[AMDGPU] Check for immediate SrcC in mfma in AsmParser
[llvm-core.git] / lib / MCA / InstrBuilder.cpp
blobbd28c733535c6773126bdcf3e50c114b8e86e4ea
1 //===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the InstrBuilder interface.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "llvm/MCA/InstrBuilder.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/MC/MCInst.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/WithColor.h"
20 #include "llvm/Support/raw_ostream.h"
22 #define DEBUG_TYPE "llvm-mca"
24 namespace llvm {
25 namespace mca {
27 InstrBuilder::InstrBuilder(const llvm::MCSubtargetInfo &sti,
28 const llvm::MCInstrInfo &mcii,
29 const llvm::MCRegisterInfo &mri,
30 const llvm::MCInstrAnalysis *mcia)
31 : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), FirstCallInst(true),
32 FirstReturnInst(true) {
33 const MCSchedModel &SM = STI.getSchedModel();
34 ProcResourceMasks.resize(SM.getNumProcResourceKinds());
35 computeProcResourceMasks(STI.getSchedModel(), ProcResourceMasks);
38 static void initializeUsedResources(InstrDesc &ID,
39 const MCSchedClassDesc &SCDesc,
40 const MCSubtargetInfo &STI,
41 ArrayRef<uint64_t> ProcResourceMasks) {
42 const MCSchedModel &SM = STI.getSchedModel();
44 // Populate resources consumed.
45 using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
46 std::vector<ResourcePlusCycles> Worklist;
48 // Track cycles contributed by resources that are in a "Super" relationship.
49 // This is required if we want to correctly match the behavior of method
50 // SubtargetEmitter::ExpandProcResource() in Tablegen. When computing the set
51 // of "consumed" processor resources and resource cycles, the logic in
52 // ExpandProcResource() doesn't update the number of resource cycles
53 // contributed by a "Super" resource to a group.
54 // We need to take this into account when we find that a processor resource is
55 // part of a group, and it is also used as the "Super" of other resources.
56 // This map stores the number of cycles contributed by sub-resources that are
57 // part of a "Super" resource. The key value is the "Super" resource mask ID.
58 DenseMap<uint64_t, unsigned> SuperResources;
60 unsigned NumProcResources = SM.getNumProcResourceKinds();
61 APInt Buffers(NumProcResources, 0);
63 bool AllInOrderResources = true;
64 bool AnyDispatchHazards = false;
65 for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
66 const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
67 const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
68 if (!PRE->Cycles) {
69 #ifndef NDEBUG
70 WithColor::warning()
71 << "Ignoring invalid write of zero cycles on processor resource "
72 << PR.Name << "\n";
73 WithColor::note() << "found in scheduling class " << SCDesc.Name
74 << " (write index #" << I << ")\n";
75 #endif
76 continue;
79 uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
80 if (PR.BufferSize < 0) {
81 AllInOrderResources = false;
82 } else {
83 Buffers.setBit(getResourceStateIndex(Mask));
84 AnyDispatchHazards |= (PR.BufferSize == 0);
85 AllInOrderResources &= (PR.BufferSize <= 1);
88 CycleSegment RCy(0, PRE->Cycles, false);
89 Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
90 if (PR.SuperIdx) {
91 uint64_t Super = ProcResourceMasks[PR.SuperIdx];
92 SuperResources[Super] += PRE->Cycles;
96 ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
98 // Sort elements by mask popcount, so that we prioritize resource units over
99 // resource groups, and smaller groups over larger groups.
100 sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
101 unsigned popcntA = countPopulation(A.first);
102 unsigned popcntB = countPopulation(B.first);
103 if (popcntA < popcntB)
104 return true;
105 if (popcntA > popcntB)
106 return false;
107 return A.first < B.first;
110 uint64_t UsedResourceUnits = 0;
111 uint64_t UsedResourceGroups = 0;
113 // Remove cycles contributed by smaller resources.
114 for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
115 ResourcePlusCycles &A = Worklist[I];
116 if (!A.second.size()) {
117 assert(countPopulation(A.first) > 1 && "Expected a group!");
118 UsedResourceGroups |= PowerOf2Floor(A.first);
119 continue;
122 ID.Resources.emplace_back(A);
123 uint64_t NormalizedMask = A.first;
124 if (countPopulation(A.first) == 1) {
125 UsedResourceUnits |= A.first;
126 } else {
127 // Remove the leading 1 from the resource group mask.
128 NormalizedMask ^= PowerOf2Floor(NormalizedMask);
129 UsedResourceGroups |= (A.first ^ NormalizedMask);
132 for (unsigned J = I + 1; J < E; ++J) {
133 ResourcePlusCycles &B = Worklist[J];
134 if ((NormalizedMask & B.first) == NormalizedMask) {
135 B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
136 if (countPopulation(B.first) > 1)
137 B.second.NumUnits++;
142 // A SchedWrite may specify a number of cycles in which a resource group
143 // is reserved. For example (on target x86; cpu Haswell):
145 // SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
146 // let ResourceCycles = [2, 2, 3];
147 // }
149 // This means:
150 // Resource units HWPort0 and HWPort1 are both used for 2cy.
151 // Resource group HWPort01 is the union of HWPort0 and HWPort1.
152 // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
153 // will not be usable for 2 entire cycles from instruction issue.
155 // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
156 // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
157 // extra delay on top of the 2 cycles latency.
158 // During those extra cycles, HWPort01 is not usable by other instructions.
159 for (ResourcePlusCycles &RPC : ID.Resources) {
160 if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
161 // Remove the leading 1 from the resource group mask.
162 uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
163 if ((Mask & UsedResourceUnits) == Mask)
164 RPC.second.setReserved();
168 // Identify extra buffers that are consumed through super resources.
169 for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
170 for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
171 const MCProcResourceDesc &PR = *SM.getProcResource(I);
172 if (PR.BufferSize == -1)
173 continue;
175 uint64_t Mask = ProcResourceMasks[I];
176 if (Mask != SR.first && ((Mask & SR.first) == SR.first))
177 Buffers.setBit(getResourceStateIndex(Mask));
181 ID.UsedBuffers = Buffers.getZExtValue();
182 ID.UsedProcResUnits = UsedResourceUnits;
183 ID.UsedProcResGroups = UsedResourceGroups;
185 LLVM_DEBUG({
186 for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
187 dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
188 << "Reserved=" << R.second.isReserved() << ", "
189 << "#Units=" << R.second.NumUnits << ", "
190 << "cy=" << R.second.size() << '\n';
191 uint64_t BufferIDs = ID.UsedBuffers;
192 while (BufferIDs) {
193 uint64_t Current = BufferIDs & (-BufferIDs);
194 dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
195 BufferIDs ^= Current;
197 dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
198 dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
199 << '\n';
203 static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
204 const MCSchedClassDesc &SCDesc,
205 const MCSubtargetInfo &STI) {
206 if (MCDesc.isCall()) {
207 // We cannot estimate how long this call will take.
208 // Artificially set an arbitrarily high latency (100cy).
209 ID.MaxLatency = 100U;
210 return;
213 int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
214 // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
215 ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
218 static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI) {
219 // Count register definitions, and skip non register operands in the process.
220 unsigned I, E;
221 unsigned NumExplicitDefs = MCDesc.getNumDefs();
222 for (I = 0, E = MCI.getNumOperands(); NumExplicitDefs && I < E; ++I) {
223 const MCOperand &Op = MCI.getOperand(I);
224 if (Op.isReg())
225 --NumExplicitDefs;
228 if (NumExplicitDefs) {
229 return make_error<InstructionError<MCInst>>(
230 "Expected more register operand definitions.", MCI);
233 if (MCDesc.hasOptionalDef()) {
234 // Always assume that the optional definition is the last operand.
235 const MCOperand &Op = MCI.getOperand(MCDesc.getNumOperands() - 1);
236 if (I == MCI.getNumOperands() || !Op.isReg()) {
237 std::string Message =
238 "expected a register operand for an optional definition. Instruction "
239 "has not been correctly analyzed.";
240 return make_error<InstructionError<MCInst>>(Message, MCI);
244 return ErrorSuccess();
247 void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
248 unsigned SchedClassID) {
249 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
250 const MCSchedModel &SM = STI.getSchedModel();
251 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
253 // Assumptions made by this algorithm:
254 // 1. The number of explicit and implicit register definitions in a MCInst
255 // matches the number of explicit and implicit definitions according to
256 // the opcode descriptor (MCInstrDesc).
257 // 2. Uses start at index #(MCDesc.getNumDefs()).
258 // 3. There can only be a single optional register definition, an it is
259 // always the last operand of the sequence (excluding extra operands
260 // contributed by variadic opcodes).
262 // These assumptions work quite well for most out-of-order in-tree targets
263 // like x86. This is mainly because the vast majority of instructions is
264 // expanded to MCInst using a straightforward lowering logic that preserves
265 // the ordering of the operands.
267 // About assumption 1.
268 // The algorithm allows non-register operands between register operand
269 // definitions. This helps to handle some special ARM instructions with
270 // implicit operand increment (-mtriple=armv7):
272 // vld1.32 {d18, d19}, [r1]! @ <MCInst #1463 VLD1q32wb_fixed
273 // @ <MCOperand Reg:59>
274 // @ <MCOperand Imm:0> (!!)
275 // @ <MCOperand Reg:67>
276 // @ <MCOperand Imm:0>
277 // @ <MCOperand Imm:14>
278 // @ <MCOperand Reg:0>>
280 // MCDesc reports:
281 // 6 explicit operands.
282 // 1 optional definition
283 // 2 explicit definitions (!!)
285 // The presence of an 'Imm' operand between the two register definitions
286 // breaks the assumption that "register definitions are always at the
287 // beginning of the operand sequence".
289 // To workaround this issue, this algorithm ignores (i.e. skips) any
290 // non-register operands between register definitions. The optional
291 // definition is still at index #(NumOperands-1).
293 // According to assumption 2. register reads start at #(NumExplicitDefs-1).
294 // That means, register R1 from the example is both read and written.
295 unsigned NumExplicitDefs = MCDesc.getNumDefs();
296 unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
297 unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
298 unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
299 if (MCDesc.hasOptionalDef())
300 TotalDefs++;
302 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
303 ID.Writes.resize(TotalDefs + NumVariadicOps);
304 // Iterate over the operands list, and skip non-register operands.
305 // The first NumExplictDefs register operands are expected to be register
306 // definitions.
307 unsigned CurrentDef = 0;
308 unsigned i = 0;
309 for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
310 const MCOperand &Op = MCI.getOperand(i);
311 if (!Op.isReg())
312 continue;
314 WriteDescriptor &Write = ID.Writes[CurrentDef];
315 Write.OpIndex = i;
316 if (CurrentDef < NumWriteLatencyEntries) {
317 const MCWriteLatencyEntry &WLE =
318 *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
319 // Conservatively default to MaxLatency.
320 Write.Latency =
321 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
322 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
323 } else {
324 // Assign a default latency for this write.
325 Write.Latency = ID.MaxLatency;
326 Write.SClassOrWriteResourceID = 0;
328 Write.IsOptionalDef = false;
329 LLVM_DEBUG({
330 dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
331 << ", Latency=" << Write.Latency
332 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
334 CurrentDef++;
337 assert(CurrentDef == NumExplicitDefs &&
338 "Expected more register operand definitions.");
339 for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
340 unsigned Index = NumExplicitDefs + CurrentDef;
341 WriteDescriptor &Write = ID.Writes[Index];
342 Write.OpIndex = ~CurrentDef;
343 Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
344 if (Index < NumWriteLatencyEntries) {
345 const MCWriteLatencyEntry &WLE =
346 *STI.getWriteLatencyEntry(&SCDesc, Index);
347 // Conservatively default to MaxLatency.
348 Write.Latency =
349 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
350 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
351 } else {
352 // Assign a default latency for this write.
353 Write.Latency = ID.MaxLatency;
354 Write.SClassOrWriteResourceID = 0;
357 Write.IsOptionalDef = false;
358 assert(Write.RegisterID != 0 && "Expected a valid phys register!");
359 LLVM_DEBUG({
360 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
361 << ", PhysReg=" << MRI.getName(Write.RegisterID)
362 << ", Latency=" << Write.Latency
363 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
367 if (MCDesc.hasOptionalDef()) {
368 WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
369 Write.OpIndex = MCDesc.getNumOperands() - 1;
370 // Assign a default latency for this write.
371 Write.Latency = ID.MaxLatency;
372 Write.SClassOrWriteResourceID = 0;
373 Write.IsOptionalDef = true;
374 LLVM_DEBUG({
375 dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
376 << ", Latency=" << Write.Latency
377 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
381 if (!NumVariadicOps)
382 return;
384 // FIXME: if an instruction opcode is flagged 'mayStore', and it has no
385 // "unmodeledSideEffects', then this logic optimistically assumes that any
386 // extra register operands in the variadic sequence is not a register
387 // definition.
389 // Otherwise, we conservatively assume that any register operand from the
390 // variadic sequence is both a register read and a register write.
391 bool AssumeUsesOnly = MCDesc.mayStore() && !MCDesc.mayLoad() &&
392 !MCDesc.hasUnmodeledSideEffects();
393 CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
394 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
395 I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
396 const MCOperand &Op = MCI.getOperand(OpIndex);
397 if (!Op.isReg())
398 continue;
400 WriteDescriptor &Write = ID.Writes[CurrentDef];
401 Write.OpIndex = OpIndex;
402 // Assign a default latency for this write.
403 Write.Latency = ID.MaxLatency;
404 Write.SClassOrWriteResourceID = 0;
405 Write.IsOptionalDef = false;
406 ++CurrentDef;
407 LLVM_DEBUG({
408 dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
409 << ", Latency=" << Write.Latency
410 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
414 ID.Writes.resize(CurrentDef);
417 void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
418 unsigned SchedClassID) {
419 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
420 unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
421 unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
422 // Remove the optional definition.
423 if (MCDesc.hasOptionalDef())
424 --NumExplicitUses;
425 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
426 unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
427 ID.Reads.resize(TotalUses);
428 unsigned CurrentUse = 0;
429 for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
430 ++I, ++OpIndex) {
431 const MCOperand &Op = MCI.getOperand(OpIndex);
432 if (!Op.isReg())
433 continue;
435 ReadDescriptor &Read = ID.Reads[CurrentUse];
436 Read.OpIndex = OpIndex;
437 Read.UseIndex = I;
438 Read.SchedClassID = SchedClassID;
439 ++CurrentUse;
440 LLVM_DEBUG(dbgs() << "\t\t[Use] OpIdx=" << Read.OpIndex
441 << ", UseIndex=" << Read.UseIndex << '\n');
444 // For the purpose of ReadAdvance, implicit uses come directly after explicit
445 // uses. The "UseIndex" must be updated according to that implicit layout.
446 for (unsigned I = 0; I < NumImplicitUses; ++I) {
447 ReadDescriptor &Read = ID.Reads[CurrentUse + I];
448 Read.OpIndex = ~I;
449 Read.UseIndex = NumExplicitUses + I;
450 Read.RegisterID = MCDesc.getImplicitUses()[I];
451 Read.SchedClassID = SchedClassID;
452 LLVM_DEBUG(dbgs() << "\t\t[Use][I] OpIdx=" << ~Read.OpIndex
453 << ", UseIndex=" << Read.UseIndex << ", RegisterID="
454 << MRI.getName(Read.RegisterID) << '\n');
457 CurrentUse += NumImplicitUses;
459 // FIXME: If an instruction opcode is marked as 'mayLoad', and it has no
460 // "unmodeledSideEffects", then this logic optimistically assumes that any
461 // extra register operand in the variadic sequence is not a register
462 // definition.
463 bool AssumeDefsOnly = !MCDesc.mayStore() && MCDesc.mayLoad() &&
464 !MCDesc.hasUnmodeledSideEffects();
465 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
466 I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
467 const MCOperand &Op = MCI.getOperand(OpIndex);
468 if (!Op.isReg())
469 continue;
471 ReadDescriptor &Read = ID.Reads[CurrentUse];
472 Read.OpIndex = OpIndex;
473 Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
474 Read.SchedClassID = SchedClassID;
475 ++CurrentUse;
476 LLVM_DEBUG(dbgs() << "\t\t[Use][V] OpIdx=" << Read.OpIndex
477 << ", UseIndex=" << Read.UseIndex << '\n');
480 ID.Reads.resize(CurrentUse);
483 Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
484 const MCInst &MCI) const {
485 if (ID.NumMicroOps != 0)
486 return ErrorSuccess();
488 bool UsesMemory = ID.MayLoad || ID.MayStore;
489 bool UsesBuffers = ID.UsedBuffers;
490 bool UsesResources = !ID.Resources.empty();
491 if (!UsesMemory && !UsesBuffers && !UsesResources)
492 return ErrorSuccess();
494 StringRef Message;
495 if (UsesMemory) {
496 Message = "found an inconsistent instruction that decodes "
497 "into zero opcodes and that consumes load/store "
498 "unit resources.";
499 } else {
500 Message = "found an inconsistent instruction that decodes "
501 "to zero opcodes and that consumes scheduler "
502 "resources.";
505 return make_error<InstructionError<MCInst>>(Message, MCI);
508 Expected<const InstrDesc &>
509 InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
510 assert(STI.getSchedModel().hasInstrSchedModel() &&
511 "Itineraries are not yet supported!");
513 // Obtain the instruction descriptor from the opcode.
514 unsigned short Opcode = MCI.getOpcode();
515 const MCInstrDesc &MCDesc = MCII.get(Opcode);
516 const MCSchedModel &SM = STI.getSchedModel();
518 // Then obtain the scheduling class information from the instruction.
519 unsigned SchedClassID = MCDesc.getSchedClass();
520 bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
522 // Try to solve variant scheduling classes.
523 if (IsVariant) {
524 unsigned CPUID = SM.getProcessorID();
525 while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
526 SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &MCI, CPUID);
528 if (!SchedClassID) {
529 return make_error<InstructionError<MCInst>>(
530 "unable to resolve scheduling class for write variant.", MCI);
534 // Check if this instruction is supported. Otherwise, report an error.
535 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
536 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
537 return make_error<InstructionError<MCInst>>(
538 "found an unsupported instruction in the input assembly sequence.",
539 MCI);
542 LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
543 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
545 // Create a new empty descriptor.
546 std::unique_ptr<InstrDesc> ID = std::make_unique<InstrDesc>();
547 ID->NumMicroOps = SCDesc.NumMicroOps;
548 ID->SchedClassID = SchedClassID;
550 if (MCDesc.isCall() && FirstCallInst) {
551 // We don't correctly model calls.
552 WithColor::warning() << "found a call in the input assembly sequence.\n";
553 WithColor::note() << "call instructions are not correctly modeled. "
554 << "Assume a latency of 100cy.\n";
555 FirstCallInst = false;
558 if (MCDesc.isReturn() && FirstReturnInst) {
559 WithColor::warning() << "found a return instruction in the input"
560 << " assembly sequence.\n";
561 WithColor::note() << "program counter updates are ignored.\n";
562 FirstReturnInst = false;
565 ID->MayLoad = MCDesc.mayLoad();
566 ID->MayStore = MCDesc.mayStore();
567 ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();
568 ID->BeginGroup = SCDesc.BeginGroup;
569 ID->EndGroup = SCDesc.EndGroup;
571 initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
572 computeMaxLatency(*ID, MCDesc, SCDesc, STI);
574 if (Error Err = verifyOperands(MCDesc, MCI))
575 return std::move(Err);
577 populateWrites(*ID, MCI, SchedClassID);
578 populateReads(*ID, MCI, SchedClassID);
580 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
581 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
583 // Sanity check on the instruction descriptor.
584 if (Error Err = verifyInstrDesc(*ID, MCI))
585 return std::move(Err);
587 // Now add the new descriptor.
588 bool IsVariadic = MCDesc.isVariadic();
589 if (!IsVariadic && !IsVariant) {
590 Descriptors[MCI.getOpcode()] = std::move(ID);
591 return *Descriptors[MCI.getOpcode()];
594 VariantDescriptors[&MCI] = std::move(ID);
595 return *VariantDescriptors[&MCI];
598 Expected<const InstrDesc &>
599 InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
600 if (Descriptors.find_as(MCI.getOpcode()) != Descriptors.end())
601 return *Descriptors[MCI.getOpcode()];
603 if (VariantDescriptors.find(&MCI) != VariantDescriptors.end())
604 return *VariantDescriptors[&MCI];
606 return createInstrDescImpl(MCI);
609 Expected<std::unique_ptr<Instruction>>
610 InstrBuilder::createInstruction(const MCInst &MCI) {
611 Expected<const InstrDesc &> DescOrErr = getOrCreateInstrDesc(MCI);
612 if (!DescOrErr)
613 return DescOrErr.takeError();
614 const InstrDesc &D = *DescOrErr;
615 std::unique_ptr<Instruction> NewIS = std::make_unique<Instruction>(D);
617 // Check if this is a dependency breaking instruction.
618 APInt Mask;
620 bool IsZeroIdiom = false;
621 bool IsDepBreaking = false;
622 if (MCIA) {
623 unsigned ProcID = STI.getSchedModel().getProcessorID();
624 IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
625 IsDepBreaking =
626 IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
627 if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
628 NewIS->setOptimizableMove();
631 // Initialize Reads first.
632 MCPhysReg RegID = 0;
633 for (const ReadDescriptor &RD : D.Reads) {
634 if (!RD.isImplicitRead()) {
635 // explicit read.
636 const MCOperand &Op = MCI.getOperand(RD.OpIndex);
637 // Skip non-register operands.
638 if (!Op.isReg())
639 continue;
640 RegID = Op.getReg();
641 } else {
642 // Implicit read.
643 RegID = RD.RegisterID;
646 // Skip invalid register operands.
647 if (!RegID)
648 continue;
650 // Okay, this is a register operand. Create a ReadState for it.
651 NewIS->getUses().emplace_back(RD, RegID);
652 ReadState &RS = NewIS->getUses().back();
654 if (IsDepBreaking) {
655 // A mask of all zeroes means: explicit input operands are not
656 // independent.
657 if (Mask.isNullValue()) {
658 if (!RD.isImplicitRead())
659 RS.setIndependentFromDef();
660 } else {
661 // Check if this register operand is independent according to `Mask`.
662 // Note that Mask may not have enough bits to describe all explicit and
663 // implicit input operands. If this register operand doesn't have a
664 // corresponding bit in Mask, then conservatively assume that it is
665 // dependent.
666 if (Mask.getBitWidth() > RD.UseIndex) {
667 // Okay. This map describe register use `RD.UseIndex`.
668 if (Mask[RD.UseIndex])
669 RS.setIndependentFromDef();
675 // Early exit if there are no writes.
676 if (D.Writes.empty())
677 return std::move(NewIS);
679 // Track register writes that implicitly clear the upper portion of the
680 // underlying super-registers using an APInt.
681 APInt WriteMask(D.Writes.size(), 0);
683 // Now query the MCInstrAnalysis object to obtain information about which
684 // register writes implicitly clear the upper portion of a super-register.
685 if (MCIA)
686 MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
688 // Initialize writes.
689 unsigned WriteIndex = 0;
690 for (const WriteDescriptor &WD : D.Writes) {
691 RegID = WD.isImplicitWrite() ? WD.RegisterID
692 : MCI.getOperand(WD.OpIndex).getReg();
693 // Check if this is a optional definition that references NoReg.
694 if (WD.IsOptionalDef && !RegID) {
695 ++WriteIndex;
696 continue;
699 assert(RegID && "Expected a valid register ID!");
700 NewIS->getDefs().emplace_back(WD, RegID,
701 /* ClearsSuperRegs */ WriteMask[WriteIndex],
702 /* WritesZero */ IsZeroIdiom);
703 ++WriteIndex;
706 return std::move(NewIS);
708 } // namespace mca
709 } // namespace llvm