ops
;
10071 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
;
10072 i
+= NumInputsPerOutput
) {
10073 bool isLE
= DAG
.getDataLayout().isLittleEndian();
10074 APInt NewBits
= APInt(DstBitSize
, 0);
10075 bool EltIsUndef
= true;
10076 for (unsigned j
= 0; j
!= NumInputsPerOutput
; ++j
) {
10077 // Shift the previously computed bits over.
10078 NewBits
<<= SrcBitSize
;
10079 SDValue Op
= BV
->getOperand(i
+ (isLE
? (NumInputsPerOutput
-j
-1) : j
));
10080 if (Op
.isUndef()) continue;
10081 EltIsUndef
= false;
10083 NewBits
|= cast
<ConstantSDNode
>(Op
)->getAPIntValue().
10084 zextOrTrunc(SrcBitSize
).zext(DstBitSize
);
10088 Ops
.push_back(DAG
.getUNDEF(DstEltVT
));
10090 Ops
.push_back(DAG
.getConstant(NewBits
, DL
, DstEltVT
));
10093 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
, Ops
.size());
10094 return DAG
.getBuildVector(VT
, DL
, Ops
);
10097 // Finally, this must be the case where we are shrinking elements: each input
10098 // turns into multiple outputs.
10099 unsigned NumOutputsPerInput
= SrcBitSize
/DstBitSize
;
10100 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), DstEltVT
,
10101 NumOutputsPerInput
*BV
->getNumOperands());
10102 SmallVector
<SDValue
, 8> Ops
;
10104 for (const SDValue
&Op
: BV
->op_values()) {
10105 if (Op
.isUndef()) {
10106 Ops
.append(NumOutputsPerInput
, DAG
.getUNDEF(DstEltVT
));
10110 APInt OpVal
= cast
<ConstantSDNode
>(Op
)->
10111 getAPIntValue().zextOrTrunc(SrcBitSize
);
10113 for (unsigned j
= 0; j
!= NumOutputsPerInput
; ++j
) {
10114 APInt ThisVal
= OpVal
.trunc(DstBitSize
);
10115 Ops
.push_back(DAG
.getConstant(ThisVal
, DL
, DstEltVT
));
10116 OpVal
.lshrInPlace(DstBitSize
);
10119 // For big endian targets, swap the order of the pieces of each element.
10120 if (DAG
.getDataLayout().isBigEndian())
10121 std::reverse(Ops
.end()-NumOutputsPerInput
, Ops
.end());
10124 return DAG
.getBuildVector(VT
, DL
, Ops
);
10127 static bool isContractable(SDNode
*N
) {
10128 SDNodeFlags F
= N
->getFlags();
10129 return F
.hasAllowContract() || F
.hasAllowReassociation();
10132 /// Try to perform FMA combining on a given FADD node.
10133 SDValue
DAGCombiner::visitFADDForFMACombine(SDNode
*N
) {
10134 SDValue N0
= N
->getOperand(0);
10135 SDValue N1
= N
->getOperand(1);
10136 EVT VT
= N
->getValueType(0);
10139 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10141 // Floating-point multiply-add with intermediate rounding.
10142 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
10144 // Floating-point multiply-add without intermediate rounding.
10146 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
10147 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
10149 // No valid opcode, do not combine.
10150 if (!HasFMAD
&& !HasFMA
)
10153 SDNodeFlags Flags
= N
->getFlags();
10154 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
10155 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
10156 CanFuse
|| HasFMAD
);
10157 // If the addition is not contractable, do not combine.
10158 if (!AllowFusionGlobally
&& !isContractable(N
))
10161 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
10162 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
10165 // Always prefer FMAD to FMA for precision.
10166 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
10167 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
10169 // Is the node an FMUL and contractable either due to global flags or
10171 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
10172 if (N
.getOpcode() != ISD::FMUL
)
10174 return AllowFusionGlobally
|| isContractable(N
.getNode());
10176 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
10177 // prefer to fold the multiply with fewer uses.
10178 if (Aggressive
&& isContractableFMUL(N0
) && isContractableFMUL(N1
)) {
10179 if (N0
.getNode()->use_size() > N1
.getNode()->use_size())
10183 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
10184 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
10185 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10186 N0
.getOperand(0), N0
.getOperand(1), N1
, Flags
);
10189 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
10190 // Note: Commutes FADD operands.
10191 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
10192 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10193 N1
.getOperand(0), N1
.getOperand(1), N0
, Flags
);
10196 // Look through FP_EXTEND nodes to do more combining.
10198 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
10199 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
10200 SDValue N00
= N0
.getOperand(0);
10201 if (isContractableFMUL(N00
) &&
10202 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
10203 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10204 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10205 N00
.getOperand(0)),
10206 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10207 N00
.getOperand(1)), N1
, Flags
);
10211 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
10212 // Note: Commutes FADD operands.
10213 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
10214 SDValue N10
= N1
.getOperand(0);
10215 if (isContractableFMUL(N10
) &&
10216 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
10217 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10218 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10219 N10
.getOperand(0)),
10220 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10221 N10
.getOperand(1)), N0
, Flags
);
10225 // More folding opportunities when target permits.
10227 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
10229 N0
.getOpcode() == PreferredFusedOpcode
&&
10230 N0
.getOperand(2).getOpcode() == ISD::FMUL
&&
10231 N0
->hasOneUse() && N0
.getOperand(2)->hasOneUse()) {
10232 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10233 N0
.getOperand(0), N0
.getOperand(1),
10234 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10235 N0
.getOperand(2).getOperand(0),
10236 N0
.getOperand(2).getOperand(1),
10237 N1
, Flags
), Flags
);
10240 // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
10242 N1
->getOpcode() == PreferredFusedOpcode
&&
10243 N1
.getOperand(2).getOpcode() == ISD::FMUL
&&
10244 N1
->hasOneUse() && N1
.getOperand(2)->hasOneUse()) {
10245 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10246 N1
.getOperand(0), N1
.getOperand(1),
10247 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10248 N1
.getOperand(2).getOperand(0),
10249 N1
.getOperand(2).getOperand(1),
10250 N0
, Flags
), Flags
);
10254 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
10255 // -> (fma x, y, (fma (fpext u), (fpext v), z))
10256 auto FoldFAddFMAFPExtFMul
= [&] (
10257 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
10258 SDNodeFlags Flags
) {
10259 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
, Y
,
10260 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10261 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
10262 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
10265 if (N0
.getOpcode() == PreferredFusedOpcode
) {
10266 SDValue N02
= N0
.getOperand(2);
10267 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
10268 SDValue N020
= N02
.getOperand(0);
10269 if (isContractableFMUL(N020
) &&
10270 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
10271 return FoldFAddFMAFPExtFMul(N0
.getOperand(0), N0
.getOperand(1),
10272 N020
.getOperand(0), N020
.getOperand(1),
10278 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
10279 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
10280 // FIXME: This turns two single-precision and one double-precision
10281 // operation into two double-precision operations, which might not be
10282 // interesting for all targets, especially GPUs.
10283 auto FoldFAddFPExtFMAFMul
= [&] (
10284 SDValue X
, SDValue Y
, SDValue U
, SDValue V
, SDValue Z
,
10285 SDNodeFlags Flags
) {
10286 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10287 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, X
),
10288 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, Y
),
10289 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10290 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, U
),
10291 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, V
),
10294 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
10295 SDValue N00
= N0
.getOperand(0);
10296 if (N00
.getOpcode() == PreferredFusedOpcode
) {
10297 SDValue N002
= N00
.getOperand(2);
10298 if (isContractableFMUL(N002
) &&
10299 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
10300 return FoldFAddFPExtFMAFMul(N00
.getOperand(0), N00
.getOperand(1),
10301 N002
.getOperand(0), N002
.getOperand(1),
10307 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
10308 // -> (fma y, z, (fma (fpext u), (fpext v), x))
10309 if (N1
.getOpcode() == PreferredFusedOpcode
) {
10310 SDValue N12
= N1
.getOperand(2);
10311 if (N12
.getOpcode() == ISD::FP_EXTEND
) {
10312 SDValue N120
= N12
.getOperand(0);
10313 if (isContractableFMUL(N120
) &&
10314 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
10315 return FoldFAddFMAFPExtFMul(N1
.getOperand(0), N1
.getOperand(1),
10316 N120
.getOperand(0), N120
.getOperand(1),
10322 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
10323 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
10324 // FIXME: This turns two single-precision and one double-precision
10325 // operation into two double-precision operations, which might not be
10326 // interesting for all targets, especially GPUs.
10327 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
10328 SDValue N10
= N1
.getOperand(0);
10329 if (N10
.getOpcode() == PreferredFusedOpcode
) {
10330 SDValue N102
= N10
.getOperand(2);
10331 if (isContractableFMUL(N102
) &&
10332 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
10333 return FoldFAddFPExtFMAFMul(N10
.getOperand(0), N10
.getOperand(1),
10334 N102
.getOperand(0), N102
.getOperand(1),
10344 /// Try to perform FMA combining on a given FSUB node.
10345 SDValue
DAGCombiner::visitFSUBForFMACombine(SDNode
*N
) {
10346 SDValue N0
= N
->getOperand(0);
10347 SDValue N1
= N
->getOperand(1);
10348 EVT VT
= N
->getValueType(0);
10351 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10352 // Floating-point multiply-add with intermediate rounding.
10353 bool HasFMAD
= (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
10355 // Floating-point multiply-add without intermediate rounding.
10357 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
10358 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
10360 // No valid opcode, do not combine.
10361 if (!HasFMAD
&& !HasFMA
)
10364 const SDNodeFlags Flags
= N
->getFlags();
10365 bool CanFuse
= Options
.UnsafeFPMath
|| isContractable(N
);
10366 bool AllowFusionGlobally
= (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
10367 CanFuse
|| HasFMAD
);
10369 // If the subtraction is not contractable, do not combine.
10370 if (!AllowFusionGlobally
&& !isContractable(N
))
10373 const SelectionDAGTargetInfo
*STI
= DAG
.getSubtarget().getSelectionDAGInfo();
10374 if (STI
&& STI
->generateFMAsInMachineCombiner(OptLevel
))
10377 // Always prefer FMAD to FMA for precision.
10378 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
10379 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
10381 // Is the node an FMUL and contractable either due to global flags or
10383 auto isContractableFMUL
= [AllowFusionGlobally
](SDValue N
) {
10384 if (N
.getOpcode() != ISD::FMUL
)
10386 return AllowFusionGlobally
|| isContractable(N
.getNode());
10389 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
10390 if (isContractableFMUL(N0
) && (Aggressive
|| N0
->hasOneUse())) {
10391 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10392 N0
.getOperand(0), N0
.getOperand(1),
10393 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
10396 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
10397 // Note: Commutes FSUB operands.
10398 if (isContractableFMUL(N1
) && (Aggressive
|| N1
->hasOneUse())) {
10399 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10400 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10402 N1
.getOperand(1), N0
, Flags
);
10405 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
10406 if (N0
.getOpcode() == ISD::FNEG
&& isContractableFMUL(N0
.getOperand(0)) &&
10407 (Aggressive
|| (N0
->hasOneUse() && N0
.getOperand(0).hasOneUse()))) {
10408 SDValue N00
= N0
.getOperand(0).getOperand(0);
10409 SDValue N01
= N0
.getOperand(0).getOperand(1);
10410 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10411 DAG
.getNode(ISD::FNEG
, SL
, VT
, N00
), N01
,
10412 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
10415 // Look through FP_EXTEND nodes to do more combining.
10417 // fold (fsub (fpext (fmul x, y)), z)
10418 // -> (fma (fpext x), (fpext y), (fneg z))
10419 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
10420 SDValue N00
= N0
.getOperand(0);
10421 if (isContractableFMUL(N00
) &&
10422 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
10423 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10424 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10425 N00
.getOperand(0)),
10426 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10427 N00
.getOperand(1)),
10428 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
), Flags
);
10432 // fold (fsub x, (fpext (fmul y, z)))
10433 // -> (fma (fneg (fpext y)), (fpext z), x)
10434 // Note: Commutes FSUB operands.
10435 if (N1
.getOpcode() == ISD::FP_EXTEND
) {
10436 SDValue N10
= N1
.getOperand(0);
10437 if (isContractableFMUL(N10
) &&
10438 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N10
.getValueType())) {
10439 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10440 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10441 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10442 N10
.getOperand(0))),
10443 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10444 N10
.getOperand(1)),
10449 // fold (fsub (fpext (fneg (fmul, x, y))), z)
10450 // -> (fneg (fma (fpext x), (fpext y), z))
10451 // Note: This could be removed with appropriate canonicalization of the
10452 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
10453 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
10454 // from implementing the canonicalization in visitFSUB.
10455 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
10456 SDValue N00
= N0
.getOperand(0);
10457 if (N00
.getOpcode() == ISD::FNEG
) {
10458 SDValue N000
= N00
.getOperand(0);
10459 if (isContractableFMUL(N000
) &&
10460 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
10461 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
10462 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10463 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10464 N000
.getOperand(0)),
10465 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10466 N000
.getOperand(1)),
10472 // fold (fsub (fneg (fpext (fmul, x, y))), z)
10473 // -> (fneg (fma (fpext x)), (fpext y), z)
10474 // Note: This could be removed with appropriate canonicalization of the
10475 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
10476 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
10477 // from implementing the canonicalization in visitFSUB.
10478 if (N0
.getOpcode() == ISD::FNEG
) {
10479 SDValue N00
= N0
.getOperand(0);
10480 if (N00
.getOpcode() == ISD::FP_EXTEND
) {
10481 SDValue N000
= N00
.getOperand(0);
10482 if (isContractableFMUL(N000
) &&
10483 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N000
.getValueType())) {
10484 return DAG
.getNode(ISD::FNEG
, SL
, VT
,
10485 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10486 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10487 N000
.getOperand(0)),
10488 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10489 N000
.getOperand(1)),
10495 // More folding opportunities when target permits.
10497 // fold (fsub (fma x, y, (fmul u, v)), z)
10498 // -> (fma x, y (fma u, v, (fneg z)))
10499 if (CanFuse
&& N0
.getOpcode() == PreferredFusedOpcode
&&
10500 isContractableFMUL(N0
.getOperand(2)) && N0
->hasOneUse() &&
10501 N0
.getOperand(2)->hasOneUse()) {
10502 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10503 N0
.getOperand(0), N0
.getOperand(1),
10504 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10505 N0
.getOperand(2).getOperand(0),
10506 N0
.getOperand(2).getOperand(1),
10507 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10508 N1
), Flags
), Flags
);
10511 // fold (fsub x, (fma y, z, (fmul u, v)))
10512 // -> (fma (fneg y), z, (fma (fneg u), v, x))
10513 if (CanFuse
&& N1
.getOpcode() == PreferredFusedOpcode
&&
10514 isContractableFMUL(N1
.getOperand(2))) {
10515 SDValue N20
= N1
.getOperand(2).getOperand(0);
10516 SDValue N21
= N1
.getOperand(2).getOperand(1);
10517 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10518 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10521 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10522 DAG
.getNode(ISD::FNEG
, SL
, VT
, N20
),
10523 N21
, N0
, Flags
), Flags
);
10527 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
10528 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
10529 if (N0
.getOpcode() == PreferredFusedOpcode
) {
10530 SDValue N02
= N0
.getOperand(2);
10531 if (N02
.getOpcode() == ISD::FP_EXTEND
) {
10532 SDValue N020
= N02
.getOperand(0);
10533 if (isContractableFMUL(N020
) &&
10534 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N020
.getValueType())) {
10535 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10536 N0
.getOperand(0), N0
.getOperand(1),
10537 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10538 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10539 N020
.getOperand(0)),
10540 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10541 N020
.getOperand(1)),
10542 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10543 N1
), Flags
), Flags
);
10548 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
10549 // -> (fma (fpext x), (fpext y),
10550 // (fma (fpext u), (fpext v), (fneg z)))
10551 // FIXME: This turns two single-precision and one double-precision
10552 // operation into two double-precision operations, which might not be
10553 // interesting for all targets, especially GPUs.
10554 if (N0
.getOpcode() == ISD::FP_EXTEND
) {
10555 SDValue N00
= N0
.getOperand(0);
10556 if (N00
.getOpcode() == PreferredFusedOpcode
) {
10557 SDValue N002
= N00
.getOperand(2);
10558 if (isContractableFMUL(N002
) &&
10559 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N00
.getValueType())) {
10560 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10561 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10562 N00
.getOperand(0)),
10563 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10564 N00
.getOperand(1)),
10565 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10566 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10567 N002
.getOperand(0)),
10568 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10569 N002
.getOperand(1)),
10570 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10571 N1
), Flags
), Flags
);
10576 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
10577 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
10578 if (N1
.getOpcode() == PreferredFusedOpcode
&&
10579 N1
.getOperand(2).getOpcode() == ISD::FP_EXTEND
) {
10580 SDValue N120
= N1
.getOperand(2).getOperand(0);
10581 if (isContractableFMUL(N120
) &&
10582 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, N120
.getValueType())) {
10583 SDValue N1200
= N120
.getOperand(0);
10584 SDValue N1201
= N120
.getOperand(1);
10585 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10586 DAG
.getNode(ISD::FNEG
, SL
, VT
, N1
.getOperand(0)),
10588 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10589 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10590 DAG
.getNode(ISD::FP_EXTEND
, SL
,
10592 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10594 N0
, Flags
), Flags
);
10598 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
10599 // -> (fma (fneg (fpext y)), (fpext z),
10600 // (fma (fneg (fpext u)), (fpext v), x))
10601 // FIXME: This turns two single-precision and one double-precision
10602 // operation into two double-precision operations, which might not be
10603 // interesting for all targets, especially GPUs.
10604 if (N1
.getOpcode() == ISD::FP_EXTEND
&&
10605 N1
.getOperand(0).getOpcode() == PreferredFusedOpcode
) {
10606 SDValue CvtSrc
= N1
.getOperand(0);
10607 SDValue N100
= CvtSrc
.getOperand(0);
10608 SDValue N101
= CvtSrc
.getOperand(1);
10609 SDValue N102
= CvtSrc
.getOperand(2);
10610 if (isContractableFMUL(N102
) &&
10611 TLI
.isFPExtFoldable(PreferredFusedOpcode
, VT
, CvtSrc
.getValueType())) {
10612 SDValue N1020
= N102
.getOperand(0);
10613 SDValue N1021
= N102
.getOperand(1);
10614 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10615 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10616 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10618 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
, N101
),
10619 DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10620 DAG
.getNode(ISD::FNEG
, SL
, VT
,
10621 DAG
.getNode(ISD::FP_EXTEND
, SL
,
10623 DAG
.getNode(ISD::FP_EXTEND
, SL
, VT
,
10625 N0
, Flags
), Flags
);
10633 /// Try to perform FMA combining on a given FMUL node based on the distributive
10634 /// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
10635 /// subtraction instead of addition).
10636 SDValue
DAGCombiner::visitFMULForFMADistributiveCombine(SDNode
*N
) {
10637 SDValue N0
= N
->getOperand(0);
10638 SDValue N1
= N
->getOperand(1);
10639 EVT VT
= N
->getValueType(0);
10641 const SDNodeFlags Flags
= N
->getFlags();
10643 assert(N
->getOpcode() == ISD::FMUL
&& "Expected FMUL Operation");
10645 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10647 // The transforms below are incorrect when x == 0 and y == inf, because the
10648 // intermediate multiplication produces a nan.
10649 if (!Options
.NoInfsFPMath
)
10652 // Floating-point multiply-add without intermediate rounding.
10654 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
|| Options
.UnsafeFPMath
) &&
10655 TLI
.isFMAFasterThanFMulAndFAdd(VT
) &&
10656 (!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FMA
, VT
));
10658 // Floating-point multiply-add with intermediate rounding. This can result
10659 // in a less precise result due to the changed rounding order.
10660 bool HasFMAD
= Options
.UnsafeFPMath
&&
10661 (LegalOperations
&& TLI
.isOperationLegal(ISD::FMAD
, VT
));
10663 // No valid opcode, do not combine.
10664 if (!HasFMAD
&& !HasFMA
)
10667 // Always prefer FMAD to FMA for precision.
10668 unsigned PreferredFusedOpcode
= HasFMAD
? ISD::FMAD
: ISD::FMA
;
10669 bool Aggressive
= TLI
.enableAggressiveFMAFusion(VT
);
10671 // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y)
10672 // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y))
10673 auto FuseFADD
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
10674 if (X
.getOpcode() == ISD::FADD
&& (Aggressive
|| X
->hasOneUse())) {
10675 auto XC1
= isConstOrConstSplatFP(X
.getOperand(1));
10676 if (XC1
&& XC1
->isExactlyValue(+1.0))
10677 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
10679 if (XC1
&& XC1
->isExactlyValue(-1.0))
10680 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
10681 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
10686 if (SDValue FMA
= FuseFADD(N0
, N1
, Flags
))
10688 if (SDValue FMA
= FuseFADD(N1
, N0
, Flags
))
10691 // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y)
10692 // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y))
10693 // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y))
10694 // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y)
10695 auto FuseFSUB
= [&](SDValue X
, SDValue Y
, const SDNodeFlags Flags
) {
10696 if (X
.getOpcode() == ISD::FSUB
&& (Aggressive
|| X
->hasOneUse())) {
10697 auto XC0
= isConstOrConstSplatFP(X
.getOperand(0));
10698 if (XC0
&& XC0
->isExactlyValue(+1.0))
10699 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10700 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
10702 if (XC0
&& XC0
->isExactlyValue(-1.0))
10703 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
,
10704 DAG
.getNode(ISD::FNEG
, SL
, VT
, X
.getOperand(1)), Y
,
10705 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
10707 auto XC1
= isConstOrConstSplatFP(X
.getOperand(1));
10708 if (XC1
&& XC1
->isExactlyValue(+1.0))
10709 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
10710 DAG
.getNode(ISD::FNEG
, SL
, VT
, Y
), Flags
);
10711 if (XC1
&& XC1
->isExactlyValue(-1.0))
10712 return DAG
.getNode(PreferredFusedOpcode
, SL
, VT
, X
.getOperand(0), Y
,
10718 if (SDValue FMA
= FuseFSUB(N0
, N1
, Flags
))
10720 if (SDValue FMA
= FuseFSUB(N1
, N0
, Flags
))
10726 static bool isFMulNegTwo(SDValue
&N
) {
10727 if (N
.getOpcode() != ISD::FMUL
)
10729 if (ConstantFPSDNode
*CFP
= isConstOrConstSplatFP(N
.getOperand(1)))
10730 return CFP
->isExactlyValue(-2.0);
10734 SDValue
DAGCombiner::visitFADD(SDNode
*N
) {
10735 SDValue N0
= N
->getOperand(0);
10736 SDValue N1
= N
->getOperand(1);
10737 bool N0CFP
= isConstantFPBuildVectorOrConstantFP(N0
);
10738 bool N1CFP
= isConstantFPBuildVectorOrConstantFP(N1
);
10739 EVT VT
= N
->getValueType(0);
10741 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10742 const SDNodeFlags Flags
= N
->getFlags();
10746 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
10749 // fold (fadd c1, c2) -> c1 + c2
10750 if (N0CFP
&& N1CFP
)
10751 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N1
, Flags
);
10753 // canonicalize constant to RHS
10754 if (N0CFP
&& !N1CFP
)
10755 return DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N0
, Flags
);
10757 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
10758 ConstantFPSDNode
*N1C
= isConstOrConstSplatFP(N1
);
10759 if (N1C
&& N1C
->isZero())
10760 if (N1C
->isNegative() || Options
.UnsafeFPMath
|| Flags
.hasNoSignedZeros())
10763 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
10766 // fold (fadd A, (fneg B)) -> (fsub A, B)
10767 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
10768 isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
) == 2)
10769 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
,
10770 GetNegatedExpression(N1
, DAG
, LegalOperations
), Flags
);
10772 // fold (fadd (fneg A), B) -> (fsub B, A)
10773 if ((!LegalOperations
|| TLI
.isOperationLegalOrCustom(ISD::FSUB
, VT
)) &&
10774 isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
) == 2)
10775 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1
,
10776 GetNegatedExpression(N0
, DAG
, LegalOperations
), Flags
);
10778 // fold (fadd A, (fmul B, -2.0)) -> (fsub A, (fadd B, B))
10779 // fold (fadd (fmul B, -2.0), A) -> (fsub A, (fadd B, B))
10780 if ((isFMulNegTwo(N0
) && N0
.hasOneUse()) ||
10781 (isFMulNegTwo(N1
) && N1
.hasOneUse())) {
10782 bool N1IsFMul
= isFMulNegTwo(N1
);
10783 SDValue AddOp
= N1IsFMul
? N1
.getOperand(0) : N0
.getOperand(0);
10784 SDValue Add
= DAG
.getNode(ISD::FADD
, DL
, VT
, AddOp
, AddOp
, Flags
);
10785 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N1IsFMul
? N0
: N1
, Add
, Flags
);
10788 // No FP constant should be created after legalization as Instruction
10789 // Selection pass has a hard time dealing with FP constants.
10790 bool AllowNewConst
= (Level
< AfterLegalizeDAG
);
10792 // If 'unsafe math' or nnan is enabled, fold lots of things.
10793 if ((Options
.UnsafeFPMath
|| Flags
.hasNoNaNs()) && AllowNewConst
) {
10794 // If allowed, fold (fadd (fneg x), x) -> 0.0
10795 if (N0
.getOpcode() == ISD::FNEG
&& N0
.getOperand(0) == N1
)
10796 return DAG
.getConstantFP(0.0, DL
, VT
);
10798 // If allowed, fold (fadd x, (fneg x)) -> 0.0
10799 if (N1
.getOpcode() == ISD::FNEG
&& N1
.getOperand(0) == N0
)
10800 return DAG
.getConstantFP(0.0, DL
, VT
);
10803 // If 'unsafe math' or reassoc and nsz, fold lots of things.
10804 // TODO: break out portions of the transformations below for which Unsafe is
10805 // considered and which do not require both nsz and reassoc
10806 if ((Options
.UnsafeFPMath
||
10807 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros())) &&
10809 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
10810 if (N1CFP
&& N0
.getOpcode() == ISD::FADD
&&
10811 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
10812 SDValue NewC
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1), N1
, Flags
);
10813 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(0), NewC
, Flags
);
10816 // We can fold chains of FADD's of the same value into multiplications.
10817 // This transform is not safe in general because we are reducing the number
10818 // of rounding steps.
10819 if (TLI
.isOperationLegalOrCustom(ISD::FMUL
, VT
) && !N0CFP
&& !N1CFP
) {
10820 if (N0
.getOpcode() == ISD::FMUL
) {
10821 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
10822 bool CFP01
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1));
10824 // (fadd (fmul x, c), x) -> (fmul x, c+1)
10825 if (CFP01
&& !CFP00
&& N0
.getOperand(0) == N1
) {
10826 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
10827 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
10828 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, NewCFP
, Flags
);
10831 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
10832 if (CFP01
&& !CFP00
&& N1
.getOpcode() == ISD::FADD
&&
10833 N1
.getOperand(0) == N1
.getOperand(1) &&
10834 N0
.getOperand(0) == N1
.getOperand(0)) {
10835 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N0
.getOperand(1),
10836 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
10837 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), NewCFP
, Flags
);
10841 if (N1
.getOpcode() == ISD::FMUL
) {
10842 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
10843 bool CFP11
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(1));
10845 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
10846 if (CFP11
&& !CFP10
&& N1
.getOperand(0) == N0
) {
10847 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
10848 DAG
.getConstantFP(1.0, DL
, VT
), Flags
);
10849 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, NewCFP
, Flags
);
10852 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
10853 if (CFP11
&& !CFP10
&& N0
.getOpcode() == ISD::FADD
&&
10854 N0
.getOperand(0) == N0
.getOperand(1) &&
10855 N1
.getOperand(0) == N0
.getOperand(0)) {
10856 SDValue NewCFP
= DAG
.getNode(ISD::FADD
, DL
, VT
, N1
.getOperand(1),
10857 DAG
.getConstantFP(2.0, DL
, VT
), Flags
);
10858 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
.getOperand(0), NewCFP
, Flags
);
10862 if (N0
.getOpcode() == ISD::FADD
) {
10863 bool CFP00
= isConstantFPBuildVectorOrConstantFP(N0
.getOperand(0));
10864 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
10865 if (!CFP00
&& N0
.getOperand(0) == N0
.getOperand(1) &&
10866 (N0
.getOperand(0) == N1
)) {
10867 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
10868 N1
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
10872 if (N1
.getOpcode() == ISD::FADD
) {
10873 bool CFP10
= isConstantFPBuildVectorOrConstantFP(N1
.getOperand(0));
10874 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
10875 if (!CFP10
&& N1
.getOperand(0) == N1
.getOperand(1) &&
10876 N1
.getOperand(0) == N0
) {
10877 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
10878 N0
, DAG
.getConstantFP(3.0, DL
, VT
), Flags
);
10882 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
10883 if (N0
.getOpcode() == ISD::FADD
&& N1
.getOpcode() == ISD::FADD
&&
10884 N0
.getOperand(0) == N0
.getOperand(1) &&
10885 N1
.getOperand(0) == N1
.getOperand(1) &&
10886 N0
.getOperand(0) == N1
.getOperand(0)) {
10887 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0),
10888 DAG
.getConstantFP(4.0, DL
, VT
), Flags
);
10891 } // enable-unsafe-fp-math
10893 // FADD -> FMA combines:
10894 if (SDValue Fused
= visitFADDForFMACombine(N
)) {
10895 AddToWorklist(Fused
.getNode());
10901 SDValue
DAGCombiner::visitFSUB(SDNode
*N
) {
10902 SDValue N0
= N
->getOperand(0);
10903 SDValue N1
= N
->getOperand(1);
10904 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
10905 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
10906 EVT VT
= N
->getValueType(0);
10908 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10909 const SDNodeFlags Flags
= N
->getFlags();
10913 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
10916 // fold (fsub c1, c2) -> c1-c2
10917 if (N0CFP
&& N1CFP
)
10918 return DAG
.getNode(ISD::FSUB
, DL
, VT
, N0
, N1
, Flags
);
10920 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
10923 // (fsub A, 0) -> A
10924 if (N1CFP
&& N1CFP
->isZero()) {
10925 if (!N1CFP
->isNegative() || Options
.UnsafeFPMath
||
10926 Flags
.hasNoSignedZeros()) {
10932 // (fsub x, x) -> 0.0
10933 if (Options
.UnsafeFPMath
|| Flags
.hasNoNaNs())
10934 return DAG
.getConstantFP(0.0f
, DL
, VT
);
10937 // (fsub 0, B) -> -B
10938 if (N0CFP
&& N0CFP
->isZero()) {
10939 if (Options
.NoSignedZerosFPMath
|| Flags
.hasNoSignedZeros()) {
10940 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
))
10941 return GetNegatedExpression(N1
, DAG
, LegalOperations
);
10942 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
10943 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
);
10947 if ((Options
.UnsafeFPMath
||
10948 (Flags
.hasAllowReassociation() && Flags
.hasNoSignedZeros()))
10949 && N1
.getOpcode() == ISD::FADD
) {
10950 // X - (X + Y) -> -Y
10951 if (N0
== N1
->getOperand(0))
10952 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(1), Flags
);
10953 // X - (Y + X) -> -Y
10954 if (N0
== N1
->getOperand(1))
10955 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
->getOperand(0), Flags
);
10958 // fold (fsub A, (fneg B)) -> (fadd A, B)
10959 if (isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
))
10960 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
,
10961 GetNegatedExpression(N1
, DAG
, LegalOperations
), Flags
);
10963 // FSUB -> FMA combines:
10964 if (SDValue Fused
= visitFSUBForFMACombine(N
)) {
10965 AddToWorklist(Fused
.getNode());
10972 SDValue
DAGCombiner::visitFMUL(SDNode
*N
) {
10973 SDValue N0
= N
->getOperand(0);
10974 SDValue N1
= N
->getOperand(1);
10975 ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
10976 ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
10977 EVT VT
= N
->getValueType(0);
10979 const TargetOptions
&Options
= DAG
.getTarget().Options
;
10980 const SDNodeFlags Flags
= N
->getFlags();
10983 if (VT
.isVector()) {
10984 // This just handles C1 * C2 for vectors. Other vector folds are below.
10985 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
10989 // fold (fmul c1, c2) -> c1*c2
10990 if (N0CFP
&& N1CFP
)
10991 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, N1
, Flags
);
10993 // canonicalize constant to RHS
10994 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
10995 !isConstantFPBuildVectorOrConstantFP(N1
))
10996 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
, Flags
);
10998 // fold (fmul A, 1.0) -> A
10999 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
11002 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11005 if (Options
.UnsafeFPMath
||
11006 (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros())) {
11007 // fold (fmul A, 0) -> 0
11008 if (N1CFP
&& N1CFP
->isZero())
11012 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReassociation()) {
11013 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
11014 if (N0
.getOpcode() == ISD::FMUL
) {
11015 // Fold scalars or any vector constants (not just splats).
11016 // This fold is done in general by InstCombine, but extra fmul insts
11017 // may have been generated during lowering.
11018 SDValue N00
= N0
.getOperand(0);
11019 SDValue N01
= N0
.getOperand(1);
11020 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
11021 auto *BV00
= dyn_cast
<BuildVectorSDNode
>(N00
);
11022 auto *BV01
= dyn_cast
<BuildVectorSDNode
>(N01
);
11024 // Check 1: Make sure that the first operand of the inner multiply is NOT
11025 // a constant. Otherwise, we may induce infinite looping.
11026 if (!(isConstOrConstSplatFP(N00
) || (BV00
&& BV00
->isConstant()))) {
11027 // Check 2: Make sure that the second operand of the inner multiply and
11028 // the second operand of the outer multiply are constants.
11029 if ((N1CFP
&& isConstOrConstSplatFP(N01
)) ||
11030 (BV1
&& BV01
&& BV1
->isConstant() && BV01
->isConstant())) {
11031 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, N01
, N1
, Flags
);
11032 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N00
, MulConsts
, Flags
);
11037 // Match a special-case: we convert X * 2.0 into fadd.
11038 // fmul (fadd X, X), C -> fmul X, 2.0 * C
11039 if (N0
.getOpcode() == ISD::FADD
&& N0
.hasOneUse() &&
11040 N0
.getOperand(0) == N0
.getOperand(1)) {
11041 const SDValue Two
= DAG
.getConstantFP(2.0, DL
, VT
);
11042 SDValue MulConsts
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Two
, N1
, Flags
);
11043 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
.getOperand(0), MulConsts
, Flags
);
11047 // fold (fmul X, 2.0) -> (fadd X, X)
11048 if (N1CFP
&& N1CFP
->isExactlyValue(+2.0))
11049 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N0
, Flags
);
11051 // fold (fmul X, -1.0) -> (fneg X)
11052 if (N1CFP
&& N1CFP
->isExactlyValue(-1.0))
11053 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
11054 return DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
11056 // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
11057 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
)) {
11058 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
)) {
11059 // Both can be negated for free, check to see if at least one is cheaper
11061 if (LHSNeg
== 2 || RHSNeg
== 2)
11062 return DAG
.getNode(ISD::FMUL
, DL
, VT
,
11063 GetNegatedExpression(N0
, DAG
, LegalOperations
),
11064 GetNegatedExpression(N1
, DAG
, LegalOperations
),
11069 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
11070 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
11071 if (Flags
.hasNoNaNs() && Flags
.hasNoSignedZeros() &&
11072 (N0
.getOpcode() == ISD::SELECT
|| N1
.getOpcode() == ISD::SELECT
) &&
11073 TLI
.isOperationLegal(ISD::FABS
, VT
)) {
11074 SDValue Select
= N0
, X
= N1
;
11075 if (Select
.getOpcode() != ISD::SELECT
)
11076 std::swap(Select
, X
);
11078 SDValue Cond
= Select
.getOperand(0);
11079 auto TrueOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(1));
11080 auto FalseOpnd
= dyn_cast
<ConstantFPSDNode
>(Select
.getOperand(2));
11082 if (TrueOpnd
&& FalseOpnd
&&
11083 Cond
.getOpcode() == ISD::SETCC
&& Cond
.getOperand(0) == X
&&
11084 isa
<ConstantFPSDNode
>(Cond
.getOperand(1)) &&
11085 cast
<ConstantFPSDNode
>(Cond
.getOperand(1))->isExactlyValue(0.0)) {
11086 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
11095 std::swap(TrueOpnd
, FalseOpnd
);
11103 if (TrueOpnd
->isExactlyValue(-1.0) && FalseOpnd
->isExactlyValue(1.0) &&
11104 TLI
.isOperationLegal(ISD::FNEG
, VT
))
11105 return DAG
.getNode(ISD::FNEG
, DL
, VT
,
11106 DAG
.getNode(ISD::FABS
, DL
, VT
, X
));
11107 if (TrueOpnd
->isExactlyValue(1.0) && FalseOpnd
->isExactlyValue(-1.0))
11108 return DAG
.getNode(ISD::FABS
, DL
, VT
, X
);
11115 // FMUL -> FMA combines:
11116 if (SDValue Fused
= visitFMULForFMADistributiveCombine(N
)) {
11117 AddToWorklist(Fused
.getNode());
11124 SDValue
DAGCombiner::visitFMA(SDNode
*N
) {
11125 SDValue N0
= N
->getOperand(0);
11126 SDValue N1
= N
->getOperand(1);
11127 SDValue N2
= N
->getOperand(2);
11128 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11129 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
11130 EVT VT
= N
->getValueType(0);
11132 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11134 // FMA nodes have flags that propagate to the created nodes.
11135 const SDNodeFlags Flags
= N
->getFlags();
11136 bool UnsafeFPMath
= Options
.UnsafeFPMath
|| isContractable(N
);
11138 // Constant fold FMA.
11139 if (isa
<ConstantFPSDNode
>(N0
) &&
11140 isa
<ConstantFPSDNode
>(N1
) &&
11141 isa
<ConstantFPSDNode
>(N2
)) {
11142 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
, N1
, N2
);
11145 if (UnsafeFPMath
) {
11146 if (N0CFP
&& N0CFP
->isZero())
11148 if (N1CFP
&& N1CFP
->isZero())
11151 // TODO: The FMA node should have flags that propagate to these nodes.
11152 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
11153 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N1
, N2
);
11154 if (N1CFP
&& N1CFP
->isExactlyValue(1.0))
11155 return DAG
.getNode(ISD::FADD
, SDLoc(N
), VT
, N0
, N2
);
11157 // Canonicalize (fma c, x, y) -> (fma x, c, y)
11158 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
11159 !isConstantFPBuildVectorOrConstantFP(N1
))
11160 return DAG
.getNode(ISD::FMA
, SDLoc(N
), VT
, N1
, N0
, N2
);
11162 if (UnsafeFPMath
) {
11163 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
11164 if (N2
.getOpcode() == ISD::FMUL
&& N0
== N2
.getOperand(0) &&
11165 isConstantFPBuildVectorOrConstantFP(N1
) &&
11166 isConstantFPBuildVectorOrConstantFP(N2
.getOperand(1))) {
11167 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
11168 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
, N2
.getOperand(1),
11172 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
11173 if (N0
.getOpcode() == ISD::FMUL
&&
11174 isConstantFPBuildVectorOrConstantFP(N1
) &&
11175 isConstantFPBuildVectorOrConstantFP(N0
.getOperand(1))) {
11176 return DAG
.getNode(ISD::FMA
, DL
, VT
,
11178 DAG
.getNode(ISD::FMUL
, DL
, VT
, N1
, N0
.getOperand(1),
11184 // (fma x, 1, y) -> (fadd x, y)
11185 // (fma x, -1, y) -> (fadd (fneg x), y)
11187 if (N1CFP
->isExactlyValue(1.0))
11188 // TODO: The FMA node should have flags that propagate to this node.
11189 return DAG
.getNode(ISD::FADD
, DL
, VT
, N0
, N2
);
11191 if (N1CFP
->isExactlyValue(-1.0) &&
11192 (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))) {
11193 SDValue RHSNeg
= DAG
.getNode(ISD::FNEG
, DL
, VT
, N0
);
11194 AddToWorklist(RHSNeg
.getNode());
11195 // TODO: The FMA node should have flags that propagate to this node.
11196 return DAG
.getNode(ISD::FADD
, DL
, VT
, N2
, RHSNeg
);
11199 // fma (fneg x), K, y -> fma x -K, y
11200 if (N0
.getOpcode() == ISD::FNEG
&&
11201 (TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
11202 (N1
.hasOneUse() && !TLI
.isFPImmLegal(N1CFP
->getValueAPF(), VT
)))) {
11203 return DAG
.getNode(ISD::FMA
, DL
, VT
, N0
.getOperand(0),
11204 DAG
.getNode(ISD::FNEG
, DL
, VT
, N1
, Flags
), N2
);
11208 if (UnsafeFPMath
) {
11209 // (fma x, c, x) -> (fmul x, (c+1))
11210 if (N1CFP
&& N0
== N2
) {
11211 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
11212 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
11213 DAG
.getConstantFP(1.0, DL
, VT
), Flags
),
11217 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
11218 if (N1CFP
&& N2
.getOpcode() == ISD::FNEG
&& N2
.getOperand(0) == N0
) {
11219 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
11220 DAG
.getNode(ISD::FADD
, DL
, VT
, N1
,
11221 DAG
.getConstantFP(-1.0, DL
, VT
), Flags
),
11229 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
11231 // E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
11232 // Notice that this is not always beneficial. One reason is different targets
11233 // may have different costs for FDIV and FMUL, so sometimes the cost of two
11234 // FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
11235 // is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
11236 SDValue
DAGCombiner::combineRepeatedFPDivisors(SDNode
*N
) {
11237 bool UnsafeMath
= DAG
.getTarget().Options
.UnsafeFPMath
;
11238 const SDNodeFlags Flags
= N
->getFlags();
11239 if (!UnsafeMath
&& !Flags
.hasAllowReciprocal())
11242 // Skip if current node is a reciprocal.
11243 SDValue N0
= N
->getOperand(0);
11244 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11245 if (N0CFP
&& N0CFP
->isExactlyValue(1.0))
11248 // Exit early if the target does not want this transform or if there can't
11249 // possibly be enough uses of the divisor to make the transform worthwhile.
11250 SDValue N1
= N
->getOperand(1);
11251 unsigned MinUses
= TLI
.combineRepeatedFPDivisors();
11252 if (!MinUses
|| N1
->use_size() < MinUses
)
11255 // Find all FDIV users of the same divisor.
11256 // Use a set because duplicates may be present in the user list.
11257 SetVector
<SDNode
*> Users
;
11258 for (auto *U
: N1
->uses()) {
11259 if (U
->getOpcode() == ISD::FDIV
&& U
->getOperand(1) == N1
) {
11260 // This division is eligible for optimization only if global unsafe math
11261 // is enabled or if this division allows reciprocal formation.
11262 if (UnsafeMath
|| U
->getFlags().hasAllowReciprocal())
11267 // Now that we have the actual number of divisor uses, make sure it meets
11268 // the minimum threshold specified by the target.
11269 if (Users
.size() < MinUses
)
11272 EVT VT
= N
->getValueType(0);
11274 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
11275 SDValue Reciprocal
= DAG
.getNode(ISD::FDIV
, DL
, VT
, FPOne
, N1
, Flags
);
11277 // Dividend / Divisor -> Dividend * Reciprocal
11278 for (auto *U
: Users
) {
11279 SDValue Dividend
= U
->getOperand(0);
11280 if (Dividend
!= FPOne
) {
11281 SDValue NewNode
= DAG
.getNode(ISD::FMUL
, SDLoc(U
), VT
, Dividend
,
11282 Reciprocal
, Flags
);
11283 CombineTo(U
, NewNode
);
11284 } else if (U
!= Reciprocal
.getNode()) {
11285 // In the absence of fast-math-flags, this user node is always the
11286 // same node as Reciprocal, but with FMF they may be different nodes.
11287 CombineTo(U
, Reciprocal
);
11290 return SDValue(N
, 0); // N was replaced.
11293 SDValue
DAGCombiner::visitFDIV(SDNode
*N
) {
11294 SDValue N0
= N
->getOperand(0);
11295 SDValue N1
= N
->getOperand(1);
11296 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11297 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
11298 EVT VT
= N
->getValueType(0);
11300 const TargetOptions
&Options
= DAG
.getTarget().Options
;
11301 SDNodeFlags Flags
= N
->getFlags();
11305 if (SDValue FoldedVOp
= SimplifyVBinOp(N
))
11308 // fold (fdiv c1, c2) -> c1/c2
11309 if (N0CFP
&& N1CFP
)
11310 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
, N0
, N1
, Flags
);
11312 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11315 if (Options
.UnsafeFPMath
|| Flags
.hasAllowReciprocal()) {
11316 // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
11318 // Compute the reciprocal 1.0 / c2.
11319 const APFloat
&N1APF
= N1CFP
->getValueAPF();
11320 APFloat
Recip(N1APF
.getSemantics(), 1); // 1.0
11321 APFloat::opStatus st
= Recip
.divide(N1APF
, APFloat::rmNearestTiesToEven
);
11322 // Only do the transform if the reciprocal is a legal fp immediate that
11323 // isn't too nasty (eg NaN, denormal, ...).
11324 if ((st
== APFloat::opOK
|| st
== APFloat::opInexact
) && // Not too nasty
11325 (!LegalOperations
||
11326 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
11327 // backend)... we should handle this gracefully after Legalize.
11328 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
11329 TLI
.isOperationLegal(ISD::ConstantFP
, VT
) ||
11330 TLI
.isFPImmLegal(Recip
, VT
)))
11331 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
,
11332 DAG
.getConstantFP(Recip
, DL
, VT
), Flags
);
11335 // If this FDIV is part of a reciprocal square root, it may be folded
11336 // into a target-specific square root estimate instruction.
11337 if (N1
.getOpcode() == ISD::FSQRT
) {
11338 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0), Flags
)) {
11339 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
11341 } else if (N1
.getOpcode() == ISD::FP_EXTEND
&&
11342 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
11343 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
11345 RV
= DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N1
), VT
, RV
);
11346 AddToWorklist(RV
.getNode());
11347 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
11349 } else if (N1
.getOpcode() == ISD::FP_ROUND
&&
11350 N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
11351 if (SDValue RV
= buildRsqrtEstimate(N1
.getOperand(0).getOperand(0),
11353 RV
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N1
), VT
, RV
, N1
.getOperand(1));
11354 AddToWorklist(RV
.getNode());
11355 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
11357 } else if (N1
.getOpcode() == ISD::FMUL
) {
11358 // Look through an FMUL. Even though this won't remove the FDIV directly,
11359 // it's still worthwhile to get rid of the FSQRT if possible.
11362 if (N1
.getOperand(0).getOpcode() == ISD::FSQRT
) {
11363 SqrtOp
= N1
.getOperand(0);
11364 OtherOp
= N1
.getOperand(1);
11365 } else if (N1
.getOperand(1).getOpcode() == ISD::FSQRT
) {
11366 SqrtOp
= N1
.getOperand(1);
11367 OtherOp
= N1
.getOperand(0);
11369 if (SqrtOp
.getNode()) {
11370 // We found a FSQRT, so try to make this fold:
11371 // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
11372 if (SDValue RV
= buildRsqrtEstimate(SqrtOp
.getOperand(0), Flags
)) {
11373 RV
= DAG
.getNode(ISD::FDIV
, SDLoc(N1
), VT
, RV
, OtherOp
, Flags
);
11374 AddToWorklist(RV
.getNode());
11375 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
11380 // Fold into a reciprocal estimate and multiply instead of a real divide.
11381 if (SDValue RV
= BuildReciprocalEstimate(N1
, Flags
)) {
11382 AddToWorklist(RV
.getNode());
11383 return DAG
.getNode(ISD::FMUL
, DL
, VT
, N0
, RV
, Flags
);
11387 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
11388 if (char LHSNeg
= isNegatibleForFree(N0
, LegalOperations
, TLI
, &Options
)) {
11389 if (char RHSNeg
= isNegatibleForFree(N1
, LegalOperations
, TLI
, &Options
)) {
11390 // Both can be negated for free, check to see if at least one is cheaper
11392 if (LHSNeg
== 2 || RHSNeg
== 2)
11393 return DAG
.getNode(ISD::FDIV
, SDLoc(N
), VT
,
11394 GetNegatedExpression(N0
, DAG
, LegalOperations
),
11395 GetNegatedExpression(N1
, DAG
, LegalOperations
),
11400 if (SDValue CombineRepeatedDivisors
= combineRepeatedFPDivisors(N
))
11401 return CombineRepeatedDivisors
;
11406 SDValue
DAGCombiner::visitFREM(SDNode
*N
) {
11407 SDValue N0
= N
->getOperand(0);
11408 SDValue N1
= N
->getOperand(1);
11409 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11410 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
11411 EVT VT
= N
->getValueType(0);
11413 // fold (frem c1, c2) -> fmod(c1,c2)
11414 if (N0CFP
&& N1CFP
)
11415 return DAG
.getNode(ISD::FREM
, SDLoc(N
), VT
, N0
, N1
, N
->getFlags());
11417 if (SDValue NewSel
= foldBinOpIntoSelect(N
))
11423 SDValue
DAGCombiner::visitFSQRT(SDNode
*N
) {
11424 SDNodeFlags Flags
= N
->getFlags();
11425 if (!DAG
.getTarget().Options
.UnsafeFPMath
&&
11426 !Flags
.hasApproximateFuncs())
11429 SDValue N0
= N
->getOperand(0);
11430 if (TLI
.isFsqrtCheap(N0
, DAG
))
11433 // FSQRT nodes have flags that propagate to the created nodes.
11434 return buildSqrtEstimate(N0
, Flags
);
11437 /// copysign(x, fp_extend(y)) -> copysign(x, y)
11438 /// copysign(x, fp_round(y)) -> copysign(x, y)
11439 static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode
*N
) {
11440 SDValue N1
= N
->getOperand(1);
11441 if ((N1
.getOpcode() == ISD::FP_EXTEND
||
11442 N1
.getOpcode() == ISD::FP_ROUND
)) {
11443 // Do not optimize out type conversion of f128 type yet.
11444 // For some targets like x86_64, configuration is changed to keep one f128
11445 // value in one SSE register, but instruction selection cannot handle
11446 // FCOPYSIGN on SSE registers yet.
11447 EVT N1VT
= N1
->getValueType(0);
11448 EVT N1Op0VT
= N1
->getOperand(0).getValueType();
11449 return (N1VT
== N1Op0VT
|| N1Op0VT
!= MVT::f128
);
11454 SDValue
DAGCombiner::visitFCOPYSIGN(SDNode
*N
) {
11455 SDValue N0
= N
->getOperand(0);
11456 SDValue N1
= N
->getOperand(1);
11457 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11458 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
11459 EVT VT
= N
->getValueType(0);
11461 if (N0CFP
&& N1CFP
) // Constant fold
11462 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
);
11465 const APFloat
&V
= N1CFP
->getValueAPF();
11466 // copysign(x, c1) -> fabs(x) iff ispos(c1)
11467 // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
11468 if (!V
.isNegative()) {
11469 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FABS
, VT
))
11470 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
11472 if (!LegalOperations
|| TLI
.isOperationLegal(ISD::FNEG
, VT
))
11473 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
,
11474 DAG
.getNode(ISD::FABS
, SDLoc(N0
), VT
, N0
));
11478 // copysign(fabs(x), y) -> copysign(x, y)
11479 // copysign(fneg(x), y) -> copysign(x, y)
11480 // copysign(copysign(x,z), y) -> copysign(x, y)
11481 if (N0
.getOpcode() == ISD::FABS
|| N0
.getOpcode() == ISD::FNEG
||
11482 N0
.getOpcode() == ISD::FCOPYSIGN
)
11483 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
.getOperand(0), N1
);
11485 // copysign(x, abs(y)) -> abs(x)
11486 if (N1
.getOpcode() == ISD::FABS
)
11487 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
11489 // copysign(x, copysign(y,z)) -> copysign(x, z)
11490 if (N1
.getOpcode() == ISD::FCOPYSIGN
)
11491 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(1));
11493 // copysign(x, fp_extend(y)) -> copysign(x, y)
11494 // copysign(x, fp_round(y)) -> copysign(x, y)
11495 if (CanCombineFCOPYSIGN_EXTEND_ROUND(N
))
11496 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
, N0
, N1
.getOperand(0));
11501 static SDValue
foldFPToIntToFP(SDNode
*N
, SelectionDAG
&DAG
,
11502 const TargetLowering
&TLI
) {
11503 // This optimization is guarded by a function attribute because it may produce
11504 // unexpected results. Ie, programs may be relying on the platform-specific
11505 // undefined behavior when the float-to-int conversion overflows.
11506 const Function
&F
= DAG
.getMachineFunction().getFunction();
11507 Attribute StrictOverflow
= F
.getFnAttribute("strict-float-cast-overflow");
11508 if (StrictOverflow
.getValueAsString().equals("false"))
11511 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
11512 // replacing casts with a libcall. We also must be allowed to ignore -0.0
11513 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
11514 // conversions would return +0.0.
11515 // FIXME: We should be able to use node-level FMF here.
11516 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
11517 EVT VT
= N
->getValueType(0);
11518 if (!TLI
.isOperationLegal(ISD::FTRUNC
, VT
) ||
11519 !DAG
.getTarget().Options
.NoSignedZerosFPMath
)
11522 // fptosi/fptoui round towards zero, so converting from FP to integer and
11523 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
11524 SDValue N0
= N
->getOperand(0);
11525 if (N
->getOpcode() == ISD::SINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_SINT
&&
11526 N0
.getOperand(0).getValueType() == VT
)
11527 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
11529 if (N
->getOpcode() == ISD::UINT_TO_FP
&& N0
.getOpcode() == ISD::FP_TO_UINT
&&
11530 N0
.getOperand(0).getValueType() == VT
)
11531 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
.getOperand(0));
11536 SDValue
DAGCombiner::visitSINT_TO_FP(SDNode
*N
) {
11537 SDValue N0
= N
->getOperand(0);
11538 EVT VT
= N
->getValueType(0);
11539 EVT OpVT
= N0
.getValueType();
11541 // fold (sint_to_fp c1) -> c1fp
11542 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
11543 // ...but only if the target supports immediate floating-point values
11544 (!LegalOperations
||
11545 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
11546 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
11548 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
11549 // but UINT_TO_FP is legal on this target, try to convert.
11550 if (!TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
) &&
11551 TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
)) {
11552 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
11553 if (DAG
.SignBitIsZero(N0
))
11554 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
11557 // The next optimizations are desirable only if SELECT_CC can be lowered.
11558 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
11559 // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
11560 if (N0
.getOpcode() == ISD::SETCC
&& N0
.getValueType() == MVT::i1
&&
11562 (!LegalOperations
||
11563 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
11566 { N0
.getOperand(0), N0
.getOperand(1),
11567 DAG
.getConstantFP(-1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
11568 N0
.getOperand(2) };
11569 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
11572 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
11573 // (select_cc x, y, 1.0, 0.0,, cc)
11574 if (N0
.getOpcode() == ISD::ZERO_EXTEND
&&
11575 N0
.getOperand(0).getOpcode() == ISD::SETCC
&&!VT
.isVector() &&
11576 (!LegalOperations
||
11577 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
11580 { N0
.getOperand(0).getOperand(0), N0
.getOperand(0).getOperand(1),
11581 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
11582 N0
.getOperand(0).getOperand(2) };
11583 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
11587 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
11593 SDValue
DAGCombiner::visitUINT_TO_FP(SDNode
*N
) {
11594 SDValue N0
= N
->getOperand(0);
11595 EVT VT
= N
->getValueType(0);
11596 EVT OpVT
= N0
.getValueType();
11598 // fold (uint_to_fp c1) -> c1fp
11599 if (DAG
.isConstantIntBuildVectorOrConstantInt(N0
) &&
11600 // ...but only if the target supports immediate floating-point values
11601 (!LegalOperations
||
11602 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
)))
11603 return DAG
.getNode(ISD::UINT_TO_FP
, SDLoc(N
), VT
, N0
);
11605 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
11606 // but SINT_TO_FP is legal on this target, try to convert.
11607 if (!TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, OpVT
) &&
11608 TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, OpVT
)) {
11609 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
11610 if (DAG
.SignBitIsZero(N0
))
11611 return DAG
.getNode(ISD::SINT_TO_FP
, SDLoc(N
), VT
, N0
);
11614 // The next optimizations are desirable only if SELECT_CC can be lowered.
11615 if (TLI
.isOperationLegalOrCustom(ISD::SELECT_CC
, VT
) || !LegalOperations
) {
11616 // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
11617 if (N0
.getOpcode() == ISD::SETCC
&& !VT
.isVector() &&
11618 (!LegalOperations
||
11619 TLI
.isOperationLegalOrCustom(ISD::ConstantFP
, VT
))) {
11622 { N0
.getOperand(0), N0
.getOperand(1),
11623 DAG
.getConstantFP(1.0, DL
, VT
), DAG
.getConstantFP(0.0, DL
, VT
),
11624 N0
.getOperand(2) };
11625 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, Ops
);
11629 if (SDValue FTrunc
= foldFPToIntToFP(N
, DAG
, TLI
))
11635 // Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
11636 static SDValue
FoldIntToFPToInt(SDNode
*N
, SelectionDAG
&DAG
) {
11637 SDValue N0
= N
->getOperand(0);
11638 EVT VT
= N
->getValueType(0);
11640 if (N0
.getOpcode() != ISD::UINT_TO_FP
&& N0
.getOpcode() != ISD::SINT_TO_FP
)
11643 SDValue Src
= N0
.getOperand(0);
11644 EVT SrcVT
= Src
.getValueType();
11645 bool IsInputSigned
= N0
.getOpcode() == ISD::SINT_TO_FP
;
11646 bool IsOutputSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
11648 // We can safely assume the conversion won't overflow the output range,
11649 // because (for example) (uint8_t)18293.f is undefined behavior.
11651 // Since we can assume the conversion won't overflow, our decision as to
11652 // whether the input will fit in the float should depend on the minimum
11653 // of the input range and output range.
11655 // This means this is also safe for a signed input and unsigned output, since
11656 // a negative input would lead to undefined behavior.
11657 unsigned InputSize
= (int)SrcVT
.getScalarSizeInBits() - IsInputSigned
;
11658 unsigned OutputSize
= (int)VT
.getScalarSizeInBits() - IsOutputSigned
;
11659 unsigned ActualSize
= std::min(InputSize
, OutputSize
);
11660 const fltSemantics
&sem
= DAG
.EVTToAPFloatSemantics(N0
.getValueType());
11662 // We can only fold away the float conversion if the input range can be
11663 // represented exactly in the float range.
11664 if (APFloat::semanticsPrecision(sem
) >= ActualSize
) {
11665 if (VT
.getScalarSizeInBits() > SrcVT
.getScalarSizeInBits()) {
11666 unsigned ExtOp
= IsInputSigned
&& IsOutputSigned
? ISD::SIGN_EXTEND
11667 : ISD::ZERO_EXTEND
;
11668 return DAG
.getNode(ExtOp
, SDLoc(N
), VT
, Src
);
11670 if (VT
.getScalarSizeInBits() < SrcVT
.getScalarSizeInBits())
11671 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), VT
, Src
);
11672 return DAG
.getBitcast(VT
, Src
);
11677 SDValue
DAGCombiner::visitFP_TO_SINT(SDNode
*N
) {
11678 SDValue N0
= N
->getOperand(0);
11679 EVT VT
= N
->getValueType(0);
11681 // fold (fp_to_sint c1fp) -> c1
11682 if (isConstantFPBuildVectorOrConstantFP(N0
))
11683 return DAG
.getNode(ISD::FP_TO_SINT
, SDLoc(N
), VT
, N0
);
11685 return FoldIntToFPToInt(N
, DAG
);
11688 SDValue
DAGCombiner::visitFP_TO_UINT(SDNode
*N
) {
11689 SDValue N0
= N
->getOperand(0);
11690 EVT VT
= N
->getValueType(0);
11692 // fold (fp_to_uint c1fp) -> c1
11693 if (isConstantFPBuildVectorOrConstantFP(N0
))
11694 return DAG
.getNode(ISD::FP_TO_UINT
, SDLoc(N
), VT
, N0
);
11696 return FoldIntToFPToInt(N
, DAG
);
11699 SDValue
DAGCombiner::visitFP_ROUND(SDNode
*N
) {
11700 SDValue N0
= N
->getOperand(0);
11701 SDValue N1
= N
->getOperand(1);
11702 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11703 EVT VT
= N
->getValueType(0);
11705 // fold (fp_round c1fp) -> c1fp
11707 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
, N0
, N1
);
11709 // fold (fp_round (fp_extend x)) -> x
11710 if (N0
.getOpcode() == ISD::FP_EXTEND
&& VT
== N0
.getOperand(0).getValueType())
11711 return N0
.getOperand(0);
11713 // fold (fp_round (fp_round x)) -> (fp_round x)
11714 if (N0
.getOpcode() == ISD::FP_ROUND
) {
11715 const bool NIsTrunc
= N
->getConstantOperandVal(1) == 1;
11716 const bool N0IsTrunc
= N0
.getConstantOperandVal(1) == 1;
11718 // Skip this folding if it results in an fp_round from f80 to f16.
11720 // f80 to f16 always generates an expensive (and as yet, unimplemented)
11721 // libcall to __truncxfhf2 instead of selecting native f16 conversion
11722 // instructions from f32 or f64. Moreover, the first (value-preserving)
11723 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
11725 if (N0
.getOperand(0).getValueType() == MVT::f80
&& VT
== MVT::f16
)
11728 // If the first fp_round isn't a value preserving truncation, it might
11729 // introduce a tie in the second fp_round, that wouldn't occur in the
11730 // single-step fp_round we want to fold to.
11731 // In other words, double rounding isn't the same as rounding.
11732 // Also, this is a value preserving truncation iff both fp_round's are.
11733 if (DAG
.getTarget().Options
.UnsafeFPMath
|| N0IsTrunc
) {
11735 return DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, N0
.getOperand(0),
11736 DAG
.getIntPtrConstant(NIsTrunc
&& N0IsTrunc
, DL
));
11740 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
11741 if (N0
.getOpcode() == ISD::FCOPYSIGN
&& N0
.getNode()->hasOneUse()) {
11742 SDValue Tmp
= DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
), VT
,
11743 N0
.getOperand(0), N1
);
11744 AddToWorklist(Tmp
.getNode());
11745 return DAG
.getNode(ISD::FCOPYSIGN
, SDLoc(N
), VT
,
11746 Tmp
, N0
.getOperand(1));
11749 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11755 SDValue
DAGCombiner::visitFP_ROUND_INREG(SDNode
*N
) {
11756 SDValue N0
= N
->getOperand(0);
11757 EVT VT
= N
->getValueType(0);
11758 EVT EVT
= cast
<VTSDNode
>(N
->getOperand(1))->getVT();
11759 ConstantFPSDNode
*N0CFP
= dyn_cast
<ConstantFPSDNode
>(N0
);
11761 // fold (fp_round_inreg c1fp) -> c1fp
11762 if (N0CFP
&& isTypeLegal(EVT
)) {
11764 SDValue Round
= DAG
.getConstantFP(*N0CFP
->getConstantFPValue(), DL
, EVT
);
11765 return DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, Round
);
11771 SDValue
DAGCombiner::visitFP_EXTEND(SDNode
*N
) {
11772 SDValue N0
= N
->getOperand(0);
11773 EVT VT
= N
->getValueType(0);
11775 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
11776 if (N
->hasOneUse() &&
11777 N
->use_begin()->getOpcode() == ISD::FP_ROUND
)
11780 // fold (fp_extend c1fp) -> c1fp
11781 if (isConstantFPBuildVectorOrConstantFP(N0
))
11782 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, N0
);
11784 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
11785 if (N0
.getOpcode() == ISD::FP16_TO_FP
&&
11786 TLI
.getOperationAction(ISD::FP16_TO_FP
, VT
) == TargetLowering::Legal
)
11787 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), VT
, N0
.getOperand(0));
11789 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
11791 if (N0
.getOpcode() == ISD::FP_ROUND
11792 && N0
.getConstantOperandVal(1) == 1) {
11793 SDValue In
= N0
.getOperand(0);
11794 if (In
.getValueType() == VT
) return In
;
11795 if (VT
.bitsLT(In
.getValueType()))
11796 return DAG
.getNode(ISD::FP_ROUND
, SDLoc(N
), VT
,
11797 In
, N0
.getOperand(1));
11798 return DAG
.getNode(ISD::FP_EXTEND
, SDLoc(N
), VT
, In
);
11801 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
11802 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
11803 TLI
.isLoadExtLegal(ISD::EXTLOAD
, VT
, N0
.getValueType())) {
11804 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
11805 SDValue ExtLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(N
), VT
,
11807 LN0
->getBasePtr(), N0
.getValueType(),
11808 LN0
->getMemOperand());
11809 CombineTo(N
, ExtLoad
);
11810 CombineTo(N0
.getNode(),
11811 DAG
.getNode(ISD::FP_ROUND
, SDLoc(N0
),
11812 N0
.getValueType(), ExtLoad
,
11813 DAG
.getIntPtrConstant(1, SDLoc(N0
))),
11814 ExtLoad
.getValue(1));
11815 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
11818 if (SDValue NewVSel
= matchVSelectOpSizesWithSetCC(N
))
11824 SDValue
DAGCombiner::visitFCEIL(SDNode
*N
) {
11825 SDValue N0
= N
->getOperand(0);
11826 EVT VT
= N
->getValueType(0);
11828 // fold (fceil c1) -> fceil(c1)
11829 if (isConstantFPBuildVectorOrConstantFP(N0
))
11830 return DAG
.getNode(ISD::FCEIL
, SDLoc(N
), VT
, N0
);
11835 SDValue
DAGCombiner::visitFTRUNC(SDNode
*N
) {
11836 SDValue N0
= N
->getOperand(0);
11837 EVT VT
= N
->getValueType(0);
11839 // fold (ftrunc c1) -> ftrunc(c1)
11840 if (isConstantFPBuildVectorOrConstantFP(N0
))
11841 return DAG
.getNode(ISD::FTRUNC
, SDLoc(N
), VT
, N0
);
11843 // fold ftrunc (known rounded int x) -> x
11844 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
11845 // likely to be generated to extract integer from a rounded floating value.
11846 switch (N0
.getOpcode()) {
11850 case ISD::FNEARBYINT
:
11859 SDValue
DAGCombiner::visitFFLOOR(SDNode
*N
) {
11860 SDValue N0
= N
->getOperand(0);
11861 EVT VT
= N
->getValueType(0);
11863 // fold (ffloor c1) -> ffloor(c1)
11864 if (isConstantFPBuildVectorOrConstantFP(N0
))
11865 return DAG
.getNode(ISD::FFLOOR
, SDLoc(N
), VT
, N0
);
11870 // FIXME: FNEG and FABS have a lot in common; refactor.
11871 SDValue
DAGCombiner::visitFNEG(SDNode
*N
) {
11872 SDValue N0
= N
->getOperand(0);
11873 EVT VT
= N
->getValueType(0);
11875 // Constant fold FNEG.
11876 if (isConstantFPBuildVectorOrConstantFP(N0
))
11877 return DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
);
11879 if (isNegatibleForFree(N0
, LegalOperations
, DAG
.getTargetLoweringInfo(),
11880 &DAG
.getTarget().Options
))
11881 return GetNegatedExpression(N0
, DAG
, LegalOperations
);
11883 // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
11884 // constant pool values.
11885 if (!TLI
.isFNegFree(VT
) &&
11886 N0
.getOpcode() == ISD::BITCAST
&&
11887 N0
.getNode()->hasOneUse()) {
11888 SDValue Int
= N0
.getOperand(0);
11889 EVT IntVT
= Int
.getValueType();
11890 if (IntVT
.isInteger() && !IntVT
.isVector()) {
11892 if (N0
.getValueType().isVector()) {
11893 // For a vector, get a mask such as 0x80... per scalar element
11895 SignMask
= APInt::getSignMask(N0
.getScalarValueSizeInBits());
11896 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
11898 // For a scalar, just generate 0x80...
11899 SignMask
= APInt::getSignMask(IntVT
.getSizeInBits());
11902 Int
= DAG
.getNode(ISD::XOR
, DL0
, IntVT
, Int
,
11903 DAG
.getConstant(SignMask
, DL0
, IntVT
));
11904 AddToWorklist(Int
.getNode());
11905 return DAG
.getBitcast(VT
, Int
);
11909 // (fneg (fmul c, x)) -> (fmul -c, x)
11910 if (N0
.getOpcode() == ISD::FMUL
&&
11911 (N0
.getNode()->hasOneUse() || !TLI
.isFNegFree(VT
))) {
11912 ConstantFPSDNode
*CFP1
= dyn_cast
<ConstantFPSDNode
>(N0
.getOperand(1));
11914 APFloat CVal
= CFP1
->getValueAPF();
11916 if (Level
>= AfterLegalizeDAG
&&
11917 (TLI
.isFPImmLegal(CVal
, VT
) ||
11918 TLI
.isOperationLegal(ISD::ConstantFP
, VT
)))
11919 return DAG
.getNode(
11920 ISD::FMUL
, SDLoc(N
), VT
, N0
.getOperand(0),
11921 DAG
.getNode(ISD::FNEG
, SDLoc(N
), VT
, N0
.getOperand(1)),
11929 SDValue
DAGCombiner::visitFMINNUM(SDNode
*N
) {
11930 SDValue N0
= N
->getOperand(0);
11931 SDValue N1
= N
->getOperand(1);
11932 EVT VT
= N
->getValueType(0);
11933 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
11934 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
11936 if (N0CFP
&& N1CFP
) {
11937 const APFloat
&C0
= N0CFP
->getValueAPF();
11938 const APFloat
&C1
= N1CFP
->getValueAPF();
11939 return DAG
.getConstantFP(minnum(C0
, C1
), SDLoc(N
), VT
);
11942 // Canonicalize to constant on RHS.
11943 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
11944 !isConstantFPBuildVectorOrConstantFP(N1
))
11945 return DAG
.getNode(ISD::FMINNUM
, SDLoc(N
), VT
, N1
, N0
);
11950 SDValue
DAGCombiner::visitFMAXNUM(SDNode
*N
) {
11951 SDValue N0
= N
->getOperand(0);
11952 SDValue N1
= N
->getOperand(1);
11953 EVT VT
= N
->getValueType(0);
11954 const ConstantFPSDNode
*N0CFP
= isConstOrConstSplatFP(N0
);
11955 const ConstantFPSDNode
*N1CFP
= isConstOrConstSplatFP(N1
);
11957 if (N0CFP
&& N1CFP
) {
11958 const APFloat
&C0
= N0CFP
->getValueAPF();
11959 const APFloat
&C1
= N1CFP
->getValueAPF();
11960 return DAG
.getConstantFP(maxnum(C0
, C1
), SDLoc(N
), VT
);
11963 // Canonicalize to constant on RHS.
11964 if (isConstantFPBuildVectorOrConstantFP(N0
) &&
11965 !isConstantFPBuildVectorOrConstantFP(N1
))
11966 return DAG
.getNode(ISD::FMAXNUM
, SDLoc(N
), VT
, N1
, N0
);
11971 SDValue
DAGCombiner::visitFABS(SDNode
*N
) {
11972 SDValue N0
= N
->getOperand(0);
11973 EVT VT
= N
->getValueType(0);
11975 // fold (fabs c1) -> fabs(c1)
11976 if (isConstantFPBuildVectorOrConstantFP(N0
))
11977 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
);
11979 // fold (fabs (fabs x)) -> (fabs x)
11980 if (N0
.getOpcode() == ISD::FABS
)
11981 return N
->getOperand(0);
11983 // fold (fabs (fneg x)) -> (fabs x)
11984 // fold (fabs (fcopysign x, y)) -> (fabs x)
11985 if (N0
.getOpcode() == ISD::FNEG
|| N0
.getOpcode() == ISD::FCOPYSIGN
)
11986 return DAG
.getNode(ISD::FABS
, SDLoc(N
), VT
, N0
.getOperand(0));
11988 // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
11989 // constant pool values.
11990 if (!TLI
.isFAbsFree(VT
) &&
11991 N0
.getOpcode() == ISD::BITCAST
&&
11992 N0
.getNode()->hasOneUse()) {
11993 SDValue Int
= N0
.getOperand(0);
11994 EVT IntVT
= Int
.getValueType();
11995 if (IntVT
.isInteger() && !IntVT
.isVector()) {
11997 if (N0
.getValueType().isVector()) {
11998 // For a vector, get a mask such as 0x7f... per scalar element
12000 SignMask
= ~APInt::getSignMask(N0
.getScalarValueSizeInBits());
12001 SignMask
= APInt::getSplat(IntVT
.getSizeInBits(), SignMask
);
12003 // For a scalar, just generate 0x7f...
12004 SignMask
= ~APInt::getSignMask(IntVT
.getSizeInBits());
12007 Int
= DAG
.getNode(ISD::AND
, DL
, IntVT
, Int
,
12008 DAG
.getConstant(SignMask
, DL
, IntVT
));
12009 AddToWorklist(Int
.getNode());
12010 return DAG
.getBitcast(N
->getValueType(0), Int
);
12017 SDValue
DAGCombiner::visitBRCOND(SDNode
*N
) {
12018 SDValue Chain
= N
->getOperand(0);
12019 SDValue N1
= N
->getOperand(1);
12020 SDValue N2
= N
->getOperand(2);
12022 // If N is a constant we could fold this into a fallthrough or unconditional
12023 // branch. However that doesn't happen very often in normal code, because
12024 // Instcombine/SimplifyCFG should have handled the available opportunities.
12025 // If we did this folding here, it would be necessary to update the
12026 // MachineBasicBlock CFG, which is awkward.
12028 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
12030 if (N1
.getOpcode() == ISD::SETCC
&&
12031 TLI
.isOperationLegalOrCustom(ISD::BR_CC
,
12032 N1
.getOperand(0).getValueType())) {
12033 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
12034 Chain
, N1
.getOperand(2),
12035 N1
.getOperand(0), N1
.getOperand(1), N2
);
12038 if (N1
.hasOneUse()) {
12039 if (SDValue NewN1
= rebuildSetCC(N1
))
12040 return DAG
.getNode(ISD::BRCOND
, SDLoc(N
), MVT::Other
, Chain
, NewN1
, N2
);
12046 SDValue
DAGCombiner::rebuildSetCC(SDValue N
) {
12047 if (N
.getOpcode() == ISD::SRL
||
12048 (N
.getOpcode() == ISD::TRUNCATE
&&
12049 (N
.getOperand(0).hasOneUse() &&
12050 N
.getOperand(0).getOpcode() == ISD::SRL
))) {
12051 // Look pass the truncate.
12052 if (N
.getOpcode() == ISD::TRUNCATE
)
12053 N
= N
.getOperand(0);
12055 // Match this pattern so that we can generate simpler code:
12058 // %b = and i32 %a, 2
12059 // %c = srl i32 %b, 1
12060 // brcond i32 %c ...
12065 // %b = and i32 %a, 2
12066 // %c = setcc eq %b, 0
12069 // This applies only when the AND constant value has one bit set and the
12070 // SRL constant is equal to the log2 of the AND constant. The back-end is
12071 // smart enough to convert the result into a TEST/JMP sequence.
12072 SDValue Op0
= N
.getOperand(0);
12073 SDValue Op1
= N
.getOperand(1);
12075 if (Op0
.getOpcode() == ISD::AND
&& Op1
.getOpcode() == ISD::Constant
) {
12076 SDValue AndOp1
= Op0
.getOperand(1);
12078 if (AndOp1
.getOpcode() == ISD::Constant
) {
12079 const APInt
&AndConst
= cast
<ConstantSDNode
>(AndOp1
)->getAPIntValue();
12081 if (AndConst
.isPowerOf2() &&
12082 cast
<ConstantSDNode
>(Op1
)->getAPIntValue() == AndConst
.logBase2()) {
12084 return DAG
.getSetCC(DL
, getSetCCResultType(Op0
.getValueType()),
12085 Op0
, DAG
.getConstant(0, DL
, Op0
.getValueType()),
12092 // Transform br(xor(x, y)) -> br(x != y)
12093 // Transform br(xor(xor(x,y), 1)) -> br (x == y)
12094 if (N
.getOpcode() == ISD::XOR
) {
12095 // Because we may call this on a speculatively constructed
12096 // SimplifiedSetCC Node, we need to simplify this node first.
12097 // Ideally this should be folded into SimplifySetCC and not
12098 // here. For now, grab a handle to N so we don't lose it from
12099 // replacements interal to the visit.
12100 HandleSDNode
XORHandle(N
);
12101 while (N
.getOpcode() == ISD::XOR
) {
12102 SDValue Tmp
= visitXOR(N
.getNode());
12103 // No simplification done.
12104 if (!Tmp
.getNode())
12106 // Returning N is form in-visit replacement that may invalidated
12107 // N. Grab value from Handle.
12108 if (Tmp
.getNode() == N
.getNode())
12109 N
= XORHandle
.getValue();
12110 else // Node simplified. Try simplifying again.
12114 if (N
.getOpcode() != ISD::XOR
)
12117 SDNode
*TheXor
= N
.getNode();
12119 SDValue Op0
= TheXor
->getOperand(0);
12120 SDValue Op1
= TheXor
->getOperand(1);
12122 if (Op0
.getOpcode() != ISD::SETCC
&& Op1
.getOpcode() != ISD::SETCC
) {
12123 bool Equal
= false;
12124 if (isOneConstant(Op0
) && Op0
.hasOneUse() &&
12125 Op0
.getOpcode() == ISD::XOR
) {
12126 TheXor
= Op0
.getNode();
12130 EVT SetCCVT
= N
.getValueType();
12132 SetCCVT
= getSetCCResultType(SetCCVT
);
12133 // Replace the uses of XOR with SETCC
12134 return DAG
.getSetCC(SDLoc(TheXor
), SetCCVT
, Op0
, Op1
,
12135 Equal
? ISD::SETEQ
: ISD::SETNE
);
12142 // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
12144 SDValue
DAGCombiner::visitBR_CC(SDNode
*N
) {
12145 CondCodeSDNode
*CC
= cast
<CondCodeSDNode
>(N
->getOperand(1));
12146 SDValue CondLHS
= N
->getOperand(2), CondRHS
= N
->getOperand(3);
12148 // If N is a constant we could fold this into a fallthrough or unconditional
12149 // branch. However that doesn't happen very often in normal code, because
12150 // Instcombine/SimplifyCFG should have handled the available opportunities.
12151 // If we did this folding here, it would be necessary to update the
12152 // MachineBasicBlock CFG, which is awkward.
12154 // Use SimplifySetCC to simplify SETCC's.
12155 SDValue Simp
= SimplifySetCC(getSetCCResultType(CondLHS
.getValueType()),
12156 CondLHS
, CondRHS
, CC
->get(), SDLoc(N
),
12158 if (Simp
.getNode()) AddToWorklist(Simp
.getNode());
12160 // fold to a simpler setcc
12161 if (Simp
.getNode() && Simp
.getOpcode() == ISD::SETCC
)
12162 return DAG
.getNode(ISD::BR_CC
, SDLoc(N
), MVT::Other
,
12163 N
->getOperand(0), Simp
.getOperand(2),
12164 Simp
.getOperand(0), Simp
.getOperand(1),
12170 /// Return true if 'Use' is a load or a store that uses N as its base pointer
12171 /// and that N may be folded in the load / store addressing mode.
12172 static bool canFoldInAddressingMode(SDNode
*N
, SDNode
*Use
,
12174 const TargetLowering
&TLI
) {
12178 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Use
)) {
12179 if (LD
->isIndexed() || LD
->getBasePtr().getNode() != N
)
12181 VT
= LD
->getMemoryVT();
12182 AS
= LD
->getAddressSpace();
12183 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(Use
)) {
12184 if (ST
->isIndexed() || ST
->getBasePtr().getNode() != N
)
12186 VT
= ST
->getMemoryVT();
12187 AS
= ST
->getAddressSpace();
12191 TargetLowering::AddrMode AM
;
12192 if (N
->getOpcode() == ISD::ADD
) {
12193 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12196 AM
.BaseOffs
= Offset
->getSExtValue();
12200 } else if (N
->getOpcode() == ISD::SUB
) {
12201 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
12204 AM
.BaseOffs
= -Offset
->getSExtValue();
12211 return TLI
.isLegalAddressingMode(DAG
.getDataLayout(), AM
,
12212 VT
.getTypeForEVT(*DAG
.getContext()), AS
);
12215 /// Try turning a load/store into a pre-indexed load/store when the base
12216 /// pointer is an add or subtract and it has other uses besides the load/store.
12217 /// After the transformation, the new indexed load/store has effectively folded
12218 /// the add/subtract in and all of its other uses are redirected to the
12219 /// new load/store.
12220 bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode
*N
) {
12221 if (Level
< AfterLegalizeDAG
)
12224 bool isLoad
= true;
12227 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
12228 if (LD
->isIndexed())
12230 VT
= LD
->getMemoryVT();
12231 if (!TLI
.isIndexedLoadLegal(ISD::PRE_INC
, VT
) &&
12232 !TLI
.isIndexedLoadLegal(ISD::PRE_DEC
, VT
))
12234 Ptr
= LD
->getBasePtr();
12235 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
12236 if (ST
->isIndexed())
12238 VT
= ST
->getMemoryVT();
12239 if (!TLI
.isIndexedStoreLegal(ISD::PRE_INC
, VT
) &&
12240 !TLI
.isIndexedStoreLegal(ISD::PRE_DEC
, VT
))
12242 Ptr
= ST
->getBasePtr();
12248 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
12249 // out. There is no reason to make this a preinc/predec.
12250 if ((Ptr
.getOpcode() != ISD::ADD
&& Ptr
.getOpcode() != ISD::SUB
) ||
12251 Ptr
.getNode()->hasOneUse())
12254 // Ask the target to do addressing mode selection.
12257 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
12258 if (!TLI
.getPreIndexedAddressParts(N
, BasePtr
, Offset
, AM
, DAG
))
12261 // Backends without true r+i pre-indexed forms may need to pass a
12262 // constant base with a variable offset so that constant coercion
12263 // will work with the patterns in canonical form.
12264 bool Swapped
= false;
12265 if (isa
<ConstantSDNode
>(BasePtr
)) {
12266 std::swap(BasePtr
, Offset
);
12270 // Don't create a indexed load / store with zero offset.
12271 if (isNullConstant(Offset
))
12274 // Try turning it into a pre-indexed load / store except when:
12275 // 1) The new base ptr is a frame index.
12276 // 2) If N is a store and the new base ptr is either the same as or is a
12277 // predecessor of the value being stored.
12278 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
12279 // that would create a cycle.
12280 // 4) All uses are load / store ops that use it as old base ptr.
12282 // Check #1. Preinc'ing a frame index would require copying the stack pointer
12283 // (plus the implicit offset) to a register to preinc anyway.
12284 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
12289 SDValue Val
= cast
<StoreSDNode
>(N
)->getValue();
12290 if (Val
== BasePtr
|| BasePtr
.getNode()->isPredecessorOf(Val
.getNode()))
12294 // Caches for hasPredecessorHelper.
12295 SmallPtrSet
<const SDNode
*, 32> Visited
;
12296 SmallVector
<const SDNode
*, 16> Worklist
;
12297 Worklist
.push_back(N
);
12299 // If the offset is a constant, there may be other adds of constants that
12300 // can be folded with this one. We should do this to avoid having to keep
12301 // a copy of the original base pointer.
12302 SmallVector
<SDNode
*, 16> OtherUses
;
12303 if (isa
<ConstantSDNode
>(Offset
))
12304 for (SDNode::use_iterator UI
= BasePtr
.getNode()->use_begin(),
12305 UE
= BasePtr
.getNode()->use_end();
12307 SDUse
&Use
= UI
.getUse();
12308 // Skip the use that is Ptr and uses of other results from BasePtr's
12309 // node (important for nodes that return multiple results).
12310 if (Use
.getUser() == Ptr
.getNode() || Use
!= BasePtr
)
12313 if (SDNode::hasPredecessorHelper(Use
.getUser(), Visited
, Worklist
))
12316 if (Use
.getUser()->getOpcode() != ISD::ADD
&&
12317 Use
.getUser()->getOpcode() != ISD::SUB
) {
12322 SDValue Op1
= Use
.getUser()->getOperand((UI
.getOperandNo() + 1) & 1);
12323 if (!isa
<ConstantSDNode
>(Op1
)) {
12328 // FIXME: In some cases, we can be smarter about this.
12329 if (Op1
.getValueType() != Offset
.getValueType()) {
12334 OtherUses
.push_back(Use
.getUser());
12338 std::swap(BasePtr
, Offset
);
12340 // Now check for #3 and #4.
12341 bool RealUse
= false;
12343 for (SDNode
*Use
: Ptr
.getNode()->uses()) {
12346 if (SDNode::hasPredecessorHelper(Use
, Visited
, Worklist
))
12349 // If Ptr may be folded in addressing mode of other use, then it's
12350 // not profitable to do this transformation.
12351 if (!canFoldInAddressingMode(Ptr
.getNode(), Use
, DAG
, TLI
))
12360 Result
= DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
12361 BasePtr
, Offset
, AM
);
12363 Result
= DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
12364 BasePtr
, Offset
, AM
);
12367 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N
->dump(&DAG
); dbgs() << "\nWith: ";
12368 Result
.getNode()->dump(&DAG
); dbgs() << '\n');
12369 WorklistRemover
DeadNodes(*this);
12371 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
12372 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
12374 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
12377 // Finally, since the node is now dead, remove it from the graph.
12378 deleteAndRecombine(N
);
12381 std::swap(BasePtr
, Offset
);
12383 // Replace other uses of BasePtr that can be updated to use Ptr
12384 for (unsigned i
= 0, e
= OtherUses
.size(); i
!= e
; ++i
) {
12385 unsigned OffsetIdx
= 1;
12386 if (OtherUses
[i
]->getOperand(OffsetIdx
).getNode() == BasePtr
.getNode())
12388 assert(OtherUses
[i
]->getOperand(!OffsetIdx
).getNode() ==
12389 BasePtr
.getNode() && "Expected BasePtr operand");
12391 // We need to replace ptr0 in the following expression:
12392 // x0 * offset0 + y0 * ptr0 = t0
12394 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
12396 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
12397 // indexed load/store and the expression that needs to be re-written.
12399 // Therefore, we have:
12400 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
12402 ConstantSDNode
*CN
=
12403 cast
<ConstantSDNode
>(OtherUses
[i
]->getOperand(OffsetIdx
));
12404 int X0
, X1
, Y0
, Y1
;
12405 const APInt
&Offset0
= CN
->getAPIntValue();
12406 APInt Offset1
= cast
<ConstantSDNode
>(Offset
)->getAPIntValue();
12408 X0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 1) ? -1 : 1;
12409 Y0
= (OtherUses
[i
]->getOpcode() == ISD::SUB
&& OffsetIdx
== 0) ? -1 : 1;
12410 X1
= (AM
== ISD::PRE_DEC
&& !Swapped
) ? -1 : 1;
12411 Y1
= (AM
== ISD::PRE_DEC
&& Swapped
) ? -1 : 1;
12413 unsigned Opcode
= (Y0
* Y1
< 0) ? ISD::SUB
: ISD::ADD
;
12415 APInt CNV
= Offset0
;
12416 if (X0
< 0) CNV
= -CNV
;
12417 if (X1
* Y0
* Y1
< 0) CNV
= CNV
+ Offset1
;
12418 else CNV
= CNV
- Offset1
;
12420 SDLoc
DL(OtherUses
[i
]);
12422 // We can now generate the new expression.
12423 SDValue NewOp1
= DAG
.getConstant(CNV
, DL
, CN
->getValueType(0));
12424 SDValue NewOp2
= Result
.getValue(isLoad
? 1 : 0);
12426 SDValue NewUse
= DAG
.getNode(Opcode
,
12428 OtherUses
[i
]->getValueType(0), NewOp1
, NewOp2
);
12429 DAG
.ReplaceAllUsesOfValueWith(SDValue(OtherUses
[i
], 0), NewUse
);
12430 deleteAndRecombine(OtherUses
[i
]);
12433 // Replace the uses of Ptr with uses of the updated base value.
12434 DAG
.ReplaceAllUsesOfValueWith(Ptr
, Result
.getValue(isLoad
? 1 : 0));
12435 deleteAndRecombine(Ptr
.getNode());
12436 AddToWorklist(Result
.getNode());
12441 /// Try to combine a load/store with a add/sub of the base pointer node into a
12442 /// post-indexed load/store. The transformation folded the add/subtract into the
12443 /// new indexed load/store effectively and all of its uses are redirected to the
12444 /// new load/store.
12445 bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode
*N
) {
12446 if (Level
< AfterLegalizeDAG
)
12449 bool isLoad
= true;
12452 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
12453 if (LD
->isIndexed())
12455 VT
= LD
->getMemoryVT();
12456 if (!TLI
.isIndexedLoadLegal(ISD::POST_INC
, VT
) &&
12457 !TLI
.isIndexedLoadLegal(ISD::POST_DEC
, VT
))
12459 Ptr
= LD
->getBasePtr();
12460 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
12461 if (ST
->isIndexed())
12463 VT
= ST
->getMemoryVT();
12464 if (!TLI
.isIndexedStoreLegal(ISD::POST_INC
, VT
) &&
12465 !TLI
.isIndexedStoreLegal(ISD::POST_DEC
, VT
))
12467 Ptr
= ST
->getBasePtr();
12473 if (Ptr
.getNode()->hasOneUse())
12476 for (SDNode
*Op
: Ptr
.getNode()->uses()) {
12478 (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
))
12483 ISD::MemIndexedMode AM
= ISD::UNINDEXED
;
12484 if (TLI
.getPostIndexedAddressParts(N
, Op
, BasePtr
, Offset
, AM
, DAG
)) {
12485 // Don't create a indexed load / store with zero offset.
12486 if (isNullConstant(Offset
))
12489 // Try turning it into a post-indexed load / store except when
12490 // 1) All uses are load / store ops that use it as base ptr (and
12491 // it may be folded as addressing mmode).
12492 // 2) Op must be independent of N, i.e. Op is neither a predecessor
12493 // nor a successor of N. Otherwise, if Op is folded that would
12496 if (isa
<FrameIndexSDNode
>(BasePtr
) || isa
<RegisterSDNode
>(BasePtr
))
12500 bool TryNext
= false;
12501 for (SDNode
*Use
: BasePtr
.getNode()->uses()) {
12502 if (Use
== Ptr
.getNode())
12505 // If all the uses are load / store addresses, then don't do the
12507 if (Use
->getOpcode() == ISD::ADD
|| Use
->getOpcode() == ISD::SUB
){
12508 bool RealUse
= false;
12509 for (SDNode
*UseUse
: Use
->uses()) {
12510 if (!canFoldInAddressingMode(Use
, UseUse
, DAG
, TLI
))
12525 if (!Op
->isPredecessorOf(N
) && !N
->isPredecessorOf(Op
)) {
12526 SDValue Result
= isLoad
12527 ? DAG
.getIndexedLoad(SDValue(N
,0), SDLoc(N
),
12528 BasePtr
, Offset
, AM
)
12529 : DAG
.getIndexedStore(SDValue(N
,0), SDLoc(N
),
12530 BasePtr
, Offset
, AM
);
12531 ++PostIndexedNodes
;
12533 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N
->dump(&DAG
);
12534 dbgs() << "\nWith: "; Result
.getNode()->dump(&DAG
);
12536 WorklistRemover
DeadNodes(*this);
12538 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(0));
12539 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Result
.getValue(2));
12541 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Result
.getValue(1));
12544 // Finally, since the node is now dead, remove it from the graph.
12545 deleteAndRecombine(N
);
12547 // Replace the uses of Use with uses of the updated base value.
12548 DAG
.ReplaceAllUsesOfValueWith(SDValue(Op
, 0),
12549 Result
.getValue(isLoad
? 1 : 0));
12550 deleteAndRecombine(Op
);
12559 /// Return the base-pointer arithmetic from an indexed \p LD.
12560 SDValue
DAGCombiner::SplitIndexingFromLoad(LoadSDNode
*LD
) {
12561 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
12562 assert(AM
!= ISD::UNINDEXED
);
12563 SDValue BP
= LD
->getOperand(1);
12564 SDValue Inc
= LD
->getOperand(2);
12566 // Some backends use TargetConstants for load offsets, but don't expect
12567 // TargetConstants in general ADD nodes. We can convert these constants into
12568 // regular Constants (if the constant is not opaque).
12569 assert((Inc
.getOpcode() != ISD::TargetConstant
||
12570 !cast
<ConstantSDNode
>(Inc
)->isOpaque()) &&
12571 "Cannot split out indexing using opaque target constants");
12572 if (Inc
.getOpcode() == ISD::TargetConstant
) {
12573 ConstantSDNode
*ConstInc
= cast
<ConstantSDNode
>(Inc
);
12574 Inc
= DAG
.getConstant(*ConstInc
->getConstantIntValue(), SDLoc(Inc
),
12575 ConstInc
->getValueType(0));
12579 (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
? ISD::ADD
: ISD::SUB
);
12580 return DAG
.getNode(Opc
, SDLoc(LD
), BP
.getSimpleValueType(), BP
, Inc
);
12583 SDValue
DAGCombiner::visitLOAD(SDNode
*N
) {
12584 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
12585 SDValue Chain
= LD
->getChain();
12586 SDValue Ptr
= LD
->getBasePtr();
12588 // If load is not volatile and there are no uses of the loaded value (and
12589 // the updated indexed value in case of indexed loads), change uses of the
12590 // chain value into uses of the chain input (i.e. delete the dead load).
12591 if (!LD
->isVolatile()) {
12592 if (N
->getValueType(1) == MVT::Other
) {
12593 // Unindexed loads.
12594 if (!N
->hasAnyUseOfValue(0)) {
12595 // It's not safe to use the two value CombineTo variant here. e.g.
12596 // v1, chain2 = load chain1, loc
12597 // v2, chain3 = load chain2, loc
12599 // Now we replace use of chain2 with chain1. This makes the second load
12600 // isomorphic to the one we are deleting, and thus makes this load live.
12601 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N
->dump(&DAG
);
12602 dbgs() << "\nWith chain: "; Chain
.getNode()->dump(&DAG
);
12604 WorklistRemover
DeadNodes(*this);
12605 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
12606 AddUsersToWorklist(Chain
.getNode());
12607 if (N
->use_empty())
12608 deleteAndRecombine(N
);
12610 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12614 assert(N
->getValueType(2) == MVT::Other
&& "Malformed indexed loads?");
12616 // If this load has an opaque TargetConstant offset, then we cannot split
12617 // the indexing into an add/sub directly (that TargetConstant may not be
12618 // valid for a different type of node, and we cannot convert an opaque
12619 // target constant into a regular constant).
12620 bool HasOTCInc
= LD
->getOperand(2).getOpcode() == ISD::TargetConstant
&&
12621 cast
<ConstantSDNode
>(LD
->getOperand(2))->isOpaque();
12623 if (!N
->hasAnyUseOfValue(0) &&
12624 ((MaySplitLoadIndex
&& !HasOTCInc
) || !N
->hasAnyUseOfValue(1))) {
12625 SDValue Undef
= DAG
.getUNDEF(N
->getValueType(0));
12627 if (N
->hasAnyUseOfValue(1) && MaySplitLoadIndex
&& !HasOTCInc
) {
12628 Index
= SplitIndexingFromLoad(LD
);
12629 // Try to fold the base pointer arithmetic into subsequent loads and
12631 AddUsersToWorklist(N
);
12633 Index
= DAG
.getUNDEF(N
->getValueType(1));
12634 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N
->dump(&DAG
);
12635 dbgs() << "\nWith: "; Undef
.getNode()->dump(&DAG
);
12636 dbgs() << " and 2 other values\n");
12637 WorklistRemover
DeadNodes(*this);
12638 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Undef
);
12639 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Index
);
12640 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 2), Chain
);
12641 deleteAndRecombine(N
);
12642 return SDValue(N
, 0); // Return N so it doesn't get rechecked!
12647 // If this load is directly stored, replace the load value with the stored
12649 // TODO: Handle store large -> read small portion.
12650 // TODO: Handle TRUNCSTORE/LOADEXT
12651 if (OptLevel
!= CodeGenOpt::None
&&
12652 ISD::isNormalLoad(N
) && !LD
->isVolatile()) {
12653 if (ISD::isNON_TRUNCStore(Chain
.getNode())) {
12654 StoreSDNode
*PrevST
= cast
<StoreSDNode
>(Chain
);
12655 if (PrevST
->getBasePtr() == Ptr
&&
12656 PrevST
->getValue().getValueType() == N
->getValueType(0))
12657 return CombineTo(N
, PrevST
->getOperand(1), Chain
);
12661 // Try to infer better alignment information than the load already has.
12662 if (OptLevel
!= CodeGenOpt::None
&& LD
->isUnindexed()) {
12663 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
12664 if (Align
> LD
->getAlignment() && LD
->getSrcValueOffset() % Align
== 0) {
12665 SDValue NewLoad
= DAG
.getExtLoad(
12666 LD
->getExtensionType(), SDLoc(N
), LD
->getValueType(0), Chain
, Ptr
,
12667 LD
->getPointerInfo(), LD
->getMemoryVT(), Align
,
12668 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
12669 // NewLoad will always be N as we are only refining the alignment
12670 assert(NewLoad
.getNode() == N
);
12676 if (LD
->isUnindexed()) {
12677 // Walk up chain skipping non-aliasing memory nodes.
12678 SDValue BetterChain
= FindBetterChain(N
, Chain
);
12680 // If there is a better chain.
12681 if (Chain
!= BetterChain
) {
12684 // Replace the chain to void dependency.
12685 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
) {
12686 ReplLoad
= DAG
.getLoad(N
->getValueType(0), SDLoc(LD
),
12687 BetterChain
, Ptr
, LD
->getMemOperand());
12689 ReplLoad
= DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
),
12690 LD
->getValueType(0),
12691 BetterChain
, Ptr
, LD
->getMemoryVT(),
12692 LD
->getMemOperand());
12695 // Create token factor to keep old chain connected.
12696 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SDLoc(N
),
12697 MVT::Other
, Chain
, ReplLoad
.getValue(1));
12699 // Replace uses with load result and token factor
12700 return CombineTo(N
, ReplLoad
.getValue(0), Token
);
12704 // Try transforming N to an indexed load.
12705 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
12706 return SDValue(N
, 0);
12708 // Try to slice up N to more direct loads if the slices are mapped to
12709 // different register banks or pairing can take place.
12710 if (SliceUpLoad(N
))
12711 return SDValue(N
, 0);
12718 /// Helper structure used to slice a load in smaller loads.
12719 /// Basically a slice is obtained from the following sequence:
12720 /// Origin = load Ty1, Base
12721 /// Shift = srl Ty1 Origin, CstTy Amount
12722 /// Inst = trunc Shift to Ty2
12724 /// Then, it will be rewritten into:
12725 /// Slice = load SliceTy, Base + SliceOffset
12726 /// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
12728 /// SliceTy is deduced from the number of bits that are actually used to
12730 struct LoadedSlice
{
12731 /// Helper structure used to compute the cost of a slice.
12733 /// Are we optimizing for code size.
12737 unsigned Loads
= 0;
12738 unsigned Truncates
= 0;
12739 unsigned CrossRegisterBanksCopies
= 0;
12740 unsigned ZExts
= 0;
12741 unsigned Shift
= 0;
12743 Cost(bool ForCodeSize
= false) : ForCodeSize(ForCodeSize
) {}
12745 /// Get the cost of one isolated slice.
12746 Cost(const LoadedSlice
&LS
, bool ForCodeSize
= false)
12747 : ForCodeSize(ForCodeSize
), Loads(1) {
12748 EVT TruncType
= LS
.Inst
->getValueType(0);
12749 EVT LoadedType
= LS
.getLoadedType();
12750 if (TruncType
!= LoadedType
&&
12751 !LS
.DAG
->getTargetLoweringInfo().isZExtFree(LoadedType
, TruncType
))
12755 /// Account for slicing gain in the current cost.
12756 /// Slicing provide a few gains like removing a shift or a
12757 /// truncate. This method allows to grow the cost of the original
12758 /// load with the gain from this slice.
12759 void addSliceGain(const LoadedSlice
&LS
) {
12760 // Each slice saves a truncate.
12761 const TargetLowering
&TLI
= LS
.DAG
->getTargetLoweringInfo();
12762 if (!TLI
.isTruncateFree(LS
.Inst
->getOperand(0).getValueType(),
12763 LS
.Inst
->getValueType(0)))
12765 // If there is a shift amount, this slice gets rid of it.
12768 // If this slice can merge a cross register bank copy, account for it.
12769 if (LS
.canMergeExpensiveCrossRegisterBankCopy())
12770 ++CrossRegisterBanksCopies
;
12773 Cost
&operator+=(const Cost
&RHS
) {
12774 Loads
+= RHS
.Loads
;
12775 Truncates
+= RHS
.Truncates
;
12776 CrossRegisterBanksCopies
+= RHS
.CrossRegisterBanksCopies
;
12777 ZExts
+= RHS
.ZExts
;
12778 Shift
+= RHS
.Shift
;
12782 bool operator==(const Cost
&RHS
) const {
12783 return Loads
== RHS
.Loads
&& Truncates
== RHS
.Truncates
&&
12784 CrossRegisterBanksCopies
== RHS
.CrossRegisterBanksCopies
&&
12785 ZExts
== RHS
.ZExts
&& Shift
== RHS
.Shift
;
12788 bool operator!=(const Cost
&RHS
) const { return !(*this == RHS
); }
12790 bool operator<(const Cost
&RHS
) const {
12791 // Assume cross register banks copies are as expensive as loads.
12792 // FIXME: Do we want some more target hooks?
12793 unsigned ExpensiveOpsLHS
= Loads
+ CrossRegisterBanksCopies
;
12794 unsigned ExpensiveOpsRHS
= RHS
.Loads
+ RHS
.CrossRegisterBanksCopies
;
12795 // Unless we are optimizing for code size, consider the
12796 // expensive operation first.
12797 if (!ForCodeSize
&& ExpensiveOpsLHS
!= ExpensiveOpsRHS
)
12798 return ExpensiveOpsLHS
< ExpensiveOpsRHS
;
12799 return (Truncates
+ ZExts
+ Shift
+ ExpensiveOpsLHS
) <
12800 (RHS
.Truncates
+ RHS
.ZExts
+ RHS
.Shift
+ ExpensiveOpsRHS
);
12803 bool operator>(const Cost
&RHS
) const { return RHS
< *this; }
12805 bool operator<=(const Cost
&RHS
) const { return !(RHS
< *this); }
12807 bool operator>=(const Cost
&RHS
) const { return !(*this < RHS
); }
12810 // The last instruction that represent the slice. This should be a
12811 // truncate instruction.
12814 // The original load instruction.
12815 LoadSDNode
*Origin
;
12817 // The right shift amount in bits from the original load.
12820 // The DAG from which Origin came from.
12821 // This is used to get some contextual information about legal types, etc.
12824 LoadedSlice(SDNode
*Inst
= nullptr, LoadSDNode
*Origin
= nullptr,
12825 unsigned Shift
= 0, SelectionDAG
*DAG
= nullptr)
12826 : Inst(Inst
), Origin(Origin
), Shift(Shift
), DAG(DAG
) {}
12828 /// Get the bits used in a chunk of bits \p BitWidth large.
12829 /// \return Result is \p BitWidth and has used bits set to 1 and
12830 /// not used bits set to 0.
12831 APInt
getUsedBits() const {
12832 // Reproduce the trunc(lshr) sequence:
12833 // - Start from the truncated value.
12834 // - Zero extend to the desired bit width.
12836 assert(Origin
&& "No original load to compare against.");
12837 unsigned BitWidth
= Origin
->getValueSizeInBits(0);
12838 assert(Inst
&& "This slice is not bound to an instruction");
12839 assert(Inst
->getValueSizeInBits(0) <= BitWidth
&&
12840 "Extracted slice is bigger than the whole type!");
12841 APInt
UsedBits(Inst
->getValueSizeInBits(0), 0);
12842 UsedBits
.setAllBits();
12843 UsedBits
= UsedBits
.zext(BitWidth
);
12844 UsedBits
<<= Shift
;
12848 /// Get the size of the slice to be loaded in bytes.
12849 unsigned getLoadedSize() const {
12850 unsigned SliceSize
= getUsedBits().countPopulation();
12851 assert(!(SliceSize
& 0x7) && "Size is not a multiple of a byte.");
12852 return SliceSize
/ 8;
12855 /// Get the type that will be loaded for this slice.
12856 /// Note: This may not be the final type for the slice.
12857 EVT
getLoadedType() const {
12858 assert(DAG
&& "Missing context");
12859 LLVMContext
&Ctxt
= *DAG
->getContext();
12860 return EVT::getIntegerVT(Ctxt
, getLoadedSize() * 8);
12863 /// Get the alignment of the load used for this slice.
12864 unsigned getAlignment() const {
12865 unsigned Alignment
= Origin
->getAlignment();
12866 unsigned Offset
= getOffsetFromBase();
12868 Alignment
= MinAlign(Alignment
, Alignment
+ Offset
);
12872 /// Check if this slice can be rewritten with legal operations.
12873 bool isLegal() const {
12874 // An invalid slice is not legal.
12875 if (!Origin
|| !Inst
|| !DAG
)
12878 // Offsets are for indexed load only, we do not handle that.
12879 if (!Origin
->getOffset().isUndef())
12882 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
12884 // Check that the type is legal.
12885 EVT SliceType
= getLoadedType();
12886 if (!TLI
.isTypeLegal(SliceType
))
12889 // Check that the load is legal for this type.
12890 if (!TLI
.isOperationLegal(ISD::LOAD
, SliceType
))
12893 // Check that the offset can be computed.
12894 // 1. Check its type.
12895 EVT PtrType
= Origin
->getBasePtr().getValueType();
12896 if (PtrType
== MVT::Untyped
|| PtrType
.isExtended())
12899 // 2. Check that it fits in the immediate.
12900 if (!TLI
.isLegalAddImmediate(getOffsetFromBase()))
12903 // 3. Check that the computation is legal.
12904 if (!TLI
.isOperationLegal(ISD::ADD
, PtrType
))
12907 // Check that the zext is legal if it needs one.
12908 EVT TruncateType
= Inst
->getValueType(0);
12909 if (TruncateType
!= SliceType
&&
12910 !TLI
.isOperationLegal(ISD::ZERO_EXTEND
, TruncateType
))
12916 /// Get the offset in bytes of this slice in the original chunk of
12918 /// \pre DAG != nullptr.
12919 uint64_t getOffsetFromBase() const {
12920 assert(DAG
&& "Missing context.");
12921 bool IsBigEndian
= DAG
->getDataLayout().isBigEndian();
12922 assert(!(Shift
& 0x7) && "Shifts not aligned on Bytes are not supported.");
12923 uint64_t Offset
= Shift
/ 8;
12924 unsigned TySizeInBytes
= Origin
->getValueSizeInBits(0) / 8;
12925 assert(!(Origin
->getValueSizeInBits(0) & 0x7) &&
12926 "The size of the original loaded type is not a multiple of a"
12928 // If Offset is bigger than TySizeInBytes, it means we are loading all
12929 // zeros. This should have been optimized before in the process.
12930 assert(TySizeInBytes
> Offset
&&
12931 "Invalid shift amount for given loaded size");
12933 Offset
= TySizeInBytes
- Offset
- getLoadedSize();
12937 /// Generate the sequence of instructions to load the slice
12938 /// represented by this object and redirect the uses of this slice to
12939 /// this new sequence of instructions.
12940 /// \pre this->Inst && this->Origin are valid Instructions and this
12941 /// object passed the legal check: LoadedSlice::isLegal returned true.
12942 /// \return The last instruction of the sequence used to load the slice.
12943 SDValue
loadSlice() const {
12944 assert(Inst
&& Origin
&& "Unable to replace a non-existing slice.");
12945 const SDValue
&OldBaseAddr
= Origin
->getBasePtr();
12946 SDValue BaseAddr
= OldBaseAddr
;
12947 // Get the offset in that chunk of bytes w.r.t. the endianness.
12948 int64_t Offset
= static_cast<int64_t>(getOffsetFromBase());
12949 assert(Offset
>= 0 && "Offset too big to fit in int64_t!");
12951 // BaseAddr = BaseAddr + Offset.
12952 EVT ArithType
= BaseAddr
.getValueType();
12954 BaseAddr
= DAG
->getNode(ISD::ADD
, DL
, ArithType
, BaseAddr
,
12955 DAG
->getConstant(Offset
, DL
, ArithType
));
12958 // Create the type of the loaded slice according to its size.
12959 EVT SliceType
= getLoadedType();
12961 // Create the load for the slice.
12963 DAG
->getLoad(SliceType
, SDLoc(Origin
), Origin
->getChain(), BaseAddr
,
12964 Origin
->getPointerInfo().getWithOffset(Offset
),
12965 getAlignment(), Origin
->getMemOperand()->getFlags());
12966 // If the final type is not the same as the loaded type, this means that
12967 // we have to pad with zero. Create a zero extend for that.
12968 EVT FinalType
= Inst
->getValueType(0);
12969 if (SliceType
!= FinalType
)
12971 DAG
->getNode(ISD::ZERO_EXTEND
, SDLoc(LastInst
), FinalType
, LastInst
);
12975 /// Check if this slice can be merged with an expensive cross register
12976 /// bank copy. E.g.,
12978 /// f = bitcast i32 i to float
12979 bool canMergeExpensiveCrossRegisterBankCopy() const {
12980 if (!Inst
|| !Inst
->hasOneUse())
12982 SDNode
*Use
= *Inst
->use_begin();
12983 if (Use
->getOpcode() != ISD::BITCAST
)
12985 assert(DAG
&& "Missing context");
12986 const TargetLowering
&TLI
= DAG
->getTargetLoweringInfo();
12987 EVT ResVT
= Use
->getValueType(0);
12988 const TargetRegisterClass
*ResRC
= TLI
.getRegClassFor(ResVT
.getSimpleVT());
12989 const TargetRegisterClass
*ArgRC
=
12990 TLI
.getRegClassFor(Use
->getOperand(0).getValueType().getSimpleVT());
12991 if (ArgRC
== ResRC
|| !TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
12994 // At this point, we know that we perform a cross-register-bank copy.
12995 // Check if it is expensive.
12996 const TargetRegisterInfo
*TRI
= DAG
->getSubtarget().getRegisterInfo();
12997 // Assume bitcasts are cheap, unless both register classes do not
12998 // explicitly share a common sub class.
12999 if (!TRI
|| TRI
->getCommonSubClass(ArgRC
, ResRC
))
13002 // Check if it will be merged with the load.
13003 // 1. Check the alignment constraint.
13004 unsigned RequiredAlignment
= DAG
->getDataLayout().getABITypeAlignment(
13005 ResVT
.getTypeForEVT(*DAG
->getContext()));
13007 if (RequiredAlignment
> getAlignment())
13010 // 2. Check that the load is a legal operation for that type.
13011 if (!TLI
.isOperationLegal(ISD::LOAD
, ResVT
))
13014 // 3. Check that we do not have a zext in the way.
13015 if (Inst
->getValueType(0) != getLoadedType())
13022 } // end anonymous namespace
13024 /// Check that all bits set in \p UsedBits form a dense region, i.e.,
13025 /// \p UsedBits looks like 0..0 1..1 0..0.
13026 static bool areUsedBitsDense(const APInt
&UsedBits
) {
13027 // If all the bits are one, this is dense!
13028 if (UsedBits
.isAllOnesValue())
13031 // Get rid of the unused bits on the right.
13032 APInt NarrowedUsedBits
= UsedBits
.lshr(UsedBits
.countTrailingZeros());
13033 // Get rid of the unused bits on the left.
13034 if (NarrowedUsedBits
.countLeadingZeros())
13035 NarrowedUsedBits
= NarrowedUsedBits
.trunc(NarrowedUsedBits
.getActiveBits());
13036 // Check that the chunk of bits is completely used.
13037 return NarrowedUsedBits
.isAllOnesValue();
13040 /// Check whether or not \p First and \p Second are next to each other
13041 /// in memory. This means that there is no hole between the bits loaded
13042 /// by \p First and the bits loaded by \p Second.
13043 static bool areSlicesNextToEachOther(const LoadedSlice
&First
,
13044 const LoadedSlice
&Second
) {
13045 assert(First
.Origin
== Second
.Origin
&& First
.Origin
&&
13046 "Unable to match different memory origins.");
13047 APInt UsedBits
= First
.getUsedBits();
13048 assert((UsedBits
& Second
.getUsedBits()) == 0 &&
13049 "Slices are not supposed to overlap.");
13050 UsedBits
|= Second
.getUsedBits();
13051 return areUsedBitsDense(UsedBits
);
13054 /// Adjust the \p GlobalLSCost according to the target
13055 /// paring capabilities and the layout of the slices.
13056 /// \pre \p GlobalLSCost should account for at least as many loads as
13057 /// there is in the slices in \p LoadedSlices.
13058 static void adjustCostForPairing(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
13059 LoadedSlice::Cost
&GlobalLSCost
) {
13060 unsigned NumberOfSlices
= LoadedSlices
.size();
13061 // If there is less than 2 elements, no pairing is possible.
13062 if (NumberOfSlices
< 2)
13065 // Sort the slices so that elements that are likely to be next to each
13066 // other in memory are next to each other in the list.
13067 llvm::sort(LoadedSlices
.begin(), LoadedSlices
.end(),
13068 [](const LoadedSlice
&LHS
, const LoadedSlice
&RHS
) {
13069 assert(LHS
.Origin
== RHS
.Origin
&& "Different bases not implemented.");
13070 return LHS
.getOffsetFromBase() < RHS
.getOffsetFromBase();
13072 const TargetLowering
&TLI
= LoadedSlices
[0].DAG
->getTargetLoweringInfo();
13073 // First (resp. Second) is the first (resp. Second) potentially candidate
13074 // to be placed in a paired load.
13075 const LoadedSlice
*First
= nullptr;
13076 const LoadedSlice
*Second
= nullptr;
13077 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
,
13078 // Set the beginning of the pair.
13080 Second
= &LoadedSlices
[CurrSlice
];
13082 // If First is NULL, it means we start a new pair.
13083 // Get to the next slice.
13087 EVT LoadedType
= First
->getLoadedType();
13089 // If the types of the slices are different, we cannot pair them.
13090 if (LoadedType
!= Second
->getLoadedType())
13093 // Check if the target supplies paired loads for this type.
13094 unsigned RequiredAlignment
= 0;
13095 if (!TLI
.hasPairedLoad(LoadedType
, RequiredAlignment
)) {
13096 // move to the next pair, this type is hopeless.
13100 // Check if we meet the alignment requirement.
13101 if (RequiredAlignment
> First
->getAlignment())
13104 // Check that both loads are next to each other in memory.
13105 if (!areSlicesNextToEachOther(*First
, *Second
))
13108 assert(GlobalLSCost
.Loads
> 0 && "We save more loads than we created!");
13109 --GlobalLSCost
.Loads
;
13110 // Move to the next pair.
13115 /// Check the profitability of all involved LoadedSlice.
13116 /// Currently, it is considered profitable if there is exactly two
13117 /// involved slices (1) which are (2) next to each other in memory, and
13118 /// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
13120 /// Note: The order of the elements in \p LoadedSlices may be modified, but not
13121 /// the elements themselves.
13123 /// FIXME: When the cost model will be mature enough, we can relax
13124 /// constraints (1) and (2).
13125 static bool isSlicingProfitable(SmallVectorImpl
<LoadedSlice
> &LoadedSlices
,
13126 const APInt
&UsedBits
, bool ForCodeSize
) {
13127 unsigned NumberOfSlices
= LoadedSlices
.size();
13128 if (StressLoadSlicing
)
13129 return NumberOfSlices
> 1;
13132 if (NumberOfSlices
!= 2)
13136 if (!areUsedBitsDense(UsedBits
))
13140 LoadedSlice::Cost
OrigCost(ForCodeSize
), GlobalSlicingCost(ForCodeSize
);
13141 // The original code has one big load.
13142 OrigCost
.Loads
= 1;
13143 for (unsigned CurrSlice
= 0; CurrSlice
< NumberOfSlices
; ++CurrSlice
) {
13144 const LoadedSlice
&LS
= LoadedSlices
[CurrSlice
];
13145 // Accumulate the cost of all the slices.
13146 LoadedSlice::Cost
SliceCost(LS
, ForCodeSize
);
13147 GlobalSlicingCost
+= SliceCost
;
13149 // Account as cost in the original configuration the gain obtained
13150 // with the current slices.
13151 OrigCost
.addSliceGain(LS
);
13154 // If the target supports paired load, adjust the cost accordingly.
13155 adjustCostForPairing(LoadedSlices
, GlobalSlicingCost
);
13156 return OrigCost
> GlobalSlicingCost
;
13159 /// If the given load, \p LI, is used only by trunc or trunc(lshr)
13160 /// operations, split it in the various pieces being extracted.
13162 /// This sort of thing is introduced by SROA.
13163 /// This slicing takes care not to insert overlapping loads.
13164 /// \pre LI is a simple load (i.e., not an atomic or volatile load).
13165 bool DAGCombiner::SliceUpLoad(SDNode
*N
) {
13166 if (Level
< AfterLegalizeDAG
)
13169 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
13170 if (LD
->isVolatile() || !ISD::isNormalLoad(LD
) ||
13171 !LD
->getValueType(0).isInteger())
13174 // Keep track of already used bits to detect overlapping values.
13175 // In that case, we will just abort the transformation.
13176 APInt
UsedBits(LD
->getValueSizeInBits(0), 0);
13178 SmallVector
<LoadedSlice
, 4> LoadedSlices
;
13180 // Check if this load is used as several smaller chunks of bits.
13181 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
13182 // of computation for each trunc.
13183 for (SDNode::use_iterator UI
= LD
->use_begin(), UIEnd
= LD
->use_end();
13184 UI
!= UIEnd
; ++UI
) {
13185 // Skip the uses of the chain.
13186 if (UI
.getUse().getResNo() != 0)
13189 SDNode
*User
= *UI
;
13190 unsigned Shift
= 0;
13192 // Check if this is a trunc(lshr).
13193 if (User
->getOpcode() == ISD::SRL
&& User
->hasOneUse() &&
13194 isa
<ConstantSDNode
>(User
->getOperand(1))) {
13195 Shift
= User
->getConstantOperandVal(1);
13196 User
= *User
->use_begin();
13199 // At this point, User is a Truncate, iff we encountered, trunc or
13201 if (User
->getOpcode() != ISD::TRUNCATE
)
13204 // The width of the type must be a power of 2 and greater than 8-bits.
13205 // Otherwise the load cannot be represented in LLVM IR.
13206 // Moreover, if we shifted with a non-8-bits multiple, the slice
13207 // will be across several bytes. We do not support that.
13208 unsigned Width
= User
->getValueSizeInBits(0);
13209 if (Width
< 8 || !isPowerOf2_32(Width
) || (Shift
& 0x7))
13212 // Build the slice for this chain of computations.
13213 LoadedSlice
LS(User
, LD
, Shift
, &DAG
);
13214 APInt CurrentUsedBits
= LS
.getUsedBits();
13216 // Check if this slice overlaps with another.
13217 if ((CurrentUsedBits
& UsedBits
) != 0)
13219 // Update the bits used globally.
13220 UsedBits
|= CurrentUsedBits
;
13222 // Check if the new slice would be legal.
13226 // Record the slice.
13227 LoadedSlices
.push_back(LS
);
13230 // Abort slicing if it does not seem to be profitable.
13231 if (!isSlicingProfitable(LoadedSlices
, UsedBits
, ForCodeSize
))
13236 // Rewrite each chain to use an independent load.
13237 // By construction, each chain can be represented by a unique load.
13239 // Prepare the argument for the new token factor for all the slices.
13240 SmallVector
<SDValue
, 8> ArgChains
;
13241 for (SmallVectorImpl
<LoadedSlice
>::const_iterator
13242 LSIt
= LoadedSlices
.begin(),
13243 LSItEnd
= LoadedSlices
.end();
13244 LSIt
!= LSItEnd
; ++LSIt
) {
13245 SDValue SliceInst
= LSIt
->loadSlice();
13246 CombineTo(LSIt
->Inst
, SliceInst
, true);
13247 if (SliceInst
.getOpcode() != ISD::LOAD
)
13248 SliceInst
= SliceInst
.getOperand(0);
13249 assert(SliceInst
->getOpcode() == ISD::LOAD
&&
13250 "It takes more than a zext to get to the loaded slice!!");
13251 ArgChains
.push_back(SliceInst
.getValue(1));
13254 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, SDLoc(LD
), MVT::Other
,
13256 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), Chain
);
13257 AddToWorklist(Chain
.getNode());
13261 /// Check to see if V is (and load (ptr), imm), where the load is having
13262 /// specific bytes cleared out. If so, return the byte size being masked out
13263 /// and the shift amount.
13264 static std::pair
<unsigned, unsigned>
13265 CheckForMaskedLoad(SDValue V
, SDValue Ptr
, SDValue Chain
) {
13266 std::pair
<unsigned, unsigned> Result(0, 0);
13268 // Check for the structure we're looking for.
13269 if (V
->getOpcode() != ISD::AND
||
13270 !isa
<ConstantSDNode
>(V
->getOperand(1)) ||
13271 !ISD::isNormalLoad(V
->getOperand(0).getNode()))
13274 // Check the chain and pointer.
13275 LoadSDNode
*LD
= cast
<LoadSDNode
>(V
->getOperand(0));
13276 if (LD
->getBasePtr() != Ptr
) return Result
; // Not from same pointer.
13278 // This only handles simple types.
13279 if (V
.getValueType() != MVT::i16
&&
13280 V
.getValueType() != MVT::i32
&&
13281 V
.getValueType() != MVT::i64
)
13284 // Check the constant mask. Invert it so that the bits being masked out are
13285 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
13286 // follow the sign bit for uniformity.
13287 uint64_t NotMask
= ~cast
<ConstantSDNode
>(V
->getOperand(1))->getSExtValue();
13288 unsigned NotMaskLZ
= countLeadingZeros(NotMask
);
13289 if (NotMaskLZ
& 7) return Result
; // Must be multiple of a byte.
13290 unsigned NotMaskTZ
= countTrailingZeros(NotMask
);
13291 if (NotMaskTZ
& 7) return Result
; // Must be multiple of a byte.
13292 if (NotMaskLZ
== 64) return Result
; // All zero mask.
13294 // See if we have a continuous run of bits. If so, we have 0*1+0*
13295 if (countTrailingOnes(NotMask
>> NotMaskTZ
) + NotMaskTZ
+ NotMaskLZ
!= 64)
13298 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
13299 if (V
.getValueType() != MVT::i64
&& NotMaskLZ
)
13300 NotMaskLZ
-= 64-V
.getValueSizeInBits();
13302 unsigned MaskedBytes
= (V
.getValueSizeInBits()-NotMaskLZ
-NotMaskTZ
)/8;
13303 switch (MaskedBytes
) {
13307 default: return Result
; // All one mask, or 5-byte mask.
13310 // Verify that the first bit starts at a multiple of mask so that the access
13311 // is aligned the same as the access width.
13312 if (NotMaskTZ
&& NotMaskTZ
/8 % MaskedBytes
) return Result
;
13314 // For narrowing to be valid, it must be the case that the load the
13315 // immediately preceeding memory operation before the store.
13316 if (LD
== Chain
.getNode())
13318 else if (Chain
->getOpcode() == ISD::TokenFactor
&&
13319 SDValue(LD
, 1).hasOneUse()) {
13320 // LD has only 1 chain use so they are no indirect dependencies.
13322 for (const SDValue
&ChainOp
: Chain
->op_values())
13323 if (ChainOp
.getNode() == LD
) {
13330 return Result
; // Fail.
13332 Result
.first
= MaskedBytes
;
13333 Result
.second
= NotMaskTZ
/8;
13337 /// Check to see if IVal is something that provides a value as specified by
13338 /// MaskInfo. If so, replace the specified store with a narrower store of
13339 /// truncated IVal.
13341 ShrinkLoadReplaceStoreWithStore(const std::pair
<unsigned, unsigned> &MaskInfo
,
13342 SDValue IVal
, StoreSDNode
*St
,
13344 unsigned NumBytes
= MaskInfo
.first
;
13345 unsigned ByteShift
= MaskInfo
.second
;
13346 SelectionDAG
&DAG
= DC
->getDAG();
13348 // Check to see if IVal is all zeros in the part being masked in by the 'or'
13349 // that uses this. If not, this is not a replacement.
13350 APInt Mask
= ~APInt::getBitsSet(IVal
.getValueSizeInBits(),
13351 ByteShift
*8, (ByteShift
+NumBytes
)*8);
13352 if (!DAG
.MaskedValueIsZero(IVal
, Mask
)) return nullptr;
13354 // Check that it is legal on the target to do this. It is legal if the new
13355 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
13357 MVT VT
= MVT::getIntegerVT(NumBytes
*8);
13358 if (!DC
->isTypeLegal(VT
))
13361 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
13362 // shifted by ByteShift and truncated down to NumBytes.
13365 IVal
= DAG
.getNode(ISD::SRL
, DL
, IVal
.getValueType(), IVal
,
13366 DAG
.getConstant(ByteShift
*8, DL
,
13367 DC
->getShiftAmountTy(IVal
.getValueType())));
13370 // Figure out the offset for the store and the alignment of the access.
13372 unsigned NewAlign
= St
->getAlignment();
13374 if (DAG
.getDataLayout().isLittleEndian())
13375 StOffset
= ByteShift
;
13377 StOffset
= IVal
.getValueType().getStoreSize() - ByteShift
- NumBytes
;
13379 SDValue Ptr
= St
->getBasePtr();
13382 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(),
13383 Ptr
, DAG
.getConstant(StOffset
, DL
, Ptr
.getValueType()));
13384 NewAlign
= MinAlign(NewAlign
, StOffset
);
13387 // Truncate down to the new size.
13388 IVal
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(IVal
), VT
, IVal
);
13392 .getStore(St
->getChain(), SDLoc(St
), IVal
, Ptr
,
13393 St
->getPointerInfo().getWithOffset(StOffset
), NewAlign
)
13397 /// Look for sequence of load / op / store where op is one of 'or', 'xor', and
13398 /// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
13399 /// narrowing the load and store if it would end up being a win for performance
13401 SDValue
DAGCombiner::ReduceLoadOpStoreWidth(SDNode
*N
) {
13402 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
13403 if (ST
->isVolatile())
13406 SDValue Chain
= ST
->getChain();
13407 SDValue Value
= ST
->getValue();
13408 SDValue Ptr
= ST
->getBasePtr();
13409 EVT VT
= Value
.getValueType();
13411 if (ST
->isTruncatingStore() || VT
.isVector() || !Value
.hasOneUse())
13414 unsigned Opc
= Value
.getOpcode();
13416 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
13417 // is a byte mask indicating a consecutive number of bytes, check to see if
13418 // Y is known to provide just those bytes. If so, we try to replace the
13419 // load + replace + store sequence with a single (narrower) store, which makes
13421 if (Opc
== ISD::OR
) {
13422 std::pair
<unsigned, unsigned> MaskedLoad
;
13423 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(0), Ptr
, Chain
);
13424 if (MaskedLoad
.first
)
13425 if (SDNode
*NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
13426 Value
.getOperand(1), ST
,this))
13427 return SDValue(NewST
, 0);
13429 // Or is commutative, so try swapping X and Y.
13430 MaskedLoad
= CheckForMaskedLoad(Value
.getOperand(1), Ptr
, Chain
);
13431 if (MaskedLoad
.first
)
13432 if (SDNode
*NewST
= ShrinkLoadReplaceStoreWithStore(MaskedLoad
,
13433 Value
.getOperand(0), ST
,this))
13434 return SDValue(NewST
, 0);
13437 if ((Opc
!= ISD::OR
&& Opc
!= ISD::XOR
&& Opc
!= ISD::AND
) ||
13438 Value
.getOperand(1).getOpcode() != ISD::Constant
)
13441 SDValue N0
= Value
.getOperand(0);
13442 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
13443 Chain
== SDValue(N0
.getNode(), 1)) {
13444 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
);
13445 if (LD
->getBasePtr() != Ptr
||
13446 LD
->getPointerInfo().getAddrSpace() !=
13447 ST
->getPointerInfo().getAddrSpace())
13450 // Find the type to narrow it the load / op / store to.
13451 SDValue N1
= Value
.getOperand(1);
13452 unsigned BitWidth
= N1
.getValueSizeInBits();
13453 APInt Imm
= cast
<ConstantSDNode
>(N1
)->getAPIntValue();
13454 if (Opc
== ISD::AND
)
13455 Imm
^= APInt::getAllOnesValue(BitWidth
);
13456 if (Imm
== 0 || Imm
.isAllOnesValue())
13458 unsigned ShAmt
= Imm
.countTrailingZeros();
13459 unsigned MSB
= BitWidth
- Imm
.countLeadingZeros() - 1;
13460 unsigned NewBW
= NextPowerOf2(MSB
- ShAmt
);
13461 EVT NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
13462 // The narrowing should be profitable, the load/store operation should be
13463 // legal (or custom) and the store size should be equal to the NewVT width.
13464 while (NewBW
< BitWidth
&&
13465 (NewVT
.getStoreSizeInBits() != NewBW
||
13466 !TLI
.isOperationLegalOrCustom(Opc
, NewVT
) ||
13467 !TLI
.isNarrowingProfitable(VT
, NewVT
))) {
13468 NewBW
= NextPowerOf2(NewBW
);
13469 NewVT
= EVT::getIntegerVT(*DAG
.getContext(), NewBW
);
13471 if (NewBW
>= BitWidth
)
13474 // If the lsb changed does not start at the type bitwidth boundary,
13475 // start at the previous one.
13477 ShAmt
= (((ShAmt
+ NewBW
- 1) / NewBW
) * NewBW
) - NewBW
;
13478 APInt Mask
= APInt::getBitsSet(BitWidth
, ShAmt
,
13479 std::min(BitWidth
, ShAmt
+ NewBW
));
13480 if ((Imm
& Mask
) == Imm
) {
13481 APInt NewImm
= (Imm
& Mask
).lshr(ShAmt
).trunc(NewBW
);
13482 if (Opc
== ISD::AND
)
13483 NewImm
^= APInt::getAllOnesValue(NewBW
);
13484 uint64_t PtrOff
= ShAmt
/ 8;
13485 // For big endian targets, we need to adjust the offset to the pointer to
13486 // load the correct bytes.
13487 if (DAG
.getDataLayout().isBigEndian())
13488 PtrOff
= (BitWidth
+ 7 - NewBW
) / 8 - PtrOff
;
13490 unsigned NewAlign
= MinAlign(LD
->getAlignment(), PtrOff
);
13491 Type
*NewVTTy
= NewVT
.getTypeForEVT(*DAG
.getContext());
13492 if (NewAlign
< DAG
.getDataLayout().getABITypeAlignment(NewVTTy
))
13495 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, SDLoc(LD
),
13496 Ptr
.getValueType(), Ptr
,
13497 DAG
.getConstant(PtrOff
, SDLoc(LD
),
13498 Ptr
.getValueType()));
13500 DAG
.getLoad(NewVT
, SDLoc(N0
), LD
->getChain(), NewPtr
,
13501 LD
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
,
13502 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
13503 SDValue NewVal
= DAG
.getNode(Opc
, SDLoc(Value
), NewVT
, NewLD
,
13504 DAG
.getConstant(NewImm
, SDLoc(Value
),
13507 DAG
.getStore(Chain
, SDLoc(N
), NewVal
, NewPtr
,
13508 ST
->getPointerInfo().getWithOffset(PtrOff
), NewAlign
);
13510 AddToWorklist(NewPtr
.getNode());
13511 AddToWorklist(NewLD
.getNode());
13512 AddToWorklist(NewVal
.getNode());
13513 WorklistRemover
DeadNodes(*this);
13514 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), NewLD
.getValue(1));
13523 /// For a given floating point load / store pair, if the load value isn't used
13524 /// by any other operations, then consider transforming the pair to integer
13525 /// load / store operations if the target deems the transformation profitable.
13526 SDValue
DAGCombiner::TransformFPLoadStorePair(SDNode
*N
) {
13527 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
13528 SDValue Chain
= ST
->getChain();
13529 SDValue Value
= ST
->getValue();
13530 if (ISD::isNormalStore(ST
) && ISD::isNormalLoad(Value
.getNode()) &&
13531 Value
.hasOneUse() &&
13532 Chain
== SDValue(Value
.getNode(), 1)) {
13533 LoadSDNode
*LD
= cast
<LoadSDNode
>(Value
);
13534 EVT VT
= LD
->getMemoryVT();
13535 if (!VT
.isFloatingPoint() ||
13536 VT
!= ST
->getMemoryVT() ||
13537 LD
->isNonTemporal() ||
13538 ST
->isNonTemporal() ||
13539 LD
->getPointerInfo().getAddrSpace() != 0 ||
13540 ST
->getPointerInfo().getAddrSpace() != 0)
13543 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
13544 if (!TLI
.isOperationLegal(ISD::LOAD
, IntVT
) ||
13545 !TLI
.isOperationLegal(ISD::STORE
, IntVT
) ||
13546 !TLI
.isDesirableToTransformToIntegerOp(ISD::LOAD
, VT
) ||
13547 !TLI
.isDesirableToTransformToIntegerOp(ISD::STORE
, VT
))
13550 unsigned LDAlign
= LD
->getAlignment();
13551 unsigned STAlign
= ST
->getAlignment();
13552 Type
*IntVTTy
= IntVT
.getTypeForEVT(*DAG
.getContext());
13553 unsigned ABIAlign
= DAG
.getDataLayout().getABITypeAlignment(IntVTTy
);
13554 if (LDAlign
< ABIAlign
|| STAlign
< ABIAlign
)
13558 DAG
.getLoad(IntVT
, SDLoc(Value
), LD
->getChain(), LD
->getBasePtr(),
13559 LD
->getPointerInfo(), LDAlign
);
13562 DAG
.getStore(NewLD
.getValue(1), SDLoc(N
), NewLD
, ST
->getBasePtr(),
13563 ST
->getPointerInfo(), STAlign
);
13565 AddToWorklist(NewLD
.getNode());
13566 AddToWorklist(NewST
.getNode());
13567 WorklistRemover
DeadNodes(*this);
13568 DAG
.ReplaceAllUsesOfValueWith(Value
.getValue(1), NewLD
.getValue(1));
13576 // This is a helper function for visitMUL to check the profitability
13577 // of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
13578 // MulNode is the original multiply, AddNode is (add x, c1),
13579 // and ConstNode is c2.
13581 // If the (add x, c1) has multiple uses, we could increase
13582 // the number of adds if we make this transformation.
13583 // It would only be worth doing this if we can remove a
13584 // multiply in the process. Check for that here.
13588 // We're checking for cases where we have common "c3 * A" expressions.
13589 bool DAGCombiner::isMulAddWithConstProfitable(SDNode
*MulNode
,
13591 SDValue
&ConstNode
) {
13594 // If the add only has one use, this would be OK to do.
13595 if (AddNode
.getNode()->hasOneUse())
13598 // Walk all the users of the constant with which we're multiplying.
13599 for (SDNode
*Use
: ConstNode
->uses()) {
13600 if (Use
== MulNode
) // This use is the one we're on right now. Skip it.
13603 if (Use
->getOpcode() == ISD::MUL
) { // We have another multiply use.
13605 SDNode
*MulVar
= AddNode
.getOperand(0).getNode();
13607 // OtherOp is what we're multiplying against the constant.
13608 if (Use
->getOperand(0) == ConstNode
)
13609 OtherOp
= Use
->getOperand(1).getNode();
13611 OtherOp
= Use
->getOperand(0).getNode();
13613 // Check to see if multiply is with the same operand of our "add".
13615 // ConstNode = CONST
13616 // Use = ConstNode * A <-- visiting Use. OtherOp is A.
13618 // AddNode = (A + c1) <-- MulVar is A.
13619 // = AddNode * ConstNode <-- current visiting instruction.
13621 // If we make this transformation, we will have a common
13622 // multiply (ConstNode * A) that we can save.
13623 if (OtherOp
== MulVar
)
13626 // Now check to see if a future expansion will give us a common
13629 // ConstNode = CONST
13630 // AddNode = (A + c1)
13631 // ... = AddNode * ConstNode <-- current visiting instruction.
13633 // OtherOp = (A + c2)
13634 // Use = OtherOp * ConstNode <-- visiting Use.
13636 // If we make this transformation, we will have a common
13637 // multiply (CONST * A) after we also do the same transformation
13638 // to the "t2" instruction.
13639 if (OtherOp
->getOpcode() == ISD::ADD
&&
13640 DAG
.isConstantIntBuildVectorOrConstantInt(OtherOp
->getOperand(1)) &&
13641 OtherOp
->getOperand(0).getNode() == MulVar
)
13646 // Didn't find a case where this would be profitable.
13650 SDValue
DAGCombiner::getMergeStoreChains(SmallVectorImpl
<MemOpLink
> &StoreNodes
,
13651 unsigned NumStores
) {
13652 SmallVector
<SDValue
, 8> Chains
;
13653 SmallPtrSet
<const SDNode
*, 8> Visited
;
13654 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
13656 for (unsigned i
= 0; i
< NumStores
; ++i
) {
13657 Visited
.insert(StoreNodes
[i
].MemNode
);
13660 // don't include nodes that are children
13661 for (unsigned i
= 0; i
< NumStores
; ++i
) {
13662 if (Visited
.count(StoreNodes
[i
].MemNode
->getChain().getNode()) == 0)
13663 Chains
.push_back(StoreNodes
[i
].MemNode
->getChain());
13666 assert(Chains
.size() > 0 && "Chain should have generated a chain");
13667 return DAG
.getNode(ISD::TokenFactor
, StoreDL
, MVT::Other
, Chains
);
13670 bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
13671 SmallVectorImpl
<MemOpLink
> &StoreNodes
, EVT MemVT
, unsigned NumStores
,
13672 bool IsConstantSrc
, bool UseVector
, bool UseTrunc
) {
13673 // Make sure we have something to merge.
13677 // The latest Node in the DAG.
13678 SDLoc
DL(StoreNodes
[0].MemNode
);
13680 int64_t ElementSizeBits
= MemVT
.getStoreSizeInBits();
13681 unsigned SizeInBits
= NumStores
* ElementSizeBits
;
13682 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
13686 unsigned Elts
= NumStores
* NumMemElts
;
13687 // Get the type for the merged vector store.
13688 StoreTy
= EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
13690 StoreTy
= EVT::getIntegerVT(*DAG
.getContext(), SizeInBits
);
13694 if (IsConstantSrc
) {
13695 SmallVector
<SDValue
, 8> BuildVector
;
13696 for (unsigned I
= 0; I
!= NumStores
; ++I
) {
13697 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[I
].MemNode
);
13698 SDValue Val
= St
->getValue();
13699 // If constant is of the wrong type, convert it now.
13700 if (MemVT
!= Val
.getValueType()) {
13701 Val
= peekThroughBitcast(Val
);
13702 // Deal with constants of wrong size.
13703 if (ElementSizeBits
!= Val
.getValueSizeInBits()) {
13705 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits());
13706 if (isa
<ConstantFPSDNode
>(Val
)) {
13707 // Not clear how to truncate FP values.
13709 } else if (auto *C
= dyn_cast
<ConstantSDNode
>(Val
))
13710 Val
= DAG
.getConstant(C
->getAPIntValue()
13711 .zextOrTrunc(Val
.getValueSizeInBits())
13712 .zextOrTrunc(ElementSizeBits
),
13713 SDLoc(C
), IntMemVT
);
13715 // Make sure correctly size type is the correct type.
13716 Val
= DAG
.getBitcast(MemVT
, Val
);
13718 BuildVector
.push_back(Val
);
13720 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
13721 : ISD::BUILD_VECTOR
,
13722 DL
, StoreTy
, BuildVector
);
13724 SmallVector
<SDValue
, 8> Ops
;
13725 for (unsigned i
= 0; i
< NumStores
; ++i
) {
13726 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
13727 SDValue Val
= peekThroughBitcast(St
->getValue());
13728 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
13729 // type MemVT. If the underlying value is not the correct
13730 // type, but it is an extraction of an appropriate vector we
13731 // can recast Val to be of the correct type. This may require
13732 // converting between EXTRACT_VECTOR_ELT and
13733 // EXTRACT_SUBVECTOR.
13734 if ((MemVT
!= Val
.getValueType()) &&
13735 (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
13736 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
)) {
13737 SDValue Vec
= Val
.getOperand(0);
13738 EVT MemVTScalarTy
= MemVT
.getScalarType();
13739 // We may need to add a bitcast here to get types to line up.
13740 if (MemVTScalarTy
!= Vec
.getValueType()) {
13741 unsigned Elts
= Vec
.getValueType().getSizeInBits() /
13742 MemVTScalarTy
.getSizeInBits();
13744 EVT::getVectorVT(*DAG
.getContext(), MemVTScalarTy
, Elts
);
13745 Vec
= DAG
.getBitcast(NewVecTy
, Vec
);
13747 auto OpC
= (MemVT
.isVector()) ? ISD::EXTRACT_SUBVECTOR
13748 : ISD::EXTRACT_VECTOR_ELT
;
13749 Val
= DAG
.getNode(OpC
, SDLoc(Val
), MemVT
, Vec
, Val
.getOperand(1));
13751 Ops
.push_back(Val
);
13754 // Build the extracted vector elements back into a vector.
13755 StoredVal
= DAG
.getNode(MemVT
.isVector() ? ISD::CONCAT_VECTORS
13756 : ISD::BUILD_VECTOR
,
13760 // We should always use a vector store when merging extracted vector
13761 // elements, so this path implies a store of constants.
13762 assert(IsConstantSrc
&& "Merged vector elements should use vector store");
13764 APInt
StoreInt(SizeInBits
, 0);
13766 // Construct a single integer constant which is made of the smaller
13767 // constant inputs.
13768 bool IsLE
= DAG
.getDataLayout().isLittleEndian();
13769 for (unsigned i
= 0; i
< NumStores
; ++i
) {
13770 unsigned Idx
= IsLE
? (NumStores
- 1 - i
) : i
;
13771 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[Idx
].MemNode
);
13773 SDValue Val
= St
->getValue();
13774 Val
= peekThroughBitcast(Val
);
13775 StoreInt
<<= ElementSizeBits
;
13776 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Val
)) {
13777 StoreInt
|= C
->getAPIntValue()
13778 .zextOrTrunc(ElementSizeBits
)
13779 .zextOrTrunc(SizeInBits
);
13780 } else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Val
)) {
13781 StoreInt
|= C
->getValueAPF()
13783 .zextOrTrunc(ElementSizeBits
)
13784 .zextOrTrunc(SizeInBits
);
13785 // If fp truncation is necessary give up for now.
13786 if (MemVT
.getSizeInBits() != ElementSizeBits
)
13789 llvm_unreachable("Invalid constant element type");
13793 // Create the new Load and Store operations.
13794 StoredVal
= DAG
.getConstant(StoreInt
, DL
, StoreTy
);
13797 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
13798 SDValue NewChain
= getMergeStoreChains(StoreNodes
, NumStores
);
13800 // make sure we use trunc store if it's necessary to be legal.
13803 NewStore
= DAG
.getStore(NewChain
, DL
, StoredVal
, FirstInChain
->getBasePtr(),
13804 FirstInChain
->getPointerInfo(),
13805 FirstInChain
->getAlignment());
13806 } else { // Must be realized as a trunc store
13807 EVT LegalizedStoredValTy
=
13808 TLI
.getTypeToTransformTo(*DAG
.getContext(), StoredVal
.getValueType());
13809 unsigned LegalizedStoreSize
= LegalizedStoredValTy
.getSizeInBits();
13810 ConstantSDNode
*C
= cast
<ConstantSDNode
>(StoredVal
);
13811 SDValue ExtendedStoreVal
=
13812 DAG
.getConstant(C
->getAPIntValue().zextOrTrunc(LegalizedStoreSize
), DL
,
13813 LegalizedStoredValTy
);
13814 NewStore
= DAG
.getTruncStore(
13815 NewChain
, DL
, ExtendedStoreVal
, FirstInChain
->getBasePtr(),
13816 FirstInChain
->getPointerInfo(), StoredVal
.getValueType() /*TVT*/,
13817 FirstInChain
->getAlignment(),
13818 FirstInChain
->getMemOperand()->getFlags());
13821 // Replace all merged stores with the new store.
13822 for (unsigned i
= 0; i
< NumStores
; ++i
)
13823 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
13825 AddToWorklist(NewChain
.getNode());
13829 void DAGCombiner::getStoreMergeCandidates(
13830 StoreSDNode
*St
, SmallVectorImpl
<MemOpLink
> &StoreNodes
,
13831 SDNode
*&RootNode
) {
13832 // This holds the base pointer, index, and the offset in bytes from the base
13834 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
13835 EVT MemVT
= St
->getMemoryVT();
13837 SDValue Val
= peekThroughBitcast(St
->getValue());
13838 // We must have a base and an offset.
13839 if (!BasePtr
.getBase().getNode())
13842 // Do not handle stores to undef base pointers.
13843 if (BasePtr
.getBase().isUndef())
13846 bool IsConstantSrc
= isa
<ConstantSDNode
>(Val
) || isa
<ConstantFPSDNode
>(Val
);
13847 bool IsExtractVecSrc
= (Val
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
13848 Val
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
13849 bool IsLoadSrc
= isa
<LoadSDNode
>(Val
);
13850 BaseIndexOffset LBasePtr
;
13851 // Match on loadbaseptr if relevant.
13854 auto *Ld
= cast
<LoadSDNode
>(Val
);
13855 LBasePtr
= BaseIndexOffset::match(Ld
, DAG
);
13856 LoadVT
= Ld
->getMemoryVT();
13857 // Load and store should be the same type.
13858 if (MemVT
!= LoadVT
)
13860 // Loads must only have one use.
13861 if (!Ld
->hasNUsesOfValue(1, 0))
13863 // The memory operands must not be volatile.
13864 if (Ld
->isVolatile() || Ld
->isIndexed())
13867 auto CandidateMatch
= [&](StoreSDNode
*Other
, BaseIndexOffset
&Ptr
,
13868 int64_t &Offset
) -> bool {
13869 if (Other
->isVolatile() || Other
->isIndexed())
13871 SDValue Val
= peekThroughBitcast(Other
->getValue());
13872 // Allow merging constants of different types as integers.
13873 bool NoTypeMatch
= (MemVT
.isInteger()) ? !MemVT
.bitsEq(Other
->getMemoryVT())
13874 : Other
->getMemoryVT() != MemVT
;
13878 // The Load's Base Ptr must also match
13879 if (LoadSDNode
*OtherLd
= dyn_cast
<LoadSDNode
>(Val
)) {
13880 auto LPtr
= BaseIndexOffset::match(OtherLd
, DAG
);
13881 if (LoadVT
!= OtherLd
->getMemoryVT())
13883 // Loads must only have one use.
13884 if (!OtherLd
->hasNUsesOfValue(1, 0))
13886 // The memory operands must not be volatile.
13887 if (OtherLd
->isVolatile() || OtherLd
->isIndexed())
13889 if (!(LBasePtr
.equalBaseIndex(LPtr
, DAG
)))
13894 if (IsConstantSrc
) {
13897 if (!(isa
<ConstantSDNode
>(Val
) || isa
<ConstantFPSDNode
>(Val
)))
13900 if (IsExtractVecSrc
) {
13901 // Do not merge truncated stores here.
13902 if (Other
->isTruncatingStore())
13904 if (!MemVT
.bitsEq(Val
.getValueType()))
13906 if (Val
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
&&
13907 Val
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
13910 Ptr
= BaseIndexOffset::match(Other
, DAG
);
13911 return (BasePtr
.equalBaseIndex(Ptr
, DAG
, Offset
));
13914 // We looking for a root node which is an ancestor to all mergable
13915 // stores. We search up through a load, to our root and then down
13916 // through all children. For instance we will find Store{1,2,3} if
13917 // St is Store1, Store2. or Store3 where the root is not a load
13918 // which always true for nonvolatile ops. TODO: Expand
13919 // the search to find all valid candidates through multiple layers of loads.
13922 // |-------|-------|
13923 // Load Load Store3
13927 // FIXME: We should be able to climb and
13928 // descend TokenFactors to find candidates as well.
13930 RootNode
= St
->getChain().getNode();
13932 if (LoadSDNode
*Ldn
= dyn_cast
<LoadSDNode
>(RootNode
)) {
13933 RootNode
= Ldn
->getChain().getNode();
13934 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end(); I
!= E
; ++I
)
13935 if (I
.getOperandNo() == 0 && isa
<LoadSDNode
>(*I
)) // walk down chain
13936 for (auto I2
= (*I
)->use_begin(), E2
= (*I
)->use_end(); I2
!= E2
; ++I2
)
13937 if (I2
.getOperandNo() == 0)
13938 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I2
)) {
13939 BaseIndexOffset Ptr
;
13941 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
))
13942 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
13945 for (auto I
= RootNode
->use_begin(), E
= RootNode
->use_end(); I
!= E
; ++I
)
13946 if (I
.getOperandNo() == 0)
13947 if (StoreSDNode
*OtherST
= dyn_cast
<StoreSDNode
>(*I
)) {
13948 BaseIndexOffset Ptr
;
13950 if (CandidateMatch(OtherST
, Ptr
, PtrDiff
))
13951 StoreNodes
.push_back(MemOpLink(OtherST
, PtrDiff
));
13955 // We need to check that merging these stores does not cause a loop in
13956 // the DAG. Any store candidate may depend on another candidate
13957 // indirectly through its operand (we already consider dependencies
13958 // through the chain). Check in parallel by searching up from
13959 // non-chain operands of candidates.
13960 bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
13961 SmallVectorImpl
<MemOpLink
> &StoreNodes
, unsigned NumStores
,
13962 SDNode
*RootNode
) {
13963 // FIXME: We should be able to truncate a full search of
13964 // predecessors by doing a BFS and keeping tabs the originating
13965 // stores from which worklist nodes come from in a similar way to
13966 // TokenFactor simplfication.
13968 SmallPtrSet
<const SDNode
*, 32> Visited
;
13969 SmallVector
<const SDNode
*, 8> Worklist
;
13971 // RootNode is a predecessor to all candidates so we need not search
13972 // past it. Add RootNode (peeking through TokenFactors). Do not count
13973 // these towards size check.
13975 Worklist
.push_back(RootNode
);
13976 while (!Worklist
.empty()) {
13977 auto N
= Worklist
.pop_back_val();
13978 if (!Visited
.insert(N
).second
)
13979 continue; // Already present in Visited.
13980 if (N
->getOpcode() == ISD::TokenFactor
) {
13981 for (SDValue Op
: N
->ops())
13982 Worklist
.push_back(Op
.getNode());
13986 // Don't count pruning nodes towards max.
13987 unsigned int Max
= 1024 + Visited
.size();
13988 // Search Ops of store candidates.
13989 for (unsigned i
= 0; i
< NumStores
; ++i
) {
13990 SDNode
*N
= StoreNodes
[i
].MemNode
;
13991 // Of the 4 Store Operands:
13992 // * Chain (Op 0) -> We have already considered these
13993 // in candidate selection and can be
13995 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
13996 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant
13997 // and so no cycles are possible.
13998 // * (Op 3) -> appears to always be undef. Cannot be source of cycle.
14000 // Thus we need only check predecessors of the value operands.
14001 auto *Op
= N
->getOperand(1).getNode();
14002 if (Visited
.insert(Op
).second
)
14003 Worklist
.push_back(Op
);
14005 // Search through DAG. We can stop early if we find a store node.
14006 for (unsigned i
= 0; i
< NumStores
; ++i
)
14007 if (SDNode::hasPredecessorHelper(StoreNodes
[i
].MemNode
, Visited
, Worklist
,
14013 bool DAGCombiner::MergeConsecutiveStores(StoreSDNode
*St
) {
14014 if (OptLevel
== CodeGenOpt::None
)
14017 EVT MemVT
= St
->getMemoryVT();
14018 int64_t ElementSizeBytes
= MemVT
.getStoreSize();
14019 unsigned NumMemElts
= MemVT
.isVector() ? MemVT
.getVectorNumElements() : 1;
14021 if (MemVT
.getSizeInBits() * 2 > MaximumLegalStoreInBits
)
14024 bool NoVectors
= DAG
.getMachineFunction().getFunction().hasFnAttribute(
14025 Attribute::NoImplicitFloat
);
14027 // This function cannot currently deal with non-byte-sized memory sizes.
14028 if (ElementSizeBytes
* 8 != MemVT
.getSizeInBits())
14031 if (!MemVT
.isSimple())
14034 // Perform an early exit check. Do not bother looking at stored values that
14035 // are not constants, loads, or extracted vector elements.
14036 SDValue StoredVal
= peekThroughBitcast(St
->getValue());
14037 bool IsLoadSrc
= isa
<LoadSDNode
>(StoredVal
);
14038 bool IsConstantSrc
= isa
<ConstantSDNode
>(StoredVal
) ||
14039 isa
<ConstantFPSDNode
>(StoredVal
);
14040 bool IsExtractVecSrc
= (StoredVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
14041 StoredVal
.getOpcode() == ISD::EXTRACT_SUBVECTOR
);
14043 if (!IsConstantSrc
&& !IsLoadSrc
&& !IsExtractVecSrc
)
14046 SmallVector
<MemOpLink
, 8> StoreNodes
;
14048 // Find potential store merge candidates by searching through chain sub-DAG
14049 getStoreMergeCandidates(St
, StoreNodes
, RootNode
);
14051 // Check if there is anything to merge.
14052 if (StoreNodes
.size() < 2)
14055 // Sort the memory operands according to their distance from the
14057 llvm::sort(StoreNodes
.begin(), StoreNodes
.end(),
14058 [](MemOpLink LHS
, MemOpLink RHS
) {
14059 return LHS
.OffsetFromBase
< RHS
.OffsetFromBase
;
14062 // Store Merge attempts to merge the lowest stores. This generally
14063 // works out as if successful, as the remaining stores are checked
14064 // after the first collection of stores is merged. However, in the
14065 // case that a non-mergeable store is found first, e.g., {p[-2],
14066 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
14067 // mergeable cases. To prevent this, we prune such stores from the
14068 // front of StoreNodes here.
14071 while (StoreNodes
.size() > 1) {
14072 unsigned StartIdx
= 0;
14073 while ((StartIdx
+ 1 < StoreNodes
.size()) &&
14074 StoreNodes
[StartIdx
].OffsetFromBase
+ ElementSizeBytes
!=
14075 StoreNodes
[StartIdx
+ 1].OffsetFromBase
)
14078 // Bail if we don't have enough candidates to merge.
14079 if (StartIdx
+ 1 >= StoreNodes
.size())
14083 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + StartIdx
);
14085 // Scan the memory operations on the chain and find the first
14086 // non-consecutive store memory address.
14087 unsigned NumConsecutiveStores
= 1;
14088 int64_t StartAddress
= StoreNodes
[0].OffsetFromBase
;
14089 // Check that the addresses are consecutive starting from the second
14090 // element in the list of stores.
14091 for (unsigned i
= 1, e
= StoreNodes
.size(); i
< e
; ++i
) {
14092 int64_t CurrAddress
= StoreNodes
[i
].OffsetFromBase
;
14093 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
14095 NumConsecutiveStores
= i
+ 1;
14098 if (NumConsecutiveStores
< 2) {
14099 StoreNodes
.erase(StoreNodes
.begin(),
14100 StoreNodes
.begin() + NumConsecutiveStores
);
14104 // The node with the lowest store address.
14105 LLVMContext
&Context
= *DAG
.getContext();
14106 const DataLayout
&DL
= DAG
.getDataLayout();
14108 // Store the constants into memory as one consecutive store.
14109 if (IsConstantSrc
) {
14110 while (NumConsecutiveStores
>= 2) {
14111 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
14112 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
14113 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
14114 unsigned LastLegalType
= 1;
14115 unsigned LastLegalVectorType
= 1;
14116 bool LastIntegerTrunc
= false;
14117 bool NonZero
= false;
14118 unsigned FirstZeroAfterNonZero
= NumConsecutiveStores
;
14119 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
14120 StoreSDNode
*ST
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
14121 SDValue StoredVal
= ST
->getValue();
14122 bool IsElementZero
= false;
14123 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(StoredVal
))
14124 IsElementZero
= C
->isNullValue();
14125 else if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(StoredVal
))
14126 IsElementZero
= C
->getConstantFPValue()->isNullValue();
14127 if (IsElementZero
) {
14128 if (NonZero
&& FirstZeroAfterNonZero
== NumConsecutiveStores
)
14129 FirstZeroAfterNonZero
= i
;
14131 NonZero
|= !IsElementZero
;
14133 // Find a legal type for the constant store.
14134 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
14135 EVT StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
14136 bool IsFast
= false;
14138 // Break early when size is too large to be legal.
14139 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
14142 if (TLI
.isTypeLegal(StoreTy
) &&
14143 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
14144 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstStoreAS
,
14145 FirstStoreAlign
, &IsFast
) &&
14147 LastIntegerTrunc
= false;
14148 LastLegalType
= i
+ 1;
14149 // Or check whether a truncstore is legal.
14150 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
14151 TargetLowering::TypePromoteInteger
) {
14152 EVT LegalizedStoredValTy
=
14153 TLI
.getTypeToTransformTo(Context
, StoredVal
.getValueType());
14154 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
14155 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
14156 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstStoreAS
,
14157 FirstStoreAlign
, &IsFast
) &&
14159 LastIntegerTrunc
= true;
14160 LastLegalType
= i
+ 1;
14164 // We only use vectors if the constant is known to be zero or the
14165 // target allows it and the function is not marked with the
14166 // noimplicitfloat attribute.
14168 TLI
.storeOfVectorConstantIsCheap(MemVT
, i
+ 1, FirstStoreAS
)) &&
14170 // Find a legal type for the vector store.
14171 unsigned Elts
= (i
+ 1) * NumMemElts
;
14172 EVT Ty
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
14173 if (TLI
.isTypeLegal(Ty
) && TLI
.isTypeLegal(MemVT
) &&
14174 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
14175 TLI
.allowsMemoryAccess(Context
, DL
, Ty
, FirstStoreAS
,
14176 FirstStoreAlign
, &IsFast
) &&
14178 LastLegalVectorType
= i
+ 1;
14182 bool UseVector
= (LastLegalVectorType
> LastLegalType
) && !NoVectors
;
14183 unsigned NumElem
= (UseVector
) ? LastLegalVectorType
: LastLegalType
;
14185 // Check if we found a legal integer type that creates a meaningful
14188 // We know that candidate stores are in order and of correct
14189 // shape. While there is no mergeable sequence from the
14190 // beginning one may start later in the sequence. The only
14191 // reason a merge of size N could have failed where another of
14192 // the same size would not have, is if the alignment has
14193 // improved or we've dropped a non-zero value. Drop as many
14194 // candidates as we can here.
14195 unsigned NumSkip
= 1;
14197 (NumSkip
< NumConsecutiveStores
) &&
14198 (NumSkip
< FirstZeroAfterNonZero
) &&
14199 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
14202 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
14203 NumConsecutiveStores
-= NumSkip
;
14207 // Check that we can merge these candidates without causing a cycle.
14208 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
14210 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
14211 NumConsecutiveStores
-= NumElem
;
14215 RV
|= MergeStoresOfConstantsOrVecElts(StoreNodes
, MemVT
, NumElem
, true,
14216 UseVector
, LastIntegerTrunc
);
14218 // Remove merged stores for next iteration.
14219 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
14220 NumConsecutiveStores
-= NumElem
;
14225 // When extracting multiple vector elements, try to store them
14226 // in one vector store rather than a sequence of scalar stores.
14227 if (IsExtractVecSrc
) {
14228 // Loop on Consecutive Stores on success.
14229 while (NumConsecutiveStores
>= 2) {
14230 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
14231 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
14232 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
14233 unsigned NumStoresToMerge
= 1;
14234 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
14235 // Find a legal type for the vector store.
14236 unsigned Elts
= (i
+ 1) * NumMemElts
;
14238 EVT::getVectorVT(*DAG
.getContext(), MemVT
.getScalarType(), Elts
);
14241 // Break early when size is too large to be legal.
14242 if (Ty
.getSizeInBits() > MaximumLegalStoreInBits
)
14245 if (TLI
.isTypeLegal(Ty
) &&
14246 TLI
.canMergeStoresTo(FirstStoreAS
, Ty
, DAG
) &&
14247 TLI
.allowsMemoryAccess(Context
, DL
, Ty
, FirstStoreAS
,
14248 FirstStoreAlign
, &IsFast
) &&
14250 NumStoresToMerge
= i
+ 1;
14253 // Check if we found a legal integer type creating a meaningful
14255 if (NumStoresToMerge
< 2) {
14256 // We know that candidate stores are in order and of correct
14257 // shape. While there is no mergeable sequence from the
14258 // beginning one may start later in the sequence. The only
14259 // reason a merge of size N could have failed where another of
14260 // the same size would not have, is if the alignment has
14261 // improved. Drop as many candidates as we can here.
14262 unsigned NumSkip
= 1;
14264 (NumSkip
< NumConsecutiveStores
) &&
14265 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
14268 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
14269 NumConsecutiveStores
-= NumSkip
;
14273 // Check that we can merge these candidates without causing a cycle.
14274 if (!checkMergeStoreCandidatesForDependencies(
14275 StoreNodes
, NumStoresToMerge
, RootNode
)) {
14276 StoreNodes
.erase(StoreNodes
.begin(),
14277 StoreNodes
.begin() + NumStoresToMerge
);
14278 NumConsecutiveStores
-= NumStoresToMerge
;
14282 RV
|= MergeStoresOfConstantsOrVecElts(
14283 StoreNodes
, MemVT
, NumStoresToMerge
, false, true, false);
14285 StoreNodes
.erase(StoreNodes
.begin(),
14286 StoreNodes
.begin() + NumStoresToMerge
);
14287 NumConsecutiveStores
-= NumStoresToMerge
;
14292 // Below we handle the case of multiple consecutive stores that
14293 // come from multiple consecutive loads. We merge them into a single
14294 // wide load and a single wide store.
14296 // Look for load nodes which are used by the stored values.
14297 SmallVector
<MemOpLink
, 8> LoadNodes
;
14299 // Find acceptable loads. Loads need to have the same chain (token factor),
14300 // must not be zext, volatile, indexed, and they must be consecutive.
14301 BaseIndexOffset LdBasePtr
;
14303 for (unsigned i
= 0; i
< NumConsecutiveStores
; ++i
) {
14304 StoreSDNode
*St
= cast
<StoreSDNode
>(StoreNodes
[i
].MemNode
);
14305 SDValue Val
= peekThroughBitcast(St
->getValue());
14306 LoadSDNode
*Ld
= cast
<LoadSDNode
>(Val
);
14308 BaseIndexOffset LdPtr
= BaseIndexOffset::match(Ld
, DAG
);
14309 // If this is not the first ptr that we check.
14310 int64_t LdOffset
= 0;
14311 if (LdBasePtr
.getBase().getNode()) {
14312 // The base ptr must be the same.
14313 if (!LdBasePtr
.equalBaseIndex(LdPtr
, DAG
, LdOffset
))
14316 // Check that all other base pointers are the same as this one.
14320 // We found a potential memory operand to merge.
14321 LoadNodes
.push_back(MemOpLink(Ld
, LdOffset
));
14324 while (NumConsecutiveStores
>= 2 && LoadNodes
.size() >= 2) {
14325 // If we have load/store pair instructions and we only have two values,
14326 // don't bother merging.
14327 unsigned RequiredAlignment
;
14328 if (LoadNodes
.size() == 2 &&
14329 TLI
.hasPairedLoad(MemVT
, RequiredAlignment
) &&
14330 StoreNodes
[0].MemNode
->getAlignment() >= RequiredAlignment
) {
14331 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + 2);
14332 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + 2);
14335 LSBaseSDNode
*FirstInChain
= StoreNodes
[0].MemNode
;
14336 unsigned FirstStoreAS
= FirstInChain
->getAddressSpace();
14337 unsigned FirstStoreAlign
= FirstInChain
->getAlignment();
14338 LoadSDNode
*FirstLoad
= cast
<LoadSDNode
>(LoadNodes
[0].MemNode
);
14339 unsigned FirstLoadAS
= FirstLoad
->getAddressSpace();
14340 unsigned FirstLoadAlign
= FirstLoad
->getAlignment();
14342 // Scan the memory operations on the chain and find the first
14343 // non-consecutive load memory address. These variables hold the index in
14344 // the store node array.
14346 unsigned LastConsecutiveLoad
= 1;
14348 // This variable refers to the size and not index in the array.
14349 unsigned LastLegalVectorType
= 1;
14350 unsigned LastLegalIntegerType
= 1;
14351 bool isDereferenceable
= true;
14352 bool DoIntegerTruncate
= false;
14353 StartAddress
= LoadNodes
[0].OffsetFromBase
;
14354 SDValue FirstChain
= FirstLoad
->getChain();
14355 for (unsigned i
= 1; i
< LoadNodes
.size(); ++i
) {
14356 // All loads must share the same chain.
14357 if (LoadNodes
[i
].MemNode
->getChain() != FirstChain
)
14360 int64_t CurrAddress
= LoadNodes
[i
].OffsetFromBase
;
14361 if (CurrAddress
- StartAddress
!= (ElementSizeBytes
* i
))
14363 LastConsecutiveLoad
= i
;
14365 if (isDereferenceable
&& !LoadNodes
[i
].MemNode
->isDereferenceable())
14366 isDereferenceable
= false;
14368 // Find a legal type for the vector store.
14369 unsigned Elts
= (i
+ 1) * NumMemElts
;
14370 EVT StoreTy
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
14372 // Break early when size is too large to be legal.
14373 if (StoreTy
.getSizeInBits() > MaximumLegalStoreInBits
)
14376 bool IsFastSt
, IsFastLd
;
14377 if (TLI
.isTypeLegal(StoreTy
) &&
14378 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
14379 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstStoreAS
,
14380 FirstStoreAlign
, &IsFastSt
) &&
14382 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstLoadAS
,
14383 FirstLoadAlign
, &IsFastLd
) &&
14385 LastLegalVectorType
= i
+ 1;
14388 // Find a legal type for the integer store.
14389 unsigned SizeInBits
= (i
+ 1) * ElementSizeBytes
* 8;
14390 StoreTy
= EVT::getIntegerVT(Context
, SizeInBits
);
14391 if (TLI
.isTypeLegal(StoreTy
) &&
14392 TLI
.canMergeStoresTo(FirstStoreAS
, StoreTy
, DAG
) &&
14393 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstStoreAS
,
14394 FirstStoreAlign
, &IsFastSt
) &&
14396 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstLoadAS
,
14397 FirstLoadAlign
, &IsFastLd
) &&
14399 LastLegalIntegerType
= i
+ 1;
14400 DoIntegerTruncate
= false;
14401 // Or check whether a truncstore and extload is legal.
14402 } else if (TLI
.getTypeAction(Context
, StoreTy
) ==
14403 TargetLowering::TypePromoteInteger
) {
14404 EVT LegalizedStoredValTy
= TLI
.getTypeToTransformTo(Context
, StoreTy
);
14405 if (TLI
.isTruncStoreLegal(LegalizedStoredValTy
, StoreTy
) &&
14406 TLI
.canMergeStoresTo(FirstStoreAS
, LegalizedStoredValTy
, DAG
) &&
14407 TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, LegalizedStoredValTy
,
14409 TLI
.isLoadExtLegal(ISD::SEXTLOAD
, LegalizedStoredValTy
,
14411 TLI
.isLoadExtLegal(ISD::EXTLOAD
, LegalizedStoredValTy
, StoreTy
) &&
14412 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstStoreAS
,
14413 FirstStoreAlign
, &IsFastSt
) &&
14415 TLI
.allowsMemoryAccess(Context
, DL
, StoreTy
, FirstLoadAS
,
14416 FirstLoadAlign
, &IsFastLd
) &&
14418 LastLegalIntegerType
= i
+ 1;
14419 DoIntegerTruncate
= true;
14424 // Only use vector types if the vector type is larger than the integer
14425 // type. If they are the same, use integers.
14427 LastLegalVectorType
> LastLegalIntegerType
&& !NoVectors
;
14428 unsigned LastLegalType
=
14429 std::max(LastLegalVectorType
, LastLegalIntegerType
);
14431 // We add +1 here because the LastXXX variables refer to location while
14432 // the NumElem refers to array/index size.
14434 std::min(NumConsecutiveStores
, LastConsecutiveLoad
+ 1);
14435 NumElem
= std::min(LastLegalType
, NumElem
);
14438 // We know that candidate stores are in order and of correct
14439 // shape. While there is no mergeable sequence from the
14440 // beginning one may start later in the sequence. The only
14441 // reason a merge of size N could have failed where another of
14442 // the same size would not have is if the alignment or either
14443 // the load or store has improved. Drop as many candidates as we
14445 unsigned NumSkip
= 1;
14446 while ((NumSkip
< LoadNodes
.size()) &&
14447 (LoadNodes
[NumSkip
].MemNode
->getAlignment() <= FirstLoadAlign
) &&
14448 (StoreNodes
[NumSkip
].MemNode
->getAlignment() <= FirstStoreAlign
))
14450 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumSkip
);
14451 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumSkip
);
14452 NumConsecutiveStores
-= NumSkip
;
14456 // Check that we can merge these candidates without causing a cycle.
14457 if (!checkMergeStoreCandidatesForDependencies(StoreNodes
, NumElem
,
14459 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
14460 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
14461 NumConsecutiveStores
-= NumElem
;
14465 // Find if it is better to use vectors or integers to load and store
14469 // Find a legal type for the vector store.
14470 unsigned Elts
= NumElem
* NumMemElts
;
14471 JointMemOpVT
= EVT::getVectorVT(Context
, MemVT
.getScalarType(), Elts
);
14473 unsigned SizeInBits
= NumElem
* ElementSizeBytes
* 8;
14474 JointMemOpVT
= EVT::getIntegerVT(Context
, SizeInBits
);
14477 SDLoc
LoadDL(LoadNodes
[0].MemNode
);
14478 SDLoc
StoreDL(StoreNodes
[0].MemNode
);
14480 // The merged loads are required to have the same incoming chain, so
14481 // using the first's chain is acceptable.
14483 SDValue NewStoreChain
= getMergeStoreChains(StoreNodes
, NumElem
);
14484 AddToWorklist(NewStoreChain
.getNode());
14486 MachineMemOperand::Flags MMOFlags
=
14487 isDereferenceable
? MachineMemOperand::MODereferenceable
14488 : MachineMemOperand::MONone
;
14490 SDValue NewLoad
, NewStore
;
14491 if (UseVectorTy
|| !DoIntegerTruncate
) {
14493 DAG
.getLoad(JointMemOpVT
, LoadDL
, FirstLoad
->getChain(),
14494 FirstLoad
->getBasePtr(), FirstLoad
->getPointerInfo(),
14495 FirstLoadAlign
, MMOFlags
);
14496 NewStore
= DAG
.getStore(
14497 NewStoreChain
, StoreDL
, NewLoad
, FirstInChain
->getBasePtr(),
14498 FirstInChain
->getPointerInfo(), FirstStoreAlign
);
14499 } else { // This must be the truncstore/extload case
14501 TLI
.getTypeToTransformTo(*DAG
.getContext(), JointMemOpVT
);
14502 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, LoadDL
, ExtendedTy
,
14503 FirstLoad
->getChain(), FirstLoad
->getBasePtr(),
14504 FirstLoad
->getPointerInfo(), JointMemOpVT
,
14505 FirstLoadAlign
, MMOFlags
);
14506 NewStore
= DAG
.getTruncStore(NewStoreChain
, StoreDL
, NewLoad
,
14507 FirstInChain
->getBasePtr(),
14508 FirstInChain
->getPointerInfo(),
14509 JointMemOpVT
, FirstInChain
->getAlignment(),
14510 FirstInChain
->getMemOperand()->getFlags());
14513 // Transfer chain users from old loads to the new load.
14514 for (unsigned i
= 0; i
< NumElem
; ++i
) {
14515 LoadSDNode
*Ld
= cast
<LoadSDNode
>(LoadNodes
[i
].MemNode
);
14516 DAG
.ReplaceAllUsesOfValueWith(SDValue(Ld
, 1),
14517 SDValue(NewLoad
.getNode(), 1));
14520 // Replace the all stores with the new store. Recursively remove
14521 // corresponding value if its no longer used.
14522 for (unsigned i
= 0; i
< NumElem
; ++i
) {
14523 SDValue Val
= StoreNodes
[i
].MemNode
->getOperand(1);
14524 CombineTo(StoreNodes
[i
].MemNode
, NewStore
);
14525 if (Val
.getNode()->use_empty())
14526 recursivelyDeleteUnusedNodes(Val
.getNode());
14530 StoreNodes
.erase(StoreNodes
.begin(), StoreNodes
.begin() + NumElem
);
14531 LoadNodes
.erase(LoadNodes
.begin(), LoadNodes
.begin() + NumElem
);
14532 NumConsecutiveStores
-= NumElem
;
14538 SDValue
DAGCombiner::replaceStoreChain(StoreSDNode
*ST
, SDValue BetterChain
) {
14542 // Replace the chain to avoid dependency.
14543 if (ST
->isTruncatingStore()) {
14544 ReplStore
= DAG
.getTruncStore(BetterChain
, SL
, ST
->getValue(),
14545 ST
->getBasePtr(), ST
->getMemoryVT(),
14546 ST
->getMemOperand());
14548 ReplStore
= DAG
.getStore(BetterChain
, SL
, ST
->getValue(), ST
->getBasePtr(),
14549 ST
->getMemOperand());
14552 // Create token to keep both nodes around.
14553 SDValue Token
= DAG
.getNode(ISD::TokenFactor
, SL
,
14554 MVT::Other
, ST
->getChain(), ReplStore
);
14556 // Make sure the new and old chains are cleaned up.
14557 AddToWorklist(Token
.getNode());
14559 // Don't add users to work list.
14560 return CombineTo(ST
, Token
, false);
14563 SDValue
DAGCombiner::replaceStoreOfFPConstant(StoreSDNode
*ST
) {
14564 SDValue Value
= ST
->getValue();
14565 if (Value
.getOpcode() == ISD::TargetConstantFP
)
14570 SDValue Chain
= ST
->getChain();
14571 SDValue Ptr
= ST
->getBasePtr();
14573 const ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Value
);
14575 // NOTE: If the original store is volatile, this transform must not increase
14576 // the number of stores. For example, on x86-32 an f64 can be stored in one
14577 // processor operation but an i64 (which is not legal) requires two. So the
14578 // transform should not be done in this case.
14581 switch (CFP
->getSimpleValueType(0).SimpleTy
) {
14583 llvm_unreachable("Unknown FP type");
14584 case MVT::f16
: // We don't do this for these yet.
14590 if ((isTypeLegal(MVT::i32
) && !LegalOperations
&& !ST
->isVolatile()) ||
14591 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
14593 Tmp
= DAG
.getConstant((uint32_t)CFP
->getValueAPF().
14594 bitcastToAPInt().getZExtValue(), SDLoc(CFP
),
14596 return DAG
.getStore(Chain
, DL
, Tmp
, Ptr
, ST
->getMemOperand());
14601 if ((TLI
.isTypeLegal(MVT::i64
) && !LegalOperations
&&
14602 !ST
->isVolatile()) ||
14603 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i64
)) {
14605 Tmp
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
14606 getZExtValue(), SDLoc(CFP
), MVT::i64
);
14607 return DAG
.getStore(Chain
, DL
, Tmp
,
14608 Ptr
, ST
->getMemOperand());
14611 if (!ST
->isVolatile() &&
14612 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::i32
)) {
14613 // Many FP stores are not made apparent until after legalize, e.g. for
14614 // argument passing. Since this is so common, custom legalize the
14615 // 64-bit integer store into two 32-bit stores.
14616 uint64_t Val
= CFP
->getValueAPF().bitcastToAPInt().getZExtValue();
14617 SDValue Lo
= DAG
.getConstant(Val
& 0xFFFFFFFF, SDLoc(CFP
), MVT::i32
);
14618 SDValue Hi
= DAG
.getConstant(Val
>> 32, SDLoc(CFP
), MVT::i32
);
14619 if (DAG
.getDataLayout().isBigEndian())
14622 unsigned Alignment
= ST
->getAlignment();
14623 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
14624 AAMDNodes AAInfo
= ST
->getAAInfo();
14626 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
14627 ST
->getAlignment(), MMOFlags
, AAInfo
);
14628 Ptr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
14629 DAG
.getConstant(4, DL
, Ptr
.getValueType()));
14630 Alignment
= MinAlign(Alignment
, 4U);
14631 SDValue St1
= DAG
.getStore(Chain
, DL
, Hi
, Ptr
,
14632 ST
->getPointerInfo().getWithOffset(4),
14633 Alignment
, MMOFlags
, AAInfo
);
14634 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
,
14642 SDValue
DAGCombiner::visitSTORE(SDNode
*N
) {
14643 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
14644 SDValue Chain
= ST
->getChain();
14645 SDValue Value
= ST
->getValue();
14646 SDValue Ptr
= ST
->getBasePtr();
14648 // If this is a store of a bit convert, store the input value if the
14649 // resultant store does not need a higher alignment than the original.
14650 if (Value
.getOpcode() == ISD::BITCAST
&& !ST
->isTruncatingStore() &&
14651 ST
->isUnindexed()) {
14652 EVT SVT
= Value
.getOperand(0).getValueType();
14653 if (((!LegalOperations
&& !ST
->isVolatile()) ||
14654 TLI
.isOperationLegalOrCustom(ISD::STORE
, SVT
)) &&
14655 TLI
.isStoreBitCastBeneficial(Value
.getValueType(), SVT
)) {
14656 unsigned OrigAlign
= ST
->getAlignment();
14658 if (TLI
.allowsMemoryAccess(*DAG
.getContext(), DAG
.getDataLayout(), SVT
,
14659 ST
->getAddressSpace(), OrigAlign
, &Fast
) &&
14661 return DAG
.getStore(Chain
, SDLoc(N
), Value
.getOperand(0), Ptr
,
14662 ST
->getPointerInfo(), OrigAlign
,
14663 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
14668 // Turn 'store undef, Ptr' -> nothing.
14669 if (Value
.isUndef() && ST
->isUnindexed())
14672 // Try to infer better alignment information than the store already has.
14673 if (OptLevel
!= CodeGenOpt::None
&& ST
->isUnindexed()) {
14674 if (unsigned Align
= DAG
.InferPtrAlignment(Ptr
)) {
14675 if (Align
> ST
->getAlignment() && ST
->getSrcValueOffset() % Align
== 0) {
14677 DAG
.getTruncStore(Chain
, SDLoc(N
), Value
, Ptr
, ST
->getPointerInfo(),
14678 ST
->getMemoryVT(), Align
,
14679 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
14680 // NewStore will always be N as we are only refining the alignment
14681 assert(NewStore
.getNode() == N
);
14687 // Try transforming a pair floating point load / store ops to integer
14688 // load / store ops.
14689 if (SDValue NewST
= TransformFPLoadStorePair(N
))
14692 if (ST
->isUnindexed()) {
14693 // Walk up chain skipping non-aliasing memory nodes, on this store and any
14694 // adjacent stores.
14695 if (findBetterNeighborChains(ST
)) {
14696 // replaceStoreChain uses CombineTo, which handled all of the worklist
14697 // manipulation. Return the original node to not do anything else.
14698 return SDValue(ST
, 0);
14700 Chain
= ST
->getChain();
14703 // FIXME: is there such a thing as a truncating indexed store?
14704 if (ST
->isTruncatingStore() && ST
->isUnindexed() &&
14705 Value
.getValueType().isInteger()) {
14706 // See if we can simplify the input to this truncstore with knowledge that
14707 // only the low bits are being used. For example:
14708 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
14709 SDValue Shorter
= DAG
.GetDemandedBits(
14710 Value
, APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
14711 ST
->getMemoryVT().getScalarSizeInBits()));
14712 AddToWorklist(Value
.getNode());
14713 if (Shorter
.getNode())
14714 return DAG
.getTruncStore(Chain
, SDLoc(N
), Shorter
,
14715 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
14717 // Otherwise, see if we can simplify the operation with
14718 // SimplifyDemandedBits, which only works if the value has a single use.
14719 if (SimplifyDemandedBits(
14721 APInt::getLowBitsSet(Value
.getScalarValueSizeInBits(),
14722 ST
->getMemoryVT().getScalarSizeInBits()))) {
14723 // Re-visit the store if anything changed and the store hasn't been merged
14724 // with another node (N is deleted) SimplifyDemandedBits will add Value's
14725 // node back to the worklist if necessary, but we also need to re-visit
14726 // the Store node itself.
14727 if (N
->getOpcode() != ISD::DELETED_NODE
)
14729 return SDValue(N
, 0);
14733 // If this is a load followed by a store to the same location, then the store
14735 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Value
)) {
14736 if (Ld
->getBasePtr() == Ptr
&& ST
->getMemoryVT() == Ld
->getMemoryVT() &&
14737 ST
->isUnindexed() && !ST
->isVolatile() &&
14738 // There can't be any side effects between the load and store, such as
14739 // a call or store.
14740 Chain
.reachesChainWithoutSideEffects(SDValue(Ld
, 1))) {
14741 // The store is dead, remove it.
14746 if (StoreSDNode
*ST1
= dyn_cast
<StoreSDNode
>(Chain
)) {
14747 if (ST
->isUnindexed() && !ST
->isVolatile() && ST1
->isUnindexed() &&
14748 !ST1
->isVolatile() && ST1
->getBasePtr() == Ptr
&&
14749 ST
->getMemoryVT() == ST1
->getMemoryVT()) {
14750 // If this is a store followed by a store with the same value to the same
14751 // location, then the store is dead/noop.
14752 if (ST1
->getValue() == Value
) {
14753 // The store is dead, remove it.
14757 // If this is a store who's preceeding store to the same location
14758 // and no one other node is chained to that store we can effectively
14759 // drop the store. Do not remove stores to undef as they may be used as
14761 if (OptLevel
!= CodeGenOpt::None
&& ST1
->hasOneUse() &&
14762 !ST1
->getBasePtr().isUndef()) {
14763 // ST1 is fully overwritten and can be elided. Combine with it's chain
14765 CombineTo(ST1
, ST1
->getChain());
14771 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
14772 // truncating store. We can do this even if this is already a truncstore.
14773 if ((Value
.getOpcode() == ISD::FP_ROUND
|| Value
.getOpcode() == ISD::TRUNCATE
)
14774 && Value
.getNode()->hasOneUse() && ST
->isUnindexed() &&
14775 TLI
.isTruncStoreLegal(Value
.getOperand(0).getValueType(),
14776 ST
->getMemoryVT())) {
14777 return DAG
.getTruncStore(Chain
, SDLoc(N
), Value
.getOperand(0),
14778 Ptr
, ST
->getMemoryVT(), ST
->getMemOperand());
14781 // Always perform this optimization before types are legal. If the target
14782 // prefers, also try this after legalization to catch stores that were created
14783 // by intrinsics or other nodes.
14784 if (!LegalTypes
|| (TLI
.mergeStoresAfterLegalization())) {
14786 // There can be multiple store sequences on the same chain.
14787 // Keep trying to merge store sequences until we are unable to do so
14788 // or until we merge the last store on the chain.
14789 bool Changed
= MergeConsecutiveStores(ST
);
14790 if (!Changed
) break;
14791 // Return N as merge only uses CombineTo and no worklist clean
14792 // up is necessary.
14793 if (N
->getOpcode() == ISD::DELETED_NODE
|| !isa
<StoreSDNode
>(N
))
14794 return SDValue(N
, 0);
14798 // Try transforming N to an indexed store.
14799 if (CombineToPreIndexedLoadStore(N
) || CombineToPostIndexedLoadStore(N
))
14800 return SDValue(N
, 0);
14802 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
14804 // Make sure to do this only after attempting to merge stores in order to
14805 // avoid changing the types of some subset of stores due to visit order,
14806 // preventing their merging.
14807 if (isa
<ConstantFPSDNode
>(ST
->getValue())) {
14808 if (SDValue NewSt
= replaceStoreOfFPConstant(ST
))
14812 if (SDValue NewSt
= splitMergedValStore(ST
))
14815 return ReduceLoadOpStoreWidth(N
);
14818 /// For the instruction sequence of store below, F and I values
14819 /// are bundled together as an i64 value before being stored into memory.
14820 /// Sometimes it is more efficent to generate separate stores for F and I,
14821 /// which can remove the bitwise instructions or sink them to colder places.
14823 /// (store (or (zext (bitcast F to i32) to i64),
14824 /// (shl (zext I to i64), 32)), addr) -->
14825 /// (store F, addr) and (store I, addr+4)
14827 /// Similarly, splitting for other merged store can also be beneficial, like:
14828 /// For pair of {i32, i32}, i64 store --> two i32 stores.
14829 /// For pair of {i32, i16}, i64 store --> two i32 stores.
14830 /// For pair of {i16, i16}, i32 store --> two i16 stores.
14831 /// For pair of {i16, i8}, i32 store --> two i16 stores.
14832 /// For pair of {i8, i8}, i16 store --> two i8 stores.
14834 /// We allow each target to determine specifically which kind of splitting is
14837 /// The store patterns are commonly seen from the simple code snippet below
14838 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
14839 /// void goo(const std::pair<int, float> &);
14842 /// goo(std::make_pair(tmp, ftmp));
14846 SDValue
DAGCombiner::splitMergedValStore(StoreSDNode
*ST
) {
14847 if (OptLevel
== CodeGenOpt::None
)
14850 SDValue Val
= ST
->getValue();
14853 // Match OR operand.
14854 if (!Val
.getValueType().isScalarInteger() || Val
.getOpcode() != ISD::OR
)
14857 // Match SHL operand and get Lower and Higher parts of Val.
14858 SDValue Op1
= Val
.getOperand(0);
14859 SDValue Op2
= Val
.getOperand(1);
14861 if (Op1
.getOpcode() != ISD::SHL
) {
14862 std::swap(Op1
, Op2
);
14863 if (Op1
.getOpcode() != ISD::SHL
)
14867 Hi
= Op1
.getOperand(0);
14868 if (!Op1
.hasOneUse())
14871 // Match shift amount to HalfValBitSize.
14872 unsigned HalfValBitSize
= Val
.getValueSizeInBits() / 2;
14873 ConstantSDNode
*ShAmt
= dyn_cast
<ConstantSDNode
>(Op1
.getOperand(1));
14874 if (!ShAmt
|| ShAmt
->getAPIntValue() != HalfValBitSize
)
14877 // Lo and Hi are zero-extended from int with size less equal than 32
14879 if (Lo
.getOpcode() != ISD::ZERO_EXTEND
|| !Lo
.hasOneUse() ||
14880 !Lo
.getOperand(0).getValueType().isScalarInteger() ||
14881 Lo
.getOperand(0).getValueSizeInBits() > HalfValBitSize
||
14882 Hi
.getOpcode() != ISD::ZERO_EXTEND
|| !Hi
.hasOneUse() ||
14883 !Hi
.getOperand(0).getValueType().isScalarInteger() ||
14884 Hi
.getOperand(0).getValueSizeInBits() > HalfValBitSize
)
14887 // Use the EVT of low and high parts before bitcast as the input
14888 // of target query.
14889 EVT LowTy
= (Lo
.getOperand(0).getOpcode() == ISD::BITCAST
)
14890 ? Lo
.getOperand(0).getValueType()
14891 : Lo
.getValueType();
14892 EVT HighTy
= (Hi
.getOperand(0).getOpcode() == ISD::BITCAST
)
14893 ? Hi
.getOperand(0).getValueType()
14894 : Hi
.getValueType();
14895 if (!TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
14898 // Start to split store.
14899 unsigned Alignment
= ST
->getAlignment();
14900 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
14901 AAMDNodes AAInfo
= ST
->getAAInfo();
14903 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
14904 EVT VT
= EVT::getIntegerVT(*DAG
.getContext(), HalfValBitSize
);
14905 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Lo
.getOperand(0));
14906 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, Hi
.getOperand(0));
14908 SDValue Chain
= ST
->getChain();
14909 SDValue Ptr
= ST
->getBasePtr();
14910 // Lower value store.
14911 SDValue St0
= DAG
.getStore(Chain
, DL
, Lo
, Ptr
, ST
->getPointerInfo(),
14912 ST
->getAlignment(), MMOFlags
, AAInfo
);
14914 DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
14915 DAG
.getConstant(HalfValBitSize
/ 8, DL
, Ptr
.getValueType()));
14916 // Higher value store.
14918 DAG
.getStore(St0
, DL
, Hi
, Ptr
,
14919 ST
->getPointerInfo().getWithOffset(HalfValBitSize
/ 8),
14920 Alignment
/ 2, MMOFlags
, AAInfo
);
14924 /// Convert a disguised subvector insertion into a shuffle:
14925 /// insert_vector_elt V, (bitcast X from vector type), IdxC -->
14926 /// bitcast(shuffle (bitcast V), (extended X), Mask)
14927 /// Note: We do not use an insert_subvector node because that requires a legal
14928 /// subvector type.
14929 SDValue
DAGCombiner::combineInsertEltToShuffle(SDNode
*N
, unsigned InsIndex
) {
14930 SDValue InsertVal
= N
->getOperand(1);
14931 if (InsertVal
.getOpcode() != ISD::BITCAST
|| !InsertVal
.hasOneUse() ||
14932 !InsertVal
.getOperand(0).getValueType().isVector())
14935 SDValue SubVec
= InsertVal
.getOperand(0);
14936 SDValue DestVec
= N
->getOperand(0);
14937 EVT SubVecVT
= SubVec
.getValueType();
14938 EVT VT
= DestVec
.getValueType();
14939 unsigned NumSrcElts
= SubVecVT
.getVectorNumElements();
14940 unsigned ExtendRatio
= VT
.getSizeInBits() / SubVecVT
.getSizeInBits();
14941 unsigned NumMaskVals
= ExtendRatio
* NumSrcElts
;
14943 // Step 1: Create a shuffle mask that implements this insert operation. The
14944 // vector that we are inserting into will be operand 0 of the shuffle, so
14945 // those elements are just 'i'. The inserted subvector is in the first
14946 // positions of operand 1 of the shuffle. Example:
14947 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
14948 SmallVector
<int, 16> Mask(NumMaskVals
);
14949 for (unsigned i
= 0; i
!= NumMaskVals
; ++i
) {
14950 if (i
/ NumSrcElts
== InsIndex
)
14951 Mask
[i
] = (i
% NumSrcElts
) + NumMaskVals
;
14956 // Bail out if the target can not handle the shuffle we want to create.
14957 EVT SubVecEltVT
= SubVecVT
.getVectorElementType();
14958 EVT ShufVT
= EVT::getVectorVT(*DAG
.getContext(), SubVecEltVT
, NumMaskVals
);
14959 if (!TLI
.isShuffleMaskLegal(Mask
, ShufVT
))
14962 // Step 2: Create a wide vector from the inserted source vector by appending
14963 // undefined elements. This is the same size as our destination vector.
14965 SmallVector
<SDValue
, 8> ConcatOps(ExtendRatio
, DAG
.getUNDEF(SubVecVT
));
14966 ConcatOps
[0] = SubVec
;
14967 SDValue PaddedSubV
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ShufVT
, ConcatOps
);
14969 // Step 3: Shuffle in the padded subvector.
14970 SDValue DestVecBC
= DAG
.getBitcast(ShufVT
, DestVec
);
14971 SDValue Shuf
= DAG
.getVectorShuffle(ShufVT
, DL
, DestVecBC
, PaddedSubV
, Mask
);
14972 AddToWorklist(PaddedSubV
.getNode());
14973 AddToWorklist(DestVecBC
.getNode());
14974 AddToWorklist(Shuf
.getNode());
14975 return DAG
.getBitcast(VT
, Shuf
);
14978 SDValue
DAGCombiner::visitINSERT_VECTOR_ELT(SDNode
*N
) {
14979 SDValue InVec
= N
->getOperand(0);
14980 SDValue InVal
= N
->getOperand(1);
14981 SDValue EltNo
= N
->getOperand(2);
14984 // If the inserted element is an UNDEF, just use the input vector.
14985 if (InVal
.isUndef())
14988 EVT VT
= InVec
.getValueType();
14990 // Remove redundant insertions:
14991 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
14992 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
14993 InVec
== InVal
.getOperand(0) && EltNo
== InVal
.getOperand(1))
14996 // We must know which element is being inserted for folds below here.
14997 auto *IndexC
= dyn_cast
<ConstantSDNode
>(EltNo
);
15000 unsigned Elt
= IndexC
->getZExtValue();
15002 if (SDValue Shuf
= combineInsertEltToShuffle(N
, Elt
))
15005 // Canonicalize insert_vector_elt dag nodes.
15007 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
15008 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
15010 // Do this only if the child insert_vector node has one use; also
15011 // do this only if indices are both constants and Idx1 < Idx0.
15012 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& InVec
.hasOneUse()
15013 && isa
<ConstantSDNode
>(InVec
.getOperand(2))) {
15014 unsigned OtherElt
= InVec
.getConstantOperandVal(2);
15015 if (Elt
< OtherElt
) {
15017 SDValue NewOp
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, VT
,
15018 InVec
.getOperand(0), InVal
, EltNo
);
15019 AddToWorklist(NewOp
.getNode());
15020 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(InVec
.getNode()),
15021 VT
, NewOp
, InVec
.getOperand(1), InVec
.getOperand(2));
15025 // If we can't generate a legal BUILD_VECTOR, exit
15026 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
))
15029 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
15030 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
15031 // vector elements.
15032 SmallVector
<SDValue
, 8> Ops
;
15033 // Do not combine these two vectors if the output vector will not replace
15034 // the input vector.
15035 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
&& InVec
.hasOneUse()) {
15036 Ops
.append(InVec
.getNode()->op_begin(),
15037 InVec
.getNode()->op_end());
15038 } else if (InVec
.isUndef()) {
15039 unsigned NElts
= VT
.getVectorNumElements();
15040 Ops
.append(NElts
, DAG
.getUNDEF(InVal
.getValueType()));
15045 // Insert the element
15046 if (Elt
< Ops
.size()) {
15047 // All the operands of BUILD_VECTOR must have the same type;
15048 // we enforce that here.
15049 EVT OpVT
= Ops
[0].getValueType();
15050 Ops
[Elt
] = OpVT
.isInteger() ? DAG
.getAnyExtOrTrunc(InVal
, DL
, OpVT
) : InVal
;
15053 // Return the new vector
15054 return DAG
.getBuildVector(VT
, DL
, Ops
);
15057 SDValue
DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
15058 SDNode
*EVE
, EVT InVecVT
, SDValue EltNo
, LoadSDNode
*OriginalLoad
) {
15059 assert(!OriginalLoad
->isVolatile());
15061 EVT ResultVT
= EVE
->getValueType(0);
15062 EVT VecEltVT
= InVecVT
.getVectorElementType();
15063 unsigned Align
= OriginalLoad
->getAlignment();
15064 unsigned NewAlign
= DAG
.getDataLayout().getABITypeAlignment(
15065 VecEltVT
.getTypeForEVT(*DAG
.getContext()));
15067 if (NewAlign
> Align
|| !TLI
.isOperationLegalOrCustom(ISD::LOAD
, VecEltVT
))
15070 ISD::LoadExtType ExtTy
= ResultVT
.bitsGT(VecEltVT
) ?
15071 ISD::NON_EXTLOAD
: ISD::EXTLOAD
;
15072 if (!TLI
.shouldReduceLoadWidth(OriginalLoad
, ExtTy
, VecEltVT
))
15077 SDValue NewPtr
= OriginalLoad
->getBasePtr();
15079 EVT PtrType
= NewPtr
.getValueType();
15080 MachinePointerInfo MPI
;
15082 if (auto *ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
15083 int Elt
= ConstEltNo
->getZExtValue();
15084 unsigned PtrOff
= VecEltVT
.getSizeInBits() * Elt
/ 8;
15085 Offset
= DAG
.getConstant(PtrOff
, DL
, PtrType
);
15086 MPI
= OriginalLoad
->getPointerInfo().getWithOffset(PtrOff
);
15088 Offset
= DAG
.getZExtOrTrunc(EltNo
, DL
, PtrType
);
15089 Offset
= DAG
.getNode(
15090 ISD::MUL
, DL
, PtrType
, Offset
,
15091 DAG
.getConstant(VecEltVT
.getStoreSize(), DL
, PtrType
));
15092 MPI
= OriginalLoad
->getPointerInfo();
15094 NewPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrType
, NewPtr
, Offset
);
15096 // The replacement we need to do here is a little tricky: we need to
15097 // replace an extractelement of a load with a load.
15098 // Use ReplaceAllUsesOfValuesWith to do the replacement.
15099 // Note that this replacement assumes that the extractvalue is the only
15100 // use of the load; that's okay because we don't want to perform this
15101 // transformation in other cases anyway.
15104 if (ResultVT
.bitsGT(VecEltVT
)) {
15105 // If the result type of vextract is wider than the load, then issue an
15106 // extending load instead.
15107 ISD::LoadExtType ExtType
= TLI
.isLoadExtLegal(ISD::ZEXTLOAD
, ResultVT
,
15111 Load
= DAG
.getExtLoad(ExtType
, SDLoc(EVE
), ResultVT
,
15112 OriginalLoad
->getChain(), NewPtr
, MPI
, VecEltVT
,
15113 Align
, OriginalLoad
->getMemOperand()->getFlags(),
15114 OriginalLoad
->getAAInfo());
15115 Chain
= Load
.getValue(1);
15117 Load
= DAG
.getLoad(VecEltVT
, SDLoc(EVE
), OriginalLoad
->getChain(), NewPtr
,
15118 MPI
, Align
, OriginalLoad
->getMemOperand()->getFlags(),
15119 OriginalLoad
->getAAInfo());
15120 Chain
= Load
.getValue(1);
15121 if (ResultVT
.bitsLT(VecEltVT
))
15122 Load
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(EVE
), ResultVT
, Load
);
15124 Load
= DAG
.getBitcast(ResultVT
, Load
);
15126 WorklistRemover
DeadNodes(*this);
15127 SDValue From
[] = { SDValue(EVE
, 0), SDValue(OriginalLoad
, 1) };
15128 SDValue To
[] = { Load
, Chain
};
15129 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
15130 // Since we're explicitly calling ReplaceAllUses, add the new node to the
15131 // worklist explicitly as well.
15132 AddToWorklist(Load
.getNode());
15133 AddUsersToWorklist(Load
.getNode()); // Add users too
15134 // Make sure to revisit this node to clean it up; it will usually be dead.
15135 AddToWorklist(EVE
);
15137 return SDValue(EVE
, 0);
15140 SDValue
DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode
*N
) {
15141 // (vextract (scalar_to_vector val, 0) -> val
15142 SDValue InVec
= N
->getOperand(0);
15143 EVT VT
= InVec
.getValueType();
15144 EVT NVT
= N
->getValueType(0);
15146 if (InVec
.isUndef())
15147 return DAG
.getUNDEF(NVT
);
15149 if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
15150 // Check if the result type doesn't match the inserted element type. A
15151 // SCALAR_TO_VECTOR may truncate the inserted element and the
15152 // EXTRACT_VECTOR_ELT may widen the extracted vector.
15153 SDValue InOp
= InVec
.getOperand(0);
15154 if (InOp
.getValueType() != NVT
) {
15155 assert(InOp
.getValueType().isInteger() && NVT
.isInteger());
15156 return DAG
.getSExtOrTrunc(InOp
, SDLoc(InVec
), NVT
);
15161 SDValue EltNo
= N
->getOperand(1);
15162 ConstantSDNode
*ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
15164 // extract_vector_elt of out-of-bounds element -> UNDEF
15165 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().uge(VT
.getVectorNumElements()))
15166 return DAG
.getUNDEF(NVT
);
15168 // extract_vector_elt (build_vector x, y), 1 -> y
15170 InVec
.getOpcode() == ISD::BUILD_VECTOR
&&
15171 TLI
.isTypeLegal(VT
) &&
15172 (InVec
.hasOneUse() ||
15173 TLI
.aggressivelyPreferBuildVectorSources(VT
))) {
15174 SDValue Elt
= InVec
.getOperand(ConstEltNo
->getZExtValue());
15175 EVT InEltVT
= Elt
.getValueType();
15177 // Sometimes build_vector's scalar input types do not match result type.
15178 if (NVT
== InEltVT
)
15181 // TODO: It may be useful to truncate if free if the build_vector implicitly
15185 // extract_vector_elt (v2i32 (bitcast i64:x)), EltTrunc -> i32 (trunc i64:x)
15186 bool isLE
= DAG
.getDataLayout().isLittleEndian();
15187 unsigned EltTrunc
= isLE
? 0 : VT
.getVectorNumElements() - 1;
15188 if (ConstEltNo
&& InVec
.getOpcode() == ISD::BITCAST
&& InVec
.hasOneUse() &&
15189 ConstEltNo
->getZExtValue() == EltTrunc
&& VT
.isInteger()) {
15190 SDValue BCSrc
= InVec
.getOperand(0);
15191 if (BCSrc
.getValueType().isScalarInteger())
15192 return DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), NVT
, BCSrc
);
15195 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
15197 // This only really matters if the index is non-constant since other combines
15198 // on the constant elements already work.
15199 if (InVec
.getOpcode() == ISD::INSERT_VECTOR_ELT
&&
15200 EltNo
== InVec
.getOperand(2)) {
15201 SDValue Elt
= InVec
.getOperand(1);
15202 return VT
.isInteger() ? DAG
.getAnyExtOrTrunc(Elt
, SDLoc(N
), NVT
) : Elt
;
15205 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
15206 // We only perform this optimization before the op legalization phase because
15207 // we may introduce new vector instructions which are not backed by TD
15208 // patterns. For example on AVX, extracting elements from a wide vector
15209 // without using extract_subvector. However, if we can find an underlying
15210 // scalar value, then we can always use that.
15211 if (ConstEltNo
&& InVec
.getOpcode() == ISD::VECTOR_SHUFFLE
) {
15212 int NumElem
= VT
.getVectorNumElements();
15213 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(InVec
);
15214 // Find the new index to extract from.
15215 int OrigElt
= SVOp
->getMaskElt(ConstEltNo
->getZExtValue());
15217 // Extracting an undef index is undef.
15219 return DAG
.getUNDEF(NVT
);
15221 // Select the right vector half to extract from.
15223 if (OrigElt
< NumElem
) {
15224 SVInVec
= InVec
->getOperand(0);
15226 SVInVec
= InVec
->getOperand(1);
15227 OrigElt
-= NumElem
;
15230 if (SVInVec
.getOpcode() == ISD::BUILD_VECTOR
) {
15231 SDValue InOp
= SVInVec
.getOperand(OrigElt
);
15232 if (InOp
.getValueType() != NVT
) {
15233 assert(InOp
.getValueType().isInteger() && NVT
.isInteger());
15234 InOp
= DAG
.getSExtOrTrunc(InOp
, SDLoc(SVInVec
), NVT
);
15240 // FIXME: We should handle recursing on other vector shuffles and
15241 // scalar_to_vector here as well.
15243 if (!LegalOperations
||
15244 // FIXME: Should really be just isOperationLegalOrCustom.
15245 TLI
.isOperationLegal(ISD::EXTRACT_VECTOR_ELT
, VT
) ||
15246 TLI
.isOperationExpand(ISD::VECTOR_SHUFFLE
, VT
)) {
15247 EVT IndexTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
15248 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SDLoc(N
), NVT
, SVInVec
,
15249 DAG
.getConstant(OrigElt
, SDLoc(SVOp
), IndexTy
));
15253 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
15254 // simplify it based on the (valid) extraction indices.
15255 if (llvm::all_of(InVec
->uses(), [&](SDNode
*Use
) {
15256 return Use
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
15257 Use
->getOperand(0) == InVec
&&
15258 isa
<ConstantSDNode
>(Use
->getOperand(1));
15260 APInt DemandedElts
= APInt::getNullValue(VT
.getVectorNumElements());
15261 for (SDNode
*Use
: InVec
->uses()) {
15262 auto *CstElt
= cast
<ConstantSDNode
>(Use
->getOperand(1));
15263 if (CstElt
->getAPIntValue().ult(VT
.getVectorNumElements()))
15264 DemandedElts
.setBit(CstElt
->getZExtValue());
15266 if (SimplifyDemandedVectorElts(InVec
, DemandedElts
, true))
15267 return SDValue(N
, 0);
15270 bool BCNumEltsChanged
= false;
15271 EVT ExtVT
= VT
.getVectorElementType();
15274 // If the result of load has to be truncated, then it's not necessarily
15276 if (NVT
.bitsLT(LVT
) && !TLI
.isTruncateFree(LVT
, NVT
))
15279 if (InVec
.getOpcode() == ISD::BITCAST
) {
15280 // Don't duplicate a load with other uses.
15281 if (!InVec
.hasOneUse())
15284 EVT BCVT
= InVec
.getOperand(0).getValueType();
15285 if (!BCVT
.isVector() || ExtVT
.bitsGT(BCVT
.getVectorElementType()))
15287 if (VT
.getVectorNumElements() != BCVT
.getVectorNumElements())
15288 BCNumEltsChanged
= true;
15289 InVec
= InVec
.getOperand(0);
15290 ExtVT
= BCVT
.getVectorElementType();
15293 // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
15294 if (!LegalOperations
&& !ConstEltNo
&& InVec
.hasOneUse() &&
15295 ISD::isNormalLoad(InVec
.getNode()) &&
15296 !N
->getOperand(1)->hasPredecessor(InVec
.getNode())) {
15297 SDValue Index
= N
->getOperand(1);
15298 if (LoadSDNode
*OrigLoad
= dyn_cast
<LoadSDNode
>(InVec
)) {
15299 if (!OrigLoad
->isVolatile()) {
15300 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N
, VT
, Index
,
15306 // Perform only after legalization to ensure build_vector / vector_shuffle
15307 // optimizations have already been done.
15308 if (!LegalOperations
) return SDValue();
15310 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
15311 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
15312 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
15315 int Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
15317 LoadSDNode
*LN0
= nullptr;
15318 const ShuffleVectorSDNode
*SVN
= nullptr;
15319 if (ISD::isNormalLoad(InVec
.getNode())) {
15320 LN0
= cast
<LoadSDNode
>(InVec
);
15321 } else if (InVec
.getOpcode() == ISD::SCALAR_TO_VECTOR
&&
15322 InVec
.getOperand(0).getValueType() == ExtVT
&&
15323 ISD::isNormalLoad(InVec
.getOperand(0).getNode())) {
15324 // Don't duplicate a load with other uses.
15325 if (!InVec
.hasOneUse())
15328 LN0
= cast
<LoadSDNode
>(InVec
.getOperand(0));
15329 } else if ((SVN
= dyn_cast
<ShuffleVectorSDNode
>(InVec
))) {
15330 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
15332 // (load $addr+1*size)
15334 // Don't duplicate a load with other uses.
15335 if (!InVec
.hasOneUse())
15338 // If the bit convert changed the number of elements, it is unsafe
15339 // to examine the mask.
15340 if (BCNumEltsChanged
)
15343 // Select the input vector, guarding against out of range extract vector.
15344 unsigned NumElems
= VT
.getVectorNumElements();
15345 int Idx
= (Elt
> (int)NumElems
) ? -1 : SVN
->getMaskElt(Elt
);
15346 InVec
= (Idx
< (int)NumElems
) ? InVec
.getOperand(0) : InVec
.getOperand(1);
15348 if (InVec
.getOpcode() == ISD::BITCAST
) {
15349 // Don't duplicate a load with other uses.
15350 if (!InVec
.hasOneUse())
15353 InVec
= InVec
.getOperand(0);
15355 if (ISD::isNormalLoad(InVec
.getNode())) {
15356 LN0
= cast
<LoadSDNode
>(InVec
);
15357 Elt
= (Idx
< (int)NumElems
) ? Idx
: Idx
- (int)NumElems
;
15358 EltNo
= DAG
.getConstant(Elt
, SDLoc(EltNo
), EltNo
.getValueType());
15362 // Make sure we found a non-volatile load and the extractelement is
15364 if (!LN0
|| !LN0
->hasNUsesOfValue(1,0) || LN0
->isVolatile())
15367 // If Idx was -1 above, Elt is going to be -1, so just return undef.
15369 return DAG
.getUNDEF(LVT
);
15371 return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N
, VT
, EltNo
, LN0
);
15377 // Simplify (build_vec (ext )) to (bitcast (build_vec ))
15378 SDValue
DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode
*N
) {
15379 // We perform this optimization post type-legalization because
15380 // the type-legalizer often scalarizes integer-promoted vectors.
15381 // Performing this optimization before may create bit-casts which
15382 // will be type-legalized to complex code sequences.
15383 // We perform this optimization only before the operation legalizer because we
15384 // may introduce illegal operations.
15385 if (Level
!= AfterLegalizeVectorOps
&& Level
!= AfterLegalizeTypes
)
15388 unsigned NumInScalars
= N
->getNumOperands();
15390 EVT VT
= N
->getValueType(0);
15392 // Check to see if this is a BUILD_VECTOR of a bunch of values
15393 // which come from any_extend or zero_extend nodes. If so, we can create
15394 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
15395 // optimizations. We do not handle sign-extend because we can't fill the sign
15397 EVT SourceType
= MVT::Other
;
15398 bool AllAnyExt
= true;
15400 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
15401 SDValue In
= N
->getOperand(i
);
15402 // Ignore undef inputs.
15403 if (In
.isUndef()) continue;
15405 bool AnyExt
= In
.getOpcode() == ISD::ANY_EXTEND
;
15406 bool ZeroExt
= In
.getOpcode() == ISD::ZERO_EXTEND
;
15408 // Abort if the element is not an extension.
15409 if (!ZeroExt
&& !AnyExt
) {
15410 SourceType
= MVT::Other
;
15414 // The input is a ZeroExt or AnyExt. Check the original type.
15415 EVT InTy
= In
.getOperand(0).getValueType();
15417 // Check that all of the widened source types are the same.
15418 if (SourceType
== MVT::Other
)
15421 else if (InTy
!= SourceType
) {
15422 // Multiple income types. Abort.
15423 SourceType
= MVT::Other
;
15427 // Check if all of the extends are ANY_EXTENDs.
15428 AllAnyExt
&= AnyExt
;
15431 // In order to have valid types, all of the inputs must be extended from the
15432 // same source type and all of the inputs must be any or zero extend.
15433 // Scalar sizes must be a power of two.
15434 EVT OutScalarTy
= VT
.getScalarType();
15435 bool ValidTypes
= SourceType
!= MVT::Other
&&
15436 isPowerOf2_32(OutScalarTy
.getSizeInBits()) &&
15437 isPowerOf2_32(SourceType
.getSizeInBits());
15439 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
15440 // turn into a single shuffle instruction.
15444 bool isLE
= DAG
.getDataLayout().isLittleEndian();
15445 unsigned ElemRatio
= OutScalarTy
.getSizeInBits()/SourceType
.getSizeInBits();
15446 assert(ElemRatio
> 1 && "Invalid element size ratio");
15447 SDValue Filler
= AllAnyExt
? DAG
.getUNDEF(SourceType
):
15448 DAG
.getConstant(0, DL
, SourceType
);
15450 unsigned NewBVElems
= ElemRatio
* VT
.getVectorNumElements();
15451 SmallVector
<SDValue
, 8> Ops(NewBVElems
, Filler
);
15453 // Populate the new build_vector
15454 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
15455 SDValue Cast
= N
->getOperand(i
);
15456 assert((Cast
.getOpcode() == ISD::ANY_EXTEND
||
15457 Cast
.getOpcode() == ISD::ZERO_EXTEND
||
15458 Cast
.isUndef()) && "Invalid cast opcode");
15460 if (Cast
.isUndef())
15461 In
= DAG
.getUNDEF(SourceType
);
15463 In
= Cast
->getOperand(0);
15464 unsigned Index
= isLE
? (i
* ElemRatio
) :
15465 (i
* ElemRatio
+ (ElemRatio
- 1));
15467 assert(Index
< Ops
.size() && "Invalid index");
15471 // The type of the new BUILD_VECTOR node.
15472 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SourceType
, NewBVElems
);
15473 assert(VecVT
.getSizeInBits() == VT
.getSizeInBits() &&
15474 "Invalid vector size");
15475 // Check if the new vector type is legal.
15476 if (!isTypeLegal(VecVT
) ||
15477 (!TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VecVT
) &&
15478 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, VT
)))
15481 // Make the new BUILD_VECTOR.
15482 SDValue BV
= DAG
.getBuildVector(VecVT
, DL
, Ops
);
15484 // The new BUILD_VECTOR node has the potential to be further optimized.
15485 AddToWorklist(BV
.getNode());
15486 // Bitcast to the desired type.
15487 return DAG
.getBitcast(VT
, BV
);
15490 SDValue
DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode
*N
) {
15491 EVT VT
= N
->getValueType(0);
15493 unsigned NumInScalars
= N
->getNumOperands();
15496 EVT SrcVT
= MVT::Other
;
15497 unsigned Opcode
= ISD::DELETED_NODE
;
15498 unsigned NumDefs
= 0;
15500 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
15501 SDValue In
= N
->getOperand(i
);
15502 unsigned Opc
= In
.getOpcode();
15504 if (Opc
== ISD::UNDEF
)
15507 // If all scalar values are floats and converted from integers.
15508 if (Opcode
== ISD::DELETED_NODE
&&
15509 (Opc
== ISD::UINT_TO_FP
|| Opc
== ISD::SINT_TO_FP
)) {
15516 EVT InVT
= In
.getOperand(0).getValueType();
15518 // If all scalar values are typed differently, bail out. It's chosen to
15519 // simplify BUILD_VECTOR of integer types.
15520 if (SrcVT
== MVT::Other
)
15527 // If the vector has just one element defined, it's not worth to fold it into
15528 // a vectorized one.
15532 assert((Opcode
== ISD::UINT_TO_FP
|| Opcode
== ISD::SINT_TO_FP
)
15533 && "Should only handle conversion from integer to float.");
15534 assert(SrcVT
!= MVT::Other
&& "Cannot determine source type!");
15536 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
, NumInScalars
);
15538 if (!TLI
.isOperationLegalOrCustom(Opcode
, NVT
))
15541 // Just because the floating-point vector type is legal does not necessarily
15542 // mean that the corresponding integer vector type is.
15543 if (!isTypeLegal(NVT
))
15546 SmallVector
<SDValue
, 8> Opnds
;
15547 for (unsigned i
= 0; i
!= NumInScalars
; ++i
) {
15548 SDValue In
= N
->getOperand(i
);
15551 Opnds
.push_back(DAG
.getUNDEF(SrcVT
));
15553 Opnds
.push_back(In
.getOperand(0));
15555 SDValue BV
= DAG
.getBuildVector(NVT
, DL
, Opnds
);
15556 AddToWorklist(BV
.getNode());
15558 return DAG
.getNode(Opcode
, DL
, VT
, BV
);
15561 SDValue
DAGCombiner::createBuildVecShuffle(const SDLoc
&DL
, SDNode
*N
,
15562 ArrayRef
<int> VectorMask
,
15563 SDValue VecIn1
, SDValue VecIn2
,
15564 unsigned LeftIdx
) {
15565 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
15566 SDValue ZeroIdx
= DAG
.getConstant(0, DL
, IdxTy
);
15568 EVT VT
= N
->getValueType(0);
15569 EVT InVT1
= VecIn1
.getValueType();
15570 EVT InVT2
= VecIn2
.getNode() ? VecIn2
.getValueType() : InVT1
;
15572 unsigned Vec2Offset
= 0;
15573 unsigned NumElems
= VT
.getVectorNumElements();
15574 unsigned ShuffleNumElems
= NumElems
;
15576 // In case both the input vectors are extracted from same base
15577 // vector we do not need extra addend (Vec2Offset) while
15578 // computing shuffle mask.
15579 if (!VecIn2
|| !(VecIn1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) ||
15580 !(VecIn2
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) ||
15581 !(VecIn1
.getOperand(0) == VecIn2
.getOperand(0)))
15582 Vec2Offset
= InVT1
.getVectorNumElements();
15584 // We can't generate a shuffle node with mismatched input and output types.
15585 // Try to make the types match the type of the output.
15586 if (InVT1
!= VT
|| InVT2
!= VT
) {
15587 if ((VT
.getSizeInBits() % InVT1
.getSizeInBits() == 0) && InVT1
== InVT2
) {
15588 // If the output vector length is a multiple of both input lengths,
15589 // we can concatenate them and pad the rest with undefs.
15590 unsigned NumConcats
= VT
.getSizeInBits() / InVT1
.getSizeInBits();
15591 assert(NumConcats
>= 2 && "Concat needs at least two inputs!");
15592 SmallVector
<SDValue
, 2> ConcatOps(NumConcats
, DAG
.getUNDEF(InVT1
));
15593 ConcatOps
[0] = VecIn1
;
15594 ConcatOps
[1] = VecIn2
? VecIn2
: DAG
.getUNDEF(InVT1
);
15595 VecIn1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
15596 VecIn2
= SDValue();
15597 } else if (InVT1
.getSizeInBits() == VT
.getSizeInBits() * 2) {
15598 if (!TLI
.isExtractSubvectorCheap(VT
, InVT1
, NumElems
))
15601 if (!VecIn2
.getNode()) {
15602 // If we only have one input vector, and it's twice the size of the
15603 // output, split it in two.
15604 VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
,
15605 DAG
.getConstant(NumElems
, DL
, IdxTy
));
15606 VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, VecIn1
, ZeroIdx
);
15607 // Since we now have shorter input vectors, adjust the offset of the
15608 // second vector's start.
15609 Vec2Offset
= NumElems
;
15610 } else if (InVT2
.getSizeInBits() <= InVT1
.getSizeInBits()) {
15611 // VecIn1 is wider than the output, and we have another, possibly
15612 // smaller input. Pad the smaller input with undefs, shuffle at the
15613 // input vector width, and extract the output.
15614 // The shuffle type is different than VT, so check legality again.
15615 if (LegalOperations
&&
15616 !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, InVT1
))
15619 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
15620 // lower it back into a BUILD_VECTOR. So if the inserted type is
15621 // illegal, don't even try.
15622 if (InVT1
!= InVT2
) {
15623 if (!TLI
.isTypeLegal(InVT2
))
15625 VecIn2
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, InVT1
,
15626 DAG
.getUNDEF(InVT1
), VecIn2
, ZeroIdx
);
15628 ShuffleNumElems
= NumElems
* 2;
15630 // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider
15631 // than VecIn1. We can't handle this for now - this case will disappear
15632 // when we start sorting the vectors by type.
15635 } else if (InVT2
.getSizeInBits() * 2 == VT
.getSizeInBits() &&
15636 InVT1
.getSizeInBits() == VT
.getSizeInBits()) {
15637 SmallVector
<SDValue
, 2> ConcatOps(2, DAG
.getUNDEF(InVT2
));
15638 ConcatOps
[0] = VecIn2
;
15639 VecIn2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
);
15641 // TODO: Support cases where the length mismatch isn't exactly by a
15643 // TODO: Move this check upwards, so that if we have bad type
15644 // mismatches, we don't create any DAG nodes.
15649 // Initialize mask to undef.
15650 SmallVector
<int, 8> Mask(ShuffleNumElems
, -1);
15652 // Only need to run up to the number of elements actually used, not the
15653 // total number of elements in the shuffle - if we are shuffling a wider
15654 // vector, the high lanes should be set to undef.
15655 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
15656 if (VectorMask
[i
] <= 0)
15659 unsigned ExtIndex
= N
->getOperand(i
).getConstantOperandVal(1);
15660 if (VectorMask
[i
] == (int)LeftIdx
) {
15661 Mask
[i
] = ExtIndex
;
15662 } else if (VectorMask
[i
] == (int)LeftIdx
+ 1) {
15663 Mask
[i
] = Vec2Offset
+ ExtIndex
;
15667 // The type the input vectors may have changed above.
15668 InVT1
= VecIn1
.getValueType();
15670 // If we already have a VecIn2, it should have the same type as VecIn1.
15671 // If we don't, get an undef/zero vector of the appropriate type.
15672 VecIn2
= VecIn2
.getNode() ? VecIn2
: DAG
.getUNDEF(InVT1
);
15673 assert(InVT1
== VecIn2
.getValueType() && "Unexpected second input type.");
15675 SDValue Shuffle
= DAG
.getVectorShuffle(InVT1
, DL
, VecIn1
, VecIn2
, Mask
);
15676 if (ShuffleNumElems
> NumElems
)
15677 Shuffle
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Shuffle
, ZeroIdx
);
15682 // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
15683 // operations. If the types of the vectors we're extracting from allow it,
15684 // turn this into a vector_shuffle node.
15685 SDValue
DAGCombiner::reduceBuildVecToShuffle(SDNode
*N
) {
15687 EVT VT
= N
->getValueType(0);
15689 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
15690 if (!isTypeLegal(VT
))
15693 // May only combine to shuffle after legalize if shuffle is legal.
15694 if (LegalOperations
&& !TLI
.isOperationLegal(ISD::VECTOR_SHUFFLE
, VT
))
15697 bool UsesZeroVector
= false;
15698 unsigned NumElems
= N
->getNumOperands();
15700 // Record, for each element of the newly built vector, which input vector
15701 // that element comes from. -1 stands for undef, 0 for the zero vector,
15702 // and positive values for the input vectors.
15703 // VectorMask maps each element to its vector number, and VecIn maps vector
15704 // numbers to their initial SDValues.
15706 SmallVector
<int, 8> VectorMask(NumElems
, -1);
15707 SmallVector
<SDValue
, 8> VecIn
;
15708 VecIn
.push_back(SDValue());
15710 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
15711 SDValue Op
= N
->getOperand(i
);
15716 // See if we can use a blend with a zero vector.
15717 // TODO: Should we generalize this to a blend with an arbitrary constant
15719 if (isNullConstant(Op
) || isNullFPConstant(Op
)) {
15720 UsesZeroVector
= true;
15725 // Not an undef or zero. If the input is something other than an
15726 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
15727 if (Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
15728 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
15730 SDValue ExtractedFromVec
= Op
.getOperand(0);
15732 APInt ExtractIdx
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getAPIntValue();
15733 if (ExtractIdx
.uge(ExtractedFromVec
.getValueType().getVectorNumElements()))
15736 // All inputs must have the same element type as the output.
15737 if (VT
.getVectorElementType() !=
15738 ExtractedFromVec
.getValueType().getVectorElementType())
15741 // Have we seen this input vector before?
15742 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
15743 // a map back from SDValues to numbers isn't worth it.
15744 unsigned Idx
= std::distance(
15745 VecIn
.begin(), std::find(VecIn
.begin(), VecIn
.end(), ExtractedFromVec
));
15746 if (Idx
== VecIn
.size())
15747 VecIn
.push_back(ExtractedFromVec
);
15749 VectorMask
[i
] = Idx
;
15752 // If we didn't find at least one input vector, bail out.
15753 if (VecIn
.size() < 2)
15756 // If all the Operands of BUILD_VECTOR extract from same
15757 // vector, then split the vector efficiently based on the maximum
15758 // vector access index and adjust the VectorMask and
15759 // VecIn accordingly.
15760 if (VecIn
.size() == 2) {
15761 unsigned MaxIndex
= 0;
15762 unsigned NearestPow2
= 0;
15763 SDValue Vec
= VecIn
.back();
15764 EVT InVT
= Vec
.getValueType();
15765 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
15766 SmallVector
<unsigned, 8> IndexVec(NumElems
, 0);
15768 for (unsigned i
= 0; i
< NumElems
; i
++) {
15769 if (VectorMask
[i
] <= 0)
15771 unsigned Index
= N
->getOperand(i
).getConstantOperandVal(1);
15772 IndexVec
[i
] = Index
;
15773 MaxIndex
= std::max(MaxIndex
, Index
);
15776 NearestPow2
= PowerOf2Ceil(MaxIndex
);
15777 if (InVT
.isSimple() && NearestPow2
> 2 && MaxIndex
< NearestPow2
&&
15778 NumElems
* 2 < NearestPow2
) {
15779 unsigned SplitSize
= NearestPow2
/ 2;
15780 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(),
15781 InVT
.getVectorElementType(), SplitSize
);
15782 if (TLI
.isTypeLegal(SplitVT
)) {
15783 SDValue VecIn2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
15784 DAG
.getConstant(SplitSize
, DL
, IdxTy
));
15785 SDValue VecIn1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SplitVT
, Vec
,
15786 DAG
.getConstant(0, DL
, IdxTy
));
15788 VecIn
.push_back(VecIn1
);
15789 VecIn
.push_back(VecIn2
);
15791 for (unsigned i
= 0; i
< NumElems
; i
++) {
15792 if (VectorMask
[i
] <= 0)
15794 VectorMask
[i
] = (IndexVec
[i
] < SplitSize
) ? 1 : 2;
15800 // TODO: We want to sort the vectors by descending length, so that adjacent
15801 // pairs have similar length, and the longer vector is always first in the
15804 // TODO: Should this fire if some of the input vectors has illegal type (like
15805 // it does now), or should we let legalization run its course first?
15808 // Take pairs of vectors, and shuffle them so that the result has elements
15809 // from these vectors in the correct places.
15810 // For example, given:
15811 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
15812 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
15813 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
15814 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
15815 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
15816 // We will generate:
15817 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
15818 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
15819 SmallVector
<SDValue
, 4> Shuffles
;
15820 for (unsigned In
= 0, Len
= (VecIn
.size() / 2); In
< Len
; ++In
) {
15821 unsigned LeftIdx
= 2 * In
+ 1;
15822 SDValue VecLeft
= VecIn
[LeftIdx
];
15824 (LeftIdx
+ 1) < VecIn
.size() ? VecIn
[LeftIdx
+ 1] : SDValue();
15826 if (SDValue Shuffle
= createBuildVecShuffle(DL
, N
, VectorMask
, VecLeft
,
15827 VecRight
, LeftIdx
))
15828 Shuffles
.push_back(Shuffle
);
15833 // If we need the zero vector as an "ingredient" in the blend tree, add it
15834 // to the list of shuffles.
15835 if (UsesZeroVector
)
15836 Shuffles
.push_back(VT
.isInteger() ? DAG
.getConstant(0, DL
, VT
)
15837 : DAG
.getConstantFP(0.0, DL
, VT
));
15839 // If we only have one shuffle, we're done.
15840 if (Shuffles
.size() == 1)
15841 return Shuffles
[0];
15843 // Update the vector mask to point to the post-shuffle vectors.
15844 for (int &Vec
: VectorMask
)
15846 Vec
= Shuffles
.size() - 1;
15848 Vec
= (Vec
- 1) / 2;
15850 // More than one shuffle. Generate a binary tree of blends, e.g. if from
15851 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
15853 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
15854 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
15855 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
15856 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
15857 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
15858 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
15859 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
15861 // Make sure the initial size of the shuffle list is even.
15862 if (Shuffles
.size() % 2)
15863 Shuffles
.push_back(DAG
.getUNDEF(VT
));
15865 for (unsigned CurSize
= Shuffles
.size(); CurSize
> 1; CurSize
/= 2) {
15867 Shuffles
[CurSize
] = DAG
.getUNDEF(VT
);
15870 for (unsigned In
= 0, Len
= CurSize
/ 2; In
< Len
; ++In
) {
15872 int Right
= 2 * In
+ 1;
15873 SmallVector
<int, 8> Mask(NumElems
, -1);
15874 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
15875 if (VectorMask
[i
] == Left
) {
15877 VectorMask
[i
] = In
;
15878 } else if (VectorMask
[i
] == Right
) {
15879 Mask
[i
] = i
+ NumElems
;
15880 VectorMask
[i
] = In
;
15885 DAG
.getVectorShuffle(VT
, DL
, Shuffles
[Left
], Shuffles
[Right
], Mask
);
15888 return Shuffles
[0];
15891 // Try to turn a build vector of zero extends of extract vector elts into a
15892 // a vector zero extend and possibly an extract subvector.
15893 // TODO: Support sign extend or any extend?
15894 // TODO: Allow undef elements?
15895 // TODO: Don't require the extracts to start at element 0.
15896 SDValue
DAGCombiner::convertBuildVecZextToZext(SDNode
*N
) {
15897 if (LegalOperations
)
15900 EVT VT
= N
->getValueType(0);
15902 SDValue Op0
= N
->getOperand(0);
15903 auto checkElem
= [&](SDValue Op
) -> int64_t {
15904 if (Op
.getOpcode() == ISD::ZERO_EXTEND
&&
15905 Op
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
15906 Op0
.getOperand(0).getOperand(0) == Op
.getOperand(0).getOperand(0))
15907 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0).getOperand(1)))
15908 return C
->getZExtValue();
15912 // Make sure the first element matches
15913 // (zext (extract_vector_elt X, C))
15914 int64_t Offset
= checkElem(Op0
);
15918 unsigned NumElems
= N
->getNumOperands();
15919 SDValue In
= Op0
.getOperand(0).getOperand(0);
15920 EVT InSVT
= In
.getValueType().getScalarType();
15921 EVT InVT
= EVT::getVectorVT(*DAG
.getContext(), InSVT
, NumElems
);
15923 // Don't create an illegal input type after type legalization.
15924 if (LegalTypes
&& !TLI
.isTypeLegal(InVT
))
15927 // Ensure all the elements come from the same vector and are adjacent.
15928 for (unsigned i
= 1; i
!= NumElems
; ++i
) {
15929 if ((Offset
+ i
) != checkElem(N
->getOperand(i
)))
15934 In
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InVT
, In
,
15935 Op0
.getOperand(0).getOperand(1));
15936 return DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VT
, In
);
15939 SDValue
DAGCombiner::visitBUILD_VECTOR(SDNode
*N
) {
15940 EVT VT
= N
->getValueType(0);
15942 // A vector built entirely of undefs is undef.
15943 if (ISD::allOperandsUndef(N
))
15944 return DAG
.getUNDEF(VT
);
15946 // If this is a splat of a bitcast from another vector, change to a
15949 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
15950 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
15952 // If X is a build_vector itself, the concat can become a larger build_vector.
15953 // TODO: Maybe this is useful for non-splat too?
15954 if (!LegalOperations
) {
15955 if (SDValue Splat
= cast
<BuildVectorSDNode
>(N
)->getSplatValue()) {
15956 Splat
= peekThroughBitcast(Splat
);
15957 EVT SrcVT
= Splat
.getValueType();
15958 if (SrcVT
.isVector()) {
15959 unsigned NumElts
= N
->getNumOperands() * SrcVT
.getVectorNumElements();
15960 EVT NewVT
= EVT::getVectorVT(*DAG
.getContext(),
15961 SrcVT
.getVectorElementType(), NumElts
);
15962 if (!LegalTypes
|| TLI
.isTypeLegal(NewVT
)) {
15963 SmallVector
<SDValue
, 8> Ops(N
->getNumOperands(), Splat
);
15964 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
),
15966 return DAG
.getBitcast(VT
, Concat
);
15972 // Check if we can express BUILD VECTOR via subvector extract.
15973 if (!LegalTypes
&& (N
->getNumOperands() > 1)) {
15974 SDValue Op0
= N
->getOperand(0);
15975 auto checkElem
= [&](SDValue Op
) -> uint64_t {
15976 if ((Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) &&
15977 (Op0
.getOperand(0) == Op
.getOperand(0)))
15978 if (auto CNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
15979 return CNode
->getZExtValue();
15983 int Offset
= checkElem(Op0
);
15984 for (unsigned i
= 0; i
< N
->getNumOperands(); ++i
) {
15985 if (Offset
+ i
!= checkElem(N
->getOperand(i
))) {
15991 if ((Offset
== 0) &&
15992 (Op0
.getOperand(0).getValueType() == N
->getValueType(0)))
15993 return Op0
.getOperand(0);
15994 if ((Offset
!= -1) &&
15995 ((Offset
% N
->getValueType(0).getVectorNumElements()) ==
15996 0)) // IDX must be multiple of output size.
15997 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), N
->getValueType(0),
15998 Op0
.getOperand(0), Op0
.getOperand(1));
16001 if (SDValue V
= convertBuildVecZextToZext(N
))
16004 if (SDValue V
= reduceBuildVecExtToExtBuildVec(N
))
16007 if (SDValue V
= reduceBuildVecConvertToConvertBuildVec(N
))
16010 if (SDValue V
= reduceBuildVecToShuffle(N
))
16016 static SDValue
combineConcatVectorOfScalars(SDNode
*N
, SelectionDAG
&DAG
) {
16017 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16018 EVT OpVT
= N
->getOperand(0).getValueType();
16020 // If the operands are legal vectors, leave them alone.
16021 if (TLI
.isTypeLegal(OpVT
))
16025 EVT VT
= N
->getValueType(0);
16026 SmallVector
<SDValue
, 8> Ops
;
16028 EVT SVT
= EVT::getIntegerVT(*DAG
.getContext(), OpVT
.getSizeInBits());
16029 SDValue ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
16031 // Keep track of what we encounter.
16032 bool AnyInteger
= false;
16033 bool AnyFP
= false;
16034 for (const SDValue
&Op
: N
->ops()) {
16035 if (ISD::BITCAST
== Op
.getOpcode() &&
16036 !Op
.getOperand(0).getValueType().isVector())
16037 Ops
.push_back(Op
.getOperand(0));
16038 else if (ISD::UNDEF
== Op
.getOpcode())
16039 Ops
.push_back(ScalarUndef
);
16043 // Note whether we encounter an integer or floating point scalar.
16044 // If it's neither, bail out, it could be something weird like x86mmx.
16045 EVT LastOpVT
= Ops
.back().getValueType();
16046 if (LastOpVT
.isFloatingPoint())
16048 else if (LastOpVT
.isInteger())
16054 // If any of the operands is a floating point scalar bitcast to a vector,
16055 // use floating point types throughout, and bitcast everything.
16056 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
16058 SVT
= EVT::getFloatingPointVT(OpVT
.getSizeInBits());
16059 ScalarUndef
= DAG
.getNode(ISD::UNDEF
, DL
, SVT
);
16061 for (SDValue
&Op
: Ops
) {
16062 if (Op
.getValueType() == SVT
)
16067 Op
= DAG
.getBitcast(SVT
, Op
);
16072 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), SVT
,
16073 VT
.getSizeInBits() / SVT
.getSizeInBits());
16074 return DAG
.getBitcast(VT
, DAG
.getBuildVector(VecVT
, DL
, Ops
));
16077 // Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
16078 // operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
16079 // most two distinct vectors the same size as the result, attempt to turn this
16080 // into a legal shuffle.
16081 static SDValue
combineConcatVectorOfExtracts(SDNode
*N
, SelectionDAG
&DAG
) {
16082 EVT VT
= N
->getValueType(0);
16083 EVT OpVT
= N
->getOperand(0).getValueType();
16084 int NumElts
= VT
.getVectorNumElements();
16085 int NumOpElts
= OpVT
.getVectorNumElements();
16087 SDValue SV0
= DAG
.getUNDEF(VT
), SV1
= DAG
.getUNDEF(VT
);
16088 SmallVector
<int, 8> Mask
;
16090 for (SDValue Op
: N
->ops()) {
16091 // Peek through any bitcast.
16092 Op
= peekThroughBitcast(Op
);
16094 // UNDEF nodes convert to UNDEF shuffle mask values.
16095 if (Op
.isUndef()) {
16096 Mask
.append((unsigned)NumOpElts
, -1);
16100 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
16103 // What vector are we extracting the subvector from and at what index?
16104 SDValue ExtVec
= Op
.getOperand(0);
16106 // We want the EVT of the original extraction to correctly scale the
16107 // extraction index.
16108 EVT ExtVT
= ExtVec
.getValueType();
16110 // Peek through any bitcast.
16111 ExtVec
= peekThroughBitcast(ExtVec
);
16113 // UNDEF nodes convert to UNDEF shuffle mask values.
16114 if (ExtVec
.isUndef()) {
16115 Mask
.append((unsigned)NumOpElts
, -1);
16119 if (!isa
<ConstantSDNode
>(Op
.getOperand(1)))
16121 int ExtIdx
= Op
.getConstantOperandVal(1);
16123 // Ensure that we are extracting a subvector from a vector the same
16124 // size as the result.
16125 if (ExtVT
.getSizeInBits() != VT
.getSizeInBits())
16128 // Scale the subvector index to account for any bitcast.
16129 int NumExtElts
= ExtVT
.getVectorNumElements();
16130 if (0 == (NumExtElts
% NumElts
))
16131 ExtIdx
/= (NumExtElts
/ NumElts
);
16132 else if (0 == (NumElts
% NumExtElts
))
16133 ExtIdx
*= (NumElts
/ NumExtElts
);
16137 // At most we can reference 2 inputs in the final shuffle.
16138 if (SV0
.isUndef() || SV0
== ExtVec
) {
16140 for (int i
= 0; i
!= NumOpElts
; ++i
)
16141 Mask
.push_back(i
+ ExtIdx
);
16142 } else if (SV1
.isUndef() || SV1
== ExtVec
) {
16144 for (int i
= 0; i
!= NumOpElts
; ++i
)
16145 Mask
.push_back(i
+ ExtIdx
+ NumElts
);
16151 if (!DAG
.getTargetLoweringInfo().isShuffleMaskLegal(Mask
, VT
))
16154 return DAG
.getVectorShuffle(VT
, SDLoc(N
), DAG
.getBitcast(VT
, SV0
),
16155 DAG
.getBitcast(VT
, SV1
), Mask
);
16158 SDValue
DAGCombiner::visitCONCAT_VECTORS(SDNode
*N
) {
16159 // If we only have one input vector, we don't need to do any concatenation.
16160 if (N
->getNumOperands() == 1)
16161 return N
->getOperand(0);
16163 // Check if all of the operands are undefs.
16164 EVT VT
= N
->getValueType(0);
16165 if (ISD::allOperandsUndef(N
))
16166 return DAG
.getUNDEF(VT
);
16168 // Optimize concat_vectors where all but the first of the vectors are undef.
16169 if (std::all_of(std::next(N
->op_begin()), N
->op_end(), [](const SDValue
&Op
) {
16170 return Op
.isUndef();
16172 SDValue In
= N
->getOperand(0);
16173 assert(In
.getValueType().isVector() && "Must concat vectors");
16175 // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
16176 if (In
->getOpcode() == ISD::BITCAST
&&
16177 !In
->getOperand(0).getValueType().isVector()) {
16178 SDValue Scalar
= In
->getOperand(0);
16180 // If the bitcast type isn't legal, it might be a trunc of a legal type;
16181 // look through the trunc so we can still do the transform:
16182 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
16183 if (Scalar
->getOpcode() == ISD::TRUNCATE
&&
16184 !TLI
.isTypeLegal(Scalar
.getValueType()) &&
16185 TLI
.isTypeLegal(Scalar
->getOperand(0).getValueType()))
16186 Scalar
= Scalar
->getOperand(0);
16188 EVT SclTy
= Scalar
->getValueType(0);
16190 if (!SclTy
.isFloatingPoint() && !SclTy
.isInteger())
16193 // Bail out if the vector size is not a multiple of the scalar size.
16194 if (VT
.getSizeInBits() % SclTy
.getSizeInBits())
16197 unsigned VNTNumElms
= VT
.getSizeInBits() / SclTy
.getSizeInBits();
16198 if (VNTNumElms
< 2)
16201 EVT NVT
= EVT::getVectorVT(*DAG
.getContext(), SclTy
, VNTNumElms
);
16202 if (!TLI
.isTypeLegal(NVT
) || !TLI
.isTypeLegal(Scalar
.getValueType()))
16205 SDValue Res
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), NVT
, Scalar
);
16206 return DAG
.getBitcast(VT
, Res
);
16210 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
16211 // We have already tested above for an UNDEF only concatenation.
16212 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
16213 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
16214 auto IsBuildVectorOrUndef
= [](const SDValue
&Op
) {
16215 return ISD::UNDEF
== Op
.getOpcode() || ISD::BUILD_VECTOR
== Op
.getOpcode();
16217 if (llvm::all_of(N
->ops(), IsBuildVectorOrUndef
)) {
16218 SmallVector
<SDValue
, 8> Opnds
;
16219 EVT SVT
= VT
.getScalarType();
16222 if (!SVT
.isFloatingPoint()) {
16223 // If BUILD_VECTOR are from built from integer, they may have different
16224 // operand types. Get the smallest type and truncate all operands to it.
16225 bool FoundMinVT
= false;
16226 for (const SDValue
&Op
: N
->ops())
16227 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
16228 EVT OpSVT
= Op
.getOperand(0).getValueType();
16229 MinVT
= (!FoundMinVT
|| OpSVT
.bitsLE(MinVT
)) ? OpSVT
: MinVT
;
16232 assert(FoundMinVT
&& "Concat vector type mismatch");
16235 for (const SDValue
&Op
: N
->ops()) {
16236 EVT OpVT
= Op
.getValueType();
16237 unsigned NumElts
= OpVT
.getVectorNumElements();
16239 if (ISD::UNDEF
== Op
.getOpcode())
16240 Opnds
.append(NumElts
, DAG
.getUNDEF(MinVT
));
16242 if (ISD::BUILD_VECTOR
== Op
.getOpcode()) {
16243 if (SVT
.isFloatingPoint()) {
16244 assert(SVT
== OpVT
.getScalarType() && "Concat vector type mismatch");
16245 Opnds
.append(Op
->op_begin(), Op
->op_begin() + NumElts
);
16247 for (unsigned i
= 0; i
!= NumElts
; ++i
)
16249 DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), MinVT
, Op
.getOperand(i
)));
16254 assert(VT
.getVectorNumElements() == Opnds
.size() &&
16255 "Concat vector type mismatch");
16256 return DAG
.getBuildVector(VT
, SDLoc(N
), Opnds
);
16259 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
16260 if (SDValue V
= combineConcatVectorOfScalars(N
, DAG
))
16263 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
16264 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
16265 if (SDValue V
= combineConcatVectorOfExtracts(N
, DAG
))
16268 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
16269 // nodes often generate nop CONCAT_VECTOR nodes.
16270 // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
16271 // place the incoming vectors at the exact same location.
16272 SDValue SingleSource
= SDValue();
16273 unsigned PartNumElem
= N
->getOperand(0).getValueType().getVectorNumElements();
16275 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
16276 SDValue Op
= N
->getOperand(i
);
16281 // Check if this is the identity extract:
16282 if (Op
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
16285 // Find the single incoming vector for the extract_subvector.
16286 if (SingleSource
.getNode()) {
16287 if (Op
.getOperand(0) != SingleSource
)
16290 SingleSource
= Op
.getOperand(0);
16292 // Check the source type is the same as the type of the result.
16293 // If not, this concat may extend the vector, so we can not
16294 // optimize it away.
16295 if (SingleSource
.getValueType() != N
->getValueType(0))
16299 unsigned IdentityIndex
= i
* PartNumElem
;
16300 ConstantSDNode
*CS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
16301 // The extract index must be constant.
16305 // Check that we are reading from the identity index.
16306 if (CS
->getZExtValue() != IdentityIndex
)
16310 if (SingleSource
.getNode())
16311 return SingleSource
;
16316 /// If we are extracting a subvector produced by a wide binary operator with at
16317 /// at least one operand that was the result of a vector concatenation, then try
16318 /// to use the narrow vector operands directly to avoid the concatenation and
16320 static SDValue
narrowExtractedVectorBinOp(SDNode
*Extract
, SelectionDAG
&DAG
) {
16321 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
16322 // some of these bailouts with other transforms.
16324 // The extract index must be a constant, so we can map it to a concat operand.
16325 auto *ExtractIndex
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
16329 // Only handle the case where we are doubling and then halving. A larger ratio
16330 // may require more than two narrow binops to replace the wide binop.
16331 EVT VT
= Extract
->getValueType(0);
16332 unsigned NumElems
= VT
.getVectorNumElements();
16333 assert((ExtractIndex
->getZExtValue() % NumElems
) == 0 &&
16334 "Extract index is not a multiple of the vector length.");
16335 if (Extract
->getOperand(0).getValueSizeInBits() != VT
.getSizeInBits() * 2)
16338 // We are looking for an optionally bitcasted wide vector binary operator
16339 // feeding an extract subvector.
16340 SDValue BinOp
= peekThroughBitcast(Extract
->getOperand(0));
16342 // TODO: The motivating case for this transform is an x86 AVX1 target. That
16343 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
16344 // flavors, but no other 256-bit integer support. This could be extended to
16345 // handle any binop, but that may require fixing/adding other folds to avoid
16346 // codegen regressions.
16347 unsigned BOpcode
= BinOp
.getOpcode();
16348 if (BOpcode
!= ISD::AND
&& BOpcode
!= ISD::OR
&& BOpcode
!= ISD::XOR
)
16351 // The binop must be a vector type, so we can chop it in half.
16352 EVT WideBVT
= BinOp
.getValueType();
16353 if (!WideBVT
.isVector())
16356 // Bail out if the target does not support a narrower version of the binop.
16357 EVT NarrowBVT
= EVT::getVectorVT(*DAG
.getContext(), WideBVT
.getScalarType(),
16358 WideBVT
.getVectorNumElements() / 2);
16359 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16360 if (!TLI
.isOperationLegalOrCustomOrPromote(BOpcode
, NarrowBVT
))
16363 // Peek through bitcasts of the binary operator operands if needed.
16364 SDValue LHS
= peekThroughBitcast(BinOp
.getOperand(0));
16365 SDValue RHS
= peekThroughBitcast(BinOp
.getOperand(1));
16367 // We need at least one concatenation operation of a binop operand to make
16368 // this transform worthwhile. The concat must double the input vector sizes.
16369 // TODO: Should we also handle INSERT_SUBVECTOR patterns?
16371 LHS
.getOpcode() == ISD::CONCAT_VECTORS
&& LHS
.getNumOperands() == 2;
16373 RHS
.getOpcode() == ISD::CONCAT_VECTORS
&& RHS
.getNumOperands() == 2;
16374 if (!ConcatL
&& !ConcatR
)
16377 // If one of the binop operands was not the result of a concat, we must
16378 // extract a half-sized operand for our new narrow binop. We can't just reuse
16379 // the original extract index operand because we may have bitcasted.
16380 unsigned ConcatOpNum
= ExtractIndex
->getZExtValue() / NumElems
;
16381 unsigned ExtBOIdx
= ConcatOpNum
* NarrowBVT
.getVectorNumElements();
16382 EVT ExtBOIdxVT
= Extract
->getOperand(1).getValueType();
16385 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
16386 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, N)
16387 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, N), YN
16388 SDValue X
= ConcatL
? DAG
.getBitcast(NarrowBVT
, LHS
.getOperand(ConcatOpNum
))
16389 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
16390 BinOp
.getOperand(0),
16391 DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
));
16393 SDValue Y
= ConcatR
? DAG
.getBitcast(NarrowBVT
, RHS
.getOperand(ConcatOpNum
))
16394 : DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NarrowBVT
,
16395 BinOp
.getOperand(1),
16396 DAG
.getConstant(ExtBOIdx
, DL
, ExtBOIdxVT
));
16398 SDValue NarrowBinOp
= DAG
.getNode(BOpcode
, DL
, NarrowBVT
, X
, Y
);
16399 return DAG
.getBitcast(VT
, NarrowBinOp
);
16402 /// If we are extracting a subvector from a wide vector load, convert to a
16403 /// narrow load to eliminate the extraction:
16404 /// (extract_subvector (load wide vector)) --> (load narrow vector)
16405 static SDValue
narrowExtractedVectorLoad(SDNode
*Extract
, SelectionDAG
&DAG
) {
16406 // TODO: Add support for big-endian. The offset calculation must be adjusted.
16407 if (DAG
.getDataLayout().isBigEndian())
16410 // TODO: The one-use check is overly conservative. Check the cost of the
16411 // extract instead or remove that condition entirely.
16412 auto *Ld
= dyn_cast
<LoadSDNode
>(Extract
->getOperand(0));
16413 auto *ExtIdx
= dyn_cast
<ConstantSDNode
>(Extract
->getOperand(1));
16414 if (!Ld
|| !Ld
->hasOneUse() || Ld
->getExtensionType() || Ld
->isVolatile() ||
16418 // The narrow load will be offset from the base address of the old load if
16419 // we are extracting from something besides index 0 (little-endian).
16420 EVT VT
= Extract
->getValueType(0);
16422 SDValue BaseAddr
= Ld
->getOperand(1);
16423 unsigned Offset
= ExtIdx
->getZExtValue() * VT
.getScalarType().getStoreSize();
16425 // TODO: Use "BaseIndexOffset" to make this more effective.
16426 SDValue NewAddr
= DAG
.getMemBasePlusOffset(BaseAddr
, Offset
, DL
);
16427 MachineFunction
&MF
= DAG
.getMachineFunction();
16428 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(Ld
->getMemOperand(), Offset
,
16429 VT
.getStoreSize());
16430 SDValue NewLd
= DAG
.getLoad(VT
, DL
, Ld
->getChain(), NewAddr
, MMO
);
16431 DAG
.makeEquivalentMemoryOrdering(Ld
, NewLd
);
16435 SDValue
DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode
* N
) {
16436 EVT NVT
= N
->getValueType(0);
16437 SDValue V
= N
->getOperand(0);
16439 // Extract from UNDEF is UNDEF.
16441 return DAG
.getUNDEF(NVT
);
16443 if (TLI
.isOperationLegalOrCustomOrPromote(ISD::LOAD
, NVT
))
16444 if (SDValue NarrowLoad
= narrowExtractedVectorLoad(N
, DAG
))
16448 // (extract_subvec (concat V1, V2, ...), i)
16451 // Only operand 0 is checked as 'concat' assumes all inputs of the same
16453 if (V
->getOpcode() == ISD::CONCAT_VECTORS
&&
16454 isa
<ConstantSDNode
>(N
->getOperand(1)) &&
16455 V
->getOperand(0).getValueType() == NVT
) {
16456 unsigned Idx
= N
->getConstantOperandVal(1);
16457 unsigned NumElems
= NVT
.getVectorNumElements();
16458 assert((Idx
% NumElems
) == 0 &&
16459 "IDX in concat is not a multiple of the result vector length.");
16460 return V
->getOperand(Idx
/ NumElems
);
16464 V
= peekThroughBitcast(V
);
16466 // If the input is a build vector. Try to make a smaller build vector.
16467 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
16468 if (auto *Idx
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
16469 EVT InVT
= V
->getValueType(0);
16470 unsigned ExtractSize
= NVT
.getSizeInBits();
16471 unsigned EltSize
= InVT
.getScalarSizeInBits();
16472 // Only do this if we won't split any elements.
16473 if (ExtractSize
% EltSize
== 0) {
16474 unsigned NumElems
= ExtractSize
/ EltSize
;
16475 EVT EltVT
= InVT
.getVectorElementType();
16476 EVT ExtractVT
= NumElems
== 1 ? EltVT
:
16477 EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElems
);
16478 if ((Level
< AfterLegalizeDAG
||
16480 TLI
.isOperationLegal(ISD::BUILD_VECTOR
, ExtractVT
))) &&
16481 (!LegalTypes
|| TLI
.isTypeLegal(ExtractVT
))) {
16482 unsigned IdxVal
= (Idx
->getZExtValue() * NVT
.getScalarSizeInBits()) /
16484 if (NumElems
== 1) {
16485 SDValue Src
= V
->getOperand(IdxVal
);
16486 if (EltVT
!= Src
.getValueType())
16487 Src
= DAG
.getNode(ISD::TRUNCATE
, SDLoc(N
), InVT
, Src
);
16489 return DAG
.getBitcast(NVT
, Src
);
16492 // Extract the pieces from the original build_vector.
16493 SDValue BuildVec
= DAG
.getBuildVector(ExtractVT
, SDLoc(N
),
16494 makeArrayRef(V
->op_begin() + IdxVal
,
16496 return DAG
.getBitcast(NVT
, BuildVec
);
16502 if (V
->getOpcode() == ISD::INSERT_SUBVECTOR
) {
16503 // Handle only simple case where vector being inserted and vector
16504 // being extracted are of same size.
16505 EVT SmallVT
= V
->getOperand(1).getValueType();
16506 if (!NVT
.bitsEq(SmallVT
))
16509 // Only handle cases where both indexes are constants.
16510 ConstantSDNode
*ExtIdx
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
16511 ConstantSDNode
*InsIdx
= dyn_cast
<ConstantSDNode
>(V
->getOperand(2));
16513 if (InsIdx
&& ExtIdx
) {
16515 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
16517 // indices are equal or bit offsets are equal => V1
16518 // otherwise => (extract_subvec V1, ExtIdx)
16519 if (InsIdx
->getZExtValue() * SmallVT
.getScalarSizeInBits() ==
16520 ExtIdx
->getZExtValue() * NVT
.getScalarSizeInBits())
16521 return DAG
.getBitcast(NVT
, V
->getOperand(1));
16522 return DAG
.getNode(
16523 ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), NVT
,
16524 DAG
.getBitcast(N
->getOperand(0).getValueType(), V
->getOperand(0)),
16529 if (SDValue NarrowBOp
= narrowExtractedVectorBinOp(N
, DAG
))
16532 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
16533 return SDValue(N
, 0);
16538 // Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
16539 // or turn a shuffle of a single concat into simpler shuffle then concat.
16540 static SDValue
partitionShuffleOfConcats(SDNode
*N
, SelectionDAG
&DAG
) {
16541 EVT VT
= N
->getValueType(0);
16542 unsigned NumElts
= VT
.getVectorNumElements();
16544 SDValue N0
= N
->getOperand(0);
16545 SDValue N1
= N
->getOperand(1);
16546 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
16548 SmallVector
<SDValue
, 4> Ops
;
16549 EVT ConcatVT
= N0
.getOperand(0).getValueType();
16550 unsigned NumElemsPerConcat
= ConcatVT
.getVectorNumElements();
16551 unsigned NumConcats
= NumElts
/ NumElemsPerConcat
;
16553 // Special case: shuffle(concat(A,B)) can be more efficiently represented
16554 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
16555 // half vector elements.
16556 if (NumElemsPerConcat
* 2 == NumElts
&& N1
.isUndef() &&
16557 std::all_of(SVN
->getMask().begin() + NumElemsPerConcat
,
16558 SVN
->getMask().end(), [](int i
) { return i
== -1; })) {
16559 N0
= DAG
.getVectorShuffle(ConcatVT
, SDLoc(N
), N0
.getOperand(0), N0
.getOperand(1),
16560 makeArrayRef(SVN
->getMask().begin(), NumElemsPerConcat
));
16561 N1
= DAG
.getUNDEF(ConcatVT
);
16562 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, N0
, N1
);
16565 // Look at every vector that's inserted. We're looking for exact
16566 // subvector-sized copies from a concatenated vector
16567 for (unsigned I
= 0; I
!= NumConcats
; ++I
) {
16568 // Make sure we're dealing with a copy.
16569 unsigned Begin
= I
* NumElemsPerConcat
;
16570 bool AllUndef
= true, NoUndef
= true;
16571 for (unsigned J
= Begin
; J
!= Begin
+ NumElemsPerConcat
; ++J
) {
16572 if (SVN
->getMaskElt(J
) >= 0)
16579 if (SVN
->getMaskElt(Begin
) % NumElemsPerConcat
!= 0)
16582 for (unsigned J
= 1; J
!= NumElemsPerConcat
; ++J
)
16583 if (SVN
->getMaskElt(Begin
+ J
- 1) + 1 != SVN
->getMaskElt(Begin
+ J
))
16586 unsigned FirstElt
= SVN
->getMaskElt(Begin
) / NumElemsPerConcat
;
16587 if (FirstElt
< N0
.getNumOperands())
16588 Ops
.push_back(N0
.getOperand(FirstElt
));
16590 Ops
.push_back(N1
.getOperand(FirstElt
- N0
.getNumOperands()));
16592 } else if (AllUndef
) {
16593 Ops
.push_back(DAG
.getUNDEF(N0
.getOperand(0).getValueType()));
16594 } else { // Mixed with general masks and undefs, can't do optimization.
16599 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
16602 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
16603 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
16605 // SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
16606 // a simplification in some sense, but it isn't appropriate in general: some
16607 // BUILD_VECTORs are substantially cheaper than others. The general case
16608 // of a BUILD_VECTOR requires inserting each element individually (or
16609 // performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
16610 // all constants is a single constant pool load. A BUILD_VECTOR where each
16611 // element is identical is a splat. A BUILD_VECTOR where most of the operands
16612 // are undef lowers to a small number of element insertions.
16614 // To deal with this, we currently use a bunch of mostly arbitrary heuristics.
16615 // We don't fold shuffles where one side is a non-zero constant, and we don't
16616 // fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
16617 // non-constant operands. This seems to work out reasonably well in practice.
16618 static SDValue
combineShuffleOfScalars(ShuffleVectorSDNode
*SVN
,
16620 const TargetLowering
&TLI
) {
16621 EVT VT
= SVN
->getValueType(0);
16622 unsigned NumElts
= VT
.getVectorNumElements();
16623 SDValue N0
= SVN
->getOperand(0);
16624 SDValue N1
= SVN
->getOperand(1);
16626 if (!N0
->hasOneUse() || !N1
->hasOneUse())
16629 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
16630 // discussed above.
16631 if (!N1
.isUndef()) {
16632 bool N0AnyConst
= isAnyConstantBuildVector(N0
.getNode());
16633 bool N1AnyConst
= isAnyConstantBuildVector(N1
.getNode());
16634 if (N0AnyConst
&& !N1AnyConst
&& !ISD::isBuildVectorAllZeros(N0
.getNode()))
16636 if (!N0AnyConst
&& N1AnyConst
&& !ISD::isBuildVectorAllZeros(N1
.getNode()))
16640 // If both inputs are splats of the same value then we can safely merge this
16641 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
16642 bool IsSplat
= false;
16643 auto *BV0
= dyn_cast
<BuildVectorSDNode
>(N0
);
16644 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
16646 if (SDValue Splat0
= BV0
->getSplatValue())
16647 IsSplat
= (Splat0
== BV1
->getSplatValue());
16649 SmallVector
<SDValue
, 8> Ops
;
16650 SmallSet
<SDValue
, 16> DuplicateOps
;
16651 for (int M
: SVN
->getMask()) {
16652 SDValue Op
= DAG
.getUNDEF(VT
.getScalarType());
16654 int Idx
= M
< (int)NumElts
? M
: M
- NumElts
;
16655 SDValue
&S
= (M
< (int)NumElts
? N0
: N1
);
16656 if (S
.getOpcode() == ISD::BUILD_VECTOR
) {
16657 Op
= S
.getOperand(Idx
);
16658 } else if (S
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
16659 assert(Idx
== 0 && "Unexpected SCALAR_TO_VECTOR operand index.");
16660 Op
= S
.getOperand(0);
16662 // Operand can't be combined - bail out.
16667 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
16668 // generating a splat; semantically, this is fine, but it's likely to
16669 // generate low-quality code if the target can't reconstruct an appropriate
16671 if (!Op
.isUndef() && !isa
<ConstantSDNode
>(Op
) && !isa
<ConstantFPSDNode
>(Op
))
16672 if (!IsSplat
&& !DuplicateOps
.insert(Op
).second
)
16678 // BUILD_VECTOR requires all inputs to be of the same type, find the
16679 // maximum type and extend them all.
16680 EVT SVT
= VT
.getScalarType();
16681 if (SVT
.isInteger())
16682 for (SDValue
&Op
: Ops
)
16683 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
16684 if (SVT
!= VT
.getScalarType())
16685 for (SDValue
&Op
: Ops
)
16686 Op
= TLI
.isZExtFree(Op
.getValueType(), SVT
)
16687 ? DAG
.getZExtOrTrunc(Op
, SDLoc(SVN
), SVT
)
16688 : DAG
.getSExtOrTrunc(Op
, SDLoc(SVN
), SVT
);
16689 return DAG
.getBuildVector(VT
, SDLoc(SVN
), Ops
);
16692 // Match shuffles that can be converted to any_vector_extend_in_reg.
16693 // This is often generated during legalization.
16694 // e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
16695 // TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
16696 static SDValue
combineShuffleToVectorExtend(ShuffleVectorSDNode
*SVN
,
16698 const TargetLowering
&TLI
,
16699 bool LegalOperations
,
16701 EVT VT
= SVN
->getValueType(0);
16702 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
16704 // TODO Add support for big-endian when we have a test case.
16705 if (!VT
.isInteger() || IsBigEndian
)
16708 unsigned NumElts
= VT
.getVectorNumElements();
16709 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
16710 ArrayRef
<int> Mask
= SVN
->getMask();
16711 SDValue N0
= SVN
->getOperand(0);
16713 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
16714 auto isAnyExtend
= [&Mask
, &NumElts
](unsigned Scale
) {
16715 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
16718 if ((i
% Scale
) == 0 && Mask
[i
] == (int)(i
/ Scale
))
16725 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
16726 // power-of-2 extensions as they are the most likely.
16727 for (unsigned Scale
= 2; Scale
< NumElts
; Scale
*= 2) {
16728 // Check for non power of 2 vector sizes
16729 if (NumElts
% Scale
!= 0)
16731 if (!isAnyExtend(Scale
))
16734 EVT OutSVT
= EVT::getIntegerVT(*DAG
.getContext(), EltSizeInBits
* Scale
);
16735 EVT OutVT
= EVT::getVectorVT(*DAG
.getContext(), OutSVT
, NumElts
/ Scale
);
16736 if (!LegalTypes
|| TLI
.isTypeLegal(OutVT
))
16737 if (!LegalOperations
||
16738 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG
, OutVT
))
16739 return DAG
.getBitcast(VT
,
16740 DAG
.getAnyExtendVectorInReg(N0
, SDLoc(SVN
), OutVT
));
16746 // Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
16747 // each source element of a large type into the lowest elements of a smaller
16748 // destination type. This is often generated during legalization.
16749 // If the source node itself was a '*_extend_vector_inreg' node then we should
16750 // then be able to remove it.
16751 static SDValue
combineTruncationShuffle(ShuffleVectorSDNode
*SVN
,
16752 SelectionDAG
&DAG
) {
16753 EVT VT
= SVN
->getValueType(0);
16754 bool IsBigEndian
= DAG
.getDataLayout().isBigEndian();
16756 // TODO Add support for big-endian when we have a test case.
16757 if (!VT
.isInteger() || IsBigEndian
)
16760 SDValue N0
= peekThroughBitcast(SVN
->getOperand(0));
16762 unsigned Opcode
= N0
.getOpcode();
16763 if (Opcode
!= ISD::ANY_EXTEND_VECTOR_INREG
&&
16764 Opcode
!= ISD::SIGN_EXTEND_VECTOR_INREG
&&
16765 Opcode
!= ISD::ZERO_EXTEND_VECTOR_INREG
)
16768 SDValue N00
= N0
.getOperand(0);
16769 ArrayRef
<int> Mask
= SVN
->getMask();
16770 unsigned NumElts
= VT
.getVectorNumElements();
16771 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
16772 unsigned ExtSrcSizeInBits
= N00
.getScalarValueSizeInBits();
16773 unsigned ExtDstSizeInBits
= N0
.getScalarValueSizeInBits();
16775 if (ExtDstSizeInBits
% ExtSrcSizeInBits
!= 0)
16777 unsigned ExtScale
= ExtDstSizeInBits
/ ExtSrcSizeInBits
;
16779 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
16780 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
16781 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
16782 auto isTruncate
= [&Mask
, &NumElts
](unsigned Scale
) {
16783 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
16786 if ((i
* Scale
) < NumElts
&& Mask
[i
] == (int)(i
* Scale
))
16793 // At the moment we just handle the case where we've truncated back to the
16794 // same size as before the extension.
16795 // TODO: handle more extension/truncation cases as cases arise.
16796 if (EltSizeInBits
!= ExtSrcSizeInBits
)
16799 // We can remove *extend_vector_inreg only if the truncation happens at
16800 // the same scale as the extension.
16801 if (isTruncate(ExtScale
))
16802 return DAG
.getBitcast(VT
, N00
);
16807 // Combine shuffles of splat-shuffles of the form:
16808 // shuffle (shuffle V, undef, splat-mask), undef, M
16809 // If splat-mask contains undef elements, we need to be careful about
16810 // introducing undef's in the folded mask which are not the result of composing
16811 // the masks of the shuffles.
16812 static SDValue
combineShuffleOfSplat(ArrayRef
<int> UserMask
,
16813 ShuffleVectorSDNode
*Splat
,
16814 SelectionDAG
&DAG
) {
16815 ArrayRef
<int> SplatMask
= Splat
->getMask();
16816 assert(UserMask
.size() == SplatMask
.size() && "Mask length mismatch");
16818 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
16819 // every undef mask element in the splat-shuffle has a corresponding undef
16820 // element in the user-shuffle's mask or if the composition of mask elements
16821 // would result in undef.
16822 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
16823 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
16824 // In this case it is not legal to simplify to the splat-shuffle because we
16825 // may be exposing the users of the shuffle an undef element at index 1
16826 // which was not there before the combine.
16827 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
16828 // In this case the composition of masks yields SplatMask, so it's ok to
16829 // simplify to the splat-shuffle.
16830 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
16831 // In this case the composed mask includes all undef elements of SplatMask
16832 // and in addition sets element zero to undef. It is safe to simplify to
16833 // the splat-shuffle.
16834 auto CanSimplifyToExistingSplat
= [](ArrayRef
<int> UserMask
,
16835 ArrayRef
<int> SplatMask
) {
16836 for (unsigned i
= 0, e
= UserMask
.size(); i
!= e
; ++i
)
16837 if (UserMask
[i
] != -1 && SplatMask
[i
] == -1 &&
16838 SplatMask
[UserMask
[i
]] != -1)
16842 if (CanSimplifyToExistingSplat(UserMask
, SplatMask
))
16843 return SDValue(Splat
, 0);
16845 // Create a new shuffle with a mask that is composed of the two shuffles'
16847 SmallVector
<int, 32> NewMask
;
16848 for (int Idx
: UserMask
)
16849 NewMask
.push_back(Idx
== -1 ? -1 : SplatMask
[Idx
]);
16851 return DAG
.getVectorShuffle(Splat
->getValueType(0), SDLoc(Splat
),
16852 Splat
->getOperand(0), Splat
->getOperand(1),
16856 /// If the shuffle mask is taking exactly one element from the first vector
16857 /// operand and passing through all other elements from the second vector
16858 /// operand, return the index of the mask element that is choosing an element
16859 /// from the first operand. Otherwise, return -1.
16860 static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef
<int> Mask
) {
16861 int MaskSize
= Mask
.size();
16862 int EltFromOp0
= -1;
16863 // TODO: This does not match if there are undef elements in the shuffle mask.
16864 // Should we ignore undefs in the shuffle mask instead? The trade-off is
16865 // removing an instruction (a shuffle), but losing the knowledge that some
16866 // vector lanes are not needed.
16867 for (int i
= 0; i
!= MaskSize
; ++i
) {
16868 if (Mask
[i
] >= 0 && Mask
[i
] < MaskSize
) {
16869 // We're looking for a shuffle of exactly one element from operand 0.
16870 if (EltFromOp0
!= -1)
16873 } else if (Mask
[i
] != i
+ MaskSize
) {
16874 // Nothing from operand 1 can change lanes.
16881 /// If a shuffle inserts exactly one element from a source vector operand into
16882 /// another vector operand and we can access the specified element as a scalar,
16883 /// then we can eliminate the shuffle.
16884 static SDValue
replaceShuffleOfInsert(ShuffleVectorSDNode
*Shuf
,
16885 SelectionDAG
&DAG
) {
16886 // First, check if we are taking one element of a vector and shuffling that
16887 // element into another vector.
16888 ArrayRef
<int> Mask
= Shuf
->getMask();
16889 SmallVector
<int, 16> CommutedMask(Mask
.begin(), Mask
.end());
16890 SDValue Op0
= Shuf
->getOperand(0);
16891 SDValue Op1
= Shuf
->getOperand(1);
16892 int ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask
);
16893 if (ShufOp0Index
== -1) {
16894 // Commute mask and check again.
16895 ShuffleVectorSDNode::commuteMask(CommutedMask
);
16896 ShufOp0Index
= getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask
);
16897 if (ShufOp0Index
== -1)
16899 // Commute operands to match the commuted shuffle mask.
16900 std::swap(Op0
, Op1
);
16901 Mask
= CommutedMask
;
16904 // The shuffle inserts exactly one element from operand 0 into operand 1.
16905 // Now see if we can access that element as a scalar via a real insert element
16907 // TODO: We can try harder to locate the element as a scalar. Examples: it
16908 // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
16909 assert(Mask
[ShufOp0Index
] >= 0 && Mask
[ShufOp0Index
] < (int)Mask
.size() &&
16910 "Shuffle mask value must be from operand 0");
16911 if (Op0
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
16914 auto *InsIndexC
= dyn_cast
<ConstantSDNode
>(Op0
.getOperand(2));
16915 if (!InsIndexC
|| InsIndexC
->getSExtValue() != Mask
[ShufOp0Index
])
16918 // There's an existing insertelement with constant insertion index, so we
16919 // don't need to check the legality/profitability of a replacement operation
16920 // that differs at most in the constant value. The target should be able to
16921 // lower any of those in a similar way. If not, legalization will expand this
16922 // to a scalar-to-vector plus shuffle.
16924 // Note that the shuffle may move the scalar from the position that the insert
16925 // element used. Therefore, our new insert element occurs at the shuffle's
16926 // mask index value, not the insert's index value.
16927 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
16928 SDValue NewInsIndex
= DAG
.getConstant(ShufOp0Index
, SDLoc(Shuf
),
16929 Op0
.getOperand(2).getValueType());
16930 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SDLoc(Shuf
), Op0
.getValueType(),
16931 Op1
, Op0
.getOperand(1), NewInsIndex
);
16934 SDValue
DAGCombiner::visitVECTOR_SHUFFLE(SDNode
*N
) {
16935 EVT VT
= N
->getValueType(0);
16936 unsigned NumElts
= VT
.getVectorNumElements();
16938 SDValue N0
= N
->getOperand(0);
16939 SDValue N1
= N
->getOperand(1);
16941 assert(N0
.getValueType() == VT
&& "Vector shuffle must be normalized in DAG");
16943 // Canonicalize shuffle undef, undef -> undef
16944 if (N0
.isUndef() && N1
.isUndef())
16945 return DAG
.getUNDEF(VT
);
16947 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
16949 // Canonicalize shuffle v, v -> v, undef
16951 SmallVector
<int, 8> NewMask
;
16952 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
16953 int Idx
= SVN
->getMaskElt(i
);
16954 if (Idx
>= (int)NumElts
) Idx
-= NumElts
;
16955 NewMask
.push_back(Idx
);
16957 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, DAG
.getUNDEF(VT
), NewMask
);
16960 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
16962 return DAG
.getCommutedVectorShuffle(*SVN
);
16964 // Remove references to rhs if it is undef
16965 if (N1
.isUndef()) {
16966 bool Changed
= false;
16967 SmallVector
<int, 8> NewMask
;
16968 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
16969 int Idx
= SVN
->getMaskElt(i
);
16970 if (Idx
>= (int)NumElts
) {
16974 NewMask
.push_back(Idx
);
16977 return DAG
.getVectorShuffle(VT
, SDLoc(N
), N0
, N1
, NewMask
);
16980 if (SDValue InsElt
= replaceShuffleOfInsert(SVN
, DAG
))
16983 // A shuffle of a single vector that is a splat can always be folded.
16984 if (auto *N0Shuf
= dyn_cast
<ShuffleVectorSDNode
>(N0
))
16985 if (N1
->isUndef() && N0Shuf
->isSplat())
16986 return combineShuffleOfSplat(SVN
->getMask(), N0Shuf
, DAG
);
16988 // If it is a splat, check if the argument vector is another splat or a
16990 if (SVN
->isSplat() && SVN
->getSplatIndex() < (int)NumElts
) {
16991 SDNode
*V
= N0
.getNode();
16993 // If this is a bit convert that changes the element type of the vector but
16994 // not the number of vector elements, look through it. Be careful not to
16995 // look though conversions that change things like v4f32 to v2f64.
16996 if (V
->getOpcode() == ISD::BITCAST
) {
16997 SDValue ConvInput
= V
->getOperand(0);
16998 if (ConvInput
.getValueType().isVector() &&
16999 ConvInput
.getValueType().getVectorNumElements() == NumElts
)
17000 V
= ConvInput
.getNode();
17003 if (V
->getOpcode() == ISD::BUILD_VECTOR
) {
17004 assert(V
->getNumOperands() == NumElts
&&
17005 "BUILD_VECTOR has wrong number of operands");
17007 bool AllSame
= true;
17008 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
17009 if (!V
->getOperand(i
).isUndef()) {
17010 Base
= V
->getOperand(i
);
17014 // Splat of <u, u, u, u>, return <u, u, u, u>
17015 if (!Base
.getNode())
17017 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
17018 if (V
->getOperand(i
) != Base
) {
17023 // Splat of <x, x, x, x>, return <x, x, x, x>
17027 // Canonicalize any other splat as a build_vector.
17028 const SDValue
&Splatted
= V
->getOperand(SVN
->getSplatIndex());
17029 SmallVector
<SDValue
, 8> Ops(NumElts
, Splatted
);
17030 SDValue NewBV
= DAG
.getBuildVector(V
->getValueType(0), SDLoc(N
), Ops
);
17032 // We may have jumped through bitcasts, so the type of the
17033 // BUILD_VECTOR may not match the type of the shuffle.
17034 if (V
->getValueType(0) != VT
)
17035 NewBV
= DAG
.getBitcast(VT
, NewBV
);
17040 // Simplify source operands based on shuffle mask.
17041 if (SimplifyDemandedVectorElts(SDValue(N
, 0)))
17042 return SDValue(N
, 0);
17044 // Match shuffles that can be converted to any_vector_extend_in_reg.
17045 if (SDValue V
= combineShuffleToVectorExtend(SVN
, DAG
, TLI
, LegalOperations
, LegalTypes
))
17048 // Combine "truncate_vector_in_reg" style shuffles.
17049 if (SDValue V
= combineTruncationShuffle(SVN
, DAG
))
17052 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&&
17053 Level
< AfterLegalizeVectorOps
&&
17055 (N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
17056 N0
.getOperand(0).getValueType() == N1
.getOperand(0).getValueType()))) {
17057 if (SDValue V
= partitionShuffleOfConcats(N
, DAG
))
17061 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
17062 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
17063 if (Level
< AfterLegalizeVectorOps
&& TLI
.isTypeLegal(VT
))
17064 if (SDValue Res
= combineShuffleOfScalars(SVN
, DAG
, TLI
))
17067 // If this shuffle only has a single input that is a bitcasted shuffle,
17068 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
17069 // back to their original types.
17070 if (N0
.getOpcode() == ISD::BITCAST
&& N0
.hasOneUse() &&
17071 N1
.isUndef() && Level
< AfterLegalizeVectorOps
&&
17072 TLI
.isTypeLegal(VT
)) {
17074 // Peek through the bitcast only if there is one user.
17076 while (BC0
.getOpcode() == ISD::BITCAST
) {
17077 if (!BC0
.hasOneUse())
17079 BC0
= BC0
.getOperand(0);
17082 auto ScaleShuffleMask
= [](ArrayRef
<int> Mask
, int Scale
) {
17084 return SmallVector
<int, 8>(Mask
.begin(), Mask
.end());
17086 SmallVector
<int, 8> NewMask
;
17088 for (int s
= 0; s
!= Scale
; ++s
)
17089 NewMask
.push_back(M
< 0 ? -1 : Scale
* M
+ s
);
17093 if (BC0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& BC0
.hasOneUse()) {
17094 EVT SVT
= VT
.getScalarType();
17095 EVT InnerVT
= BC0
->getValueType(0);
17096 EVT InnerSVT
= InnerVT
.getScalarType();
17098 // Determine which shuffle works with the smaller scalar type.
17099 EVT ScaleVT
= SVT
.bitsLT(InnerSVT
) ? VT
: InnerVT
;
17100 EVT ScaleSVT
= ScaleVT
.getScalarType();
17102 if (TLI
.isTypeLegal(ScaleVT
) &&
17103 0 == (InnerSVT
.getSizeInBits() % ScaleSVT
.getSizeInBits()) &&
17104 0 == (SVT
.getSizeInBits() % ScaleSVT
.getSizeInBits())) {
17105 int InnerScale
= InnerSVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
17106 int OuterScale
= SVT
.getSizeInBits() / ScaleSVT
.getSizeInBits();
17108 // Scale the shuffle masks to the smaller scalar type.
17109 ShuffleVectorSDNode
*InnerSVN
= cast
<ShuffleVectorSDNode
>(BC0
);
17110 SmallVector
<int, 8> InnerMask
=
17111 ScaleShuffleMask(InnerSVN
->getMask(), InnerScale
);
17112 SmallVector
<int, 8> OuterMask
=
17113 ScaleShuffleMask(SVN
->getMask(), OuterScale
);
17115 // Merge the shuffle masks.
17116 SmallVector
<int, 8> NewMask
;
17117 for (int M
: OuterMask
)
17118 NewMask
.push_back(M
< 0 ? -1 : InnerMask
[M
]);
17120 // Test for shuffle mask legality over both commutations.
17121 SDValue SV0
= BC0
->getOperand(0);
17122 SDValue SV1
= BC0
->getOperand(1);
17123 bool LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
17125 std::swap(SV0
, SV1
);
17126 ShuffleVectorSDNode::commuteMask(NewMask
);
17127 LegalMask
= TLI
.isShuffleMaskLegal(NewMask
, ScaleVT
);
17131 SV0
= DAG
.getBitcast(ScaleVT
, SV0
);
17132 SV1
= DAG
.getBitcast(ScaleVT
, SV1
);
17133 return DAG
.getBitcast(
17134 VT
, DAG
.getVectorShuffle(ScaleVT
, SDLoc(N
), SV0
, SV1
, NewMask
));
17140 // Canonicalize shuffles according to rules:
17141 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
17142 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
17143 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
17144 if (N1
.getOpcode() == ISD::VECTOR_SHUFFLE
&&
17145 N0
.getOpcode() != ISD::VECTOR_SHUFFLE
&& Level
< AfterLegalizeDAG
&&
17146 TLI
.isTypeLegal(VT
)) {
17147 // The incoming shuffle must be of the same type as the result of the
17148 // current shuffle.
17149 assert(N1
->getOperand(0).getValueType() == VT
&&
17150 "Shuffle types don't match");
17152 SDValue SV0
= N1
->getOperand(0);
17153 SDValue SV1
= N1
->getOperand(1);
17154 bool HasSameOp0
= N0
== SV0
;
17155 bool IsSV1Undef
= SV1
.isUndef();
17156 if (HasSameOp0
|| IsSV1Undef
|| N0
== SV1
)
17157 // Commute the operands of this shuffle so that next rule
17159 return DAG
.getCommutedVectorShuffle(*SVN
);
17162 // Try to fold according to rules:
17163 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
17164 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
17165 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
17166 // Don't try to fold shuffles with illegal type.
17167 // Only fold if this shuffle is the only user of the other shuffle.
17168 if (N0
.getOpcode() == ISD::VECTOR_SHUFFLE
&& N
->isOnlyUserOf(N0
.getNode()) &&
17169 Level
< AfterLegalizeDAG
&& TLI
.isTypeLegal(VT
)) {
17170 ShuffleVectorSDNode
*OtherSV
= cast
<ShuffleVectorSDNode
>(N0
);
17172 // Don't try to fold splats; they're likely to simplify somehow, or they
17174 if (OtherSV
->isSplat())
17177 // The incoming shuffle must be of the same type as the result of the
17178 // current shuffle.
17179 assert(OtherSV
->getOperand(0).getValueType() == VT
&&
17180 "Shuffle types don't match");
17183 SmallVector
<int, 4> Mask
;
17184 // Compute the combined shuffle mask for a shuffle with SV0 as the first
17185 // operand, and SV1 as the second operand.
17186 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
17187 int Idx
= SVN
->getMaskElt(i
);
17189 // Propagate Undef.
17190 Mask
.push_back(Idx
);
17194 SDValue CurrentVec
;
17195 if (Idx
< (int)NumElts
) {
17196 // This shuffle index refers to the inner shuffle N0. Lookup the inner
17197 // shuffle mask to identify which vector is actually referenced.
17198 Idx
= OtherSV
->getMaskElt(Idx
);
17200 // Propagate Undef.
17201 Mask
.push_back(Idx
);
17205 CurrentVec
= (Idx
< (int) NumElts
) ? OtherSV
->getOperand(0)
17206 : OtherSV
->getOperand(1);
17208 // This shuffle index references an element within N1.
17212 // Simple case where 'CurrentVec' is UNDEF.
17213 if (CurrentVec
.isUndef()) {
17214 Mask
.push_back(-1);
17218 // Canonicalize the shuffle index. We don't know yet if CurrentVec
17219 // will be the first or second operand of the combined shuffle.
17220 Idx
= Idx
% NumElts
;
17221 if (!SV0
.getNode() || SV0
== CurrentVec
) {
17222 // Ok. CurrentVec is the left hand side.
17223 // Update the mask accordingly.
17225 Mask
.push_back(Idx
);
17229 // Bail out if we cannot convert the shuffle pair into a single shuffle.
17230 if (SV1
.getNode() && SV1
!= CurrentVec
)
17233 // Ok. CurrentVec is the right hand side.
17234 // Update the mask accordingly.
17236 Mask
.push_back(Idx
+ NumElts
);
17239 // Check if all indices in Mask are Undef. In case, propagate Undef.
17240 bool isUndefMask
= true;
17241 for (unsigned i
= 0; i
!= NumElts
&& isUndefMask
; ++i
)
17242 isUndefMask
&= Mask
[i
] < 0;
17245 return DAG
.getUNDEF(VT
);
17247 if (!SV0
.getNode())
17248 SV0
= DAG
.getUNDEF(VT
);
17249 if (!SV1
.getNode())
17250 SV1
= DAG
.getUNDEF(VT
);
17252 // Avoid introducing shuffles with illegal mask.
17253 if (!TLI
.isShuffleMaskLegal(Mask
, VT
)) {
17254 ShuffleVectorSDNode::commuteMask(Mask
);
17256 if (!TLI
.isShuffleMaskLegal(Mask
, VT
))
17259 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
17260 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
17261 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
17262 std::swap(SV0
, SV1
);
17265 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
17266 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
17267 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
17268 return DAG
.getVectorShuffle(VT
, SDLoc(N
), SV0
, SV1
, Mask
);
17274 SDValue
DAGCombiner::visitSCALAR_TO_VECTOR(SDNode
*N
) {
17275 SDValue InVal
= N
->getOperand(0);
17276 EVT VT
= N
->getValueType(0);
17278 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
17279 // with a VECTOR_SHUFFLE and possible truncate.
17280 if (InVal
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
17281 SDValue InVec
= InVal
->getOperand(0);
17282 SDValue EltNo
= InVal
->getOperand(1);
17283 auto InVecT
= InVec
.getValueType();
17284 if (ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(EltNo
)) {
17285 SmallVector
<int, 8> NewMask(InVecT
.getVectorNumElements(), -1);
17286 int Elt
= C0
->getZExtValue();
17289 // If we have an implict truncate do truncate here as long as it's legal.
17290 // if it's not legal, this should
17291 if (VT
.getScalarType() != InVal
.getValueType() &&
17292 InVal
.getValueType().isScalarInteger() &&
17293 isTypeLegal(VT
.getScalarType())) {
17295 DAG
.getNode(ISD::TRUNCATE
, SDLoc(InVal
), VT
.getScalarType(), InVal
);
17296 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Val
);
17298 if (VT
.getScalarType() == InVecT
.getScalarType() &&
17299 VT
.getVectorNumElements() <= InVecT
.getVectorNumElements() &&
17300 TLI
.isShuffleMaskLegal(NewMask
, VT
)) {
17301 Val
= DAG
.getVectorShuffle(InVecT
, SDLoc(N
), InVec
,
17302 DAG
.getUNDEF(InVecT
), NewMask
);
17303 // If the initial vector is the correct size this shuffle is a
17307 // If not we must truncate the vector.
17308 if (VT
.getVectorNumElements() != InVecT
.getVectorNumElements()) {
17309 MVT IdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
17310 SDValue ZeroIdx
= DAG
.getConstant(0, SDLoc(N
), IdxTy
);
17312 EVT::getVectorVT(*DAG
.getContext(), InVecT
.getVectorElementType(),
17313 VT
.getVectorNumElements());
17314 Val
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, SDLoc(N
), SubVT
, Val
,
17325 SDValue
DAGCombiner::visitINSERT_SUBVECTOR(SDNode
*N
) {
17326 EVT VT
= N
->getValueType(0);
17327 SDValue N0
= N
->getOperand(0);
17328 SDValue N1
= N
->getOperand(1);
17329 SDValue N2
= N
->getOperand(2);
17331 // If inserting an UNDEF, just return the original vector.
17335 // For nested INSERT_SUBVECTORs, attempt to combine inner node first to allow
17336 // us to pull BITCASTs from input to output.
17337 if (N0
.hasOneUse() && N0
->getOpcode() == ISD::INSERT_SUBVECTOR
)
17338 if (SDValue NN0
= visitINSERT_SUBVECTOR(N0
.getNode()))
17339 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, NN0
, N1
, N2
);
17341 // If this is an insert of an extracted vector into an undef vector, we can
17342 // just use the input to the extract.
17343 if (N0
.isUndef() && N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
17344 N1
.getOperand(1) == N2
&& N1
.getOperand(0).getValueType() == VT
)
17345 return N1
.getOperand(0);
17347 // If we are inserting a bitcast value into an undef, with the same
17348 // number of elements, just use the bitcast input of the extract.
17349 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
17350 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
17351 if (N0
.isUndef() && N1
.getOpcode() == ISD::BITCAST
&&
17352 N1
.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
17353 N1
.getOperand(0).getOperand(1) == N2
&&
17354 N1
.getOperand(0).getOperand(0).getValueType().getVectorNumElements() ==
17355 VT
.getVectorNumElements() &&
17356 N1
.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
17357 VT
.getSizeInBits()) {
17358 return DAG
.getBitcast(VT
, N1
.getOperand(0).getOperand(0));
17361 // If both N1 and N2 are bitcast values on which insert_subvector
17362 // would makes sense, pull the bitcast through.
17363 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
17364 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
17365 if (N0
.getOpcode() == ISD::BITCAST
&& N1
.getOpcode() == ISD::BITCAST
) {
17366 SDValue CN0
= N0
.getOperand(0);
17367 SDValue CN1
= N1
.getOperand(0);
17368 EVT CN0VT
= CN0
.getValueType();
17369 EVT CN1VT
= CN1
.getValueType();
17370 if (CN0VT
.isVector() && CN1VT
.isVector() &&
17371 CN0VT
.getVectorElementType() == CN1VT
.getVectorElementType() &&
17372 CN0VT
.getVectorNumElements() == VT
.getVectorNumElements()) {
17373 SDValue NewINSERT
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
),
17374 CN0
.getValueType(), CN0
, CN1
, N2
);
17375 return DAG
.getBitcast(VT
, NewINSERT
);
17379 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
17380 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
17381 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
17382 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&&
17383 N0
.getOperand(1).getValueType() == N1
.getValueType() &&
17384 N0
.getOperand(2) == N2
)
17385 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
, N0
.getOperand(0),
17388 if (!isa
<ConstantSDNode
>(N2
))
17391 unsigned InsIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
17393 // Canonicalize insert_subvector dag nodes.
17395 // (insert_subvector (insert_subvector A, Idx0), Idx1)
17396 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
17397 if (N0
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N0
.hasOneUse() &&
17398 N1
.getValueType() == N0
.getOperand(1).getValueType() &&
17399 isa
<ConstantSDNode
>(N0
.getOperand(2))) {
17400 unsigned OtherIdx
= N0
.getConstantOperandVal(2);
17401 if (InsIdx
< OtherIdx
) {
17403 SDValue NewOp
= DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N
), VT
,
17404 N0
.getOperand(0), N1
, N2
);
17405 AddToWorklist(NewOp
.getNode());
17406 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, SDLoc(N0
.getNode()),
17407 VT
, NewOp
, N0
.getOperand(1), N0
.getOperand(2));
17411 // If the input vector is a concatenation, and the insert replaces
17412 // one of the pieces, we can optimize into a single concat_vectors.
17413 if (N0
.getOpcode() == ISD::CONCAT_VECTORS
&& N0
.hasOneUse() &&
17414 N0
.getOperand(0).getValueType() == N1
.getValueType()) {
17415 unsigned Factor
= N1
.getValueType().getVectorNumElements();
17417 SmallVector
<SDValue
, 8> Ops(N0
->op_begin(), N0
->op_end());
17418 Ops
[cast
<ConstantSDNode
>(N2
)->getZExtValue() / Factor
] = N1
;
17420 return DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
, Ops
);
17426 SDValue
DAGCombiner::visitFP_TO_FP16(SDNode
*N
) {
17427 SDValue N0
= N
->getOperand(0);
17429 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
17430 if (N0
->getOpcode() == ISD::FP16_TO_FP
)
17431 return N0
->getOperand(0);
17436 SDValue
DAGCombiner::visitFP16_TO_FP(SDNode
*N
) {
17437 SDValue N0
= N
->getOperand(0);
17439 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
17440 if (N0
->getOpcode() == ISD::AND
) {
17441 ConstantSDNode
*AndConst
= getAsNonOpaqueConstant(N0
.getOperand(1));
17442 if (AndConst
&& AndConst
->getAPIntValue() == 0xffff) {
17443 return DAG
.getNode(ISD::FP16_TO_FP
, SDLoc(N
), N
->getValueType(0),
17451 /// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
17452 /// with the destination vector and a zero vector.
17453 /// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
17454 /// vector_shuffle V, Zero, <0, 4, 2, 4>
17455 SDValue
DAGCombiner::XformToShuffleWithZero(SDNode
*N
) {
17456 assert(N
->getOpcode() == ISD::AND
&& "Unexpected opcode!");
17458 EVT VT
= N
->getValueType(0);
17459 SDValue LHS
= N
->getOperand(0);
17460 SDValue RHS
= peekThroughBitcast(N
->getOperand(1));
17463 // Make sure we're not running after operation legalization where it
17464 // may have custom lowered the vector shuffles.
17465 if (LegalOperations
)
17468 if (RHS
.getOpcode() != ISD::BUILD_VECTOR
)
17471 EVT RVT
= RHS
.getValueType();
17472 unsigned NumElts
= RHS
.getNumOperands();
17474 // Attempt to create a valid clear mask, splitting the mask into
17475 // sub elements and checking to see if each is
17476 // all zeros or all ones - suitable for shuffle masking.
17477 auto BuildClearMask
= [&](int Split
) {
17478 int NumSubElts
= NumElts
* Split
;
17479 int NumSubBits
= RVT
.getScalarSizeInBits() / Split
;
17481 SmallVector
<int, 8> Indices
;
17482 for (int i
= 0; i
!= NumSubElts
; ++i
) {
17483 int EltIdx
= i
/ Split
;
17484 int SubIdx
= i
% Split
;
17485 SDValue Elt
= RHS
.getOperand(EltIdx
);
17486 if (Elt
.isUndef()) {
17487 Indices
.push_back(-1);
17492 if (isa
<ConstantSDNode
>(Elt
))
17493 Bits
= cast
<ConstantSDNode
>(Elt
)->getAPIntValue();
17494 else if (isa
<ConstantFPSDNode
>(Elt
))
17495 Bits
= cast
<ConstantFPSDNode
>(Elt
)->getValueAPF().bitcastToAPInt();
17499 // Extract the sub element from the constant bit mask.
17500 if (DAG
.getDataLayout().isBigEndian()) {
17501 Bits
.lshrInPlace((Split
- SubIdx
- 1) * NumSubBits
);
17503 Bits
.lshrInPlace(SubIdx
* NumSubBits
);
17507 Bits
= Bits
.trunc(NumSubBits
);
17509 if (Bits
.isAllOnesValue())
17510 Indices
.push_back(i
);
17511 else if (Bits
== 0)
17512 Indices
.push_back(i
+ NumSubElts
);
17517 // Let's see if the target supports this vector_shuffle.
17518 EVT ClearSVT
= EVT::getIntegerVT(*DAG
.getContext(), NumSubBits
);
17519 EVT ClearVT
= EVT::getVectorVT(*DAG
.getContext(), ClearSVT
, NumSubElts
);
17520 if (!TLI
.isVectorClearMaskLegal(Indices
, ClearVT
))
17523 SDValue Zero
= DAG
.getConstant(0, DL
, ClearVT
);
17524 return DAG
.getBitcast(VT
, DAG
.getVectorShuffle(ClearVT
, DL
,
17525 DAG
.getBitcast(ClearVT
, LHS
),
17529 // Determine maximum split level (byte level masking).
17531 if (RVT
.getScalarSizeInBits() % 8 == 0)
17532 MaxSplit
= RVT
.getScalarSizeInBits() / 8;
17534 for (int Split
= 1; Split
<= MaxSplit
; ++Split
)
17535 if (RVT
.getScalarSizeInBits() % Split
== 0)
17536 if (SDValue S
= BuildClearMask(Split
))
17542 /// Visit a binary vector operation, like ADD.
17543 SDValue
DAGCombiner::SimplifyVBinOp(SDNode
*N
) {
17544 assert(N
->getValueType(0).isVector() &&
17545 "SimplifyVBinOp only works on vectors!");
17547 SDValue LHS
= N
->getOperand(0);
17548 SDValue RHS
= N
->getOperand(1);
17549 SDValue Ops
[] = {LHS
, RHS
};
17551 // See if we can constant fold the vector operation.
17552 if (SDValue Fold
= DAG
.FoldConstantVectorArithmetic(
17553 N
->getOpcode(), SDLoc(LHS
), LHS
.getValueType(), Ops
, N
->getFlags()))
17556 // Type legalization might introduce new shuffles in the DAG.
17557 // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
17558 // -> (shuffle (VBinOp (A, B)), Undef, Mask).
17559 if (LegalTypes
&& isa
<ShuffleVectorSDNode
>(LHS
) &&
17560 isa
<ShuffleVectorSDNode
>(RHS
) && LHS
.hasOneUse() && RHS
.hasOneUse() &&
17561 LHS
.getOperand(1).isUndef() &&
17562 RHS
.getOperand(1).isUndef()) {
17563 ShuffleVectorSDNode
*SVN0
= cast
<ShuffleVectorSDNode
>(LHS
);
17564 ShuffleVectorSDNode
*SVN1
= cast
<ShuffleVectorSDNode
>(RHS
);
17566 if (SVN0
->getMask().equals(SVN1
->getMask())) {
17567 EVT VT
= N
->getValueType(0);
17568 SDValue UndefVector
= LHS
.getOperand(1);
17569 SDValue NewBinOp
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
17570 LHS
.getOperand(0), RHS
.getOperand(0),
17572 AddUsersToWorklist(N
);
17573 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewBinOp
, UndefVector
,
17581 SDValue
DAGCombiner::SimplifySelect(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
17583 assert(N0
.getOpcode() ==ISD::SETCC
&& "First argument must be a SetCC node!");
17585 SDValue SCC
= SimplifySelectCC(DL
, N0
.getOperand(0), N0
.getOperand(1), N1
, N2
,
17586 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
17588 // If we got a simplified select_cc node back from SimplifySelectCC, then
17589 // break it down into a new SETCC node, and a new SELECT node, and then return
17590 // the SELECT node, since we were called with a SELECT node.
17591 if (SCC
.getNode()) {
17592 // Check to see if we got a select_cc back (to turn into setcc/select).
17593 // Otherwise, just return whatever node we got back, like fabs.
17594 if (SCC
.getOpcode() == ISD::SELECT_CC
) {
17595 SDValue SETCC
= DAG
.getNode(ISD::SETCC
, SDLoc(N0
),
17597 SCC
.getOperand(0), SCC
.getOperand(1),
17598 SCC
.getOperand(4));
17599 AddToWorklist(SETCC
.getNode());
17600 return DAG
.getSelect(SDLoc(SCC
), SCC
.getValueType(), SETCC
,
17601 SCC
.getOperand(2), SCC
.getOperand(3));
17609 /// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
17610 /// being selected between, see if we can simplify the select. Callers of this
17611 /// should assume that TheSelect is deleted if this returns true. As such, they
17612 /// should return the appropriate thing (e.g. the node) back to the top-level of
17613 /// the DAG combiner loop to avoid it being looked at.
17614 bool DAGCombiner::SimplifySelectOps(SDNode
*TheSelect
, SDValue LHS
,
17616 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
17617 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
17618 if (const ConstantFPSDNode
*NaN
= isConstOrConstSplatFP(LHS
)) {
17619 if (NaN
->isNaN() && RHS
.getOpcode() == ISD::FSQRT
) {
17620 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
17621 SDValue Sqrt
= RHS
;
17624 const ConstantFPSDNode
*Zero
= nullptr;
17626 if (TheSelect
->getOpcode() == ISD::SELECT_CC
) {
17627 CC
= cast
<CondCodeSDNode
>(TheSelect
->getOperand(4))->get();
17628 CmpLHS
= TheSelect
->getOperand(0);
17629 Zero
= isConstOrConstSplatFP(TheSelect
->getOperand(1));
17631 // SELECT or VSELECT
17632 SDValue Cmp
= TheSelect
->getOperand(0);
17633 if (Cmp
.getOpcode() == ISD::SETCC
) {
17634 CC
= cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get();
17635 CmpLHS
= Cmp
.getOperand(0);
17636 Zero
= isConstOrConstSplatFP(Cmp
.getOperand(1));
17639 if (Zero
&& Zero
->isZero() &&
17640 Sqrt
.getOperand(0) == CmpLHS
&& (CC
== ISD::SETOLT
||
17641 CC
== ISD::SETULT
|| CC
== ISD::SETLT
)) {
17642 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
17643 CombineTo(TheSelect
, Sqrt
);
17648 // Cannot simplify select with vector condition
17649 if (TheSelect
->getOperand(0).getValueType().isVector()) return false;
17651 // If this is a select from two identical things, try to pull the operation
17652 // through the select.
17653 if (LHS
.getOpcode() != RHS
.getOpcode() ||
17654 !LHS
.hasOneUse() || !RHS
.hasOneUse())
17657 // If this is a load and the token chain is identical, replace the select
17658 // of two loads with a load through a select of the address to load from.
17659 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
17660 // constants have been dropped into the constant pool.
17661 if (LHS
.getOpcode() == ISD::LOAD
) {
17662 LoadSDNode
*LLD
= cast
<LoadSDNode
>(LHS
);
17663 LoadSDNode
*RLD
= cast
<LoadSDNode
>(RHS
);
17665 // Token chains must be identical.
17666 if (LHS
.getOperand(0) != RHS
.getOperand(0) ||
17667 // Do not let this transformation reduce the number of volatile loads.
17668 LLD
->isVolatile() || RLD
->isVolatile() ||
17669 // FIXME: If either is a pre/post inc/dec load,
17670 // we'd need to split out the address adjustment.
17671 LLD
->isIndexed() || RLD
->isIndexed() ||
17672 // If this is an EXTLOAD, the VT's must match.
17673 LLD
->getMemoryVT() != RLD
->getMemoryVT() ||
17674 // If this is an EXTLOAD, the kind of extension must match.
17675 (LLD
->getExtensionType() != RLD
->getExtensionType() &&
17676 // The only exception is if one of the extensions is anyext.
17677 LLD
->getExtensionType() != ISD::EXTLOAD
&&
17678 RLD
->getExtensionType() != ISD::EXTLOAD
) ||
17679 // FIXME: this discards src value information. This is
17680 // over-conservative. It would be beneficial to be able to remember
17681 // both potential memory locations. Since we are discarding
17682 // src value info, don't do the transformation if the memory
17683 // locations are not in the default address space.
17684 LLD
->getPointerInfo().getAddrSpace() != 0 ||
17685 RLD
->getPointerInfo().getAddrSpace() != 0 ||
17686 !TLI
.isOperationLegalOrCustom(TheSelect
->getOpcode(),
17687 LLD
->getBasePtr().getValueType()))
17690 // Check that the select condition doesn't reach either load. If so,
17691 // folding this will induce a cycle into the DAG. If not, this is safe to
17692 // xform, so create a select of the addresses.
17694 if (TheSelect
->getOpcode() == ISD::SELECT
) {
17695 SDNode
*CondNode
= TheSelect
->getOperand(0).getNode();
17696 if ((LLD
->hasAnyUseOfValue(1) && LLD
->isPredecessorOf(CondNode
)) ||
17697 (RLD
->hasAnyUseOfValue(1) && RLD
->isPredecessorOf(CondNode
)))
17699 // The loads must not depend on one another.
17700 if (LLD
->isPredecessorOf(RLD
) ||
17701 RLD
->isPredecessorOf(LLD
))
17703 Addr
= DAG
.getSelect(SDLoc(TheSelect
),
17704 LLD
->getBasePtr().getValueType(),
17705 TheSelect
->getOperand(0), LLD
->getBasePtr(),
17706 RLD
->getBasePtr());
17707 } else { // Otherwise SELECT_CC
17708 SDNode
*CondLHS
= TheSelect
->getOperand(0).getNode();
17709 SDNode
*CondRHS
= TheSelect
->getOperand(1).getNode();
17711 if ((LLD
->hasAnyUseOfValue(1) &&
17712 (LLD
->isPredecessorOf(CondLHS
) || LLD
->isPredecessorOf(CondRHS
))) ||
17713 (RLD
->hasAnyUseOfValue(1) &&
17714 (RLD
->isPredecessorOf(CondLHS
) || RLD
->isPredecessorOf(CondRHS
))))
17717 Addr
= DAG
.getNode(ISD::SELECT_CC
, SDLoc(TheSelect
),
17718 LLD
->getBasePtr().getValueType(),
17719 TheSelect
->getOperand(0),
17720 TheSelect
->getOperand(1),
17721 LLD
->getBasePtr(), RLD
->getBasePtr(),
17722 TheSelect
->getOperand(4));
17726 // It is safe to replace the two loads if they have different alignments,
17727 // but the new load must be the minimum (most restrictive) alignment of the
17729 unsigned Alignment
= std::min(LLD
->getAlignment(), RLD
->getAlignment());
17730 MachineMemOperand::Flags MMOFlags
= LLD
->getMemOperand()->getFlags();
17731 if (!RLD
->isInvariant())
17732 MMOFlags
&= ~MachineMemOperand::MOInvariant
;
17733 if (!RLD
->isDereferenceable())
17734 MMOFlags
&= ~MachineMemOperand::MODereferenceable
;
17735 if (LLD
->getExtensionType() == ISD::NON_EXTLOAD
) {
17736 // FIXME: Discards pointer and AA info.
17737 Load
= DAG
.getLoad(TheSelect
->getValueType(0), SDLoc(TheSelect
),
17738 LLD
->getChain(), Addr
, MachinePointerInfo(), Alignment
,
17741 // FIXME: Discards pointer and AA info.
17742 Load
= DAG
.getExtLoad(
17743 LLD
->getExtensionType() == ISD::EXTLOAD
? RLD
->getExtensionType()
17744 : LLD
->getExtensionType(),
17745 SDLoc(TheSelect
), TheSelect
->getValueType(0), LLD
->getChain(), Addr
,
17746 MachinePointerInfo(), LLD
->getMemoryVT(), Alignment
, MMOFlags
);
17749 // Users of the select now use the result of the load.
17750 CombineTo(TheSelect
, Load
);
17752 // Users of the old loads now use the new load's chain. We know the
17753 // old-load value is dead now.
17754 CombineTo(LHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
17755 CombineTo(RHS
.getNode(), Load
.getValue(0), Load
.getValue(1));
17762 /// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
17764 SDValue
DAGCombiner::foldSelectCCToShiftAnd(const SDLoc
&DL
, SDValue N0
,
17765 SDValue N1
, SDValue N2
, SDValue N3
,
17766 ISD::CondCode CC
) {
17767 // If this is a select where the false operand is zero and the compare is a
17768 // check of the sign bit, see if we can perform the "gzip trick":
17769 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
17770 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
17771 EVT XType
= N0
.getValueType();
17772 EVT AType
= N2
.getValueType();
17773 if (!isNullConstant(N3
) || !XType
.bitsGE(AType
))
17776 // If the comparison is testing for a positive value, we have to invert
17777 // the sign bit mask, so only do that transform if the target has a bitwise
17778 // 'and not' instruction (the invert is free).
17779 if (CC
== ISD::SETGT
&& TLI
.hasAndNot(N2
)) {
17780 // (X > -1) ? A : 0
17781 // (X > 0) ? X : 0 <-- This is canonical signed max.
17782 if (!(isAllOnesConstant(N1
) || (isNullConstant(N1
) && N0
== N2
)))
17784 } else if (CC
== ISD::SETLT
) {
17786 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
17787 if (!(isNullConstant(N1
) || (isOneConstant(N1
) && N0
== N2
)))
17793 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
17795 EVT ShiftAmtTy
= getShiftAmountTy(N0
.getValueType());
17796 auto *N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
17797 if (N2C
&& ((N2C
->getAPIntValue() & (N2C
->getAPIntValue() - 1)) == 0)) {
17798 unsigned ShCt
= XType
.getSizeInBits() - N2C
->getAPIntValue().logBase2() - 1;
17799 SDValue ShiftAmt
= DAG
.getConstant(ShCt
, DL
, ShiftAmtTy
);
17800 SDValue Shift
= DAG
.getNode(ISD::SRL
, DL
, XType
, N0
, ShiftAmt
);
17801 AddToWorklist(Shift
.getNode());
17803 if (XType
.bitsGT(AType
)) {
17804 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
17805 AddToWorklist(Shift
.getNode());
17808 if (CC
== ISD::SETGT
)
17809 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
17811 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
17814 SDValue ShiftAmt
= DAG
.getConstant(XType
.getSizeInBits() - 1, DL
, ShiftAmtTy
);
17815 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
, N0
, ShiftAmt
);
17816 AddToWorklist(Shift
.getNode());
17818 if (XType
.bitsGT(AType
)) {
17819 Shift
= DAG
.getNode(ISD::TRUNCATE
, DL
, AType
, Shift
);
17820 AddToWorklist(Shift
.getNode());
17823 if (CC
== ISD::SETGT
)
17824 Shift
= DAG
.getNOT(DL
, Shift
, AType
);
17826 return DAG
.getNode(ISD::AND
, DL
, AType
, Shift
, N2
);
17829 /// Simplify an expression of the form (N0 cond N1) ? N2 : N3
17830 /// where 'cond' is the comparison specified by CC.
17831 SDValue
DAGCombiner::SimplifySelectCC(const SDLoc
&DL
, SDValue N0
, SDValue N1
,
17832 SDValue N2
, SDValue N3
, ISD::CondCode CC
,
17833 bool NotExtCompare
) {
17834 // (x ? y : y) -> y.
17835 if (N2
== N3
) return N2
;
17837 EVT VT
= N2
.getValueType();
17838 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
17839 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
17841 // Determine if the condition we're dealing with is constant
17842 SDValue SCC
= SimplifySetCC(getSetCCResultType(N0
.getValueType()),
17843 N0
, N1
, CC
, DL
, false);
17844 if (SCC
.getNode()) AddToWorklist(SCC
.getNode());
17846 if (ConstantSDNode
*SCCC
= dyn_cast_or_null
<ConstantSDNode
>(SCC
.getNode())) {
17847 // fold select_cc true, x, y -> x
17848 // fold select_cc false, x, y -> y
17849 return !SCCC
->isNullValue() ? N2
: N3
;
17852 // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
17853 // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
17854 // in it. This is a win when the constant is not otherwise available because
17855 // it replaces two constant pool loads with one. We only do this if the FP
17856 // type is known to be legal, because if it isn't, then we are before legalize
17857 // types an we want the other legalization to happen first (e.g. to avoid
17858 // messing with soft float) and if the ConstantFP is not legal, because if
17859 // it is legal, we may not need to store the FP constant in a constant pool.
17860 if (ConstantFPSDNode
*TV
= dyn_cast
<ConstantFPSDNode
>(N2
))
17861 if (ConstantFPSDNode
*FV
= dyn_cast
<ConstantFPSDNode
>(N3
)) {
17862 if (TLI
.isTypeLegal(N2
.getValueType()) &&
17863 (TLI
.getOperationAction(ISD::ConstantFP
, N2
.getValueType()) !=
17864 TargetLowering::Legal
&&
17865 !TLI
.isFPImmLegal(TV
->getValueAPF(), TV
->getValueType(0)) &&
17866 !TLI
.isFPImmLegal(FV
->getValueAPF(), FV
->getValueType(0))) &&
17867 // If both constants have multiple uses, then we won't need to do an
17868 // extra load, they are likely around in registers for other users.
17869 (TV
->hasOneUse() || FV
->hasOneUse())) {
17870 Constant
*Elts
[] = {
17871 const_cast<ConstantFP
*>(FV
->getConstantFPValue()),
17872 const_cast<ConstantFP
*>(TV
->getConstantFPValue())
17874 Type
*FPTy
= Elts
[0]->getType();
17875 const DataLayout
&TD
= DAG
.getDataLayout();
17877 // Create a ConstantArray of the two constants.
17878 Constant
*CA
= ConstantArray::get(ArrayType::get(FPTy
, 2), Elts
);
17880 DAG
.getConstantPool(CA
, TLI
.getPointerTy(DAG
.getDataLayout()),
17881 TD
.getPrefTypeAlignment(FPTy
));
17882 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
17884 // Get the offsets to the 0 and 1 element of the array so that we can
17885 // select between them.
17886 SDValue Zero
= DAG
.getIntPtrConstant(0, DL
);
17887 unsigned EltSize
= (unsigned)TD
.getTypeAllocSize(Elts
[0]->getType());
17888 SDValue One
= DAG
.getIntPtrConstant(EltSize
, SDLoc(FV
));
17890 SDValue Cond
= DAG
.getSetCC(DL
,
17891 getSetCCResultType(N0
.getValueType()),
17893 AddToWorklist(Cond
.getNode());
17894 SDValue CstOffset
= DAG
.getSelect(DL
, Zero
.getValueType(),
17896 AddToWorklist(CstOffset
.getNode());
17897 CPIdx
= DAG
.getNode(ISD::ADD
, DL
, CPIdx
.getValueType(), CPIdx
,
17899 AddToWorklist(CPIdx
.getNode());
17900 return DAG
.getLoad(
17901 TV
->getValueType(0), DL
, DAG
.getEntryNode(), CPIdx
,
17902 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
17907 if (SDValue V
= foldSelectCCToShiftAnd(DL
, N0
, N1
, N2
, N3
, CC
))
17910 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
17911 // where y is has a single bit set.
17912 // A plaintext description would be, we can turn the SELECT_CC into an AND
17913 // when the condition can be materialized as an all-ones register. Any
17914 // single bit-test can be materialized as an all-ones register with
17915 // shift-left and shift-right-arith.
17916 if (CC
== ISD::SETEQ
&& N0
->getOpcode() == ISD::AND
&&
17917 N0
->getValueType(0) == VT
&& isNullConstant(N1
) && isNullConstant(N2
)) {
17918 SDValue AndLHS
= N0
->getOperand(0);
17919 ConstantSDNode
*ConstAndRHS
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
17920 if (ConstAndRHS
&& ConstAndRHS
->getAPIntValue().countPopulation() == 1) {
17921 // Shift the tested bit over the sign bit.
17922 const APInt
&AndMask
= ConstAndRHS
->getAPIntValue();
17924 DAG
.getConstant(AndMask
.countLeadingZeros(), SDLoc(AndLHS
),
17925 getShiftAmountTy(AndLHS
.getValueType()));
17926 SDValue Shl
= DAG
.getNode(ISD::SHL
, SDLoc(N0
), VT
, AndLHS
, ShlAmt
);
17928 // Now arithmetic right shift it all the way over, so the result is either
17929 // all-ones, or zero.
17931 DAG
.getConstant(AndMask
.getBitWidth() - 1, SDLoc(Shl
),
17932 getShiftAmountTy(Shl
.getValueType()));
17933 SDValue Shr
= DAG
.getNode(ISD::SRA
, SDLoc(N0
), VT
, Shl
, ShrAmt
);
17935 return DAG
.getNode(ISD::AND
, DL
, VT
, Shr
, N3
);
17939 // fold select C, 16, 0 -> shl C, 4
17940 if (N2C
&& isNullConstant(N3
) && N2C
->getAPIntValue().isPowerOf2() &&
17941 TLI
.getBooleanContents(N0
.getValueType()) ==
17942 TargetLowering::ZeroOrOneBooleanContent
) {
17944 // If the caller doesn't want us to simplify this into a zext of a compare,
17946 if (NotExtCompare
&& N2C
->isOne())
17949 // Get a SetCC of the condition
17950 // NOTE: Don't create a SETCC if it's not legal on this target.
17951 if (!LegalOperations
||
17952 TLI
.isOperationLegal(ISD::SETCC
, N0
.getValueType())) {
17954 // cast from setcc result type to select result type
17956 SCC
= DAG
.getSetCC(DL
, getSetCCResultType(N0
.getValueType()),
17958 if (N2
.getValueType().bitsLT(SCC
.getValueType()))
17959 Temp
= DAG
.getZeroExtendInReg(SCC
, SDLoc(N2
),
17960 N2
.getValueType());
17962 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
),
17963 N2
.getValueType(), SCC
);
17965 SCC
= DAG
.getSetCC(SDLoc(N0
), MVT::i1
, N0
, N1
, CC
);
17966 Temp
= DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N2
),
17967 N2
.getValueType(), SCC
);
17970 AddToWorklist(SCC
.getNode());
17971 AddToWorklist(Temp
.getNode());
17976 // shl setcc result by log2 n2c
17977 return DAG
.getNode(
17978 ISD::SHL
, DL
, N2
.getValueType(), Temp
,
17979 DAG
.getConstant(N2C
->getAPIntValue().logBase2(), SDLoc(Temp
),
17980 getShiftAmountTy(Temp
.getValueType())));
17984 // Check to see if this is an integer abs.
17985 // select_cc setg[te] X, 0, X, -X ->
17986 // select_cc setgt X, -1, X, -X ->
17987 // select_cc setl[te] X, 0, -X, X ->
17988 // select_cc setlt X, 1, -X, X ->
17989 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
17991 ConstantSDNode
*SubC
= nullptr;
17992 if (((N1C
->isNullValue() && (CC
== ISD::SETGT
|| CC
== ISD::SETGE
)) ||
17993 (N1C
->isAllOnesValue() && CC
== ISD::SETGT
)) &&
17994 N0
== N2
&& N3
.getOpcode() == ISD::SUB
&& N0
== N3
.getOperand(1))
17995 SubC
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(0));
17996 else if (((N1C
->isNullValue() && (CC
== ISD::SETLT
|| CC
== ISD::SETLE
)) ||
17997 (N1C
->isOne() && CC
== ISD::SETLT
)) &&
17998 N0
== N3
&& N2
.getOpcode() == ISD::SUB
&& N0
== N2
.getOperand(1))
17999 SubC
= dyn_cast
<ConstantSDNode
>(N2
.getOperand(0));
18001 EVT XType
= N0
.getValueType();
18002 if (SubC
&& SubC
->isNullValue() && XType
.isInteger()) {
18004 SDValue Shift
= DAG
.getNode(ISD::SRA
, DL
, XType
,
18006 DAG
.getConstant(XType
.getSizeInBits() - 1, DL
,
18007 getShiftAmountTy(N0
.getValueType())));
18008 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
,
18010 AddToWorklist(Shift
.getNode());
18011 AddToWorklist(Add
.getNode());
18012 return DAG
.getNode(ISD::XOR
, DL
, XType
, Add
, Shift
);
18016 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
18017 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
18018 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
18019 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
18020 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
18021 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
18022 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
18023 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
18024 if (N1C
&& N1C
->isNullValue() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
18025 SDValue ValueOnZero
= N2
;
18026 SDValue Count
= N3
;
18027 // If the condition is NE instead of E, swap the operands.
18028 if (CC
== ISD::SETNE
)
18029 std::swap(ValueOnZero
, Count
);
18030 // Check if the value on zero is a constant equal to the bits in the type.
18031 if (auto *ValueOnZeroC
= dyn_cast
<ConstantSDNode
>(ValueOnZero
)) {
18032 if (ValueOnZeroC
->getAPIntValue() == VT
.getSizeInBits()) {
18033 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
18034 // legal, combine to just cttz.
18035 if ((Count
.getOpcode() == ISD::CTTZ
||
18036 Count
.getOpcode() == ISD::CTTZ_ZERO_UNDEF
) &&
18037 N0
== Count
.getOperand(0) &&
18038 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTTZ
, VT
)))
18039 return DAG
.getNode(ISD::CTTZ
, DL
, VT
, N0
);
18040 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
18041 // legal, combine to just ctlz.
18042 if ((Count
.getOpcode() == ISD::CTLZ
||
18043 Count
.getOpcode() == ISD::CTLZ_ZERO_UNDEF
) &&
18044 N0
== Count
.getOperand(0) &&
18045 (!LegalOperations
|| TLI
.isOperationLegal(ISD::CTLZ
, VT
)))
18046 return DAG
.getNode(ISD::CTLZ
, DL
, VT
, N0
);
18054 /// This is a stub for TargetLowering::SimplifySetCC.
18055 SDValue
DAGCombiner::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
18056 ISD::CondCode Cond
, const SDLoc
&DL
,
18057 bool foldBooleans
) {
18058 TargetLowering::DAGCombinerInfo
18059 DagCombineInfo(DAG
, Level
, false, this);
18060 return TLI
.SimplifySetCC(VT
, N0
, N1
, Cond
, foldBooleans
, DagCombineInfo
, DL
);
18063 /// Given an ISD::SDIV node expressing a divide by constant, return
18064 /// a DAG expression to select that will generate the same value by multiplying
18065 /// by a magic number.
18066 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
18067 SDValue
DAGCombiner::BuildSDIV(SDNode
*N
) {
18068 // when optimising for minimum size, we don't want to expand a div to a mul
18070 if (DAG
.getMachineFunction().getFunction().optForMinSize())
18073 SmallVector
<SDNode
*, 8> Built
;
18074 if (SDValue S
= TLI
.BuildSDIV(N
, DAG
, LegalOperations
, Built
)) {
18075 for (SDNode
*N
: Built
)
18083 /// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
18084 /// DAG expression that will generate the same value by right shifting.
18085 SDValue
DAGCombiner::BuildSDIVPow2(SDNode
*N
) {
18086 ConstantSDNode
*C
= isConstOrConstSplat(N
->getOperand(1));
18090 // Avoid division by zero.
18091 if (C
->isNullValue())
18094 SmallVector
<SDNode
*, 8> Built
;
18095 if (SDValue S
= TLI
.BuildSDIVPow2(N
, C
->getAPIntValue(), DAG
, Built
)) {
18096 for (SDNode
*N
: Built
)
18104 /// Given an ISD::UDIV node expressing a divide by constant, return a DAG
18105 /// expression that will generate the same value by multiplying by a magic
18107 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
18108 SDValue
DAGCombiner::BuildUDIV(SDNode
*N
) {
18109 // when optimising for minimum size, we don't want to expand a div to a mul
18111 if (DAG
.getMachineFunction().getFunction().optForMinSize())
18114 SmallVector
<SDNode
*, 8> Built
;
18115 if (SDValue S
= TLI
.BuildUDIV(N
, DAG
, LegalOperations
, Built
)) {
18116 for (SDNode
*N
: Built
)
18124 /// Determines the LogBase2 value for a non-null input value using the
18125 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
18126 SDValue
DAGCombiner::BuildLogBase2(SDValue V
, const SDLoc
&DL
) {
18127 EVT VT
= V
.getValueType();
18128 unsigned EltBits
= VT
.getScalarSizeInBits();
18129 SDValue Ctlz
= DAG
.getNode(ISD::CTLZ
, DL
, VT
, V
);
18130 SDValue Base
= DAG
.getConstant(EltBits
- 1, DL
, VT
);
18131 SDValue LogBase2
= DAG
.getNode(ISD::SUB
, DL
, VT
, Base
, Ctlz
);
18135 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
18136 /// For the reciprocal, we need to find the zero of the function:
18137 /// F(X) = A X - 1 [which has a zero at X = 1/A]
18139 /// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
18140 /// does not require additional intermediate precision]
18141 SDValue
DAGCombiner::BuildReciprocalEstimate(SDValue Op
, SDNodeFlags Flags
) {
18142 if (Level
>= AfterLegalizeDAG
)
18145 // TODO: Handle half and/or extended types?
18146 EVT VT
= Op
.getValueType();
18147 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
18150 // If estimates are explicitly disabled for this function, we're done.
18151 MachineFunction
&MF
= DAG
.getMachineFunction();
18152 int Enabled
= TLI
.getRecipEstimateDivEnabled(VT
, MF
);
18153 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
18156 // Estimates may be explicitly enabled for this type with a custom number of
18157 // refinement steps.
18158 int Iterations
= TLI
.getDivRefinementSteps(VT
, MF
);
18159 if (SDValue Est
= TLI
.getRecipEstimate(Op
, DAG
, Enabled
, Iterations
)) {
18160 AddToWorklist(Est
.getNode());
18163 EVT VT
= Op
.getValueType();
18165 SDValue FPOne
= DAG
.getConstantFP(1.0, DL
, VT
);
18167 // Newton iterations: Est = Est + Est (1 - Arg * Est)
18168 for (int i
= 0; i
< Iterations
; ++i
) {
18169 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Op
, Est
, Flags
);
18170 AddToWorklist(NewEst
.getNode());
18172 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, FPOne
, NewEst
, Flags
);
18173 AddToWorklist(NewEst
.getNode());
18175 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
18176 AddToWorklist(NewEst
.getNode());
18178 Est
= DAG
.getNode(ISD::FADD
, DL
, VT
, Est
, NewEst
, Flags
);
18179 AddToWorklist(Est
.getNode());
18188 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
18189 /// For the reciprocal sqrt, we need to find the zero of the function:
18190 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
18192 /// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
18193 /// As a result, we precompute A/2 prior to the iteration loop.
18194 SDValue
DAGCombiner::buildSqrtNROneConst(SDValue Arg
, SDValue Est
,
18195 unsigned Iterations
,
18196 SDNodeFlags Flags
, bool Reciprocal
) {
18197 EVT VT
= Arg
.getValueType();
18199 SDValue ThreeHalves
= DAG
.getConstantFP(1.5, DL
, VT
);
18201 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
18202 // this entire sequence requires only one FP constant.
18203 SDValue HalfArg
= DAG
.getNode(ISD::FMUL
, DL
, VT
, ThreeHalves
, Arg
, Flags
);
18204 AddToWorklist(HalfArg
.getNode());
18206 HalfArg
= DAG
.getNode(ISD::FSUB
, DL
, VT
, HalfArg
, Arg
, Flags
);
18207 AddToWorklist(HalfArg
.getNode());
18209 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
18210 for (unsigned i
= 0; i
< Iterations
; ++i
) {
18211 SDValue NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Est
, Flags
);
18212 AddToWorklist(NewEst
.getNode());
18214 NewEst
= DAG
.getNode(ISD::FMUL
, DL
, VT
, HalfArg
, NewEst
, Flags
);
18215 AddToWorklist(NewEst
.getNode());
18217 NewEst
= DAG
.getNode(ISD::FSUB
, DL
, VT
, ThreeHalves
, NewEst
, Flags
);
18218 AddToWorklist(NewEst
.getNode());
18220 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, NewEst
, Flags
);
18221 AddToWorklist(Est
.getNode());
18224 // If non-reciprocal square root is requested, multiply the result by Arg.
18226 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, Arg
, Flags
);
18227 AddToWorklist(Est
.getNode());
18233 /// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
18234 /// For the reciprocal sqrt, we need to find the zero of the function:
18235 /// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
18237 /// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
18238 SDValue
DAGCombiner::buildSqrtNRTwoConst(SDValue Arg
, SDValue Est
,
18239 unsigned Iterations
,
18240 SDNodeFlags Flags
, bool Reciprocal
) {
18241 EVT VT
= Arg
.getValueType();
18243 SDValue MinusThree
= DAG
.getConstantFP(-3.0, DL
, VT
);
18244 SDValue MinusHalf
= DAG
.getConstantFP(-0.5, DL
, VT
);
18246 // This routine must enter the loop below to work correctly
18247 // when (Reciprocal == false).
18248 assert(Iterations
> 0);
18250 // Newton iterations for reciprocal square root:
18251 // E = (E * -0.5) * ((A * E) * E + -3.0)
18252 for (unsigned i
= 0; i
< Iterations
; ++i
) {
18253 SDValue AE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
, Est
, Flags
);
18254 AddToWorklist(AE
.getNode());
18256 SDValue AEE
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, Est
, Flags
);
18257 AddToWorklist(AEE
.getNode());
18259 SDValue RHS
= DAG
.getNode(ISD::FADD
, DL
, VT
, AEE
, MinusThree
, Flags
);
18260 AddToWorklist(RHS
.getNode());
18262 // When calculating a square root at the last iteration build:
18263 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
18264 // (notice a common subexpression)
18266 if (Reciprocal
|| (i
+ 1) < Iterations
) {
18267 // RSQRT: LHS = (E * -0.5)
18268 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Est
, MinusHalf
, Flags
);
18270 // SQRT: LHS = (A * E) * -0.5
18271 LHS
= DAG
.getNode(ISD::FMUL
, DL
, VT
, AE
, MinusHalf
, Flags
);
18273 AddToWorklist(LHS
.getNode());
18275 Est
= DAG
.getNode(ISD::FMUL
, DL
, VT
, LHS
, RHS
, Flags
);
18276 AddToWorklist(Est
.getNode());
18282 /// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
18283 /// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
18284 /// Op can be zero.
18285 SDValue
DAGCombiner::buildSqrtEstimateImpl(SDValue Op
, SDNodeFlags Flags
,
18287 if (Level
>= AfterLegalizeDAG
)
18290 // TODO: Handle half and/or extended types?
18291 EVT VT
= Op
.getValueType();
18292 if (VT
.getScalarType() != MVT::f32
&& VT
.getScalarType() != MVT::f64
)
18295 // If estimates are explicitly disabled for this function, we're done.
18296 MachineFunction
&MF
= DAG
.getMachineFunction();
18297 int Enabled
= TLI
.getRecipEstimateSqrtEnabled(VT
, MF
);
18298 if (Enabled
== TLI
.ReciprocalEstimate::Disabled
)
18301 // Estimates may be explicitly enabled for this type with a custom number of
18302 // refinement steps.
18303 int Iterations
= TLI
.getSqrtRefinementSteps(VT
, MF
);
18305 bool UseOneConstNR
= false;
18307 TLI
.getSqrtEstimate(Op
, DAG
, Enabled
, Iterations
, UseOneConstNR
,
18309 AddToWorklist(Est
.getNode());
18312 Est
= UseOneConstNR
18313 ? buildSqrtNROneConst(Op
, Est
, Iterations
, Flags
, Reciprocal
)
18314 : buildSqrtNRTwoConst(Op
, Est
, Iterations
, Flags
, Reciprocal
);
18317 // The estimate is now completely wrong if the input was exactly 0.0 or
18318 // possibly a denormal. Force the answer to 0.0 for those cases.
18319 EVT VT
= Op
.getValueType();
18321 EVT CCVT
= getSetCCResultType(VT
);
18322 ISD::NodeType SelOpcode
= VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
;
18323 const Function
&F
= DAG
.getMachineFunction().getFunction();
18324 Attribute Denorms
= F
.getFnAttribute("denormal-fp-math");
18325 if (Denorms
.getValueAsString().equals("ieee")) {
18326 // fabs(X) < SmallestNormal ? 0.0 : Est
18327 const fltSemantics
&FltSem
= DAG
.EVTToAPFloatSemantics(VT
);
18328 APFloat SmallestNorm
= APFloat::getSmallestNormalized(FltSem
);
18329 SDValue NormC
= DAG
.getConstantFP(SmallestNorm
, DL
, VT
);
18330 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
18331 SDValue Fabs
= DAG
.getNode(ISD::FABS
, DL
, VT
, Op
);
18332 SDValue IsDenorm
= DAG
.getSetCC(DL
, CCVT
, Fabs
, NormC
, ISD::SETLT
);
18333 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsDenorm
, FPZero
, Est
);
18334 AddToWorklist(Fabs
.getNode());
18335 AddToWorklist(IsDenorm
.getNode());
18336 AddToWorklist(Est
.getNode());
18338 // X == 0.0 ? 0.0 : Est
18339 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
18340 SDValue IsZero
= DAG
.getSetCC(DL
, CCVT
, Op
, FPZero
, ISD::SETEQ
);
18341 Est
= DAG
.getNode(SelOpcode
, DL
, VT
, IsZero
, FPZero
, Est
);
18342 AddToWorklist(IsZero
.getNode());
18343 AddToWorklist(Est
.getNode());
18353 SDValue
DAGCombiner::buildRsqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
18354 return buildSqrtEstimateImpl(Op
, Flags
, true);
18357 SDValue
DAGCombiner::buildSqrtEstimate(SDValue Op
, SDNodeFlags Flags
) {
18358 return buildSqrtEstimateImpl(Op
, Flags
, false);
18361 /// Return true if there is any possibility that the two addresses overlap.
18362 bool DAGCombiner::isAlias(LSBaseSDNode
*Op0
, LSBaseSDNode
*Op1
) const {
18363 // If they are the same then they must be aliases.
18364 if (Op0
->getBasePtr() == Op1
->getBasePtr()) return true;
18366 // If they are both volatile then they cannot be reordered.
18367 if (Op0
->isVolatile() && Op1
->isVolatile()) return true;
18369 // If one operation reads from invariant memory, and the other may store, they
18370 // cannot alias. These should really be checking the equivalent of mayWrite,
18371 // but it only matters for memory nodes other than load /store.
18372 if (Op0
->isInvariant() && Op1
->writeMem())
18375 if (Op1
->isInvariant() && Op0
->writeMem())
18378 unsigned NumBytes0
= Op0
->getMemoryVT().getStoreSize();
18379 unsigned NumBytes1
= Op1
->getMemoryVT().getStoreSize();
18381 // Check for BaseIndexOffset matching.
18382 BaseIndexOffset BasePtr0
= BaseIndexOffset::match(Op0
, DAG
);
18383 BaseIndexOffset BasePtr1
= BaseIndexOffset::match(Op1
, DAG
);
18385 if (BasePtr0
.getBase().getNode() && BasePtr1
.getBase().getNode()) {
18386 if (BasePtr0
.equalBaseIndex(BasePtr1
, DAG
, PtrDiff
))
18387 return !((NumBytes0
<= PtrDiff
) || (PtrDiff
+ NumBytes1
<= 0));
18389 // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be
18390 // able to calculate their relative offset if at least one arises
18391 // from an alloca. However, these allocas cannot overlap and we
18392 // can infer there is no alias.
18393 if (auto *A
= dyn_cast
<FrameIndexSDNode
>(BasePtr0
.getBase()))
18394 if (auto *B
= dyn_cast
<FrameIndexSDNode
>(BasePtr1
.getBase())) {
18395 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
18396 // If the base are the same frame index but the we couldn't find a
18397 // constant offset, (indices are different) be conservative.
18398 if (A
!= B
&& (!MFI
.isFixedObjectIndex(A
->getIndex()) ||
18399 !MFI
.isFixedObjectIndex(B
->getIndex())))
18403 bool IsFI0
= isa
<FrameIndexSDNode
>(BasePtr0
.getBase());
18404 bool IsFI1
= isa
<FrameIndexSDNode
>(BasePtr1
.getBase());
18405 bool IsGV0
= isa
<GlobalAddressSDNode
>(BasePtr0
.getBase());
18406 bool IsGV1
= isa
<GlobalAddressSDNode
>(BasePtr1
.getBase());
18407 bool IsCV0
= isa
<ConstantPoolSDNode
>(BasePtr0
.getBase());
18408 bool IsCV1
= isa
<ConstantPoolSDNode
>(BasePtr1
.getBase());
18410 // If of mismatched base types or checkable indices we can check
18411 // they do not alias.
18412 if ((BasePtr0
.getIndex() == BasePtr1
.getIndex() || (IsFI0
!= IsFI1
) ||
18413 (IsGV0
!= IsGV1
) || (IsCV0
!= IsCV1
)) &&
18414 (IsFI0
|| IsGV0
|| IsCV0
) && (IsFI1
|| IsGV1
|| IsCV1
))
18418 // If we know required SrcValue1 and SrcValue2 have relatively large
18419 // alignment compared to the size and offset of the access, we may be able
18420 // to prove they do not alias. This check is conservative for now to catch
18421 // cases created by splitting vector types.
18422 int64_t SrcValOffset0
= Op0
->getSrcValueOffset();
18423 int64_t SrcValOffset1
= Op1
->getSrcValueOffset();
18424 unsigned OrigAlignment0
= Op0
->getOriginalAlignment();
18425 unsigned OrigAlignment1
= Op1
->getOriginalAlignment();
18426 if (OrigAlignment0
== OrigAlignment1
&& SrcValOffset0
!= SrcValOffset1
&&
18427 NumBytes0
== NumBytes1
&& OrigAlignment0
> NumBytes0
) {
18428 int64_t OffAlign0
= SrcValOffset0
% OrigAlignment0
;
18429 int64_t OffAlign1
= SrcValOffset1
% OrigAlignment1
;
18431 // There is no overlap between these relatively aligned accesses of
18432 // similar size. Return no alias.
18433 if ((OffAlign0
+ NumBytes0
) <= OffAlign1
||
18434 (OffAlign1
+ NumBytes1
) <= OffAlign0
)
18438 bool UseAA
= CombinerGlobalAA
.getNumOccurrences() > 0
18440 : DAG
.getSubtarget().useAA();
18442 if (CombinerAAOnlyFunc
.getNumOccurrences() &&
18443 CombinerAAOnlyFunc
!= DAG
.getMachineFunction().getName())
18448 Op0
->getMemOperand()->getValue() && Op1
->getMemOperand()->getValue()) {
18449 // Use alias analysis information.
18450 int64_t MinOffset
= std::min(SrcValOffset0
, SrcValOffset1
);
18451 int64_t Overlap0
= NumBytes0
+ SrcValOffset0
- MinOffset
;
18452 int64_t Overlap1
= NumBytes1
+ SrcValOffset1
- MinOffset
;
18453 AliasResult AAResult
=
18454 AA
->alias(MemoryLocation(Op0
->getMemOperand()->getValue(), Overlap0
,
18455 UseTBAA
? Op0
->getAAInfo() : AAMDNodes()),
18456 MemoryLocation(Op1
->getMemOperand()->getValue(), Overlap1
,
18457 UseTBAA
? Op1
->getAAInfo() : AAMDNodes()) );
18458 if (AAResult
== NoAlias
)
18462 // Otherwise we have to assume they alias.
18466 /// Walk up chain skipping non-aliasing memory nodes,
18467 /// looking for aliasing nodes and adding them to the Aliases vector.
18468 void DAGCombiner::GatherAllAliases(SDNode
*N
, SDValue OriginalChain
,
18469 SmallVectorImpl
<SDValue
> &Aliases
) {
18470 SmallVector
<SDValue
, 8> Chains
; // List of chains to visit.
18471 SmallPtrSet
<SDNode
*, 16> Visited
; // Visited node set.
18473 // Get alias information for node.
18474 bool IsLoad
= isa
<LoadSDNode
>(N
) && !cast
<LSBaseSDNode
>(N
)->isVolatile();
18477 Chains
.push_back(OriginalChain
);
18478 unsigned Depth
= 0;
18480 // Look at each chain and determine if it is an alias. If so, add it to the
18481 // aliases list. If not, then continue up the chain looking for the next
18483 while (!Chains
.empty()) {
18484 SDValue Chain
= Chains
.pop_back_val();
18486 // For TokenFactor nodes, look at each operand and only continue up the
18487 // chain until we reach the depth limit.
18489 // FIXME: The depth check could be made to return the last non-aliasing
18490 // chain we found before we hit a tokenfactor rather than the original
18492 if (Depth
> TLI
.getGatherAllAliasesMaxDepth()) {
18494 Aliases
.push_back(OriginalChain
);
18498 // Don't bother if we've been before.
18499 if (!Visited
.insert(Chain
.getNode()).second
)
18502 switch (Chain
.getOpcode()) {
18503 case ISD::EntryToken
:
18504 // Entry token is ideal chain operand, but handled in FindBetterChain.
18509 // Get alias information for Chain.
18510 bool IsOpLoad
= isa
<LoadSDNode
>(Chain
.getNode()) &&
18511 !cast
<LSBaseSDNode
>(Chain
.getNode())->isVolatile();
18513 // If chain is alias then stop here.
18514 if (!(IsLoad
&& IsOpLoad
) &&
18515 isAlias(cast
<LSBaseSDNode
>(N
), cast
<LSBaseSDNode
>(Chain
.getNode()))) {
18516 Aliases
.push_back(Chain
);
18518 // Look further up the chain.
18519 Chains
.push_back(Chain
.getOperand(0));
18525 case ISD::TokenFactor
:
18526 // We have to check each of the operands of the token factor for "small"
18527 // token factors, so we queue them up. Adding the operands to the queue
18528 // (stack) in reverse order maintains the original order and increases the
18529 // likelihood that getNode will find a matching token factor (CSE.)
18530 if (Chain
.getNumOperands() > 16) {
18531 Aliases
.push_back(Chain
);
18534 for (unsigned n
= Chain
.getNumOperands(); n
;)
18535 Chains
.push_back(Chain
.getOperand(--n
));
18539 case ISD::CopyFromReg
:
18540 // Forward past CopyFromReg.
18541 Chains
.push_back(Chain
.getOperand(0));
18546 // For all other instructions we will just have to take what we can get.
18547 Aliases
.push_back(Chain
);
18553 /// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
18554 /// (aliasing node.)
18555 SDValue
DAGCombiner::FindBetterChain(SDNode
*N
, SDValue OldChain
) {
18556 if (OptLevel
== CodeGenOpt::None
)
18559 // Ops for replacing token factor.
18560 SmallVector
<SDValue
, 8> Aliases
;
18562 // Accumulate all the aliases to this node.
18563 GatherAllAliases(N
, OldChain
, Aliases
);
18565 // If no operands then chain to entry token.
18566 if (Aliases
.size() == 0)
18567 return DAG
.getEntryNode();
18569 // If a single operand then chain to it. We don't need to revisit it.
18570 if (Aliases
.size() == 1)
18573 // Construct a custom tailored token factor.
18574 return DAG
.getNode(ISD::TokenFactor
, SDLoc(N
), MVT::Other
, Aliases
);
18577 // This function tries to collect a bunch of potentially interesting
18578 // nodes to improve the chains of, all at once. This might seem
18579 // redundant, as this function gets called when visiting every store
18580 // node, so why not let the work be done on each store as it's visited?
18582 // I believe this is mainly important because MergeConsecutiveStores
18583 // is unable to deal with merging stores of different sizes, so unless
18584 // we improve the chains of all the potential candidates up-front
18585 // before running MergeConsecutiveStores, it might only see some of
18586 // the nodes that will eventually be candidates, and then not be able
18587 // to go from a partially-merged state to the desired final
18588 // fully-merged state.
18589 bool DAGCombiner::findBetterNeighborChains(StoreSDNode
*St
) {
18590 if (OptLevel
== CodeGenOpt::None
)
18593 // This holds the base pointer, index, and the offset in bytes from the base
18595 BaseIndexOffset BasePtr
= BaseIndexOffset::match(St
, DAG
);
18597 // We must have a base and an offset.
18598 if (!BasePtr
.getBase().getNode())
18601 // Do not handle stores to undef base pointers.
18602 if (BasePtr
.getBase().isUndef())
18605 SmallVector
<StoreSDNode
*, 8> ChainedStores
;
18606 ChainedStores
.push_back(St
);
18608 // Walk up the chain and look for nodes with offsets from the same
18609 // base pointer. Stop when reaching an instruction with a different kind
18610 // or instruction which has a different base pointer.
18611 StoreSDNode
*Index
= St
;
18613 // If the chain has more than one use, then we can't reorder the mem ops.
18614 if (Index
!= St
&& !SDValue(Index
, 0)->hasOneUse())
18617 if (Index
->isVolatile() || Index
->isIndexed())
18620 // Find the base pointer and offset for this memory node.
18621 BaseIndexOffset Ptr
= BaseIndexOffset::match(Index
, DAG
);
18623 // Check that the base pointer is the same as the original one.
18624 if (!BasePtr
.equalBaseIndex(Ptr
, DAG
))
18627 // Walk up the chain to find the next store node, ignoring any
18628 // intermediate loads. Any other kind of node will halt the loop.
18629 SDNode
*NextInChain
= Index
->getChain().getNode();
18631 if (StoreSDNode
*STn
= dyn_cast
<StoreSDNode
>(NextInChain
)) {
18632 // We found a store node. Use it for the next iteration.
18633 if (STn
->isVolatile() || STn
->isIndexed()) {
18637 ChainedStores
.push_back(STn
);
18640 } else if (LoadSDNode
*Ldn
= dyn_cast
<LoadSDNode
>(NextInChain
)) {
18641 NextInChain
= Ldn
->getChain().getNode();
18650 // At this point, ChainedStores lists all of the Store nodes
18651 // reachable by iterating up through chain nodes matching the above
18652 // conditions. For each such store identified, try to find an
18653 // earlier chain to attach the store to which won't violate the
18654 // required ordering.
18655 bool MadeChangeToSt
= false;
18656 SmallVector
<std::pair
<StoreSDNode
*, SDValue
>, 8> BetterChains
;
18658 for (StoreSDNode
*ChainedStore
: ChainedStores
) {
18659 SDValue Chain
= ChainedStore
->getChain();
18660 SDValue BetterChain
= FindBetterChain(ChainedStore
, Chain
);
18662 if (Chain
!= BetterChain
) {
18663 if (ChainedStore
== St
)
18664 MadeChangeToSt
= true;
18665 BetterChains
.push_back(std::make_pair(ChainedStore
, BetterChain
));
18669 // Do all replacements after finding the replacements to make to avoid making
18670 // the chains more complicated by introducing new TokenFactors.
18671 for (auto Replacement
: BetterChains
)
18672 replaceStoreChain(Replacement
.first
, Replacement
.second
);
18674 return MadeChangeToSt
;
18677 /// This is the entry point for the file.
18678 void SelectionDAG::Combine(CombineLevel Level
, AliasAnalysis
*AA
,
18679 CodeGenOpt::Level OptLevel
) {
18680 /// This is the main entry point to this class.
18681 DAGCombiner(*this, AA
, OptLevel
).Run(Level
);