1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
68 #define DEBUG_TYPE "arm-instrinfo"
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden
,
75 cl::desc("Enable ARM 2-addr to 3-addr conv"));
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
79 uint16_t MLxOpc
; // MLA / MLS opcode
80 uint16_t MulOpc
; // Expanded multiplication opcode
81 uint16_t AddSubOpc
; // Expanded add / sub opcode
82 bool NegAcc
; // True if the acc is negated before the add / sub.
83 bool HasLane
; // True if instruction has an extra "lane" operand.
86 static const ARM_MLxEntry ARM_MLxTable
[] = {
87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
89 { ARM::VMLAS
, ARM::VMULS
, ARM::VADDS
, false, false },
90 { ARM::VMLSS
, ARM::VMULS
, ARM::VSUBS
, false, false },
91 { ARM::VMLAD
, ARM::VMULD
, ARM::VADDD
, false, false },
92 { ARM::VMLSD
, ARM::VMULD
, ARM::VSUBD
, false, false },
93 { ARM::VNMLAS
, ARM::VNMULS
, ARM::VSUBS
, true, false },
94 { ARM::VNMLSS
, ARM::VMULS
, ARM::VSUBS
, true, false },
95 { ARM::VNMLAD
, ARM::VNMULD
, ARM::VSUBD
, true, false },
96 { ARM::VNMLSD
, ARM::VMULD
, ARM::VSUBD
, true, false },
99 { ARM::VMLAfd
, ARM::VMULfd
, ARM::VADDfd
, false, false },
100 { ARM::VMLSfd
, ARM::VMULfd
, ARM::VSUBfd
, false, false },
101 { ARM::VMLAfq
, ARM::VMULfq
, ARM::VADDfq
, false, false },
102 { ARM::VMLSfq
, ARM::VMULfq
, ARM::VSUBfq
, false, false },
103 { ARM::VMLAslfd
, ARM::VMULslfd
, ARM::VADDfd
, false, true },
104 { ARM::VMLSslfd
, ARM::VMULslfd
, ARM::VSUBfd
, false, true },
105 { ARM::VMLAslfq
, ARM::VMULslfq
, ARM::VADDfq
, false, true },
106 { ARM::VMLSslfq
, ARM::VMULslfq
, ARM::VSUBfq
, false, true },
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget
& STI
)
110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN
, ARM::ADJCALLSTACKUP
),
112 for (unsigned i
= 0, e
= array_lengthof(ARM_MLxTable
); i
!= e
; ++i
) {
113 if (!MLxEntryMap
.insert(std::make_pair(ARM_MLxTable
[i
].MLxOpc
, i
)).second
)
114 llvm_unreachable("Duplicated entries?");
115 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].AddSubOpc
);
116 MLxHazardOpcodes
.insert(ARM_MLxTable
[i
].MulOpc
);
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer
*
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
124 const ScheduleDAG
*DAG
) const {
125 if (usePreRAHazardRecognizer()) {
126 const InstrItineraryData
*II
=
127 static_cast<const ARMSubtarget
*>(STI
)->getInstrItineraryData();
128 return new ScoreboardHazardRecognizer(II
, DAG
, "pre-RA-sched");
130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI
, DAG
);
133 ScheduleHazardRecognizer
*ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
135 const ScheduleDAG
*DAG
) const {
136 if (Subtarget
.isThumb2() || Subtarget
.hasVFP2Base())
137 return (ScheduleHazardRecognizer
*)new ARMHazardRecognizer(II
, DAG
);
138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II
, DAG
);
141 MachineInstr
*ARMBaseInstrInfo::convertToThreeAddress(
142 MachineFunction::iterator
&MFI
, MachineInstr
&MI
, LiveVariables
*LV
) const {
143 // FIXME: Thumb2 support.
148 MachineFunction
&MF
= *MI
.getParent()->getParent();
149 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
151 switch ((TSFlags
& ARMII::IndexModeMask
) >> ARMII::IndexModeShift
) {
152 default: return nullptr;
153 case ARMII::IndexModePre
:
156 case ARMII::IndexModePost
:
160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
162 unsigned MemOpc
= getUnindexedOpcode(MI
.getOpcode());
166 MachineInstr
*UpdateMI
= nullptr;
167 MachineInstr
*MemMI
= nullptr;
168 unsigned AddrMode
= (TSFlags
& ARMII::AddrModeMask
);
169 const MCInstrDesc
&MCID
= MI
.getDesc();
170 unsigned NumOps
= MCID
.getNumOperands();
171 bool isLoad
= !MI
.mayStore();
172 const MachineOperand
&WB
= isLoad
? MI
.getOperand(1) : MI
.getOperand(0);
173 const MachineOperand
&Base
= MI
.getOperand(2);
174 const MachineOperand
&Offset
= MI
.getOperand(NumOps
- 3);
175 Register WBReg
= WB
.getReg();
176 Register BaseReg
= Base
.getReg();
177 Register OffReg
= Offset
.getReg();
178 unsigned OffImm
= MI
.getOperand(NumOps
- 2).getImm();
179 ARMCC::CondCodes Pred
= (ARMCC::CondCodes
)MI
.getOperand(NumOps
- 1).getImm();
181 default: llvm_unreachable("Unknown indexed op!");
182 case ARMII::AddrMode2
: {
183 bool isSub
= ARM_AM::getAM2Op(OffImm
) == ARM_AM::sub
;
184 unsigned Amt
= ARM_AM::getAM2Offset(OffImm
);
186 if (ARM_AM::getSOImmVal(Amt
) == -1)
187 // Can't encode it in a so_imm operand. This transformation will
188 // add more than 1 instruction. Abandon!
190 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
191 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
196 } else if (Amt
!= 0) {
197 ARM_AM::ShiftOpc ShOpc
= ARM_AM::getAM2ShiftOpc(OffImm
);
198 unsigned SOOpc
= ARM_AM::getSORegOpc(ShOpc
, Amt
);
199 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
200 get(isSub
? ARM::SUBrsi
: ARM::ADDrsi
), WBReg
)
208 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
209 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
216 case ARMII::AddrMode3
: {
217 bool isSub
= ARM_AM::getAM3Op(OffImm
) == ARM_AM::sub
;
218 unsigned Amt
= ARM_AM::getAM3Offset(OffImm
);
220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
222 get(isSub
? ARM::SUBri
: ARM::ADDri
), WBReg
)
228 UpdateMI
= BuildMI(MF
, MI
.getDebugLoc(),
229 get(isSub
? ARM::SUBrr
: ARM::ADDrr
), WBReg
)
238 std::vector
<MachineInstr
*> NewMIs
;
242 BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
), MI
.getOperand(0).getReg())
247 MemMI
= BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
))
248 .addReg(MI
.getOperand(1).getReg())
253 NewMIs
.push_back(MemMI
);
254 NewMIs
.push_back(UpdateMI
);
258 BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
), MI
.getOperand(0).getReg())
263 MemMI
= BuildMI(MF
, MI
.getDebugLoc(), get(MemOpc
))
264 .addReg(MI
.getOperand(1).getReg())
270 UpdateMI
->getOperand(0).setIsDead();
271 NewMIs
.push_back(UpdateMI
);
272 NewMIs
.push_back(MemMI
);
275 // Transfer LiveVariables states, kill / dead info.
277 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
278 MachineOperand
&MO
= MI
.getOperand(i
);
279 if (MO
.isReg() && Register::isVirtualRegister(MO
.getReg())) {
280 Register Reg
= MO
.getReg();
282 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(Reg
);
284 MachineInstr
*NewMI
= (Reg
== WBReg
) ? UpdateMI
: MemMI
;
286 LV
->addVirtualRegisterDead(Reg
, *NewMI
);
288 if (MO
.isUse() && MO
.isKill()) {
289 for (unsigned j
= 0; j
< 2; ++j
) {
290 // Look at the two new MI's in reverse order.
291 MachineInstr
*NewMI
= NewMIs
[j
];
292 if (!NewMI
->readsRegister(Reg
))
294 LV
->addVirtualRegisterKilled(Reg
, *NewMI
);
295 if (VI
.removeKill(MI
))
296 VI
.Kills
.push_back(NewMI
);
304 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
305 MFI
->insert(MBBI
, NewMIs
[1]);
306 MFI
->insert(MBBI
, NewMIs
[0]);
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
312 MachineBasicBlock
*&TBB
,
313 MachineBasicBlock
*&FBB
,
314 SmallVectorImpl
<MachineOperand
> &Cond
,
315 bool AllowModify
) const {
319 MachineBasicBlock::iterator I
= MBB
.end();
320 if (I
== MBB
.begin())
321 return false; // Empty blocks are easy.
324 // Walk backwards from the end of the basic block until the branch is
325 // analyzed or we give up.
326 while (isPredicated(*I
) || I
->isTerminator() || I
->isDebugValue()) {
327 // Flag to be raised on unanalyzeable instructions. This is useful in cases
328 // where we want to clean up on the end of the basic block before we bail
330 bool CantAnalyze
= false;
332 // Skip over DEBUG values and predicated nonterminators.
333 while (I
->isDebugInstr() || !I
->isTerminator()) {
334 if (I
== MBB
.begin())
339 if (isIndirectBranchOpcode(I
->getOpcode()) ||
340 isJumpTableBranchOpcode(I
->getOpcode())) {
341 // Indirect branches and jump tables can't be analyzed, but we still want
342 // to clean up any instructions at the tail of the basic block.
344 } else if (isUncondBranchOpcode(I
->getOpcode())) {
345 TBB
= I
->getOperand(0).getMBB();
346 } else if (isCondBranchOpcode(I
->getOpcode())) {
347 // Bail out if we encounter multiple conditional branches.
351 assert(!FBB
&& "FBB should have been null.");
353 TBB
= I
->getOperand(0).getMBB();
354 Cond
.push_back(I
->getOperand(1));
355 Cond
.push_back(I
->getOperand(2));
356 } else if (I
->isReturn()) {
357 // Returns can't be analyzed, but we should run cleanup.
358 CantAnalyze
= !isPredicated(*I
);
360 // We encountered other unrecognized terminator. Bail out immediately.
364 // Cleanup code - to be run for unpredicated unconditional branches and
366 if (!isPredicated(*I
) &&
367 (isUncondBranchOpcode(I
->getOpcode()) ||
368 isIndirectBranchOpcode(I
->getOpcode()) ||
369 isJumpTableBranchOpcode(I
->getOpcode()) ||
371 // Forget any previous condition branch information - it no longer applies.
375 // If we can modify the function, delete everything below this
376 // unconditional branch.
378 MachineBasicBlock::iterator DI
= std::next(I
);
379 while (DI
!= MBB
.end()) {
380 MachineInstr
&InstToDelete
= *DI
;
382 InstToDelete
.eraseFromParent();
390 if (I
== MBB
.begin())
396 // We made it past the terminators without bailing out - we must have
397 // analyzed this branch successfully.
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock
&MBB
,
402 int *BytesRemoved
) const {
403 assert(!BytesRemoved
&& "code size not handled");
405 MachineBasicBlock::iterator I
= MBB
.getLastNonDebugInstr();
409 if (!isUncondBranchOpcode(I
->getOpcode()) &&
410 !isCondBranchOpcode(I
->getOpcode()))
413 // Remove the branch.
414 I
->eraseFromParent();
418 if (I
== MBB
.begin()) return 1;
420 if (!isCondBranchOpcode(I
->getOpcode()))
423 // Remove the branch.
424 I
->eraseFromParent();
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock
&MBB
,
429 MachineBasicBlock
*TBB
,
430 MachineBasicBlock
*FBB
,
431 ArrayRef
<MachineOperand
> Cond
,
433 int *BytesAdded
) const {
434 assert(!BytesAdded
&& "code size not handled");
435 ARMFunctionInfo
*AFI
= MBB
.getParent()->getInfo
<ARMFunctionInfo
>();
436 int BOpc
= !AFI
->isThumbFunction()
437 ? ARM::B
: (AFI
->isThumb2Function() ? ARM::t2B
: ARM::tB
);
438 int BccOpc
= !AFI
->isThumbFunction()
439 ? ARM::Bcc
: (AFI
->isThumb2Function() ? ARM::t2Bcc
: ARM::tBcc
);
440 bool isThumb
= AFI
->isThumbFunction() || AFI
->isThumb2Function();
442 // Shouldn't be a fall through.
443 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
444 assert((Cond
.size() == 2 || Cond
.size() == 0) &&
445 "ARM branch conditions have two components!");
447 // For conditional branches, we use addOperand to preserve CPSR flags.
450 if (Cond
.empty()) { // Unconditional branch?
452 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
).add(predOps(ARMCC::AL
));
454 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(TBB
);
456 BuildMI(&MBB
, DL
, get(BccOpc
))
458 .addImm(Cond
[0].getImm())
463 // Two-way conditional branch.
464 BuildMI(&MBB
, DL
, get(BccOpc
))
466 .addImm(Cond
[0].getImm())
469 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
).add(predOps(ARMCC::AL
));
471 BuildMI(&MBB
, DL
, get(BOpc
)).addMBB(FBB
);
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
477 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)(int)Cond
[0].getImm();
478 Cond
[0].setImm(ARMCC::getOppositeCondition(CC
));
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr
&MI
) const {
484 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
485 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
486 while (++I
!= E
&& I
->isInsideBundle()) {
487 int PIdx
= I
->findFirstPredOperandIdx();
488 if (PIdx
!= -1 && I
->getOperand(PIdx
).getImm() != ARMCC::AL
)
494 int PIdx
= MI
.findFirstPredOperandIdx();
495 return PIdx
!= -1 && MI
.getOperand(PIdx
).getImm() != ARMCC::AL
;
498 bool ARMBaseInstrInfo::PredicateInstruction(
499 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
500 unsigned Opc
= MI
.getOpcode();
501 if (isUncondBranchOpcode(Opc
)) {
502 MI
.setDesc(get(getMatchingCondBranchOpcode(Opc
)));
503 MachineInstrBuilder(*MI
.getParent()->getParent(), MI
)
504 .addImm(Pred
[0].getImm())
505 .addReg(Pred
[1].getReg());
509 int PIdx
= MI
.findFirstPredOperandIdx();
511 MachineOperand
&PMO
= MI
.getOperand(PIdx
);
512 PMO
.setImm(Pred
[0].getImm());
513 MI
.getOperand(PIdx
+1).setReg(Pred
[1].getReg());
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
520 ArrayRef
<MachineOperand
> Pred2
) const {
521 if (Pred1
.size() > 2 || Pred2
.size() > 2)
524 ARMCC::CondCodes CC1
= (ARMCC::CondCodes
)Pred1
[0].getImm();
525 ARMCC::CondCodes CC2
= (ARMCC::CondCodes
)Pred2
[0].getImm();
535 return CC2
== ARMCC::HI
;
537 return CC2
== ARMCC::LO
|| CC2
== ARMCC::EQ
;
539 return CC2
== ARMCC::GT
;
541 return CC2
== ARMCC::LT
;
545 bool ARMBaseInstrInfo::DefinesPredicate(
546 MachineInstr
&MI
, std::vector
<MachineOperand
> &Pred
) const {
548 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
549 const MachineOperand
&MO
= MI
.getOperand(i
);
550 if ((MO
.isRegMask() && MO
.clobbersPhysReg(ARM::CPSR
)) ||
551 (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
)) {
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr
&MI
) {
561 for (const auto &MO
: MI
.operands())
562 if (MO
.isReg() && MO
.getReg() == ARM::CPSR
&& MO
.isDef() && !MO
.isDead())
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr
&MI
,
569 const MachineOperand
&Offset
= MI
.getOperand(Op
+ 1);
570 return Offset
.getReg() != 0;
573 // Load with negative register offset requires additional 1cyc and +I unit
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr
&MI
,
577 const MachineOperand
&Offset
= MI
.getOperand(Op
+ 1);
578 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
580 assert(Offset
.isReg());
581 int64_t OpcImm
= Opc
.getImm();
583 bool isSub
= ARM_AM::getAM3Op(OpcImm
) == ARM_AM::sub
;
584 return (isSub
&& Offset
.getReg() != 0);
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr
&MI
,
589 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
590 unsigned OffImm
= Opc
.getImm();
591 return ARM_AM::getAM2ShiftOpc(OffImm
) != ARM_AM::no_shift
;
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr
&MI
,
597 const MachineOperand
&Opc
= MI
.getOperand(Op
+ 2);
598 unsigned OffImm
= Opc
.getImm();
600 bool isAdd
= ARM_AM::getAM2Op(OffImm
) == ARM_AM::add
;
601 unsigned Amt
= ARM_AM::getAM2Offset(OffImm
);
602 ARM_AM::ShiftOpc ShiftOpc
= ARM_AM::getAM2ShiftOpc(OffImm
);
603 if (ShiftOpc
== ARM_AM::no_shift
) return false; // not scaled
604 bool SimpleScaled
= (isAdd
&& ShiftOpc
== ARM_AM::lsl
&& Amt
== 2);
605 return !SimpleScaled
;
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr
&MI
,
611 unsigned OffImm
= MI
.getOperand(Op
+ 2).getImm();
612 return ARM_AM::getAM2Op(OffImm
) == ARM_AM::sub
;
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr
&MI
,
618 unsigned OffImm
= MI
.getOperand(Op
+ 2).getImm();
619 return ARM_AM::getAM2ShiftOpc(OffImm
) != ARM_AM::no_shift
;
622 static bool isEligibleForITBlock(const MachineInstr
*MI
) {
623 switch (MI
->getOpcode()) {
624 default: return true;
625 case ARM::tADC
: // ADC (register) T1
626 case ARM::tADDi3
: // ADD (immediate) T1
627 case ARM::tADDi8
: // ADD (immediate) T2
628 case ARM::tADDrr
: // ADD (register) T1
629 case ARM::tAND
: // AND (register) T1
630 case ARM::tASRri
: // ASR (immediate) T1
631 case ARM::tASRrr
: // ASR (register) T1
632 case ARM::tBIC
: // BIC (register) T1
633 case ARM::tEOR
: // EOR (register) T1
634 case ARM::tLSLri
: // LSL (immediate) T1
635 case ARM::tLSLrr
: // LSL (register) T1
636 case ARM::tLSRri
: // LSR (immediate) T1
637 case ARM::tLSRrr
: // LSR (register) T1
638 case ARM::tMUL
: // MUL T1
639 case ARM::tMVN
: // MVN (register) T1
640 case ARM::tORR
: // ORR (register) T1
641 case ARM::tROR
: // ROR (register) T1
642 case ARM::tRSB
: // RSB (immediate) T1
643 case ARM::tSBC
: // SBC (register) T1
644 case ARM::tSUBi3
: // SUB (immediate) T1
645 case ARM::tSUBi8
: // SUB (immediate) T2
646 case ARM::tSUBrr
: // SUB (register) T1
647 return !ARMBaseInstrInfo::isCPSRDefined(*MI
);
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr
&MI
) const {
655 if (!MI
.isPredicable())
661 if (!isEligibleForITBlock(&MI
))
664 const ARMFunctionInfo
*AFI
=
665 MI
.getParent()->getParent()->getInfo
<ARMFunctionInfo
>();
667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668 // In their ARM encoding, they can't be encoded in a conditional form.
669 if ((MI
.getDesc().TSFlags
& ARMII::DomainMask
) == ARMII::DomainNEON
)
672 if (AFI
->isThumb2Function()) {
673 if (getSubtarget().restrictIT())
674 return isV8EligibleForIT(&MI
);
682 template <> bool IsCPSRDead
<MachineInstr
>(const MachineInstr
*MI
) {
683 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
684 const MachineOperand
&MO
= MI
->getOperand(i
);
685 if (!MO
.isReg() || MO
.isUndef() || MO
.isUse())
687 if (MO
.getReg() != ARM::CPSR
)
692 // all definitions of CPSR are dead
696 } // end namespace llvm
698 /// GetInstSize - Return the size of the specified MachineInstr.
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr
&MI
) const {
701 const MachineBasicBlock
&MBB
= *MI
.getParent();
702 const MachineFunction
*MF
= MBB
.getParent();
703 const MCAsmInfo
*MAI
= MF
->getTarget().getMCAsmInfo();
705 const MCInstrDesc
&MCID
= MI
.getDesc();
707 return MCID
.getSize();
709 switch (MI
.getOpcode()) {
711 // pseudo-instruction sizes are zero.
713 case TargetOpcode::BUNDLE
:
714 return getInstBundleLength(MI
);
715 case ARM::MOVi16_ga_pcrel
:
716 case ARM::MOVTi16_ga_pcrel
:
717 case ARM::t2MOVi16_ga_pcrel
:
718 case ARM::t2MOVTi16_ga_pcrel
:
721 case ARM::t2MOVi32imm
:
723 case ARM::CONSTPOOL_ENTRY
:
724 case ARM::JUMPTABLE_INSTS
:
725 case ARM::JUMPTABLE_ADDRS
:
726 case ARM::JUMPTABLE_TBB
:
727 case ARM::JUMPTABLE_TBH
:
728 // If this machine instr is a constant pool entry, its size is recorded as
730 return MI
.getOperand(2).getImm();
731 case ARM::Int_eh_sjlj_longjmp
:
733 case ARM::tInt_eh_sjlj_longjmp
:
735 case ARM::tInt_WIN_eh_sjlj_longjmp
:
737 case ARM::Int_eh_sjlj_setjmp
:
738 case ARM::Int_eh_sjlj_setjmp_nofp
:
740 case ARM::tInt_eh_sjlj_setjmp
:
741 case ARM::t2Int_eh_sjlj_setjmp
:
742 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
745 return MI
.getOperand(1).getImm();
747 case ARM::INLINEASM_BR
: {
748 // If this machine instr is an inline asm, measure it.
749 unsigned Size
= getInlineAsmLength(MI
.getOperand(0).getSymbolName(), *MAI
);
750 if (!MF
->getInfo
<ARMFunctionInfo
>()->isThumbFunction())
751 Size
= alignTo(Size
, 4);
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr
&MI
) const {
759 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
760 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
761 while (++I
!= E
&& I
->isInsideBundle()) {
762 assert(!I
->isBundle() && "No nested bundle!");
763 Size
+= getInstSizeInBytes(*I
);
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock
&MBB
,
769 MachineBasicBlock::iterator I
,
770 unsigned DestReg
, bool KillSrc
,
771 const ARMSubtarget
&Subtarget
) const {
772 unsigned Opc
= Subtarget
.isThumb()
773 ? (Subtarget
.isMClass() ? ARM::t2MRS_M
: ARM::t2MRS_AR
)
776 MachineInstrBuilder MIB
=
777 BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
), DestReg
);
779 // There is only 1 A/R class MRS instruction, and it always refers to
780 // APSR. However, there are lots of other possibilities on M-class cores.
781 if (Subtarget
.isMClass())
784 MIB
.add(predOps(ARMCC::AL
))
785 .addReg(ARM::CPSR
, RegState::Implicit
| getKillRegState(KillSrc
));
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock
&MBB
,
789 MachineBasicBlock::iterator I
,
790 unsigned SrcReg
, bool KillSrc
,
791 const ARMSubtarget
&Subtarget
) const {
792 unsigned Opc
= Subtarget
.isThumb()
793 ? (Subtarget
.isMClass() ? ARM::t2MSR_M
: ARM::t2MSR_AR
)
796 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
));
798 if (Subtarget
.isMClass())
803 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
))
804 .add(predOps(ARMCC::AL
))
805 .addReg(ARM::CPSR
, RegState::Implicit
| RegState::Define
);
808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder
&MIB
) {
809 MIB
.addImm(ARMVCC::None
);
813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder
&MIB
,
815 addUnpredicatedMveVpredNOp(MIB
);
816 MIB
.addReg(DestReg
, RegState::Undef
);
819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder
&MIB
, unsigned Cond
) {
821 MIB
.addReg(ARM::VPR
, RegState::Implicit
);
824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder
&MIB
,
825 unsigned Cond
, unsigned Inactive
) {
826 addPredicatedMveVpredNOp(MIB
, Cond
);
827 MIB
.addReg(Inactive
);
830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
831 MachineBasicBlock::iterator I
,
832 const DebugLoc
&DL
, unsigned DestReg
,
833 unsigned SrcReg
, bool KillSrc
) const {
834 bool GPRDest
= ARM::GPRRegClass
.contains(DestReg
);
835 bool GPRSrc
= ARM::GPRRegClass
.contains(SrcReg
);
837 if (GPRDest
&& GPRSrc
) {
838 BuildMI(MBB
, I
, DL
, get(ARM::MOVr
), DestReg
)
839 .addReg(SrcReg
, getKillRegState(KillSrc
))
840 .add(predOps(ARMCC::AL
))
845 bool SPRDest
= ARM::SPRRegClass
.contains(DestReg
);
846 bool SPRSrc
= ARM::SPRRegClass
.contains(SrcReg
);
849 if (SPRDest
&& SPRSrc
)
851 else if (GPRDest
&& SPRSrc
)
853 else if (SPRDest
&& GPRSrc
)
855 else if (ARM::DPRRegClass
.contains(DestReg
, SrcReg
) && Subtarget
.hasFP64())
857 else if (ARM::QPRRegClass
.contains(DestReg
, SrcReg
))
858 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
861 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(Opc
), DestReg
);
862 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
));
863 if (Opc
== ARM::VORRq
|| Opc
== ARM::MVE_VORR
)
864 MIB
.addReg(SrcReg
, getKillRegState(KillSrc
));
865 if (Opc
== ARM::MVE_VORR
)
866 addUnpredicatedMveVpredROp(MIB
, DestReg
);
868 MIB
.add(predOps(ARMCC::AL
));
872 // Handle register classes that require multiple instructions.
873 unsigned BeginIdx
= 0;
874 unsigned SubRegs
= 0;
877 // Use VORRq when possible.
878 if (ARM::QQPRRegClass
.contains(DestReg
, SrcReg
)) {
879 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
880 BeginIdx
= ARM::qsub_0
;
882 } else if (ARM::QQQQPRRegClass
.contains(DestReg
, SrcReg
)) {
883 Opc
= Subtarget
.hasNEON() ? ARM::VORRq
: ARM::MVE_VORR
;
884 BeginIdx
= ARM::qsub_0
;
886 // Fall back to VMOVD.
887 } else if (ARM::DPairRegClass
.contains(DestReg
, SrcReg
)) {
889 BeginIdx
= ARM::dsub_0
;
891 } else if (ARM::DTripleRegClass
.contains(DestReg
, SrcReg
)) {
893 BeginIdx
= ARM::dsub_0
;
895 } else if (ARM::DQuadRegClass
.contains(DestReg
, SrcReg
)) {
897 BeginIdx
= ARM::dsub_0
;
899 } else if (ARM::GPRPairRegClass
.contains(DestReg
, SrcReg
)) {
900 Opc
= Subtarget
.isThumb2() ? ARM::tMOVr
: ARM::MOVr
;
901 BeginIdx
= ARM::gsub_0
;
903 } else if (ARM::DPairSpcRegClass
.contains(DestReg
, SrcReg
)) {
905 BeginIdx
= ARM::dsub_0
;
908 } else if (ARM::DTripleSpcRegClass
.contains(DestReg
, SrcReg
)) {
910 BeginIdx
= ARM::dsub_0
;
913 } else if (ARM::DQuadSpcRegClass
.contains(DestReg
, SrcReg
)) {
915 BeginIdx
= ARM::dsub_0
;
918 } else if (ARM::DPRRegClass
.contains(DestReg
, SrcReg
) &&
919 !Subtarget
.hasFP64()) {
921 BeginIdx
= ARM::ssub_0
;
923 } else if (SrcReg
== ARM::CPSR
) {
924 copyFromCPSR(MBB
, I
, DestReg
, KillSrc
, Subtarget
);
926 } else if (DestReg
== ARM::CPSR
) {
927 copyToCPSR(MBB
, I
, SrcReg
, KillSrc
, Subtarget
);
929 } else if (DestReg
== ARM::VPR
) {
930 assert(ARM::GPRRegClass
.contains(SrcReg
));
931 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMSR_P0
), DestReg
)
932 .addReg(SrcReg
, getKillRegState(KillSrc
))
933 .add(predOps(ARMCC::AL
));
935 } else if (SrcReg
== ARM::VPR
) {
936 assert(ARM::GPRRegClass
.contains(DestReg
));
937 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMRS_P0
), DestReg
)
938 .addReg(SrcReg
, getKillRegState(KillSrc
))
939 .add(predOps(ARMCC::AL
));
941 } else if (DestReg
== ARM::FPSCR_NZCV
) {
942 assert(ARM::GPRRegClass
.contains(SrcReg
));
943 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC
), DestReg
)
944 .addReg(SrcReg
, getKillRegState(KillSrc
))
945 .add(predOps(ARMCC::AL
));
947 } else if (SrcReg
== ARM::FPSCR_NZCV
) {
948 assert(ARM::GPRRegClass
.contains(DestReg
));
949 BuildMI(MBB
, I
, I
->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC
), DestReg
)
950 .addReg(SrcReg
, getKillRegState(KillSrc
))
951 .add(predOps(ARMCC::AL
));
955 assert(Opc
&& "Impossible reg-to-reg copy");
957 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
958 MachineInstrBuilder Mov
;
960 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
961 if (TRI
->regsOverlap(SrcReg
, TRI
->getSubReg(DestReg
, BeginIdx
))) {
962 BeginIdx
= BeginIdx
+ ((SubRegs
- 1) * Spacing
);
966 SmallSet
<unsigned, 4> DstRegs
;
968 for (unsigned i
= 0; i
!= SubRegs
; ++i
) {
969 Register Dst
= TRI
->getSubReg(DestReg
, BeginIdx
+ i
* Spacing
);
970 Register Src
= TRI
->getSubReg(SrcReg
, BeginIdx
+ i
* Spacing
);
971 assert(Dst
&& Src
&& "Bad sub-register");
973 assert(!DstRegs
.count(Src
) && "destructive vector copy");
976 Mov
= BuildMI(MBB
, I
, I
->getDebugLoc(), get(Opc
), Dst
).addReg(Src
);
977 // VORR (NEON or MVE) takes two source operands.
978 if (Opc
== ARM::VORRq
|| Opc
== ARM::MVE_VORR
) {
981 // MVE VORR takes predicate operands in place of an ordinary condition.
982 if (Opc
== ARM::MVE_VORR
)
983 addUnpredicatedMveVpredROp(Mov
, Dst
);
985 Mov
= Mov
.add(predOps(ARMCC::AL
));
987 if (Opc
== ARM::MOVr
)
988 Mov
= Mov
.add(condCodeOp());
990 // Add implicit super-register defs and kills to the last instruction.
991 Mov
->addRegisterDefined(DestReg
, TRI
);
993 Mov
->addRegisterKilled(SrcReg
, TRI
);
996 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr
&MI
,
997 const MachineOperand
*&Src
,
998 const MachineOperand
*&Dest
) const {
999 // VMOVRRD is also a copy instruction but it requires
1000 // special way of handling. It is more complex copy version
1001 // and since that we are not considering it. For recognition
1002 // of such instruction isExtractSubregLike MI interface fuction
1004 // VORRq is considered as a move only if two inputs are
1005 // the same register.
1006 if (!MI
.isMoveReg() ||
1007 (MI
.getOpcode() == ARM::VORRq
&&
1008 MI
.getOperand(1).getReg() != MI
.getOperand(2).getReg()))
1010 Dest
= &MI
.getOperand(0);
1011 Src
= &MI
.getOperand(1);
1015 const MachineInstrBuilder
&
1016 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder
&MIB
, unsigned Reg
,
1017 unsigned SubIdx
, unsigned State
,
1018 const TargetRegisterInfo
*TRI
) const {
1020 return MIB
.addReg(Reg
, State
);
1022 if (Register::isPhysicalRegister(Reg
))
1023 return MIB
.addReg(TRI
->getSubReg(Reg
, SubIdx
), State
);
1024 return MIB
.addReg(Reg
, State
, SubIdx
);
1027 void ARMBaseInstrInfo::
1028 storeRegToStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
1029 unsigned SrcReg
, bool isKill
, int FI
,
1030 const TargetRegisterClass
*RC
,
1031 const TargetRegisterInfo
*TRI
) const {
1032 MachineFunction
&MF
= *MBB
.getParent();
1033 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1034 unsigned Align
= MFI
.getObjectAlignment(FI
);
1036 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1037 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOStore
,
1038 MFI
.getObjectSize(FI
), Align
);
1040 switch (TRI
->getSpillSize(*RC
)) {
1042 if (ARM::HPRRegClass
.hasSubClassEq(RC
)) {
1043 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRH
))
1044 .addReg(SrcReg
, getKillRegState(isKill
))
1048 .add(predOps(ARMCC::AL
));
1050 llvm_unreachable("Unknown reg class!");
1053 if (ARM::GPRRegClass
.hasSubClassEq(RC
)) {
1054 BuildMI(MBB
, I
, DebugLoc(), get(ARM::STRi12
))
1055 .addReg(SrcReg
, getKillRegState(isKill
))
1059 .add(predOps(ARMCC::AL
));
1060 } else if (ARM::SPRRegClass
.hasSubClassEq(RC
)) {
1061 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRS
))
1062 .addReg(SrcReg
, getKillRegState(isKill
))
1066 .add(predOps(ARMCC::AL
));
1067 } else if (ARM::VCCRRegClass
.hasSubClassEq(RC
)) {
1068 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTR_P0_off
))
1069 .addReg(SrcReg
, getKillRegState(isKill
))
1073 .add(predOps(ARMCC::AL
));
1075 llvm_unreachable("Unknown reg class!");
1078 if (ARM::DPRRegClass
.hasSubClassEq(RC
)) {
1079 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTRD
))
1080 .addReg(SrcReg
, getKillRegState(isKill
))
1084 .add(predOps(ARMCC::AL
));
1085 } else if (ARM::GPRPairRegClass
.hasSubClassEq(RC
)) {
1086 if (Subtarget
.hasV5TEOps()) {
1087 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::STRD
));
1088 AddDReg(MIB
, SrcReg
, ARM::gsub_0
, getKillRegState(isKill
), TRI
);
1089 AddDReg(MIB
, SrcReg
, ARM::gsub_1
, 0, TRI
);
1090 MIB
.addFrameIndex(FI
).addReg(0).addImm(0).addMemOperand(MMO
)
1091 .add(predOps(ARMCC::AL
));
1093 // Fallback to STM instruction, which has existed since the dawn of
1095 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::STMIA
))
1098 .add(predOps(ARMCC::AL
));
1099 AddDReg(MIB
, SrcReg
, ARM::gsub_0
, getKillRegState(isKill
), TRI
);
1100 AddDReg(MIB
, SrcReg
, ARM::gsub_1
, 0, TRI
);
1103 llvm_unreachable("Unknown reg class!");
1106 if (ARM::DPairRegClass
.hasSubClassEq(RC
) && Subtarget
.hasNEON()) {
1107 // Use aligned spills if the stack can be realigned.
1108 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1109 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1q64
))
1112 .addReg(SrcReg
, getKillRegState(isKill
))
1114 .add(predOps(ARMCC::AL
));
1116 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTMQIA
))
1117 .addReg(SrcReg
, getKillRegState(isKill
))
1120 .add(predOps(ARMCC::AL
));
1122 } else if (ARM::QPRRegClass
.hasSubClassEq(RC
) &&
1123 Subtarget
.hasMVEIntegerOps()) {
1124 auto MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::MVE_VSTRWU32
));
1125 MIB
.addReg(SrcReg
, getKillRegState(isKill
))
1128 .addMemOperand(MMO
);
1129 addUnpredicatedMveVpredNOp(MIB
);
1131 llvm_unreachable("Unknown reg class!");
1134 if (ARM::DTripleRegClass
.hasSubClassEq(RC
)) {
1135 // Use aligned spills if the stack can be realigned.
1136 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1137 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1d64TPseudo
))
1140 .addReg(SrcReg
, getKillRegState(isKill
))
1142 .add(predOps(ARMCC::AL
));
1144 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(),
1147 .add(predOps(ARMCC::AL
))
1148 .addMemOperand(MMO
);
1149 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1150 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1151 AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1154 llvm_unreachable("Unknown reg class!");
1157 if (ARM::QQPRRegClass
.hasSubClassEq(RC
) || ARM::DQuadRegClass
.hasSubClassEq(RC
)) {
1158 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1159 // FIXME: It's possible to only store part of the QQ register if the
1160 // spilled def has a sub-register index.
1161 BuildMI(MBB
, I
, DebugLoc(), get(ARM::VST1d64QPseudo
))
1164 .addReg(SrcReg
, getKillRegState(isKill
))
1166 .add(predOps(ARMCC::AL
));
1168 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(),
1171 .add(predOps(ARMCC::AL
))
1172 .addMemOperand(MMO
);
1173 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1174 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1175 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1176 AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
1179 llvm_unreachable("Unknown reg class!");
1182 if (ARM::QQQQPRRegClass
.hasSubClassEq(RC
)) {
1183 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DebugLoc(), get(ARM::VSTMDIA
))
1185 .add(predOps(ARMCC::AL
))
1186 .addMemOperand(MMO
);
1187 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_0
, getKillRegState(isKill
), TRI
);
1188 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_1
, 0, TRI
);
1189 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_2
, 0, TRI
);
1190 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_3
, 0, TRI
);
1191 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_4
, 0, TRI
);
1192 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_5
, 0, TRI
);
1193 MIB
= AddDReg(MIB
, SrcReg
, ARM::dsub_6
, 0, TRI
);
1194 AddDReg(MIB
, SrcReg
, ARM::dsub_7
, 0, TRI
);
1196 llvm_unreachable("Unknown reg class!");
1199 llvm_unreachable("Unknown reg class!");
1203 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
1204 int &FrameIndex
) const {
1205 switch (MI
.getOpcode()) {
1208 case ARM::t2STRs
: // FIXME: don't use t2STRs to access frame.
1209 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isReg() &&
1210 MI
.getOperand(3).isImm() && MI
.getOperand(2).getReg() == 0 &&
1211 MI
.getOperand(3).getImm() == 0) {
1212 FrameIndex
= MI
.getOperand(1).getIndex();
1213 return MI
.getOperand(0).getReg();
1221 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isImm() &&
1222 MI
.getOperand(2).getImm() == 0) {
1223 FrameIndex
= MI
.getOperand(1).getIndex();
1224 return MI
.getOperand(0).getReg();
1227 case ARM::VSTR_P0_off
:
1228 if (MI
.getOperand(0).isFI() && MI
.getOperand(1).isImm() &&
1229 MI
.getOperand(1).getImm() == 0) {
1230 FrameIndex
= MI
.getOperand(0).getIndex();
1235 case ARM::VST1d64TPseudo
:
1236 case ARM::VST1d64QPseudo
:
1237 if (MI
.getOperand(0).isFI() && MI
.getOperand(2).getSubReg() == 0) {
1238 FrameIndex
= MI
.getOperand(0).getIndex();
1239 return MI
.getOperand(2).getReg();
1243 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1244 FrameIndex
= MI
.getOperand(1).getIndex();
1245 return MI
.getOperand(0).getReg();
1253 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
1254 int &FrameIndex
) const {
1255 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
1256 if (MI
.mayStore() && hasStoreToStackSlot(MI
, Accesses
) &&
1257 Accesses
.size() == 1) {
1259 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
1266 void ARMBaseInstrInfo::
1267 loadRegFromStackSlot(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
1268 unsigned DestReg
, int FI
,
1269 const TargetRegisterClass
*RC
,
1270 const TargetRegisterInfo
*TRI
) const {
1272 if (I
!= MBB
.end()) DL
= I
->getDebugLoc();
1273 MachineFunction
&MF
= *MBB
.getParent();
1274 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1275 unsigned Align
= MFI
.getObjectAlignment(FI
);
1276 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
1277 MachinePointerInfo::getFixedStack(MF
, FI
), MachineMemOperand::MOLoad
,
1278 MFI
.getObjectSize(FI
), Align
);
1280 switch (TRI
->getSpillSize(*RC
)) {
1282 if (ARM::HPRRegClass
.hasSubClassEq(RC
)) {
1283 BuildMI(MBB
, I
, DL
, get(ARM::VLDRH
), DestReg
)
1287 .add(predOps(ARMCC::AL
));
1289 llvm_unreachable("Unknown reg class!");
1292 if (ARM::GPRRegClass
.hasSubClassEq(RC
)) {
1293 BuildMI(MBB
, I
, DL
, get(ARM::LDRi12
), DestReg
)
1297 .add(predOps(ARMCC::AL
));
1298 } else if (ARM::SPRRegClass
.hasSubClassEq(RC
)) {
1299 BuildMI(MBB
, I
, DL
, get(ARM::VLDRS
), DestReg
)
1303 .add(predOps(ARMCC::AL
));
1304 } else if (ARM::VCCRRegClass
.hasSubClassEq(RC
)) {
1305 BuildMI(MBB
, I
, DL
, get(ARM::VLDR_P0_off
), DestReg
)
1309 .add(predOps(ARMCC::AL
));
1311 llvm_unreachable("Unknown reg class!");
1314 if (ARM::DPRRegClass
.hasSubClassEq(RC
)) {
1315 BuildMI(MBB
, I
, DL
, get(ARM::VLDRD
), DestReg
)
1319 .add(predOps(ARMCC::AL
));
1320 } else if (ARM::GPRPairRegClass
.hasSubClassEq(RC
)) {
1321 MachineInstrBuilder MIB
;
1323 if (Subtarget
.hasV5TEOps()) {
1324 MIB
= BuildMI(MBB
, I
, DL
, get(ARM::LDRD
));
1325 AddDReg(MIB
, DestReg
, ARM::gsub_0
, RegState::DefineNoRead
, TRI
);
1326 AddDReg(MIB
, DestReg
, ARM::gsub_1
, RegState::DefineNoRead
, TRI
);
1327 MIB
.addFrameIndex(FI
).addReg(0).addImm(0).addMemOperand(MMO
)
1328 .add(predOps(ARMCC::AL
));
1330 // Fallback to LDM instruction, which has existed since the dawn of
1332 MIB
= BuildMI(MBB
, I
, DL
, get(ARM::LDMIA
))
1335 .add(predOps(ARMCC::AL
));
1336 MIB
= AddDReg(MIB
, DestReg
, ARM::gsub_0
, RegState::DefineNoRead
, TRI
);
1337 MIB
= AddDReg(MIB
, DestReg
, ARM::gsub_1
, RegState::DefineNoRead
, TRI
);
1340 if (Register::isPhysicalRegister(DestReg
))
1341 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1343 llvm_unreachable("Unknown reg class!");
1346 if (ARM::DPairRegClass
.hasSubClassEq(RC
) && Subtarget
.hasNEON()) {
1347 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1348 BuildMI(MBB
, I
, DL
, get(ARM::VLD1q64
), DestReg
)
1352 .add(predOps(ARMCC::AL
));
1354 BuildMI(MBB
, I
, DL
, get(ARM::VLDMQIA
), DestReg
)
1357 .add(predOps(ARMCC::AL
));
1359 } else if (ARM::QPRRegClass
.hasSubClassEq(RC
) &&
1360 Subtarget
.hasMVEIntegerOps()) {
1361 auto MIB
= BuildMI(MBB
, I
, DL
, get(ARM::MVE_VLDRWU32
), DestReg
);
1362 MIB
.addFrameIndex(FI
)
1364 .addMemOperand(MMO
);
1365 addUnpredicatedMveVpredNOp(MIB
);
1367 llvm_unreachable("Unknown reg class!");
1370 if (ARM::DTripleRegClass
.hasSubClassEq(RC
)) {
1371 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1372 BuildMI(MBB
, I
, DL
, get(ARM::VLD1d64TPseudo
), DestReg
)
1376 .add(predOps(ARMCC::AL
));
1378 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1381 .add(predOps(ARMCC::AL
));
1382 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1383 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1384 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1385 if (Register::isPhysicalRegister(DestReg
))
1386 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1389 llvm_unreachable("Unknown reg class!");
1392 if (ARM::QQPRRegClass
.hasSubClassEq(RC
) || ARM::DQuadRegClass
.hasSubClassEq(RC
)) {
1393 if (Align
>= 16 && getRegisterInfo().canRealignStack(MF
)) {
1394 BuildMI(MBB
, I
, DL
, get(ARM::VLD1d64QPseudo
), DestReg
)
1398 .add(predOps(ARMCC::AL
));
1400 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1402 .add(predOps(ARMCC::AL
))
1403 .addMemOperand(MMO
);
1404 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1405 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1406 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1407 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::DefineNoRead
, TRI
);
1408 if (Register::isPhysicalRegister(DestReg
))
1409 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1412 llvm_unreachable("Unknown reg class!");
1415 if (ARM::QQQQPRRegClass
.hasSubClassEq(RC
)) {
1416 MachineInstrBuilder MIB
= BuildMI(MBB
, I
, DL
, get(ARM::VLDMDIA
))
1418 .add(predOps(ARMCC::AL
))
1419 .addMemOperand(MMO
);
1420 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_0
, RegState::DefineNoRead
, TRI
);
1421 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_1
, RegState::DefineNoRead
, TRI
);
1422 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_2
, RegState::DefineNoRead
, TRI
);
1423 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_3
, RegState::DefineNoRead
, TRI
);
1424 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_4
, RegState::DefineNoRead
, TRI
);
1425 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_5
, RegState::DefineNoRead
, TRI
);
1426 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_6
, RegState::DefineNoRead
, TRI
);
1427 MIB
= AddDReg(MIB
, DestReg
, ARM::dsub_7
, RegState::DefineNoRead
, TRI
);
1428 if (Register::isPhysicalRegister(DestReg
))
1429 MIB
.addReg(DestReg
, RegState::ImplicitDefine
);
1431 llvm_unreachable("Unknown reg class!");
1434 llvm_unreachable("Unknown regclass!");
1438 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
1439 int &FrameIndex
) const {
1440 switch (MI
.getOpcode()) {
1443 case ARM::t2LDRs
: // FIXME: don't use t2LDRs to access frame.
1444 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isReg() &&
1445 MI
.getOperand(3).isImm() && MI
.getOperand(2).getReg() == 0 &&
1446 MI
.getOperand(3).getImm() == 0) {
1447 FrameIndex
= MI
.getOperand(1).getIndex();
1448 return MI
.getOperand(0).getReg();
1456 if (MI
.getOperand(1).isFI() && MI
.getOperand(2).isImm() &&
1457 MI
.getOperand(2).getImm() == 0) {
1458 FrameIndex
= MI
.getOperand(1).getIndex();
1459 return MI
.getOperand(0).getReg();
1462 case ARM::VLDR_P0_off
:
1463 if (MI
.getOperand(0).isFI() && MI
.getOperand(1).isImm() &&
1464 MI
.getOperand(1).getImm() == 0) {
1465 FrameIndex
= MI
.getOperand(0).getIndex();
1470 case ARM::VLD1d8TPseudo
:
1471 case ARM::VLD1d16TPseudo
:
1472 case ARM::VLD1d32TPseudo
:
1473 case ARM::VLD1d64TPseudo
:
1474 case ARM::VLD1d8QPseudo
:
1475 case ARM::VLD1d16QPseudo
:
1476 case ARM::VLD1d32QPseudo
:
1477 case ARM::VLD1d64QPseudo
:
1478 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1479 FrameIndex
= MI
.getOperand(1).getIndex();
1480 return MI
.getOperand(0).getReg();
1484 if (MI
.getOperand(1).isFI() && MI
.getOperand(0).getSubReg() == 0) {
1485 FrameIndex
= MI
.getOperand(1).getIndex();
1486 return MI
.getOperand(0).getReg();
1494 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
1495 int &FrameIndex
) const {
1496 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
1497 if (MI
.mayLoad() && hasLoadFromStackSlot(MI
, Accesses
) &&
1498 Accesses
.size() == 1) {
1500 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
1507 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1508 /// depending on whether the result is used.
1509 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI
) const {
1510 bool isThumb1
= Subtarget
.isThumb1Only();
1511 bool isThumb2
= Subtarget
.isThumb2();
1512 const ARMBaseInstrInfo
*TII
= Subtarget
.getInstrInfo();
1514 DebugLoc dl
= MI
->getDebugLoc();
1515 MachineBasicBlock
*BB
= MI
->getParent();
1517 MachineInstrBuilder LDM
, STM
;
1518 if (isThumb1
|| !MI
->getOperand(1).isDead()) {
1519 MachineOperand
LDWb(MI
->getOperand(1));
1520 LDM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2LDMIA_UPD
1521 : isThumb1
? ARM::tLDMIA_UPD
1525 LDM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2LDMIA
: ARM::LDMIA
));
1528 if (isThumb1
|| !MI
->getOperand(0).isDead()) {
1529 MachineOperand
STWb(MI
->getOperand(0));
1530 STM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2STMIA_UPD
1531 : isThumb1
? ARM::tSTMIA_UPD
1535 STM
= BuildMI(*BB
, MI
, dl
, TII
->get(isThumb2
? ARM::t2STMIA
: ARM::STMIA
));
1538 MachineOperand
LDBase(MI
->getOperand(3));
1539 LDM
.add(LDBase
).add(predOps(ARMCC::AL
));
1541 MachineOperand
STBase(MI
->getOperand(2));
1542 STM
.add(STBase
).add(predOps(ARMCC::AL
));
1544 // Sort the scratch registers into ascending order.
1545 const TargetRegisterInfo
&TRI
= getRegisterInfo();
1546 SmallVector
<unsigned, 6> ScratchRegs
;
1547 for(unsigned I
= 5; I
< MI
->getNumOperands(); ++I
)
1548 ScratchRegs
.push_back(MI
->getOperand(I
).getReg());
1549 llvm::sort(ScratchRegs
,
1550 [&TRI
](const unsigned &Reg1
, const unsigned &Reg2
) -> bool {
1551 return TRI
.getEncodingValue(Reg1
) <
1552 TRI
.getEncodingValue(Reg2
);
1555 for (const auto &Reg
: ScratchRegs
) {
1556 LDM
.addReg(Reg
, RegState::Define
);
1557 STM
.addReg(Reg
, RegState::Kill
);
1563 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
1564 if (MI
.getOpcode() == TargetOpcode::LOAD_STACK_GUARD
) {
1565 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1566 "LOAD_STACK_GUARD currently supported only for MachO.");
1567 expandLoadStackGuard(MI
);
1568 MI
.getParent()->erase(MI
);
1572 if (MI
.getOpcode() == ARM::MEMCPY
) {
1577 // This hook gets to expand COPY instructions before they become
1578 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1579 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1580 // changed into a VORR that can go down the NEON pipeline.
1581 if (!MI
.isCopy() || Subtarget
.dontWidenVMOVS() || !Subtarget
.hasFP64())
1584 // Look for a copy between even S-registers. That is where we keep floats
1585 // when using NEON v2f32 instructions for f32 arithmetic.
1586 Register DstRegS
= MI
.getOperand(0).getReg();
1587 Register SrcRegS
= MI
.getOperand(1).getReg();
1588 if (!ARM::SPRRegClass
.contains(DstRegS
, SrcRegS
))
1591 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
1592 unsigned DstRegD
= TRI
->getMatchingSuperReg(DstRegS
, ARM::ssub_0
,
1594 unsigned SrcRegD
= TRI
->getMatchingSuperReg(SrcRegS
, ARM::ssub_0
,
1596 if (!DstRegD
|| !SrcRegD
)
1599 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1600 // legal if the COPY already defines the full DstRegD, and it isn't a
1601 // sub-register insertion.
1602 if (!MI
.definesRegister(DstRegD
, TRI
) || MI
.readsRegister(DstRegD
, TRI
))
1605 // A dead copy shouldn't show up here, but reject it just in case.
1606 if (MI
.getOperand(0).isDead())
1609 // All clear, widen the COPY.
1610 LLVM_DEBUG(dbgs() << "widening: " << MI
);
1611 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
1613 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1614 // or some other super-register.
1615 int ImpDefIdx
= MI
.findRegisterDefOperandIdx(DstRegD
);
1616 if (ImpDefIdx
!= -1)
1617 MI
.RemoveOperand(ImpDefIdx
);
1619 // Change the opcode and operands.
1620 MI
.setDesc(get(ARM::VMOVD
));
1621 MI
.getOperand(0).setReg(DstRegD
);
1622 MI
.getOperand(1).setReg(SrcRegD
);
1623 MIB
.add(predOps(ARMCC::AL
));
1625 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1626 // register scavenger and machine verifier, so we need to indicate that we
1627 // are reading an undefined value from SrcRegD, but a proper value from
1629 MI
.getOperand(1).setIsUndef();
1630 MIB
.addReg(SrcRegS
, RegState::Implicit
);
1632 // SrcRegD may actually contain an unrelated value in the ssub_1
1633 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1634 if (MI
.getOperand(1).isKill()) {
1635 MI
.getOperand(1).setIsKill(false);
1636 MI
.addRegisterKilled(SrcRegS
, TRI
, true);
1639 LLVM_DEBUG(dbgs() << "replaced by: " << MI
);
1643 /// Create a copy of a const pool value. Update CPI to the new index and return
1645 static unsigned duplicateCPV(MachineFunction
&MF
, unsigned &CPI
) {
1646 MachineConstantPool
*MCP
= MF
.getConstantPool();
1647 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1649 const MachineConstantPoolEntry
&MCPE
= MCP
->getConstants()[CPI
];
1650 assert(MCPE
.isMachineConstantPoolEntry() &&
1651 "Expecting a machine constantpool entry!");
1652 ARMConstantPoolValue
*ACPV
=
1653 static_cast<ARMConstantPoolValue
*>(MCPE
.Val
.MachineCPVal
);
1655 unsigned PCLabelId
= AFI
->createPICLabelUId();
1656 ARMConstantPoolValue
*NewCPV
= nullptr;
1658 // FIXME: The below assumes PIC relocation model and that the function
1659 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1660 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1661 // instructions, so that's probably OK, but is PIC always correct when
1663 if (ACPV
->isGlobalValue())
1664 NewCPV
= ARMConstantPoolConstant::Create(
1665 cast
<ARMConstantPoolConstant
>(ACPV
)->getGV(), PCLabelId
, ARMCP::CPValue
,
1666 4, ACPV
->getModifier(), ACPV
->mustAddCurrentAddress());
1667 else if (ACPV
->isExtSymbol())
1668 NewCPV
= ARMConstantPoolSymbol::
1669 Create(MF
.getFunction().getContext(),
1670 cast
<ARMConstantPoolSymbol
>(ACPV
)->getSymbol(), PCLabelId
, 4);
1671 else if (ACPV
->isBlockAddress())
1672 NewCPV
= ARMConstantPoolConstant::
1673 Create(cast
<ARMConstantPoolConstant
>(ACPV
)->getBlockAddress(), PCLabelId
,
1674 ARMCP::CPBlockAddress
, 4);
1675 else if (ACPV
->isLSDA())
1676 NewCPV
= ARMConstantPoolConstant::Create(&MF
.getFunction(), PCLabelId
,
1678 else if (ACPV
->isMachineBasicBlock())
1679 NewCPV
= ARMConstantPoolMBB::
1680 Create(MF
.getFunction().getContext(),
1681 cast
<ARMConstantPoolMBB
>(ACPV
)->getMBB(), PCLabelId
, 4);
1683 llvm_unreachable("Unexpected ARM constantpool value type!!");
1684 CPI
= MCP
->getConstantPoolIndex(NewCPV
, MCPE
.getAlignment());
1688 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
1689 MachineBasicBlock::iterator I
,
1690 unsigned DestReg
, unsigned SubIdx
,
1691 const MachineInstr
&Orig
,
1692 const TargetRegisterInfo
&TRI
) const {
1693 unsigned Opcode
= Orig
.getOpcode();
1696 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
1697 MI
->substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1701 case ARM::tLDRpci_pic
:
1702 case ARM::t2LDRpci_pic
: {
1703 MachineFunction
&MF
= *MBB
.getParent();
1704 unsigned CPI
= Orig
.getOperand(1).getIndex();
1705 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1706 BuildMI(MBB
, I
, Orig
.getDebugLoc(), get(Opcode
), DestReg
)
1707 .addConstantPoolIndex(CPI
)
1709 .cloneMemRefs(Orig
);
1716 ARMBaseInstrInfo::duplicate(MachineBasicBlock
&MBB
,
1717 MachineBasicBlock::iterator InsertBefore
,
1718 const MachineInstr
&Orig
) const {
1719 MachineInstr
&Cloned
= TargetInstrInfo::duplicate(MBB
, InsertBefore
, Orig
);
1720 MachineBasicBlock::instr_iterator I
= Cloned
.getIterator();
1722 switch (I
->getOpcode()) {
1723 case ARM::tLDRpci_pic
:
1724 case ARM::t2LDRpci_pic
: {
1725 MachineFunction
&MF
= *MBB
.getParent();
1726 unsigned CPI
= I
->getOperand(1).getIndex();
1727 unsigned PCLabelId
= duplicateCPV(MF
, CPI
);
1728 I
->getOperand(1).setIndex(CPI
);
1729 I
->getOperand(2).setImm(PCLabelId
);
1733 if (!I
->isBundledWithSucc())
1740 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr
&MI0
,
1741 const MachineInstr
&MI1
,
1742 const MachineRegisterInfo
*MRI
) const {
1743 unsigned Opcode
= MI0
.getOpcode();
1744 if (Opcode
== ARM::t2LDRpci
||
1745 Opcode
== ARM::t2LDRpci_pic
||
1746 Opcode
== ARM::tLDRpci
||
1747 Opcode
== ARM::tLDRpci_pic
||
1748 Opcode
== ARM::LDRLIT_ga_pcrel
||
1749 Opcode
== ARM::LDRLIT_ga_pcrel_ldr
||
1750 Opcode
== ARM::tLDRLIT_ga_pcrel
||
1751 Opcode
== ARM::MOV_ga_pcrel
||
1752 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1753 Opcode
== ARM::t2MOV_ga_pcrel
) {
1754 if (MI1
.getOpcode() != Opcode
)
1756 if (MI0
.getNumOperands() != MI1
.getNumOperands())
1759 const MachineOperand
&MO0
= MI0
.getOperand(1);
1760 const MachineOperand
&MO1
= MI1
.getOperand(1);
1761 if (MO0
.getOffset() != MO1
.getOffset())
1764 if (Opcode
== ARM::LDRLIT_ga_pcrel
||
1765 Opcode
== ARM::LDRLIT_ga_pcrel_ldr
||
1766 Opcode
== ARM::tLDRLIT_ga_pcrel
||
1767 Opcode
== ARM::MOV_ga_pcrel
||
1768 Opcode
== ARM::MOV_ga_pcrel_ldr
||
1769 Opcode
== ARM::t2MOV_ga_pcrel
)
1770 // Ignore the PC labels.
1771 return MO0
.getGlobal() == MO1
.getGlobal();
1773 const MachineFunction
*MF
= MI0
.getParent()->getParent();
1774 const MachineConstantPool
*MCP
= MF
->getConstantPool();
1775 int CPI0
= MO0
.getIndex();
1776 int CPI1
= MO1
.getIndex();
1777 const MachineConstantPoolEntry
&MCPE0
= MCP
->getConstants()[CPI0
];
1778 const MachineConstantPoolEntry
&MCPE1
= MCP
->getConstants()[CPI1
];
1779 bool isARMCP0
= MCPE0
.isMachineConstantPoolEntry();
1780 bool isARMCP1
= MCPE1
.isMachineConstantPoolEntry();
1781 if (isARMCP0
&& isARMCP1
) {
1782 ARMConstantPoolValue
*ACPV0
=
1783 static_cast<ARMConstantPoolValue
*>(MCPE0
.Val
.MachineCPVal
);
1784 ARMConstantPoolValue
*ACPV1
=
1785 static_cast<ARMConstantPoolValue
*>(MCPE1
.Val
.MachineCPVal
);
1786 return ACPV0
->hasSameValue(ACPV1
);
1787 } else if (!isARMCP0
&& !isARMCP1
) {
1788 return MCPE0
.Val
.ConstVal
== MCPE1
.Val
.ConstVal
;
1791 } else if (Opcode
== ARM::PICLDR
) {
1792 if (MI1
.getOpcode() != Opcode
)
1794 if (MI0
.getNumOperands() != MI1
.getNumOperands())
1797 Register Addr0
= MI0
.getOperand(1).getReg();
1798 Register Addr1
= MI1
.getOperand(1).getReg();
1799 if (Addr0
!= Addr1
) {
1800 if (!MRI
|| !Register::isVirtualRegister(Addr0
) ||
1801 !Register::isVirtualRegister(Addr1
))
1804 // This assumes SSA form.
1805 MachineInstr
*Def0
= MRI
->getVRegDef(Addr0
);
1806 MachineInstr
*Def1
= MRI
->getVRegDef(Addr1
);
1807 // Check if the loaded value, e.g. a constantpool of a global address, are
1809 if (!produceSameValue(*Def0
, *Def1
, MRI
))
1813 for (unsigned i
= 3, e
= MI0
.getNumOperands(); i
!= e
; ++i
) {
1814 // %12 = PICLDR %11, 0, 14, %noreg
1815 const MachineOperand
&MO0
= MI0
.getOperand(i
);
1816 const MachineOperand
&MO1
= MI1
.getOperand(i
);
1817 if (!MO0
.isIdenticalTo(MO1
))
1823 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
1826 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1827 /// determine if two loads are loading from the same base address. It should
1828 /// only return true if the base pointers are the same and the only differences
1829 /// between the two addresses is the offset. It also returns the offsets by
1832 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1833 /// is permanently disabled.
1834 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
1836 int64_t &Offset2
) const {
1837 // Don't worry about Thumb: just ARM and Thumb2.
1838 if (Subtarget
.isThumb1Only()) return false;
1840 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
1843 switch (Load1
->getMachineOpcode()) {
1857 case ARM::t2LDRSHi8
:
1859 case ARM::t2LDRBi12
:
1860 case ARM::t2LDRSHi12
:
1864 switch (Load2
->getMachineOpcode()) {
1877 case ARM::t2LDRSHi8
:
1879 case ARM::t2LDRBi12
:
1880 case ARM::t2LDRSHi12
:
1884 // Check if base addresses and chain operands match.
1885 if (Load1
->getOperand(0) != Load2
->getOperand(0) ||
1886 Load1
->getOperand(4) != Load2
->getOperand(4))
1889 // Index should be Reg0.
1890 if (Load1
->getOperand(3) != Load2
->getOperand(3))
1893 // Determine the offsets.
1894 if (isa
<ConstantSDNode
>(Load1
->getOperand(1)) &&
1895 isa
<ConstantSDNode
>(Load2
->getOperand(1))) {
1896 Offset1
= cast
<ConstantSDNode
>(Load1
->getOperand(1))->getSExtValue();
1897 Offset2
= cast
<ConstantSDNode
>(Load2
->getOperand(1))->getSExtValue();
1904 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1905 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1906 /// be scheduled togther. On some targets if two loads are loading from
1907 /// addresses in the same cache line, it's better if they are scheduled
1908 /// together. This function takes two integers that represent the load offsets
1909 /// from the common base address. It returns true if it decides it's desirable
1910 /// to schedule the two loads together. "NumLoads" is the number of loads that
1911 /// have already been scheduled after Load1.
1913 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1914 /// is permanently disabled.
1915 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
1916 int64_t Offset1
, int64_t Offset2
,
1917 unsigned NumLoads
) const {
1918 // Don't worry about Thumb: just ARM and Thumb2.
1919 if (Subtarget
.isThumb1Only()) return false;
1921 assert(Offset2
> Offset1
);
1923 if ((Offset2
- Offset1
) / 8 > 64)
1926 // Check if the machine opcodes are different. If they are different
1927 // then we consider them to not be of the same base address,
1928 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1929 // In this case, they are considered to be the same because they are different
1930 // encoding forms of the same basic instruction.
1931 if ((Load1
->getMachineOpcode() != Load2
->getMachineOpcode()) &&
1932 !((Load1
->getMachineOpcode() == ARM::t2LDRBi8
&&
1933 Load2
->getMachineOpcode() == ARM::t2LDRBi12
) ||
1934 (Load1
->getMachineOpcode() == ARM::t2LDRBi12
&&
1935 Load2
->getMachineOpcode() == ARM::t2LDRBi8
)))
1936 return false; // FIXME: overly conservative?
1938 // Four loads in a row should be sufficient.
1945 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1946 const MachineBasicBlock
*MBB
,
1947 const MachineFunction
&MF
) const {
1948 // Debug info is never a scheduling boundary. It's necessary to be explicit
1949 // due to the special treatment of IT instructions below, otherwise a
1950 // dbg_value followed by an IT will result in the IT instruction being
1951 // considered a scheduling hazard, which is wrong. It should be the actual
1952 // instruction preceding the dbg_value instruction(s), just like it is
1953 // when debug info is not present.
1954 if (MI
.isDebugInstr())
1957 // Terminators and labels can't be scheduled around.
1958 if (MI
.isTerminator() || MI
.isPosition())
1961 // Treat the start of the IT block as a scheduling boundary, but schedule
1962 // t2IT along with all instructions following it.
1963 // FIXME: This is a big hammer. But the alternative is to add all potential
1964 // true and anti dependencies to IT block instructions as implicit operands
1965 // to the t2IT instruction. The added compile time and complexity does not
1967 MachineBasicBlock::const_iterator I
= MI
;
1968 // Make sure to skip any debug instructions
1969 while (++I
!= MBB
->end() && I
->isDebugInstr())
1971 if (I
!= MBB
->end() && I
->getOpcode() == ARM::t2IT
)
1974 // Don't attempt to schedule around any instruction that defines
1975 // a stack-oriented pointer, as it's unlikely to be profitable. This
1976 // saves compile time, because it doesn't require every single
1977 // stack slot reference to depend on the instruction that does the
1979 // Calls don't actually change the stack pointer, even if they have imp-defs.
1980 // No ARM calling conventions change the stack pointer. (X86 calling
1981 // conventions sometimes do).
1982 if (!MI
.isCall() && MI
.definesRegister(ARM::SP
))
1988 bool ARMBaseInstrInfo::
1989 isProfitableToIfCvt(MachineBasicBlock
&MBB
,
1990 unsigned NumCycles
, unsigned ExtraPredCycles
,
1991 BranchProbability Probability
) const {
1995 // If we are optimizing for size, see if the branch in the predecessor can be
1996 // lowered to cbn?z by the constant island lowering pass, and return false if
1997 // so. This results in a shorter instruction sequence.
1998 if (MBB
.getParent()->getFunction().hasOptSize()) {
1999 MachineBasicBlock
*Pred
= *MBB
.pred_begin();
2000 if (!Pred
->empty()) {
2001 MachineInstr
*LastMI
= &*Pred
->rbegin();
2002 if (LastMI
->getOpcode() == ARM::t2Bcc
) {
2003 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2004 MachineInstr
*CmpMI
= findCMPToFoldIntoCBZ(LastMI
, TRI
);
2010 return isProfitableToIfCvt(MBB
, NumCycles
, ExtraPredCycles
,
2011 MBB
, 0, 0, Probability
);
2014 bool ARMBaseInstrInfo::
2015 isProfitableToIfCvt(MachineBasicBlock
&TBB
,
2016 unsigned TCycles
, unsigned TExtra
,
2017 MachineBasicBlock
&FBB
,
2018 unsigned FCycles
, unsigned FExtra
,
2019 BranchProbability Probability
) const {
2023 // In thumb code we often end up trading one branch for a IT block, and
2024 // if we are cloning the instruction can increase code size. Prevent
2025 // blocks with multiple predecesors from being ifcvted to prevent this
2027 if (Subtarget
.isThumb2() && TBB
.getParent()->getFunction().hasMinSize()) {
2028 if (TBB
.pred_size() != 1 || FBB
.pred_size() != 1)
2032 // Attempt to estimate the relative costs of predication versus branching.
2033 // Here we scale up each component of UnpredCost to avoid precision issue when
2034 // scaling TCycles/FCycles by Probability.
2035 const unsigned ScalingUpFactor
= 1024;
2037 unsigned PredCost
= (TCycles
+ FCycles
+ TExtra
+ FExtra
) * ScalingUpFactor
;
2038 unsigned UnpredCost
;
2039 if (!Subtarget
.hasBranchPredictor()) {
2040 // When we don't have a branch predictor it's always cheaper to not take a
2041 // branch than take it, so we have to take that into account.
2042 unsigned NotTakenBranchCost
= 1;
2043 unsigned TakenBranchCost
= Subtarget
.getMispredictionPenalty();
2044 unsigned TUnpredCycles
, FUnpredCycles
;
2046 // Triangle: TBB is the fallthrough
2047 TUnpredCycles
= TCycles
+ NotTakenBranchCost
;
2048 FUnpredCycles
= TakenBranchCost
;
2050 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2051 TUnpredCycles
= TCycles
+ TakenBranchCost
;
2052 FUnpredCycles
= FCycles
+ NotTakenBranchCost
;
2053 // The branch at the end of FBB will disappear when it's predicated, so
2054 // discount it from PredCost.
2055 PredCost
-= 1 * ScalingUpFactor
;
2057 // The total cost is the cost of each path scaled by their probabilites
2058 unsigned TUnpredCost
= Probability
.scale(TUnpredCycles
* ScalingUpFactor
);
2059 unsigned FUnpredCost
= Probability
.getCompl().scale(FUnpredCycles
* ScalingUpFactor
);
2060 UnpredCost
= TUnpredCost
+ FUnpredCost
;
2061 // When predicating assume that the first IT can be folded away but later
2062 // ones cost one cycle each
2063 if (Subtarget
.isThumb2() && TCycles
+ FCycles
> 4) {
2064 PredCost
+= ((TCycles
+ FCycles
- 4) / 4) * ScalingUpFactor
;
2067 unsigned TUnpredCost
= Probability
.scale(TCycles
* ScalingUpFactor
);
2068 unsigned FUnpredCost
=
2069 Probability
.getCompl().scale(FCycles
* ScalingUpFactor
);
2070 UnpredCost
= TUnpredCost
+ FUnpredCost
;
2071 UnpredCost
+= 1 * ScalingUpFactor
; // The branch itself
2072 UnpredCost
+= Subtarget
.getMispredictionPenalty() * ScalingUpFactor
/ 10;
2075 return PredCost
<= UnpredCost
;
2079 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock
&TMBB
,
2080 MachineBasicBlock
&FMBB
) const {
2081 // Reduce false anti-dependencies to let the target's out-of-order execution
2082 // engine do its thing.
2083 return Subtarget
.isProfitableToUnpredicate();
2086 /// getInstrPredicate - If instruction is predicated, returns its predicate
2087 /// condition, otherwise returns AL. It also returns the condition code
2088 /// register by reference.
2089 ARMCC::CondCodes
llvm::getInstrPredicate(const MachineInstr
&MI
,
2090 unsigned &PredReg
) {
2091 int PIdx
= MI
.findFirstPredOperandIdx();
2097 PredReg
= MI
.getOperand(PIdx
+1).getReg();
2098 return (ARMCC::CondCodes
)MI
.getOperand(PIdx
).getImm();
2101 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc
) {
2106 if (Opc
== ARM::t2B
)
2109 llvm_unreachable("Unknown unconditional branch opcode!");
2112 MachineInstr
*ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
2115 unsigned OpIdx2
) const {
2116 switch (MI
.getOpcode()) {
2118 case ARM::t2MOVCCr
: {
2119 // MOVCC can be commuted by inverting the condition.
2120 unsigned PredReg
= 0;
2121 ARMCC::CondCodes CC
= getInstrPredicate(MI
, PredReg
);
2122 // MOVCC AL can't be inverted. Shouldn't happen.
2123 if (CC
== ARMCC::AL
|| PredReg
!= ARM::CPSR
)
2125 MachineInstr
*CommutedMI
=
2126 TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2129 // After swapping the MOVCC operands, also invert the condition.
2130 CommutedMI
->getOperand(CommutedMI
->findFirstPredOperandIdx())
2131 .setImm(ARMCC::getOppositeCondition(CC
));
2135 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2138 /// Identify instructions that can be folded into a MOVCC instruction, and
2139 /// return the defining instruction.
2141 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg
, const MachineRegisterInfo
&MRI
,
2142 const TargetInstrInfo
*TII
) const {
2143 if (!Register::isVirtualRegister(Reg
))
2145 if (!MRI
.hasOneNonDBGUse(Reg
))
2147 MachineInstr
*MI
= MRI
.getVRegDef(Reg
);
2150 // Check if MI can be predicated and folded into the MOVCC.
2151 if (!isPredicable(*MI
))
2153 // Check if MI has any non-dead defs or physreg uses. This also detects
2154 // predicated instructions which will be reading CPSR.
2155 for (unsigned i
= 1, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
2156 const MachineOperand
&MO
= MI
->getOperand(i
);
2157 // Reject frame index operands, PEI can't handle the predicated pseudos.
2158 if (MO
.isFI() || MO
.isCPI() || MO
.isJTI())
2162 // MI can't have any tied operands, that would conflict with predication.
2165 if (Register::isPhysicalRegister(MO
.getReg()))
2167 if (MO
.isDef() && !MO
.isDead())
2170 bool DontMoveAcrossStores
= true;
2171 if (!MI
->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores
))
2176 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr
&MI
,
2177 SmallVectorImpl
<MachineOperand
> &Cond
,
2178 unsigned &TrueOp
, unsigned &FalseOp
,
2179 bool &Optimizable
) const {
2180 assert((MI
.getOpcode() == ARM::MOVCCr
|| MI
.getOpcode() == ARM::t2MOVCCr
) &&
2181 "Unknown select instruction");
2186 // 3: Condition code.
2190 Cond
.push_back(MI
.getOperand(3));
2191 Cond
.push_back(MI
.getOperand(4));
2192 // We can always fold a def.
2198 ARMBaseInstrInfo::optimizeSelect(MachineInstr
&MI
,
2199 SmallPtrSetImpl
<MachineInstr
*> &SeenMIs
,
2200 bool PreferFalse
) const {
2201 assert((MI
.getOpcode() == ARM::MOVCCr
|| MI
.getOpcode() == ARM::t2MOVCCr
) &&
2202 "Unknown select instruction");
2203 MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
2204 MachineInstr
*DefMI
= canFoldIntoMOVCC(MI
.getOperand(2).getReg(), MRI
, this);
2205 bool Invert
= !DefMI
;
2207 DefMI
= canFoldIntoMOVCC(MI
.getOperand(1).getReg(), MRI
, this);
2211 // Find new register class to use.
2212 MachineOperand FalseReg
= MI
.getOperand(Invert
? 2 : 1);
2213 Register DestReg
= MI
.getOperand(0).getReg();
2214 const TargetRegisterClass
*PreviousClass
= MRI
.getRegClass(FalseReg
.getReg());
2215 if (!MRI
.constrainRegClass(DestReg
, PreviousClass
))
2218 // Create a new predicated version of DefMI.
2219 // Rfalse is the first use.
2220 MachineInstrBuilder NewMI
=
2221 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), DefMI
->getDesc(), DestReg
);
2223 // Copy all the DefMI operands, excluding its (null) predicate.
2224 const MCInstrDesc
&DefDesc
= DefMI
->getDesc();
2225 for (unsigned i
= 1, e
= DefDesc
.getNumOperands();
2226 i
!= e
&& !DefDesc
.OpInfo
[i
].isPredicate(); ++i
)
2227 NewMI
.add(DefMI
->getOperand(i
));
2229 unsigned CondCode
= MI
.getOperand(3).getImm();
2231 NewMI
.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode
)));
2233 NewMI
.addImm(CondCode
);
2234 NewMI
.add(MI
.getOperand(4));
2236 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2237 if (NewMI
->hasOptionalDef())
2238 NewMI
.add(condCodeOp());
2240 // The output register value when the predicate is false is an implicit
2241 // register operand tied to the first def.
2242 // The tie makes the register allocator ensure the FalseReg is allocated the
2243 // same register as operand 0.
2244 FalseReg
.setImplicit();
2245 NewMI
.add(FalseReg
);
2246 NewMI
->tieOperands(0, NewMI
->getNumOperands() - 1);
2248 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2249 SeenMIs
.insert(NewMI
);
2250 SeenMIs
.erase(DefMI
);
2252 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2253 // DefMI would be invalid when tranferred inside the loop. Checking for a
2254 // loop is expensive, but at least remove kill flags if they are in different
2256 if (DefMI
->getParent() != MI
.getParent())
2257 NewMI
->clearKillInfo();
2259 // The caller will erase MI, but not DefMI.
2260 DefMI
->eraseFromParent();
2264 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2265 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2268 /// This will go away once we can teach tblgen how to set the optional CPSR def
2270 struct AddSubFlagsOpcodePair
{
2272 uint16_t MachineOpc
;
2275 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap
[] = {
2276 {ARM::ADDSri
, ARM::ADDri
},
2277 {ARM::ADDSrr
, ARM::ADDrr
},
2278 {ARM::ADDSrsi
, ARM::ADDrsi
},
2279 {ARM::ADDSrsr
, ARM::ADDrsr
},
2281 {ARM::SUBSri
, ARM::SUBri
},
2282 {ARM::SUBSrr
, ARM::SUBrr
},
2283 {ARM::SUBSrsi
, ARM::SUBrsi
},
2284 {ARM::SUBSrsr
, ARM::SUBrsr
},
2286 {ARM::RSBSri
, ARM::RSBri
},
2287 {ARM::RSBSrsi
, ARM::RSBrsi
},
2288 {ARM::RSBSrsr
, ARM::RSBrsr
},
2290 {ARM::tADDSi3
, ARM::tADDi3
},
2291 {ARM::tADDSi8
, ARM::tADDi8
},
2292 {ARM::tADDSrr
, ARM::tADDrr
},
2293 {ARM::tADCS
, ARM::tADC
},
2295 {ARM::tSUBSi3
, ARM::tSUBi3
},
2296 {ARM::tSUBSi8
, ARM::tSUBi8
},
2297 {ARM::tSUBSrr
, ARM::tSUBrr
},
2298 {ARM::tSBCS
, ARM::tSBC
},
2299 {ARM::tRSBS
, ARM::tRSB
},
2300 {ARM::tLSLSri
, ARM::tLSLri
},
2302 {ARM::t2ADDSri
, ARM::t2ADDri
},
2303 {ARM::t2ADDSrr
, ARM::t2ADDrr
},
2304 {ARM::t2ADDSrs
, ARM::t2ADDrs
},
2306 {ARM::t2SUBSri
, ARM::t2SUBri
},
2307 {ARM::t2SUBSrr
, ARM::t2SUBrr
},
2308 {ARM::t2SUBSrs
, ARM::t2SUBrs
},
2310 {ARM::t2RSBSri
, ARM::t2RSBri
},
2311 {ARM::t2RSBSrs
, ARM::t2RSBrs
},
2314 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc
) {
2315 for (unsigned i
= 0, e
= array_lengthof(AddSubFlagsOpcodeMap
); i
!= e
; ++i
)
2316 if (OldOpc
== AddSubFlagsOpcodeMap
[i
].PseudoOpc
)
2317 return AddSubFlagsOpcodeMap
[i
].MachineOpc
;
2321 void llvm::emitARMRegPlusImmediate(MachineBasicBlock
&MBB
,
2322 MachineBasicBlock::iterator
&MBBI
,
2323 const DebugLoc
&dl
, unsigned DestReg
,
2324 unsigned BaseReg
, int NumBytes
,
2325 ARMCC::CondCodes Pred
, unsigned PredReg
,
2326 const ARMBaseInstrInfo
&TII
,
2328 if (NumBytes
== 0 && DestReg
!= BaseReg
) {
2329 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), DestReg
)
2330 .addReg(BaseReg
, RegState::Kill
)
2331 .add(predOps(Pred
, PredReg
))
2333 .setMIFlags(MIFlags
);
2337 bool isSub
= NumBytes
< 0;
2338 if (isSub
) NumBytes
= -NumBytes
;
2341 unsigned RotAmt
= ARM_AM::getSOImmValRotate(NumBytes
);
2342 unsigned ThisVal
= NumBytes
& ARM_AM::rotr32(0xFF, RotAmt
);
2343 assert(ThisVal
&& "Didn't extract field correctly");
2345 // We will handle these bits from offset, clear them.
2346 NumBytes
&= ~ThisVal
;
2348 assert(ARM_AM::getSOImmVal(ThisVal
) != -1 && "Bit extraction didn't work?");
2350 // Build the new ADD / SUB.
2351 unsigned Opc
= isSub
? ARM::SUBri
: ARM::ADDri
;
2352 BuildMI(MBB
, MBBI
, dl
, TII
.get(Opc
), DestReg
)
2353 .addReg(BaseReg
, RegState::Kill
)
2355 .add(predOps(Pred
, PredReg
))
2357 .setMIFlags(MIFlags
);
2362 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget
&Subtarget
,
2363 MachineFunction
&MF
, MachineInstr
*MI
,
2364 unsigned NumBytes
) {
2365 // This optimisation potentially adds lots of load and store
2366 // micro-operations, it's only really a great benefit to code-size.
2367 if (!Subtarget
.hasMinSize())
2370 // If only one register is pushed/popped, LLVM can use an LDR/STR
2371 // instead. We can't modify those so make sure we're dealing with an
2372 // instruction we understand.
2373 bool IsPop
= isPopOpcode(MI
->getOpcode());
2374 bool IsPush
= isPushOpcode(MI
->getOpcode());
2375 if (!IsPush
&& !IsPop
)
2378 bool IsVFPPushPop
= MI
->getOpcode() == ARM::VSTMDDB_UPD
||
2379 MI
->getOpcode() == ARM::VLDMDIA_UPD
;
2380 bool IsT1PushPop
= MI
->getOpcode() == ARM::tPUSH
||
2381 MI
->getOpcode() == ARM::tPOP
||
2382 MI
->getOpcode() == ARM::tPOP_RET
;
2384 assert((IsT1PushPop
|| (MI
->getOperand(0).getReg() == ARM::SP
&&
2385 MI
->getOperand(1).getReg() == ARM::SP
)) &&
2386 "trying to fold sp update into non-sp-updating push/pop");
2388 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2389 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2390 // if this is violated.
2391 if (NumBytes
% (IsVFPPushPop
? 8 : 4) != 0)
2394 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2395 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2396 int RegListIdx
= IsT1PushPop
? 2 : 4;
2398 // Calculate the space we'll need in terms of registers.
2399 unsigned RegsNeeded
;
2400 const TargetRegisterClass
*RegClass
;
2402 RegsNeeded
= NumBytes
/ 8;
2403 RegClass
= &ARM::DPRRegClass
;
2405 RegsNeeded
= NumBytes
/ 4;
2406 RegClass
= &ARM::GPRRegClass
;
2409 // We're going to have to strip all list operands off before
2410 // re-adding them since the order matters, so save the existing ones
2412 SmallVector
<MachineOperand
, 4> RegList
;
2414 // We're also going to need the first register transferred by this
2415 // instruction, which won't necessarily be the first register in the list.
2416 unsigned FirstRegEnc
= -1;
2418 const TargetRegisterInfo
*TRI
= MF
.getRegInfo().getTargetRegisterInfo();
2419 for (int i
= MI
->getNumOperands() - 1; i
>= RegListIdx
; --i
) {
2420 MachineOperand
&MO
= MI
->getOperand(i
);
2421 RegList
.push_back(MO
);
2423 if (MO
.isReg() && TRI
->getEncodingValue(MO
.getReg()) < FirstRegEnc
)
2424 FirstRegEnc
= TRI
->getEncodingValue(MO
.getReg());
2427 const MCPhysReg
*CSRegs
= TRI
->getCalleeSavedRegs(&MF
);
2429 // Now try to find enough space in the reglist to allocate NumBytes.
2430 for (int CurRegEnc
= FirstRegEnc
- 1; CurRegEnc
>= 0 && RegsNeeded
;
2432 unsigned CurReg
= RegClass
->getRegister(CurRegEnc
);
2433 if (IsT1PushPop
&& CurReg
> ARM::R7
)
2436 // Pushing any register is completely harmless, mark the register involved
2437 // as undef since we don't care about its value and must not restore it
2438 // during stack unwinding.
2439 RegList
.push_back(MachineOperand::CreateReg(CurReg
, false, false,
2440 false, false, true));
2445 // However, we can only pop an extra register if it's not live. For
2446 // registers live within the function we might clobber a return value
2447 // register; the other way a register can be live here is if it's
2449 if (isCalleeSavedRegister(CurReg
, CSRegs
) ||
2450 MI
->getParent()->computeRegisterLiveness(TRI
, CurReg
, MI
) !=
2451 MachineBasicBlock::LQR_Dead
) {
2452 // VFP pops don't allow holes in the register list, so any skip is fatal
2453 // for our transformation. GPR pops do, so we should just keep looking.
2460 // Mark the unimportant registers as <def,dead> in the POP.
2461 RegList
.push_back(MachineOperand::CreateReg(CurReg
, true, false, false,
2469 // Finally we know we can profitably perform the optimisation so go
2470 // ahead: strip all existing registers off and add them back again
2471 // in the right order.
2472 for (int i
= MI
->getNumOperands() - 1; i
>= RegListIdx
; --i
)
2473 MI
->RemoveOperand(i
);
2475 // Add the complete list back in.
2476 MachineInstrBuilder
MIB(MF
, &*MI
);
2477 for (int i
= RegList
.size() - 1; i
>= 0; --i
)
2478 MIB
.add(RegList
[i
]);
2483 bool llvm::rewriteARMFrameIndex(MachineInstr
&MI
, unsigned FrameRegIdx
,
2484 unsigned FrameReg
, int &Offset
,
2485 const ARMBaseInstrInfo
&TII
) {
2486 unsigned Opcode
= MI
.getOpcode();
2487 const MCInstrDesc
&Desc
= MI
.getDesc();
2488 unsigned AddrMode
= (Desc
.TSFlags
& ARMII::AddrModeMask
);
2491 // Memory operands in inline assembly always use AddrMode2.
2492 if (Opcode
== ARM::INLINEASM
|| Opcode
== ARM::INLINEASM_BR
)
2493 AddrMode
= ARMII::AddrMode2
;
2495 if (Opcode
== ARM::ADDri
) {
2496 Offset
+= MI
.getOperand(FrameRegIdx
+1).getImm();
2498 // Turn it into a move.
2499 MI
.setDesc(TII
.get(ARM::MOVr
));
2500 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2501 MI
.RemoveOperand(FrameRegIdx
+1);
2504 } else if (Offset
< 0) {
2507 MI
.setDesc(TII
.get(ARM::SUBri
));
2510 // Common case: small offset, fits into instruction.
2511 if (ARM_AM::getSOImmVal(Offset
) != -1) {
2512 // Replace the FrameIndex with sp / fp
2513 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2514 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(Offset
);
2519 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2521 unsigned RotAmt
= ARM_AM::getSOImmValRotate(Offset
);
2522 unsigned ThisImmVal
= Offset
& ARM_AM::rotr32(0xFF, RotAmt
);
2524 // We will handle these bits from offset, clear them.
2525 Offset
&= ~ThisImmVal
;
2527 // Get the properly encoded SOImmVal field.
2528 assert(ARM_AM::getSOImmVal(ThisImmVal
) != -1 &&
2529 "Bit extraction didn't work?");
2530 MI
.getOperand(FrameRegIdx
+1).ChangeToImmediate(ThisImmVal
);
2532 unsigned ImmIdx
= 0;
2534 unsigned NumBits
= 0;
2537 case ARMII::AddrMode_i12
:
2538 ImmIdx
= FrameRegIdx
+ 1;
2539 InstrOffs
= MI
.getOperand(ImmIdx
).getImm();
2542 case ARMII::AddrMode2
:
2543 ImmIdx
= FrameRegIdx
+2;
2544 InstrOffs
= ARM_AM::getAM2Offset(MI
.getOperand(ImmIdx
).getImm());
2545 if (ARM_AM::getAM2Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2549 case ARMII::AddrMode3
:
2550 ImmIdx
= FrameRegIdx
+2;
2551 InstrOffs
= ARM_AM::getAM3Offset(MI
.getOperand(ImmIdx
).getImm());
2552 if (ARM_AM::getAM3Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2556 case ARMII::AddrMode4
:
2557 case ARMII::AddrMode6
:
2558 // Can't fold any offset even if it's zero.
2560 case ARMII::AddrMode5
:
2561 ImmIdx
= FrameRegIdx
+1;
2562 InstrOffs
= ARM_AM::getAM5Offset(MI
.getOperand(ImmIdx
).getImm());
2563 if (ARM_AM::getAM5Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2568 case ARMII::AddrMode5FP16
:
2569 ImmIdx
= FrameRegIdx
+1;
2570 InstrOffs
= ARM_AM::getAM5Offset(MI
.getOperand(ImmIdx
).getImm());
2571 if (ARM_AM::getAM5Op(MI
.getOperand(ImmIdx
).getImm()) == ARM_AM::sub
)
2576 case ARMII::AddrModeT2_i7
:
2577 case ARMII::AddrModeT2_i7s2
:
2578 case ARMII::AddrModeT2_i7s4
:
2579 ImmIdx
= FrameRegIdx
+1;
2580 InstrOffs
= MI
.getOperand(ImmIdx
).getImm();
2582 Scale
= (AddrMode
== ARMII::AddrModeT2_i7s2
? 2 :
2583 AddrMode
== ARMII::AddrModeT2_i7s4
? 4 : 1);
2586 llvm_unreachable("Unsupported addressing mode!");
2589 Offset
+= InstrOffs
* Scale
;
2590 assert((Offset
& (Scale
-1)) == 0 && "Can't encode this offset!");
2596 // Attempt to fold address comp. if opcode has offset bits
2598 // Common case: small offset, fits into instruction.
2599 MachineOperand
&ImmOp
= MI
.getOperand(ImmIdx
);
2600 int ImmedOffset
= Offset
/ Scale
;
2601 unsigned Mask
= (1 << NumBits
) - 1;
2602 if ((unsigned)Offset
<= Mask
* Scale
) {
2603 // Replace the FrameIndex with sp
2604 MI
.getOperand(FrameRegIdx
).ChangeToRegister(FrameReg
, false);
2605 // FIXME: When addrmode2 goes away, this will simplify (like the
2606 // T2 version), as the LDR.i12 versions don't need the encoding
2607 // tricks for the offset value.
2609 if (AddrMode
== ARMII::AddrMode_i12
)
2610 ImmedOffset
= -ImmedOffset
;
2612 ImmedOffset
|= 1 << NumBits
;
2614 ImmOp
.ChangeToImmediate(ImmedOffset
);
2619 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2620 ImmedOffset
= ImmedOffset
& Mask
;
2622 if (AddrMode
== ARMII::AddrMode_i12
)
2623 ImmedOffset
= -ImmedOffset
;
2625 ImmedOffset
|= 1 << NumBits
;
2627 ImmOp
.ChangeToImmediate(ImmedOffset
);
2628 Offset
&= ~(Mask
*Scale
);
2632 Offset
= (isSub
) ? -Offset
: Offset
;
2636 /// analyzeCompare - For a comparison instruction, return the source registers
2637 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2638 /// compares against in CmpValue. Return true if the comparison instruction
2639 /// can be analyzed.
2640 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
2641 unsigned &SrcReg2
, int &CmpMask
,
2642 int &CmpValue
) const {
2643 switch (MI
.getOpcode()) {
2648 SrcReg
= MI
.getOperand(0).getReg();
2651 CmpValue
= MI
.getOperand(1).getImm();
2656 SrcReg
= MI
.getOperand(0).getReg();
2657 SrcReg2
= MI
.getOperand(1).getReg();
2663 SrcReg
= MI
.getOperand(0).getReg();
2665 CmpMask
= MI
.getOperand(1).getImm();
2673 /// isSuitableForMask - Identify a suitable 'and' instruction that
2674 /// operates on the given source register and applies the same mask
2675 /// as a 'tst' instruction. Provide a limited look-through for copies.
2676 /// When successful, MI will hold the found instruction.
2677 static bool isSuitableForMask(MachineInstr
*&MI
, unsigned SrcReg
,
2678 int CmpMask
, bool CommonUse
) {
2679 switch (MI
->getOpcode()) {
2682 if (CmpMask
!= MI
->getOperand(2).getImm())
2684 if (SrcReg
== MI
->getOperand(CommonUse
? 1 : 0).getReg())
2692 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2693 /// the condition code if we modify the instructions such that flags are
2695 inline static ARMCC::CondCodes
getSwappedCondition(ARMCC::CondCodes CC
) {
2697 default: return ARMCC::AL
;
2698 case ARMCC::EQ
: return ARMCC::EQ
;
2699 case ARMCC::NE
: return ARMCC::NE
;
2700 case ARMCC::HS
: return ARMCC::LS
;
2701 case ARMCC::LO
: return ARMCC::HI
;
2702 case ARMCC::HI
: return ARMCC::LO
;
2703 case ARMCC::LS
: return ARMCC::HS
;
2704 case ARMCC::GE
: return ARMCC::LE
;
2705 case ARMCC::LT
: return ARMCC::GT
;
2706 case ARMCC::GT
: return ARMCC::LT
;
2707 case ARMCC::LE
: return ARMCC::GE
;
2711 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2712 /// the condition code if we modify the instructions such that flags are
2713 /// set by ADD(a,b,X).
2714 inline static ARMCC::CondCodes
getCmpToAddCondition(ARMCC::CondCodes CC
) {
2716 default: return ARMCC::AL
;
2717 case ARMCC::HS
: return ARMCC::LO
;
2718 case ARMCC::LO
: return ARMCC::HS
;
2719 case ARMCC::VS
: return ARMCC::VS
;
2720 case ARMCC::VC
: return ARMCC::VC
;
2724 /// isRedundantFlagInstr - check whether the first instruction, whose only
2725 /// purpose is to update flags, can be made redundant.
2726 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2727 /// CMPri can be made redundant by SUBri if the operands are the same.
2728 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2729 /// This function can be extended later on.
2730 inline static bool isRedundantFlagInstr(const MachineInstr
*CmpI
,
2731 unsigned SrcReg
, unsigned SrcReg2
,
2732 int ImmValue
, const MachineInstr
*OI
,
2734 if ((CmpI
->getOpcode() == ARM::CMPrr
|| CmpI
->getOpcode() == ARM::t2CMPrr
) &&
2735 (OI
->getOpcode() == ARM::SUBrr
|| OI
->getOpcode() == ARM::t2SUBrr
) &&
2736 ((OI
->getOperand(1).getReg() == SrcReg
&&
2737 OI
->getOperand(2).getReg() == SrcReg2
) ||
2738 (OI
->getOperand(1).getReg() == SrcReg2
&&
2739 OI
->getOperand(2).getReg() == SrcReg
))) {
2744 if (CmpI
->getOpcode() == ARM::tCMPr
&& OI
->getOpcode() == ARM::tSUBrr
&&
2745 ((OI
->getOperand(2).getReg() == SrcReg
&&
2746 OI
->getOperand(3).getReg() == SrcReg2
) ||
2747 (OI
->getOperand(2).getReg() == SrcReg2
&&
2748 OI
->getOperand(3).getReg() == SrcReg
))) {
2753 if ((CmpI
->getOpcode() == ARM::CMPri
|| CmpI
->getOpcode() == ARM::t2CMPri
) &&
2754 (OI
->getOpcode() == ARM::SUBri
|| OI
->getOpcode() == ARM::t2SUBri
) &&
2755 OI
->getOperand(1).getReg() == SrcReg
&&
2756 OI
->getOperand(2).getImm() == ImmValue
) {
2761 if (CmpI
->getOpcode() == ARM::tCMPi8
&&
2762 (OI
->getOpcode() == ARM::tSUBi8
|| OI
->getOpcode() == ARM::tSUBi3
) &&
2763 OI
->getOperand(2).getReg() == SrcReg
&&
2764 OI
->getOperand(3).getImm() == ImmValue
) {
2769 if ((CmpI
->getOpcode() == ARM::CMPrr
|| CmpI
->getOpcode() == ARM::t2CMPrr
) &&
2770 (OI
->getOpcode() == ARM::ADDrr
|| OI
->getOpcode() == ARM::t2ADDrr
||
2771 OI
->getOpcode() == ARM::ADDri
|| OI
->getOpcode() == ARM::t2ADDri
) &&
2772 OI
->getOperand(0).isReg() && OI
->getOperand(1).isReg() &&
2773 OI
->getOperand(0).getReg() == SrcReg
&&
2774 OI
->getOperand(1).getReg() == SrcReg2
) {
2779 if (CmpI
->getOpcode() == ARM::tCMPr
&&
2780 (OI
->getOpcode() == ARM::tADDi3
|| OI
->getOpcode() == ARM::tADDi8
||
2781 OI
->getOpcode() == ARM::tADDrr
) &&
2782 OI
->getOperand(0).getReg() == SrcReg
&&
2783 OI
->getOperand(2).getReg() == SrcReg2
) {
2791 static bool isOptimizeCompareCandidate(MachineInstr
*MI
, bool &IsThumb1
) {
2792 switch (MI
->getOpcode()) {
2793 default: return false;
2859 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2860 /// comparison into one that sets the zero bit in the flags register;
2861 /// Remove a redundant Compare instruction if an earlier instruction can set the
2862 /// flags in the same way as Compare.
2863 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2864 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2865 /// condition code of instructions which use the flags.
2866 bool ARMBaseInstrInfo::optimizeCompareInstr(
2867 MachineInstr
&CmpInstr
, unsigned SrcReg
, unsigned SrcReg2
, int CmpMask
,
2868 int CmpValue
, const MachineRegisterInfo
*MRI
) const {
2869 // Get the unique definition of SrcReg.
2870 MachineInstr
*MI
= MRI
->getUniqueVRegDef(SrcReg
);
2871 if (!MI
) return false;
2873 // Masked compares sometimes use the same register as the corresponding 'and'.
2874 if (CmpMask
!= ~0) {
2875 if (!isSuitableForMask(MI
, SrcReg
, CmpMask
, false) || isPredicated(*MI
)) {
2877 for (MachineRegisterInfo::use_instr_iterator
2878 UI
= MRI
->use_instr_begin(SrcReg
), UE
= MRI
->use_instr_end();
2880 if (UI
->getParent() != CmpInstr
.getParent())
2882 MachineInstr
*PotentialAND
= &*UI
;
2883 if (!isSuitableForMask(PotentialAND
, SrcReg
, CmpMask
, true) ||
2884 isPredicated(*PotentialAND
))
2889 if (!MI
) return false;
2893 // Get ready to iterate backward from CmpInstr.
2894 MachineBasicBlock::iterator I
= CmpInstr
, E
= MI
,
2895 B
= CmpInstr
.getParent()->begin();
2897 // Early exit if CmpInstr is at the beginning of the BB.
2898 if (I
== B
) return false;
2900 // There are two possible candidates which can be changed to set CPSR:
2901 // One is MI, the other is a SUB or ADD instruction.
2902 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2903 // ADDr[ri](r1, r2, X).
2904 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2905 MachineInstr
*SubAdd
= nullptr;
2907 // MI is not a candidate for CMPrr.
2909 else if (MI
->getParent() != CmpInstr
.getParent() || CmpValue
!= 0) {
2910 // Conservatively refuse to convert an instruction which isn't in the same
2911 // BB as the comparison.
2912 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2913 // Thus we cannot return here.
2914 if (CmpInstr
.getOpcode() == ARM::CMPri
||
2915 CmpInstr
.getOpcode() == ARM::t2CMPri
||
2916 CmpInstr
.getOpcode() == ARM::tCMPi8
)
2922 bool IsThumb1
= false;
2923 if (MI
&& !isOptimizeCompareCandidate(MI
, IsThumb1
))
2926 // We also want to do this peephole for cases like this: if (a*b == 0),
2927 // and optimise away the CMP instruction from the generated code sequence:
2928 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2929 // resulting from the select instruction, but these MOVS instructions for
2930 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2931 // However, if we only have MOVS instructions in between the CMP and the
2932 // other instruction (the MULS in this example), then the CPSR is dead so we
2933 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2934 // reordering and then continue the analysis hoping we can eliminate the
2935 // CMP. This peephole works on the vregs, so is still in SSA form. As a
2936 // consequence, the movs won't redefine/kill the MUL operands which would
2937 // make this reordering illegal.
2938 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
2939 if (MI
&& IsThumb1
) {
2941 if (I
!= E
&& !MI
->readsRegister(ARM::CPSR
, TRI
)) {
2942 bool CanReorder
= true;
2943 for (; I
!= E
; --I
) {
2944 if (I
->getOpcode() != ARM::tMOVi8
) {
2950 MI
= MI
->removeFromParent();
2952 CmpInstr
.getParent()->insert(E
, MI
);
2959 // Check that CPSR isn't set between the comparison instruction and the one we
2960 // want to change. At the same time, search for SubAdd.
2961 bool SubAddIsThumb1
= false;
2963 const MachineInstr
&Instr
= *--I
;
2965 // Check whether CmpInstr can be made redundant by the current instruction.
2966 if (isRedundantFlagInstr(&CmpInstr
, SrcReg
, SrcReg2
, CmpValue
, &Instr
,
2972 // Allow E (which was initially MI) to be SubAdd but do not search before E.
2976 if (Instr
.modifiesRegister(ARM::CPSR
, TRI
) ||
2977 Instr
.readsRegister(ARM::CPSR
, TRI
))
2978 // This instruction modifies or uses CPSR after the one we want to
2979 // change. We can't do this transformation.
2983 // In some cases, we scan the use-list of an instruction for an AND;
2984 // that AND is in the same BB, but may not be scheduled before the
2985 // corresponding TST. In that case, bail out.
2987 // FIXME: We could try to reschedule the AND.
2992 // Return false if no candidates exist.
2996 // If we found a SubAdd, use it as it will be closer to the CMP
2999 IsThumb1
= SubAddIsThumb1
;
3002 // We can't use a predicated instruction - it doesn't always write the flags.
3003 if (isPredicated(*MI
))
3006 // Scan forward for the use of CPSR
3007 // When checking against MI: if it's a conditional code that requires
3008 // checking of the V bit or C bit, then this is not safe to do.
3009 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3010 // If we are done with the basic block, we need to check whether CPSR is
3012 SmallVector
<std::pair
<MachineOperand
*, ARMCC::CondCodes
>, 4>
3014 bool isSafe
= false;
3016 E
= CmpInstr
.getParent()->end();
3017 while (!isSafe
&& ++I
!= E
) {
3018 const MachineInstr
&Instr
= *I
;
3019 for (unsigned IO
= 0, EO
= Instr
.getNumOperands();
3020 !isSafe
&& IO
!= EO
; ++IO
) {
3021 const MachineOperand
&MO
= Instr
.getOperand(IO
);
3022 if (MO
.isRegMask() && MO
.clobbersPhysReg(ARM::CPSR
)) {
3026 if (!MO
.isReg() || MO
.getReg() != ARM::CPSR
)
3032 // Condition code is after the operand before CPSR except for VSELs.
3033 ARMCC::CondCodes CC
;
3034 bool IsInstrVSel
= true;
3035 switch (Instr
.getOpcode()) {
3037 IsInstrVSel
= false;
3038 CC
= (ARMCC::CondCodes
)Instr
.getOperand(IO
- 1).getImm();
3059 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3060 // on CMP needs to be updated to be based on SUB.
3061 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3062 // needs to be modified.
3063 // Push the condition code operands to OperandsToUpdate.
3064 // If it is safe to remove CmpInstr, the condition code of these
3065 // operands will be modified.
3066 unsigned Opc
= SubAdd
->getOpcode();
3067 bool IsSub
= Opc
== ARM::SUBrr
|| Opc
== ARM::t2SUBrr
||
3068 Opc
== ARM::SUBri
|| Opc
== ARM::t2SUBri
||
3069 Opc
== ARM::tSUBrr
|| Opc
== ARM::tSUBi3
||
3071 unsigned OpI
= Opc
!= ARM::tSUBrr
? 1 : 2;
3073 (SrcReg2
!= 0 && SubAdd
->getOperand(OpI
).getReg() == SrcReg2
&&
3074 SubAdd
->getOperand(OpI
+ 1).getReg() == SrcReg
)) {
3075 // VSel doesn't support condition code update.
3078 // Ensure we can swap the condition.
3079 ARMCC::CondCodes NewCC
= (IsSub
? getSwappedCondition(CC
) : getCmpToAddCondition(CC
));
3080 if (NewCC
== ARMCC::AL
)
3082 OperandsToUpdate
.push_back(
3083 std::make_pair(&((*I
).getOperand(IO
- 1)), NewCC
));
3086 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3088 case ARMCC::EQ
: // Z
3089 case ARMCC::NE
: // Z
3090 case ARMCC::MI
: // N
3091 case ARMCC::PL
: // N
3092 case ARMCC::AL
: // none
3093 // CPSR can be used multiple times, we should continue.
3095 case ARMCC::HS
: // C
3096 case ARMCC::LO
: // C
3097 case ARMCC::VS
: // V
3098 case ARMCC::VC
: // V
3099 case ARMCC::HI
: // C Z
3100 case ARMCC::LS
: // C Z
3101 case ARMCC::GE
: // N V
3102 case ARMCC::LT
: // N V
3103 case ARMCC::GT
: // Z N V
3104 case ARMCC::LE
: // Z N V
3105 // The instruction uses the V bit or C bit which is not safe.
3112 // If CPSR is not killed nor re-defined, we should check whether it is
3113 // live-out. If it is live-out, do not optimize.
3115 MachineBasicBlock
*MBB
= CmpInstr
.getParent();
3116 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
3117 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
3118 if ((*SI
)->isLiveIn(ARM::CPSR
))
3122 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3123 // set CPSR so this is represented as an explicit output)
3125 MI
->getOperand(5).setReg(ARM::CPSR
);
3126 MI
->getOperand(5).setIsDef(true);
3128 assert(!isPredicated(*MI
) && "Can't use flags from predicated instruction");
3129 CmpInstr
.eraseFromParent();
3131 // Modify the condition code of operands in OperandsToUpdate.
3132 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3133 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3134 for (unsigned i
= 0, e
= OperandsToUpdate
.size(); i
< e
; i
++)
3135 OperandsToUpdate
[i
].first
->setImm(OperandsToUpdate
[i
].second
);
3137 MI
->clearRegisterDeads(ARM::CPSR
);
3142 bool ARMBaseInstrInfo::shouldSink(const MachineInstr
&MI
) const {
3143 // Do not sink MI if it might be used to optimize a redundant compare.
3144 // We heuristically only look at the instruction immediately following MI to
3145 // avoid potentially searching the entire basic block.
3146 if (isPredicated(MI
))
3148 MachineBasicBlock::const_iterator Next
= &MI
;
3150 unsigned SrcReg
, SrcReg2
;
3151 int CmpMask
, CmpValue
;
3153 if (Next
!= MI
.getParent()->end() &&
3154 analyzeCompare(*Next
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
) &&
3155 isRedundantFlagInstr(&*Next
, SrcReg
, SrcReg2
, CmpValue
, &MI
, IsThumb1
))
3160 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
3162 MachineRegisterInfo
*MRI
) const {
3163 // Fold large immediates into add, sub, or, xor.
3164 unsigned DefOpc
= DefMI
.getOpcode();
3165 if (DefOpc
!= ARM::t2MOVi32imm
&& DefOpc
!= ARM::MOVi32imm
)
3167 if (!DefMI
.getOperand(1).isImm())
3168 // Could be t2MOVi32imm @xx
3171 if (!MRI
->hasOneNonDBGUse(Reg
))
3174 const MCInstrDesc
&DefMCID
= DefMI
.getDesc();
3175 if (DefMCID
.hasOptionalDef()) {
3176 unsigned NumOps
= DefMCID
.getNumOperands();
3177 const MachineOperand
&MO
= DefMI
.getOperand(NumOps
- 1);
3178 if (MO
.getReg() == ARM::CPSR
&& !MO
.isDead())
3179 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3184 const MCInstrDesc
&UseMCID
= UseMI
.getDesc();
3185 if (UseMCID
.hasOptionalDef()) {
3186 unsigned NumOps
= UseMCID
.getNumOperands();
3187 if (UseMI
.getOperand(NumOps
- 1).getReg() == ARM::CPSR
)
3188 // If the instruction sets the flag, do not attempt this optimization
3189 // since it may change the semantics of the code.
3193 unsigned UseOpc
= UseMI
.getOpcode();
3194 unsigned NewUseOpc
= 0;
3195 uint32_t ImmVal
= (uint32_t)DefMI
.getOperand(1).getImm();
3196 uint32_t SOImmValV1
= 0, SOImmValV2
= 0;
3197 bool Commute
= false;
3199 default: return false;
3207 case ARM::t2EORrr
: {
3208 Commute
= UseMI
.getOperand(2).getReg() != Reg
;
3213 if (UseOpc
== ARM::SUBrr
&& Commute
)
3216 // ADD/SUB are special because they're essentially the same operation, so
3217 // we can handle a larger range of immediates.
3218 if (ARM_AM::isSOImmTwoPartVal(ImmVal
))
3219 NewUseOpc
= UseOpc
== ARM::ADDrr
? ARM::ADDri
: ARM::SUBri
;
3220 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal
)) {
3222 NewUseOpc
= UseOpc
== ARM::ADDrr
? ARM::SUBri
: ARM::ADDri
;
3225 SOImmValV1
= (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal
);
3226 SOImmValV2
= (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal
);
3230 if (!ARM_AM::isSOImmTwoPartVal(ImmVal
))
3232 SOImmValV1
= (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal
);
3233 SOImmValV2
= (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal
);
3236 case ARM::ORRrr
: NewUseOpc
= ARM::ORRri
; break;
3237 case ARM::EORrr
: NewUseOpc
= ARM::EORri
; break;
3242 if (UseOpc
== ARM::t2SUBrr
&& Commute
)
3245 // ADD/SUB are special because they're essentially the same operation, so
3246 // we can handle a larger range of immediates.
3247 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal
))
3248 NewUseOpc
= UseOpc
== ARM::t2ADDrr
? ARM::t2ADDri
: ARM::t2SUBri
;
3249 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal
)) {
3251 NewUseOpc
= UseOpc
== ARM::t2ADDrr
? ARM::t2SUBri
: ARM::t2ADDri
;
3254 SOImmValV1
= (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal
);
3255 SOImmValV2
= (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal
);
3259 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal
))
3261 SOImmValV1
= (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal
);
3262 SOImmValV2
= (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal
);
3265 case ARM::t2ORRrr
: NewUseOpc
= ARM::t2ORRri
; break;
3266 case ARM::t2EORrr
: NewUseOpc
= ARM::t2EORri
; break;
3273 unsigned OpIdx
= Commute
? 2 : 1;
3274 Register Reg1
= UseMI
.getOperand(OpIdx
).getReg();
3275 bool isKill
= UseMI
.getOperand(OpIdx
).isKill();
3276 Register NewReg
= MRI
->createVirtualRegister(MRI
->getRegClass(Reg
));
3277 BuildMI(*UseMI
.getParent(), UseMI
, UseMI
.getDebugLoc(), get(NewUseOpc
),
3279 .addReg(Reg1
, getKillRegState(isKill
))
3281 .add(predOps(ARMCC::AL
))
3283 UseMI
.setDesc(get(NewUseOpc
));
3284 UseMI
.getOperand(1).setReg(NewReg
);
3285 UseMI
.getOperand(1).setIsKill();
3286 UseMI
.getOperand(2).ChangeToImmediate(SOImmValV2
);
3287 DefMI
.eraseFromParent();
3291 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData
*ItinData
,
3292 const MachineInstr
&MI
) {
3293 switch (MI
.getOpcode()) {
3295 const MCInstrDesc
&Desc
= MI
.getDesc();
3296 int UOps
= ItinData
->getNumMicroOps(Desc
.getSchedClass());
3297 assert(UOps
>= 0 && "bad # UOps");
3305 unsigned ShOpVal
= MI
.getOperand(3).getImm();
3306 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3307 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3310 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3311 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3318 if (!MI
.getOperand(2).getReg())
3321 unsigned ShOpVal
= MI
.getOperand(3).getImm();
3322 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3323 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3326 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3327 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3334 return (ARM_AM::getAM3Op(MI
.getOperand(3).getImm()) == ARM_AM::sub
) ? 3 : 2;
3336 case ARM::LDRSB_POST
:
3337 case ARM::LDRSH_POST
: {
3338 Register Rt
= MI
.getOperand(0).getReg();
3339 Register Rm
= MI
.getOperand(3).getReg();
3340 return (Rt
== Rm
) ? 4 : 3;
3343 case ARM::LDR_PRE_REG
:
3344 case ARM::LDRB_PRE_REG
: {
3345 Register Rt
= MI
.getOperand(0).getReg();
3346 Register Rm
= MI
.getOperand(3).getReg();
3349 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3350 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3351 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3354 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3355 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3360 case ARM::STR_PRE_REG
:
3361 case ARM::STRB_PRE_REG
: {
3362 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3363 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3364 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3367 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3368 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3374 case ARM::STRH_PRE
: {
3375 Register Rt
= MI
.getOperand(0).getReg();
3376 Register Rm
= MI
.getOperand(3).getReg();
3381 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 3 : 2;
3384 case ARM::LDR_POST_REG
:
3385 case ARM::LDRB_POST_REG
:
3386 case ARM::LDRH_POST
: {
3387 Register Rt
= MI
.getOperand(0).getReg();
3388 Register Rm
= MI
.getOperand(3).getReg();
3389 return (Rt
== Rm
) ? 3 : 2;
3392 case ARM::LDR_PRE_IMM
:
3393 case ARM::LDRB_PRE_IMM
:
3394 case ARM::LDR_POST_IMM
:
3395 case ARM::LDRB_POST_IMM
:
3396 case ARM::STRB_POST_IMM
:
3397 case ARM::STRB_POST_REG
:
3398 case ARM::STRB_PRE_IMM
:
3399 case ARM::STRH_POST
:
3400 case ARM::STR_POST_IMM
:
3401 case ARM::STR_POST_REG
:
3402 case ARM::STR_PRE_IMM
:
3405 case ARM::LDRSB_PRE
:
3406 case ARM::LDRSH_PRE
: {
3407 Register Rm
= MI
.getOperand(3).getReg();
3410 Register Rt
= MI
.getOperand(0).getReg();
3413 unsigned ShOpVal
= MI
.getOperand(4).getImm();
3414 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
3415 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
3418 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
3419 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
3425 Register Rt
= MI
.getOperand(0).getReg();
3426 Register Rn
= MI
.getOperand(2).getReg();
3427 Register Rm
= MI
.getOperand(3).getReg();
3429 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 4
3431 return (Rt
== Rn
) ? 3 : 2;
3435 Register Rm
= MI
.getOperand(3).getReg();
3437 return (ARM_AM::getAM3Op(MI
.getOperand(4).getImm()) == ARM_AM::sub
) ? 4
3442 case ARM::LDRD_POST
:
3443 case ARM::t2LDRD_POST
:
3446 case ARM::STRD_POST
:
3447 case ARM::t2STRD_POST
:
3450 case ARM::LDRD_PRE
: {
3451 Register Rt
= MI
.getOperand(0).getReg();
3452 Register Rn
= MI
.getOperand(3).getReg();
3453 Register Rm
= MI
.getOperand(4).getReg();
3455 return (ARM_AM::getAM3Op(MI
.getOperand(5).getImm()) == ARM_AM::sub
) ? 5
3457 return (Rt
== Rn
) ? 4 : 3;
3460 case ARM::t2LDRD_PRE
: {
3461 Register Rt
= MI
.getOperand(0).getReg();
3462 Register Rn
= MI
.getOperand(3).getReg();
3463 return (Rt
== Rn
) ? 4 : 3;
3466 case ARM::STRD_PRE
: {
3467 Register Rm
= MI
.getOperand(4).getReg();
3469 return (ARM_AM::getAM3Op(MI
.getOperand(5).getImm()) == ARM_AM::sub
) ? 5
3474 case ARM::t2STRD_PRE
:
3477 case ARM::t2LDR_POST
:
3478 case ARM::t2LDRB_POST
:
3479 case ARM::t2LDRB_PRE
:
3480 case ARM::t2LDRSBi12
:
3481 case ARM::t2LDRSBi8
:
3482 case ARM::t2LDRSBpci
:
3484 case ARM::t2LDRH_POST
:
3485 case ARM::t2LDRH_PRE
:
3487 case ARM::t2LDRSB_POST
:
3488 case ARM::t2LDRSB_PRE
:
3489 case ARM::t2LDRSH_POST
:
3490 case ARM::t2LDRSH_PRE
:
3491 case ARM::t2LDRSHi12
:
3492 case ARM::t2LDRSHi8
:
3493 case ARM::t2LDRSHpci
:
3497 case ARM::t2LDRDi8
: {
3498 Register Rt
= MI
.getOperand(0).getReg();
3499 Register Rn
= MI
.getOperand(2).getReg();
3500 return (Rt
== Rn
) ? 3 : 2;
3503 case ARM::t2STRB_POST
:
3504 case ARM::t2STRB_PRE
:
3507 case ARM::t2STRH_POST
:
3508 case ARM::t2STRH_PRE
:
3510 case ARM::t2STR_POST
:
3511 case ARM::t2STR_PRE
:
3517 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3518 // can't be easily determined return 0 (missing MachineMemOperand).
3520 // FIXME: The current MachineInstr design does not support relying on machine
3521 // mem operands to determine the width of a memory access. Instead, we expect
3522 // the target to provide this information based on the instruction opcode and
3523 // operands. However, using MachineMemOperand is the best solution now for
3526 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3527 // operands. This is much more dangerous than using the MachineMemOperand
3528 // sizes because CodeGen passes can insert/remove optional machine operands. In
3529 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3530 // postRA passes as well.
3532 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3533 // machine model that calls this should handle the unknown (zero size) case.
3535 // Long term, we should require a target hook that verifies MachineMemOperand
3536 // sizes during MC lowering. That target hook should be local to MC lowering
3537 // because we can't ensure that it is aware of other MI forms. Doing this will
3538 // ensure that MachineMemOperands are correctly propagated through all passes.
3539 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr
&MI
) const {
3541 for (MachineInstr::mmo_iterator I
= MI
.memoperands_begin(),
3542 E
= MI
.memoperands_end();
3544 Size
+= (*I
)->getSize();
3546 // FIXME: The scheduler currently can't handle values larger than 16. But
3547 // the values can actually go up to 32 for floating-point load/store
3548 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3549 // operations isn't right; we could end up with "extra" memory operands for
3550 // various reasons, like tail merge merging two memory operations.
3551 return std::min(Size
/ 4, 16U);
3554 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc
,
3556 unsigned UOps
= 1 + NumRegs
; // 1 for address computation.
3560 case ARM::VLDMDIA_UPD
:
3561 case ARM::VLDMDDB_UPD
:
3562 case ARM::VLDMSIA_UPD
:
3563 case ARM::VLDMSDB_UPD
:
3564 case ARM::VSTMDIA_UPD
:
3565 case ARM::VSTMDDB_UPD
:
3566 case ARM::VSTMSIA_UPD
:
3567 case ARM::VSTMSDB_UPD
:
3568 case ARM::LDMIA_UPD
:
3569 case ARM::LDMDA_UPD
:
3570 case ARM::LDMDB_UPD
:
3571 case ARM::LDMIB_UPD
:
3572 case ARM::STMIA_UPD
:
3573 case ARM::STMDA_UPD
:
3574 case ARM::STMDB_UPD
:
3575 case ARM::STMIB_UPD
:
3576 case ARM::tLDMIA_UPD
:
3577 case ARM::tSTMIA_UPD
:
3578 case ARM::t2LDMIA_UPD
:
3579 case ARM::t2LDMDB_UPD
:
3580 case ARM::t2STMIA_UPD
:
3581 case ARM::t2STMDB_UPD
:
3582 ++UOps
; // One for base register writeback.
3584 case ARM::LDMIA_RET
:
3586 case ARM::t2LDMIA_RET
:
3587 UOps
+= 2; // One for base reg wb, one for write to pc.
3593 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
3594 const MachineInstr
&MI
) const {
3595 if (!ItinData
|| ItinData
->isEmpty())
3598 const MCInstrDesc
&Desc
= MI
.getDesc();
3599 unsigned Class
= Desc
.getSchedClass();
3600 int ItinUOps
= ItinData
->getNumMicroOps(Class
);
3601 if (ItinUOps
>= 0) {
3602 if (Subtarget
.isSwift() && (Desc
.mayLoad() || Desc
.mayStore()))
3603 return getNumMicroOpsSwiftLdSt(ItinData
, MI
);
3608 unsigned Opc
= MI
.getOpcode();
3611 llvm_unreachable("Unexpected multi-uops instruction!");
3616 // The number of uOps for load / store multiple are determined by the number
3619 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3620 // same cycle. The scheduling for the first load / store must be done
3621 // separately by assuming the address is not 64-bit aligned.
3623 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3624 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3625 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3627 case ARM::VLDMDIA_UPD
:
3628 case ARM::VLDMDDB_UPD
:
3630 case ARM::VLDMSIA_UPD
:
3631 case ARM::VLDMSDB_UPD
:
3633 case ARM::VSTMDIA_UPD
:
3634 case ARM::VSTMDDB_UPD
:
3636 case ARM::VSTMSIA_UPD
:
3637 case ARM::VSTMSDB_UPD
: {
3638 unsigned NumRegs
= MI
.getNumOperands() - Desc
.getNumOperands();
3639 return (NumRegs
/ 2) + (NumRegs
% 2) + 1;
3642 case ARM::LDMIA_RET
:
3647 case ARM::LDMIA_UPD
:
3648 case ARM::LDMDA_UPD
:
3649 case ARM::LDMDB_UPD
:
3650 case ARM::LDMIB_UPD
:
3655 case ARM::STMIA_UPD
:
3656 case ARM::STMDA_UPD
:
3657 case ARM::STMDB_UPD
:
3658 case ARM::STMIB_UPD
:
3660 case ARM::tLDMIA_UPD
:
3661 case ARM::tSTMIA_UPD
:
3665 case ARM::t2LDMIA_RET
:
3668 case ARM::t2LDMIA_UPD
:
3669 case ARM::t2LDMDB_UPD
:
3672 case ARM::t2STMIA_UPD
:
3673 case ARM::t2STMDB_UPD
: {
3674 unsigned NumRegs
= MI
.getNumOperands() - Desc
.getNumOperands() + 1;
3675 switch (Subtarget
.getLdStMultipleTiming()) {
3676 case ARMSubtarget::SingleIssuePlusExtras
:
3677 return getNumMicroOpsSingleIssuePlusExtras(Opc
, NumRegs
);
3678 case ARMSubtarget::SingleIssue
:
3679 // Assume the worst.
3681 case ARMSubtarget::DoubleIssue
: {
3684 // 4 registers would be issued: 2, 2.
3685 // 5 registers would be issued: 2, 2, 1.
3686 unsigned UOps
= (NumRegs
/ 2);
3691 case ARMSubtarget::DoubleIssueCheckUnalignedAccess
: {
3692 unsigned UOps
= (NumRegs
/ 2);
3693 // If there are odd number of registers or if it's not 64-bit aligned,
3694 // then it takes an extra AGU (Address Generation Unit) cycle.
3695 if ((NumRegs
% 2) || !MI
.hasOneMemOperand() ||
3696 (*MI
.memoperands_begin())->getAlignment() < 8)
3703 llvm_unreachable("Didn't find the number of microops");
3707 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData
*ItinData
,
3708 const MCInstrDesc
&DefMCID
,
3710 unsigned DefIdx
, unsigned DefAlign
) const {
3711 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
3713 // Def is the address writeback.
3714 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
3717 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3718 // (regno / 2) + (regno % 2) + 1
3719 DefCycle
= RegNo
/ 2 + 1;
3722 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3724 bool isSLoad
= false;
3726 switch (DefMCID
.getOpcode()) {
3729 case ARM::VLDMSIA_UPD
:
3730 case ARM::VLDMSDB_UPD
:
3735 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3736 // then it takes an extra cycle.
3737 if ((isSLoad
&& (RegNo
% 2)) || DefAlign
< 8)
3740 // Assume the worst.
3741 DefCycle
= RegNo
+ 2;
3747 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr
&MI
) const {
3748 Register BaseReg
= MI
.getOperand(0).getReg();
3749 for (unsigned i
= 1, sz
= MI
.getNumOperands(); i
< sz
; ++i
) {
3750 const auto &Op
= MI
.getOperand(i
);
3751 if (Op
.isReg() && Op
.getReg() == BaseReg
)
3757 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr
&MI
) const {
3758 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3759 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3760 return MI
.getNumOperands() + 1 - MI
.getDesc().getNumOperands();
3764 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData
*ItinData
,
3765 const MCInstrDesc
&DefMCID
,
3767 unsigned DefIdx
, unsigned DefAlign
) const {
3768 int RegNo
= (int)(DefIdx
+1) - DefMCID
.getNumOperands() + 1;
3770 // Def is the address writeback.
3771 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
3774 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3775 // 4 registers would be issued: 1, 2, 1.
3776 // 5 registers would be issued: 1, 2, 2.
3777 DefCycle
= RegNo
/ 2;
3780 // Result latency is issue cycle + 2: E2.
3782 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3783 DefCycle
= (RegNo
/ 2);
3784 // If there are odd number of registers or if it's not 64-bit aligned,
3785 // then it takes an extra AGU (Address Generation Unit) cycle.
3786 if ((RegNo
% 2) || DefAlign
< 8)
3788 // Result latency is AGU cycles + 2.
3791 // Assume the worst.
3792 DefCycle
= RegNo
+ 2;
3799 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData
*ItinData
,
3800 const MCInstrDesc
&UseMCID
,
3802 unsigned UseIdx
, unsigned UseAlign
) const {
3803 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
3805 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
3808 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3809 // (regno / 2) + (regno % 2) + 1
3810 UseCycle
= RegNo
/ 2 + 1;
3813 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3815 bool isSStore
= false;
3817 switch (UseMCID
.getOpcode()) {
3820 case ARM::VSTMSIA_UPD
:
3821 case ARM::VSTMSDB_UPD
:
3826 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3827 // then it takes an extra cycle.
3828 if ((isSStore
&& (RegNo
% 2)) || UseAlign
< 8)
3831 // Assume the worst.
3832 UseCycle
= RegNo
+ 2;
3839 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData
*ItinData
,
3840 const MCInstrDesc
&UseMCID
,
3842 unsigned UseIdx
, unsigned UseAlign
) const {
3843 int RegNo
= (int)(UseIdx
+1) - UseMCID
.getNumOperands() + 1;
3845 return ItinData
->getOperandCycle(UseClass
, UseIdx
);
3848 if (Subtarget
.isCortexA8() || Subtarget
.isCortexA7()) {
3849 UseCycle
= RegNo
/ 2;
3854 } else if (Subtarget
.isLikeA9() || Subtarget
.isSwift()) {
3855 UseCycle
= (RegNo
/ 2);
3856 // If there are odd number of registers or if it's not 64-bit aligned,
3857 // then it takes an extra AGU (Address Generation Unit) cycle.
3858 if ((RegNo
% 2) || UseAlign
< 8)
3861 // Assume the worst.
3868 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
3869 const MCInstrDesc
&DefMCID
,
3870 unsigned DefIdx
, unsigned DefAlign
,
3871 const MCInstrDesc
&UseMCID
,
3872 unsigned UseIdx
, unsigned UseAlign
) const {
3873 unsigned DefClass
= DefMCID
.getSchedClass();
3874 unsigned UseClass
= UseMCID
.getSchedClass();
3876 if (DefIdx
< DefMCID
.getNumDefs() && UseIdx
< UseMCID
.getNumOperands())
3877 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
3879 // This may be a def / use of a variable_ops instruction, the operand
3880 // latency might be determinable dynamically. Let the target try to
3883 bool LdmBypass
= false;
3884 switch (DefMCID
.getOpcode()) {
3886 DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
3890 case ARM::VLDMDIA_UPD
:
3891 case ARM::VLDMDDB_UPD
:
3893 case ARM::VLDMSIA_UPD
:
3894 case ARM::VLDMSDB_UPD
:
3895 DefCycle
= getVLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
3898 case ARM::LDMIA_RET
:
3903 case ARM::LDMIA_UPD
:
3904 case ARM::LDMDA_UPD
:
3905 case ARM::LDMDB_UPD
:
3906 case ARM::LDMIB_UPD
:
3908 case ARM::tLDMIA_UPD
:
3910 case ARM::t2LDMIA_RET
:
3913 case ARM::t2LDMIA_UPD
:
3914 case ARM::t2LDMDB_UPD
:
3916 DefCycle
= getLDMDefCycle(ItinData
, DefMCID
, DefClass
, DefIdx
, DefAlign
);
3921 // We can't seem to determine the result latency of the def, assume it's 2.
3925 switch (UseMCID
.getOpcode()) {
3927 UseCycle
= ItinData
->getOperandCycle(UseClass
, UseIdx
);
3931 case ARM::VSTMDIA_UPD
:
3932 case ARM::VSTMDDB_UPD
:
3934 case ARM::VSTMSIA_UPD
:
3935 case ARM::VSTMSDB_UPD
:
3936 UseCycle
= getVSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
3943 case ARM::STMIA_UPD
:
3944 case ARM::STMDA_UPD
:
3945 case ARM::STMDB_UPD
:
3946 case ARM::STMIB_UPD
:
3947 case ARM::tSTMIA_UPD
:
3952 case ARM::t2STMIA_UPD
:
3953 case ARM::t2STMDB_UPD
:
3954 UseCycle
= getSTMUseCycle(ItinData
, UseMCID
, UseClass
, UseIdx
, UseAlign
);
3959 // Assume it's read in the first stage.
3962 UseCycle
= DefCycle
- UseCycle
+ 1;
3965 // It's a variable_ops instruction so we can't use DefIdx here. Just use
3966 // first def operand.
3967 if (ItinData
->hasPipelineForwarding(DefClass
, DefMCID
.getNumOperands()-1,
3970 } else if (ItinData
->hasPipelineForwarding(DefClass
, DefIdx
,
3971 UseClass
, UseIdx
)) {
3979 static const MachineInstr
*getBundledDefMI(const TargetRegisterInfo
*TRI
,
3980 const MachineInstr
*MI
, unsigned Reg
,
3981 unsigned &DefIdx
, unsigned &Dist
) {
3984 MachineBasicBlock::const_iterator I
= MI
; ++I
;
3985 MachineBasicBlock::const_instr_iterator II
= std::prev(I
.getInstrIterator());
3986 assert(II
->isInsideBundle() && "Empty bundle?");
3989 while (II
->isInsideBundle()) {
3990 Idx
= II
->findRegisterDefOperandIdx(Reg
, false, true, TRI
);
3997 assert(Idx
!= -1 && "Cannot find bundled definition!");
4002 static const MachineInstr
*getBundledUseMI(const TargetRegisterInfo
*TRI
,
4003 const MachineInstr
&MI
, unsigned Reg
,
4004 unsigned &UseIdx
, unsigned &Dist
) {
4007 MachineBasicBlock::const_instr_iterator II
= ++MI
.getIterator();
4008 assert(II
->isInsideBundle() && "Empty bundle?");
4009 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
4011 // FIXME: This doesn't properly handle multiple uses.
4013 while (II
!= E
&& II
->isInsideBundle()) {
4014 Idx
= II
->findRegisterUseOperandIdx(Reg
, false, TRI
);
4017 if (II
->getOpcode() != ARM::t2IT
)
4031 /// Return the number of cycles to add to (or subtract from) the static
4032 /// itinerary based on the def opcode and alignment. The caller will ensure that
4033 /// adjusted latency is at least one cycle.
4034 static int adjustDefLatency(const ARMSubtarget
&Subtarget
,
4035 const MachineInstr
&DefMI
,
4036 const MCInstrDesc
&DefMCID
, unsigned DefAlign
) {
4038 if (Subtarget
.isCortexA8() || Subtarget
.isLikeA9() || Subtarget
.isCortexA7()) {
4039 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4040 // variants are one cycle cheaper.
4041 switch (DefMCID
.getOpcode()) {
4045 unsigned ShOpVal
= DefMI
.getOperand(3).getImm();
4046 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4048 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4055 case ARM::t2LDRSHs
: {
4056 // Thumb2 mode: lsl only.
4057 unsigned ShAmt
= DefMI
.getOperand(3).getImm();
4058 if (ShAmt
== 0 || ShAmt
== 2)
4063 } else if (Subtarget
.isSwift()) {
4064 // FIXME: Properly handle all of the latency adjustments for address
4066 switch (DefMCID
.getOpcode()) {
4070 unsigned ShOpVal
= DefMI
.getOperand(3).getImm();
4071 bool isSub
= ARM_AM::getAM2Op(ShOpVal
) == ARM_AM::sub
;
4072 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4075 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
4076 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
)))
4079 ShImm
== 1 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsr
)
4086 case ARM::t2LDRSHs
: {
4087 // Thumb2 mode: lsl only.
4088 unsigned ShAmt
= DefMI
.getOperand(3).getImm();
4089 if (ShAmt
== 0 || ShAmt
== 1 || ShAmt
== 2 || ShAmt
== 3)
4096 if (DefAlign
< 8 && Subtarget
.checkVLDnAccessAlignment()) {
4097 switch (DefMCID
.getOpcode()) {
4103 case ARM::VLD1q8wb_fixed
:
4104 case ARM::VLD1q16wb_fixed
:
4105 case ARM::VLD1q32wb_fixed
:
4106 case ARM::VLD1q64wb_fixed
:
4107 case ARM::VLD1q8wb_register
:
4108 case ARM::VLD1q16wb_register
:
4109 case ARM::VLD1q32wb_register
:
4110 case ARM::VLD1q64wb_register
:
4117 case ARM::VLD2d8wb_fixed
:
4118 case ARM::VLD2d16wb_fixed
:
4119 case ARM::VLD2d32wb_fixed
:
4120 case ARM::VLD2q8wb_fixed
:
4121 case ARM::VLD2q16wb_fixed
:
4122 case ARM::VLD2q32wb_fixed
:
4123 case ARM::VLD2d8wb_register
:
4124 case ARM::VLD2d16wb_register
:
4125 case ARM::VLD2d32wb_register
:
4126 case ARM::VLD2q8wb_register
:
4127 case ARM::VLD2q16wb_register
:
4128 case ARM::VLD2q32wb_register
:
4133 case ARM::VLD3d8_UPD
:
4134 case ARM::VLD3d16_UPD
:
4135 case ARM::VLD3d32_UPD
:
4136 case ARM::VLD1d64Twb_fixed
:
4137 case ARM::VLD1d64Twb_register
:
4138 case ARM::VLD3q8_UPD
:
4139 case ARM::VLD3q16_UPD
:
4140 case ARM::VLD3q32_UPD
:
4145 case ARM::VLD4d8_UPD
:
4146 case ARM::VLD4d16_UPD
:
4147 case ARM::VLD4d32_UPD
:
4148 case ARM::VLD1d64Qwb_fixed
:
4149 case ARM::VLD1d64Qwb_register
:
4150 case ARM::VLD4q8_UPD
:
4151 case ARM::VLD4q16_UPD
:
4152 case ARM::VLD4q32_UPD
:
4153 case ARM::VLD1DUPq8
:
4154 case ARM::VLD1DUPq16
:
4155 case ARM::VLD1DUPq32
:
4156 case ARM::VLD1DUPq8wb_fixed
:
4157 case ARM::VLD1DUPq16wb_fixed
:
4158 case ARM::VLD1DUPq32wb_fixed
:
4159 case ARM::VLD1DUPq8wb_register
:
4160 case ARM::VLD1DUPq16wb_register
:
4161 case ARM::VLD1DUPq32wb_register
:
4162 case ARM::VLD2DUPd8
:
4163 case ARM::VLD2DUPd16
:
4164 case ARM::VLD2DUPd32
:
4165 case ARM::VLD2DUPd8wb_fixed
:
4166 case ARM::VLD2DUPd16wb_fixed
:
4167 case ARM::VLD2DUPd32wb_fixed
:
4168 case ARM::VLD2DUPd8wb_register
:
4169 case ARM::VLD2DUPd16wb_register
:
4170 case ARM::VLD2DUPd32wb_register
:
4171 case ARM::VLD4DUPd8
:
4172 case ARM::VLD4DUPd16
:
4173 case ARM::VLD4DUPd32
:
4174 case ARM::VLD4DUPd8_UPD
:
4175 case ARM::VLD4DUPd16_UPD
:
4176 case ARM::VLD4DUPd32_UPD
:
4178 case ARM::VLD1LNd16
:
4179 case ARM::VLD1LNd32
:
4180 case ARM::VLD1LNd8_UPD
:
4181 case ARM::VLD1LNd16_UPD
:
4182 case ARM::VLD1LNd32_UPD
:
4184 case ARM::VLD2LNd16
:
4185 case ARM::VLD2LNd32
:
4186 case ARM::VLD2LNq16
:
4187 case ARM::VLD2LNq32
:
4188 case ARM::VLD2LNd8_UPD
:
4189 case ARM::VLD2LNd16_UPD
:
4190 case ARM::VLD2LNd32_UPD
:
4191 case ARM::VLD2LNq16_UPD
:
4192 case ARM::VLD2LNq32_UPD
:
4194 case ARM::VLD4LNd16
:
4195 case ARM::VLD4LNd32
:
4196 case ARM::VLD4LNq16
:
4197 case ARM::VLD4LNq32
:
4198 case ARM::VLD4LNd8_UPD
:
4199 case ARM::VLD4LNd16_UPD
:
4200 case ARM::VLD4LNd32_UPD
:
4201 case ARM::VLD4LNq16_UPD
:
4202 case ARM::VLD4LNq32_UPD
:
4203 // If the address is not 64-bit aligned, the latencies of these
4204 // instructions increases by one.
4212 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4213 const MachineInstr
&DefMI
,
4215 const MachineInstr
&UseMI
,
4216 unsigned UseIdx
) const {
4217 // No operand latency. The caller may fall back to getInstrLatency.
4218 if (!ItinData
|| ItinData
->isEmpty())
4221 const MachineOperand
&DefMO
= DefMI
.getOperand(DefIdx
);
4222 Register Reg
= DefMO
.getReg();
4224 const MachineInstr
*ResolvedDefMI
= &DefMI
;
4225 unsigned DefAdj
= 0;
4226 if (DefMI
.isBundle())
4228 getBundledDefMI(&getRegisterInfo(), &DefMI
, Reg
, DefIdx
, DefAdj
);
4229 if (ResolvedDefMI
->isCopyLike() || ResolvedDefMI
->isInsertSubreg() ||
4230 ResolvedDefMI
->isRegSequence() || ResolvedDefMI
->isImplicitDef()) {
4234 const MachineInstr
*ResolvedUseMI
= &UseMI
;
4235 unsigned UseAdj
= 0;
4236 if (UseMI
.isBundle()) {
4238 getBundledUseMI(&getRegisterInfo(), UseMI
, Reg
, UseIdx
, UseAdj
);
4243 return getOperandLatencyImpl(
4244 ItinData
, *ResolvedDefMI
, DefIdx
, ResolvedDefMI
->getDesc(), DefAdj
, DefMO
,
4245 Reg
, *ResolvedUseMI
, UseIdx
, ResolvedUseMI
->getDesc(), UseAdj
);
4248 int ARMBaseInstrInfo::getOperandLatencyImpl(
4249 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
,
4250 unsigned DefIdx
, const MCInstrDesc
&DefMCID
, unsigned DefAdj
,
4251 const MachineOperand
&DefMO
, unsigned Reg
, const MachineInstr
&UseMI
,
4252 unsigned UseIdx
, const MCInstrDesc
&UseMCID
, unsigned UseAdj
) const {
4253 if (Reg
== ARM::CPSR
) {
4254 if (DefMI
.getOpcode() == ARM::FMSTAT
) {
4255 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4256 return Subtarget
.isLikeA9() ? 1 : 20;
4259 // CPSR set and branch can be paired in the same cycle.
4260 if (UseMI
.isBranch())
4263 // Otherwise it takes the instruction latency (generally one).
4264 unsigned Latency
= getInstrLatency(ItinData
, DefMI
);
4266 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4267 // its uses. Instructions which are otherwise scheduled between them may
4268 // incur a code size penalty (not able to use the CPSR setting 16-bit
4270 if (Latency
> 0 && Subtarget
.isThumb2()) {
4271 const MachineFunction
*MF
= DefMI
.getParent()->getParent();
4272 // FIXME: Use Function::hasOptSize().
4273 if (MF
->getFunction().hasFnAttribute(Attribute::OptimizeForSize
))
4279 if (DefMO
.isImplicit() || UseMI
.getOperand(UseIdx
).isImplicit())
4282 unsigned DefAlign
= DefMI
.hasOneMemOperand()
4283 ? (*DefMI
.memoperands_begin())->getAlignment()
4285 unsigned UseAlign
= UseMI
.hasOneMemOperand()
4286 ? (*UseMI
.memoperands_begin())->getAlignment()
4289 // Get the itinerary's latency if possible, and handle variable_ops.
4290 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
, UseMCID
,
4292 // Unable to find operand latency. The caller may resort to getInstrLatency.
4296 // Adjust for IT block position.
4297 int Adj
= DefAdj
+ UseAdj
;
4299 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4300 Adj
+= adjustDefLatency(Subtarget
, DefMI
, DefMCID
, DefAlign
);
4301 if (Adj
>= 0 || (int)Latency
> -Adj
) {
4302 return Latency
+ Adj
;
4304 // Return the itinerary latency, which may be zero but not less than zero.
4309 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
4310 SDNode
*DefNode
, unsigned DefIdx
,
4311 SDNode
*UseNode
, unsigned UseIdx
) const {
4312 if (!DefNode
->isMachineOpcode())
4315 const MCInstrDesc
&DefMCID
= get(DefNode
->getMachineOpcode());
4317 if (isZeroCost(DefMCID
.Opcode
))
4320 if (!ItinData
|| ItinData
->isEmpty())
4321 return DefMCID
.mayLoad() ? 3 : 1;
4323 if (!UseNode
->isMachineOpcode()) {
4324 int Latency
= ItinData
->getOperandCycle(DefMCID
.getSchedClass(), DefIdx
);
4325 int Adj
= Subtarget
.getPreISelOperandLatencyAdjustment();
4326 int Threshold
= 1 + Adj
;
4327 return Latency
<= Threshold
? 1 : Latency
- Adj
;
4330 const MCInstrDesc
&UseMCID
= get(UseNode
->getMachineOpcode());
4331 const MachineSDNode
*DefMN
= dyn_cast
<MachineSDNode
>(DefNode
);
4332 unsigned DefAlign
= !DefMN
->memoperands_empty()
4333 ? (*DefMN
->memoperands_begin())->getAlignment() : 0;
4334 const MachineSDNode
*UseMN
= dyn_cast
<MachineSDNode
>(UseNode
);
4335 unsigned UseAlign
= !UseMN
->memoperands_empty()
4336 ? (*UseMN
->memoperands_begin())->getAlignment() : 0;
4337 int Latency
= getOperandLatency(ItinData
, DefMCID
, DefIdx
, DefAlign
,
4338 UseMCID
, UseIdx
, UseAlign
);
4341 (Subtarget
.isCortexA8() || Subtarget
.isLikeA9() ||
4342 Subtarget
.isCortexA7())) {
4343 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4344 // variants are one cycle cheaper.
4345 switch (DefMCID
.getOpcode()) {
4350 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4351 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4353 (ShImm
== 2 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4360 case ARM::t2LDRSHs
: {
4361 // Thumb2 mode: lsl only.
4363 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4364 if (ShAmt
== 0 || ShAmt
== 2)
4369 } else if (DefIdx
== 0 && Latency
> 2 && Subtarget
.isSwift()) {
4370 // FIXME: Properly handle all of the latency adjustments for address
4372 switch (DefMCID
.getOpcode()) {
4377 cast
<ConstantSDNode
>(DefNode
->getOperand(2))->getZExtValue();
4378 unsigned ShImm
= ARM_AM::getAM2Offset(ShOpVal
);
4380 ((ShImm
== 1 || ShImm
== 2 || ShImm
== 3) &&
4381 ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsl
))
4383 else if (ShImm
== 1 && ARM_AM::getAM2ShiftOpc(ShOpVal
) == ARM_AM::lsr
)
4391 // Thumb2 mode: lsl 0-3 only.
4397 if (DefAlign
< 8 && Subtarget
.checkVLDnAccessAlignment())
4398 switch (DefMCID
.getOpcode()) {
4404 case ARM::VLD1q8wb_register
:
4405 case ARM::VLD1q16wb_register
:
4406 case ARM::VLD1q32wb_register
:
4407 case ARM::VLD1q64wb_register
:
4408 case ARM::VLD1q8wb_fixed
:
4409 case ARM::VLD1q16wb_fixed
:
4410 case ARM::VLD1q32wb_fixed
:
4411 case ARM::VLD1q64wb_fixed
:
4415 case ARM::VLD2q8Pseudo
:
4416 case ARM::VLD2q16Pseudo
:
4417 case ARM::VLD2q32Pseudo
:
4418 case ARM::VLD2d8wb_fixed
:
4419 case ARM::VLD2d16wb_fixed
:
4420 case ARM::VLD2d32wb_fixed
:
4421 case ARM::VLD2q8PseudoWB_fixed
:
4422 case ARM::VLD2q16PseudoWB_fixed
:
4423 case ARM::VLD2q32PseudoWB_fixed
:
4424 case ARM::VLD2d8wb_register
:
4425 case ARM::VLD2d16wb_register
:
4426 case ARM::VLD2d32wb_register
:
4427 case ARM::VLD2q8PseudoWB_register
:
4428 case ARM::VLD2q16PseudoWB_register
:
4429 case ARM::VLD2q32PseudoWB_register
:
4430 case ARM::VLD3d8Pseudo
:
4431 case ARM::VLD3d16Pseudo
:
4432 case ARM::VLD3d32Pseudo
:
4433 case ARM::VLD1d8TPseudo
:
4434 case ARM::VLD1d16TPseudo
:
4435 case ARM::VLD1d32TPseudo
:
4436 case ARM::VLD1d64TPseudo
:
4437 case ARM::VLD1d64TPseudoWB_fixed
:
4438 case ARM::VLD1d64TPseudoWB_register
:
4439 case ARM::VLD3d8Pseudo_UPD
:
4440 case ARM::VLD3d16Pseudo_UPD
:
4441 case ARM::VLD3d32Pseudo_UPD
:
4442 case ARM::VLD3q8Pseudo_UPD
:
4443 case ARM::VLD3q16Pseudo_UPD
:
4444 case ARM::VLD3q32Pseudo_UPD
:
4445 case ARM::VLD3q8oddPseudo
:
4446 case ARM::VLD3q16oddPseudo
:
4447 case ARM::VLD3q32oddPseudo
:
4448 case ARM::VLD3q8oddPseudo_UPD
:
4449 case ARM::VLD3q16oddPseudo_UPD
:
4450 case ARM::VLD3q32oddPseudo_UPD
:
4451 case ARM::VLD4d8Pseudo
:
4452 case ARM::VLD4d16Pseudo
:
4453 case ARM::VLD4d32Pseudo
:
4454 case ARM::VLD1d8QPseudo
:
4455 case ARM::VLD1d16QPseudo
:
4456 case ARM::VLD1d32QPseudo
:
4457 case ARM::VLD1d64QPseudo
:
4458 case ARM::VLD1d64QPseudoWB_fixed
:
4459 case ARM::VLD1d64QPseudoWB_register
:
4460 case ARM::VLD1q8HighQPseudo
:
4461 case ARM::VLD1q8LowQPseudo_UPD
:
4462 case ARM::VLD1q8HighTPseudo
:
4463 case ARM::VLD1q8LowTPseudo_UPD
:
4464 case ARM::VLD1q16HighQPseudo
:
4465 case ARM::VLD1q16LowQPseudo_UPD
:
4466 case ARM::VLD1q16HighTPseudo
:
4467 case ARM::VLD1q16LowTPseudo_UPD
:
4468 case ARM::VLD1q32HighQPseudo
:
4469 case ARM::VLD1q32LowQPseudo_UPD
:
4470 case ARM::VLD1q32HighTPseudo
:
4471 case ARM::VLD1q32LowTPseudo_UPD
:
4472 case ARM::VLD1q64HighQPseudo
:
4473 case ARM::VLD1q64LowQPseudo_UPD
:
4474 case ARM::VLD1q64HighTPseudo
:
4475 case ARM::VLD1q64LowTPseudo_UPD
:
4476 case ARM::VLD4d8Pseudo_UPD
:
4477 case ARM::VLD4d16Pseudo_UPD
:
4478 case ARM::VLD4d32Pseudo_UPD
:
4479 case ARM::VLD4q8Pseudo_UPD
:
4480 case ARM::VLD4q16Pseudo_UPD
:
4481 case ARM::VLD4q32Pseudo_UPD
:
4482 case ARM::VLD4q8oddPseudo
:
4483 case ARM::VLD4q16oddPseudo
:
4484 case ARM::VLD4q32oddPseudo
:
4485 case ARM::VLD4q8oddPseudo_UPD
:
4486 case ARM::VLD4q16oddPseudo_UPD
:
4487 case ARM::VLD4q32oddPseudo_UPD
:
4488 case ARM::VLD1DUPq8
:
4489 case ARM::VLD1DUPq16
:
4490 case ARM::VLD1DUPq32
:
4491 case ARM::VLD1DUPq8wb_fixed
:
4492 case ARM::VLD1DUPq16wb_fixed
:
4493 case ARM::VLD1DUPq32wb_fixed
:
4494 case ARM::VLD1DUPq8wb_register
:
4495 case ARM::VLD1DUPq16wb_register
:
4496 case ARM::VLD1DUPq32wb_register
:
4497 case ARM::VLD2DUPd8
:
4498 case ARM::VLD2DUPd16
:
4499 case ARM::VLD2DUPd32
:
4500 case ARM::VLD2DUPd8wb_fixed
:
4501 case ARM::VLD2DUPd16wb_fixed
:
4502 case ARM::VLD2DUPd32wb_fixed
:
4503 case ARM::VLD2DUPd8wb_register
:
4504 case ARM::VLD2DUPd16wb_register
:
4505 case ARM::VLD2DUPd32wb_register
:
4506 case ARM::VLD2DUPq8EvenPseudo
:
4507 case ARM::VLD2DUPq8OddPseudo
:
4508 case ARM::VLD2DUPq16EvenPseudo
:
4509 case ARM::VLD2DUPq16OddPseudo
:
4510 case ARM::VLD2DUPq32EvenPseudo
:
4511 case ARM::VLD2DUPq32OddPseudo
:
4512 case ARM::VLD3DUPq8EvenPseudo
:
4513 case ARM::VLD3DUPq8OddPseudo
:
4514 case ARM::VLD3DUPq16EvenPseudo
:
4515 case ARM::VLD3DUPq16OddPseudo
:
4516 case ARM::VLD3DUPq32EvenPseudo
:
4517 case ARM::VLD3DUPq32OddPseudo
:
4518 case ARM::VLD4DUPd8Pseudo
:
4519 case ARM::VLD4DUPd16Pseudo
:
4520 case ARM::VLD4DUPd32Pseudo
:
4521 case ARM::VLD4DUPd8Pseudo_UPD
:
4522 case ARM::VLD4DUPd16Pseudo_UPD
:
4523 case ARM::VLD4DUPd32Pseudo_UPD
:
4524 case ARM::VLD4DUPq8EvenPseudo
:
4525 case ARM::VLD4DUPq8OddPseudo
:
4526 case ARM::VLD4DUPq16EvenPseudo
:
4527 case ARM::VLD4DUPq16OddPseudo
:
4528 case ARM::VLD4DUPq32EvenPseudo
:
4529 case ARM::VLD4DUPq32OddPseudo
:
4530 case ARM::VLD1LNq8Pseudo
:
4531 case ARM::VLD1LNq16Pseudo
:
4532 case ARM::VLD1LNq32Pseudo
:
4533 case ARM::VLD1LNq8Pseudo_UPD
:
4534 case ARM::VLD1LNq16Pseudo_UPD
:
4535 case ARM::VLD1LNq32Pseudo_UPD
:
4536 case ARM::VLD2LNd8Pseudo
:
4537 case ARM::VLD2LNd16Pseudo
:
4538 case ARM::VLD2LNd32Pseudo
:
4539 case ARM::VLD2LNq16Pseudo
:
4540 case ARM::VLD2LNq32Pseudo
:
4541 case ARM::VLD2LNd8Pseudo_UPD
:
4542 case ARM::VLD2LNd16Pseudo_UPD
:
4543 case ARM::VLD2LNd32Pseudo_UPD
:
4544 case ARM::VLD2LNq16Pseudo_UPD
:
4545 case ARM::VLD2LNq32Pseudo_UPD
:
4546 case ARM::VLD4LNd8Pseudo
:
4547 case ARM::VLD4LNd16Pseudo
:
4548 case ARM::VLD4LNd32Pseudo
:
4549 case ARM::VLD4LNq16Pseudo
:
4550 case ARM::VLD4LNq32Pseudo
:
4551 case ARM::VLD4LNd8Pseudo_UPD
:
4552 case ARM::VLD4LNd16Pseudo_UPD
:
4553 case ARM::VLD4LNd32Pseudo_UPD
:
4554 case ARM::VLD4LNq16Pseudo_UPD
:
4555 case ARM::VLD4LNq32Pseudo_UPD
:
4556 // If the address is not 64-bit aligned, the latencies of these
4557 // instructions increases by one.
4565 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr
&MI
) const {
4566 if (MI
.isCopyLike() || MI
.isInsertSubreg() || MI
.isRegSequence() ||
4573 const MCInstrDesc
&MCID
= MI
.getDesc();
4575 if (MCID
.isCall() || (MCID
.hasImplicitDefOfPhysReg(ARM::CPSR
) &&
4576 !Subtarget
.cheapPredicableCPSRDef())) {
4577 // When predicated, CPSR is an additional source operand for CPSR updating
4578 // instructions, this apparently increases their latencies.
4584 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
4585 const MachineInstr
&MI
,
4586 unsigned *PredCost
) const {
4587 if (MI
.isCopyLike() || MI
.isInsertSubreg() || MI
.isRegSequence() ||
4591 // An instruction scheduler typically runs on unbundled instructions, however
4592 // other passes may query the latency of a bundled instruction.
4593 if (MI
.isBundle()) {
4594 unsigned Latency
= 0;
4595 MachineBasicBlock::const_instr_iterator I
= MI
.getIterator();
4596 MachineBasicBlock::const_instr_iterator E
= MI
.getParent()->instr_end();
4597 while (++I
!= E
&& I
->isInsideBundle()) {
4598 if (I
->getOpcode() != ARM::t2IT
)
4599 Latency
+= getInstrLatency(ItinData
, *I
, PredCost
);
4604 const MCInstrDesc
&MCID
= MI
.getDesc();
4605 if (PredCost
&& (MCID
.isCall() || (MCID
.hasImplicitDefOfPhysReg(ARM::CPSR
) &&
4606 !Subtarget
.cheapPredicableCPSRDef()))) {
4607 // When predicated, CPSR is an additional source operand for CPSR updating
4608 // instructions, this apparently increases their latencies.
4611 // Be sure to call getStageLatency for an empty itinerary in case it has a
4612 // valid MinLatency property.
4614 return MI
.mayLoad() ? 3 : 1;
4616 unsigned Class
= MCID
.getSchedClass();
4618 // For instructions with variable uops, use uops as latency.
4619 if (!ItinData
->isEmpty() && ItinData
->getNumMicroOps(Class
) < 0)
4620 return getNumMicroOps(ItinData
, MI
);
4622 // For the common case, fall back on the itinerary's latency.
4623 unsigned Latency
= ItinData
->getStageLatency(Class
);
4625 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4627 MI
.hasOneMemOperand() ? (*MI
.memoperands_begin())->getAlignment() : 0;
4628 int Adj
= adjustDefLatency(Subtarget
, MI
, MCID
, DefAlign
);
4629 if (Adj
>= 0 || (int)Latency
> -Adj
) {
4630 return Latency
+ Adj
;
4635 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
4636 SDNode
*Node
) const {
4637 if (!Node
->isMachineOpcode())
4640 if (!ItinData
|| ItinData
->isEmpty())
4643 unsigned Opcode
= Node
->getMachineOpcode();
4646 return ItinData
->getStageLatency(get(Opcode
).getSchedClass());
4653 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
4654 const MachineRegisterInfo
*MRI
,
4655 const MachineInstr
&DefMI
,
4657 const MachineInstr
&UseMI
,
4658 unsigned UseIdx
) const {
4659 unsigned DDomain
= DefMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4660 unsigned UDomain
= UseMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4661 if (Subtarget
.nonpipelinedVFP() &&
4662 (DDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainVFP
))
4665 // Hoist VFP / NEON instructions with 4 or higher latency.
4667 SchedModel
.computeOperandLatency(&DefMI
, DefIdx
, &UseMI
, UseIdx
);
4670 return DDomain
== ARMII::DomainVFP
|| DDomain
== ARMII::DomainNEON
||
4671 UDomain
== ARMII::DomainVFP
|| UDomain
== ARMII::DomainNEON
;
4674 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
4675 const MachineInstr
&DefMI
,
4676 unsigned DefIdx
) const {
4677 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
4678 if (!ItinData
|| ItinData
->isEmpty())
4681 unsigned DDomain
= DefMI
.getDesc().TSFlags
& ARMII::DomainMask
;
4682 if (DDomain
== ARMII::DomainGeneral
) {
4683 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
4684 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
4685 return (DefCycle
!= -1 && DefCycle
<= 2);
4690 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr
&MI
,
4691 StringRef
&ErrInfo
) const {
4692 if (convertAddSubFlagsOpcode(MI
.getOpcode())) {
4693 ErrInfo
= "Pseudo flag setting opcodes only exist in Selection DAG";
4696 if (MI
.getOpcode() == ARM::tMOVr
&& !Subtarget
.hasV6Ops()) {
4697 // Make sure we don't generate a lo-lo mov that isn't supported.
4698 if (!ARM::hGPRRegClass
.contains(MI
.getOperand(0).getReg()) &&
4699 !ARM::hGPRRegClass
.contains(MI
.getOperand(1).getReg())) {
4700 ErrInfo
= "Non-flag-setting Thumb1 mov is v6-only";
4704 if (MI
.getOpcode() == ARM::tPUSH
||
4705 MI
.getOpcode() == ARM::tPOP
||
4706 MI
.getOpcode() == ARM::tPOP_RET
) {
4707 for (int i
= 2, e
= MI
.getNumOperands(); i
< e
; ++i
) {
4708 if (MI
.getOperand(i
).isImplicit() ||
4709 !MI
.getOperand(i
).isReg())
4711 Register Reg
= MI
.getOperand(i
).getReg();
4712 if (Reg
< ARM::R0
|| Reg
> ARM::R7
) {
4713 if (!(MI
.getOpcode() == ARM::tPUSH
&& Reg
== ARM::LR
) &&
4714 !(MI
.getOpcode() == ARM::tPOP_RET
&& Reg
== ARM::PC
)) {
4715 ErrInfo
= "Unsupported register in Thumb1 push/pop";
4724 // LoadStackGuard has so far only been implemented for MachO. Different code
4725 // sequence is needed for other targets.
4726 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI
,
4727 unsigned LoadImmOpc
,
4728 unsigned LoadOpc
) const {
4729 assert(!Subtarget
.isROPI() && !Subtarget
.isRWPI() &&
4730 "ROPI/RWPI not currently supported with stack guard");
4732 MachineBasicBlock
&MBB
= *MI
->getParent();
4733 DebugLoc DL
= MI
->getDebugLoc();
4734 Register Reg
= MI
->getOperand(0).getReg();
4735 const GlobalValue
*GV
=
4736 cast
<GlobalValue
>((*MI
->memoperands_begin())->getValue());
4737 MachineInstrBuilder MIB
;
4739 BuildMI(MBB
, MI
, DL
, get(LoadImmOpc
), Reg
)
4740 .addGlobalAddress(GV
, 0, ARMII::MO_NONLAZY
);
4742 if (Subtarget
.isGVIndirectSymbol(GV
)) {
4743 MIB
= BuildMI(MBB
, MI
, DL
, get(LoadOpc
), Reg
);
4744 MIB
.addReg(Reg
, RegState::Kill
).addImm(0);
4745 auto Flags
= MachineMemOperand::MOLoad
|
4746 MachineMemOperand::MODereferenceable
|
4747 MachineMemOperand::MOInvariant
;
4748 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
4749 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 4, 4);
4750 MIB
.addMemOperand(MMO
).add(predOps(ARMCC::AL
));
4753 MIB
= BuildMI(MBB
, MI
, DL
, get(LoadOpc
), Reg
);
4754 MIB
.addReg(Reg
, RegState::Kill
)
4757 .add(predOps(ARMCC::AL
));
4761 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode
, unsigned &MulOpc
,
4762 unsigned &AddSubOpc
,
4763 bool &NegAcc
, bool &HasLane
) const {
4764 DenseMap
<unsigned, unsigned>::const_iterator I
= MLxEntryMap
.find(Opcode
);
4765 if (I
== MLxEntryMap
.end())
4768 const ARM_MLxEntry
&Entry
= ARM_MLxTable
[I
->second
];
4769 MulOpc
= Entry
.MulOpc
;
4770 AddSubOpc
= Entry
.AddSubOpc
;
4771 NegAcc
= Entry
.NegAcc
;
4772 HasLane
= Entry
.HasLane
;
4776 //===----------------------------------------------------------------------===//
4777 // Execution domains.
4778 //===----------------------------------------------------------------------===//
4780 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4781 // and some can go down both. The vmov instructions go down the VFP pipeline,
4782 // but they can be changed to vorr equivalents that are executed by the NEON
4785 // We use the following execution domain numbering:
4794 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4796 std::pair
<uint16_t, uint16_t>
4797 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
4798 // If we don't have access to NEON instructions then we won't be able
4799 // to swizzle anything to the NEON domain. Check to make sure.
4800 if (Subtarget
.hasNEON()) {
4801 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4802 // if they are not predicated.
4803 if (MI
.getOpcode() == ARM::VMOVD
&& !isPredicated(MI
))
4804 return std::make_pair(ExeVFP
, (1 << ExeVFP
) | (1 << ExeNEON
));
4806 // CortexA9 is particularly picky about mixing the two and wants these
4808 if (Subtarget
.useNEONForFPMovs() && !isPredicated(MI
) &&
4809 (MI
.getOpcode() == ARM::VMOVRS
|| MI
.getOpcode() == ARM::VMOVSR
||
4810 MI
.getOpcode() == ARM::VMOVS
))
4811 return std::make_pair(ExeVFP
, (1 << ExeVFP
) | (1 << ExeNEON
));
4813 // No other instructions can be swizzled, so just determine their domain.
4814 unsigned Domain
= MI
.getDesc().TSFlags
& ARMII::DomainMask
;
4816 if (Domain
& ARMII::DomainNEON
)
4817 return std::make_pair(ExeNEON
, 0);
4819 // Certain instructions can go either way on Cortex-A8.
4820 // Treat them as NEON instructions.
4821 if ((Domain
& ARMII::DomainNEONA8
) && Subtarget
.isCortexA8())
4822 return std::make_pair(ExeNEON
, 0);
4824 if (Domain
& ARMII::DomainVFP
)
4825 return std::make_pair(ExeVFP
, 0);
4827 return std::make_pair(ExeGeneric
, 0);
4830 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo
*TRI
,
4831 unsigned SReg
, unsigned &Lane
) {
4832 unsigned DReg
= TRI
->getMatchingSuperReg(SReg
, ARM::ssub_0
, &ARM::DPRRegClass
);
4835 if (DReg
!= ARM::NoRegister
)
4839 DReg
= TRI
->getMatchingSuperReg(SReg
, ARM::ssub_1
, &ARM::DPRRegClass
);
4841 assert(DReg
&& "S-register with no D super-register?");
4845 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4846 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4847 /// zero if no register needs to be defined as implicit-use.
4849 /// If the function cannot determine if an SPR should be marked implicit use or
4850 /// not, it returns false.
4852 /// This function handles cases where an instruction is being modified from taking
4853 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4854 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4855 /// lane of the DPR).
4857 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4858 /// (including the case where the DPR itself is defined), it should not.
4860 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo
*TRI
,
4861 MachineInstr
&MI
, unsigned DReg
,
4862 unsigned Lane
, unsigned &ImplicitSReg
) {
4863 // If the DPR is defined or used already, the other SPR lane will be chained
4864 // correctly, so there is nothing to be done.
4865 if (MI
.definesRegister(DReg
, TRI
) || MI
.readsRegister(DReg
, TRI
)) {
4870 // Otherwise we need to go searching to see if the SPR is set explicitly.
4871 ImplicitSReg
= TRI
->getSubReg(DReg
,
4872 (Lane
& 1) ? ARM::ssub_0
: ARM::ssub_1
);
4873 MachineBasicBlock::LivenessQueryResult LQR
=
4874 MI
.getParent()->computeRegisterLiveness(TRI
, ImplicitSReg
, MI
);
4876 if (LQR
== MachineBasicBlock::LQR_Live
)
4878 else if (LQR
== MachineBasicBlock::LQR_Unknown
)
4881 // If the register is known not to be live, there is no need to add an
4887 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr
&MI
,
4888 unsigned Domain
) const {
4889 unsigned DstReg
, SrcReg
, DReg
;
4891 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
4892 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4893 switch (MI
.getOpcode()) {
4895 llvm_unreachable("cannot handle opcode!");
4898 if (Domain
!= ExeNEON
)
4901 // Zap the predicate operands.
4902 assert(!isPredicated(MI
) && "Cannot predicate a VORRd");
4904 // Make sure we've got NEON instructions.
4905 assert(Subtarget
.hasNEON() && "VORRd requires NEON");
4907 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4908 DstReg
= MI
.getOperand(0).getReg();
4909 SrcReg
= MI
.getOperand(1).getReg();
4911 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4912 MI
.RemoveOperand(i
- 1);
4914 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4915 MI
.setDesc(get(ARM::VORRd
));
4916 MIB
.addReg(DstReg
, RegState::Define
)
4919 .add(predOps(ARMCC::AL
));
4922 if (Domain
!= ExeNEON
)
4924 assert(!isPredicated(MI
) && "Cannot predicate a VGETLN");
4926 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4927 DstReg
= MI
.getOperand(0).getReg();
4928 SrcReg
= MI
.getOperand(1).getReg();
4930 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4931 MI
.RemoveOperand(i
- 1);
4933 DReg
= getCorrespondingDRegAndLane(TRI
, SrcReg
, Lane
);
4935 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4936 // Note that DSrc has been widened and the other lane may be undef, which
4937 // contaminates the entire register.
4938 MI
.setDesc(get(ARM::VGETLNi32
));
4939 MIB
.addReg(DstReg
, RegState::Define
)
4940 .addReg(DReg
, RegState::Undef
)
4942 .add(predOps(ARMCC::AL
));
4944 // The old source should be an implicit use, otherwise we might think it
4945 // was dead before here.
4946 MIB
.addReg(SrcReg
, RegState::Implicit
);
4949 if (Domain
!= ExeNEON
)
4951 assert(!isPredicated(MI
) && "Cannot predicate a VSETLN");
4953 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4954 DstReg
= MI
.getOperand(0).getReg();
4955 SrcReg
= MI
.getOperand(1).getReg();
4957 DReg
= getCorrespondingDRegAndLane(TRI
, DstReg
, Lane
);
4959 unsigned ImplicitSReg
;
4960 if (!getImplicitSPRUseForDPRUse(TRI
, MI
, DReg
, Lane
, ImplicitSReg
))
4963 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4964 MI
.RemoveOperand(i
- 1);
4966 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4967 // Again DDst may be undefined at the beginning of this instruction.
4968 MI
.setDesc(get(ARM::VSETLNi32
));
4969 MIB
.addReg(DReg
, RegState::Define
)
4970 .addReg(DReg
, getUndefRegState(!MI
.readsRegister(DReg
, TRI
)))
4973 .add(predOps(ARMCC::AL
));
4975 // The narrower destination must be marked as set to keep previous chains
4977 MIB
.addReg(DstReg
, RegState::Define
| RegState::Implicit
);
4978 if (ImplicitSReg
!= 0)
4979 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
4983 if (Domain
!= ExeNEON
)
4986 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4987 DstReg
= MI
.getOperand(0).getReg();
4988 SrcReg
= MI
.getOperand(1).getReg();
4990 unsigned DstLane
= 0, SrcLane
= 0, DDst
, DSrc
;
4991 DDst
= getCorrespondingDRegAndLane(TRI
, DstReg
, DstLane
);
4992 DSrc
= getCorrespondingDRegAndLane(TRI
, SrcReg
, SrcLane
);
4994 unsigned ImplicitSReg
;
4995 if (!getImplicitSPRUseForDPRUse(TRI
, MI
, DSrc
, SrcLane
, ImplicitSReg
))
4998 for (unsigned i
= MI
.getDesc().getNumOperands(); i
; --i
)
4999 MI
.RemoveOperand(i
- 1);
5002 // Destination can be:
5003 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5004 MI
.setDesc(get(ARM::VDUPLN32d
));
5005 MIB
.addReg(DDst
, RegState::Define
)
5006 .addReg(DDst
, getUndefRegState(!MI
.readsRegister(DDst
, TRI
)))
5008 .add(predOps(ARMCC::AL
));
5010 // Neither the source or the destination are naturally represented any
5011 // more, so add them in manually.
5012 MIB
.addReg(DstReg
, RegState::Implicit
| RegState::Define
);
5013 MIB
.addReg(SrcReg
, RegState::Implicit
);
5014 if (ImplicitSReg
!= 0)
5015 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
5019 // In general there's no single instruction that can perform an S <-> S
5020 // move in NEON space, but a pair of VEXT instructions *can* do the
5021 // job. It turns out that the VEXTs needed will only use DSrc once, with
5022 // the position based purely on the combination of lane-0 and lane-1
5023 // involved. For example
5024 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5025 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5026 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5027 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5029 // Pattern of the MachineInstrs is:
5030 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5031 MachineInstrBuilder NewMIB
;
5032 NewMIB
= BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(ARM::VEXTd32
),
5035 // On the first instruction, both DSrc and DDst may be undef if present.
5036 // Specifically when the original instruction didn't have them as an
5038 unsigned CurReg
= SrcLane
== 1 && DstLane
== 1 ? DSrc
: DDst
;
5039 bool CurUndef
= !MI
.readsRegister(CurReg
, TRI
);
5040 NewMIB
.addReg(CurReg
, getUndefRegState(CurUndef
));
5042 CurReg
= SrcLane
== 0 && DstLane
== 0 ? DSrc
: DDst
;
5043 CurUndef
= !MI
.readsRegister(CurReg
, TRI
);
5044 NewMIB
.addReg(CurReg
, getUndefRegState(CurUndef
))
5046 .add(predOps(ARMCC::AL
));
5048 if (SrcLane
== DstLane
)
5049 NewMIB
.addReg(SrcReg
, RegState::Implicit
);
5051 MI
.setDesc(get(ARM::VEXTd32
));
5052 MIB
.addReg(DDst
, RegState::Define
);
5054 // On the second instruction, DDst has definitely been defined above, so
5055 // it is not undef. DSrc, if present, can be undef as above.
5056 CurReg
= SrcLane
== 1 && DstLane
== 0 ? DSrc
: DDst
;
5057 CurUndef
= CurReg
== DSrc
&& !MI
.readsRegister(CurReg
, TRI
);
5058 MIB
.addReg(CurReg
, getUndefRegState(CurUndef
));
5060 CurReg
= SrcLane
== 0 && DstLane
== 1 ? DSrc
: DDst
;
5061 CurUndef
= CurReg
== DSrc
&& !MI
.readsRegister(CurReg
, TRI
);
5062 MIB
.addReg(CurReg
, getUndefRegState(CurUndef
))
5064 .add(predOps(ARMCC::AL
));
5066 if (SrcLane
!= DstLane
)
5067 MIB
.addReg(SrcReg
, RegState::Implicit
);
5069 // As before, the original destination is no longer represented, add it
5071 MIB
.addReg(DstReg
, RegState::Define
| RegState::Implicit
);
5072 if (ImplicitSReg
!= 0)
5073 MIB
.addReg(ImplicitSReg
, RegState::Implicit
);
5079 //===----------------------------------------------------------------------===//
5080 // Partial register updates
5081 //===----------------------------------------------------------------------===//
5083 // Swift renames NEON registers with 64-bit granularity. That means any
5084 // instruction writing an S-reg implicitly reads the containing D-reg. The
5085 // problem is mostly avoided by translating f32 operations to v2f32 operations
5086 // on D-registers, but f32 loads are still a problem.
5088 // These instructions can load an f32 into a NEON register:
5090 // VLDRS - Only writes S, partial D update.
5091 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5092 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5094 // FCONSTD can be used as a dependency-breaking instruction.
5095 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5096 const MachineInstr
&MI
, unsigned OpNum
,
5097 const TargetRegisterInfo
*TRI
) const {
5098 auto PartialUpdateClearance
= Subtarget
.getPartialUpdateClearance();
5099 if (!PartialUpdateClearance
)
5102 assert(TRI
&& "Need TRI instance");
5104 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
5107 Register Reg
= MO
.getReg();
5110 switch (MI
.getOpcode()) {
5111 // Normal instructions writing only an S-register.
5116 case ARM::VMOVv4i16
:
5117 case ARM::VMOVv2i32
:
5118 case ARM::VMOVv2f32
:
5119 case ARM::VMOVv1i64
:
5120 UseOp
= MI
.findRegisterUseOperandIdx(Reg
, false, TRI
);
5123 // Explicitly reads the dependency.
5124 case ARM::VLD1LNd32
:
5131 // If this instruction actually reads a value from Reg, there is no unwanted
5133 if (UseOp
!= -1 && MI
.getOperand(UseOp
).readsReg())
5136 // We must be able to clobber the whole D-reg.
5137 if (Register::isVirtualRegister(Reg
)) {
5138 // Virtual register must be a def undef foo:ssub_0 operand.
5139 if (!MO
.getSubReg() || MI
.readsVirtualRegister(Reg
))
5141 } else if (ARM::SPRRegClass
.contains(Reg
)) {
5142 // Physical register: MI must define the full D-reg.
5143 unsigned DReg
= TRI
->getMatchingSuperReg(Reg
, ARM::ssub_0
,
5145 if (!DReg
|| !MI
.definesRegister(DReg
, TRI
))
5149 // MI has an unwanted D-register dependency.
5150 // Avoid defs in the previous N instructrions.
5151 return PartialUpdateClearance
;
5154 // Break a partial register dependency after getPartialRegUpdateClearance
5155 // returned non-zero.
5156 void ARMBaseInstrInfo::breakPartialRegDependency(
5157 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
5158 assert(OpNum
< MI
.getDesc().getNumDefs() && "OpNum is not a def");
5159 assert(TRI
&& "Need TRI instance");
5161 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
5162 Register Reg
= MO
.getReg();
5163 assert(Register::isPhysicalRegister(Reg
) &&
5164 "Can't break virtual register dependencies.");
5165 unsigned DReg
= Reg
;
5167 // If MI defines an S-reg, find the corresponding D super-register.
5168 if (ARM::SPRRegClass
.contains(Reg
)) {
5169 DReg
= ARM::D0
+ (Reg
- ARM::S0
) / 2;
5170 assert(TRI
->isSuperRegister(Reg
, DReg
) && "Register enums broken");
5173 assert(ARM::DPRRegClass
.contains(DReg
) && "Can only break D-reg deps");
5174 assert(MI
.definesRegister(DReg
, TRI
) && "MI doesn't clobber full D-reg");
5176 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5177 // the full D-register by loading the same value to both lanes. The
5178 // instruction is micro-coded with 2 uops, so don't do this until we can
5179 // properly schedule micro-coded instructions. The dispatcher stalls cause
5180 // too big regressions.
5182 // Insert the dependency-breaking FCONSTD before MI.
5183 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5184 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(ARM::FCONSTD
), DReg
)
5186 .add(predOps(ARMCC::AL
));
5187 MI
.addRegisterKilled(DReg
, TRI
, true);
5190 bool ARMBaseInstrInfo::hasNOP() const {
5191 return Subtarget
.getFeatureBits()[ARM::HasV6KOps
];
5194 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr
*MI
) const {
5195 if (MI
->getNumOperands() < 4)
5197 unsigned ShOpVal
= MI
->getOperand(3).getImm();
5198 unsigned ShImm
= ARM_AM::getSORegOffset(ShOpVal
);
5199 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5200 if ((ShImm
== 1 && ARM_AM::getSORegShOp(ShOpVal
) == ARM_AM::lsr
) ||
5201 ((ShImm
== 1 || ShImm
== 2) &&
5202 ARM_AM::getSORegShOp(ShOpVal
) == ARM_AM::lsl
))
5208 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5209 const MachineInstr
&MI
, unsigned DefIdx
,
5210 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
5211 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5212 assert(MI
.isRegSequenceLike() && "Invalid kind of instruction");
5214 switch (MI
.getOpcode()) {
5216 // dX = VMOVDRR rY, rZ
5218 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5219 // Populate the InputRegs accordingly.
5221 const MachineOperand
*MOReg
= &MI
.getOperand(1);
5222 if (!MOReg
->isUndef())
5223 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
->getReg(),
5224 MOReg
->getSubReg(), ARM::ssub_0
));
5226 MOReg
= &MI
.getOperand(2);
5227 if (!MOReg
->isUndef())
5228 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
->getReg(),
5229 MOReg
->getSubReg(), ARM::ssub_1
));
5232 llvm_unreachable("Target dependent opcode missing");
5235 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5236 const MachineInstr
&MI
, unsigned DefIdx
,
5237 RegSubRegPairAndIdx
&InputReg
) const {
5238 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5239 assert(MI
.isExtractSubregLike() && "Invalid kind of instruction");
5241 switch (MI
.getOpcode()) {
5243 // rX, rY = VMOVRRD dZ
5245 // rX = EXTRACT_SUBREG dZ, ssub_0
5246 // rY = EXTRACT_SUBREG dZ, ssub_1
5247 const MachineOperand
&MOReg
= MI
.getOperand(2);
5248 if (MOReg
.isUndef())
5250 InputReg
.Reg
= MOReg
.getReg();
5251 InputReg
.SubReg
= MOReg
.getSubReg();
5252 InputReg
.SubIdx
= DefIdx
== 0 ? ARM::ssub_0
: ARM::ssub_1
;
5255 llvm_unreachable("Target dependent opcode missing");
5258 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5259 const MachineInstr
&MI
, unsigned DefIdx
, RegSubRegPair
&BaseReg
,
5260 RegSubRegPairAndIdx
&InsertedReg
) const {
5261 assert(DefIdx
< MI
.getDesc().getNumDefs() && "Invalid definition index");
5262 assert(MI
.isInsertSubregLike() && "Invalid kind of instruction");
5264 switch (MI
.getOpcode()) {
5265 case ARM::VSETLNi32
:
5266 // dX = VSETLNi32 dY, rZ, imm
5267 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
5268 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
5269 if (MOInsertedReg
.isUndef())
5271 const MachineOperand
&MOIndex
= MI
.getOperand(3);
5272 BaseReg
.Reg
= MOBaseReg
.getReg();
5273 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
5275 InsertedReg
.Reg
= MOInsertedReg
.getReg();
5276 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
5277 InsertedReg
.SubIdx
= MOIndex
.getImm() == 0 ? ARM::ssub_0
: ARM::ssub_1
;
5280 llvm_unreachable("Target dependent opcode missing");
5283 std::pair
<unsigned, unsigned>
5284 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
5285 const unsigned Mask
= ARMII::MO_OPTION_MASK
;
5286 return std::make_pair(TF
& Mask
, TF
& ~Mask
);
5289 ArrayRef
<std::pair
<unsigned, const char *>>
5290 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5291 using namespace ARMII
;
5293 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
5294 {MO_LO16
, "arm-lo16"}, {MO_HI16
, "arm-hi16"}};
5295 return makeArrayRef(TargetFlags
);
5298 ArrayRef
<std::pair
<unsigned, const char *>>
5299 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5300 using namespace ARMII
;
5302 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
5303 {MO_COFFSTUB
, "arm-coffstub"},
5304 {MO_GOT
, "arm-got"},
5305 {MO_SBREL
, "arm-sbrel"},
5306 {MO_DLLIMPORT
, "arm-dllimport"},
5307 {MO_SECREL
, "arm-secrel"},
5308 {MO_NONLAZY
, "arm-nonlazy"}};
5309 return makeArrayRef(TargetFlags
);
5312 bool llvm::registerDefinedBetween(unsigned Reg
,
5313 MachineBasicBlock::iterator From
,
5314 MachineBasicBlock::iterator To
,
5315 const TargetRegisterInfo
*TRI
) {
5316 for (auto I
= From
; I
!= To
; ++I
)
5317 if (I
->modifiesRegister(Reg
, TRI
))
5322 MachineInstr
*llvm::findCMPToFoldIntoCBZ(MachineInstr
*Br
,
5323 const TargetRegisterInfo
*TRI
) {
5324 // Search backwards to the instruction that defines CSPR. This may or not
5325 // be a CMP, we check that after this loop. If we find another instruction
5326 // that reads cpsr, we return nullptr.
5327 MachineBasicBlock::iterator CmpMI
= Br
;
5328 while (CmpMI
!= Br
->getParent()->begin()) {
5330 if (CmpMI
->modifiesRegister(ARM::CPSR
, TRI
))
5332 if (CmpMI
->readsRegister(ARM::CPSR
, TRI
))
5336 // Check that this inst is a CMP r[0-7], #0 and that the register
5337 // is not redefined between the cmp and the br.
5338 if (CmpMI
->getOpcode() != ARM::tCMPi8
&& CmpMI
->getOpcode() != ARM::t2CMPri
)
5340 Register Reg
= CmpMI
->getOperand(0).getReg();
5341 unsigned PredReg
= 0;
5342 ARMCC::CondCodes Pred
= getInstrPredicate(*CmpMI
, PredReg
);
5343 if (Pred
!= ARMCC::AL
|| CmpMI
->getOperand(1).getImm() != 0)
5345 if (!isARMLowRegister(Reg
))
5347 if (registerDefinedBetween(Reg
, CmpMI
->getNextNode(), Br
, TRI
))